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1 Introduction
Dynamics simulation of robotic manipulators with flexi-

ble links has received a great deal of attention in the last
several years. This problem, although it has gained impor-
tance in industrial robotics, is particulady relevant to space
applications of manipulators. Space robotic systems are
made up of lightweight, large in size members and, therefore,
exhibit significant structural flexibility. Moreover, ground-
based experiments with these systems are difflrcult because
of the gravitation field, and a¡e prohibitively expensive to
carry out in space. Hence, the capability to simulate the
dynamics of space manipulators is essential for design, de-
velopment of contol strategies, as well as, real-time applica-
tions such as animation.

A number of fomrulations and solution algorithms have
been proposed for dynamical simulation of flexible-ünk ro-
bots. A literature review on the topic has been published by
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rbe JounN^L or Dvx¡M¡c SYstEMs, Meesuneurxt, ÀND CoNTRoL, Maauscript
receivcd by the DSCD Ãpn129,1993; revised maDuscript received February 11,
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Several importønt issues relevant to modeling of flexible-link robotic manipula-
tors are addressed in thís paper. First, we examine the question of which inenial
nonlinearities should be included in the equations of motion for purposes of
simulation. A complete model incorporating all inertial terms thøt couple rigid-
body and elastìc motions is presented ølong with a rational schemefor classifying
them. Second, the issue of geometric nonlinearities is discussed. These are terms
whose origin is the geometrically nonlinear theory of elasticity, øs well as the
terms arising from the interbody coupling due to the elastic deþnnation at the
link tip. Accordingly, a general way of incorporating the well-known geometric
stiffening effect is presented along wíth several schemes for treating the elastic
kinematics at the joint interconnections. In addition, the question of basis function
selection for spatial discretization of the elastic displacements is also addressed.
The finite element method and an eigenlunction expansion techniques are pre-
sented and compared. AII issues are examíned numerically in the context oÍ a
simple beam emmple and the Space Shuttle Remote Manipulator System. Unlike
a single-link system, the results for the latter show that all terms are required

for accurate simulation offaster tnoneuver* Hence, the conclusions ofthe paper
are contrary to some of the previous findings on the validity of various models

for dynamics simulation of flexible-body systems.

Gaultier and Cleghorn [1]. The more recent works include
Bae and Haug [2], Serna a¡d Bayo [3], Naganathon and
Soni [4], Wehage and Shabana [5], Hughes and Sincarsin
[6], Nagarajan and Turcic [7],.and D'Eleuterio [8]. These
vary in the approach taken to develop the motion equations,
the techniques used to model the elasticity of the links, the
assumptions made with regards to the coupling of rigid-
body motion and elastic deformations, and, correspondingly,
the complexity of the dynamics models. Despite thei¡ diffe¡-
ences, however, most of the eústing fornulations a¡e based
on the classical or linear theory of elasticity. This implies
that the governing equations of motion do not contain terms
which are nonlinear in the elastic va¡iables.

In the last few years, a number of resea¡chers have ob-
served that the use of classical theory to describe the motion
of elastic bodies comprising multibody systems yields a set
of dynamics equations which inherently lack what is usually
refened to as the geometric stiffening term. Kane et al. [9]
were among the first to point out this deficiency of taditional
multibody dynamics formulations and the consequent inade-
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quacy of the existing simulation softwa¡e. They considered
a flexible beam attached to a base which undergoes general
prescribed motion. Kane et al. [9] developed a set of egua-
tions that describe the deformation of the beamby employing
¿ ¡gnlineâr expression for the stretch coordinate. They also
incorporate in their forrrulation some of the "specielized"
beam properties, such as rotâry inertia and shear deforrna-
tion, nonuniform geometric and material properties, and
warping. Simo and Vu-Quoc [10] demonstated analytically
the failure of linear beam theory to predict the cenfifugal
stiffening effect and proposed a formulation based on the
fully nonlinear or geometrically exact theory for beams a¡d
plaæs. In addition to properly accounting for stiffening, their
procedure allows one to develop the motion equations of the
system in the inertial, ratler than the taditionally employed
floating or shadow reference frame [11]. Interestingly, the
geometric stiffening effect was included long ago in the
treatment of planar rotating beams by Likins et aJ. Uzl,
Vigneron [13] and Kaza and Kvaternik [14]. Since rhen, a
number of problems dsaling with multibody systems in a
variety of applications have been addressed (see for exarnple,
Lips and Modi [15], Hughes and Fung [16], Simo and Vu-
Quoc [17], Balerjee and Lemak [18], and ttralrapp [19].
All of these works incorporate geometric stiffening in the
governing equations, although via different routes.

In the context of flexible-link manipulator simulation, the
geometric stiffening effects have been considered by Padilla
and von Flotow [20], Ider and Ami¡ouche [21], and van
Woerkom [22]. In the former reference, Padilla and von
Flotow investigate the effect of three linea¡ization strategies
on the form of the motion equations. These researchers
justify the inclusion of the geometric stiffening term by
arguing that it is linea¡ in the elastic displacements, and
hence, is derived with the "consistent" linearization ptoce-
dure. Ider and Amirouche develop a general set of motion

ÇQuations applicable to multibody systems with closed loops.
However, they as well as Padilla and von Flotow, present
simulation results for a flexible beam and a two-link planar
manipulator only. Van Woerkom discusses four æchniques
that can be used to account for the stiffening effect in the
dynarrics models anq prglg4qs numqriçal ¡eqdts fq¡lhC
eigenfrequencies of a single link with tip mass.

The main objective and contribution of this paper are to
identify the different types and orders of nonlinea¡.ities pres-
ent in the dynamics equations of a flexible body. These
equations a¡e written in the floating frame. They are derived
by employing an exact description of the velocity distribu-
tion in the elastic body as well as exact nonlinear süain-
displacement equations. Due to the latter, they include the
geometric stiffening terrns. The resulting dynamics equa-
tions can be considered "exact" in the sense that they contain
all of the nonlinear terms obtai¡ed from the two aforemen-
tioned relations. In practice, however, this model becomes
inexact through the assumed displacement and rotation
fields. By conEast, successive approximations to the geomet-
rically exact model of Simo and Vu-Quoc [10] can be con-
structed by approximating the nonlinear süain measures.

We begin our classification by subdividing the nonlinear
terms into th¡ee basic categories. Those in the first category
will be referred to as the inertial nonlinea¡ities, since they
originate from the nonlinea¡ term in the exact expression
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for the velocity distibution. Accordingly, they appear in the '
motion equations through the expression for kinetic energy
if one employes Lagrange's or Hamiltonian formulations, or
through the inertial forces ifone uses a vectorial formulation,
such as Newton-Euler. As pointed out by Simo and Vu-
Quoc [11], these nonlinearities appear in the dynamics equa-
úons when the motion of a flexible body is refened to the
floating, not the inertial frame. We refer to these nonlinsari-
ties as inertial since indeed they can only be present when
a flexible body undergoes rigid-body motion.

