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The problem of scheduling strictly positive real (SPR) dynamic compensation for
control of nonlinear flexible systems which exhibit collocated inputs and outputs is
explored. The major application is the robust motion control of structurally flexible
systems whose dynamics possess significant configuration dependence. Included in
this class are flexible robot manipulators. The issue of designing a linear time-
invariant SPR compensator for control of a nonlinear system is examined. Controller

performance is enhanced by scheduling a series of such designs and a scheduling
algorithm is developed which preserves robust stability with respect to the nonlinear
plant model. Global asymptotic stability of equilibrium setpoints is proven when the
scheduled SPR compensator is used in conjunction with a proportional feedback
gain. A numerical example employing a two-link flexible manipulator is used to
illustrate the approach and compare the efficacy of different scheduling algorithms.

1 Introduction

It is well known that flexible structures with collocated force
(torque) inputs and velocity (angular velocity) outputs exhibit
the property known as passivity. This property is independent
of the details of the mass and stiffness distributions and provides
a mechanism for robust stabilization via the passivity theorem.
This important result in input-output theory (Desoer and Vid-
yasagar, 1975) states that any strictly passive operator con-
nected in negative feedback with a passive system yields input-
output stability. Further work by Hill and Moylan (1977) ex-
tended the result to global asymptotic stability under suitable
teachability and detectability hypotheses govemning the state
representations of each system.

Linear time-invariant (LTI) passive systems are character-
ized by positive real transfer functions. In the context of flexible
structures, the positive real property is independent of the num-
ber of vibration modes in the model as well as the details of
the mode shapes and natural frequencies. Hence, any strictly
passive feedback yields robust stability since spillover instabili-
ties, which can result from controller designs based on a reduced
subset of modes, are avoided. LTI controllers which are strictly
passive are closely related to the strictly positive real (SPR)
property (Wen, 1988). In particular, an SPR feedback controller
always stabilizes a passive system.

The use of dynamic SPR compensation for stabilization of
large space structures was suggested by Benhabib et al. (1981).
Since then, several authors have presented systematic methodol-
ogies for designing SPR control. We mentioi McLaren and
Slater (1987) and Lozano and Joshi (1988), the latter of whom
examined LQG weight selection such that the Kalman-Yaku-
bovich Lemma was satisfied, i.e., the LQG controller is SPR.
More recently, Haddad et al. (1994) have looked at the corre-
sponding situation for H., design.

The use of strictly passive compensation for nonlinear me-
chanical systems was considered by Takegaki and Arimoto
(1981) who rigorously demonstrated setpoint regulation for a
rigid robot using proportional-derivative control. Exploitation
of the passivity property for rigid robots to prove stability for
both setpoint regulation and tracking was explored by Wen
and Bayard (1988). Paden and Riedle (1988) examined the
extension of a constant derivative gain to dynamic SPR feed-
back which they called the ‘‘PR modification.”” Extensions to
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fiexible systems were contemplated by Paden et al. (1990,
1993) and Lanari and Wen (1992). The latter pointed out that
the approach could be applied to a very wide class of systems
which includes flexible-link and flexible-joint robots. A com-
mon feature of the above approaches is the use of an LTI
controller for stabilization of a nonlinear system. Although such
an approach can guarantee stability over all configurations, it
is unlikely that good performance can be achieved over the
same. .

In this paper, we address some-issues related to the design
of LTI controllers for nonlinear systems. Setpoint linearizations
of the plant, after transformation to modal coordinates, are used
as the basis for designing an SPR rate feedback which is added
to a proportional term. We then examine the problem of sched-
uling a series of SPR designs and a scheduling algorithm is
developed which preserves the basic stability of a single SPR
controller. A series of LTI designs based on local lincar models
is advanced as a way of dealing with the performance issue.
Other related work is that of Shamma and Athans (1990) where
the local stability of gain scheduling in general was treated
and Meressi and Paden (1994) where LTI H.. controllers were
scheduled for controlling a two-link flexible manipulator. In this
latter work, stability was obtained with respect to intermediate
‘““frozen values’’ of the plant.

