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Nomenclature

C = nonlinear control gain vector
J = hybrid performance index
m = magnetic dipole moment vector, A ⋅m2

u = control input
x = state vector
ε = vector part of quaternions
η = scalar part of quaternions
τ = torque vector, N ⋅m
Φ = basis functions
ω = angular velocity vector, rad∕s

Subscripts

b = expressed in body-fixed reference frame
ct = continuous-time variable
ds = discrete-time variable
i = expressed in inertial reference frame
imp = impulsive quantity
mag = magnetic quantity

I. Introduction

M AGNETIC torques originating from the interaction between
the Earth’s magnetic field and the onboard electromagnetic

dipole moments can be used as an actuation mechanism for
attitude control purposes [1–3]. In this regard, spacecraft operating
in low Earth orbits (LEOs) can be equipped with three mutually
perpendicular magnetic torquers. The most basic source of a mag-
netic torquer is a current loop; a planar loop of areaAwithN turns of
wire carrying a current of I Aproduces amagnetic dipole moment of
magnitude NIA in the direction normal to the plane of the loop,
satisfying a right-hand rule [3]. Although this relation has the advan-
tage of being a linear function of the current, sufficiently large
quantities for A andN are necessary to produce the onboard dipole
moments required by many spacecraft. For this reason, torque rods
(which are coils of wire wrapped around ferromagnetic cores) are
employed in practice to obtain greater dipole moments for a given
amount of current [3]. Because themagnitude of the Earth’smagnetic
field decreases as the inverse cube of the distance from the center of

the Earth, magnetic control torques are used almost exclusively in
near-Earth orbits wherein the magnitude of the Earth’s magnetic
field is roughly in the range of 20–50 μT [3]. As a consequence,
the control torques generated by magnetic actuation are typically on

the order of 10−5 to 10−4 N ⋅m for LEOs, depending on factors like
orbit inclination [3].
Magnetic control torques are typically used for the detumbling [4]

and momentum dumping [5,6] of spacecraft. In the former, the
magnetic attitude control system detumbles the spacecraft immedi-
ately after launch by damping all angular velocity components of the
spacecraft to zero; whereas in the latter, the primary task of the
attitude control system is to dump excess wheel angular momentum
induced by external disturbances [2,3]. Other applications of mag-
netic torquers include initial acquisition, precession control, nutation
damping, and momentum control [3].
Attitude control using magnetic torques was first proposed in

Ref. [7] in the 1960s, and then in Ref. [8] by developing the so-called
B-dot control law for spacecraft detumbling and initial acquisition. A
great deal of research has been devoted to the use ofmagnetic torques
for both attitude control and momentum dumping thereafter. The
early research was focused on approximating the time-varying
behavior of magnetic actuators with its time-invariant equivalence
assuming sufficiently slow closed-loop dynamics [9,10]. Periodic
change in the properties of the geomagnetic field relative to space-
craft (as they orbit the Earth) has also inspired many researchers to
employ a linear optimal control policy (time-varying, periodic,
and constant gains) to stabilize the rotational dynamics of spacecraft
[11–13]. For instance, Ref. [11] proposed an infinite-time horizon
periodic attitude controller, wherein the geomagnetic field was aver-
aged over a certain time interval to consider the periodic nature of the
problem, and a finite-time horizon periodic controller, which incor-
porated the time history of the real geomagnetic field into the
controller architecture. Lyapunov-based nonlinear techniques were
also under investigation for magnetic attitude control [14,15]; in this
regard, the periodicity of the Earth’s magnetic fieldwas used to apply
the Krasovski–LaSalle theorem for the stability analysis. A survey of
magnetic spacecraft attitude control using both linear and nonlinear
design methods can be found in Ref. [16].
Magnetic attitude control systems possess several advantages for

near-Earth missions, including 1) an essentially unlimited mission
life due to use of a renewable source of actuation, 2) the absence of
catastrophic failure modes, 3) the smoothness of application, 4) the
possibility of smoothly modulating the control torquewithout induc-
ing undesired coupling with flexible modes, and 5) significant sav-
ings in the overall weight and complexity of the system as compared
to any other class of actuators owing to the absence ofmoving parts or
plumbing [3,4,8].
On the other hand, as the main drawback associated with magnetic

attitude control systems,magnetic torques are constrained to lie in the
plane orthogonal to the magnetic field (due to the crossproduct
between the onboard magnetic dipole moments and the magnetic
field from which they originate); consequently, only two out of three
axes can be controlled at a given time instant [3]. Moreover, control-
lability in such systems depends on orbit characteristics and the
location of the spacecraft within the orbit [2]. However, full three-
axis control for magnetic attitude control systems can be achieved
over a complete orbit, provided that the spacecraft’s orbital plane
excludes the geomagnetic equatorial plane and the magnetic poles
[17]. Another disadvantage related tomagnetic attitude control is that
moderately fast attitude maneuvers are almost limited to low-orbit
missions [2].
To resolve the drawbacks inherently associated with magnetic

actuation (namely, instantaneous underactuation and gain limitations),
magnetic attitude control systems have been employed in conjunction
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with other forms of attitude control, from passive to active. Spin
stabilization (Ref. [1] Secs. 19.1 and 19.2, and Refs. [18,19]) and
gravity-gradient stabilization [9,10,14,15,20] are examples of passive
control used collaboratively to support magnetic actuation, whereas
reaction wheels [6,21–24] and thrusters [25,26] represent common
techniques to actively complement magnetic control.
In this Note, nonlinear-basedmagnetic actuation is collaboratively

