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Abstract

In this paper, we consider the H2-optimal control problem subject to the constraint that the

resulting controller be strictly positive real. A direct numerical optimization approach is adopted in

conjunction with a controller parametrization that is linear in the unknown parameters. The SPR

constraint is easily expressed at each frequency in the form of a linear inequality. The method is

applied to a numerical example from the literature and good results are achieved. In particular, the

proposed method is particularly adept at determining low order controllers.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Many physical systems enjoy the input–output property known as passivity which is a
mathematical statement that such systems do not produce energy. A stronger property
than passivity is strict passivity which characterizes systems that dissipate energy. The
passivity theorem is a general result which states that the negative feedback interconnec-
tion of a passive system and a strictly passive system is always input–output stable [1]. This
provides a strong basis for robust control since the passivity property of a system to be
controlled can often be guaranteed in the face of parameter uncertainty. An important
class of passive systems are flexible mechanical systems with collocated force (torque)
actuators and rate (angular rate) sensors [2].

Linear time-invariant passive systems are characterized by positive real transfer
functions. In the case of mechanical systems with collocation this property is independent
0.00 r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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of the natural frequencies, damping ratios, and the number of modelled modes. An
important class of systems are characterized by strictly positive real (SPR) transfer
functions [3]. It is known that an SPR system always stabilizes a passive system. Hence
robust stability is automatically achieved by limiting controller design to the SPR case.
Given this important stability result, several authors have looked at systematic ways of

designing SPR transfer functions. In [2], the Kalman–Yakubovich lemma in conjunction
with free weighing matrices was used to design an SPR controller. It was not an observer-
based compensator. McLaren and Slater [4] modified its structure so that it did have this
property. Lozano-Leal and Joshi [5] examined LQG weight selection so that the solution of
the resulting optimal control problem possessed the SPR property. Their work was
extended in [6] so that the weight selection also guaranteed that an H1-norm bound was
also achieved. None of these approaches determined optimal controllers subject to the SPR
constraint for general classes of problems (i.e., problems for which the weight selection was
not a priori constrained).
The determination of the best SPR controller given an H2-norm performance index was

treated in [7,8]. Both papers used linear matrix inequalities to formulate the SPR constraint
and forced the controller to have the same order as the plant. The controller was also forced
to have the structure of an observer-based compensator and the observer gain was chosen
to be the same as the H2-optimal (LQG) controller. The solutions presented in [8] showed
improvements over those in [7] for a common numerical example (a simply supported
beam) which was introduced in [6]. It should be noted that it is an open question as to
whether the optimal SPR controller for the H2 problem has an observer-based structure.
Furthermore, its order may not necessarily be the same as that of the plant. All of the
methods noted above assume the SPR compensator to have the same order as the plant.
An alternative approach was taken in [9] where it was suggested that a (stable) optimal

controller be approximated by the closest SPR transfer function which possessed the same
poles. Closeness was measured using the H2-norm and an argument was made that if the
controllers were close so were the corresponding closed-loop systems.
In this paper, we take a numerical optimization approach to finding optimal SPR

controllers. The controller is parametrized using a Ritz-type expansion which is linear in
the unknown parameters. This may be interpreted as a polynomial in the z-plane with
analyticity in the unit disk after a suitable mapping from the s-plane to the z-plane. A
major advantage of this approach is the linear nature of the inequality constraints
produced by enforcing the SPR constraint at each frequency. The cost function to be
minimized is taken to be the closed-loop H2-norm of a suitable transfer function but more
general problems are easily treated using the proposed method. The nonlinear
optimization problem with linear inequality constraints is tackled using the well known
code NPSOL [10], which was developed at Stanford University.

2. Controller design problem

Following [7] and [8], we consider the generalized plant

_x ¼ Axþ B1wþ B2u, (1)

z ¼ C1xþD12u, (2)

y ¼ C2xþD21w, (3)
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where xðtÞ 2 Rn is the state vector, uðtÞ 2 R is the control input, yðtÞ 2 R is the
measurement output, w 2 Rp is the disturbance input, and z 2 Rm is the regulated output.
It is assumed that:
(1)
 ðA;B1Þ is controllable and ðC1;AÞ is observable;

(2)
 ðA;B2Þ is controllable and ðC2;AÞ is observable;

(3)
 DT

12C1 ¼ 0 and DT
12D1240;
(4)
 D21B
T
1 ¼ 0 and D21D

T
2140.
The controller to be determined is given by CðsÞ ¼ Ccðs1� AcÞ
�1Bc where

uðsÞ ¼ �CðsÞyðsÞ. Hence, the closed-loop transfer matrix is TzwðsÞ ¼ Czðs1� AzÞ
�1Bz,

where

Az ¼
A �B2Cc

BcC2 Ac

" #
; Bz ¼

B1

BcD12

" #
; Cz ¼ ½C1 �D12Cc�. (4)

To fix ideas, the quantity to be minimized is the H2-norm of TzwðsÞ which can be
calculated using

kTzwk
2
2 ¼ trBT

z PBz; PAz þ AT
z P ¼ �C

T
z Cz. (5)

In the absence of any constraints on CðsÞ, the minimizing controller is the well known
linear quadratic gaussian (LQG) solution.