The inertial nonlinea¡ terms exist independently of the
second category of nonlinearities, which are those that arise
from employment of nonlinear theory of elasticity to de-
scribe the kinematics of elastic defomration. Following Sha-
bana Í231, we refer to these as geomeEic elastic ncinlineari-
ties since they appear in the dynamics equations in the form
of nonlinea¡ elastic forces. These a¡e derived from the stain
energy of an elastic body which in turn is determined with
the nonlinear strain-displacement relations.

The third group of nonlinearities, also geometric in nature,
a¡ises when considering the kinematical constaints govern-
ing neighbouring links. They can be attibuted to the elastic
displacement and rotation at the "tip" of one body upon
interconnection with its neighbor. The rotation, in particular,
can be subjected to a number of approximations which sim-
plify the teatment. Part of our task is to ascertain the veracity
of these approximations, which are ubiquitous in the current
literature.

In each of the above categories, we ideutify the form
of the va¡ious nonlinear terms and furttrer classify them
according to their order. The inertial nonlinear temis can
also be described as "hybrid" or rigid-elastic terms since,
as was alluded to earlier, they represent the coupling between
the rigid-body and elastic motions, For instance, one ca¡l
identify terms of O (lliç,,"ll llv,ll) which represent rhe dynarni-
cal effects due to products of elastic rates qo, and rigid
velocities vn. Ia the previous work [24], the authors defined
three types of hybrid terms and demonstated thei¡ effects
on the simulated motion of the Space Shuttle Remote Manip-
ulator System. Motivated by these results, we now subdivide
thE in-rtial tèrms into twõ classes orily. Th-first ,,orlet',õf
nonlinear tenns is defined to include the inertial forcing
terms of O(llil,\,ll llunll), O(llq,,,,ll llq,r,ll llrnll) aod
O(llqn,"ll lluoll'). These hybrid terms conûibute ro the forcing
component of the differential equations. The second group
of nonlinear inertial terrrs includes all those rcmaining.
These are the O(llq,rrll2¡ terrrs which augment first and
second moments of inertia of the body to account for its
defonnation during motion.

The classification of the geometric nonlinear terms is
more staightforward since their nonlinearity is cha¡acterized
strictly by the order of elastic displacements. Thus, we distin-
guish first and second order of geometric elastic nonlineari-
ties, which correspond to the terms in the motion equations
of O(llç,,112) and O(llq,,"ll').Th" geometric interbody non-
linea¡ities are categorized according to the approximation
adopted for the interjoint position vector and interbody elas-
tic rotation.

The second goal of the paper is to illusüate the effects
of the various types of nonlinearities for a general robotic

a
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system. To this end, we propose four dynamics models, each
specified by the type and order of nonlinea¡ terms included
in the equations. Thus, ruthlessly linearized, inconsistently
linearized, consistently linearized, and exact models are de-

fined where the first one represents the dynamics equations,
which do not contain any nonlinear terms, and the last one

corresponds to the "exact" equations. Since the subject of
geometric stiffening has been discussed extensively in the
context of a single flexible-beam, we first present the numeri-
cal results obtained with the different models for a well-
known spin-up problem. This is done primarily with the
purpose of placing the models in the framework of existing
formulations, as well as verifying our simulation results.

As an example of a three-dimensional, sixdegree-of-free-
dom robotic manipulator with elastic members, we choose
a Glink manipulator modeled after the shuttle ann. [n order
to compare the applicability of the four models introduced
earlier, the results are presented fortwo classes ofmaneuvers
which illustrate responses to smooth and step inputs. In each
class, we further consider two types of maneuvers which
yield similar tajectories, but are executed at different speeds.

This selection allows us to highlight the differences between
the models and, consequently, the relative importance of the
nonlinear terms for various maneuver speeds. The goodness

of the models is verified by monitoring the energy drift for
the shuttle manipulator (plus payload) system.

In addition to presenting a series of numerical solutions
obøined with different models, we also demonst¡ate the
use of two discretization strategies to describe the elastic
deforrration in the links. These are the finite-element method
and the no¡mal modes method. Both procedures are based
on the Euler-Bernoulli beam theory of bending and the engi-
neering theory of torsion. Mayo and Dominguez [25] have
also studied these discretization methods in the context of
geometrically nonlinear models. They numerically treated a

flexible slider-crank mechanism using an existing multibody
dynamics software package in conjunction with nonlinea¡
elastic modelling similar to that employed in this work.

2 Classification of Nonlinearities for a
Deformable Body

2,1 Equations of Motion for a Single Body. The dy-
namics equations for an unconstrained deformable body in
general motion have been derived previously in a number
of publications. Hence, we do not develop them here, but
include two key relationships prior to stating the motion
equations. These a¡e expressions describing the kinematics
of an elastic body and, therefore, a¡e fundamental to any

dynamics formulation.
We express the velocity distribution of So as

vn(rn, f) = vn(f) - (r, + un,")* ton(f) + úr,"(rn, /) (1)

where vn and orn a¡e the absolute velocity and angular veloc-
ity of the inboa¡d a¡ticulation point of ßn, On, expressed in
a floating frame attached to ß, at On; v,\" is the elastic
displacement of the point located at r, in the undeformed
configuration. The subscript e connotes elasdc. The absolute
velocities can be collected into a single generalized velocity
vector vn 4 col{vr, <rrn} which is a 6 x I column matrix.
We note that the velocity distribution as given by (1) is

exact and contains a nonlinear tenn un, r" ú)n. [t is identical
to that adopted in most existing formulations (see, for exam-
ple, [4], [9], and [26]).

To obtain the discrete dynamics model, the elastic deflec-
tion un,, is discretized according to

s¡

un,"(rn, r) = ) rþno(rn)4no(t) (2)
q=1

where we assume that the shape functions rþ,o satisfy cantile-
vered boundary conditions at rn = 0; sn denotes the number
of elastic degrees of freedom. Vy'e note that in the present

formulation the rotation field is not discretized indepen-
dently of the displacement field, as is done in the formula-
tions of Simo and Vu-Quoc lI0,27l and Cardona and Gera-
din t281. This does not effect the general form of the motion
equations, nor the inertial terms. As will be noted in Section
2.3.L, the approximation for the rotation field does effect
the form of the stiffness term. We also point out that contrary
to what has been stated by Kane et aI. [9], the expansion (2)
for the displacement field does not preclude interdependence
between the th¡ee components of u,rr, in particular, the
"axial" and "transverse" displacements. Therefore, nor does

it prohibit modeling the dynamic stiffening of the body
during its motion.

With the velocity and elastic displacement distributions
(1) and (2) and with the definition qn," L col{qno}, the exact
general equations of motion for an elastic body can be written
in the form:

ñn, rri , * ñn, rrg n,,=î nr, , * î nr, r,

ñTr,*¡r*fun,"rgr,"* Sn,r, =frT,"+înt," (3)

Here, úç,,,,,fir,¡¿, âod 5ç,"" are the mass matrices; Sn,r, i,
the vector of internal (elastic) forces and it represents the
stiffrress term. We have used the overhat notation to desig-
nate the quantities which a¡e dependent on the deformed
configuration of the body through elastic coordinates. In
the linea¡ized model, the stiffness term is linear in elastic
coordinates and all body matrices are constant. The right-
hand side of Eq. (3) contains the total generalized forces and
the generalized nonlinea¡ inertial forces, rigid and elastic.