augmented by impulsive thrusts for regulating the attitude motion of
spacecraft. Themain objective of this work is to extend the magnetic/
impulsive spacecraft attitude control concept to a nonlinear optimal
framework. By optimal combination of the magnetic torques and
impulsive thrusts proposed in this Note, the use of both magnetic and
impulsive control torques is optimized. Furthermore, the feedback
attitude controller required to regulate the attitude motion of space-
craft is designed using the full nonlinear kinematics and dynamics of
the system. No linearization is involved, neither dynamic feedback
linearization nor a priori linearization of the rotational equations
of motion. This is particularly useful for attitude control systems
that can involve large angle slewing maneuvers (whereupon linear
approximation is invalid), and nonlinear controllers are therefore
required to appropriately compensate for the nonlinearities involved
in the system. Using the proposed hybrid nonlinear optimal control-
ler, not only are the uncontrollability issues and gain limitations
inherently associated with magnetically actuated attitude control
systems resolved but the performance of the system is also signifi-
cantly improved as compared to linear-based controllers. Moreover,
the magnetic attitude control can be applied to low inclined orbits in
addition to high inclined ones, and global asymptotic stability can be
achieved from a practical perspective.
This Note is organized as follows. The hybrid nonlinear optimal

control framework recently proposed in Ref. [27] is briefly described
in Sec. II. The kinematic and dynamic equations of motion character-
izing the cascade nature of the spacecraft attitude motion are then
reviewed in Sec. III. The algorithm developed in Sec. II is sub-
sequently applied to themagnetic/impulsive attitude control problem
in Sec. IV.

II. Control Approach

This section serves to develop an optimal control design frame-
work for hybrid nonlinear dynamical systems that involve an inter-
acting mixture of continuous-time and discrete-time dynamics. Such
systems possess multiple modes of operation, and hence consist of
three main elements: a set of differential equations, which character-
izes the motion of the system between impulsive events; a set of
difference equations, which governs instantaneous changes in the
system states when an impulse occurs; and a criterion to determine
when impulses are to be applied. Consider a hybrid system modeled
by equations of the form

�
_x�t� � f�x; t� � g�x; t�uct�x; t�; x�0� � x0 t ≠ tk
Δx�tk� � x�t�k � − x�t−k � � Bdsuds;k t � tk

(1)

where x ∈ D ⊆ Rn is the state vector; D specifies an open set with
0 ∈ D; f∶D × R → Rn and g∶D × R → Rn×mct are assumed to be
Lipschitz continuous on D; tk denotes the time instants at which

impulses are to be applied; x�t−k � and x�t�k � are, respectively, the state
vectors immediately before and after the discrete-time dynamics

are applied at t � tk; uds�x�tk�; tk� ≜ uds;k; �uct;uds;k� ∈ Uct×
Uds ⊆ Rmct × Rmds is the hybrid control input with t ∈ �t0; tf� and
k ∈ Z�t0;tf�; and Bds ∈ Rn×mds indicates the discrete-time control

input matrix. It is also assumed that (uct, uds;k) is restricted to the

class of admissible controls Uct × Uds consisting of measurable
functions (uct, uds;k) such that �uct; uds;k� ∈ Uct × Uds, where the

constraint set Uct × Uds is given with �0; 0� ∈ Uct × Uds. The main
objective is therefore to determine a hybrid nonlinear control input
�uct;uds;k� ∈ Uct × Uds, t ∈ �t0; tf� and k ∈ Z�t0;tf�, such that the

following hybrid performance index isminimized over all admissible
control inputs �uct;uds;k� ∈ Uct × Uds [28]:

J�x0;uct;uds;k;t0��
Z

tf

t0

Lct�x�t�;uct�t�;t�dt�
XNimp

k�1

Lds�x�tk�;uds;k;tk�

(2)

where Lct∶D × Uct × R → R and Lds∶D × Uds × R → R are,
respectively, the continuous-time and discrete-time instantaneous
cost functions; and Nimp specifies the number of impulses during

the operating time. Whereas the necessary and sufficient conditions
for minimizing this hybrid performance index, given a hybrid control
input (uct, uds;k), are obtained via a hybrid version of Bellman’s

principle of optimality [28], the asymptotic stability of the hybrid
nonlinear closed-loop system can be guaranteed by relating the
hybrid performance index [Eq. (2)] to an underlying Lyapunov
function in a specificway [28]. This Lyapunov function can be shown
to be a solution of the hybrid Hamilton–Jacobi–Bellman (HJB)
equation shown in the following, thereby guaranteeing both optimal-
ity and asymptotic stability of the hybrid feedback control system
(see Refs. [27,28] for a detailed discussion):

∂V�x; t�
∂t

� min
uct∈Uct

fHct�x; uct; ∂V�x; t�∕∂x; t�g � 0 t ≠ tk (3)

min
uds;k∈Uds

fHds�x; uds;k; V�x; tk�; tk�g � 0 t � tk (4)

whereV∶D × R → R denotes a continuously differentiable positive-
definite function called the value function (the optimum value of
the performance index); and Hct and Hds define, respectively, the
Hamiltonians associated with the continuous-time and discrete-time
dynamics as follows [28]:

Hct�x;uct;∂V∕∂x;t�≜Lct�x;uct;t�
��∂V�x;t�∕∂x�T�f�x;t��g�x;t�uct�x;t�� (5)

Hds�x;uds;k;V�x; tk�; tk�≜Lds�x−k ;uds;k; tk��V�x�k ; t�k �−V�x−k ; t−k �
(6)

wherein x�k ≜ x�t�k � and V�x�k ; t�k � � V�x−k � Bdsuds;k; t
�
k �. From

optimal control theory, it is well known that the nonlinear optimal
control depends on the solution to the HJB equation, which is
generally difficult to solve; hence, approximation techniques are
necessitated. Two numerical approaches are therefore employed in
the following subsections to approximate the continuous-time and
discrete-time portions of the hybrid HJB equation, respectively. The
Galerkin spectral method [29] is used in Sec. II.A to derive a set of
differential equations through which the optimal control gains are
computed between impulsive events. Employing the spectral collo-
cation method (Ref. [30] Chap. 12), a set of algebraic equations is
then developed in Sec. II.B to find the optimal control gain vector at
impulsive instants. These two algorithms are ultimately combined in
Sec. II.C to obtain the hybrid nonlinear optimal control law for
attitude control purposes. The reader is referred to Ref. [27] for a
detailed discussion on the proposed hybrid nonlinear optimal control
architecture.

A. Numerical Solution to the Continuous-Time HJB Equation

Applying the Galerkin spectral method directly to the continuous-
time HJB equation, a set of differential equations is derived in this
section to compute the time-varying optimal control gains between
impulsive instants. Defining

Lct�x; uct; t� � lct�x� � kuct�x; t�k2Rct

where lct∶D → R is a positive-definite function called the continu-
ous-time state penalty function and Rct ∈ Rmct×mct denotes a sym-
metric positive-definite matrix called the continuous-time control
penalty matrix, the continuous-time optimal control law in terms of
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V�x; t� can be found by minimizing Eq. (3) with respect to uct as
follows (Ref. [31] Chap. 6):

u∗ct�x; t� � −
1

2
R−1

ct g
T�x; t� ∂V�x; t�

∂x
(7)

By substituting Eq. (7) into Eq. (3), the continuous-time HJB

equation can be thus formulated as

�
HJBct�V� � ∂V

∂t �
�
∂V
∂x

�
T
f − 1

4

�
∂V
∂x

�
T
gR−1

ct g
T ∂V

∂x � lct � 0

V�xf; tf� � 0
(8)

where xf ≜ x�tf�. The continuous-time HJB equation, as a nonlinear

partial differential equation, is difficult to solve in general, thereby

necessitating approximation techniques. The Galerkin spectral

method can be therefore exploited to approximate the solution to

Eq. (8). The basic idea underlying theGalerkin approach is to assume

that the solution of the continuous-time HJB equation can be

expressed as an infinite sum of known basis functions [32]. In

addition, for the Galerkin method to be applicable, the problem must

be placed in a suitable inner product space such that the projection is

well defined in terms of n-dimensional integrations [32]. The

approximation is thus restricted to a closed and bounded set in D,

namely, a compact set Ω, which defines the bounded domain of

the state space of interest. Consequently, it is first assumed that the

value function can be discretized by an infinite series of prescribed

state-dependent basis functions, which are continuous and defined

everywhere onΩ, and unknown coefficientswith time dependency as

follows [32]:

V�x; t� ≔
X∞
j�1

c∗j �t�ϕj�x� (9)

From a practical perspective, using an infinite number of terms in

the discretization is impossible; the approximation for V�x; t� is

therefore carried one step further by considering a truncated version

of the infinite series:

VN�x; t� ≔
XN
j�1

c∗j �t�ϕj�x� � ΦT
N�x�C∗

N�t� (10)

wherein ΦN�x� � �ϕ1; : : : ;ϕN �T, C∗
N�t� � �c∗1; : : : ; c∗N �T, and N

denotes the number of basis elements, i.e., the order of approxima-

tion. Using the Galerkin spectral method, the unknown coefficients

C∗
N�t� can be determined by projecting the error, resulting from

approximating the value function with VN�x; t�, onto the same basis

functions retained in the truncated series (the linear finite basis

spanned by fϕjgN1 ) and setting the outcome equal to zero:

8>>><
>>>:
hΦN;ΦNiΩ _C∗

N�t��hJx�ΦN�f ;ΦNiΩC∗
N�t�

−1
4

�P
N
k�1c

∗
k�t�

D
Jx�ΦN�gR−1

ct g
T ∂ϕk

∂x ;ΦN

E
Ω

�
C∗
N�t��hlct;ΦNiΩ�0

hΦN;ΦNiΩC∗
N�tf��0

(11)

wherein the projection operator is the inner product

h�⋅�;ϕi�x�iΩ ≜
Z
Ω
�⋅�ϕi�x� dx

computed overΩ, and Jx denotes the Jacobian operator (matrix) with

respect to x. Omitting the detail, the following set of nonlinear

ordinary differential equations (termed the continuous-time optimal

control gain equations) therefore needs to be solved forC∗
N�t� in order

to find the continuous-time optimal control law, assuming the equa-

tions have no escape in finite time:

_C∗
N�t� �A�t; c∗k�t��C∗

N�t� � b � 0; C∗
N�tf� � 0 (12)

where

M�t; c∗k�t�� �
XN
k�1

c∗k�t�
D
Jx�ΦN�gR−1

ct g
T
∂ϕk

∂x
;ΦN

E
Ω

A�t; c∗k�t�� � hΦN;ΦNi−1Ω
h
hJx�ΦN�f ;ΦNiΩ −

1

4
M�t; c∗k�t��

i
b � hΦN;ΦNi−1Ω hlct;ΦNiΩ (13)

Once the optimal control gains C∗
N�t� are computed via backward

integration of Eq. (12), the continuous-time optimal control law can
be obtained by

u∗ct�x; t� � −
1

2
R−1

ct g
T�x; t�JTx �ΦN�x��C∗

N�t� (14)

B. Numerical Solution to the Discrete-Time HJB Equation

With the continuous-time optimal control gain equations [Eq. (12)]
thus derived, a set of algebraic equations is developed in this section
to compute the optimal control gain vector associated with each jump
at t � tk (see Ref. [27] for a detailed discussion). Defining

Lds�x−k ;uds;k; tk� � lds�x−k � � kuds;kk2Rds

wherein lds∶D → R is the discrete-time state penalty function and
Rds ∈ Rmds×mds denotes a symmetric positive-definite matrix called
the discrete-time control penalty matrix, the discrete-time optimal
control law can be then found by minimizing Eq. (4) with respect to
uds;k:

u∗ds;k � −
1

2
R−1

ds B
T
ds

∂V�x�k ; t�k �
∂x

� −
1

2
R−1

ds B
T
ds

∂V�x−k �Bdsu
∗
ds;k; t

�
k �

∂x
(15)

Substituting Eq. (15) into the discrete-time HJB equation along
with use of the truncated version of the discretized value function
[Eq. (10)] yields the following set of algebraic equations at each jump
instant (t � tk):

lds�x−k ��
1

4
�JTx �ΦN�x��jx�x−

k
�Bdsu

∗
ds;k
C∗
N�t�k ��T

×BdsR
−1
ds B

T
ds�JTx �ΦN�x��jx�x−

k
�Bdsu

∗
ds;k
C∗
N�t�k ��

�ΦT
N�x−k �Bdsu

∗
ds;k�C∗

N�t�k �−ΦT
N�x−k �C∗

N�t−k � � 0 (16)

C∗
N�t−k � can be therefore computed through the preceding set of

equations with C∗
N�t�k � available from the backward integration of

Eq. (12). To this end, the following function is first defined substitut-
ing Eq. (10) into Eq. (15) and then rearranging the resulting equation]

in terms of u∗ds;k and x
−
k with known quantities c∗j �t�k � to be solved for

u∗ds;k:

F�u∗ds;k� � 2Rdsu
∗
ds;k � BT

ds

XN
j�1

c∗j �t�k �
∂ϕj�x−k � Bdsu

∗
ds;k�

∂x
� 0

(17)

Newton’s method [30] is then used to iteratively solve the equation

F�u∗ds;k� � 0 for u∗
�i�1�

ds;k , starting with u∗
�i�

ds;k:

u∗
�i�1�

ds;k � u∗
�i�

ds;k −
�∂F�u∗�i�ds;k�

∂u∗Tds;k

�−1

F�u∗�i�ds;k� (18)

Substituting Eq. (17) into Eq. (18) alongwith collocating x−k with a
suitable set of points, �x � row

m
f �xmg, yields
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u∗
�i�1�

ds;k � u∗
�i�

ds;k −
�
2Rds � BT

ds

XN
j�1

c∗j �t�k �Hx�ϕj�x��jx�χ�
k;m
Bds

�−1

× �2Rdsu
∗�i�
ds;k � BT

dsJ
T
x �ΦN�x��jx�χ�

k;m
C∗
N�t�k �� (19)

wherein m � 1; : : : ; N, χ�k;m � �xm � Bdsu
∗�i�
ds;k, and Hx is the

Hessian matrix with respect to x. Initializing Eq. (19) with a suitable

choice, the discrete-time optimal control corresponding to each �xm at

t � tk, u
∗
ds;k� �xm; tk�, can therefore be computed. Using the spectral

collocation method at each jump instant and substituting u∗ds;k� �xm; tk�
computed fromEq. (19) intoEq. (16), the discrete-timeoptimal control

gain equations are obtained to be solved for C∗
N�t−k � as follows:

C∗
N�t−k � � �Ψ−

k � �x��−1�Wk� �x� �Ψ�
k � �x�C∗

N�t�k �� (20)

where

ϒ� �xm� � JTx �ΦN�x��jx� �xm�Bdsu
∗
ds;k

� �xm;tk�C
∗
N�t�k �

Wk� �x� � column
m

�
lds� �xm� �

1

4
�ϒT� �xm�BdsR

−1
ds B

T
dsϒ� �xm��

	
Ψ−

k � �x� � matrix
m;j

fϕj� �xm�g

Ψ�
k � �x� � matrix

m;j
fϕj� �xm � Bdsu

∗
ds;k� �xm; tk��g (21)

