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Fig. 1 Nichols Chart plot (log magnitude-phase) of open loop tracking
bounds q(w) for the Example of Eq. (17) including the minimum phase
nominal loop transmission function L,q(jw) (labeled L{w) in the figure)
based upon the initial feasible controller of Eq. (19)
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Fig.2 Nichols Chart plot of Example of Eq. (17) illustrating the minimum
phase nominal loop transmission functions L, (/o) based upon the initial
feasible controller of Eq. 19 (narrow line) and the optimized controller
of Eq. 20 (heavy line)

iteration violates Nyquist stability, at which point the designer
must choose to modify the controller structure or stop. Cost
function weights a,, a,, and a, can also be varied, as suggested
in Section 3, so that a set of Pareto-optimal solutions is obtained.

6 Conclusions

In this paper, the feasibility of extending the nonlinear program-
ming method to the sensitivity-based, new formulation QFT prob-
lem of Nordgren et al. (1994) has been demonstrated. Although
it was not possible to obtain analytic expressions for sensitivity-
based QFT constraints or their gradients, it was shown that accept-
able solutions could be obtained by use of spline approximations.
The key step involved construction of a “‘hybrid’’ constraint gradi-
ent expression (part analytical, part numerical) which was found
to yield superior convergence propérties. This finding is also appli-
cable to parameter optimization for fixed-structure controllers
based upon bounds of a general nature, such as those developed
in traditional, template-based QFT (i.e., without template approxi-
mation). Future work in this area will focus on the application of
these techniques to MIMO systems (a straightforward extension)
and discrete-time systems.
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This paper presents a series of experimental results obtained
with a 2-DoF flexible-link direct-drive manipulator. First, we
conduct a frequency analysis by comparing experimental natu-
ral frequencies with those predicted by the finite element model.
Then, the time responses from four dynamics models are com-
pared with each other and with the experiment. It is demon-
strated that higher order nonlinearities are less important for
slow maneuvers by close agreement between all four simulation
models. For fast maneuvers, the two simpler models fail to
predict a physically meaningful response. Good agreement with
experimental results is attained with a model which accounts
Jor all inertial nonlinearities. It is also shown that inclusion of
damping in the dynamics models has a significant impact on
their performance, as well as improving the correlation with
experimental data.
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1 Introduction

An accurate model for simulation of structurally flexible ma-
nipulators is a low cost alternative t0 prohibitively expensive
space- or ground-based facilities. Validating a dynamics model
for use in simulation or control is an important step before
the model can be employed with confidence. Typically, model
validation can be considered in two parts. The first—frequency
domain analysis—is a natural place to begin. Matching of the
natural frequencies is a good indication of accurately modeled
mass and stiffness properties. The convergence rate of the nu-
merical mode shapes to those observed usually reflects the accu-
racy of the chosen deformation model. However, as reported
by many researchers, the frequency response and mode shapes
can be significantly affected by damping and friction. The works
by Hastings and Book (1986), Swevers et al. ( 1992) and Nebot
et al. (1994) conduct frequency analysis for a single-link arm
while Oakley and Cannon (1989) verify a set of assumed mode
shapes for a two-link flexible arm.

The second part of model validation is the time domain analy-
sis. Here, the focus is on time response of various system states
to some control inputs. Time domain results show the effects
of assumptions concerning the nonlinear terms in the motion
equations as well as the geometric stiffening. As demonstrated
in Chapnik et al, (1991) and Oakley and Cannon (1988), mod-
eling of hub friction and link (structural) damping is also im-
portant in the time domain.

A number of time domain validations reported in the litera-
ture are conducted with a PD feedback controller in the simula-
tion and experimental setup. For example, Lucibello and Ulivi
(1993) use feedback during the validation of a dynamics model
for a two-link rigid-flexible manipulator. Oakley and Cannon
(1988) have also used feedback control when validating an
assumed modes model for a two-link robot with a flexible fore-
arm. Carusone et al, (1993) used square and circular end-point
trajectories to test a tracking controller for a two-link flexible
manipulator.

A validation study conducted under open-loop control pro-
vides a better scenario since the use of feedback tends to mask
some of the effects present in the system. An accurate agreement
for displacement variables is the most difficult to achieve but
has been attained for impact dynamics of a flexible beam by
Chapnik et al. (1991). Validation of acceleration and strain
responses is easier to accomplish but it hides the rate errors.
Giovagnoni (1994) compared both tip acceleration and strains
for a flexible four-bar linkage and obtained excellent results.
Similarly, Pal and Ohtsubo (1994) compared tip accelerations
of a single-link flexible arm with rotary and prismatic actuation.