We are interested in strictly proper controllers which are also SPR. The strictly proper
constraint ensures that the norm in Eq. (5) is finite. Strictly proper SPR transfer functions
CðsÞ are characterized by the following properties [11]:
(i)
 CðsÞ is real for real s and CðsÞ is analytic for RefsgX0;

(ii)
 RefCðjoÞg40; �1ooo1;

(iii)
 limo!1o2RefCðjoÞg40.
Transfer functions which satisfy (i) and (ii) but not necessarily (iii) are said to weak SPR. It
has been noted [12] that a weak SPR system stabilizes a positive real one and more recently
it has been proven that a weak SPR system stabilizes a general, possibly nonlinear, passive
system [13]. For these reasons, we will confine our search to weak SPR systems.

The problem that we wish to solve is find the weak SPR controller which minimizes
kTzwk2 amongst this class. To date, an exact solution to this problem has not been found.
However, in [5] it was noted that the optimal solution is the LQG solution if the
parameters D21, D12, C1, and B1 are suitably chosen. More general solutions were obtained
in [7,8] by assuming an observer-based compensator with the same order as the plant and
the same observer gain Bc as the corresponding LQG solution. The solution presented in
[8] outperformed that in [7] for the numerical example introduced in [6].

3. Numerical optimization problem

Since SPR controllers that render the closed-loop H2 norm finite are strictly proper
stable transfer functions, we look for an appropriate parametrization. This should be such
that the strictly positive real constraint is easily applied. Let D denote the open unit disk in
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the complex plane. The space of bounded analytic functions in D is denoted by H1ðDÞ. It
is well known [14] that such functions can be represented by the expansion

gðzÞ ¼
X1
n¼1

hnzn�1. (6)

Functions gðzÞ that are analytic in D and supro1

R 2p
0 jgðre

jyÞj2 dyo1 comprise the Hardy
space H2ðDÞ. They can be represented by Eq. (6) subject to the constraint

P1
n¼1h2

no1.
The mapping z ¼ ðs� 1Þ=ðsþ 1Þ maps the open right-half plane onto the open unit disk.

It also maps the imaginary axis onto the unit circle; the point s ¼ jo is mapped onto ejy

with

o ¼ a
sin y

1� cos y
. (7)

It is also known that g½ðs� 1Þ=ðsþ 1Þ� 2H1 when gðzÞ 2H1ðDÞ and this generates all of
H1. Also if gðzÞ 2H2ðDÞ then g½ðs� 1Þ=ðsþ 1Þ�=ðsþ 1Þ 2H2 and this can be used to
generate all of H2. Since, we seek to parametrize H2 rational functions, the following
expansion is proposed:

CðsÞ ¼
XN

n¼1

hn

ðs� 1Þn�1

ðsþ 1Þn
. (8)

We note that parametrizations such as this have been adopted for numerical controller
optimization in [15].
Note that CðsÞ satisfies property (i) for SPR functions by construction. Property (ii) can

be expressed in terms of y:

RefCðjoÞg ¼ RefgðejyÞ=ðjoþ 1Þg

¼
XN

n¼1

hn½o cosðn� 1Þyþ sinðn� 1Þy�=ð1þ o2Þ40, ð9Þ

where o is given in Eq. (7). We propose to enforce this constraint at M equally spaced
values from y ¼ 0 to y ¼ p, i.e., at yk ¼ kp=M, k ¼ 1; . . . ;M. Defining h ¼ ½h1 � � � hn�

T,
each constraint in Eq. (9) is of the form

aTkh40; ak ¼ colnf½ok cosðn� 1Þyk þ sinðn� 1Þyk�=ð1þ o2
kÞg; k ¼ 1; . . . ;M.

(10)

Given h, the controller parameters ðAc;Bc;CcÞ are readily formed from Eq. (8) so that the
quantity to be minimized is

JðhÞ ¼ kTzwk2, (11)

where kTzwk2 is available from Eqs. (4) and (5). We propose to use a numerical
optimization approach to minimize JðhÞ subject to the linear constraints in Eq. (10). The
optimization program NPSOL will be employed which is based on the sequential quadratic
programming algorithm.
It is also known that the expansion

CðsÞ ¼
XN

n¼1

hn

ðs� aÞn�1

ðsþ aÞn
(12)
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with a40 is dense in H2 as N !1. In our numerical examples, we use a ¼ 1 but the
formulation is easily modified to use different values of a.

