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Nomenclature

q = unit quaternion
qij = discrete state of the ith automaton Ai; i, j are equal to

1, 2, 3
ϵ = vector component of q
η = scalar component of q
1 = north pole of S3

Ω = angular velocity
H = controller supervisor
δ = hysteresis parameter for the supervisor H
Ai = low-level automaton; i is equal to 1, 2, 3
δi1, δ

i
2 = hysteresis parameters of the automata Ai; i is equal to

1, 2, 3
Γ�
i = initialization sets; i is equal to 1, 2, 3

Λ�
i = switching sets; i is equal to 1, 2, 3

κi = concavity of the lower parabolas in the definition of
Λ�

i ; i is equal to 1, 2, 3

I. Introduction

T HISpaper presents a novel feedback controller that stabilizes the
attitude of a rigid body to any degree of accuracy. Its main

feature is that it is bang-bang and, as argued below, it constitutes the
first solution to the attitude stabilization problem with on–off
actuators and bounded switching frequency.
Bang-bang attitude controllers based on the use of pulse width

modulation (PWM) and pulse width pulse frequency modulation
(PWPFM) have been proposed in the context of single-axis
maneuvers [1–3], small-angles maneuvers [4], and large maneuvers
[5]. Bang-bang modulation schemes with dead-band regions were
proposed in [6]. These techniques, however, introduce a problematic
coupling between the switching frequency and the asymptotic bound
on the state, even in the absence of external perturbations. Moreover,
the stability properties of these controllers for general nonlinear
systems have yet to be proven rigorously. A review of some of these
techniques can be found in [1,2,7].

Most of the bang-bang attitude controllers presented in the past
apply only to the case of planar maneuvers; see, for example, [8–11].
A robust bang-bang feedback controller was proposed in [8] for the
simplified case of single-axis maneuvers. The controller is obtained
by introducing dead-bands about the parabolic switching curves of
the classical bang-bang time-optimal controller for double-
integrators. The controller is robust with respect to constant
uncertainties in the system’s parameters and constant external
torques.
Designing bang-bang controllers for general, three-dimensional

maneuvers is far more challenging. Most of the results proposed in
the literature originate from various attempts to find the solution to
the time-optimal attitude control problem in the case of rest-to-rest
maneuvers, and result in open-loop controllers. It was shown in [12]
that, for an inertially symmetric spacecraft, the time-optimal
controller is indeed bang-bang. It was observed through simulations
that the controller induces a total of seven switches in the control
input value if the reorientation maneuver is smaller than 73 deg., a
total of five switches otherwise. The control values and switching
times were computed numerically, through continuation techniques.
These results were later extended to asymmetric rigid spacecraft in
[13], under the assumption that the control input magnitude is
significantly larger than the nonlinear gyroscopic term in the
dynamics. More recently, new trajectories have been found
numerically in [14] that are characterized by six control switches. In
[15], the problemof performing a time-optimal reconfiguration for an
axisymmetric rigid spacecraft, by using only two control torques,was
tackled and solved numerically.
All of the controllers discussed above require complex numerical

procedures in order to generate accurate-enough estimates of the
optimal control input values and switching times. The very nature of
the numerical schemes adopted to solve the optimization problem
heavily influences the quality of the solution found.Moreover, initial
guesses for states, co-states, and control inputs are often required. As
is to be expected, these controllers are inherently nonrobust to
external unmodeled perturbations, uncertainty in the system’s
parameters, or measurement noise.
A control strategy based on a sequence of eight bang-bang

maneuvers was proposed in [16]. First, a discontinuous controller is
applied to bring the spacecraft to a rest configuration, that is, zero
angular velocity. A sequence of seven single-axis bang-bang
maneuvers is then performed that exploit the structure of the
kinematic and dynamic equations. The authors of [16] point out that
this particular control strategy suffers from a lack of robustness to
both external perturbations and measurement noise, in that
unmodeled perturbations may prevent the controller from
successfully completing one of the maneuvers. Moreover, each
single-axis bang-bang maneuver may induce sliding modes when
external perturbations and measurement noise are considered.
In this paper the hybrid feedback presented in [17] is modified