In this paper, we validate the dynamics models of a planar
2-por manipulator with two flexible links. The models consid-
ered here are described in Damaren and Sharf (1995) where
a detailed classification of the nonlinearities in the dynamics
equations and corresponding definitions of the four dynamics
models is given. Summarizing, the first group of nonlinear terms
identified are the inertial nonlinearities which include quadratic
rate nonlinearities (&) and the elastic dependence of each
body’s mass matrix (6M). The geometric elastic nonlinearities
result from the use of geometrically nonlinear elastic theory,
in particular, the nonlinear strain-displacement relations. They
account for link foreshortening and the geometric stiffness ef-
fect due to high axial loading on the manipulator links. The last
category of nonlinear terms contains the geometric interbody
nonlinearities which are classified according to the approxima-
tion adopted for the interjoint position vector and interbody
elastic rotation. Several approximations are possible which ac-
count for these deformations in three dimensions but they are
equivalent for the planar motion ultimately considered here.

Based on this classification of nonlinear terms, Damaren and
Sharf (1995) defined four dynamics models distinguished by
the complexity of the nonlinear terms retained. These are the
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Fig. 1 Cooperating manipulator test-bed

Ruthlessly Linearized (RL), Inconsistent (1), Consistently Lin-
earized (CL) and Exact (EE) models. The RL model contains
only rigid-body nonlinearitics while the I mode] retains all the
inertial nonlinearities (the 6f and 6M terms). The CL approxi-
mation includes the nonlinear inertial forcing (6f) terms and
the geometric stiffness matrix derived under a constant axial
load assumption but neglects the 6M terms. Finally, the EE
model is the full embodiment of the nonlinear dynamics equa-
tions. In this paper, all four models are based on the finite
element discretization of the flexible manipulator links.

The main contribution of this paper is to conduct frequency
and time domain validations with an experimental flexible-link
manipulator. Following a brief description of the test-bed, we
examine the natural frequencies of the manipulator in an out-
stretched configuration. Subsequently, an open-loop time do-
main validation is conducted for smooth and step maneuvers
exccuted at two different speeds. The simulation results from
the aforementioned dynamics models are compared to the ex-
perimental joint rates and strain gauge measurements.

2 Experimental Facility

2.1 Overview. Since the experimental validation de-
seribed in this paper was conducted with the Cooperating Ma-
nipulator test-bed at the University of Victoria, a brief overview
of this facility is in order. A detailed description of the test-bed
can be found in Nahon et al. (1995).

The test-bed was built to support research in dynamics and
control of cooperating and structurally flexible manipulators in
the null-gravity environment of space. As shown in Fig. 1, the
facility is composed of two 3-DOF arms supported on a glass
table. The elbow and wrist joints of the arms float on air bearings
while the base of each arm is held down by a vacuum. The
manipulator has a modular architecture which permits any com-
bination of motors and links. The arm used for this work (fore-
ground in Fig. 1) is driven by three direct-drive NSK Mega-
torque motors, models 1010, 0608, and 0408. In the present
experiments, only the base and elbow motors of the arm are
actuated. In addition to the flexible-link configuration shown in
the figure, rigid links are also used for torque calculation as
described in Section 4.2.

The control system consists of a PC-hosted Spectrum
TMS320C30 floating-point digital signal processor interfaced
to the robot through three 2-axis DS-2 Controller/Data Acquisi-
tion Modules from Integrated Motions Inc. In addition, three
in-house interface boards were built to mediate between each
DS-2 card and the motor driver units they service. The driver
units for the NSK motors have position, velocity, and torque
control options. Homing was accomplished in position mode
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while the experiments were conducted with direct torque com-
mands.

Each of the flexible links is equipped with two sets of strain

gauges (on both sides of the links) located at § and } length.
Bridge Amplifier Modules from Analog Devices complete the
bridge and provide electrical isolation and surge protection.
Acquisition of the strain gauge data is provided by a 32 channel
A/D converter. The joint angles of the motors are read from
encoders built into the motors. For the joint rate input used
in the motor nonlinearity correction in Fig. 2, a simple finite
difference estimate of the joint velocity is used.

