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The problem of schedutíng stictly posítive real (SPR) dynamíc compensatíon for
contiol of nonlinear fexible systems whìch exhibit collocated inputs and outPuls is

explored. The major application is the robust motion control of structurally flexible
systems whosè dynamiòt postrtt signifcant configuration dependence. Included in
this class are flexible robot manipulators. The íssue of designíng a l.inear time-

invariant SPR compensaþr for contol of a nonlinear system is emmíned. Controller
perlonnfunce is enhanced by scheduling a series of such designs and a schedulíng
'at[oríthm 

is developed which presemes robusl stability wìth respect to the nonlinear
plant model. Globãl asymptotic stabiliry of equilibríum setpoints is proven when the
'scheduled 

SPR compensator ís used in coniunction with ø proportional feedback
gain. A numerícal àxample employing a ¡qo-link fexible manipulator \ used to
lllustrate the approach and compare the efficacy of diferent schedulíng algorithms.

Gain Scheduled SPR Controllers
for Nonlinear Flexible Systems

flex (1990,

lg9 out that
the systems

whi A com-
mon feature of the above approaches is the use of an LTI
cont¡oller for stabilization of a nonlinear system. Although such

an approach can gua¡antee stability over all configurations,-it
is unlikely that good performance can be achieved over the

same..

is advanced as a way of dealing with the performance issue.

Other related work is that of Shamma and Athans ( 1990) where

"frozen values" of the plant.

I Introduction
It is well known that flexible structures with collocated force

(torque) inputs and velocity (angular velocity) outputs exhibit
the property þown as passivity. This property is independent
of the details of the mass and stiffness distributions andprovides
a mechanism for robust søbilization via the passivity theorem.
This important result in input-output theory (Desoer and Vid-
yasagar, 1975) states that any snicdy passive operator con-
nected in negative feedback with a passive system yields input-
output stability. Further work by Hill and Moylan (1977) ex-
tended the result to global asymptotic stability under suitable
reachability and detectability þypotheses governing the state
representations of each system.

Linear time-invariant (LTI) passive syste¡ns a¡e character-
ized by positive real transfer functions. In the context of flexible
structures, the positive real property is independent of the num-
ber of vibration modes in the model as well as the details of
the mode shapes anY strictlY
passive feedback ver instabili-
ties, whichcanre onareduced
subset of modes, are avoided. LTI cont¡ollers which are strictly
passive are closely related to the strictly positive real (SPR)
property (Wen, 1988).In particular, an SPR feedbackcontroller
always stabilizes a passive system.

The use of dynamic SPR compensation for stabilization of
large space structures was suggested by Benhabib et al. ( 1981).
Since then, several authors have presented systematic methodol-
ogies for designing SPR control. We mentioií Mcl-aren and
Slater ( I 987 ) and Lozairo and Joshi ( 1988 ) , the latter of whom
examined LQG weight selection such that the Kalman-Yaku-
bovich Lemma was satisfied, i.e., the LQG controller is SPR.

More recently, Haddad et at. ( 1994) have looked at the corre-
sponding situation for Il- design.

The use of strictly passive compensation for nonlinear me-

extension of a constant derivative gain to dynamic SPR feed-
back which they called the "PR modification." Extensions to

2 System Model and Problem Statement

We confine ourselves to a study of those flexible mechanical

systems which are described by a model of the form

M(q)<i + Dq + k(q) = B(q)u + Ç,,(q' q)'

' o=h(q), y:Ô:B'(q)q' (l)

by t = T - V, the Hamiltonian satisfres

E=dr!- t=T+V, É:ô,u-qlDq, Q)
oq
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ed. We desire globallY
0¿. It is assumed that
g v(q) + lh(s) -

or)'IÇ(h(q) - 0¿) with K" : Kí > o is a- positive definite
functiön of q, q + q¿, where q¿ uniquely satisfies 0¿ : h(q¿)

u(r) is defined as u¡(t) : u(r), t = T, tt¡(t): 0, t > T, and

the extended space la : { u I ur e h, YT > 0 } . rùy'e also define

tion equation ( I ) can be interPre-

t e I4.into Y : Gu € I¿,. Such
there exists e > 0 such that

FT

I u'Cu¿r = ellull?, Yu e l¿", VT > 0. (3)
Jo

If (3) is satisfied with e = 0, then the system is passive. It is

readily verified that the system given in (l) is passive:

l.r lr
I yrudt:E(T)+ | qrDqd,>o (E(0)=g¡
Jo - rlo

which follows from integration of the second expression in (2).
Now consider the feedback system shown in Fig. 1. Given

that G is passive we wish to select the controller II so that

bounded disturbance (or feedforward) signals u¿ € 14 imply

systems are also minimum phase; hence, stabilization and

tiacking can be accomplished via feedback linearization ap-

proaches (Vidyasagar, 1993).