so as to take full advantage of the quaternion parametrization of
the spacecraft attitude. The controller achieves practical
stabilization of the spacecraft attitude assuming the full nonlinear
dynamics of the spacecraft, while avoiding chattering and high-
frequency switching of the actuators. An extensive Monte Carlo
numerical analysis indicates that the result might in fact be
global. To the best of our knowledge, the attitude controller
presented in this paper is the first bang-bang feedback controller
with guaranteed stability properties and guaranteed bounded
switching frequency, even in the presence of measurement noise.
Moreover, the proposed controller is not limited to small-angle or
planar maneuvers.
The paper is organized as follows. Section II formulates the

problem investigated in this paper. Section III presents the controller
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solving the problem.An extensiveMonteCarlo numerical simulation
is presented in Sec. IV. The robustness of the proposed controller to
measurement noise is investigated in Sec. V.
Notation: We denote Bϵ�0� � fx ∈ R2: �x⊤x�1∕2 < ϵg and

�Bϵ�0� � fx ∈ R2: �x⊤x�1∕2 ≤ ϵg. These definitions imply that the
set B0�0� is empty, while �B0�0� � f0g. The 3 × 3 identity matrix is
denoted by I. Throughout the paper, sets are denoted by capital
letters. The boundary of a set A is defined as ∂A � �A \ IntA, where �A
is the closure of A and IntA is its interior. We denote by −A the
set −A � fx: − x ∈ Ag.

II. Model and Problem Formulation

Consider an inertially symmetric rigid spacecraft with moment of
inertia J0, and letΩ ∈ R3 denote its angular velocity expressed in the
principal frame. The spacecraft attitude is parametrized by a unit
quaternion q � �ϵ; η� ∈ S3, where S3 � fx ∈ R4: x⊤x � 1g. We
assume that the spacecraft is equipped with a set of reaction thrusters
that generates a bang-bang control acceleration u ∈ U, where U ≔
f− �u; 0;� �ug3 with �u > 0, in the body frame. The rotational dynamics
of the spacecraft can be written as follows:

_ϵ � 1

2
�ηI � S�ϵ��Ω

_η � −
1

2
ϵ⊤Ω

_Ω � u (1)

with state χ � �q;Ω� ∈ X, where X � S3 × R3 denotes the state
space of system (1), and control input u. The matrix S�ϵ� is the 3 × 3
skew-symmetric matrix defined so that S�ϵ�Ω � ϵ × Ω.
In this paper we discuss the design of a feedback bang-bang

controller u⋆ with values inU that stabilizes a target orientation of the
spacecraft to any desired degree of accuracy. The control problem
must, however, be formulated with particular care, in that it is a well-
known fact that any two distinct, antipodal quaternions, q and −q,
parametrize the same orientation of the spacecraft. When a controller
is designed overlooking this feature, unwinding behavior may be
induced in the closed-loop system, forcing the spacecraft to
unnecessarily undergo a full rotation before being stabilized. As
argued in [18], to avoid unwinding, it is necessary and sufficient to
simultaneously stabilize both the quaternions that parametrize the
desired orientation. In what follows, we assume, without loss of
generality, that the target equilibria to be stabilized are �q;Ω� �
�1; 0� and �q;Ω� � �−1; 0�, where 1 � �0; 1� and −1 � �0;−1�
denote the north and south pole of S3, respectively.
A precise statement of the problem investigated in this paper is

given below.
Bang-Bang Attitude Control Problem: Consider system (1) and

the desired attitude P � f�q;Ω� ∈ X: q � �1;Ω � 0g. Design a
bang-bang feedback controller u⋆ taking values in set U, such that
1) The set P is practically stable for the closed-loop system. In

other words, given an arbitrarily small neighborhood U of P in X,
there exist controller parameters and a compact set W, with
P ⊂ IntW ⊂ U, such that W is asymptotically stable for the closed-
loop system.

2) The number of controller switches is uniformly bounded over
compact sets of initial conditions and over compact time intervals: for
any compact setW0 ⊂ X and for any T > 0, there existsN ∈ N such
that for any �q�0�;Ω�0�� ∈ W0 the controller switches value at most
N times over any time interval of length T.