2 System Model and Problem Statement

We confine ourselves to a study of those flexible mechanical
systems which are described by a model of the form

M(q)d + Dq + k(q) = B(q)u + f...(q, 4),
0 =h(q), y=0=B"(q)4q, (1

where q € R" are the generalized coordinates, u € R™ are the
control inputs, and @ € R™ are the measured configuration
variables. Note that B = 8h”(q)/8q which expresses the collo-
cation of actuation u and rate sensing y. The mass matrix M is
positive definite whereas the damping matrix D is nonnegative
definite. The stiffness forces k(gq) = 8V/dq emanate from a
nonnegative potential energy function V(q). Given the kinetic
energy T = (1/2)4"M(q)q, the nonlinear inertial forces
have the form f,, = dT/8q — Md. Defining the Lagrangian
by L = T — V, the Hamiltonian satisfies

E:qu—fl’—L=T+V. E=0u-qDq, (2)
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where Lagrange's equations have been used. We desire globally
stable tracking of constant setpoints @ = 0,. It is assumed that
the ‘augmented potential energy’ Vo(q) 2 V(q) + #h(q) —
0.)K,(h(q) — 0,) with K, = K] > O is a positive definite
function of q, q # qq, where g, uniquely satisfies 6, = h(qq)
and V,(q,) is a global minimum.

With an appropriate interpretation of the symbols, the above
model applies to a wide variety of important systems: large
space structures (Benhabib et al., 1981), spacecraft attitude
dynamics (Hughes, 1986), six-DOF vehicle dynamics, and
rigid or flexible robot manipulators (Sincarsin and Hughes,
1990; Hughes and Sincarsin, 1990; Lanari and Wen, 1992;
Wang and Vidyasagar, 1992; Damaren, 1996). Although the
general case embodied by (1) is studied here, it is helpful to
consider the case of flexible-link manipulators. To this end, the
coordinates can be partitioned as q = col {0, q. }, where 0 are
the joint variables, g, are the elastic coordinates, and u are the
joint torques. If cantilevered shape functions are used to discre-
tize the link deflections, k(q) = Kq and the matrices can be
partitioned consistent with q as: B” = [1 O], K = diag {O,
K.}, D = diag {O, D} with K. = KL, > O and D, =
DL > 0.

The key notions required for an input-output study of (1)
(Vidyasagar, 1993) are now presented. L is the set of essen-
tially bounded functions and L, is the set of square-integrable
functions defined on ¢ € [0, «]. The truncation of a function
u(r) is defined as uy(f) =u(t), t < T,ur (1) =0,: > T, and
the extended space L,, = {u|ur € L,, VT > 0}. We also define
llull- 2 (f; : uTudr]'**. The motion equation (1) can be interpre-
ted as an operator G mapping u € L,, into y = Gu € L,,. Such
a system is strictly passive if there exists ¢ > 0 such that

T
f u'Gudt = ful}, Yu € L,, VT > 0. 3)
4]
If (3) is satisfied with ¢ = O, then the system is passive. It is
readily verified that the system given in (1) is passive:

[[yuar =k + [ 4padi=0 =@ =0
(V] 0

which follows from integration of the second expression in (2).

Now consider the feedback system shown in Fig. 1. Given
that G is passive we wish to select the controller H so that
bounded disturbance (or feedforward) signals u; € L, imply
that y = @ € L,, i.e., the system is L,-stable. The key result
which will be exploited is one form of the passivity theorem
(Desoer and Vidyasagar, 1975) which states that the system is
Ly-stable if G is passive and H is strictly passive. We also desire
that lim,—.. q(1) = g, when u, = y, = 0. Although input-output
ideas better motivate our results, this latter objective will require
Lyapunov-style arguments. Tracking of time-varying trajecto-
ries y4(1) = 64 + 0 can be accomplished by selecting a feedfor-
ward uy such that the map from (u — u,) to (¥ — Ya) is passive.
Then choosing u — u, = —H(y — y,) with H strictly passive,
places the tracking rate errors in L,. Again, additional arguments
are needed to show that 6(r) =+ @,4(¢). It bears noting that passive
systems are also minimum phase; hence, stabilization and
tracking can be accomplished via feedback linearization ap-
proaches (Vidyasagar, 1993).