As will be shown in the following two sections, the config-
uration-dependent components of the mass matrices and the
hybrid inertial forces result strictly from what we refer to
as inertial nonlinearities. By contrast, the nonlinea¡ form of
the stiffness term is the result of the geometric nonlineariry
or nonlinea¡ kinematics of deformation. In the present formu-
lation, the elastic forces a¡e obtained from the strain energy
expression formulated with ttre nonlinear sEain-displace-
ment relations. It is noted that the equations of motion (3)

represent a discrete counterpart of the continuous equations

developed by Meirovitch t26]. The derivation of equations
via the Newton-Euler formulation is detailed in the unpub-
lished manuscript [29], although in it, D'Eleuterio does not
provide an explicit form for the stiffness operator.

Befo¡e proceeding to the next section where we give a

detailed classification of the inertial and geometric nonline-
a¡ities, it is worthwhile mentioning that this partition of the

nonlinearities in the dynamics equations of an elastic body

undergoing general rigid-body motions is not unique' For

exarrple, Kane et al. [9] incorporate the nonlinear kinematics
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of deformation through their generalized inertia forces. In
the approach of Simo and Vu-Quoc [11], the inçrtial nonline-
arities are effectively üansferred to the stifress term by
describing the motion with respect to the i¡ertial frame.
However, we believe that the classification proposed here
reflects the firndamental nature of these nonlinear terms
and, moreover, it follows naturally from any procedure for
deriving the motion equations that uses (l) and (2) as the
basic kinematical description.

22 Inertial Nonlinear Terms. The division of inertial
¡enlins¿¡'terms described here is somewhat arbirary,as it
is not based on the order of these terms. In fact, such a
classification cannot be specified uniquely, since the order
of these hybrid terms may be defined with respect to either
the order of elastic coordinates and/or thei¡ rates and/or
rigid velocities. Instead, we delimit the two groups of inertiat
nonlinearities in accordance with the nvo inertial compo-
nents of the motion equations to which they contribute.

The first "order" of nonlinear terms is defined so that it
includes the ine¡tial forcing terms of O(llq,r"ll llrnll),
O(Xôh"X llç,,11 llunll) and O(llq,,"tl tlu,il2). Thesetryúla terirx
contribute to the for^cing çomponen-t of the dynamics equa-
tions, in particular, fnT, ,, tnr, r, and f* 

" 
. Accordingly, these

quantities are defined as follows:

înr,r=fnr,r+ õLnr,;

ìnI,r=fnr,r+ ôfnl,¡

int,r=1nl,"rõfnt," Ø)

where

rilndVn

(2-ì
ôfn¿" = col 

{z È, "iooo,dnpJ, 
q, = I ... sn (s)

which requires two additional modal integrals:

ôf,r

sn

-2) aiP^oQo,

Jn

2) ìl,a^4,,
a= I

Yr,oÊ A - úioúnp d^,,

r

Y ti"+;ra*^ (e)

The second of the above is used in:

J|,

fun,r, L
moI -c)
ci Jo

(13)

where mn, cn, and Jn are the mass, first and second moments
of inertia with respect to Ou, of the undeforrred body. The
constant part of the mass matrix, which couples rigid and
elastic motions is

î 
^-o+)ln.asQ,s (10).ns:.n 

Ê=l
which also replaces t o in the definition offnr,. In expres-
sions (5a) and (6), fo(rn, f) is the force distribution acting
on Sn. Through these terms, the joint control forces, f,r",
and external forces, including interbody constraint forces,

is often cited for a planar beam roøting at angular speed or.

The second group of the inertial nonlinsar terms contains
those terms which affect the mass matrices of the body as
they represent "inertia of deformation." Tïlus, we define

ño,rr=%n,rr*ôfrn,r, (11)
#utvn, te - fun, r" * ôfrn, ,, (12)

In the above, the constant rigid mass matrix is defined by

f,¿, = col{-P!¡'>iv^- otfrnoorn}, ct = 1 ... sn (5)

and for completeness, we include the definition of the total
generelized elastic force:

f nr,e="ot {f*,ùí" Í,dv,}, cr = r ... s, (6)

Note, that the inertial forces fn , and fnr,, involve only ,,rigid-

motioû" nonlinea¡ities. The first of the modal integrals used
in the definition of fr, is given by:

n,"4|.þi"ridrn^ (7)
t9n

The hybrid (ô-) tenns in (4) are deterrrined according to:

nln,aþ: J *̂n

f nT,r=

[ 4ou,J9n

lnl,r=

ôfnr,

-m¡ttf,vn+ ot)ci<'tn

-cio iv, - or iJ,or,

0
srl

$f,ol,ndVnqno

tu,,,1|:ïli"il, c=1 " (14)' 'tz

where Pno = ts_Srodmn and Hno = Is-ri\t^rdmn af,e the
elastic momenníÍn and angular momentûm coefficients.

The elastic dependence of the body mass matrix is ac-
counted for by augmenting the fi¡st and second moments of
inertia, as well as the angular momentum coefñcient. This
is done through h give rise to the
hybrid ^terms lq,r"lllliio,ll) and
o(ttqn,,tt2 tþ nil) 'iüäy aräaennea
analogously to equations (13) and (14) with:

r
c=l
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sÌl

ôcn= ) PnoSno
c=1

"nasn
ôJ, = å l-,r"" * rlo)eno- å "","u 

ø^" e^al

sn

ôHno = p r,,"u ø,0 (15)

We observe that the argument of the second surunation in
(15b) is a quadratic function of elastic variables 4,p. Its
inclusion is necessary to preserve the positive-definiteness
of the augmented inertia matrix.

23 Geometric Nonlinearities

2.3.1 Nonlinear Elastic Force. Assuming small-strain,
but not necessarily small-displacement defonnation, the
strain energy for a lineady elastic body takes the form:

l¡tt -- | erDedvn (16)"n,e_ ZJgn

where e is a 6 x 1 column matrix with components of the
Cauchy-Green stain tensor and D is a symmetric matrix
depending on material properties. To derive the elastic forces
or the stiffness tenn in the motion equations, we need to
replace e in terms of displacements using the sFain-displace-
ment relations. The Green's strains specifred in the un-
derformed coordinates can be partitioned into the linear and
the second-order nonlinear contributions :

c = GL+ eNL (17)

Substituting the above into (16) gives the following expres-
sion for the strain energy:

u,, 
" 
=', I .,ntr. " + 2e[De *"

+ efirDe*r) dVn (18)

This fonn makes explicit the two additional terms in the
strain energy that arise from the nonlinear component of the
strain-displacement relation. They a¡e a thi¡d-order tenn
coupling the linear and nonlinea¡ strains and a fourth-order
tenn which involves üre latter only. Several multibody dy-
namics formulations (for example, that in reference [21])
incorporate only the third-order contribution since it is this
term that couples "axial" to "ûansverse" defonnations, and
therefore accounts for the foreshortening effect.

