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Abstract This paper investigates a formation control problem for two space vehicles
in the vicinity of the L2 libration point of the Sun-Earth/Moon system. The objective
is to accurately regulate the relative position vector between the vehicles to a desired
configuration, under tight tolerances. It is shown that the formation control problem
is solvable using six constant thrust electric actuators requiring only one bit of res-
olution, and bounded switching frequency. The proposed control law is hybrid, and
it coordinates the sequence of on-off switches of the thrusters so as to achieve the
control objective and, at the same time, avoid high-frequency switching.

Keywords Formation control · Bang-bang control · Libration points

Introduction

In recent years, several space agencies have proposed missions for the observation
of the universe involving large spacecraft arrays flying in formation. The constraints
imposed by the type of observations these missions must perform have led to the
identification of trajectories in a neighborhood of the L2 Lagrangian point of the Sun-
Earth/Moon system as an ideal location. NASA proposed, in the context of the Vision
Program, the Stellar Imager (SI) mission, a large array of nearly 30 spacecraft flying
in formation to form a large telescope, see [1]. The Terrestrial Planet Finder (TPF)
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(see [2]) and the MAXIM mission concepts (see [3]) also involved large formations
of spacecraft flying in the vicinity of the L2 libration point (small baselines for TPF,
very large for MAXIM).

These mission concepts share great challenges from the formation control
perspective, as the relative position between spacecraft must be regulated with sub-
millimetric error tolerances. In particular, SI requires the spacecraft to meet three
different control specifications, classified as (see [1]): rough control, with accuracy
up to a few meters; intermediate control, with accuracy of the order of a few centime-
ters; and, fine control, with submillimeter accuracy. Each of these control regimes is
to be satisfied for an interval of time long enough to allow the scientific observation
to be completed (for the SI mission, this would depend on the target star rotation
period).

The formation control problem has been intensively studied in recent years.
Discrete control methods, such as the Equitime Targeting Method [4, 5] and the
Tangential Targeting Method [6], implement impulsive maneuvers at various check-
points along the reference orbit in order to target a relative position �r between
leader and follower. However, these methods are not well suited for achieving
accuracies at the subcentimeter level [4].

Howell et al. [4, 5], propose the application of Floquet control methods to
formations in the vicinity of the reference Halo orbit in order to exploit the struc-
ture of the center manifold associated with the orbit itself. These techniques allow
one to compute the maneuver required to initialize and keep the formation on the
center manifold associated with the reference Halo orbit. The elements of the forma-
tion will evolve on a torus enveloping the nominal orbit, giving rise to quasi-periodic
formations. By properly phasing each vehicle, the formation naturally evolves along
the torus so that the relative positions of each spacecraft are unaltered and the relative
distances are bounded.

The best performances are, however, guaranteed by the application of continuous
control laws. The literature on continuous feedback control of formations is exten-
sive, but very little of it is directly applicable to the problem at hand. Marchand and
Howell in [7] explored the application of feedback linearization to the control of sev-
eral different types of formations (aspherical, rigid, etc.). It is shown that the control
of the elements of the formation can require thrust levels in the range nN − mN . In
addition, the robustness of these methods to modeling errors and thrust implemen-
tation errors has yet to be explored. Gurfil and Kasdin, in [8], propose an optimal
controller for a formation of two spacecraft, one of which is free flying along a natu-
ral trajectory of the Circular Restricted Three Body Problem (CR3BP). The controller
is designed on a time-varying linearization of the CR3BP model about a natural solu-
tion. Such controllers require actuators with a dynamic range not achievable with
today’s technology. The authors of [8] recognize this limitation, and to overcome it
they propose to mount different propulsive systems with different dynamic ranges.
Gurfil et al. in [9] propose an approximate dynamic model inversion combined with
linear compensation of the ideal feedback linearized model. Modeling errors and
external perturbations are then compensated by a neural network element. Submilli-
metric tolerances are achieved, assuming thrusters providing continuous thrust in the
mN-μN range. However, as pointed out in [4, 8] continuous control laws require the
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actuators to deliver thrust with prohibitively high resolution for today’s technology.
From a control perspective actuator resolution is, therefore, the crucial bottleneck in
controlling spacecraft formations (of course in practice additional limitations arise
from the accuracy of the measurements available to the spacecraft, this topic will not
be addressed in this paper). Marchand and Stanton in [10, 11] have proposed to over-
come such a limitation by using thrusters providing only a constant level of thrust.
The control law they propose is based on the numerical solution of an optimization
problem, where the on-off switching times for each of the on-board thrusters are the
optimized variables.