The simplest choice for II is a constant derivative feedback

gain, H6 = IÇå with IÇ : K, > o. Position control also

ãemands the introduction of an integral term (a position feed-
back with respect to
: H(s)u.(s) where
cont¡ol (in general,
an LTI operator II). Since we wish to concentrate on the design

of the raie feedback, the proportional term can be transfered to

v

yc u" ld=o

Fig. I Mechanical system wlth feedback
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3 SPR Controller Design

u(s) = -rÇto(s) - o¿l -H(¡)ð(s),
H(s) - IÇ(sl - A")-'K + €1 (4)

where e > 0. If e = 0, H(s) is itiictly proper and, according

to Tao and Ioanou (lgSS)t isSPR'if and only if

(i) H(s) is real for real s and H(s) is analytic for 1, { s }
>0;

(ii) H(jø) + Hr(jø) > O, -ø 1u 1æi
(iii) lim* ø'zlH( iu) + H"(iw)] > O.

the riPlet (4", IÇ' trÇ)
the Kalman-Yakubovich

i,l3"ttJ"'rff "'ä:",i.i"ål
and Qo such that

PoA. + AIPo: -qo, PoK = KI. (5)
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the proportional loop in the model (1), effectively augments
the stiffness term k(q) to produce

aVr(q) : k(q) + BKrh(l) (o¿ = o) (6)
âq

where V, was defined after Eq. (2). As noted by Lana¡i and
observability of the rigid modes
0) from ô. ttre design of the LTI

linear system ( I ) is most easily
treated using an LTI setpoint linearization. Assuming that the
stnùctural damping is small and poorly known, D can be taken
as O for control system design. Linearizing (l) in the vicinity
of a constant configuration Q and letting 6q : q - Q yields

M(q)óii+ &(q)óq = B(Q)u, y = Ò =B'(q)óq, Q)

where IÇ(q) ¿ 02V.1(Ôq0qr) = AklAqr + B(q)Kpt(q) is
the effective stiffness matrix. In many applications IÇ > O
which is assumed for the duration of this section.

For controller design, consider modal Eansformation of (7).
L€t O" > 0 and ao, d = L, . . ., tr,denote the vibration frequen-
cies and eigen nd order eigen-
problem(u = If theeigenma-
trix E A row stem according
to óq(t) : Eq(l), then (7) can be represented by the first-
order state space model

*=Ãx+Bu, y:ex (8)

with

.=[å] ,o:[3 J]
B=e'=|.t:ul , o=diae(r¿.). (e)

LOI

It is a simple matter to show that the linear system is passive

since G(s) : e(sf - Ã)-'B is positive real (Anderson, 1967).
A major advantage of the modal space representation is the
ability to systematically reduce the order of the model and hence
the controller which will typically be of the same order as the
plant model used for its design. This modal truncation procedure

does not affect the passivity (positive realness) of the system
given by (8) and (9).

Given the LTI plant model G(s), the development of an

( l98l ). Given the plant (8), choose a matrix K. such that A.

: Ã - BK is stable. The classical LQR synthesis is used here
which determines IÇ in terms of the solution of an algebraic
Riccati solution associated with the minimization of

J:tf(xrex+uT.u)dr (lo). Jo

with Q : Qt > O and R = Rt > O. Assuming there a¡e

no trivial rows in ErB, all modes of (8) are controllable and
observable which guarantees that A" has eigenvalues with nega-

tive real parts. Then, given another positive definite matrix Qe,
one can solve the Lyapunov equation in (5) for its unique
positive deñnite solution Ps and take IÇ : KIPo. This ensures

ihat H(s) = Ç(sl - A")-tK is SPR. The positive definite
matrices Q, R, and Qe are free design parameters.

The SPR controller is guaranteed to stabilize not only the
LTI system G(s) regardless of the number of retained modes,

but also the nonlinear plant G (which includes the proportional
loop) on the basis of the passivity theorem (Marquez and Da-
maien, 1995). Although H(s) should perform well in the vicin-'
ity of the setpoint used for its design, it may not work well
outside the linear range. If large excursions of the configuration
va¡iables
is sugges
tered en
scheduling algorithm which presewes stability.

4 Gain Scheduled SPR Controllers
Consider the basic feedback structure of Fig. I and recall

ists of the nominal system ( I ) with
loop closed. L,et x ê col {{, q)

ch is passive, and assume that n -
^õIu. is implemented using N paralef strictly passive controllers:

fr
yr: ¡r,ur, I yl[u¡dt > €;llu,ll?,

.rO

e¡ ) 0, i = 1,..., N, (ll)
where the relationship between the u¡ and u" is to be determined.

