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Several important issues relevant to modeling of flexible-link robotic manipula-
tors are addressed in this paper. First, we examine the question of which inertial
nonlinearities should be included in the equations of motion for purposes of
simulation. A complete model incorporating all inertial terms that couple rigid-
body and elastic motions is presented along with a rational scheme for classifying
them. Second, the issue of geometric nonlinearities is discussed. These are terms
whose origin is the geometrically nonlinear theory of elasticity, as well as the
terms arising from the interbody coupling due to the elastic deformation at the
link tip. Accordingly, a general way of incorporating the well-known geometric
stiffening effect is presented along with several schemes for treating the elastic
kinematics at the joint interconnections. In addition, the question of basis function
selection for spatial discretization of the elastic displacements is also addressed.
The finite element method and an eigenfunction expansion techniques are pre-
sented and compared. All issues are examined numerically in the context of a
simple beam example and the Space Shuttle Remote Manipulator System. Unlike
a single-link system, the results for the latter show that all terms are required
Jor accurate simulation of faster maneuvers. Hence, the conclusions of the paper
are contrary to some of the previous findings on the validity of various models

for dynamics simulation of flexible-body systems.

1 Introduction

Dynamics simulation of robotic manipulators with flexi-
ble links has received a great deal of attention in the last
several years. This problem, although it has gained impor-
tance in industrial robotics, is particularly relevant to space
applications of manipulators. Space robotic systems are
made up of lightweight, large in size members and, therefore,
exhibit significant structural flexibility. Moreover, ground-
based experiments with these systems are difficult because
of the gravitation field, and are prohibitively expensive to
carry out in space. Hence, the capability to simulate the
dynamics of space manipulators is essential for design, de-
velopment of control strategies, as well as, real-time applica-
tions such as animation.

A number of formulations and solution algorithms have
been proposed for dynamical simulation of flexible-link ro-
bots. A literature review on the topic has been published by
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Gaultier and Cleghorn [1]. The more recent works include
Bae and Haug [2], Sema and Bayo [3], Naganathon and
Soni [4], Wehage and Shabana [5], Hughes and Sincarsin
[6], Nagarajan and Turcic [7],.and D’Eleuterio {8]. These
vary in the approach taken to develop the motion equations,
the techniques used to model the elasticity of the links, the
assumptions made with regards to the coupling of rigid-
body motion and elastic deformations, and, correspondingly,
the complexity of the dynamics models. Despite their differ-
ences, however, most of the existing formulations are based
on the classical or linear theory of elasticity. This implies
that the governing equations of motion do not contain terms
which are nonlinear in the elastic variables.

In the last few years, a number of researchers have ob-
served that the use of classical theory to describe the motion
of elastic bodies comprising multibody systems yields a set
of dynamics equations which inherently lack what is usually
referred to as the geometric stiffening term. Kane et al. [9]
were among the first to point out this deficiency of traditional
multibody dynamics formulations and the consequent inade-
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quacy of the existing simulation software. They considered
a flexible beam attached to a base which undergoes general
prescribed motion. Kane et al. [9] developed a set of equa-
tions that describe the deformation of the beam by employing
a nonlinear expression for the stretch coordinate. They also
incorporate in their formulation some of the “specialized”
beam properties, such as rotary inertia and shear deforma-
tion, nonuniform geometric and material properties, and
warping. Simo and Vu-Quoc [10] demonstrated analytically
the failure of linear beam theory to predict the centrifugal
stiffening effect and proposed a formulation based on the
fully nonlinear or geometrically exact theory for beams and
plates. In addition to properly accounting for stiffening, their
procedure allows one to develop the motion equations of the
system in the inertial, rather than the traditionally employed
floating or shadow reference frame [11]. Interestingly, the
geometric stiffening effect was included long ago in the
treatment of planar rotating beams by Likins et al. [12],
Vigneron [13] and Kaza and Kvaternik [14]. Since then, a
number of problems dealing with multibody systems in a
variety of applications have been addressed (see for example,
Lips and Modi [15], Hughes and Fung {16], Simo and Vu-
Quoc [17], Banerjee and Lemak [18], and Walrapp [19].
All of these works incorporate geometric stiffening in the
governing equations, although via different routes.

In the context of flexible-link manipulator simulation, the
geometric stiffening effects have been considered by Padilla
and von Flotow [20], Ider and Amirouche [21], and van
Woerkom [22]. In the former reference, Padilla and von
Flotow investigate the effect of three linearization strategies
on the form of the motion equations. These researchers
justify the inclusion of the geometric stiffening term by
arguing that it is linear in the elastic displacements, and
hence, is derived with the “consistent” linearization proce-
dure. Ider and Amirouche develop a general set of motion
equations applicable to multibody systems with closed loops.
However, they as well as Padilla and von Flotow, present
simulation results for a flexible beam and a two-link planar
manipulator only. Van Woerkom discusses four techniques
that can be used to account for the stiffening effect in the
dynamics models and presents numerical results for the
eigenfrequencies of a single link with tip mass.

The main objective and contribution of this paper are to
identify the different types and orders of nonlinearities pres-
ent in the dynamics equations of a flexible body. These
equations are written in the floating frame. They are derived
by employing an exact description of the velocity distribu-
tion in the elastic body as well as exact nonlinear strain-
displacement equations. Due to the latter, they include the
geometric stiffening terms. The resulting dynamics equa-
tions can be considered “exact” in the sense that they contain
all of the nonlinear terms obtained from the two aforemen-
tioned relations. In practice, however, this model becomes
inexact through the assumed displacement and rotation
fields. By contrast, successive approximations to the geomet-
rically exact model of Simo and Vu-Quoc [10] can be con-
structed by approximating the nonlinear strain measures.

We begin our classification by subdividing the nonlinear
terms into three basic categories. Those in the first category
will be referred to as the inertial nonlinearities, since they
originate from the nonlinear term in the exact expression
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for the velocity distribution. Accordingly, they appear in the -
motion equations through the expression for kinetic energy
if one employes Lagrange’s or Hamiltonian formulations, or
through the inertial forces if one uses a vectorial formulation,
such as Newton-Euler. As pointed out by Simo and Vu-
Quoc [11], these nonlinearities appear in the dynamics equa-
tions when the motion of a flexible body is referred to the
floating, not the inertial frame. We refer to these nonlineari-
ties as inertial since indeed they can only be present when
a flexible body undergoes rigid-body motion. .

The inertial nonlinear terms exist independently of the
second category of nonlinearities, which are those that arise
from employment of nonlinear theory of elasticity to de-
scribe the kinematics of elastic deformation. Following Sha-
bana [23], we refer to these as geometric elastic nonlineari-
ties since they appear in the dynamics equations in the form
of nonlinear elastic forces. These are derived from the strain
energy of an elastic body which in turn is determined with
the nonlinear strain-displacement relations.

The third group of nonlinearities, also geometric in nature,
arises when considering the kinematical constraints govern-
ing neighbouring links. They can be attributed to the elastic
displacement and rotation at the “tip” of one body upon
interconnection with its neighbor. The rotation, in particular,
can be subjected to a number of approximations which sim-
plify the treatment. Part of our task is to ascertain the veracity
of these approximations, which are ubiquitous in the current
literature.