C. Hybrid Nonlinear Optimal Control Law

Armedwith the continuous-time and discrete-time optimal control

gain equations [Eqs. (12) and (20), respectively], the desired hybrid

nonlinear optimal control gains can be obtained via solving the

following sets of equations (known as the hybrid optimal control

gain equations) for C∗
N�t�:�

_C∗
N�t��A�t;c∗k�t��C∗

N�t��b�0;C∗
N�tf��0 �SeeEq:�13�� t≠ tk

C∗
N�t−k ���Ψ−

k � �x��−1�Wk� �x��Ψ�
k � �x�C∗

N�t�k �� �SeeEq:�21�� t� tk

(22)

Starting with the boundary conditions at the terminal time tf,
C∗
N�tf� � 0, the continuous-time optimal control gain equations

are first integrated backward in time. At each jump instant t � tk,
an impulse is then induced in the solution using the discrete-time
optimal control gain equations; and C∗

N�t−k � computed at each jump

are subsequently used as new terminal conditions for the continuous-

time equations in Eq. (22) to be integrated backward from t−k to t�k−1.
This integration process is repeated until time zero is reached.
With the hybrid nonlinear optimal control gain vector thus com-

puted at each time instant, the desired hybrid nonlinear optimal
control law can be found by

�
u∗ct�x;t��−1

2
R−1

ct g
T�x;t�JTx �ΦN�x��C∗

N�t� t≠ tk
u∗ds;k�x�k ;t�k ��−1

2
R−1

ds B
T
dsJ

T
x �ΦN�x��jx�x�

k
C∗
N�t�k � t� tk

(23)

Shown in Fig. 1, the proposed hybrid algorithm for nonlinear
systems is compared to the hybrid linear quadratic regulator
(LQR) approach applicable for linear systems [26], wherein

V�x; t� ≔ xTP�t�x.

III. Spacecraft Attitude Kinematics and Dynamics

As a hybrid dynamical system, the attitude control system pro-
posed in this Note possesses two modes of operation: magnetic
actuation and impulsive thrusting. In this regard, the spacecraft
operating in a low-Earth orbit is externally torqued by three mutually
perpendicular magnetic torquers immersed in the Earth’s magnetic
field. Once a certain criterion is met, a triple set of impulsive torques
(one about each direction of the body-fixed frame) is then applied to
the spacecraft by expulsion devices (thrusters). The attitude motion
of the spacecraft is therefore characterized by a continuous-time set of
differential equations, which characterizes the rotational motion of
the dynamical system between impulsive events, and a set of differ-
ence equations, which governs instantaneous changes in the states
once an impulse occurs. Due to the cascade nature of the spacecraft
attitude motion, the rotational kinematic equations must be coupled
with the dynamics. In this Note, the singularity-free four-parameter
set of quaternions (ε � � ε1 ε2 ε3 �T and η) subject to the unit

magnitude constraint (εTε� η2 � 1) are chosen to parameterize
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Fig. 1 Comparison between hybrid nonlinear optimal control (left column) and hybrid LQR control (right column).

4 Article in Advance / ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Fe
br

ua
ry

 2
8,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
49

13
 



the attitude motion of the spacecraft. The kinematic equations of
motion, which mathematically relate the angular velocity to the rate
of change in quaternions, are therefore formulated as (Ref. [33]
Chap. 2) �

_ε�t� � �1∕2��η13×3 � ε×�ω
_η�t� � −�1∕2�εTω (24)

whereω is the angular velocity, and �⋅�× denotes the skew-symmetric
matrix used to implement the crossproduct. In addition, the rotational
dynamics of the system are described byEuler’s rigid-body equations
[33]:

I _ω�t� � ω×Iω � τmag � τimp � τdist (25)

wherein I is the spacecraft moment of inertia matrix. Furthermore,
τmag and τimp define, respectively, the magnetic torques and impul-

sive thrusts applied at tk; and they can be obtained by (Ref. [33]
Chap. 9)

τmag � m×Bb (26)

τimp �
XNimp

k�1

νkδ�t − tk� (27)

whereinm is the commandedmagnetic dipolemoments generated by
the magnetic torquers (m � uct),Bb specifies the local geomagnetic
field expressed in the body-fixed coordinate system, νk denotes
impulsive torques produced by thrusters (νk � uds;k), and δ�t� is

the Dirac delta function located at each impulse time t � tk. In
addition, external disturbance torques, which arise primarily from
the gravity-gradient disturbances and residual magnetic dipoles
resulting from onboard electronics, are the most significant source
of disturbance for near-Earth small spacecraft; and they can be found
as (Ref. [33] Chap. 9)

τdist �
3μ

krbk5
r×bIrb �m×

distBb (28)

where μ � 3.986 × 1014 m3∕s2 is the Earth’s standard gravitational
parameter, rb is the spacecraft position vector in the body-fixed
frame, and mdist denotes the residual magnetic dipole moments.
Furthermore, a nontilted dipole model of the geomagnetic field
described in Ref. [34] is used in this Note to estimate the inertial
magnetic field vectorBi. The spacecraft magnetic/impulsive attitude
control system can therefore be formulated as the following hybrid
nonlinear dynamical system:

8>>><
>>>:

8<
:

_ε�t� � �1∕2��η13×3 � ε×�ω
_η�t� � −�1∕2�εTω
_ω�t� � I−1�−ω×Iω� τmag � τdist�

t ≠ tk

Δω�tk� � I−1τimp t � tk

(29)

IV. Numerical Simulations

In this section, the hybrid control design framework developed in
Sec. II is exploited to detumble and point the spacecraft being
considered immediately after launch. Due to the cascade nature of
the spacecraft attitude control problem, the equations ofmotion given
byEq. (29)must be integrated simultaneously. To this end, Eq. (22) is
first solved iteratively for the hybrid nonlinear optimal control gains
C∗
N�t� used in both continuous-time and discrete-time optimal con-

trollers. The hybrid rotational equations of motion, which take into
account the external disturbance torques, are then integrated forward
using a fixed-step fourth-order Runge–Kutta scheme (Ref. [30]
Chap. 11).

