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A = cross-sectional area of magnetic torquers, m2

a = semimajor axis, m
b = magnetic field vector, T
C = rotation matrix between two frames
d = coil diameter of magnetic torquers, m
E = energy consumption of magnetic torquers, MJ
e = eccentricity
I = moment of inertia matrix, kg · m2

i = coil current in magnetic torquers, A
i = inclination, rad
k = control gain used for reference proportional-derivative

controller
m = magnetic dipole moment vector, A · m2

N = total number of impulses
N̂ = number of impulses per orbit
n = gain of impulsive thrust vector, N · m
n = number of turns per coil in magnetic torquers
r = position vector, m
T = orbital period, s
t0 = time of perigee passage, s
W = controllability Gramian matrix
γ = scaling factor for reference proportional-derivative

controller
δ�t� = Dirac delta function
ϵ = vector part of quaternions
η = scalar part of quaternions
θ = attitude Euler angle vector, rad
μ = standard gravitational parameter, m3∕s2
Ξ = hybrid state transition matrix
τ = torque vector, N · m
Φ = continuous-time state transition matrix
ϕ = angle from Euler axis-angle parameters, rad
Ψ = discrete-time state transition matrix
Ω = right ascension of ascending node, rad
ω = angular velocity vector, rad∕s
ω = argument of periapsis, rad
1n×n = n × n identity matrix
0m×n = m × n zero matrix

�·�
·

= differentiation with respect to time
j · j = Euclidean norm of a vector
k · k = root-mean-square norm of a quantity

�·�× = skew-symmetric matrix operator

Subscripts

B = in body-fixed reference frame
c = continuous time
d = discrete time
dist = disturbance
e = equilibrium value
f = final value
G = in Earth-centered inertial reference frame
imp = impulsive
mag = magnetic
max = maximum among a set
nT = computed over n orbital periods
p = proportional gain
v = derivative gain
0 = initial value

Superscripts

�·�� = optimal quantity
�·�� = postimpulse quantity
�·�− = preimpulse quantity

I. Introduction

T HE interaction between Earth’s magnetic field and the
electromagnetic dipole moments resulting from electrical

current flowing through the coils of a spacecraft’s magnetic torquers
can be used as a means to generate torques for attitude control
purposes [1]. Although this mechanism has been under extensive
study (a survey of which is provided in [2]) as an efficient approach
for performing attitude control on near-Earth spacecraft, magnetic
actuation alone results in instantaneous underactuation because the
resultant torque is always perpendicular to the magnetic field vector
due to the cross product from which it is obtained.
In the case of the attitude control problem, the pointwise un-

controllability issue can be resolved by averaging over a period of
time, owing to the time-varying nature of the magnetic field [2–4];
however, magnetic control suffers from a fundamental gain limita-
tion, as demonstrated in [4], in which stability was proven to be
guaranteed only if the feedback gains were within a certain bound.
The need to alleviate this limitation, as well as a desire to allow for
optimizations resulting in power savings and improved control
performance, motivate the augmentation of magnetic control with an
auxiliary impulsive thrust mechanism, hence yielding a continuous/
impulsive control scheme that will be called a “hybrid” controller
hereafter.
As an extension of earlier linear approaches for designing magnetic

attitudecontrollers, various time-varying controllerswere developed in
[3], including some that relied on the solution of the periodic Riccati
equation. Exploiting the quasi-periodic nature of the problem, [5] also
proposed state-feedback control using an asymptotic linear quadratic
regulator (LQR). Purely magnetic actuation’s global stabilization
based on the application of averaging theory to the time-varying
system under consideration was studied in [6].
This Note aims to develop and study the stability of an optimal

hybrid control scheme in which magnetic torquers and impulsive
thrusters work in tandem and in an optimal manner, as they are
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designed using the so-called hybrid LQR approach described in [7].

Simultaneous use of magnetic control and three-axis actuation (such

as that provided by reaction wheels) as a hybrid mechanism, as well

as the associated stability issues, were previously investigated in [8].

This was followed by a geometric technique for control vector

decomposition presented in [9] that further built upon the idea of

hybrid control but focused on the use of reaction wheels, which also

provided continuous torques. In contrast, the design approach

presented here uses impulsive thrusting to complement the magnetic

controller in order to overcome the aforementioned gain limitation

issues associatedwith a continuous feedback controller. The problem

considered in this document is also fundamentally different from that

in [9], as the latter attempts to judiciously decompose a given control

signal into magnetic and three-axis portions, whereas the aim of this

Note is to optimize the two actuation control inputs to be used

together.
A hybrid continuous/impulsive attitude control problem similar to

this project’swas considered in [10], but one of their approaches used a

linear time-invariant design technique with control allocation. Their

other approach was based on an averaging assumption for a linear

time-periodic approximation of the system and involved addition of

impulsive actuators after a simple stabilizing magnetic feedback was

designed. Thiswas as opposed to designing the two portions of a time-

varying controller simultaneously, as is accomplished in this work.
The concept of optimal continuous/impulsive control was recently