G y

H O

| =0
Y, u, O

Fig. 1 Mechanical system with feedback
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The simplest choice for H is a constant derivative feedback
gain, HO = K, with K, = K] > O. Position control also
demands the introduction of an integral term (a position feed-
back with respect to @). In terms of Laplace transforms, y (s)
= H(s)u.(s) where H(s) = s 'K, + K, which represents PD
control (in general, H(s) will denote the transfer function of
an LTI operator H). Since we wish to concentrate on the design
of the rate feedback, the proportional term can be transfered to
the plant using the technique of loop transformation (Desoer
and Vidyasagar, 1975). The input-output properties, including
stability, of the system in Figure 1 are equivalent to those of
the system in Fig. 2 when L is a linear operator. Selecting L(s)
= s7'K,, G' is equivalent to the structure with the proportional
loop closed and H' is just the rate feedback part of the control-
ler. Since G' itself consists of the negative feedback intercon-
nection of passive systems (the integral operator is passive), it
is also passive. Hence, L;-stability can be established by show-
ing that H' is strictly passive. In the following section, we drop
the primes and H refers to the rate feedback and G to G'.

3 SPR Controller Design

For rigid structures, it has been widely established that PD
control provides excellent regulation. However, for flexible sys-
tems, performance improvements can be expected using a dy-
namic compensator. The proposed controller structure consists
of a proportional feedback loop coupled with a dynamic SPR
design for velocity feedback. In the frequency domain, assum-
ing 0, is constant and u, = 0,

u(s) = —K,[0(s) — 0,] — H(s)8(s),
H(s) = Kc(s1 — A) 7K, + el 4)

where € > 0. If ¢ = 0, H(s) is strictly proper and, according
to Tao and Ioanou (1988), is’SPR i and only if

(i)
(ii)

H(s) is real for real s and H(s) is analytic for - { s}
= 0;

H(jw) + Hi(jw) >0, —-® <w <o

(iii) limg w(H(jw) + H¥(jw)] > 0.

A more useful characterization uses the triplet (A, K., K)
(assumed minimal) and is known as the Kalman-Yakubovich
Lemma (Wen, 1988; Tao and Ioannou, 1988): the system H(s)
is SPR if and only if there exists positive definite matrices Po
and Q, such that

PoA, + AP, = —Qo, PK. = K. €))

The controller structure is similar to that advocated by Paden
and Riedle (1988) and Lanari and Wen (1992). Both consid-
ered (4) with a general derivative feedback —K,@ in lieu of
— e which was interpreted as part of an SPR controller which
is not strictly proper (the matrix K, represents the high fre-
quency gain matrix). Addition of the K, term (or ¢l here)
renders H(s) strictly passive and the passivity theorem can be
directly employed to demonstrate L,-stability. In its absence,
H(s) is not strictly passive as can be seen by applying
Parseval's theorem (Desoer and Vidyasagar, 1975, Examples
V142 and VI.4.1). However, L,-stability can still be estab-
lished with H(s) merely SPR using loop transformations (Ben-
habib et al., 1981; Marquez and Damaren, 1995). An advantage
of the strictly proper case is the first-order rolloff when viewed
as a function of @(s). This provides further robustness with
respect to unmodeled high frequency effects including rate sen-
sor noise. In spite of this, our proof of global asymptotic stability
in the scheduled case will require strict passivity (¢ > 0 and
arbitrarily small) but we set € = 0 in our numerical work.