In each of the above categories, we identify the form
of the various nonlinear terms and further classify them
according to their order. The inertial nonlinear terms can
also be described as “hybrid” or rigid-elastic terms since,
as was alluded to earlier, they represent the coupling between
the rigid-body and elastic motions. For instance, one can
identify terms of O (liq,, Il v, Il) which represent the dynami-
cal effects due to products of elastic rates g, , and rigid
velocities v, . In the previous work [24], the authors defined
three types of hybrid terms and demonstrated their effects
on the simulated motion of the Space Shuttle Remote Manip-
ulator System. Motivated by these results, we now subdivide

nonlinear terms is defined to include the inertial forcing
terms of O(lg, M v, ), O(lg, I lg, ) Iv,l) and
O(llg, !l Iiv,I1%). These hybrid terms contribute to the forcing
component of the differential equations. The second group
of nonlinear inertial terms includes all those remaining.
These are the O(IIqMIIZ) terms which augment first and
second moments of inertia of the body to account for its
deformation during motion.

The classification of the geometric nonlinear terms is
more straightforward since their nonlinearity is characterized
strictly by the order of elastic displacements. Thus, we distin-
guish first and second order of geometric elastic nonlineari-
ties, which correspond to the terms in the motion equations
of O(llg, ,I*) and O(IIq,,'e|l3). The geometric interbody non-
linearities are categorized according to the approximation
adopted for the interjoint position vector and interbody elas-
tic rotation.

The second goal of the paper is to illustrate the effects
of the various types of nonlinearities for a general robotic
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system. To this end, we propose four dynamics models, each
specified by the type and order of nonlinear terms included
in the equations. Thus, ruthlessly linearized, inconsistently
linearized, consistently linearized, and exact models are de-
fined where the first one represents the dynamics equations,
which do not contain any nonlinear terms, and the last one
corresponds to the “exact” equations. Since the subject of
geometric stiffening has been discussed extensively in the
context of a single flexible-beam, we first present the numeri-
cal results obtained with the different models for a well-
known spin-up problem. This is done primarily with the
purpose of placing the models in the framework of existing
formulations, as well as verifying our simulation results.

As an example of a three-dimensional, six-degree-of-free-
dom robotic manipulator with elastic members, we choose
a 6-link manipulator modeled after the shuttle arm. In order
to compare the applicability of the four models introduced
earlier, the results are presented for two classes of maneuvers
which illustrate responses to smooth and step inputs. In each
class, we further consider two types of maneuvers which
yield similar trajectories, but are executed at different speeds.
This selection allows us to highlight the differences between
the models and, consequently, the relative importance of the
nonlinear terms for various maneuver speeds. The goodness
of the models is verified by monitoring the energy drift for
the shuttle manipulator (plus payload) system.

In addition to presenting a series of numerical solutions
obtained with different models, we also demonstrate the
use of two discretization strategies to describe the elastic
deformation in the links. These are the finite-element method
and the normal modes method. Both procedures are based
on the Euler-Bernoulli beam theory of bending and the engi-
neering theory of torsion. Mayo and Dominguez [25] have
also studied these discretization methods in the context of
geometrically nonlinear models. They numerically treated a
flexible slider-crank mechanism using an existing multibody
dynamics software package in conjunction with nonlinear
elastic modelling similar to that employed in this work.

2 Classification of Nonlinearities for a
Deformable Body

2.1 Equations of Motion for a Single Body. The dy-
namics equations for an unconstrained deformable body in
general motion have been derived previously in a number
of publications. Hence, we do not develop them here, but
include two key relationships prior to stating the motion
equations. These are expressions describing the kinematics
of an elastic body and, therefore, are fundamental to any
dynamics formulation.

We express the velocity distribution of %, as

(1)

where v, and w,, are the absolute velocity and angular veloc-
ity of the inboard articulation point of 3, O,, expressed in
a floating frame attached to %, at O,; u, , is the elastic
displacement of the point located at r,, in the undeformed
configuration. The subscript ¢ connotes elastic. The absolute
velocities can be collected into a single generalized velocity
vector v, & col{v,, ®,} which is a 6 x 1 column matrix.
We note that the velocity distribution as given by (1) is

v(r,=v,()-(r,+u, Yo ()+u0, (r,?)
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exact and contains a nonlinear term u,, " w,. It is identical
to that adopted in most existing formulations (see, for exam-
ple, [4], [9], and [26]).

To obtain the discrete dynamics model, the elastic deflec-
tion u, , is discretized according to

u, (5, )= 21 U0 ()G (D) (2)

where we assume that the shape functions s, satisfy cantile-
vered boundary conditions at r, = 0; s, denotes the number
of elastic degrees of freedom. We note that in the present
formulation the rotation field is not discretized indepen-
dently of the displacement field, as is done in the formula-
tions of Simo and Vu-Quoc [10, 27] and Cardona and Gera-
din [28]. This does not effect the general form of the motion
equations, nor the inertial terms. As will be noted in Section
2.3.1, the approximation for the rotation field does effect
the form of the stiffness term. We also point out that contrary
to what has been stated by Kane et al. [9], the expansion (2)
for the displacement field does not preclude interdependence
between the three components of u, ,, in particular, the
“axial” and “transverse” displacements. Therefore, nor does
it prohibit modeling the dynamic stiffening of the body
during its motion.

With the velocity and elastic displacement distributions
(1) and (2) and with the definition q,, , & col{g,, }, the exact
general equations of motion for an elastic body can be written
in the form:

A N

om, Vp+ gn’n, req" = = fnT,r + fnl. r®

nrr’n
2T - . & _ P
("m’n,revn+9ﬂ’n,eeqn,e+Sn.ee_fnT,e+nt,e (3)

Here, E.‘fll,,,,,,‘ﬁﬂ,,’ re» and 9T . are the mass matrices; én, ce 18
the vector of internal (elastic) forces and it represents the
stiffness term. We have used the overhat notation to desig-
nate the quantities which are dependent on the deformed
configuration of the body through elastic coordinates. In
the linearized model, the stiffness term is linear in elastic
coordinates and all body matrices are constant. The right-
hand side of Eq. (3) contains the total generalized forces and
the generalized nonlinear inertial forces, rigid and elastic.

As will be shown in the following two sections, the config-
uration-dependent components of the mass matrices and the
hybrid inertial forces result strictly from what we refer to
as inertial nonlinearities. By contrast, the nonlinear form of
the stiffness term is the result of the geometric nonlinearity
or nonlinear kinematics of deformation. In the present formu-
lation, the elastic forces are obtained from the strain energy
expression formulated with the nonlinear strain-displace-
ment relations. It is noted that the equations of motion (3)
represent a discrete counterpart of the continuous equations
developed by Meirovitch [26]. The derivation of equations
via the Newton-Euler formulation is detailed in the unpub-
lished manuscript [29], although in it, D’Eleuterio does not
provide an explicit form for the stiffness operator.