After substituting in (18) for strains in terms of the discret-
ized displacements, we car obtain the elastic forces from
the resulting strain energy by employing Castigliano's First
theorem:

s
ðUn,"

ð9n,,
( 1e)

conventional stiffness matrix employed in linear analysis;
(ü) a fust-order geometric stifüiess and (üi) a second.order
stiffness matrix and are defined so that:

Sn,r, = kn,rr9'n,"

1l
Kn,o+ 

2lK^,t*,.*^,
with the subscripts distinguishing the order of the depen-
dence on the elastic coordinates. This forrrulation of the
elastic fo¡ce leads naturally to a classification of ttre geomet-
ic elastic nonlinearities according to the order of the stiff-
ness term. A simila¡ breakdown of elastic nonlinearities was
proposed in reference [25]. We also note that if one retains
only the aforementioned third-order coupling term in the
stain energy and substitutes for the axial displacement in
it in terms of the ædal load, which in addition is treated as

constant, then the resulting geometric stiffness 3Ç,, takes a
simpler,'þseudo-constant" form. In particular, it comprises
ærrrs that affect only the transverse degrees of freedom (and
not the axial degrees of freedom) through the axial load.
The latter is evaluated ¿sçs¡ding to the initial substitution as

a linear function of the time-dependent axial displacements.

2.3.2 Tip Deþrmøtion. The interbody geometric non-
linearities stem from the deformation of the "tip" of ßn
with respect to the inboard a¡ticulation point. The deforrred
intedoint position vector is

Jn

în,n*l=fn,r+I4 ),þro(.n,n*1)gno el)
c=l

where rn,n*, is the underformed position of the outboa¡d
articulation point Or*, expressed in S,.

The rotation matrix from ßn to ßn*, can be written as

Cn*t,r= Cr*1,n,r(0n*t)Cn,r(qn,r) (22)

The matrix Cn*,,n,, includes the effects of the joint angle
0n*, at O,*, (for a ¡evolute joint) and C,,, incorporates the
elastic rotation of the tip of ß, with respect to the inboard
a¡ticulation point. This latter matrix is the solution of

Ör,r= -Cn,r@I," Q3)

where

Jn

6 r,, = ) ono ( an, ,* )Q no,c=l 
I

ono(rn,r*1) o 
ãV'ür,o(fn,r*r) 

Q4)

In the above, we have noted that 6n," = ] V'q,r1rn,,*,,r¡
a¡e the components of the angular velociff of the tip with
respect to a local undeformed frame and expressed in this
latter frame. This is an exact result, as noted in [3 I ], indepen-
dent of the size of the elastic displacements and rates. The
price that is paid is that (23), or an equivalent parametriza-
tion, must be integrated in conjunction with the motion
equations. Cardona and Geradin [28] and Simo and Vu-
Quoc [27] parametrize the elastic rotation matrix, which is
defined at each point in the body, it terms of the rot¿tion
axis/angle parameters, also referred to as a rotation vector.
Furthermore, they discretize the corresponding rotation field,

2 \r, " 
(20)

ntee

This elastic force vector can be factored into a symmetric
stifüress matrix L,,"" ^d 

a column of elastic coordinates.
If the assumed displacement field is linearized with respect
to rotations, then we can express &'"" ^ a sum of three
terms, in accordance with the th¡ee contributions to the
strain energy. These are: (i) a constant matrix, which is the
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as represented by the rotation vector, separately from the
defonnation field. In this case, integration of the rotational
discrete coordinates yields rip attitude directli.

For small elastic displacements and rates, one can fur-
ther write

Co,r= 1- 01,r,

sn

o n,"e) À ) 0,. (r n,n*t) eno(t) (25)

which is directly obtainable from the elastic displacements
qr," . Implicit in this fint-order approximation is the assump-
tion that otn,, = 0n,", i.e., a rotation can be treated aS a vector,
Other authors have assumed that 0n,r, as defined n(2Sb),
can be assigned to a particular sequence of Euler angles.
For example, Kane et al. [9] assume aL-2-3 Euler sequence.
For noninfinitesmal displacements, however, Co,, will de-
pend on the order of rotation selected, a choice ríhich may
not be obvious for th¡ee-dimensional modelling and more-
over, is arbitrary. In this case, identification of
Euler angle set precludes the equation of 0n."
Hence, (24a) would be replaced with

6n,r= C!," F,oOn,"

0n,,

with

where En is the transformation from Euler rates to angular
velocity (expressed n the deþrmed tip frame). It is furthe¡
noted that for planar motion, (23) and the Eule¡ angle inter-
pretation are equivalent.

2.4 Kinematical Constraints for a Chain of Bodies.
Thus far we have discussed the dynarrics equations and
local kinematics for an unconstrained elastic body. Ia order
to describe the motion of the chain of interconnected bodies,
we must impose the geometrical constraints between them.
The kinematical relationship governing the generalized ve-
locities can be written recursively [32] as

ln+l=Sn+l,nPr* sn*t,rQn,r*gnrtð n*t Q6)
where

Cn*1,, -Cr*t,rî I,n*t
O C o+t,n

Sn*t,n 4

It is through the generalized tansformation matrices of -

(27) that the different approximations for tip deformation
give rise to interbody nonlinearities. In keeping with the
remarks of the previous section, four possible modelling
approaches present themselves:

(a) Neglect the kinematical nonlinearities which accrue
from elastic deformation. This is equivalent to set-
tin8 Cn*l,n = Cr*t,r,r(0r*l) and Êã,r*r = rf,r*, in
F-q.(27).

(b) Model the elastic effects to first order by using the
approximation (25) and the exact expression (21)
for the interjoint position.

(c) Take the elastic rotations 0n,¿ to represent an Euler
angle sequence. In this case, the bottom partition of
Sr*r,n must be modified to read

Cn*r,r, Ærlrow{ 0n,o (r n,,+r ) }]

and Cr,r(0n,,) must be constructed appropriately.
(d) Use the exact modelling implied by (21) nd (24)

and integrate (23) for the true orientation of the
tip, Cn,".

The recursive relationship governing the generalized ac-
celeration ca¡ be acquired by differentiating (26):

ún*l = fn*l,ovn + 5n*r,rtin ,, * gnrtö r*t
* ir*t,nvn* Sr*t,nQn,, (28)

The particular form of the matrices f,*1,, md Sn*,,n depends
on the kinematical modelling adopted.