The design of H(s) is treated separately from the selection
of K,. The latter is typically chosen to meet steady-state error
specifications in the presence of constant disturbances. Closing

DECEMBER 1996, Vol. 118 / 699



Q||
-3- -é: -
<

[

4

H’

~ ||
L1

Fig. 2 Loop transformed system

the proportional loop in the model (1), effectively augments
the stiffness term k(q) to produce

oVa(q) _
oq

where V, was defined after Eq. (2). As noted by Lanari and
Wen (1992), this produces observability of the rigid modes
(i.e., those satisfying k(q) = 0) from 0. The design of the LTI
controller H(s) for the nonlinear system (1) is most easily
treated using an LTI setpoint linearization. Assuming that the
structural damping is small and poorly known, D can be taken
as O for control system design. Linearizing (1) in the vicinity
of a constant configuration g and letting 6q = q — q yields

M(@)64 + K.(@)6q = B(@)u, y =08 =BT (qQ)bq, (7)

where K,(q) & 82V,/(8qdq") = 8k/0q™ + B(qQ)KBT(q) is
the effective stiffness matrix. In- many applications K, > O
which is assumed for the duration of this section.

For controller design, consider modal transformation of (7).
Let,>0ande,,a =1,...,n,denote the vibration frequen-
cies and eigenvectors of the corresponding second order eigen-
problem (u = 0) and assume that e;Me, = 5. If the eigenma-
trix E & row {e,) is used to transform the system according
to 6q(t) = En(t), then (7) can be represented by the first-
order state space model

k(q) + BKh(q) (6.=0) (6)

% =Ax + Bu, y==Cx (8)
with
[ 9 ~ [0 -
x—[ﬂn]' A_[ﬂ 0]"
_ "EB N
B=CT=[ - Q = diag {Q.}. 9)

It is a simple matter to show that the linear system is passive
since G(s) = C(s1 — A) "'B is positive real (Anderson, 1967).
A major advantage of the modal space representation is the
ability to systematically reduce the order of the model and hence
the controller which will typically be of the same order as the
plant model used for its design. This modal truncation procedure
does not affect the passivity (positive realness) of the system
given by (8) and (9).

Given the LTI plant model G(s), the development of an
optimal controller H(s) which is SPR represents an unsolved
problem. However, as noted in the introduction, a number of
systematic approaches for developing SPR controllers have
been suggested, most of which rely on the Kalman-Yakubovich
Lemma. We use the method suggested by Benhabib et al,
(1981). Given the plant (8), choose a matrix K. such that A,
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= A — BK. is stable. The classical LQR synthesis is used here
which determines K. in terms of the solution of an algebraic
Riccati solution associated with the minimization of
J=1 _r (x™Qx + u"Ru)ds (10)
0
with Q = Q7 > O and R = R” > O. Assuming there are
no trivial rows in ETB, all modes of (8) are controllable and
observable which guarantees that A, has eigenvalues with nega-
tive real parts. Then, given another positive definite matrix Q,
one can solve the Lyapunov equation in (5) for its unique
positive definite solution P, and take K, = KIP,. This ensures
that H(s) = K.(s1 — A))7'K, is SPR. The positive definite
matrices Q, R, and Q, are free design parameters.

The SPR controller is guaranteed to stabilize not only the
LTI system G(s) regardless of the number of retained modes,
but also the nonlinear plant G (which includes the proportional
loop) on the basis of the passivity theorem (Marquez and Da-
maren, 1995). Although H(s) should perform well in the vicin--
ity of the setpoint used for its design, it may not work well
outside the linear range. If large excursions of the configuration
variables q are to be handled, the use of several SPR controllers
is suggested, each designed for a different configuration encoun-
tered en route. In the next section we address the design of a
scheduling algorithm which preserves stability.