Before proceeding to the next section where we give a
detailed classification of the inertial and geometric nonline-
arities, it is worthwhile mentioning that this partition of the
nonlinearities in the dynamics equations of an elastic body
undergoing general rigid-body motions is not unique. For
example, Kane et al. [9] incorporate the nonlinear kinematics
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of deformation through their generalized inertia forces. In
the approach of Simo and Vu-Quoc [11], the inertial nonline-
arities are effectively transferred to the stiffness term by
describing the motion with respect to the inertial frame.
However, we believe that the classification proposed here
reflects the fundamental nature of these nonlinear terms
and, moreover, it follows naturally from any procedure for
deriving the motion equations that uses (1) and (2) as the
basic kinematical description.

2.2 Imertial Nonlinear Terms. The division of inertial
nonlinear terms described here is somewhat arbitrary as it
is not based on the order of these terms. In fact, such a
classification cannot be specified uniquely, since the order
of these hybrid terms may be defined with respect to either
the order of elastic coordinates and/or their rates and/or
rigid velocities. Instead, we delimit the two groups of inertial
nonlinearities in accordance with the two inertial compo-
nents of the motion equations to which they contribute.

The first “order” of nonlinear terms is defined so that it
includes the inertial forcing terms of O(lq, Il Iv,l),
o(lg, g, v,y and O(llg,, I lv,!I%). These hybrid terms
contribute to the forcing component of the dynamics equa-
tions, in particular, f ., £, , and f; ,. Accordingly, these
quantities are defined as follows:

fnT. r=tyr, + anT,;

A

fnl. r= fnl, rt 8fnl. r

fnl. e= fnl,e + an-l,e 4)
where
[ e,
8,
fn T,r=
X
f rf,dv,
LY 8,
(—m,‘oo,’,‘v,l + W ciw,
f =
nl,r X, X x
—€,0,V,- wanwn

f.=col{-Pl v, -0l o} a=1.5, (5

and for completeness, we include the definition of the total
generalized elastic force:

f.r.=col U Ut dv,,}, a=1..s5, (6)
Qn

Note, that the inertial forces f,; , and f,,; , involve only “rigid-

motion” nonlinearities. The first of the modal integrals used
in the definition of f;, is given by:

T L& L Y ridm, )

The hybrid (8-) terms in (4) are determined according to:

0
of . =| <
nT’ = E I q";:ufndvnqna
a=1 Sﬁn
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- N -
= .
-2 E wnPnaqna
a=1
Sn
AT .
2 2 T 1a®nd na
a=1

of

nl, r

L. ul
Sn

8fn1,2=c01{2 2 v,{sam"q'nﬁ], a=1..s5, (8)
B=1

which requires two additional modal integrals:

Vi, ap . J"B q":u‘bnﬁ dmn’
n

Yn,aB a jg q‘;:a‘l':Bdmn (9)

The second of the above is used in:

Sn

a-na 4 Tna + BEI Yn,aB an (10)

which also replaces 7, in the definition of f,,; ,. In expres-
sions (5a) and (6), f,(r,, 1) is the force distribution acting
on B,. Through these terms, the joint control forces, f, .,
and external forces, including interbody constraint forces,
enter the equation of motion [30, 6]. We also point out that
it is the O(liq, Il Iv,J*) term in £,,, in particular the
col {wf{Zf;’; 1 Y}1,0p @np )@, } term that is responsible for the
well-known softening effect in the dynamics equations. It
is a general discrete form of the softening term w?g, which
is often cited for a planar beam rotating at angular speed w.
The second group of the inertial nonlinear terms contains
those terms which affect the mass matrices of the body as
they represent “inertia of deformation.” Thus, we define

gm’n.rr= 9n’n,rr'*' 89m’n,rr (11)
glLn, re= 9"“7:, ret 8911"' re (12)

In the above, the constant rigid mass matrix is defined by

A m,l -c
Mo h| o g (13)
n n

where m, , c,, and J,, are the mass, first and second moments
of inertia with respect to O, of the undeformed body. The
constant part of the mass matrix, which couples rigid and
elastic motions is

A row{Pm}] _

= m J [IOW{HM} ,a=1..5, . (14)
where P, = Jg s, dm, and H, = [4 £ dm  are the
elastic momentum and angular momentim coefficients.

The elastic dependence of the body mass matrix is ac-
counted for by augmenting the first and second moments of
inertia, as well as the angular momentum coefficient. This
is done through 89, and 89, ,, which give rise to the
hybrid terms of O(lig, MW ), O(lg, MG, ) and
O(lig, I* I I in the motion equations. They are defined
analogously to equations (13) and (14) with:
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Sn
SC n= 2 Pntana
a=1

sy Sp

SJ,‘ = 21 I:—(T,,a + T,J;a)qna - ﬁz Yn,th Ina an]
a= =1
Sn

8:Hrmt . BE-:I vn,uB an (15)

We observe that the argument of the second summation in
(15b) is a quadratic function of elastic variables dng- Its
inclusion is necessary to preserve the positive-definiteness
of the augmented inertia matrix.

2.3 Geometric Nonlinearities

2.3.1 Nonlinear Elastic Force. Assuming small-strain,
but not necessarily small-displacement deformation, the
strain energy for a linearly elastic body takes the form:

1 T
U”=—f € DedV,
T 2Je

n

(16)

where € is a 6 x 1 column matrix with components of the
Cauchy-Green strain tensor and D is a symmetric matrix
depending on material properties. To derive the elastic forces
or the stiffness term in the motion equations, we need to
replace € in terms of displacements using the strain-displace-
ment relations. The Green’s strains specified in the un-
derformed coordinates can be partitioned into the linear and
the second-order nonlinear contributions:

(17)

Substituting the above into (16) gives the following expres-
sion for the strain energy:

€E=€; + €y

1 T T
Une=_f (ELD€L+2€LD€NL
T 2J)s,

+el,Dey,)dvV, (18)

This form makes explicit the two additional terms in the
strain energy that arise from the nonlinear component of the
strain-displacement relation. They are a third-order term
coupling the linear and nonlinear strains and a fourth-order
term which involves the latter only. Several multibody dy-
namics formulations (for example, that in reference [21])
incorporate only the third-order contribution since it is this
term that couples “axial” to “transverse” deformations, and
therefore accounts for the foreshortening effect.