The simulation algorithm requires that the inertias and geo-
metric properties of each body in the manipulator be modeled
separately. The major components of the experimental arm are
the links, couplers, motor housings, rotors and air bearings. The
inertial properties of these were computed analytically for the
simple bodies and by solid AutoCAD modeling for the complex
bodies. In all, a 12-body model of the arm, detailed in Shepard
(1994), was created for use in the simulation. The flexible
aluminum links were modeled using planar beam elements with
a stretch (axial) degree of freedom included. The latter is re-
quired in order to capture the geometric stiffening effect through
the nonlinear stiffness formulation, as described in Sharf
(1996). It is also required in a similar geometrically nonlinear
formulation derived independently by Mayo and Dominguez
(1996). As expected, the inclusion of high-frequency stretch
degree of freedom significantly increases the computational cost
of the simulation.

2.2 Motor Calibration, The time domain experiments
with the manipulator were conducted under open-loop torque
control. It was therefore necessary to calibrate the motors for
accurate achievement of the torque commands. The calibration
procedure involved accelerating each motor with a known load
and calculating the shaft torque. Input-output torque relations
were constructed for the motor/driver system. Nonlinear effects
such as velocity dependence, motor/generator operation, direc-
tional dependence and command scale nonlinearities were taken
into account (see Stanway (1996) for details ). Due to the highly
nonlinear characteristics of the NSK motors, the calibration was
not sufficient to provide the desired accuracy of output torque.
Nonetheless, the calibration is used to partly linearize the motors
(Fig. 2) but another means of obtaining the output torque pro-
files is described in Section 4.2.

Motor friction was identified by observing each motor decel-
erate to a stop with a known inertial load under zero torque
input. The tests showed a dominant Coulomb friction and a
weak first-order effect, each with a small directional depen-
dence. All three effects are included in the friction model of
Fig. 2.

3 Frequency Domain Validation
The global form of the motion equations can be written as

M(q)d + Dq + K(q)q = Bt + f,,(q, q)

where M, D, and K are the global mass, stiffness, and damping
matrices respectively, the generalized coordinates are q =
{87 q717, 7 are the joint torques, and f,,, is a vector of rate
nonlinearities. Here, @ are the joint angles and q, are the elastic
coordinates generated with clamped-free boundary conditions
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Table 2 Unconstrained natural frequencies [Hz]

Frequency source Model Mode2 Mode3 Mode 4
FE Model, no damping 9.16 20.7 26.7 572
Impact experiment 8.30 17.6 249 50.7
FE Model, damping 8.83 176 26.7 50.5

for each link. The undamped, unconstrained (joints unlocked)
natural frequencies were found by solving the global eigenpro-
blem for the linearized arm model:

—wiM(@)q. + K(@)g. = 0, (1

where w, are the natural frequencies, q, are the mode shapes,
and q is the reference configuration. The experimental natural
frequencies were determined by an impact to the elbow motor.
The strain and joint angle data were collected at a sampling
rate of 1000 Hz. The elbow joint rate was obtained by differenti-
ating the angle measurements. The experimental frequencies
reported in Table 2 correspond to the peaks of the elbow rate
curve in Fig. 3. As can be seen from Table 2, the two sets
agree within 10—15 percent in the absence of damping. We
also observed that both numerical and experimental frequencies
changed little with the arm configuration (Damaren et al.,
1995). This is one of the consequences of the direct-drive actua-
tion of the experimental arm.

So as to include damping in the model, the system damping
factors were obtained by exciting the manipulator at the natural
frequencies from the elbow motor and measuring the vibration
decay. The damping ratios {, for each mode were calculated
from the joint angles and strain measurements by using logarith-
mic decrement. The data were passed through a high pass filter
to remove the influence of drift and the low frequency cantilever
modes of the arm caused by joint friction.

The estimated damping ratios for the first four vibration
modes were found to be {; = 0.13, {; = 0.06, {; = 0.07,
and £, = 0.06. These were used to define modal damping and
subsequently, the damping matrices for the two flexible links.
Thus, all damping effects have been effectively incorporated
via the structural damping in the links. Letting Q represent the
matrix of eigenvectors corresponding to the eigenproblem (1),
we note that it diagonalizes M and K according to Q"MQ =
diag {1} and Q'KQ = diag {w3}. Q and the global damping
matrix can be further partitioned as

_ QM Q9¢ _ 0 0
Q'[o Q,,]’ D‘[o De,]

where Qyq are the joint angles in the zero-frequency rigid modes,
Q.. are elastic coordinates in the elastic modes, and Qp, are the

a=1,2,3,...