III. Main Results

We propose to solve the bang-bang attitude control problem by
designing a hybrid controller that relies on a hierarchical switching
logic. The control architecture, depicted in Fig. 1, comprises two
hierarchical layers. At the high level, a supervisor automaton H�δ�
(where δ is a user-defined parameter) is responsible for preventing
unwinding and broadcasts an output value h ∈ f−1; 1g to the low
level. At the low level, three automata Ai�pi; h�, i � 1, 2, 3 (pi is a
vector of user-defined parameters), are driven by the supervisor
through the parameter h ∈ f−1; 1g, and are responsible for the
assignment of the control values ui, i � 1, 2, 3.
The high-level automaton H�δ� selects which equilibrium to

stabilize between �q;Ω� � �1; 0� and �q;Ω� � �−1; 0�. It does so by
implementing a hysteresis mechanism as in [19], the result of which
is the numerical value of parameter h ∈ f−1;�1g. Each low-level
automatonAi�pi; h� assigns the control input ui ∈ f− �u; 0;� �ug so as
to stabilize (ϵi,Ωi) to a neighborhood of (0, 0) whose size depends on
the parameters in pi, and to stabilize η to a neighborhood of h � �1,
which is decided by the supervisor.

A. Supervisor: Automaton H�δ�
The supervisor H�δ� is depicted below.

Referring to Fig. 1, the automaton abovemonitors the scalar part of
the quaternion, η, and it chooses the desired value of η to be stabilized,
�1 or −1, through the choice of the parameter h. The idea is quite
simple. If η ≥ δ > 0, then the supervisor assigns h � �1, whereas if
η ≤ −δ < 0, it assigns h � −1. If η ∈ �−δ;�δ�, h is assigned
according to an hysteresis mechanism, similarly to what was done in
[19], to avoid undesired switching in the presence of measurement
noise. As in [19], the hysteresis mechanism presents a trade-off
between robustness with respect to measurement noise and
unwinding in the hysteresis region (−δ,�δ).

B. Low-Level Controller: AutomataAi�pi;h� and Control

Assignment u⋆i
The low-level controller consistsof three automata,A1,A2,A3, each

driven by h, the output of the supervisor. Each automatonAi monitors
the variables (ϵi,Ωi) and assigns the control value ui ∈ f− �u; 0;� �ug so

Fig. 1 Pictorial representation of the proposed control structure.
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as to drive (ϵi, Ωi) to a neighborhood of (0, 0). The idea for doing
so is to view the (ϵi, Ωi) dynamics as a perturbation of a double-
integrator, and use the double-integrator stabilizer presented by the
authors of this paper in [20,21]. As mentioned earlier, the supervisor
output h is used to decide which equilibrium should be stabilized.
Let ξi � �hϵi;ωi�, where h is the output of H�δ� currently
broadcasted to the low-level controller. The automata Ai are given
below.

In the above, Γ�
i , Γ−

i are the initialization sets (see Fig. 2a)
defined as

Γ�
i �

n
�ϵi;Ωi�:ϵi > 0;Ωi ≤ −2

�������
�uϵi

p o

∪
n
�ϵi;Ωi�:ϵi ≤ 0;Ωi < 2

����������
− �uϵi

p o
;

Γ−
i � −Γ�

i (4)

Λ�
i , Λ−

i are the switching sets (see Fig. 2b) defined as

Λ�
i �

n
�ϵi;Ωi�:ϵi ≤ 0;Ωi ≤ 2

��������������
−κi �uϵi

p o

∪
n
�ϵi;Ωi�:ϵi > 0;Ωi ≤ −2

�������
�uϵi

p o
;

Λ−
i � −Λ�

i (5)

with κi ∈ �0; 1�. Letting setQi � fqi1; qi2; qi3g denote the set of states
of automatonAi�pi; h�, each control input ui is assigned through the
feedback u⋆i :Qi → R defined as

u⋆i �qi1� � − �u

u⋆i �qi2� � � �u

u⋆i �qi3� � 0 (6)

Notice that each feedback u⋆i depends only on the current active
state of automatonAi, whose dynamics is driven by continuous states
(ϵi, Ωi).