After substituting in (18) for strains in terms of the discret-
ized displacements, we can obtain the elastic forces from
the resulting strain energy by employing Castigliano’s First
theorem:

au, .
n.ee_-éq—n,:

This elastic force vector can be factored into a symmetric
stiffness matrix X, ,, and a column of elastic coordinates.
If the assumed displacement field is linearized with respect
to rotations, then we can express X, ,, as a sum of three
terms, in accordance with the three contributions to the
strain energy. These are: (i) a constant matrix, which is the

A

(19)
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conventional stiffness matrix employed in linear analysis;
(ii) a first-order geometric stiffness and (iii) a second=order
stiffness matrix and are defined so that:

i =
Sn,ee = Scn,eeqn,e

1 1
:(Scn,0+-2—'3<h,l +;3Cn.2)qn.e (20)

with the subscripts distinguishing the order of the depen-
dence on the elastic coordinates. This formulation of the
elastic force leads naturally to a classification of the geomet-
ric elastic nonlinearities according to the order of the stiff-
ness term. A similar breakdown of elastic nonlinearities was
proposed in reference [25]. We also note that if one retains
only the aforementioned third-order coupling term in the
strain energy and substitutes for the axial displacement in
it in terms of the axial load, which in addition is treated as
constant, then the resulting geometric stiffness X, , takes a
simpler, “pseudo-constant” form. In particular, it comprises
terms that affect only the transverse degrees of freedom (and
not the axial degrees of freedom) through the axial load.
The latter is evaluated according to the initial substitution as
a linear function of the time-dependent axial displacements.

2.3.2 Tip Deformation. The interbody geometric non-
linearities stem from the deformation of the “tip” of 3,
with respect to the inboard articulation point. The deformed
interjoint position vector is

Sn

i\.n,n+1 - l.n,n+1 i 21 ""'na(rn,n-o-l )qna (21)
o=

where r, ., is the underformed position of the outboard
articulation point O,,, expressed in B,,.

The rotation matrix from %, to 8,,, can be written as

Cn+l.n= Cn+l,n,r(en+l)cn,e(qn,e) (22)

The matrix C,,, , . includes the effects of the joint angle
0,41 at O,,, (for a revolute joint) and C, , incorporates the
elastic rotation of the tip of %, with respect to the inboard
articulation point. This latter matrix is the solution of

n+l

Cn.e=_Cn,e("“:,e (23)

where

Sn
mn,e = 21 ena(rn,n+l )qna’
a=

1
ena (rn.n+1) 4 va"’n,a(rn,nﬂ) (24)

In the above, we have noted that w, , = % Vi, (T, h.0t)
are the components of the angular velocify of the tip with
respect to a local undeformed frame and expressed in this
latter frame. This is an exact result, as noted in [31], indepen-
dent of the size of the elastic displacements and rates. The
price that is paid is that (23), or an equivalent parametriza-
tion, must be integrated in conjunction with the motion
equations. Cardona and Geradin [28) and Simo and Vu-
Quoc [27] parametrize the elastic rotation matrix, which is
defined at each point in the body, in terms of the rotation
axis/angle parameters, also referred to as a rotation vector.
Furthermore, they discretize the corresponding rotation field,
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as represented by the rotation vector, separately from the
deformation field. In this case, integration of the rotational
discrete coordinates yields tip attitude directly.

For small elastic displacements and rates, one can fur-
ther write
C,.=1-90;

n,e?

0, () & 2 0,0 (X 1) 4s(t)  (25)

which is directly obtainable from the elastic displacements
4, .- Implicit in this first-order approximation is the assump-
tion thatw, , =@, ,, i.e., arotation can be treated as a vector.
Other authors have assumed that 0, ., as defined in (25b),
can be assigned to a particular sequence of Euler angles.
For example, Kane et al. [9] assume a 1-2-3 Euler sequence.
For noninfinitesmal displacements, however, C, , will de-
pend on the order of rotation selected, a choice which may
not be obvious for three-dimensional modelling and more-
over, is arbitrary. In this case, identification of @, , as an
Euler angle set precludes the equation of 0 w1th ®,,
Hence, (24a) would be replaced with

=T )
"on.e - Cn,e Enen,e

where E, is the transformation from Euler rates to angular
velocity (expressed in the deformed tip frame). It is further
noted that for planar motion, (23) and the Euler angle inter-
pretation are equivalent.

24 Kinematical Constraints for a Chain of Bodies.
Thus far we have discussed the dynamics equations and
local kinematics for an unconstrained elastic body. In order
to describe the motion of the chain of interconnected bodies,
we must impose the geometrical constraints between them.
The kinematical relationship governing the generalized ve-
locities can be written recursively [32] as

Vel = 5n+1 nVnt Sn+l.nqn,e + g)n+lén+l (26)
where
Tns1n 2 [C’H'l.n _Cn+l.ni' :,m-l]
n+l,n = 3
g O C n+l,n
5n+1,n A [Cn-c-l,n[row{"’na(rn,n+l)}]] (27)
Cn+l nlrow{0, r, we1)}]

and 9, ,, is a projection matrix which aids in expressing the
generalized velocity induced by the joint motion. Although
(26) has been written in a form restricted to single. DOF
revolute joints, this is simply for notational clarity. Multi-
DOF joints encompassing translational and/or rotational be-
haviour are easily handled [6].

We observe that the kinematical constraints represented
by (26) are an integral component of the solution procedure
for the dynamics of the system when the motion equations
are formulated using the floating frame approach. In the
finite-element procedure of Simo and Vu-Quoc [33), where
the dynamics equations are derived using the generalized
coordinates measured with respect to the inertial frame, the
kinematic constraints between bodies are implicitly ensured
through the continuity or compatibility of the displacements
at the interconnection joints.
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It is through the generalized transformation matrices of -
(27) that the different approximations for tip deformation
give rise to interbody nonlinearities. In keeping with the
remarks of the previous section, four possible modelling
approaches present themselves:

(a) Neglect the kinematical nonlinearities which accrue
from elastic deformation. This is equivalent to set-
tmg Cn+1 n= Cn+1 n, r(en+1) and rn n+l = rn n+l in
Eq. (27).

Model the elastic effects to first order by using the
approximation (25) and the exact expression (21)
for the interjoint position.

Take the elastic rotations @, , to represent an Euler
angle sequence. In this case, the bottom partition of
Sy41,» Must be modified to read

Cn+1,n,rEn[r°w{0n,a (l' n,n+l )}]

and C, (0, ,) must be constructed appropriately.
Use the exact modelling implied by (21) and (24)
and integrate (23) for the true orientation of the
tp, C, .

The recursive relationship governing the generalized ac-
celeration can be acquired by differentiating (26):

(®)

(©)

)

n+l =3, n+1,0 nt 5n+l,n‘.in,e + g_)n+lén+l .
+ S.n+l,r|vr| + 5n+1,nqn.e (28)
The particular form of the matrices el and §, +1,» depends

on the kinematical modelling adopted.

2.5 Solution Procedure. A solution of the simulation
dynamics problem requires determination of {6, 4,.} at
each time step given the control torques at each joint. In
general, this can be accomplished via two families of proce-
dures—global techniques and recursive ones. The results
given in this paper have been computed using the recursive
dynamics procedures documented in {32] and [34]. The ma-
jor difference between the two methods revolves around the
elimination of the generalized interbody forces from the
motion equations. According to the algorithm of D’Eleuterio
[32,8], one eliminates the constraint component of the in-
terbody force by assuming it to be an affine function of the
generalized accelerations. In the other procedure, the net
(constraint plus control) interbody force is removed in a
similar manner. Two independent computer codes imple-
menting the two recursive algorithms have been written
and validated against each other. The nonlinear terms, as
presented, do not alter the basic form of the key relationships
(3) and (28) which form the basis of most recursive algo-
rithms.