(2)

Energy Spectrum [dB]

Fig. 3 Frequency response to elbow motor impact
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joint angles in those modes. Assuming that Q also diagonalizes
D, we can write Q,D,.Q., = diag { 20w} or

D.. = Q.7 diag {20aw.} Q2 3)

Thus, the damping matrix for the manipulator is calculated as
in the above with the four measured values of the damping
ratios {,. The body damping matrices for the body motion
equations are defined by truncating D,. to a block-diagonal
form.

 The modal damping factors £, were measured at the out-
stretched configuration of the arm and hence, Q.. was evaluated
at this configuration. We note that Q. does not vary much
with configuration so that D, is taken as constant. The damped
numerical frequencies in Table 2, found by random torque exci-
tation of the simulation, agree very well with the observed
behavior.

4 Time Domain Analysis

In this section we compare the performance of the four mod-
els—Ruthlessly Linearized, Inconsistent, Consistently Linear-
ized and Exact—against each other and the measured response.

4.1 Test Maneuvers. Two joint space lest trajectories are
considered, each executed at a high and a low speed. The first
is a generic ‘‘pick-and-place’” maneuver represented by a
smooth fifth order polynomial and denoted by PP. The com-
manded joint angle in this case is given by

3
04(2) = (6, — 90)-;—3 [10 — 15(/T) + 6(+2T*H] (4)
where 6, = 6,(0) is the initial angle and 8, = 04(T) is the

desired final one. The second maneuver is a step acceleration
(ST) designed to excite significant vibrations in the robot:

. A, 0<t=T/2
s.0)=4 —A, T/2<t=T , A=4(0,—00)/T* (5)
0, t>T

This maneuver is also used to investigate the geometric stiffen-
ing effect.

In both of these maneuvers, the arm moves from the out-
stretched home position to the position with base and elbow
joint angles at 2 and 1.5 radians, respectively. The high speed
maneuvers, (-f ), are completed in 7 = 2.5 seconds and bring
the flexible links close to their elastic limits, while the 5 second
slow maneuvers, (-s), are more gentle. We note that the terms
“fast’” and “‘slow,”’ used here to describe the maneuvers, are
intended to have a relative meaning concurring with what one
would perceive as a fast or a slow movement of the arm. The
speed differences between the fast (PP-f, ST-f) and slow (PP-
s, ST-s) maneuvers serve to accent the relative importance of
various nonlinear terms in the dynamics equations. With the
exception of the ST-f maneuver, the desired trajectories are
converted into commanded joint torques via the rigid-body in-
verse dynamics model, as discussed below.

4.2 Shaft Torque Calculation. An alternative solution to
motor calibration is proposed here to obtain an accurate estimate
of the torque output from the motors. First, the desired maneuver
is conducted under open-loop torque control (with motor cor-
rection as shown in Fig. 2) with a rigid-link configuration of
the arm. The measured joint angles are low-pass filtered and
differentiated off-line to obtain the joint velocities and accelera-
tions. These are then used in the rigid-body dynamics model of
the manipulator to calculate the actual torque output of the
motors.

The torques calculated with the above procedure are subject
to some error from loss of frequency content and small inaccura-
cies likely present in the manipulator model. Accordingly, they
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Fig. 4 Strain for link 2, PP-s maneuver, EE model

will be more accurate for the smooth polynomial maneuvers
than the fast step acceleration maneuvers. In fact, they are con-
sidered.to be the best estimates of the motor torques for the
same maneuvers conducted with a flexible-link configuration
of the arm. The calculated torques are used as control inputs to
the simulation of smooth and slow step maneuvers.

4.3 Simulation Versus Experiment

Model Convergence. The convergence of the four models
with increasing number of finite elements was investigated for
the smooth and step acceleration maneuvers. It was observed
that models RL, CL, and I converged within one element for
the slow maneuvers and two or three elements for the fast
maneuvers. The EE Model, on the other hand, exhibited a very
slow convergence rate with the number of elements. This has
been attributed to the nonlinear stiffness formulation employed
to capture the geometric stiffening effect (Damaren and Sharf,
1995). As shown by Sharf (1994), the slow convergence of
the exact dynamics model can be alleviated by using higher
order shape functions for the stretch degree of freedom. Mayo
and Dominguez (1996), using the same approach to model
the geometric stiffness as in our exact model, reached similar
conclusions regarding its convergence. They also point out the
need for a very fine discretization with, preferably, higher-order
axial shape functions. Figure 4 displays the measured and simu-
lated strains for the second flexible link for the slow polynomial
maneuver using the EE model. We note that the converged (7-
element) solution is in good agreement with the experimental
results, but it requires approximately two days of CPU time (o
compute on a Sun 4 workstation.