applied in the context of spacecraft formation flight in [7], inwhich an

optimal combined use of impulsive thrusting and Lorentz force

actuation based on a continuous/discrete LQR was proposed. Al-

though the dynamics of attitude control were different from those of

formation flight, the controller design approach suggested in [7] is

still applicable to and used in this work. That approach has also been

further improved here by suggesting a more justifiable means of

selecting the impulse application times based on a study of the

system’s pointwise controllability over small sliding time windows:

using this approach, the thrusters will only be activated when the

magnetic controller is least effective, hence resulting in potentially

better control performance. Optimizing the cost functionwith respect

to impulse times is not within the scope of this Note. Moreover,

another contribution of this Note is an extension of the Floquet

analysis (the classical version of which was used in [3,5,11] to check

the closed-loop stability of LQR controllers for time-periodic

models) to hybrid systems that also incorporate jump dynamics by

using the novel concept of a hybrid state transition matrix.
This Note is organized as follows: First, the mathematical model

used to describe the kinematics and dynamics of a spacecraft subject

to magnetic and impulsive control torques and major disturbance

torques is described in Sec. II. Then, the methodology used to design

an optimal hybrid controller is summarized in Sec. III after a brief

description on the model’s linearization, and a controllability-based

technique for selecting the impulse application times is presented.

The concept of hybrid linear stability analysis is then explained, and a

modified version of the Floquet theorem that suits the hybrid system

of interest is proven in Sec. IV. Lastly, some numerical examples are

considered in Sec. V, where the performance and stability of the

proposed controller are studied, followed by some concluding

remarks in Sec. VI.

II. Spacecraft Kinematics and Dynamics

The rotational dynamics are modeled using Euler’s rigid-body

equation [12]:

I _ω� ω×Iω � τmag � τimp � τdist (1)

where the applied torque on the right-hand side consists of τmag

produced by magnetic torquers, τimp produced by impulsive

thrusters, and τdist produced by external disturbance sources. The

skew-symmetric operator �·�× acts on ω as follows:

ω× �
"

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

#
(2)

Assuming the impulses are applied at times tk, k ∈ f1; 2; · · · ; Ng,
and taking into account only the gravity-gradient disturbances and
residual magnetic dipoles resulting from onboard electronics (as
these two are expected to be the most dominant sources of distur-
bance for near-Earth small spacecraft), these torque contributions can
be represented as follows ([12] chapter 9):

τmag � m×bB (3a)

τimp �
XN
k�1

nkδ�t − tk� (3b)

τdist �
3μ

jrBj5
r×BIrB �m×

distbB (3c)

where μ � 3.9859 × 1014 m3∕s2 for Earth. The vectors expressed in
the body-fixed frame can also be rewritten in terms of their inertial
frame representations as bB � CBGbG and rB � CBGrG, where CBG

denotes the rotation matrix from the inertial frame to the body-fixed
frame. The magnetic field vector bG can be estimated using a tilted
dipole model of Earth’s magnetic field, described in appendix H of
[1] (a concise presentation of which can be found in [8]). To
determine the position vector rG, a Keplerian orbit is assumed, and
based on the well-known relationships that describe such orbits, the
radial distance is determined as a function of true anomaly. The
attitude of the spacecraft is represented using the singularity-free
four-parameter set of quaternions, ϵ � � ϵ1 ϵ2 ϵ3 �T and η, subject
to the orthogonality constraint ϵTϵ� η2 � 1. Using the quaternions,
the rotation matrixCBG can be computed at all times ([12] chapter 2):

CBG � �η2 − ϵTϵ�13×3 � 2ϵϵT − 2ηϵ× (4)

The rotational kinematics are based on the well-known
relationships between angular velocity and the quaternions’ rates of
change, which are in turn derived from the definition of angular
velocity in terms of transformation matrices ([12] chapter 2):�

_ϵ
_η

�
� 1

2

�
η13×3 � ϵ×

−ϵT

�
ω (5)

Thenonlinear differential equations inEqs. (1) and (5) fully describe
the attitude motion of the spacecraft, and they must be simultaneously
integrated over time to simulate the changes in attitude.

III. Optimal Hybrid Magnetic Control

To mitigate the pointwise uncontrollability issue associated with a
solely magnetic controller, and in an attempt to overcome its
fundamental gain limitation caused by the time-varying nature of the
magnetic field (as demonstrated in [4]), the magnetic actuators are
augmented with impulsive thrusters to form a hybrid (continuous/
impulsive) control scheme. For a reasonable selection of the fixed
impulse application times, pointwise controllability of the system can
be assessed and used to determine the times at which the least control
authority is provided by the magnetic actuators. This approach for
selecting the impulse times does not aim to address controllability
issues similar to those in [7] because, despite instantaneous under-
actuation, the system in this Note is, on average, controllable (as
mentioned in Sec. I); instead, the motivation behind this approach is
to employ the thrusters only at the time instances at which the
magnetic controller is least effective.
To combine magnetic actuation and impulsive thrusting in an

optimal manner, the continuous/impulsive linear quadratic regulator
formulation developed for formation flight, described in [7], is
applied to the attitude control problem at hand. This approach
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involves defining a hybrid performance index that accounts for both
continuous- and discrete-time control and state penalties, as well as
determining the optimal control laws by solving the continuous- and
discrete-time Riccati equations in tandem.