‘Once the independent accelerations {8, ¢ g,.} forn=1,

» N are known, they can be directly integrated for the
velocmes and displacements of the system. This can be
accomplished with a variety of numerical integration meth-
ods for initial-value problems. In our simulation, we have
employed the routine LSODE. The numerical results pre-
sented in Section 4 were generated using the nonstiff option
of LSODE, which implements Adams multistep formulas. Tt
was found that the stiff option of LSODE provides identical
results but at a considerably higher computational cost.
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3 Simulation Models

3.1 Approximate Dynamics Models. In Section 2, we
put forward a classification of the nonlinear terms that arise
in the dynamics equations of a2 multibody system into three
categories: inertial, geometric elastic, and geometric in-
terbody. The first two were further subdivided into two and
three groups, respectively, and we proposed four methods
for modeling the interbody kinematics. The latter introduce
nonlinearities into the dynamics model of the whole system,
rather than each body. Clearly, depending on the nonlinear
terms retained in the body dynamics equations and the ap-
proximation used for the interbody constraints, one can de-
rive a number of approximate models. Among these, we
will present numerical results for the selected four.

Our first and simplest model is one defined by a ruthless
linearization of the dynamics equations. It contains none of
the inertial, nor elastic, nor interbody nonlinearities and is
therefore defined using the constant body matrices and the
“unhatted” forcing terms in the motion equations (3). Ac-
cordingly, in the kinematics constraints employed with these
equations we neglect the elastic deformation at the tip. Fol-
lowing Padilla and von Flotow [20], we refer to this model
as ruthlessly linearized and denote it by RL.

The second model worthy of separate designation is the
one which we call inconsistent (I). It incorporates all of
the inertial nonlinearities, but neglects the geometric elastic
nonlinearities. This model is very similar to the inconsist-
ently linearized (IL) model of Padilla and von Flotow, which
in turn forms the basis of the majority of multibody dynamics
codes. The main difference between the two is that the
inconsistent model includes second-order mass matrix cor-
rections (and therefore is not linear), while these terms are
lacking from the corresponding linearized model. This in-
consistent approximation of the dynamics equations is usu-
ally combined with the first-order interbody kinematics as
described in (b) of Section 2.4. However, in our numerical
examples we also present results for this model in combina-
tion with the other two descriptions of the interbodykinemat-
ics—the 3-2-1 and 1-2-3 Euler sequences according to speci-
fications in (c) of Section 2.4, and the exact model for the
tip deformation as described in (d). These will be denoted
by [(1-2-3), 1(3-2-1), and | (E).

The third model considered here is the consistently linear-
ized approximation. It includes the inertial hybrid forcing
terms (without mass matrix corrections) and the geometric
stiffness matrix derived under the constant axial load as-
sumption. The corresponding dynamics equations are similar
to the consistent linear equations of Simo and Vu-Quoc [10],
as well as Kane et al. [9] and Ider and Amirouche [21]. The
tip deformation for the interbody kinematics is modelled to
first-order and the resulting model is denoted by CL.

Finally, as expected, our last model is based on the “exact”
dynamics equations for an elastic body which include all of
the inertial and geometric elastic nonlinearities. The nominal
description of the interbody kinematics employed with these
equations will be, naturally, the exact geometrical model of
(d) in §2.4, although we will also investigate their perform-
ance in conjunction with the linear and Euler sequence ap-
proximations. The resulting models will be referred to as
EEE, EE(1), EE(3-2-1) and EE (1-2-3). The allocation of
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geometric nonlinearities among the models |, CL, and EE,

is similar to that used by Mayo and Dominguez [25] in

forming their three models. Their study used existing

multibody dynamics software and hence the inertial and

kinematical nonlinearities were the same for each model.

The models were termed “linear,” “partially nonlmear " and
“completely nonlinear.”

3.2 Spatial Discretization for Slender Bodies. An
important aspect of the modelling process concerns the pro-
cedure employed to discretize the elastic links of the manipu-
lator. There exist several techniques, the most common of
which are the finite element method and the modal expansion
method [35, 36]. Both procedures were employed to generate
the models used in the next section. Through implementation
of both methods, we have gained an additional understanding
of the more subtle characteristics of these techniques, which
are not apparent otherwise.

Our choice of the finite element method was motivated
by the fact that this procedure is often touted for its generality
and ease of implementation. In particular, flexible links with
nonuniform mass and stiffness distributions are readily
treated. The finite element scheme allows one to discretize
bodies with complex shapes—an attribute which stems from
the availability of structural elements that can approximate
different geometries. Moreover, one can use the finite ele-
ment procedure to discretize the rotation field independently
from the displacement field—an advantage critical for finite-
rotation models. By contrast, the eigenfunctions are primar-
ily used for those models which permit an analytical solution
for the natural modes.

In the context of space manipulator dynamics, the general-
ity of the finite element scheme is usually a redundant fea-
ture, since the flexible links of manipulators are well- (and
most often) approximated by Euler-Bernoulli beams. Since
the differential equations lead to analytical solutions for the
eigenmodes, they can be used to discretize the elastic links,
with some advantages. For example, by using a specific
number of eigenfunctions, one is assured of reproducing
exactly the corresponding constrained natural frequencies.
In the finite element scheme, however, one needs to use
more than one element in order to obtain an acceptable
approximation for a particular frequency. This in turn leads
to the introduction of extra nodal coordinates, along with
high and spurious frequencies. These have several detrimen-
tal effects on the dynamics simulation, such as degradation
of the efficacy of integration, increased dimensionality of
the state and numerical noise. With regard to ease of imple-
mentation, we have found that using the eigenfunctions to
model the elastic links is no more difficult than employing
the finite element procedure. In this light, we suggest that
the eigenfunction expansion is at least as attractive as the
finite element scheme for discretizing the links of manipula-
tors in the case where simple beam theories provide a suitable
approximation for the elastic behaviour of the links.

In view of the application considered here, the two discret-
ization techniques are presented for a slender body, in partic-
ular the Euler-Bernoulli beam. Thus, both schemes are ap-
plied to the linearized displacement field of the form:
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where the quantities u,, vy, and w, refer to the displacements
of the centroidal axis and &, is the twist angle. The above
expression assumes that the rotation distribution due to elas-
ticity is given by { &g, dvy/dx, dw,/dx} which are interpreted
as small angles. Therefore, we do not discretize the rotations
independently of the displacements and as a consequence,
neglect shear deformation a priori. The complete dynamics
equations that result from the linearized displacements (29)
are of third-order in the elastic coordinates. In the approach
of Simo and Vu-Quoc, the analogous approximation in the
dynamics model can be introduced by approximating the
nonlinear strain measures. Indeed, it can be shown that the
strain energy derived as described in Section 2.3.1 for the
displacement field (29) is identical to the strain energy ema-
nating from the second-order approximation for strain mea-
sures in reference [10], with the additional assumption of
negligible shear deformation. In spite of its approximate
character, the present approach should be quite accurate for
links of sufficient slenderness.