2,5 Solution hocedure. A solution of the simulation
dynamics problem requires determination of {ör, qr,"} at
each time step given the control torques at each joint. kt
general, this can be accomplished via two families of proce-
dures-global techniques and recursive ones. The results
given in this paper have been computed using the recursive
dynamics procedures documented :mt32l and [34]. The ma-
jor difference between the two methods revolves a¡ound the
elimination of the generalized interbody forces from the
motion equations. According to the algorithm of D'Eleuterio
132,81, one eliminates the consEaint component of the in-
terbody force by assuming it to be an affine function of the
generalized accelerations. In the other procedure, the net
(constraint plus control) interbody force is removed in a
simila¡ manner. Two independent computer codes iqrple-
menting the two recursive algorithms have been written
and validated against each other. The nonlinear tenns, as
presented, do not alterthe basic form ofthe key relationships
(3) and (28) which form the basis of most recursive algo-
rithms.

Once the independent accelerations {är, rin,"} for n = 1,
... , lV are known, they can be directly integrated for the
velocities and displacements of the system. This can be
accomplished with a variety of numerical integration meth-
ods fo¡ initial-value problems. tn our simulation, we have

results but at a considerably higher computational cost.

as an
@o,,

s n fc,*r,r[row{ùro1r,,r*¡)}lI t.r1\-n+t'n - Lcr*,,n¡row{0","(rr,o*1)}JJ *r /

and 9n+l is a projection matrix which aids in expressing the
generalized velocity induced by the joint motion. Although
(26) has been written in a form restricted to single oor
revolute joints, this is simply for notational clarity. Multi-
oor joints encompassing translational and/or rotational be-
haviour are easily handled [6].

We observe that the kinematical constraints represented
by (26) are an integral component of the solution procedure
for the dynarrics of the system when the motion equations
are formulated using the floating frame approach. In the
finite-element procedure of Simo and Vu-Quoc [33], where
the dynamics equations a¡e derived using the generalized
coordinates,measwed with respect to the inertial frame, the
kinematic constraints between bodies are implicitly ensured
through the continuity or compatibility of the displacements
at the interconnection joints.
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3 Simulation Models

3.1 Approximate Dynamics Modets. In Section 2, we
put fonvard a classification of the nonlinear terms that arise
in the dynamics equations of a multibody system into th¡ee
categories: inertial, geometic elastic, and geometric in-
terbody. The first two were further subdivided into two and
three groups, respectively, and we proposed four methods
for rrodeling the interbody kinematics. The latter intoduce
nonlinea¡ities into the dynamics model of the whole system,
rather than each body. Clearly, depending on the nonlinear
terms retained in the body dynamics equations and the ap
proximation used for the interbody constraints, one can de-
rive a number of approximate models. Among these, we
will present numerical results for the selected four.

Our first and simplest model is one defined by a ruthless
Iinea¡ization of the dynamics equations. It contains none of
the inertial, nor elastic, nor interbody nonlinearities and is
therefore defined using the constânt body matrices and the
'l¡nhatted" forcing terrns in the motion equations (3). Ac-
cordingly, in the kinematics constraints employed with these
equations we neglect the elastic deformation at the tip. FoI-
lowing Padilla and von Flotow [20], we refer to this model
as ruttrlessly linearized and denote it by RL.

The second model worttry of separate designation is ttre
one which we call inconsistent (l). It incorporates all of
the inertial nonlinearities, but neglects the geometric elastic
nonlinea¡ities. This model is very similar to the i¡consist-
ently linearized (lL) model of Padilla and von Flotow, which
in tum forms the basis of the majority of multibody dynamics
codes. The main difference between the two is that the
inconsistent model includes second-order mass matrix cor-
rections (and therefore is not linear), while these terms are
lacking from tåe conesponding linearized model. This in-
consistent approximation of the dynamics equations is usu-
ally combined with the fust-order interbody kinematics as

described in (å) of Section 2.4. However, in our numerical
examples we also present results for this model in combina-
tion with the other two descriptions of the interbody-kinemat-
ics-the 3-2-l and 1-2-3 Euier sequences according to speci-
fications in (c) of Section 2.4, and the exact model for the
tip deformation as described in (d). These will be denoted
by l(1-2-3), l(3-2-1), and l(E).

The third model considered here is the consistently linear-
ized approximation. It includes the inertial hybrid forcing
terns (without mass matrix corrections) and the geometric
stifftress matrix derived under the constant axial load as-
sumption. The corresponding dynarnics equations are simila¡
to the consistent linear equations of Simo and Vu-Quoc [ 10],
as well as Kane et al. [9] and Ider and Amirouche [21]. The
tip defomration for the interbody kinematics is modelled to
fi¡st-order and the resulting model is denoted by CL.

Finally, as expected, our last model is based on the "exact"
dynamics equations for an elastic body which include all of
the inertial and geometric elastic nonlinearities. The nominal
description of the interbody kinematics employed with these
equations will be, naturally, the exact geometical model of
(d) in S2.4, although we will also investigate fteir perform-
ance in conjunction with the linear and Euler sequence ap-
proximations. The resulting models will be referred to as

EEE, EE(1), EE(3-2-1) and EE (1-2-3). The allocation of

geometric nonlinearities among the models l, CL, and EE,
is similar to that used by Mayo and Dominguez t25l in
forrning their three models. Their study used existing
multibody dynamics softwa¡e and hence the inertial and
kinematical nonlinearities were the same for each model.
The models were termed "li.near," 'þa¡tially nonlineaf," and
"completely nonlinear. "

3,2 Spatial Discretization for Slender Bodies. An
imFortant aspect of the msdslling process concerns the pro-
cedure employed to discretize the elastic links of the manipu-
lator. There exist several techniques, the most common of
which are thefinite elementmethod and the modal expansion
method [35, 36]. Both procedures were employed to generate
the models used in the next section. Tbrough imFlementation
of both methods, we have gained an additional understa¡ding
of the more subtle cha¡acteristics of these æchniques, which
are not apparent otherwise.

Our choice of the finite element method was motivated
by the fact that this procedure is often touted for is generality
and ease of implementation. In particular, flexible links with
nonuniform mass and stiffrress distributions are readily
treated. The finite element scheme allows one to discretize
bodies with complex shapes-an attribute which stems from
the availability of structural elements that can approximate
different geometries. Moreover, one can use the finite ele-
ment procedure to discretize the rotation field independently
from the displacement field-an advantage critical for finite-
rotation models. By contast, the eigenfrrnctions a¡e primar-
ily used for those models which permit an analytical solution
for the natural modes.

In the context of space manipulator dynamics, the general-
ity of the finite element scheme is usually a ¡edundant fea-
ture, since the flexible links of manipulators are well- (and
most often) approximated by Euler-Bernoulli beams. Since
the differential equations lead to analytical solutions for the
eigenmodes, they can be used to discretize the elastic ünlcs,
with some advantages. For example, by using a specific
number of eigenfunctions, one is assured of reproducing
exactly the corresponding constrained natural frequencies.
In the finite element scheme, however, one needs to use
more than one element in order to obtain an acceptable
approximation for a particular frequency. This in turn leads
to the introduction of extra nodal coordinates, along with
high and spurious frequencies. These have several detrimen-
tal effects on the dynamics simulation, such as degradation
of the eff,rcacy of integration, increased dimensionality of
the state and numerical noise. With regard to ease of imple-
mentation, we have found that using the eigenñrnctions to
model the elastic links is no more diff,rcult than employing
the finite element procedure. In this light, we suggest that
the eigenfirnction expansion is at least as attractive as the
finite element scheme for discretizing the links of manipula-
tors in the case where simple beam theories provide a suitable
approximation for the elastic behaviour of the links.