A. Linearization of the Model

Before proceeding with the hybrid LQR approach, the model
(described by the dynamics presented in Sec. II) is first linearized
([12] chapter 4):

�
_θ�t�
�θ�t�

�
≍

�
03×3 13×3
03×3 03×3

� �
θ�t�
_θ�t�

�
�
�

03×3
−I−1b×G�t�

�
�m�t��

_x�t� Ac x�t� Bc�t� u�t�
; t≠ tk

(6a)

�
_θ�t�k �
�θ�t�k �

�
≈
�
13×3 03×3
03×3 13×3

� �
θ�t−k �
_θ�t−k �

�
�
�
03×3
I−1

�
�nk �

x�t�k � Ad x�t−k � Bd vk

; t� tk

(6b)

where Eq. (6a) is for the continuous portion, whereas Eq. (6b)
describes the jump dynamics at the impulse instances. The vector
quantity x�t� is the state, and u�t� and vk are the continuous and
impulsive control inputs, respectively. A total of N impulses are
applied at time instances tk, k ∈ f1; 2; : : : ; Ng; and t−k and t�k denote
the instants right before and right after the impulse application,
respectively. Assuming small angles and rates, _θ ≈ ω and θ ≈ 2ϵ. It is
also assumed thatm will be small.

B. Selection of Impulse Application Times Based on Controllability

To find the best times tk at which impulses should be applied, a
comprehensive study is required on how the cost function defined in
Sec. III.C (which depends on both the control efforts and the states)
changes as a function of tk. This study is beyond the scope of this
Note, which focuses on optimal control given a set of prescribed
impulse times, and it is part of the future work. Interested readers are
referred to [13], which studied the necessary and sufficient optimality
conditions for thruster firing times in formation flight applications
and will be used as a basis for future work on this magnetic attitude
control problem.
Within the scope of thisNote, one reasonable approach to determine

a prescribed set of times is to employ the thrusters only at the time
instances at which the magnetic actuators are least capable of
controlling the spacecraft. This approach may not be optimal in terms
of fuel consumption and control effort (depending on the penalties
specified by the designer), but it is expected to result in improvements
in terms of attitude pointing performance by using thrusters to
compensate for the lack of control authority of themagnetic controller.
The pointwise control authority of the system is assessed by

computing the controllability Gramian over small time windows of
width Δt spanning the total travel time. The impulse application
times are then judiciously selected by determining when the smallest
eigenvalue of this matrix reaches the local minima over each orbit
(which indicates the times with the least control authority [7]):

Wj �
Z

�tj�Δt

�tj

e���tj�Δt�−τ�AcBc�τ�BT
c �τ�e���tj�Δt�−τ�AT

c dτ (7)

where Wj is the controllability Gramian over the jth time window,
starting from �tj. Note that these �tj do not necessarily coincidewith the
impulse application times tk. ThematricesAc andBc�t� are the state-
space matrices defined previously in Eq. (6a).

C. Design of the Hybrid Linear Quadratic Regulator

The hybrid performance index is defined as follows:

J � 1
2
xT�tf�Sx�tf� � 1

2

R tf
0 xT�t�Qcx�t� � uT�t�Rcu�t� dt

� 1
2

P
N
k�1�xT�t−k �Qdx�t−k � � vTkRdvk�

(8)

where tf refers to the end time, and S � ST
⩾0 sets the terminal state

penalty. The matrices Qc � QT
c⩾0 and Rc � RT

c > 0 set the
continuous state and control penalties, respectively; and Qd �
QT

d⩾0 andRd � RT
d > 0 scale the discrete state and control penalties

at the impulse instants, respectively. All penalty matrices were
selected to be constant in this work.
As described in more detail in [7], using calculus of variations and

setting the first variation of J to zero yields a set of conditions that,
assuming a linear relationship between the states and the costates that
are used to adjoin the continuous and impulsive dynamics, provides
the following time-varying and discrete-time matrix Riccati
equations:

_P�t� � −�P�t�Ac �AT
cP�t� − P�t�Bc�t�R−1

c BT
c �t�P�t� �Qc�;

P�tf� � S (9a)

P�t−k � � Qd � P�t�k � − P�t�k �Bd�Rd � BT
dP�t�k �Bd�−1BT

dP�t�k �
(9b)

where P�t� describes the linear relationship between x�t� and the
continuous costate, whereas P�t�k � describes that between x�t�k � and
the discrete costate. Note that the discrete portion in Eq. (9b) has been
simplified, with Ad being the identity in this case.
Lastly, after some further manipulation of the optimality

conditions and using the aforementioned solution of the Riccati
equations, the optimal continuous- and discrete-time feedback
control inputs are given by

u��t� � −R−1
c BT

c �t�P�t�x�t� (10a)

v�k � −R−1
d BT

dA
−T
d �P�t−k � −Qd�x�t−k � (10b)