Defining x � � ε1 ε2 ε3 η ω1 ω2 ω3 �T, the dynamic
and control input functions can be obtained according to Eqs. (1)
and (29) as follows:

f�x� �

2
64
�1∕2��η13×3 � ε×�ω

−�1∕2�εTω
−I−1ω×Iω

3
75; g�ε; η; t� �

"
04×3

−I−1B×
b

#

Bds �
"
04×3

I−1

#
(30)

With f , g, and Bds coming directly from the equations of motion,
the domain of the states Ω, the basis functions ΦN , the collocation
points �x, the impulsive application times θk, and the state penalty
functions remain to be determined. Due to the unit magnitude con-
straint acting on the quaternions, their domain of possible values is
thus limited to �−1; 1�. For angular velocity components, however,
there is no kinematical limitation; their stability region is accordingly
chosen on the basis of practical considerations (as expressed in
radians per second):

Ω � �−1 1 �ε1 × �−1 1 �ε2 × �−1 1 �ε3 × �−1 1 �η × �−1 1 �ω1

× �−1 1 �ω2
× �−1 1 �ω3

Proper selection of basis functions is critical to the design of the
optimal controllers. For the control to compensate adequately for the
nonlinear dynamics of the system, basis functions must be able to
capture the essential nonlinear dynamics of the system. If the system
has dynamics that are not spanned by the basis functions, then the
control will not be able to compensate for the nonlinear dynamics of
the system (characteristic requirement) [32,35]. The number of the
basis elementsmust also be sufficiently large to approximateVN with
sufficient accuracy (quantity requirement) [32,35]. Due to multipli-

cation of gT�x; t� and JTx �ΦN�x�� in the continuous-time optimal
control law [Eq. (14)], basis functionsmust be selected such that their
partial derivatives with respect to those states that correspond to
nonzero elements of g result in desired functions of the states to
ultimately emerge in the optimal control law, hence capturing the
dominant nonlinear dynamics of the system.
Considering the structure of g�x; t� for the magnetic attitude

control problem, ω1, ω2, and ω3 are those states that correspond to
the nonzero elements of g in Eq. (14) as shown in the following:

u∗ct�x; t� �−
1

2
R−1

ct

2
664
0 0 0 0 0 g61 g71

0 0 0 0 g52 0 g72

0 0 0 0 g53 g63 0

3
775

2
6666664

∂ϕ1

∂ε1
· · ·

∂ϕN

∂ε1
..
. ..

.

∂ϕ1

∂ω3

· · ·
∂ϕN

∂ω3

3
7777775

×

2
664
c∗1�t�
..
.

c∗N�t�

3
775

�−
1

2
R−1

ct

2
66666664

g61
∂ϕ1

∂ω2

�g71
∂ϕ1

∂ω3

· · · g61
∂ϕN

∂ω2

�g71
∂ϕN

∂ω3

g52
∂ϕ1

∂ω1

�g72
∂ϕ1

∂ω3

· · · g52
∂ϕN

∂ω1

�g72
∂ϕN

∂ω3

g53
∂ϕ1

∂ω1

�g63
∂ϕ1

∂ω2

· · · g53
∂ϕN

∂ω1

�g63
∂ϕN

∂ω2

3
77777775

×

2
6664
c∗1�t�
..
.

c∗N�t�

3
7775

wherein g52, g53, g61, g63, g71, and g72 represent nonzero elements of
g�x; t�. With an attitude controller composed of quaternion-based
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proportional and ω-based rate control portions in mind, an initial

set of quadratic basis elements are first chosen to satisfy the

characteristic requirement: fε1ω1;ω
2
1; ε2ω2;ω

2
2; ε3ω3;ω

2
3g. This

choice must be, however, complemented by fε21; ε22; ε23; �η − 1�2g
to produce a positive-definite value function (Lyapunov function).

Through this quadratic choice, the characteristic requirement is

accordingly satisfied, and the asymptotic stability may be achieved.

Nevertheless, these quadratic basis elements must be augmented by

some extra higher-order terms to guarantee the accuracy of the

approximation in addition to improving the performance of the

optimal controller. By gradual increase in the number of basis

elements in a manner consistent with the characteristic require-

ment, the performance index is eventually converged at N � 28
(i.e., VN�28 ≅ V) and the quantity requirement is accordingly met.