The net controller output is taken to be

y"(t) = Ë r,,*, t)y¡(r) (12)

an FI- methodology and stability was only guaranteed with re-

spect to the frozeñ values of the corresponding interpolated LTI
plants.

There are two obvious possibilities for the sr(x' l). If one

uses time, r; = r¡(t) can be interpreted as scheduling based

upon a prescribed reference trajectory 0¿(l)' Alternatively'.one
cãn schèdule based on measurements of the controlled system'

r¡ = s¡(x).In general, it will be assumed that they satisfy

I r?(*, /) = c ) 0, s¿(x, r) e I-z,VxYt,

s¿(x, r) € L Vx € L-, (13)

which guarantees that at least one controller is in use at any

time, eãch scheduling signal is square-integrable on any finite

time interval, and the time dependence is bounded.

Theorem I : If the controller ]. = l5[u. satisfies ( I I ) - ( 13 )'
then ^Et is strictly passive if the individual controller inputs

satisfy
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ui(f) = s¡u"(f)' i : 1" "' N

Proof: Consider the following:

( 14)

f ,Tu"o'

= Ë eilo,ll?= | e,lþ,u.ll|= ellu.ll? (15)

where e : a min (e,) > 0. This establishes the result. Ú
'We conclude that almost any scheduling signal presewes the

ure 3.
Let us further specialize the above result to the case where

each H¡ is implemented as

Y¡ = Clxi * €¡u¡, *¡ = A¡x¡ * B¡u¡, tl¡ = J¡0'

( 16)

If H¡(s) : C¡(sl - A,)-tB, is taken to be SPR, then there

exists P¡ > O and Q, > O such that

P¡Ai + AI& : -Q,, P¡8, : g¡. (17)

The control input to the structure ( 1) is taken to be

u(t) : u' : -Kp(O( t) - 0¿)- Ë "'r'("' 
(18)

Although the proportional gain K, could also be scheduled, for
simplicity it wittiot be here. If u : u' * u¿, then rit¿ € Ia +

umptions of S

condition to
(l) with the P

M(q)<i + Dq + k(q) + B&ttr(q) - h(q¿)l = fno'(Q, 8)'
( le)

'!Ve assume that D{(l) = 0 and ð(t)
{ : 0. This zero rate detectabilíty.c
ziro state detectability hypothesis of

Theorem 2: The feedback system given by (1) and (16)-
( 18) yields global asymptotic stability of the equilibrium q :
{¿ where O¿ = h(q¿).

Proof: Using the Hamiltonian in (2), define the positive

definite function

Differentiating and using (2) and (16)-(18) gives

4 = Ô'u- qlDq + it'l<o{o - ea)
/v

+ L tåx|(P,& + AlPr)x, + x|P,B,s,0l

f'NN
: -! ðÎ(s¡y,, - å,ì xlQrx¡ + L sr(Crx¡)'ð - qÐq

,v

< -+>xl'Q,x¡ - qDq - eÒ'Ô

have q(r) - q¿. tr
Note ùrat if D = O, one can still prove the above result if 0
: 0 - { = 0 in (19), i.e., the rate coordinates a¡e detectable

via å.

v
a2

link 2

link 1

Fig.4 Two-link maniPulator

(x,v)

= f'rl ",y,ar = å J: y]u¡dt

el

x

7') : E + !¡o - or)'Kr(o - où + å ) xl"P,x,

5 Numerical ExamPle

We wish to t¡ack the joint-space trajectories

+ v o,(t¡: (0,, - oÐ(+- *'^'#) + 0p, i = 1,2, (20)
ud

!6=0

l. +
u
c

sly(x, t) s¡(x, l)

Flg.3 Gain schedulod aYstem
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A feedforward signal (u¿) is also included and is determined
from the inverse dynamics of the corresponding rigid arm. As
well, y¿(t) in Fig. 3 is setto ðn(r) an¿ er = 0, i = I ...N. In
Figure 5, the joint angle, joint rate, and end-effector position
tracking errors are shown for no feedback cont¡oller (N = 0),
N : l, and N = 3 (using Type l_scheduling). The notation
(: ) denotes tracking eÍor so that 0 : 0 - 00. We have also
collected the relative tracking errors for each va¡iable in Table
l. These are defined according to E-¡(' ) : ll(')ll'/ll(')rll'. The
end-effector va¡iables are collected into p ¿ [xy]r. In all cases,

stability is maintained as expected.
Clearly, the error performance of the joint angle and joint

rate tracking improves as the number of scheduled controllers
is increased. However the improvement is not great. This can

be attributed to the lack of configuration dependence of the

vibration modes of a twolink manipulator. The vibration fre-
quencies and mode shapes of this system do not vary greatly

witl¡ the value of 02. One expects that more complicated systems

would derive greater benefit from the scheduling strategy. From
the øble, we see that Type I scheduling offers a modest im-
provement in the j
This is in keeping
based on the tn¡e
Interested readers may comPate our results with those of De