The continuous Riccati equation in Eq. (9a) is integrated backward in
time (as only the end condition is specified by the user). At each
impulse, a jump is induced in the solution based on the discrete-time
Riccati equation in Eq. (9b), and the computed P�t−k � value is used as
a new terminal condition for Eq. (9a) to be integrated backward from
t−k and t�k−1. This process is repeated until time zero, and since the
time-varying system associated with the spacecraft considered in this
Note is periodic over 15 orbits (and quasi periodic over one orbit), the
resulting P�t� solution will lead to a periodic steady-state solution
that can be approximated using Fourier series to reduce the storage
memory requirements. It is important, however, to ensure that the
number of terms in the series is sufficiently large to accurately capture
the exact solution.
When simulating the nonlinear dynamics (together with the

disturbance torques) in Eq. (1), starting with initial conditions at time
zero, the Riccati solution P�t� and its value immediately before each
impulse are used to compute, using Eqs. (10a) and (10b), the
magnetic dipole moments and thruster gains that yield an optimal
combination.

IV. Hybrid Linear Stability Analysis

The system in Eq. (6) in this attitude control problem is periodic, as
long as the spacecraft is sufficiently close to Earth. Variations result
over time from the time-varying nature of the magnetic field and
Earth’s tilt, but for a near-polar orbit, these variations are dominated
by the spacecraft’s orbital motion [14]. For the simulations presented
in this Note, almost exact periodicity was observed with 15 orbits;
but, in general, for low-Earth-orbit spacecraft that are close to being
polar, the periodicity can be closely approximated to occur with one
orbital period [3]. The stability analysis proposed in this section is
independent of howmanyorbits are taken as the system’s periodicity;
but, for simplicity of exposition, periodicity with one orbit is
assumed. The novel notion of hybrid Floquet analysis is then
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proposed as an extension of the classical Floquet analysis used for
linear time-periodic systems. This concept is then employed for
assessing the linear stability of the system while integrating forward
in the simulations.
Substituting the control inputs of Eq. (10) into Eq. (6) and

rearranging yields

_x�t� � ~Ac�t�x�t� ≜ �Ac −Bc�t�R−1
c BT

c �t�P�t��x�t�; t ≠ tk
(11a)

x�t�k � � ~Adkx�t−k �
≜ �Ad −BdR

−1
d BT

dA
−T
d �P�t−k � −Qd��x�t−k �; t � tk

(11b)

This suggests the use of the following continuous-time and discrete-
time state transition matrices, which are then “patched” together to
yield a hybrid matrix:

_Φk�t; t�k−1� � �Ac −BcR
−1
c BT

cP�Φk�t; t�k−1�;
Φk�t�k−1; t�k−1� � 1; t ∈ �tk−1; tk� (12a)

Ψk � �Ad −BdR
−1
d BT

dA
−T
d �P�t−k � −Qd��; t � tk (12b)

Note that the time dependence ofBc�t� andP�t� has been omitted for
clarity. To slightly simplify the notation, the second argument of the
continuous state transition matrix will also be omitted, as the
reference point is implied by the subscript k; that is, Φk�t� ≜
Φk�t; t�k−1�. Starting from time t�0 � 0 with impulses at tk ∈ �0; T�,
k ∈ f1; 2; · · · ; N̂g, until t−

N̂�1
� T, one can relate the state within the

κth interval (between tκ−1 and tκ) of the first orbit to the initial state as
follows:

x�t� � Φκ�t�x�t�κ−1� � Φκ�t�Ψκ−1x�t−κ−1�
� Φκ�t�Ψκ−1Φκ−1�t−κ−1� : : :Ψ2Φ2�t−2 �Ψ1Φ1�t−1 �x0 (13)

since Φ1�t−1 �x0 � Φ1�t−1 ; 0��x0 � x�t−1 �, based on Eqs. (11a) and
(12a); then, Ψ1Φ1�t−1 �x0 � Ψ1x�t−1 � � x�t�1 � from Eqs. (11b) and
(12b), and so on. The following theorem generalizes the Floquet
theorem to hybrid systems, and it is proved in an analogous manner.
Theorem 1: Consider the following hybrid matrix constructed

from those given by Eq. (12):