Henceforth, any further increase in the number of basis elements

yields insignificant improvement in the performance index at

the expense of computational cost. Considering these guidelines,

the following 28 basis elements are consequently chosen for this

problem:

ΦN � fε21; ε1ω1;ω
2
1; ε

2
2; ε2ω2;ω

2
2; ε

2
3; ε3ω3;ω

2
3; �η − 1�2;

ε41; ε
2
1ω

2
1;ω

4
1; ε

4
2; ε

2
2ω

2
2;ω

4
2; ε

4
3; ε

2
3ω

2
3;ω

4
3;

ε41ω
2
1; ε

4
2ω

2
2; ε

4
3ω

2
3; ε

7
1ω1; ε

7
2ω2; ε

7
3ω3; ε

5
1ω

3
1; ε

5
2ω

3
2; ε

5
3ω

3
3g

A suitable set of collocation points is also necessary to design

the discrete-time optimal controller. Collocation points can be

chosen from the entire compact set, excluding the origin,

provided the rank condition required to produce an invertible

Ψ−
k � �x� in Eq. (20) is satisfied (see section 3 in Ref. [27] for a

detailed discussion).

Assuming a prescribed sequence of impulsive times, eight equally

spaced impulses in terms of true anomaly are selected for this

problem:

θk�f5 deg;50 deg;95 deg;140 deg;185 deg;
230 deg;275 deg;320 degg

This choice suggests the firing times through which a minimum

value for J is obtained. In addition, consistent with the LQR

approach, the state penalty functions in this Note are chosen to be

quadratic: lct�x� � xTQctx and lds�x−k � � x−
T

k Qdsx
−
k , where Qct and

Qds are symmetric positive semidefinite matrices called the continu-

ous-time and discrete-time state penalty matrices, respectively.
Assuming a circular near-polar Keplerian orbit, the spacecraft

orbital elements with the semimajor axis a corresponding to the

altitude of 450 km are defined as

fa; e; î; Ω̂; ω̂; t0g � f6828 km; 0; 87 deg; 0 deg; 0 deg; 0g

where e, î, Ω̂, and ω̂ are the eccentricity, inclination, right ascension

of the ascending node, and argument of perigee, respectively. In

addition, the following weighting matrices are selected for trading

off the speed of the response against the control effort, and hence

produce the satisfactory performance:

Qct � diag� 10 10 10 0 1 1 1 �;
Rct � diag� 10−7 10−7 10−7 �
Qds � diag� 10 10 10 0 1 1 1 �;
Rds � diag� 14 × 10−2 14 × 10−2 14 × 10−2 �

Fig. 2 Time histories of Euler parameters, angular velocity, and control torques for the proposed hybrid nonlinear optimal controller using

ε0 � � 0.5 0.5 0.5 �T and ω0 � � 0.02 0.02 0.02 �T rad∕s.

6 Article in Advance / ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
R

O
N

T
O

 o
n 

Fe
br

ua
ry

 2
8,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
49

13
 



As seen, the diagonal term associated with η is chosen to be zero

for both continuous-time and discrete-time state penalty matrices.

The objective here is to regulate the states ε1, ε2, ε3, ω1, ω2, and ω3,

leaving η to vary as necessary to control the attitude motion of

spacecraft appropriately while satisfying the unit length con-

straint: εTε� η2 � 1.
Lastly, the spacecraft is assumed to have I�diag�27 17 25�

kg ⋅m2 with residual magnetic dipole moments of mdist �

0.1 0.1 0.1

�
T A ⋅m2.

As demonstrated in Ref. [26], a hybrid (magnetic/impulsive) LQR

controller initialized by a sufficiently small set of initial conditions

(namely, ε0 � � 0 0 0 �T and ω0 � � 0.02 0.02 0.02 �T rad∕s)
can asymptotically stabilize the attitude motion of the spacecraft.

This undemanding attempt is eliminated in this Note, and the system

is challenged by a large set of initial rotation ε0 � � 0.5 0.5 0.5 �T.
The simulation results are shown in Fig. 2. As seen, the transient

response of the system is reasonably quick and well damped, and the

system is stable after one orbit.

To evaluate the performance of the hybrid nonlinear optimal

controller developed in Sec. II, a hybrid LQR controller [26] and a

magnetic nonlinear optimal controller [36] are also designed. The

former is based on the linearized rotational equations of motion;

whereas the latter, which only uses the continuous-time magnetic

actuation (without impulsive thrusts), is designed using the full

nonlinear kinematics and dynamics of the system. In addition, the

following root-mean-square norms are defined and computed over

10 orbits to quantitatively assess the functionality of the proposed

controller as opposed to the other two:

Fig. 3 Time histories of Euler parameters (left column) and angular velocity (right column) for the three optimal attitude controllers using

ε0 � � 0.5 0.5 0.5 �T and ω0 � � 0.02 0.02 0.02 �T rad∕s.
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kϕk �
���������������������R
10T
0 ϕ2 dt

10T

s
; kωk �

�������������������������R
10T
0 ωTω dt

10T

s
;

kτmagk �
���������������������������������R
10T
0 τTmagτmag dt

10T

s
; kτimpk �

������������������������������������PNimp

k�0 �u∗
T

ds;ku
∗
ds;k�

Nimp

vuut

where T is the orbital period, and ϕ denotes the rotation angle (in

radians) of the spacecraft from Euler axis-angle parameters. In this

regard, the norms of the rotation angle and impulsive torque (kϕk and
kτimpk, respectively) can be used as important criteria for accurate

pointing and efficient fuel missions, respectively. By adjusting the

size of the diagonal terms in weighting matrices, a tradeoff between

accuracy and fuel expenditure can be made to achieve a high-pre-

cision pointing with low fuel requirements. Furthermore, the norm of

the magnetic torque kτmagk can be employed to evaluate the feasibil-

ity of the attitude controller in terms of the magnetic torque required

by torque rods for stabilization purposes.
One important factor to determine the feasibility of a control

scheme proposed for regulating the attitude motion of spacecraft is

the required power during the mission. Assuming the spacecraft

being considered is equipped with three magnetic torquers with

R � 100 Ω,N � 400 turns, andA � πD2∕4 m2 [1]; the electrical

energy consumed by the spacecraft during the operating time can be

estimated by [1]