The automaton Ai�pi; h� is parametrized by the vector pi �
�δi1; δi2; κi� of user-defined parameters, and by h, the output of the
supervisor automaton. The parameters δi1, δ

i
2 determine the size of

the neighborhood of �ϵi;Ωi� � �0; 0� being stabilized, whereas the
parameter κi is useful for proving the theoretical stabilization
properties of the attitude controller, but can be set to zero in practice.
More comments on the choice of controller parameters are provided
in Sec. IV.

The proposed controller practically stabilizes set P: for any open
neighborhood U of the target spacecraft configuration P, the
controller parameters δi, κi, i � 1, 2, 3, can be chosen so that the
proposed controller steers in finite time the state χ inside set U. This
result is stated rigorously in the theorem below.
Theorem 1:Consider system (1) with control input u ∈ U. For any

�u > 0, the hybrid feedback controller given by supervisor (2) and
three copies of automata (3) with feedback (6) solves the bang-bang
attitude control problem. In particular, the following two properties
hold for the closed-loop system:
1) For any �u > 0 and for any neighborhood U of the set

P � f�q;Ω� ∈ X:q � �1;Ω � 0g, there exist controller parameters
δi1, δ

i
2 > 0, κi > 0, i � 1, 2, 3, and δ ∈ �0; 1� such that U has a

compact subset W containing P in its interior, which is
asymptotically stable.
2) The number of controller switches is uniformly bounded in the

sense stated in part 2 of the problem statement in Sec. II.
Theorem 1 presents a local stabilization result. Specifically, the

result of Theorem 1 guarantees only asymptotic stability of the
compact setW ⊂ U, not global asymptotic stability. The full proof is
omitted due to space limitations. We provide below only an idea of
the argument.

C. Idea of the Proof

To simplify the analysis, as proposed in [12], consider a time
scaling factor of

���
�u

p
, and define the nondimensional angular velocity

as ω � Ω
��������
1∕ �u

p
. With a slight abuse of notation, we will use the dot

notation to denote differentiationwith respect to the non-dimensional
time ν � t

���
�u

p
. The spacecraft rotational dynamics in Eq. (1) can then

be rewritten as follows:

_ϵ � 1

2
�ηI � S�ϵ��ω

_η � −
1

2
ϵTω

_ω � u (7)

where ui ∈ f−1; 0;�1g is the nondimensional control input about
the ith axis. This coordinate transformation allows us to study the

a) b)
Fig. 2 Initialization sets Γ�

i , Γ−
i a), and switching sets Λ�

i , Λ−
i , with

κi ∈ �0;1�, b).
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properties of the controller independently of the actual value of the
control acceleration �u generated by the thrusters. Throughout this
section we then consider the nondimensional system (7) with
controllers (2), (3), and (6).
Since P is the union of two isolated equilibria, one needs to show

that each equilibrium, �q;Ω� � �1; 0� and �q;Ω� � �−1; 0�, is
practically stable. We show the proof with equilibrium �q;Ω� �
�1; 0�. The proof of practical stability of the other equilibrium is
identical. Consider the function V�:X → R defined as V��q;ω� �
V1�ϵ1;ω1� � V2�ϵ2;ω2� � V3�ϵ3;ω3�, where function Vi:R×
R → R≥0, i � 1, 2, 3, is given by Vi�ϵi;ωi��4ϵ2iωiσ�ϵi;ωi��
�4∕3�ω3

i ϵi��3∕20�ω5
i σ�ϵi;ωi���4∕5��2ϵiσ�ϵi;ωi���1∕2�ω2

i �5∕2,
with σ:R × R → f−1; 0;�1g given by

σ�ϵi;ωi� �

8><
>:

sign
�
2ϵi � 1

2
jωijωi

�
; if 2ϵi � 1

2
jωijωi ≠ 0

sign�ωi�; if 2ϵi � 1
2
jωijωi � 0;ωi ≠ 0

0; if �ϵi;ωi� � �0;0�

The functions Vi, first proposed in [22], are C1 and positive
definitewith respect to the origin.Hence,V� isC1 andV��q;ω� � 0
if and only if �ϵ;ω� � �0; 0�, so that V� is positive definite near the
equilibrium �q;Ω� � �1; 0�.
Let V�

ϵi � ∂V�∕∂ϵi and V�
ωi

� ∂V�∕∂ωi. One can easily show

that _V� ≤
P

3
i�1 −λi�q;ωi; u

⋆
i �qi��, where �q;ωi� ↦ −λi�q;ωi;

u⋆i �qi�� is continuous and given by −λi�q;ωi; u
⋆
i � � 1∕2V�

ϵi ηωi �
V�
ωi
u⋆i �qi� � α

�������������
1 − η2

p
ϵ2i � β

�������������
1 − η2

p
ω4
i , for some α, β > 0, where

qi is the current state of automatonAi�pi; h�. Moreover, there exists
�η ∈ �δ; 1� such that if η > �η and qi ∈ fqi1; qi2g, then each −λi is
negative definite with respect to �ϵi;ωi� � �0; 0�. Let U be an
arbitrarily small open neighborhood of �q;ω� � �1; 0� and pick
δ ∈ �0; 1�. Let γ0 > 0 be such that η > �η for any (q, ω) in the set
Wγ0 ≔ f�q;ω� ∈ X: η > 0; V��q;ω� ≤ γ0g. Pick γ1 ∈ �0; γ0� such

thatWγ1 ⊂ U. We show thatWγ1 is made asymptotically stable by an

appropriate choice of controller parameters. To do so we apply
Theorem 7.8 in [23]. First, pick δi2 � δ2, i � 1, 2, 3, where δ2 > 0 is
chosen such that f�q;ω� ∈ X:η > 0; k�ϵi;ωi�k2 ≤ δ2, for all i �
1; 2; 3g ⊂ IntWγ1 and pick δ

i
1 ∈ �0; δ2�, i � 1, 2, 3. By construction,

if all the automata are at state qi3, i � 1, 2, 3, then �q;ω� ∈ Wγ1 . We

check that _V� < 0 on the open neighborhood IntWγ0 \ Wγ1 . On the

set IntWγ0 \ Wγ1 at least one of the automata, sayA1 for simplicity, is

active; that is, �ϵ1;ω1� ∈= �Bδ2�0� andq1 ∈ fq11; q12g.One can show that

in this case−λ1 ≤ −�λ, where �λ > 0. Consider theworst-case scenario

in which �ϵ2;ω2�, �ϵ3;ω3� ∈ �Bδ2�0� and u⋆2 � u⋆3 � 0. In this case,

−λ2 − λ3 is upper bounded byw�δ2�, where w�δ2� is continuous and
positive definite, with w�0� � 0. It follows that there exists δ⋆2 such

that for any δ2 ∈ �0; δ⋆2 �, _V� ≤ −�λ� w�δ2� < 0. The other scenarios
are handled in a similar manner. Because the function V� is
continuous across state transitions of the automata and the controller
does not generate instantaneous Zeno solutions, Theorem 7.8 in [23]
(see also [24]) guarantees that setWγ1 ⊂ U is asymptotically stable.

IV. Numerical Estimation of the Controller’s
Basin of Attraction

This section presents a Monte Carlo numerical study aimed at
convincing the reader that the convergence of the proposed controller
might, in fact, be global; that is, the controller’s basin of attraction is
the whole-state space X.

A. Simulations Setup

Consider the nondimensional system (7). To improve the accuracy
of the simulation, the coordinate transformation has beenmodified so
to have ui ∈ f−0.1; 0;�0.1g for all i � 1, 2, 3. This can be done by

replacing
��������
1∕ �u

p
with

�����������������
1∕�10 �u�p

. Let û � 0.1 and let, for the sake of

clarity, δi2 � δ2, i � 1, 2, 3. Pick δ2 < 2
���̂
u

p
and define

XC ≔ S3 × f�ω1;ω2;ω3� ∈ R3: jωij ≤ 2
���̂
u

p
g. The setXC is globally

attractive and positively invariant for the closed-loop system. Indeed,
for any initial condition, each pair (ϵi, ωi), i � 1, 2, 3, reaches the
active switching set in finite time. Since jϵij ≤ 1, as the state