Ξ�t� ≜ Φκ�t�Ψκ−1Φκ−1�t−κ−1� · · · Ψ2Φ2�t−2 �Ψ1Φ1�t−1 �;
κ ∈ f1; 2; · · · ; N̂ � 1g; t ∈ �tκ−1; tκ� (14)

where t�0 � 0 and t−
N̂�1

� T. If Ψκ is invertible for all κ < N̂ � 1,
then the following parts are true:
1) Ξ�t� is a state transition matrix for the system in Eq. (11) such

that x�t� � Ξ�t�x0.
2) Assuming the system in Eq. (11) is periodic with period T and

the impulse pattern is identical in all orbits, Ξ�t� T� ≜ Ξ�t�Ξ�T� is
also a fundamental matrix solution of the system in Eq. (11). In
addition, there exist a constant complex matrix Γ and an invertible
T-periodic Δ�t�, such that Ξ�t� � Δ�t�etΓ.
Proof of part 1: Between impulses where t ≠ tk, differentiating

Ξ�t� with respect to time and realizing that its only time-varying
constituent is Φκ�t� (as all the other ones have been computed at
impulse times ft1; · · · ; tκ−1g), we have

_Ξ�t� � _Φκ�t�Ψκ−1Φκ−1�t−κ−1� · · · Ψ1Φ1�t−1 �;
κ ∈ f1; 2; : : : ; N̂ � 1g; t ∈ �tκ−1; tκ� (15)

where, from Eq. (12a) and using the definition of ~Ac�t� in Eq. (11a),
we have _Φκ�t� � ~Ac�t�Φκ�t�. Substituting this back into Eq. (15)
yields

_Ξ�t� � ~Ac�t�Φκ�t�Ψκ−1Φκ−1�t−κ−1� · · · Ψ1Φ1�t−1 �
� ~Ac�t�Ξ�t�; t ∈ �tκ−1; tκ� (16)

At impulse times t � tk (or, equivalently, t � tκ−1 where κ denotes
the interval between two impulses), we have

Ξ�t�κ−1� � Φκ�t�κ−1�Ψκ−1Φκ−1�t−κ−1� · · · Ψ1Φ1�t−1 �;
κ ∈ f1; 2; · · · ; N̂ � 1g (17)

where, fromEq. (12b) and using the definition of ~Adk inEq. (11b),we

have Ψκ−1 � ~Ad�κ−1�. Furthermore, from the initial condition of

Eq. (12a),Φκ�t�κ−1� ≜ Φκ�t�κ−1; t�κ−1� � 1 by construction. Substitut-

ing these back into Eq. (17) yields

Ξ�t�κ−1� � ~Ad�κ−1�Φκ−1�t−κ−1�Ψκ−2Φκ−2�t−κ−2� · · · Ψ1Φ1�t−1 �
� ~Ad�κ−1�Ξ�t−κ−1�; t � tκ−1 (18)

Comparing the results in Eqs. (16) and (18) with Eqs. (11a) and

(11b), respectively, one concludes thatΞ�t� as defined in Eq. (14) is a
matrix solution of the system in Eq. (11). We now study the

invertibility of this hybrid matrix by taking its determinant:

detfΞ�t�g � detfΦκ�t�g × detfΨκ−1g × detfΦκ−1�t−κ−1�g
× · · · × detfΨ1g × detfΦ1�t−1 �g (19)

Since Φκ�t−κ � is a classical continuous state transition matrix

satisfying Eq. (11a), from appendix A of [12], we can write

(20)

where the exponential term on the right-hand sidewill not be zero for

finite time; as a result, detfΦκ�t�g ≠ 0 for all κ ∈ f1; 2; · · · ; N̂ � 1g.
Returning to Eq. (19), and imposing this theorem’s condition that all

Ψk are also invertible, it follows that detfΞ�t�g ≠ 0; so, its columns

are linearly independent. Togetherwith the previous result thatΞ�t� is
a matrix solution of the system in Eq. (11), this means it is indeed a

fundamental matrix solution of this system. Furthermore, one can

write x�t� � Ξ�t�x0 as demonstrated in Eq. (13), so Ξ�t� is a state

transition matrix, as required.
Proof of part 2: Hitherto, only the first orbit has been considered

and Ξ�t� has been defined for t ∈ �0; T� only. However, assuming an

identical impulse pattern over all orbits, the exact same patching

procedure as that in Eq. (13) can be used to transform the state from

that at the beginning of an arbitrary orbit (treated as the initial state) to

any other time within that orbit. With the impulse times represented

more generally as tk � βT, β ∈ f0; 1; 2; · · · g, the definitions in

Eqs. (12a) and (12b) will be equally applicable to t ∈ �tk−1 �
βT; tk � βT� and t � tk � βT, respectively, producing Φk and Ψk

identical to those in the first orbit. Taking note of this fact and

considering only the second orbit without loss of generality, for

τ ∈ �T; 2T�, we have x�τ� � x�t� T� � Ξ�t�x�T�, t ∈ �0; T�; but,
from part 1, x�T� � Ξ�T�x0 which implies that x�t� T� �
Ξ�t�Ξ�T�x0. Thus, the definition of Ξ�t� in Eq. (14) can be aug-

mented to also cover the second orbit by letting Ξ�t� T� ≜
Ξ�t�Ξ�T�.
Between impulseswhere t ≠ tk � T, differentiatingΞ�t� T�with

respect to time, realizing that Ξ�T� is a constant matrix computed at

time T, and making use of Eq. (16), we have

_Ξ�t� T� � _Ξ�t�Ξ�T� � ~Ac�t�Ξ�t�Ξ�T� � ~Ac�t�Ξ�t� T� (21)