E � 3R
N 2A2

Z
tf

t0

mTm dt

Whereas linear-based controllers are essentially restricted to

operate in the vicinity of the equilibrium to satisfy the linearity

assumption, the control systems equipped with nonlinear-based

controllers can be employed to operate over the entire operating

range of the system. Figure 3 depicts the time histories of Euler

parameters and the angular velocity for the proposed hybrid non-

linear controller as opposed to the other two controllers starting from

the same initial conditions. As is evident, the results show significant

improvement in terms of transient response and settling time for the

hybrid nonlinear controller as compared to the hybrid LQR and

magnetic nonlinear controllers. In this regard, the hybrid LQR con-

troller obtains comparatively good performance at the expense of

large control effort; this occurs because the control used in the

performance index is the linearized control, and not the actual one.
Presented in Table 1, all quantitative parameters related to the three

attitude controllers are summarized. As seen, noticeable improve-

ment in all parameters associatedwith the hybrid nonlinear controller

is evident as compared to the other two; particularly J and E with

99.79 and 100.00% improvement, respectively. Whereas the mag-

netic torque required by the proposed controller for detumbling the

spacecraft is only 7.81 × 10−5 N ⋅m associated with m � 2.92 A ⋅
m2 over 10 orbits, and therefore lies within the acceptable range of

10−5 to 10−4 N ⋅m as proposed in Refs. [2,3] for near-Earth mis-

sions, the hybrid LQR controller needs torque rods capable of

24; 164 A ⋅m2 at the expense of an inevitable increase in the dimen-

sions and weight of the attitude control system (via increasingN and

A), which is obviously impossible in practice.
As stressed earlier, the hybrid LQR controller possesses a local

asymptotic stability property within the linearity assumption, and

therefore works well only for sufficiently small initial conditions; by

choosing large initial rotation, asymptotic stabilization is obtained at

the cost of large, practically impossible, magnetic torques.Moreover,

once the system is initialized by a larger set of angular velocities, the

hybrid LQR controller fails to stabilize appropriately (see Fig. 4). In

contrast, nomatter how large the initial angular velocity is chosen, the

hybrid nonlinear controller can asymptotically stabilize the system

Table 1 Quantitative assessment for the performance of three optimal attitude controllers over 10 orbits using

ε0 � � 0.5 0.5 0.5 �T and ω0 � � 0.02 0.02 0.02 �T rad∕s

Parameters Hybrid linear (I) Magnetic nonlinear (II) Hybrid nonlinear (III)
Improvement of

III as compared to I, %
Improvement of

III as compared to II, %

J 9.88 × 105 1.78 × 104 2.11 × 103 99.79 88.22

E, J 2.98 × 1018 5.66 × 1011 4.35 × 1010 100.00 92.31

kϕk, rad 4.88 × 10−1 8.10 × 10−1 2.57 × 10−1 47.39 68.34

kωk, rad∕ sec 2.28 × 10−2 3.45 × 10−3 2.36 × 10−3 89.65 31.49

kτmagk, N ⋅m 4.20 × 10−1 2.81 × 10−4 7.81 × 10−5 99.98 72.23

kτimpk, N ⋅m 4.22 × 10−1 —— 1.20 × 10−1 71.50 — —

Fig. 4 Time histories of Euler parameters for hybrid nonlinear optimal controller (left) and hybrid LQR controller (right) using ε0 � � 0.5 0.5 0.5 �T
and ω0 � � 0.06 0.06 0.06 �T rad∕s.
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accordingly. Figure 4 shows the time history of the Euler parameters
for two hybrid optimal attitude controllers using a slightly larger set
of initial angular velocities: ω0��0.06 0.06 0.06�T rad∕s. As seen,
the proposed controller can still regulate the spacecraft attitude
motion appropriately, and hence the global asymptotic stability from
a practical perspective. In this regard, the domain of the states
associated with ω in Ω can be expanded unboundedly, depending
upon the practical considerations.

V. Conclusions

In this Note, a novel hybrid control scheme has been proposed for
regulating the attitude motion of spacecraft. The proposed algorithm
combined magnetic torques with impulsive thrusts in an optimal
manner. Assuming a prescribed set of impulsive application times,
a nonlinear optimal approach was exploited to determine the control
input thatminimized the hybrid performance index being considered.
By using the proposed hybrid nonlinear optimal controller, three
objectives have been accomplished in this Note:
1) Instantaneous underactuation and gain limitations (as the two

main obstacles inherently associated with magnetically actuated
attitude control systems) were resolved.
2) Global asymptotic stability for the hybrid controller was shown

from a practical perspective.
3) The quantitative parameters characterizing the performance of

the hybrid control system were significantly improved as compared
to the hybrid LQR and nonlinear magnetic controllers.
Numerical simulation results showed the feasibility of the pro-

posed controller with magnetotorquers requiring magnetic torques
within the acceptable range of 10−5 to 10−4 N ⋅m for stabilizing the
attitude motion of the spacecraft under consideration.
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