Slow Maneuvers. Figures 5 and 6 compare the numerical
results with strain and joint rate measurements for the slow
smooth (PP-s) maneuver. In these figures, we show the con-
verged results for the RL and I models and the seven-element
solutions for the EE model. The CL model is omitted for clarity
and because its solutions are nearly identical to the T model
results. Also, the simulated responses shown in these figures
were calculated without damping in order to expose the effect
of various nonlinearities in the motion equations.

As can be seen from Fig. 5, the RL and I models predict
similar responses which are in good agreement with the mea-
sured strains. The EE model slightly underestimates the strains.
From Fig. 6, one can conclude that the EE model provides the
best frequency match with experiment while the RL and I mod-
els overestimate the vibration amplitude. Figure 7 is the ana-
logue of Fig. 5, but obtained with damping in the models. As
expected, damping diminishes the differences between the vari-
ous models, Overall, the solutions calculated with damped mod-
els are in better agreement with experiment. It follows that the
high order nonlinear dynamics terms are not important for slow
maneuvers, although in the absence of the damping term, they
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produce visible differences in the response. The strain results
for the slow step maneuver (ST-s) in Fig. 8 were obtained with
damping included in the models and lead to similar conclusions
on their performance.

Fast Maneuvers. Strain and elbow joint rate results for the
fast smooth (PP-f) maneuver are shown in Figs. 9 and 10,
respectively, where (a) present the undamped solutions, while
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(b) contain the damped simulated responses. With or without
damping, the CL model does not complete this maneuver. For
the RL model, in the undamped case, it accumulates a very
high energy drift (22 percent) and hence, is not included in
Figures 9(a) and 10(a). In the damped case, it performs better
(7 percent energy drift at the end), although, as can be seen
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Fig. 11 Strain for link 1, ST-f maneuver, damping

from the joint rate in Fig. 10(b), its predictions are not reliable.
Because of the slow convergence, we were unable to obtain
converged solutions for the EE model and hence, it is not in-
cluded in these graphs. As observed from Figs. 9 and 10, the
responses calculated with the I model are consistently in good
agreement with the experiment, although in the damped case,
the joint rates are slightly overdamped.

As alluded earlier, the calculated torque inputs do not prop-
erly capture the sharp changes in the torque command for step
acceleration maneuvers. Therefore, for a better comparison of
fast step maneuvers, simulation results for the ST-f maneuver
are obtained with the commanded torque rather than the calcu-
lated torque. Also, the damping term is included in the dynamics
equations without which models RL and I cannot complete the
maneuver. The CL model once again fails to produce a mean-
ingful solution in either case. In the strain response of the first
link in Figure 11, we observe an error in the absolute response
(due to the error in the output torque of the motors), but well
preserved torque steps. The RL and I models are again in close
agreement, with the ruthlessly linearized model predicting
larger amplitudes for the joint rates (Fig. 12). Both models
predict a higher vibration frequency at the start and mid-way
steps than what is measured. Barring these two discrepancies,
the agreement with the experimental results is good. We there-
fore conclude that the geometric stiffening effect (not included
in the RL and I models) is not important for the direct-drive
experimental arm for a wide range of maneuvers.
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5 Conclusions

In this paper, we have discussed the validation of the dynam-
ics modeling for a 2-DOF manipulator with two flexible links.
This included a comparison of numerically calculated frequency
response with experiment as well as the time domain analysis. In
the latter case, we compared the performance of four dynamics
models ranging from the ruthless (RL) model which retains
only rigid-body nonlinearities to the exact (EE) model which
accounts for the geometric stiffening effect. It was found that
the latter model exhibits a poor convergence rate—a limitation
which prevents us from making definitive conclusions on its
predictions. The relative importance of the nonlinear inertial
terms was demonstrated by the virtually identical response of
the models for the slow maneuver, and very different responses
for the fast maneuver. Finally, structural damping is shown to
be a necessary addition to the models for accurate prediction
of the manipulator behaviour. The importance of the nonlinear
inertial terms decreases considerably in the presence of damp-
ing. Overall, we conclude that the inconsistent (1) model is
most reliable and provides the best agreement over a large range
of maneuvers for the class of systems studied here. However,
relative to the simpler ruthless model, its implementation re-
quires a number of additional integrals of the shape functions
(contributing to the 6f and M terms ) and it takes approximately
10 to 20 percent extra CPU time to compute.
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