At impulse times t � tk � T, by using Eq. (18), we can write
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Ξ��tk � T��� � Ξ�t�k � T� � Ξ�t�k �Ξ�T� � ~AdkΞ�t−k �Ξ�T�
� ~AdkΞ�t−k � T� � ~AdkΞ��tk � T�−� (22)

Since the system in Eq. (6) is assumed to be T periodic,
~Ac�t� � ~Ac�t� T�; and ~Adk is the same for both t � tk and

t � tk � T. Applying the change of variable τ ≜ t� T, Eqs. (21) and

(22) can be rewritten as _Ξ�τ� � ~Ac�τ�Ξ�τ�, when τ ≠ tk � T, and

Ξ�τ�� � ~AdkΞ�τ−�, when τ � tk � T. Thus, Ξ�t� T� is a matrix

solution of the system in Eq. (11), and since both Ξ�t� and Ξ�T� are
invertible from part 1,Ξ�t� T� is also a fundamental matrix solution

of Eq. (11). The same applies for any Ξ�t� βT�.
Lastly, it is well known that any nonsingular n × n matrix can be

written as eΓ, where Γ is another n × n matrix that may be complex.

In this case, let Γ be such that eTΓ � Ξ�T� and define

Δ�t� ≜ Ξ�t�e−tΓ. Then,

(23)

which means Δ�t� is also T periodic and, by its definition,

Ξ�t� � Δ�t�etΓ, as required. □

Ξ�T� is henceforth termed the “hybrid state transition matrix.”

Assuming periodicity with T and the same impulse pattern in all

orbits, the state at time τ � t� βT, β ∈ f0; 1; 2; · · · g is given

by x�τ� � Ξ�t�Ξβ�T�x0. The eigenvalues of Ξ�T� � Δ�T�eTΓ are

the system’s characteristic multipliers, whereas those of Γ are the

system’s characteristic (Floquet) exponents. Since Ξ�t� has been

shown to exhibit all properties of a classical state transition matrix,

the following result applies analogously and can be used as a stability

analysis tool:
Theorem 2: Let x ≡ 0n×1 be the zero solution of the T-periodic

system in Eq. (11). Consider Ξ�t�, a hybrid state transition matrix

(defined by Eq. (14) for t ∈ �0; T� and Ξ�t� βT� � Ξ�t�Ξβ�T�,
β ∈ f0; 1; 2; · · · g), such that x�τ� � Ξ�τ�x0 for all τ ∈ R�. Let λi
be the eigenvalues of Ξ�t�, and define λmax � maxfjλijg,
i ∈ f1; 2; · · · ; ng. Then, the following holds:

1) The solution x ≡ 0 is Lyapunov stable if λmax⩽1.
2) The solution x ≡ 0 is asymptotically stable if λmax < 1.
3) The solution x ≡ 0 is unstable if λmax > 1.
Proof: Refer to section 2.4 of [15].
In the context of the attitude control problem of interest, since

bG�t� � bG�t� 15T� ≈ bG�t� T�, we consequently have

Bc�t� � Bc�t� 15T� ≈Bc�t� T�. In addition Ac, Bc, and Bd are

constant, so the system in Eq. (6) is periodic. If the impulses are

applied with the same period as that of the system, then Theorem 1

will hold, and the hybrid Floquet analysis can be applied. In the

following section (Numerical Examples, Sec. V), the system’s quasi

periodicity over 1T is assumed, and the impulses are repeated with

the same pattern at every orbit; therefore, the conditions required by

Theorems 1 and 2 are satisfied.

V. Numerical Examples

The performance and stability of the proposed hybrid magnetic

LQR controller were studied via simulations. The nonlinear attitude

dynamics and kinematics given by Eqs. (1) and (5) were integrated

numerically using the fourth-order Runge–Kutta algorithm and, at

each time step, the total applied torquewas computed via Eq. (3). The

optimal control torques were based on Eq. (10), which were in turn

computed using the steady-state P�t� solution resulting from

backward integration of the Riccati equations in Eq. (9). Residual

magnetic dipole moments of mdist � � 0.1 0.1 0.1 �TA · m2 were

considered.
A circular near-polar Keplerian orbit with e � 0, i � 87 deg,

Ω � 0 rad, ω � 0 rad, and t0 � 0 s was considered with a �
6.821 × 106 m, which corresponds to an altitude of 450 km. The

spacecraft was assumed to have I � diagf27; 17; 25gkg · m2, and

the initial conditions were set to ϵ0 � 0, η0 � 1, and ω0 �
�0.02 0.02 0.02�T rad∕s. For the purpose of quantifying some