4 Gain Scheduled SPR Controllers

Consider the basic feedback structure of Fig. 1 and recall
that G (formerly G') consists of the nominal system (1) with
the proportional feedback loop closed. Let x £ col {4, q}
denote the state of G, which is passive, and assume that y. =
Hu, is implemented using N paralle] strictly passive controllers:

T

.- 3

yi = Hu,, f yiud = elull7,
0 .

(1)

where the relationship between the u; and u, is to be determined.
The net controller output is taken to be
N

yc(t) = 2 s.~(x, t)yi(t)

€[>0, i=1.o--|Na

(12)

where s5,(x, 1) are the scheduling signals. For example, with
two controllers we might use linear interpolation with s, = (1
— \), s = \, where X € [0, 1] parametrizes the controller
design. Such a scheme was considered by Meressi and Paden
(1994) in the control of a two-link flexible manipulator. The
scheduled controllers were not SPR but were designed using
an H,, methodology and stability was only guaranteed with re-
spect to the frozen values of the corresponding interpolated LTI
plants. :
There are two obvious possibilities for the s;(x, £). If one
uses time, s; = 5;(¢) can be interpreted as scheduling based
upon a prescribed reference trajectory 8,4(¢). Alternatively, one
can schedule based on measurements of the controlled system,
5; = 5(x). In general, it will be assumed that they satisfy
N
Yosix, ) =a >0, s(x,1) € L, VxVt,

5i(x, 1) € L. Vx € L., (13)

which guarantees that at least one controller is in use at any
time, each scheduling signal is square-integrable on any finite
time interval, and the time dependence is bounded.

Theorem 1: If the controller y. = Hu, satisfies (11)-(13),
then H is strictly passive if the individual controller inputs
satisfy
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w(t) = su(),i=1...,N. (14)

Proof: Consider the following:

T T N N T
f yfucdt=f ul 3 syidt = Zf yludt
0 0 i=1 i=p Y0
N N
=Y elul? = X elisulF = elucl?

i=1 i=1

(15)

where € = « min (¢) > 0. This establishes the result. O

We conclude that almost any scheduling signal preserves the
strict passivity of the controller and will provide L;-stability for
a passive plant provided the scheduling signals are used to form
the overall output and the individual controller inputs. It is
beneficial if they further satisfy s (x(f), 1) = 0,i # j, i # k,
for some j and k at each f so that only two dynamic controllers
are utilized at any time. The overall system is depicted in Fig-
ure 3.

Let us further specialize the above result to the case where
each H; is implemented as

w = Slo.
(16)

If H,(s) = C;(s1 — A;)™'B; is taken to be SPR, then there
exists P, > O and Q; > O such that

yi = Cx + g, X = Ax; + B,

PA; + AJP, = -Q;, PB, = Cl. 17
The control input to the structure (1) is taken to be
N
u(r) = u' = -K,(6() — 0,) — X syi (). (18)

=1

Although the proportional gain K, could also be scheduled, for
simplicity it will not be here. If u = u’ +uy thenu, €L, =
y=0¢€l,. ‘

In addition to the assumptions of Section 2, we require an
additional detectability condition to show position tracking
when uy = 0. Consider (1) with the proportional loop closed:

M(q)§ + Dq + k(q) + BK,[h(q) — h(qJ)] = frn(q, 4)-
(19)

We assume that Dg(z) = 0 and 8(¢) = B¢ () = 0 imply that
q = 0. This zero rate detectability_condition is similar to the
zero state detectability hypothesis of Lanari and Wen (1992).