Let us now outline the two discretization techniques used
to model flexible links of a manipulator. In the finite element
method the element we have employed to model the defor-
mation of the links is the beam element [37]. The elastic
displacement at any point in the element is related to the
deformations at the two nodes through the matrix of basis
functions: u, = ¥,q,, where W, has the standard form [37,
p- 293] which is consistent with (29) and q, is the 12 x 1
column of elemental nodal displacements. Here, the sub-
script (*), connotes “elemental” and we have dropped the
body index n to simplify the notation.

(29)

n,e

The modal expansion—our second discretization
scheme—is defined by:
v,
Su | Uy, s | = e
u(r,0)=3[0|g,0+3 T 2ua ()
a=1| () a=1 P
0
ow,,
Sy —Za Sp 0
+ 21 07 [qwe®+ 3 70| g, @)
a=1 " a=1 y¢u

where v, (x) = w,(x) are the normalized bending mode
shapes of a cantilevered uniform Euler-Bernoulli beam, and
the functions u, (x) and ¢, (x) are the normalized stretching
and torsional mode shapes of a uniform rod.

Once the basis functions have been specified, the mass
and stiffness matrices for the links and the various integrals
of the basis functions required for evaluation of the motion
equations can be derived. In the finite element procedure,
the assembly of the constant body matrices 9, ,,, X, o for
each flexible link is carried out in the standard manner from
the elemental matrices. During the assembly we also delete
the columns and rows which correspond to the constrained
nodal degrees of freedom. For the eigenfunction expansion
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scheme, the elastic mass and stiffness matrices have the
simple diagonal forms 9w, = diag{l}, ¥, =
diag{w?,} where w,, are the natural frequencies of the
body in isolation and cantilevered at the inboard articulation
point. The geometric stiffness matrices for either discretiza-
tion scheme are assembled during the simulation procedure
according to the appropriate expressions in terms of elastic
coordinates. These can be obtained according to the proce-
dure outlined in Section 2.3.1 with the strain energy expres-
sion of the form given by Hanagud and Sarkar [38], adapted
to allow for nonplanar bending and small twisting defor-
mation.

4 Numerical Results

4.1 Single Flexible Beam. The first numerical exam-
ple treats a planar spin-up maneuver for a pinned free beam
which permits examination of all four model classes inde-
pendent of interbody constraints. The structural model is
adapted from reference [38] which in turn is based on [9].
A planar spin-up beam example is also presented in refer-
ences [11] and [21]. We consider a homogeneous isotropic
beam of constant cross-section with properties

m=12kg, [=10m, A=4.601x10"*m?
and elastic stiffnesses

EI=1.4004x 10*N-m?, EA=3.1724x10"N

The beam is modeled with a single planar beam element in
the finite-element discretization, and with two bending and
one stretch modes in the eigenfunction expansion scheme.
The maneuver presented here is “torque-driven” rather than
“displacement-driven.” The applied torque at the pinned end
is calculated using the inverse dynamics procedure for a
rigid model of the link, with the prescribed trajectory:

t 1 27t
. 6(———sin—)radls, 0<r=15s
0,(2)= T 2w
6rad/s, t=215s

The above trajectory is identical to that used in the displace-
ment-driven beam example in references [9, 11, 21, 38].

In general, the validity of the selected models can be
assessed by measuring the error in the energy balance for the
system. We use the root mean square value of the percentage
energy balance error, eg gy, the latter calculated at time
t; as:

E(t) - W(t)
1E e i

eg(t) = x 100% (30)
In the above, E is the total energy of the system, Epeo
denotes the maximum (peak) total energy reached during
the maneuver and W is the work done on the system by the
control forces. This work is equal to the integral of the power

input over the elapsed time, that is:

t N .
W=f ndt, w=2Ff, 0, (31)
0 n=1

The RMS value of the percentage energy drift is then deter-
mined according to:

MARCH 1995, Vol. 117/ 81



Table 1 RMS energy drift for single flexible beam
example

Table 2 Properties of the srMs

i Mass Jy 5 A
Discretization Model R Model I Model CL  Model EE Property  (m) (k&)  (kgm®)  (kgmd) (kg-m?)
FE 247x 107 535x10° 0159  140x10°  Space shutle — 93,270 L17x10° 91x10°  9.5x10°
NM 332x 10 590 x 107 0.220 847 x 10°° Link 1 0.9 950 0.2 25.75 2575
Link 2 6.4 138.0 0.4 1884.36 1884.36
Link 3 70 850 0.4 1388.53 1388.53
Link 4 0.5 8 0.2 0.76 0.76
Link 5 0.8 44 0.2 9.49 9.49
Link 6 0.6 4] 0.2 5.02 5.02
Joint rate 1 vs. time x-tip deflection vs. time Payload — 15000 30,000 515,000 515,000
/ Elastic El GJ EA
stiffnesses (N- m?) (N *m? ™)
Link 2 4046 x 10° 2.040 x 10° 2.790 x 10°
Link 3 2.812 x 10° 1.417 x 10° 1.194 x 10°

o 5 ]0 15 20
1{sec)

jolnt torque 1 vs. time

o © ®

Fig. 1 Simulation results for single flexible beam

101 2
200 e (1)

32
1000 Sb

€E.RMS =

The values of eg g5 obtained with the four dynamics
models and two discretization schemes are summarized in
Table 1. As can be seen, the results observed using the
natural modes (NM) and a beam element (FE) show the
same trends and are of the same order of magnitude.
According to the above, the inconsistent model does almost
as well as the exact model, despite the fact that the solution
it provides is clearly implausible (see Fig. 1). The reason
why the | model predicts such a “good” energy drift is
because it contains the elastic configuration dependence in
the mass matrix given in (15). Indeed, without these terms,
the value of egpys increases to 23.8 with no discernible
difference in the simulation results. The CL model does
poorly according to the energy drift measure because strain
énergy is lost as a result of using a “constant axial load”
assumption in the geometric stiffness for this model. We
also note that including the mass matrix correction terms in
the CL model does not significantly improve the energy drift.

As can be seen from the joint rate plot in Fig. 1, the EE,
CL, and RL models yield solutions that are very similar to
the prescribed trajectory, while the inconsistent model levels
off prematurely. The steady-state stretch displacement (u,)
is almost identical for the former three models, whereas the
inconsistent model appears to underestimate it. The exact
modeling predicts an intermediate compression of the beam
stemming from the nonlinear coupling to the bending dis-
placement; this is the foreshortening effect. When the CL
model is used, the beam does not foreshorten because, as
alluded to earlier, the linear geometric stiffness employed
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Fig. 2 Architecture of the SRMS

in this model does not account for the effect of bending on
the axial displacement.