performance parameters (such as an estimation of the electrical

energy consumption), the spacecraft was assumed to be equipped

with three magnetic torquers with R � 100Ω, n � 400 turns,

d � 10 mm, and A � �πd2�∕4, based on some representative

missions considered in [1].
The penalty matrices used for computing the hybrid performance

index in Eq. (8) were tuned to produce satisfactory performance. The

ratio between Qc and Rc (as well as that between Qd and Rd)

determined the relative influence of the state and control penalties in

the optimization process. For instance, in the limiting case of Qd �
06×6 and a very large Rd, the discrete states were not penalized,

whereas any thruster control efforts were severely penalized, hence

turning the hybrid controller into a purely magnetic one that did not

use any thrusters. To somewhat reduce the design space and allow for

tuning using scalar variables, the state penalty matrices were set to

Qc�blockdiagfqc ·13×3;qc ·Ig and Qd�blockdiagfqd ·13×3;qd ·Ig,
and the control penalty matrices were set to Rc � rc · 13×3 and

Rd � rd · 13×3. Note that, with the selected Q, the quadratic form

1∕2�xTQx� included 1∕2�q_θTI _θ�, which was a measure of the

rotational kinetic energy. Lastly, the terminal penalty was set

to S � P�tf� � 06×6.
Like any other LQR problem, the scalar values of the penalties had

to be tuned manually. Some consideration of the physics of the

problem, however, might provide some general insight for good

starting points. For instance, keeping in mind that, with n turns,

m�t� � nAi�t�; three coils’ electrical energy consumption is given by

E � 3R∕�n2A2�
Z

T

0

mTm dt

and since, in this problem, the continuous control input isu�t� � m�t�,
setting rc � 3R∕�n2A2� seems reasonable, as it implies that

1∕2�uTRcu� is a measure of the energy consumption. For the

representative spacecraft with the aforementioned coil parameters,

Fig. 1 Smallest eigenvalue of Gramian matrix (over t ∈ � �tj; �tj � 0.05T��.
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3R∕�n2A2� ≈ 3.03 × 105. The penalty values for the hybrid LQR
controller are set to rc � 3 × 105, qc� 108, rd� 1013, and qd� 1010.
As a means of comparison, a solely magnetic LQR controller was

also designed using a similar but continuous-only LQR approach
(with no impulses applied). To this end, only Eqs. (9a) and (10a)were
used, without a need for their discrete-time counterparts. To allow for
a meaningful comparison between the two controllers’ cost
functions, the same continuous penalties as those of the hybrid
controller (namely, rc � 3 × 105 and qc� 108) were used for the
solely magnetic LQR’s design.
Shown in Fig. 1 is the evolution of the smallest eigenvalue of the

controllability Gramian computed over small time windows (in this
case, Δt � 0.05T) using Eq. (7). Lack of control authority is most
evident over time windows starting with �tj � 0.21T and �tj � 0.71T,
with the same pattern repeating over the subsequent orbits. This
suggests selecting the impulse application times such that they fall
within these timewindows. These are the times at which the spacecraft
approaches Earth’s poles. For this example, therefore, the impulses
were applied at tk � 0.225T � �k − 1� × 0.5T, k ∈ f1; 2; · · · ; Ng.
Figure 2 shows the simulation results for the vector part of the

quaternions and angular velocity of the spacecraft over three orbits,
comparing the performance of the proposed hybrid LQR controller
against that of a solely magnetic LQR controller (with no impulsive
thrusting) as they attempt to drive the attitude from initial conditions
to equilibrium (ϵe � 0, and ωe � � 0 0 0 �T rad∕s). It must be
noted that, although the control lawswere designed and implemented
assuming _θ ≈ ω and θ ≈ 2ϵ, the simulations used the full nonlinear

dynamics. The results suggested significant improvement achieved
in terms of settling time and transient dynamics by augmenting the
magnetic controllerwith impulsive thrusting for this particular choice
of penalty matrices and impulse application times. The control
torques applied by themagnetic torquers and thrusters are also shown
in Fig. 3, from which considerable reduction in the magnetic control
effort of the hybrid controller (albeit at the cost of additional thruster
torques) is evident.
To provide a quantitative means of assessing the controller

performance, the following norms were defined and computed
over 10 orbits. These parameters provide rms-like measures of
continuous torques, impulsive torques, angular velocities, and
rotation angles, respectively. To compute the rotation angle,
cos�ϕ� � 1∕2�tracefCBGg − 1� was used after determination of the
transformationmatrixCBG. The results, together with the total hybrid
cost [given by Eq. (8)] and electrical energy consumption of the
magnetic torquers assumed in this example, are listed in Table 1:

kτk10T �
���������������������������������R
10T
0 τTmagτmag dt

10T

s
; kωk10T �

�������������������������R
10T
0 ωTω dt

10T

s

kvk10T �
��������������������������������R
10T
0 τTimpτimp dt

10T

s
; kϕk10T �

���������������������R
10T
0 ϕ2 dt

10T

s

Although τimp contains the Dirac delta function, the parameter
kυk10T is computed using a finite-width rectangular approximation of