In view of the application consideredhere, the two discret-
ization techniques are presented for a slender body, in partic-
ula¡ the Euler-Bernoulli beam. Thus, both schemes are ap-
plied to the linearized displacement field of the form:
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scheme, the elastic mass and stiffrress maEices have the
simple ^diagonal forms W,,, = diag{l}, Í9,0 =(29) diag{rol"} where ono a thä nanual frequencies õi theU,,

where the quantities us, vs, âtrd wo refer to the displacements
of the centroidal axis and 0o is the nvist angle. The above
expression assumes that ttre rotation distribution due to elas-
ticity is given by {þs, dvsldx, dwol dx) which are interpreted
as small angles. Therefore, we do not discretize the rotations
independently of the displacements a¡d as a consequence,
neglect shea¡ deformation a priori. The complete dynamics
equations that result from the linearized displacements (29)
are ofthi¡d-order in the elastic coordinates. In the approach
of Simo and Vu-Quoc, the analogous approximation in the
dynamics model can be introduced by approximating the
nonlinea¡ strain measures. Indeed, it can be shown that the
sEain energy derived as described in Section 2.3.1 for the
displacement field (29) is identical to the stain energy ema-
nating from the second-order approximation for stain mea-
sures in reference [10], wit]r the additional assumption of
negligible shea¡ deformation. In spite of its approximate
cha¡acter, the present approach should be quite accurate for
links of sufficient slendemess.

Let us now outline the two discretization techniques used
to model flexible links of a manipulator. In the finite element
method the element we have employed to model the defor-
mation of the links is the beam element [37]. The elastic
displacement at any point in the element is related to the
deformations at the two nodes through the matrix of basis
functions: u" = Ú"ç, where llr, has the standard form [37,
p. 2931which is consistent with (29) and % is the 12 x I
column of elemental nodal displacements. Here, the sub-
script ('), connotes "elemental" and we have dropped the
body index n to simplify the notation.

The modal expansion---our second discretization
scheme-is defined by:

where vo(r) = wo(x) a¡e the normalized bendi¡g mode
shapes of a cantilevered uniform Euler-Bernoulli beam, ald
the functions uo(x) and 0o(¡) a¡e the nonnalized sretching
and torsional mode shapes of a uniform ¡od.

Once the basis functions have been specified, the mass
and stiffrress matriòes for the links and the va¡ious integrals
of the basis functions required for evaluation of the motion
equations can be derived. In the finite element procedure,
the assembly of the constant body matices %r,r,5Cn,o for
each flexiblè ünk is carried out in the standard mannei from
the elemental matrices. During the assembly we also delete
the colurrns and rows which correspond to the constrained
nodal degrees of freedom. For the eigenîrnction expansion
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body in isolation and cantilevered at the inboard articulation
point. The geometric stiffrress matrices for either discretiza-
tion scheme a¡e assembled during the simulation procedure
according to the appropriate expressions in tertrs of elastic
coordinates. These can be obtained according to the proce-
dure outlined in Section 2.3.1 with the strain energy expres-
sion ofthe form given by Hanagud and Sarka¡ [38], adapted
to allow for nonplanar bendi.B and small twisting defor-
mation.

4 Numerical Results

4.1 Single Flexible Beam. The fi¡st numerical exam-
ple treats a planar spin-up maneuver for a pinned free beam
which permits examination of all four model classes inde-
pendent of interbody constraints. The structural model is
adapted from reference [38] which in turn is based on [9].
A planar spin-up beam example is also presented in refer-
ences [11] and [21]. We consider a homogeneous isotropic
beam of constant cross-section with properties

m=l2kl, /=10m, A=4.601 x10-am2

and elastic stiffoesses

EI=1,.4004x 104N.m2, EA=3.1724 x 107N

The beam is modeled with a single planar beam element in
the finite-element discretization, and with two bending and
one stetch modes in the eigenfunction expansion scheme.
The maneuver presented here is "torque-driven" ratìer than
"displacement-driven." The applied torque at the pinned end
is calculated using the inverse dynamics procedure for a

rigid model of the link, with the prescribed trajectory:

6 rad/s,0<r>l5s

l>15s

t7 zrtt\
,)0r(r)= T2r

6 radls ,

The above trajectory is identical to that used in the displace-
ment-driven beam example in references [9, ll, 2I,38].

In general, the validity of the selected models can be
assessed by measuring the error in the energy balance for the
system. We use the root mean square value of the percentage
energy balance error, eE,Rr\4s, the latter calculated at,time
t, as:

E(t,) - lV(t,)
e¿(t¡) = _-- x r00vo (30)

lEo".rl

In the above, E is the total energy of the system, Epe*
denotes the maximum Geak) total energy reached during
the maneuver and flz is the work done on the system by the
control forces. This work is equal to the integral of the power
input over the elapsed time, that is:

rti N

w=l rdt, rr=>ln."6n (31)
J 0 ¡=l

The RMS value of the petcentage energy drift is then deter-
mined according to:
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Table 1
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RMS energy drÍft for single flexible beam

Discretization Model RL Model I Model CL Model EE
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Fig. I Simulation results for single flexible beam

i=1 eEQ
€E,RMs =

1000
(32)

The values of eu*r, obtained with the four dynamics
models and two discretization schemes are su¡ilnarized in
Table 1. As can be seen, the results observed using the
Datural modes (NM) and a beam element (FE) show the
same trends and are of the same order of magnitude.
According to the above, the inconsistent model does almost
as well as the exact model, despite the fact that the solution
it provides is clearly implausible (see Fig. 1). The reason
why the I rnodel predicts such a "good" energy drift is
because it contains the elastic confrguration dependence in
the mass matrix given in (15). Indeed, without these terms,
the value of er,¡¡¡5 increases to 23.8 with no discemible
difference in the simulation results. The CL model does
poorly according to the energy drifr measure because stain
energy is lost as a result of using a "constant axial load"
assumption in the geometric stifftress for this model. We
also note that including the mass matrix correction terms in
the CL model does not significantly improve the energy drift.

As can be seen from the joint rate plot in Fig. 1, the EE,

CL, and RL models yield solutions that are very similar to
the prescribed trajectory, while the inconsistent model levels
off prematurely. The steady-state stretch displacement (tr)
is almost identical for the former th¡ee models, whereas the
inconsistent model appears to underestimate it. The exact
modeling predicts an intermediate compression of the beam
stemming from the nonlinear coupling to the bending dis-
placement; this is the foreshortening effect. When the CL
model is used, the beam does not foresho¡ten because, as

alluded to earlier, the linear geometric stiffrress employed

Fig. 2 Architeclure of the SRMS

in this model does not account for the effect of þs¡ding on
the axial displacement.