The ruthless and consistent models provide similar curves
for the bending displacement which are in close agreement
with the previously published results (see, for example Ider
and Amirouche [21]). The lack of visible oscillatory motion
in our results is due to the fact that the maneuver is torque-
driven. The exact results, which confirm those presented by
Hanagud and Sarkar [38], show a reduced bending deforma-
tion because of the additional stiffening provided by the
second-order stiffness matrix. The inconsistent model is to-
tally inadequate since an extension of the plot reveals a
steady-state bending displacement of 9 m. Thus, our results
for a single flexible beam support the conclusions made by
Padilla and von Flotow [20] regarding the validity of the
ruthless, inconsistent and consistent models. However, we
postpone making any generalizations based on this very
special and simple system, until a multi-DOF, three-dimen-
sional flexible manipulator is examined. In fact, we are of
the opinion that the above example has formed a faulty basis
for interpreting the importance of the geometric stiffening
effect as well as advocating the capability of the ruthless
model.

4.2 Shuttle Remote Manipulator System. The goal
of the present section is to evaluate the performance of the
models introduced in Section 3.1 on a six-degree-of-freedom
manipulator, modelled after the Space Shuttle Remote Ma-
nipulator Arm. Included in the model is the space shuttle—
body @, of the chain—although, for the numerical results
presented here, its motion is constrained. Furthermore, the
arm is assumed to carry a payload, modelled by a cylindrical
drum to represent a spin-stabilized satellite.

The properties of the members of the system are summa-
rized in Table 2 and the architecture of the arm is shown in
Fig. 2. We point out that the space shuttle and the payload
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Table 3 RMS energy drift for SRMS example

Model Model Model . Model
Maneuver RL CL I(E) EEE
I-f @ L 432 % 1073 2.57 x 107
I-s 122 1.57 x 107 2.10 x 1077 6.41 x 1077
a-f o = 21 5.82
O-s w oo 337 223

are approximated by rigid bodies. The only flexible bodies
are links 2 and 3 which are the lower and upper arm booms.
Their fundamental frequencies are 37.2 rad/s and 34.5
rad/s, respectively.

The comparison of the different models will be done for
two classes of maneuvers as described below.

L. The maneuvers in this category are generated with the
control torques calculated using the inverse dynamics
equations for the rigid-body model of the arm, with
the prescribed joint angles parametrized by:

9()9(:‘ 1.21'rt) i :

t)= ~—=-—sin—/|, n=1,..,

" N 2 T
The trajectory of the form (33) for the duration time
T represents a generic “pick-and-place” maneuver,
whereby the manipulator starts from rest, accelerates
gradually and then decelerates to a stop. The speed of
maneuver for a fixed 8, is determined by the value
of T.

I. This class of maneuvers is defined by directly speci-
fying the joint control torques. Unlike the smooth
inputs for maneuvers I, the joint torques here are step
functions, defined by:

. T
e[t el

(33)

0<t<T/2

TI2<t (34)

Clearly, the manipulator’s trajectory and the maneu-
ver’s speed are determined by the magnitudes of £, ..
For each of the above categories we consider two maneu-
vers—slow (s) and fast (f)—each obtained by scaling the
appropriate parameters in Eq. (33) and (34). These are cho-
sen as follows:
1. 6;=0.4 rad for maneuvers I-f and I-s;
O £ ,=(235,2 1,05, 0.01]" kN-m and
f. ,=1/10f, for maneuvers II-f and II-s, respectively.
The durations of the two maneuvers in each category are:
T;=20 s and T, = 60 s. We note that the maximum joint
rate reached during the fastest of the above maneuvers is
0.04 rad/s which is three orders of magnitude lower than
the fundamental frequencies of the booms. The maximum
end-effector speed occurs for maneuver I-f and is 1.3 m/s.
It is approximately an order of magnitude higher than the
present speed attained during operation of the shuttle arm.
The values of eg pys obtained with the four dynamics
models of Section 3.1 for the four maneuvers are summarized
in Table 3. The numbers cited here correspond to modelling
of the two flexible booms using the natural modes for discret-
ization with the relative local error tolerance for the numeri-
cal integration set to 1077, Each boom is modelled with six
modes: two bending modes in each of the in-plane and
out-of-plane directions, one stretch mode, and one torsional
mode. Finite element modelling of the beams, using one
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Fig. 3 I-f Simulation results for SRMS (model EE)

element for each link, shows the same trends as the values
in Table 3.

The simulations using models RL and CL for Maneuvers
I-f, [I-f, and II-s failed to finish owing to floating point
overflow conditions. For instance, maneuver I-f “blows up”
at 18.5 seconds for the ruthlessly linearized model and at
6.1 seconds for the consistently linearized model. Hence,
the value of e, g),q has been tabulated as « in Table 3. From
the table we conclude that there is little to distinguish the
inconsistent and exact models for all maneuvers on the basis
of energy drift. For maneuver I-s—the only case where RL
and CL models produce results for the complete trajectory—
the high energy drift for the former indicates the doubtfulness
of the solution. Although the drift for the CL simulation of
this maneuver is not as good as that for the EEE (or |(E))
model, an inspection of the corresponding joint angles will
reveal little difference between them.

The joint angle histories for maneuver I-f are given in
Fig. 3 for the EE model. The four kinematical schemes of
Section 2.4 yield similar behavior but there are discernible
differences in the last 5 seconds of the simulation. More
surprising are the results for the | model given in Fig. 4.
The influence of the elastic kinematics breaks down into
two distinct groupings. The exact and 3-2-1 Euler sequence
yield similar curves while the linear approximation and 1-
2-3 sequence provide completely different behavior. These
curves would suggest that a 3-2-1 approximation—the tor-
sional rotation is performed “last”—is superior to 1-2-3
sequence if integration for the elastic tip attitude is to be
avoided. They also indicate that it is the omission of the
stiffening terms in the inconsistent model which amplifies
the differences in how the tip rotation is handled. Indeed, this
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Fig. 4 |-f Simulation results for SRMS (model I)

is in accordance with our expectations, since the geometric
stiffening terms effectively increase the bending stiffness of
the links (hence the term “stiffening”) and consequently, the
stiffened (EE) model predicts smaller elastic deformations
than the inconsistent one. In Fig. 5, we have regraphed the
EEE and | (E) results to emphasize the role of geometric
stiffening on the joint angles. These evidently make a sub-
stantial difference, even though the joint rates are much
lower than 10% of the fundamental frequencies of the elastic
booms. Moreover, one could not have predicted such a dis-
crepancy from the corresponding energy drift values. Addi-
tional insight into the geometric modelling can be gleaned
from Fig. 6 where the tip deflections of links 2 and 3 are
given for the |(E) and EEE models. The foreshortening of
both links is clearly captured in the EEE case, but not by the
[(E) model which also exaggerates the transverse bending.

A comparison of the modal expansion discretization with
the finite element method for maneuver I-f is given in Fig.
7. For the latter method, two beam elements per link were
used while for the modal technique, we employed three
bending modes per transverse axis and two stretching modes.
For both schemes, the torsional degrees of freedom were
suppressed and the results were generated using the EEE
model. The solutions are in good agreement between the
two methods. Similar agreement was noted when torsion
was included in the modelling of the booms. Discrepancies
between these discretization schemes have been noted in
[25] for the “completely nonlinear” model. They attributed
them to the differences in the axial shape functions—
piecewise linear ones versus smooth ones—since for the
nonlinear elastic models, small changes in the axial behav-
iour can have a major impact on the transverse displacement.
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Fig. 5 |-f Simulation results for SRMS (models | (E) and EEE)
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|-f Boom deflection results for SRMS (models | (E) and EEE)
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Fig. 8 1-s Simulation results for SRMS

Interestingly, the series of plots in Fig. 7 has a strong resem-
blance to the | (1) (and |(1-2-3)) curves of Fig. 4 where, we
recall, the torsion is modelled and the dynamics equations
lack the stiffening terms. One possible interpretation is that
the 1-2-3 and linear kinematical schemes fail to properly
capture the torsional deformation.