Fig. 2 Quaternions and angular velocity: solely magnetic (dashed) vs hybrid (solid) LQR (rc � 3 × 105 and qc� 108; for hybrid, also rd� 1013 and
qd� 1010).
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it, with height nk∕h and width h. Also included in Table 1 are the

performance results using the proportional-derivative (PD) magnetic

state-feedback controller proposed in [4], which is used as a

benchmark for assessing the performance of the proposed hybrid

LQR controller, as well as that of the solely magnetic controller using

the same continuous-time penalty matrices as the hybrid one. To this

end, the reference’s control law u � m � b×Bν∕jbGj2 is used, where
ν � −�γ2kpϵ� γkvIω�. Since the same spacecraft moment of inertia

matrix and orbital parameters as those in this Note were used in [4],

the scaling parameter and gains are set to γ � 0.001 and

kp � kv � 50, which were the values reported in that paper. Both of
the LQR controllers show significant attitude performance

improvement compared to the reference PD controller, and the

hybrid LQR exhibits improvements in terms of energy consumption

and applied magnetic torques.

The proposed hybrid linear stability analysis approach described in

Sec. IV was applied to the numerical example under study in this

section. The periodicity of the systemwas assumed to be one orbit, and

the continuous-time and discrete-time state transition matrices were

computed based on Eq. (12). Lastly, the hybrid state transition matrix

Fig. 3 Continuous and impulsive control torques: solely magnetic (dashed) vs hybrid (solid) LQR (rc � 3 × 105 and qc� 108; for hybrid, also rd� 1013

and qd� 1010).

Table 1 Comparison of performance of reference PD (based on [4]) vs solely magnetic

and hybrid LQR controllers over 10Ta

Parameter Description Reference PD Magnetic Hybrid Unit

J10T Total performance index N/Ab 2.77 × 1013 2.99 × 1012 — —

E10T Electrical energy consumption 7.66 × 106 5.35 × 107 4.40 × 106 MJ
kτk10T Norm of magnetic torque 5.42 × 10−4 1.54 × 10−3 3.97 × 10−4 N · m
kvk10T Norm of impulsive torque 0 0 4.05 × 10−3 N · m
kωk10T Norm of angular velocity 4.54 × 10−3 7.51 × 10−3 3.51 × 10−3 rad∕s
kϕk10T Norm of rotation angle 1.84 × 100 8.83 × 10−1 4.41 × 10−1 rad

aPD: γ � 0.001 and kp � kv � 50; LQR: rc � 3 × 105 and qc� 108; hybrid LQR: rc � 3 × 105, qc� 108,

rd� 1013, and qd� 1010.
bN/A denotes “not applicable.”
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was constructed using Eq. (14), and its eigenvalues were computed to
draw conclusions regarding the linear stability of the system.
For the hybrid case with impulses applied at t1 � 0.225T and

t2 � 0.725T in the first orbit, both of the discrete state transi-
tion matrices were computed to be of full rank, rankfΨ2g �
rankfΨ1g � 6, and well conditioned, condfΨ1g ≈ 4.17 and
condfΨ2g ≈ 4.14. Therefore, both matrices were determined to be
invertible, hence satisfying the conditions of Theorem 1 and
producing an invertible hybrid state transition matrix: Ξ�T� �
Φ3�T; t�2 �Ψ2Φ2�t−2 ; t�1 �Ψ1Φ1�t−1 ; 0�.
The eigenvalues of Ξ�T� are the characteristic multipliers of the

hybrid system and, based on the extension of the Floquet stability
theory given in Theorem 2, the periodic system is stable (in the linear
region) if all of these eigenvalues are within the unit circle. Listed in
Table 2 are the magnitudes of the eigenvalues of Ξ�T� for both
the solely magnetic [for which Ξ�T� � Φ�T; 0�, as there are no
impulses] and hybrid LQR controllers used in this numerical
example. Both control schemes result in eigenvalues less than unity,
which implies that both should be able to asymptotically stabilize the
system as long as the initial conditions are within a sufficiently small
neighborhood of the equilibrium state.

VI. Conclusions

A novel attitude control strategy using magnetic torquers and
impulsive thrusters in tandem has been presented, in which a hybrid
(continuous/impulsive) linear quadratic regulator (developed in [7])
has been used to determine the optimal control signals thatminimized
a hybrid cost function. The use of an auxiliary impulsive thrust
mechanism was primarily intended to overcome the limited gain
margin of a solely magnetic scheme. A controllability-based study
has been suggested for judicious selection of the impulse application
times, but further analytical and numerical studies on optimizing the
impulse application times and number of impulses would be
worthwhile. Moreover, a treatment of the novel concept of hybrid
Floquet analysis has been presented and used for studying the
stability of the proposed hybrid controller. Numerical simulation
results showed improved control performance and significant
reduction of magnetic control effort, at least for a specific choice of
penalties and impulse times, which would be particularly
advantageous for missions that had relatively strict pointing accuracy
requirements.
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