transition is triggered wemust have that jωij ≤ 2
���̂
u

p
. From any point

on the boundary of a switching set, the state trajectorywill then hit the
next switching set in finite time. Since jϵij ≤ 1, jωij can never become

greater then 2
���̂
u

p
between consecutive switches of the automata. The

condition δ2 < 2
���̂
u

p
guarantees that this also holds when the control

input is 0. It follows that the state enters set XC and never leaves.
Thanks to this fact, it is enough to pick initial conditions in set XC to
show that the proposed controller yields global convergence.After an
initial condition is chosen, the controller is to be initialized. Particular
care needs to be applied in performing this operation: any simulation
initial conditions (q0, ω0) can be seen as the actual initial conditions
of the systemor as the state of the spacecraft some time after it entered
XC, being initialized outside set XC. This ambiguity in the
interpretation of each simulation initial condition can lead to different
initialization of automataH�δ� andAi�pi; h�. The following strategy
is adopted: any time one of the automata could be initialized to
multiple different states because of this issue, the automata is
initialized randomly.
Control parameters pi were selected the same for all the automata;

that is, pi � p � �δ1; δ2; κ�, for all i � 1, 2, 3, with δ1 � 1 · 10−4,
δ2 � 5 · 10−4, and κ � 0. Supervisor hysteresis parameter has been
selected to δ � 0.04.
Each simulation is stopped when all three automata are at state qi3;

that is, u⋆i �qi3� � 0 and �ϵi;ωi� ∈ �Bδ2�0� for all i. If the controller
successfully triggers the simulation’s stop condition, the initial
condition under study is included into the basin of attraction of the
controller. A total of 6000 simulations were performed.
Remark 1: In practice one can pick δi2 � δ2 > 0, for all i � 1, 2, 3,

and choose the value of δ2 knowing that the controller will steer the
state (q, ω) into a neighborhood U � f�q;ω�:jηj > ~η; kωk2 < ~ωg of
�q;ω� � ��1; 0�, with ~η ≈

������������������
1–3�δ2�2

p
and ~ω ≈ 2

����������
3 �uδ2

p
. Parame-

ters δi1 must be picked such that δi1 ∈ �0; δ2�, for all i � 1, 2, 3. In

practice, the numerical value of δi1 affects only the controller
switching frequency in a neighborhoodof �ϵi;ωi� � �0; 0�. Parameter
δ can be chosen arbitrarily small so as to reduce the size of the
neighborhood on which the controller might induce unwinding;
that is, η ∈ �−δ;�δ�. Notice, however, that as δ decreases, the
controller becomes less robust with respect to sensor noise.

B. Controller Performance

The performance of the proposed controller is evaluated through
two main sets of parameters. The first set of parameters is meant to
provide an insight into the overall ability of the controller to meet the
control specifications and to evaluate the controller’s performance
during the transient. Each simulation solution is uniformly sampled
every Δt � 0.001. A sampling time is denoted by tk, with
k ∈ f0; 1; : : : Ng, where N is the total number of samples in a
simulation. The following performance measures are recorded:
1) Success rate (SR): SR records the percentage of simulations in

which the proposed controller successfully triggered the simulation
stopping condition.
2) Root mean square of the angular velocity error

(eω): eω �
���������������������������������������������
�1∕N�PN

k�0 kω�tk�k22
q

3) Root mean square of the principal angle error (eϕ):

eϕ �
������������������������������������������
�1∕N�PN

k�0 jϕ�tk�j2
q

, where ϕ�tk� denotes the principal

angle associated to the spacecraft attitude at time tk
4) Total number of state transitions in automaton H�δ�
5) Nondimensional simulation time T
The second set of parameters ismeant to provide an insight into the

performance of the onboard thrusters. For each simulation, the
following quantities are recorded:
1) Number of switches of each control torque τi (ni)
2) Mean switching frequency of each control torque τi (fi): fi is

computed as the mean of the controller switching frequency at each
time step tk of the simulation, fi�tk�. fi�tk� is computed as the
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number of switches performed by control torque τi in the time
window Δtk � �tk − Δ; tk � Δ�, with Δ � 0.5 (dimensionless).