Theorem 2: The feedback system given by (1) and (16) -
(18) yields global asymptotic stability of the equilibrium q =
44 where 684 = h(qd). : :

Proof: Using the Hamiltonian in (2), define the positive
definite function

N
T =E + 30 — 0)7K, (8 — 05) + 3 2 xTPix;.

s1(x,t) _,,_y _

¥=0

sn(x,t)

sn(x,t)

Fig. 3 Gain scheduled system
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Fig. 4 Two-link manipulator

Differentiating and using (2) and (16)—(18) gives
¢ =0T — q'Dg + 0K, (0 — 6,)

N
+ Y xT(PA; + ATP)x; + xTPBisi0]

i=1

N N N
-3 07(sy:) — 3 3 xTQix + X s (Cx:)"0 - ¢'Dg
i=1 =1l i=1
N
-1 3 x7Qix; — ¢'Dq — 678

IA

-

where ¢ is defined by (13) and (15) et seq. Since P = 0, we
have shown Lyapunov stability when u, = 0, In addition, {x;,
Dq, ) € I, N L. and (q, 4, 0} € L. From (18), u € L,
since the §; are bounded using (13). The motion equations (1)
and (16) yield boundedness of {%;, &i, &)} which makes (x;,
D, 0) uniformly continuous and therefore x, (1) = 0, Dq(1)
— 0, and §(¢) = 0 as t — =, Hence, u(t) = —K,(0(r) — 04)
and invoking the zero rate detectability assumption we have
(1) = 0. Using (19), k(q) + BEK,[h(q) — h(qs)] = 8Va(q)/
8q — 0 as t = = Since V,(qy) is a global minimum, we must
have q(1) » q. O .
Note that if D = O, one can still prove the above result if 6
=0 = ¢ = 0in (19), i.e, the rate coordinates are detectable
via 6. ‘

5 Numerical Example

In the previous sections, a methodology for designing SPR
controllers and a scheduling scheme which preserves the basic
stability of a single SPR compensator has been established. The
controllers will now be implemented in the simulation of a
planar two-link flexible manipulator (Fig. 4). In-plane bending
of each link is modeled using the analytical clamped-free mode
shapes for spatial discretization. A complete description of the
simulation methodology can be found elsewhere (Damaren and
Sharf, 1995); we use the I(E) model detailed there. Four bend-
ing modes per link are used. The links are identical with length
1 m, cross-sectional area A = 6 X 10~° m*, bending stiffness
El = 1.4 N-m?, and mass per unit length p = 0.15 kg/m®.
This is based on the model used by Meressi and Paden (1994).

We wish to track the joint-space trajectories

1

6,(1) = (6 — 9;0)( —~ - sin E) + 00, j=1,2, (20)
™

where 8[_0 = 0, 92.{1 = —-nl/2, Igu' = Gz_r = /2, and T = 10
sec. Tracking of the corresponding (but noncollocated) end-
effector trajectories is seen as a secondary goal. The N configu-
rations for controller design are selected according to 0, =
0,1), s == DTIN=1),i=1,... Nwithf = Tif N
— 1. The linearized system given by (8) and (9) is formed at
each configuration where the proportional fecdback gain is cho-
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Fig. 5 Tracking errors

sen as K, = B'M(O4)B - Q2, Q. = 1 rad/s (i.e., proportional
to the joint-space rigid mass matrix at the terminal configura-
tion). After modal transformation, only the first 4 of the 10
unconstrained vibration modes are retained for controller de-
sign. The SPR controllers at each setpoint are designed using
the procedures of Section 3 with Q = 1, R = (2.44 X 10741,
Qo = (2048)1, and are of 8th order. With this choice of Q, the
LQR cost functional in (10) penalizes the total energy in the
modes retained for controller design. The matrix Q, was se-
lected so that the eigenvalues of the composite system matrix,

A -BK.
KC A,
were at least as fast as those of A. = A — BK_ emanating from
the LQR synthesis.
Two choices for the scheduling signal are used. The first is
based on the second joint angle and satisfies
02(2) — 6:(8i-1)
0:(1;) = 6:2(tim)
02(ti+1) — 62(1)
82(ti) — 62(8)
0, otherwise.