The mthless and consistent models provide similar curves
for the bending displacement which are in close agreement
with the previously published results (see, for example Ider
and Ami¡ouche [21]). The lack of visible oscillatory motion
in our results is due to the fact that the maneuver is torque-
driven. The exact results, which confrm those presented by
Hanagud and Sarka¡ [38], show a reduced bending deforma-
tion because of the additional stiffening provided by the
second-order stifüress matrix. The inconsistent model is to-
tally inadequate since an extension of the plot reveals a

steady-state bending displacement of 9 m, Ttrus, our results
for a single flexible beam support the conclusions made by
Padilla and von Flotow [20] regarding the validity of the
ruthless, inconsistent and consistent models. However, we
postpone making any generalizations based on this very
special and simple system, until a multi-oor, three-dimen-
sional fleúble manipulator is examined. In fact, we a¡e of
the opinion that the above example has formed a faulty basis
for interpreting the importance of the geometric stiffening
effect as well as advocating the capability of the ruthless
model.

4.2 Shuttle Remote Manipulator System. The goal
of the present section is to evaluate the performance of the
models introduced in Section 3.1 on a six{egree-of-freedom
manipulator, modelled afrer the Space Shuttle Remote Ma-
nipulator Arm. Included in the model is the space shuttle-
body ßo of the chain-although, for the numerical results
presented here, its motion is constrained. Furthermore, the
a¡m is assumed to carry a payload, modelled by a cylindrical
drum to represent a spin-stabilized satellite.

The properties of the members of the system are su[rma-
rized in Tab\e 2 and the architecture of the arrr is shown in
Fig. 2. We point out that the space shuttle and the payload

+
l.

ê Y-*-

¡, l, ,¡ I l,
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Table 3 RMS energy drift for SRMS example
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are approximated by rigid bodies. The only flexible bodies
a¡e links 2 and 3 which a¡e the lower and upper a,¡rr booms.
Their fundamental frequencies are 37.2 radls and 34.5
rad/s, respectively.

The comparison of the different models will be done for
two classes of maneuvers as described below.

I. The maneuvers in this category are generated.with the
control torques calculated using the inverse dynamics
equations for the rigid-body model of the arm, with
the prescribed joint angles parametized by:

t t I 2¡rtt0,(r)=trli -sin;) , n=1,...,6 (33)

The tajectory of the form (33) for the du¡ation tine
? represents a generic 'þick-and-place" maneuver,
whereby the manipulator starts from rest, accelerates
gradually and then decelerates to a stop. The speed of
maneuver for a fixed 0, is determined by the value
of T.

tr. This class of maneuvers is defined by directly speci-
fying the joint control torques. Unlike the smooth
inputs for m¿ìneuvers I, the joint torques here are step
functions, defined by:

f rr) = [Vt.,, ":,fø,"fr , o <t <T/2c\/ L 0, Tlz<t G4)

Clearly, the manipulator's trajectory and the maneu-
ver's speed a¡e determined by the magnitudes of fn,r,

For each of the above categories we consider two maneu-
vers-slow (s) and fast (f¡-each obtained by scaling the
appropriate parameters in Eq. (33) and (34). These are cho-
sen as follows:

I. 0¿ = 0.4 rad for maneuvers I-f and I-s;
n. f,,¡= 12,

1r.r= I 11' ely.
The durations are:
TÍ = 20 s and 7" = 60 s. We note that the maximum joint
rate reached during the fastest of the above maneuvers is
0.04 rad/s which is th¡ee orders of magnitude lower than
the fundanental frequencies of the booms. The maximum
end-effector speed occurs for maneuver I-f and is 1.3 m/s.
It is approximately an order of magnitude higher than the
present speed attained during operation of the shuttle arm.

The values of e4ruras obtained with the four dynamics
models of Section 3. 1 for the four maneuvers are summa¡ized
in Table 3. The numbers cited here correspond to modelling
of the two flexible booms using tlre nanral modes for discret-
ization with the reldtive local error tolerance for the numeri-
cal integration set to 10-7. Each boom is modelled with six
modes: two bending modes in each of the in-plane and
out-of-plane directions, one stretch mode, and one torsional
mode. Finite element modelling of the beams, using one

element for each link, shows the same Eends as the values
in Table 3.

The simulations using models RL and CL for Maneuvers
I-l tr-t and II-s failed to finish owing to floating point
overflow conditions. For instance, maneuver I-f "blows up,'
at 18.5 seconds for the ruthlessly linea¡ized model and at
6.1 seconds for the consistently linea¡ized model. Hence,
the value of e¡,¡¡15 has been tabulated as oo in Table 3. From
the table we conclude that there is little to distinguish the
inconsistent and exact models for all maneuvers on the basis
of energy drift. For maneuver I-s-the only case where RL
and CL models produce results for the complete trajectory-
the high energy drift for the fonner indicates the doubtfr¡lness
of the solution. Although the drift for the CL simulation of
this maneuver is not as good as that for the EEE (or l(E))
model, an inspection of the corresponding joint angles will
reveal little dülerence between them.

The joint angle histories for maneuver I-f are given in
Fig. 3 for the EE model. The four kinematical schemes of
Section 2.4 yield similar behavior but there a¡e discernible
differences in the last 5 seconds of the simulation. More
surprising are the ¡esults for the I model given in Fig. 4.
The influence of the elastic kinematics breaks down into
two distinct groupings. The exact and 3-2-1 Euler sequence
yield similar curves while the linear approximation and l-
2-3 sequence provide completely different behavior. These
curves would suggest that a 3-2-l approximation-the tor-
sional rotation is performed "last"-is superior to l-Z-3
sequence if integration for the elastic tip attitude is to be
avoided. They also indicate that it is the omission of the
stiffening terms in the inconsistent model which amplifies
the differences in how the tip rotation is handled. Indeed, this

Fig. 3 l.f Simulation results for SRMS (model EE)
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F1g,4 l-f Simulation rcsulb Íor SRMS (model l)

is in accordance with our expectations, since the geonetric
stiffening terms effectively increase ¡f¡e þs¡rling stiffness of
the links (hence the term "stiffening") and consequently, the
stiffened (EE) model predicts smaller elastic deformations
than the inconsistent one. In Fig. 5, we have regraphed the
EEE and l(E) results to emphasize the role of geometric
stiffening on the joint angles. These evidently make a sub-
stantial difference, even though ttre joint rates are much
lower than lÙVo of tJ;le fundamental frequencies of the elastic
booms. Moreover, one could not have predicted such a dis-
crepancy from the corresponding energy drift values. Addi-
tional insight into ttre geometric modelling can be gleaned
from Fig. 6 where the tip deflections of links 2 and 3 are
given for ttre l(E) a¡d EEE models. The foreshortening of
both links is clearly captured in the EEE case, but not by the
l(E) model which also exaggerates the transverse bending.