C. Results

The success rate obtained across the simulations has been
SR � 1.0. Hence, for any initial condition tested inXC, the controller
has successfully steered each (ϵi, ωi) to �Bδ2�0�. We believe that the
large volume of simulations, combined with the randomness in

the selection of initial conditions, presents compelling evidence to the
claim that the proposed controller solves the bang-bang attitude control
problem globally. The mean, maximum, and minimum of quantities
eω, eϕ, T across all the simulations performed (T can be easily
converted to seconds by multiplying it by scale factor

���������������
1∕�10 �up �) are

presented in Table 1. These results will be used as benchmark when
analyzing the performance of the controller during the transient when
external perturbations and measurement noise are considered.
In Table 2 the statistical analysis of the switching behavior induced

by the controller is presented. In particular, we focus on the mean,
maximum, and minimum of the number of switches and of the
controller switching frequency across all the simulations performed.
Of particular interest is the analysis of the number of switches

induced by the controller. One can see fromTable 2 that theminimum
number of switches performed per channel is 2 as in the case of the
time-optimal controller for double-integrators. The maximum
number of switches corresponds to situations in which one of the
initial conditions (ϵi�0�, ωi�0�) is initialized very close to the origin.
In this case, (ϵi,ωi) bounces between switching setsΛ�

i andΛ−
i until

the rest of the state has converged sufficiently close to the origin.
It is interesting to observe that only 8.3% of the simulations

performed displayed a state transition in automaton H�δ�. Moreover,
automatonH�δ� never performedmore than one single state transition.
This seems to suggest that once �q;ω� ∈ XC, the anti-unwinding
supervisorH�δ� will switch the equilibrium to stabilize at most once.

Fig. 3 Trajectory of (ϵ1�t�, ω1�t�). The star identifies the transition

−1 → �1 in automaton H�δ�.
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Fig. 4 Trajectory of (ϵ2�t�, ω2�t�). The star identifies the transition
−1 → �1 in automaton H�δ�.
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Fig. 5 Trajectory of (ϵ3�t�, ω3�t�). The star identifies the transition
−1 → �1 in automaton H�δ�. In this case a switch in the control input
value is triggered asH�δ� switches value of parameter h.
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Fig. 6 Time history of state η. The red star identifies the transition
−1 → �1 in automaton H�δ�.

Table 1 Mean,Max, andMin
of eω, eϕ, T across all the
simulations performed

eω eϕ, rad T

Mean 0.3201 1.2744 12.444
Max 0.4617 2.446 19.8479
Min 0.0673 0.0682 2.7122

Table 2 Mean, Max, and Min of ni, fi with i ∈
f1;2;3g across all the simulations performed

n1 n2 n3 f1 f2 f3
Mean 6.2497 6.125 6.174 0.4942 0.4841 0.4879
Max 50 51 42 4.8917 4.6703 4.2630
Min 2 2 2 0.1321 0.1478 0.1184
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In the following, the output of a simulation is presented so as to
provide a better understanding of the controller performance. The
initial conditions were randomly chosen at q�0� � �0.6556;
−0.3414;−0.6686;−0.0809� and ω�0� � �−0.2901; 0.5410;
−0.0496� (ω is nondimensional). Since η�0� < −δ, automaton
H�δ� is initialized at state h � −1. Automata Ai�p;−1� are then
initialized according to the rules presented in Eq. (3), with
ξi � �−ϵi;ωi�. In this case, the set of initials states of the automata
Ai�p;−1� is {q12, q21, q31}, which implies that u⋆ � �� �u;− �u;− �u�.
The trajectories of states (ϵi, ωi), with i � 1, 2, 3, are shown in

Figs. 3–5. It is immediate to notice that the proposed controller steers
each (ϵi, ωi) to a neighborhood of �ϵi;ωi� � �0; 0�. Figure 6 clearly
shows that the controller steers the spacecraft state (q, ω) to a
neighborhood of (1, 0), in that η�t� is steered toward�1. Automaton
H�δ� undergoes a single state transition −1 → �1 to prevent the
insurgence of unwinding. As shown in Fig. 6, η overshoots past the
threshold η ≥ δ, triggering the state transition −1 → �1 in
automaton H�δ�. After the transition, the low-level controller
stabilizes what is now the “closest” equilibrium in X, that is, (1, 0),
instead of forcing the state back to (−1, 0). This clearly shows how the
action of supervisor H�δ� prevents the insurgence of unwinding in
the closed-loop dynamics. The state transition ofH�δ� is indicated in
the figures by a red star.
Figure 7 shows the switching history of the three control inputs on–

off state ui. Clearly, the proposed controller successfully avoids the
generation of high-frequency switching behaviors.