Luca and Siciliano (1993) where inversion-based nonlinear
controllers were used to accomplish simila¡ goals with a simila¡
arm.

lilhile the end-effector tracking errors largely improve with
increasing N for /V > 1, the best performance is achieved for
no feedback control at all (N = 0) which also yields the poorest
joint-space tracking. We
ics torques do not invert
for the flexible arm. In
approximation to the inverse of the torque to end+ffector rate

màp (Damaren, 1995; Damaren, 1996). Damaren (1996) has

shown that flexible manipulators will exhibit this property when

carrying large payloads. Based on the current results, one is led

to speculate that there is a wider class of flexiblelink robots

which also podsess this property.

lo¡rìl rñglo 2 ffi 6. tiË

00f

É

{01

o2

loH6tc2cryw.üm

00l
Èr

rd¡.or

o2
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-20
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6.0
o

_N-0
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N.3

F¡9.5 Track¡ng erors

sen as I rad/s (i.e., ProPortional
to the at the terminal configura-
tion). only the first 4 of the l0
unconst¡ained vibration modes are retained for controller de-
sign. The SPR controllers at each setpoint are designed using
thé procedures of Section 3 with Q = 1, R = (2.44 x 10-1)1,
Qo = (2M8)1, and are of 8th order. \Mith this choice of Q, the
LQR cost functional in (10) penalizes the total energy in the
modes recained for controller design. The ¡rtatrix Qe was se-

lected so that the eigenvalues of the composite system matrix,

were at least as fast as those of A" = Ã - Bç emanating from
the LQR synthesis.

Two choices for the scheduling signal are used. The first is
based on the second joint angle and satisfies

6 Concluding Remarks
A scheme has been presented whereby one can schedule N

SPR cont¡oller designs and Preserve the basic stability afforded

on the collocation of force actuation and rate sensing.

The design of each controller was based on the philosophy

that an LTI controller is most easily designed using an LTI
plant. By transforming the linearized system into modal form,
ihe ordei of the system could be easily reduced while preserving

the passive nature of the model. It was suggested that this was

a simple way to develop lower order SPR controllers. Our nu-

mericãl results illustrated the stability results and showed that

scheduling could improve the performance achievable using a

single coñtroller. While this improvement was not significant

Ã -BK.
K.e A"

0'(t) - qr(t'-,)
, 0.r(t¡_r) = QzQ) = 0r(t¡)

îzQ¡) - 9zQ,-r)

s¡(dz(r)): 9t(t,nt) - 0z( 9r(t,)=02Q)=02G,*,)
ïr(t,*r) - |r(t,)'

0, otherwise.

lf 02ç) = dz(O), then s, : l, s¡ = Q, i + l. If 02Q) = 0r(T),
then s¡ : I, s¡ = 0, i + N. This is designated Type I. Type II
corresponds to scheduling based on the reference trajectory (i.e.,
time):

s¡ (r)

I - t¡-t
t¡ - t¡-t

t¡*t - 1

t¡-1<t<¡'

, l¡<t<t¡tt

otherwise

0-3 2.52 X I

0-2 4.69 x I

0-2 4.69 x I

0-2 4.50 x I

0-2 4.50 x I

0-2 4.46 x I

Table 1 Relative tracking errors

¡{ Type E*¡(0) E,n(Ð 8.,(p) E*,(þ)

9.38 x l0-r 2.71 x I
2.36 x to-r 1.06 x I
2.36 x l}-t 1.06 x I
2.07 x t0-2 9.90 x I
2.02 x t0-1 9.57 x I
2.t4 x t0-2 t.05 x I

0
I
)
3
4
3

o-2 2.oo x
0-2 2.og x
o-2 2.o9 x
o-r 2.ol x
0-r 2.ol x
o-2 2.oo x

I
I
I

II

0-3
0-2
0-2
o-2
0-2
0-2

t¡tt - 1¡

0,

withs¡r(l)=l,t>T.
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for the system under study, it is expected that more complex
systems could greatly benefit from the scheduling result. How-
ever, the performance of the scheduled controller can only be
as good as that of its constituents in the vicinity of the design
point. More research is required on the development of optimal
controllers subject to a strictly positive real constraint.
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