A comparison of the modal expansion discretization with
the finite element method for maneuver I-f is given in Fig.
7. For the latter method, two bean elements per link were
used while for the modal technique, we employed three
bending modes per tansverse æds and two stretching modes.
For both schemes, the torsional degrees of freedom were
suppressed and the results rvere generated using the EEE
model. The solutions a¡e in good agreement between the
two methods. Similar agreement was noted when torsion
was included in the modelling of the booms. Discrepancies
between these discretization schemes have been noted in
[25J for the "completely nonlineat'' model. They ãttributed
them to the differences in the axial shape functions-
piecewise linea¡ ones versus smooth ones-since for the
nonlinear elastic models, small changes i¡ the axial behav-
iour can have a major impact on the transverse displacement.
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with a physically meaningful measure, such as ttre energy
d¡ift for the system. However, as evidenced by maneuver I-
f and the single beam results for models l(E) and EEE,
the energy check by itself is not sufftcient to validate the
solution.

Three of the joint angle profiles for maneuver II-f a¡e
shown in Fig. 9 where only the results for EE have been
presented. The EEE profiles are graphically identical to the
EE (3-2-1) and EE (1-2-3) models as well as the conespond-
ing inconsistent models which are not shown. The linear tip
kinematics, however, produces substantially different joint
angles in both the exact and inconsistent dynamics equations.
This shows again that linearization with respect to the elastic
rotations may fail to provide a good approximation. As
previously noted, the rutlless model (RL) and the consistent
model (CL) fail to finish this maneuver when the natrual
modes discretization scheme is used. However, the finite
element method does produce results in ttre CL case, albeit
very poor ones, with energy'violation of 32Vo.

Finally, we observe that the energy drift values for the
II-s maneuver are very high and lead one to suspect tle

relative local error tolerance in the
10-7 to 10-12,_the value of e¿,ç¡¡5

to 3.5 x 10-7. Reduction oT-ttrè
tolerance for the previous runs reduced the values of e",¡¡a5
given in Table 3, but did not cause any of the runs which
terminated prematurely to behave differently. Furthermore,
the appearance of the graphs hitherto presented r,¡/as un-
changed. The first threejoint angles and the tip deflections
of link 3, which are given in Fig. 10 for the I[-s maneuver,
were obtained using the lower error tolerance. The results
presented correspond to the EE models but the I models yield
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Interestingly, the series of plots in Fig. 7 has a strong resem-
blance to the I (1) (and I (1 -2-3)) curves of Fig. 4 where, we
recall, the torsion is modelled and the dynamics equations
lack the stiffening terms. One possible interpretation is that
the l-2-3 and linear kinematical schemes fail to properly
capture the torsional deformation.

Four of the joint angles for maneuver I-s a¡e given in
Fig. 8. Models l, EE, and CL give almost identical results,
independent of the method used to describe the rotational
kinematics of the tip of links 2 and 3. This is consistent
with the results of [25] for a slider-crank mechanism. For
low crank rotational rates, the th¡ee models used exhibited
simila¡ slider defomrations but as the crank rate was in-
creased, divergences were noted. An analogous phenomenon
was observed here since the CL model failed for the I-f run.
For the current maneuver, the RL model generates radically
different results and examination of the joint rates revealed
an insøbility, which is also reflected in the relatively large
value of ¿¿,nvs in Table 3. This particular run demonstates
vividly the importance of verifying the simulation results
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no discernible difference, independent of the kinematical
approach adopted. The lower tolerance was also used for
the results given in Fig. 9 where the elastic deflections of
link 3 for the tr-f maneuver are also given. Contrary to the
I-f and I-s runs, the step-driven deflection exhibit significant
structural vibrations.

5 Concluding Remarks

In this work, several aspects of the dynamics modelling
and simulation of flexible manipulators have been discussed.
We presented and classified the inertial and geometric non-
linea¡ities that arise in the motion and constraint equations
for multibody systems. Subsequently, four models were pro-
posed ranging from the simplest approximation in which
none of the nonlinear terms are retained to the exact model
where all terms originating from the fundamental nonlinea¡
kinematics relations a¡e included. It is clea¡ from the results
that both the inertial and geometric nonlinearities can have
a profound effect on the simulation. It is hoped that the
paper serves to partially answer the question "which terms
in the motion equations are important?"

Although the specifics of the results will change when
different manipulator systems a¡e considered, we can make
a few generalizations based upon our ñndings for a general
6-DOF manipulator. For sufficiently fast maneuvers of a

realistic duration, the mthlessly linea¡ized approximation to
the manipulator dynamics is wholly inadequate. In many
cases, the deficiencies can be compensated for by including
the nonlinea¡ inertial forces which gives the inconsistently
Iinea¡ized model. The consistent model, which incorporates
most of the inertial nonlinea¡ities and the "first-order" stiff-

ening term, performs as poorly as the ruthless model. These È

results are radically different from what one observes for a
single beam or a planar two-link manipulator and hence,
they are contrary to the findings of Padilla and von Flotow
[20]. We suggest that the ruthless model, stongly advocated
i¡ the aforementioned reference, fails to provide a satisfac-
tory approximation for the dyna:nics simulation of a general
manipulator system. On the other hand, the inconsistent
model presents an alternative set of equations which yields
reliable simulations for a wide range of maneuvers and joint
speeds. In many cases, it yielded reasonable results when
both the ruthless a¡d consistent models failed. We also dis-
covered that the additional inclusion in the I model of the
elastic coordinate dependence in the mass matrix insures its
positive-definiteness and significantly reduces the magni-
tude of the energy drift.

It was shown in the paper ttrat the geometric stiffening
terns may have a considerable effect on the solution even
in cases where the fundamental frequencies of the elastic
links a¡e well below the lïVo value of the angular speeds.
'We have also demonsüated the necessity of retaining the
third-order stiffening terms in the dynamics equations and
not only the geomeEic stiffuess that couples a:cial to trans-
verse deformation,.as done in several multibody formula-
tions.

In tenns of modeling tip deforrration for the interbody
kinematics, our numerical results proved that the corrtmon
assumption of infinitesimal elastic rotations is not appro-
priate for simulating faster maneuvers. [n fact, a linear ap
proximation was often unreliable when compared with an
exact solution. However, treating the rotations as the ele-
ments of an Euler sequence yielded reasonable results. In
particular, we suggest that a3-2-I sequence for beams may
be superior to a l-2-3 choice when torsional degrees of
freedom are present. The consequences of this are important
since a "good" Euler sequence will allow one to avoid the
exact treatnent which requires numerical integration for the
"tip" attitude. We also observed that inclusion of stiffening
in the dynamics model mitigates the differences between
various kinematical schemes.

With regard to the spatial discretization of the equations
of motion, potential advantages associated with the eigen-
function expansion method for unifonn beam models were
noted. Both the finite elçment and modal expansion schemes
were applied to model flexible links of a manipulator and
the two methods were found to be in good agreement. Per-
haps, the best solution for modeling of general flexible ma-
nipulator systems is the frnite element method combined
with model order reduction on a body by body basis.
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