V. Robustness with Respect to Measurement Noise

This section presents aMonte Carlo numerical investigation of the
robustness properties of the proposed controller againstmeasurement
noise. Let (q̂, ω̂) denote themeasured state.Whenmeasurement noise
is considered, automataH�δ� andAi�pi; h�, with i � 1, 2, 3, undergo
state transitions when themeasured states η̂ and ξ̂i � �hϵ̂i; ω̂i� satisfy
the state transition conditions, instead of η and ξi � �hϵi;ωi�.
The quaternion measurements q̂ are generated as follows (see
[25,26]) q̂ � �� ~q	�q�∕k� ~q	�qk, where � ~q	� is defined as

� ~q	� �

2
664

~η ~ϵ3 −~ϵ2 ~ϵ1
−~ϵ3 ~η ~ϵ1 ~ϵ2
~ϵ2 −~ϵ1 ~η ~ϵ3
−~ϵ1 −~ϵ2 −~ϵ3 ~η

3
775

Vector ~q is generated as ~q � �1∕2δq;�1�, where δq ∈ R3 is
sampled from a zero-mean Gaussian distribution with covari-
ance σ2q � �0.001�Ideg2.
The angular velocitymeasurements are generated as ω̂ � ω� δω,

where δω ∈ R3 is sampled from a zero-mean Gaussian distribution
with covariance σ2ω � �9 · 10−8�I (ω is nondimensional). Parameters
δ1 and δ2 were taken with values δ1 � 1 · 10−3 and δ2 � 3 · 10−3. In
this case, particular care must be adopted in choosing parameters δ1,
δ2 so to avoid the insurgence of high-frequency switching at the
origin. An in-depth analysis of this issue can be found in [20]. A total
of 6000 simulations were performed, obtaining a success rate of
SR � 1.0. The results of the numerical study are summarized in
Tables 3 and 4.
It can be seen from Table 3 that the performances indices

characterizing the closed-loop behavior of the system during the
transient are comparable to the nominal performances presented in
Table 1. This suggests that the performance degradation induced by
the presence of measurement noise is minimal. The number of
switches and the switching frequency (see Table 4) also remain
comparable to the nominal case (see Table 2). The decrease in the
mean number of required switches to meet the control specifications
is easily explained by the fact that the values for parameters δ1 and δ2
were chosen larger than in the nominal case.

VI. Conclusions

The paper presents a novel hybrid bang-bang controller that solves
the bang-bang attitude control problem. The proposed controller
successfully stabilizes any desired spacecraft attitudewithout inducing
high-frequency switching of the actuators. Extensive simulation
analysis suggests that the proposed controller may in fact yield global

0 2 4 6 8 10 12 14

−0.1

0

0.1

0 2 4 6 8 10 12 14

−0.1

0

0.1

0 2 4 6 8 10 12 14

−0.1

0

0.1

Fig. 7 Controller switching history.

Table 3 Mean, Max, and
Min of eω, eϕ, T across all the

simulations performed

eω eϕ, rad T

Mean 0.318 1.2682 12.458
Max 0.4688 2.213 20.2
Min 0.0528 0.0206 1.67

Table 4 Mean, Max, and Min of ni, fi with i � 1, 2, 3
across all the simulations performed

n1 n2 n3 f1 f2 f3
Mean 5.2492 5.2264 5.3106 0.4102 0.4076 0.4137
Max 31 30 29 2.7184 2.0492 2.3374
Min 2 2 2 0.1286 0.1192 0.125
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practical stability of the target spacecraft attitude. It was also verified
that the proposed controller meets the control specifications in the
presence of measurement noise.
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