Four of the joint angles for maneuver I-s are given in
Fig. 8. Models |, EE, and CL give almost identical results,
independent of the method used to describe the rotational
kinematics of the tip of links 2 and 3. This is consistent
with the results of [25] for a slider-crank mechanism. For
low crank rotational rates, the three models used exhibited
similar slider deformations but as the crank rate was in-
creased, divergences were noted. An analogous phenomenon
was observed here since the CL model failed for the I-f run.
For the current maneuver, the RL model generates radically
different results and examination of the joint rates revealed
an instability, which is also reflected in the relatively large
value of eg pyq in Table 3. This particular run demonstrates
vividly the importance of verifying the simulation results
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Fig. 9 I1I-f Simulation results for SRMS

with a physically meaningful measure, such as the energy
drift for the system. However, as evidenced by maneuver I-
f and the single beam results for models |(E) and EEE,
the energy check by itself is not sufficient to validate the
solution.

Three of the joint angle profiles for maneuver II-f are
shown in Fig. 9 where only the results for EE have been
presented. The EEE profiles are graphically identical to the
EE (3-2-1) and EE (1-2-3) models as well as the correspond-
ing inconsistent models which are not shown. The linear tip
kinematics, however, produces substantially different joint
angles in both the exact and inconsistent dynamics equations.
This shows again that linearization with respect to the elastic
rotations may fail to provide a good approximation. As
previously noted, the ruthless model (RL) and the consistent
model (CL) fail to finish this maneuver when the natural
modes discretization scheme is used. However, the finite
element method does produce results in the CL case, albeit
very poor ones, with energy-violation of 32%.

Finally, we observe that the energy drift values for the
II-s maneuver are very high and lead one to suspect the
results. By reducing the relative local error tolerance in the
integrator routine from 1077 to 107'2, the value of € RMS
was reduced from 22.3 to 3.5 x 1077, Reduction of the
tolerance for the previous runs reduced the values of ey gys
given in Table 3, but did not cause any of the runs which
terminated prematurely to behave differently. Furthermore,
the appearance of the graphs hitherto presented was un-
changed. The first three joint angles and the tip deflections
of link 3, which are given in Fig. 10 for the II-s maneuver,
were obtained using the lower error tolerance. The results
presented correspond to the EE models but the | models yield

MARCH 1995, Vol. 117/85



joint angle 1 vs, ime fink 3 u-defiection vs. tima

L

0 10 20 30 40 S0 60
t (sac)

0 10 20 40
l?fac] 50 60

jolnt angle 2 vs, time link 3 v-deflection vs. time

1 5.0
0 10
20 (?!?ec}m 50 &0

40 50 60
t{sec)

0 10 20

joint angle 3 vs. time link 8 w-deflaction vs. ima

g
Tn05
P

-1.0
.15 -1.0
-2,0

d)
o
(=]

) T T o T N
0 10 20 00 5 6
tsec)

0 10 20 30 40 50 &0
t{sac)

Fig. 10 |l-s Simulation results for SRMS

no discernible difference, independent of the kinematical
approach adopted. The lower tolerance was also used for
the results given in Fig. 9 where the elastic deflections of
link 3 for the II-f maneuver are also given. Contrary to the
I-f and I-s runs, the step-driven deflection exhibit significant
structural vibrations.

5 Concluding Remarks

In this work, several aspects of the dynamics modelling
and simulation of flexible manipulators have been discussed.
We presented and classified the inertial and geometric non-
linearities that arise in the motion and constraint equations
for multibody systems. Subsequently, four models were pro-
posed ranging from the simplest approximation in which
none of the nonlinear terms are retained to the exact model
where all terms originating from the fundamental nonlinear
kinematics relations are included. It is clear from the results
that both the inertial and geometric nonlinearities can have
a profound effect on the simulation. It is hoped that the
paper serves to partially answer the question “which terms
in the motion equations are important?”

Although the specifics of the results will change when
different manipulator systems are considered, we can make
a few generalizations based upon our findings for a general
6-DOF manipulator. For sufficiently fast maneuvers of a
realistic duration, the ruthlessly linearized approximation to
the manipulator dynamics is wholly inadequate. In many
cases, the deficiencies can be compensated for by including
the nonlinear inertial forces which gives the inconsistently
linearized model. The consistent model, which incorporates
most of the inertial nonlinearities and the “first-order” stiff-
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ening term, performs as poorly as the ruthless model. These
results are radically different from what one observes for a
single beam or a planar two-link manipulator and hence,
they are contrary to the findings of Padilla and von Flotow
[20]. We suggest that the ruthless model, strongly advocated
in the aforementioned reference, fails to provide a satisfac-
tory approximation for the dynamics simulation of a general
manipulator system. On the other hand, the inconsistent
model presents an alternative set of equations which yields
reliable simulations for a wide range of maneuvers and joint
speeds. In many cases, it yielded reasonable results when
both the ruthless and consistent models failed. We also dis-
covered that the additional inclusion in the | model of the
elastic coordinate dependence in the mass matrix insures its
positive-definiteness and significantly reduces the magni-
tude of the energy drift.

It was shown in the paper that the geometric stiffening
terms may have a considerable effect on the solution even
in cases where the fundamental frequencies of the elastic
links are well below the 10% value of the angular speeds.
We have also demonstrated the necessity of retaining the
third-order stiffening terms in the dynamics equations and
not only the geometric stiffness that couples axial to trans-
verse deformation,.as done in several multibody formula-
tions.

In terms of modeling tip deformation for the interbody
kinematics, our numerical results proved that the common
assumption of infinitesimal elastic rotations is not appro-
priate for simulating faster maneuvers. In fact, a linear ap-
proximation was often unreliable when compared with an
exact solution. However, treating the rotations as the ele-
ments of an Euler sequence yielded reasonable results. In
particular, we suggest that a 3-2-1 sequence for beams may
be superior to a 1-2-3 choice when torsional degrees of
freedom are present. The consequences of this are important
since a “good” Euler sequence will allow one to avoid the
exact treatment which requires numerical integration for the
“tip” attitude. We also observed that inclusion of stiffening
in the dynamics model mitigates the differences between
various kinematical schemes.

With regard to the spatial discretization of the equations
of motion, potential advantages associated with the eigen-
function expansion method for uniform beam models were
noted. Both the finite element and modal expansion schemes
were applied to model flexible links of a manipulator and
the two methods were found to be in good agreement. Per-
haps, the best solution for modeling of general flexible ma-
nipulator systems is the finite element method combined
with model order reduction on a body by body basis.
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