If 8,(t) = 0,(0), thens, = 1,5, =0,i+ L If 8,(¢t) = 6,(T),
then sy = 1, s; = 0, i + N. This is designated Type 1. Type II
corresponds to scheduling based on the reference trajectory (i.e.,

time):
=ty
—_—, ==
L= ting

tiyg —

0:(tim1) = 62(8) = 6:,(8)

(8 =
5:(62(1)) 0,(8) = 6,(t) = 0,(ti))

si(1)

' » =1 =Gy
bivi — &

0, otherwise

with sy() = 1, t = T.
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A feedforward signal (u,) is also included and is determined
from the inverse dynamics of the corresponding rigid arm. As
well, y,() in Fig. 3 is set to O)ande =0,i=1...N.In
Figure 5, the joint angle, joint rate, and end-effector position
tracking errors are shown for no feedback controller (N = 0),
N =1, and N = 3 (using Type I scheduling). The notation
(7) denotes tracking error so that 0 = 8 — 6,. We have also
collected the relative tracking errors for each variable in Table
1. These are defined according to E,;(+) = |()|r/|l(* )allr. The
end-effector variables are collected into @ £ [xy]7. In all cases,
stability is maintained as expected.

Clearly, the error performance of the joint angle and joint

rate tracking improves as the number of scheduled controllers
is increased. However the improvement is not great. This can
be attributed to the lack of configuration dependence of the
vibration modes of a two-link manipulator. The vibration fre-
quencies and mode shapes of this system do not vary greatly
with the value of 8,. One expects that more complicated systems
would derive greater benefit from the scheduling strategy. From
the table, we see that Type I scheduling offers a modest im-
provement in the joint space tracking over Type II for N = 3.
This is in keeping with the heuristic that “‘one should schedule
based on the true configuration rather than the desired one."”
Interested readers may compare our results with those of De
Luca and Siciliano (1993) where inversion-based nonlinear
controllers were used to accomplish similar goals with a similar
arm.
While the end-effector tracking errors largely improve with
increasing N for N = 1, the best performance is achieved for
no feedback control at all (N = 0) which also yields the poorest
joint-space tracking. We conclude that the rigid inverse dynam-
ics torques do not invert the torque to joint rate map very well
for the flexible arm. In some cdses they can provide a good
approximation to the inverse of the torque to end-effector rate
map (Damaren, 1995; Damaren, 1996). Damaren (1996) has
shown that flexible manipulators will exhibit this property when
carrying large payloads. Based on the current results, one is led
to speculate that there is a wider class of flexible-link robots
which also possess this property.

6 Concluding Remarks

A scheme has been presented whereby one can schedule N
SPR controller designs and preserve the basic stability afforded
by a single SPR controller in feedback with a passive plant.
Both input-output stability and the global asymptotic stability
of a constant setpoint follow from rather mild assumptions in
addition to the passivity property. The latter is independent of
the details of the mass and stiffness distribution and only relies
on the collocation of force actuation and rate sensing.

The design of each controller was based on the philosophy
that an LTI controller is most easily designed using an LTI
plant. By transforming the linearized system into modal form,
the order of the system could be easily reduced while preserving
the passive nature of the model. It was suggested that this was
a simple way to develop lower order SPR controllers. Our nu-
merical results illustrated the stability results and showed that
scheduling could improve the performance achievable using a
single controller. While this improvement was not significant

Table 1 Relative tracking errors

N Type  Eu(9) E.() E..(p) Ea(p)

0 "— 938x107 271 %1072 200x 107 252x 107
1 — 236x10° 1.06x 107 209X 1072 469 x 107
2 I 236x 10~ 1.06 x 10 2.09 X 1072 4.69 x 1072
3 I 207x102 990 x 107 201 x 1072 4.50 x 107
4 I 202x 102 957 x 107 201 X 1072 450 x 107
3 0 214x 1072 1.05x 107 200 X 1072 4.46 X 107
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for the system under study, it is expected that more complex
systems could greatly benefit from the scheduling result. How-
ever, the performance of the scheduled controller can only be
as good as that of its constituents in the vicinity of the design
point. More research is required on the development of optimal
controllers subject to a strictly positive real constraint.
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