4. Numerical examples

We adopt the numerical example originally proposed in [6] and also used in [7,8]. It
consists of an Euler–Bernoulli beam of length ‘ ¼ p that is simply supported at each end.
The bending deflection of the beam at position p and time t is denoted by dðp; tÞ which can
be expressed using the modal expansion

dðp; tÞ ¼
X1
a¼1

sinðapÞqaðtÞ. (13)

Assuming there is a point force actuator applying force uðtÞ at p ¼ pa ¼ 0:55‘, the modal
equations are given by

€qa þ 2zoa _qa þ o2
aqa ¼ sinðapaÞuðtÞ; a ¼ 1; 2; 3; . . . ,

where oa ¼ a2 and the damping ratio is given by z ¼ 0:01. It is assumed that there is a
velocity sensor collocated with the force actuator which measures _dðpa; tÞ. If only five
modes are retained in the expansion, then the state vector can be taken as
x ¼ ½q1 _q1 � � � q5 _q5�

T. The matrices describing the plant model are then given by

A ¼ diag
0 1

�o2
a �2zaoa

" #( )
; a ¼ 1; . . . ; 5,

C2 ¼ BT
2 ¼ rowf½0 ba�g; a ¼ 1; . . . ; 5; ba ¼ sinðapaÞ,
Table 1

Optimal cost vs. approximation order

N Example 1 Example 2

kTzwk2 kTzwk2

1 2.2205 1.3870

2 2.0248 1.2433

3 2.0194 1.2427

4 2.0012 1.2397

5 1.9973 1.2390

6 1.9921 1.2390

7 1.9920 1.2388

8 1.9920 1.2388

9 1.9918 1.2388

10 1.9917 1.2388

11 1.9917 1.2388

12 1.9916 1.2387

LQG 1.9843 1.2376

CðsÞ ¼ 0 4.1711 4.000

Ref. [7] 2.2162 1.3856

Ref. [8] 1.9844 N/A
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B1 ¼ ½B2 0�; D21 ¼ ½0 1:9�.

We shall present two examples. In Example 1, the regulated output is defined in terms of
the velocity at pe ¼ 0:7‘:

C1 ¼
0 c1 � � � 0 c5

0 0 � � � 0 0

� �
; ca ¼ sinðapeÞ,

D12 ¼ ½0 1:9�T.

In Example 2, the regulated output is defined in terms of the position at pe ¼ 0:7‘:

C2 ¼
c1 0 � � � c5 0

0 0 � � � 0 0

� �
,

D12 ¼ ½0 0:5�T.
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Fig. 1. Example 1, Bode plots.
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For each example, we solve a series of problems with progressively increasing order of the
approximation. The optimal solution for order N is used as the initial guess for optimizing
the problem of order N þ 1. For N ¼ 1, we take the initial guess to be h1 ¼ 1 and for
N41, we take hN ¼ 0. The SPR constraint is applied at M ¼ 200 values on the unit circle.

The values of the optimal cost achieved as function of approximation order are given in
Table 1 for both examples. The LQG cost is also given as are the values achieved by the
methods presented in [7,8]. Our solutions show monotonically decreasing cost as a
function of the approximation order which is to be expected. The converged cost is very
close to the lower bound established by the LQG case. It is also apparent that relatively
low order controllers, say N ¼ 5, come close to achieving this lower bound. Indeed, one of
the main advantages of the proposed method is in determining low order controllers and
establishing the sensitivity of the cost with respect to order. Our optimal solutions
outperform the results of [7] for N41. For Example 1, the result of [8] is better than our
converged result and there is no result available for comparison for Example 2.
|C
(jω

)|
 d

B

 ω (rad/s)

Magnitude vs. Frequency

ar
g 

[C
(jω

)]
 d

eg

Phase vs. Frequency

 LQG

 N=5    

-60

-40

-20

0

10-2 10-1 100 101 102

ω (rad/s)
10-2 10-1 100 101 102

-135

-90

-45

0

45

Fig. 2. Example 2, Bode plots.
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Bode plots of the optimal controller are shown in Fig. 1 for Example 1 with N ¼ 7 and
in Fig. 2 for Example 2 with N ¼ 5. Satisfaction of the SPR constraint is clearly exhibited
in both cases. Also shown is the LQG case which is not SPR in both examples. Our
optimal solutions appear to yield SPR approximations to the LQG controller in both
cases.

5. Concluding remarks

A method of determining optimal strictly positive real controllers using direct numerical
optimization has been presented. A controller parametrization was adopted that was linear
in the unknown parameters. This enabled the SPR constraint at each frequency to be
expressed as a linear inequality. The numerical optimization was performed using the
general purpose computer program NPSOL. Optimal solutions were obtained for various
orders of approximation and they exhibited convergence with respect to the optimal cost.
A major benefit of the proposed technique is the ability to obtain solutions for low order
controllers relative to the plant order. Although we have used the H2-norm as a
performance measure, the technique is readily applied to other problems for which the cost
function can be calculated numerically given the controller parameters.
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