In this paper, it is shown that the problem of controlling the relative position vector
of two spacecraft flying in the vicinity of a libration point to any level of accu-
racy is solvable by implementing the controller presented in [12, 13] by the authors.
It is assumed that the on-board thrusters can be either on or off, providing only a
constant level of thrust (they deliver thrust with on-bit of resolution). The control
law is intrinsically robust to all bounded perturbations acting on the spacecraft, pro-
vided that the propulsive system delivers enough thrust. Because of this property it
is shown that the controller allows us to achieve the nominal control specifications
in the full ephemerides system under the influence of additional, unmodeled external
perturbations. The on-off switching function is designed for each thruster in order to
meet virtually any level of accuracy, while simultaneously avoiding high-frequency
switching. FEEP (Field Emission Electric Propulsion) thrusters seem to best fit our
requirements: they provide very low thrust (on the order of few μN) for long inter-
vals of time and they are characterized by a fast turning on and turning off. The
proposed control law is hybrid (the control input depends on the dynamics of a logic
or discrete variable), and it only relies on the knowledge of the spacecraft relative
position and relative velocity in body frame. No further parameters or measurements
are required. The main advantage of the proposed controller is in that it com-
pletely overcomes the issue of thrusters’ resolution that affects continuous controllers
[4, 7, 8]. The second main advantage with respect to continuous controllers is in
the ability to reject external disturbances. The issue of robustness has been explored
in [8]. However, the continuous controller in [8] is robust only with respect to cer-
tain families of disturbances, modeled by means of an exogenous plant. The main
limitation is that a precise model of the disturbances must be available in order to
be replicated in the control law (see [8] for the details). This limitation is completely
overcome by the controller proposed in the paper: we show that if a suitable set of
thrusters is selected, the proposed controller meets the nominal control objectives
even when the spacecraft are subject to unmodeled disturbances.

The proposed controller presents several advantages over the impulsive controllers
in [4, 6]. First, strategies in [4, 6] are not well suited for enforcing tight tolerances
because of technological limitations. Second of all, such controllers are open loop
controllers, requiring an accurate knowledge of the system’s model for planning
and computing each maneuver. Moreover, the robustness properties of these control
strategies have yet to be explored.

In the paper it is shown that the controller presented in [13] allows us to solve the
formation control problem achiving two significant advantages over the controller
presented in [10, 11]. First of all, the controller used in this paper is a feedback
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controller, that does not require any numerical procedure in order to compute the
control value to be applied. Second of all, the controller implemented in this paper
is intrinsically robust to modelling errors and external perturbations. This fact allows
the controller to guarantee the achievement of the nominal control specifications in a
wide variety of conditions.

The paper is organized as follows. Section “Formation Control Problem (FCP)”
presents the equations of motion together with the problem statement and the
control objectives. Section “Development” presents the steps that led to the formu-
lation of the proposed controller. The proposed controller is presented in section
“Solution of RFCP”. A robustness analysis with respect to attitude perturbations is
presented in section “Robustness to Attitude Perturbations”. Simulations results are
shown in section “Simulations”.

Notation In this paper the notations (x1, . . . , xn) and [x1 . . . xn]T are used inter-
changeably to indicate vectors in R

n. Given the vector u = [u1 u2 u3]T ∈ R
3, (·)×

denotes the skew symmetric matrix

u× =
⎡
⎣

0 −u3 u2
u3 0 −u1

−u2 u1 0

⎤
⎦ ∈ R

3×3

‖u‖, with u ∈ R
n, denotes the 2-norm of vector u. If B ∈ R

n×n, ‖B‖ denotes the
induced matrix 2-norm, i.e. ‖B‖ = max {‖Bv‖ : v ∈ R

n with ‖v‖ = 1}. The open
ball of radius ε > 0, centered at x ∈ R

n is defined as Bε(x) = {z ∈ R
2 : ||z−x|| < ε},

while the corresponding closed ball is defined as B̄ε(x) = {z ∈ R
2 : ||z − x|| ≤ ε}.

In the paper we denote the complement of Bε(x) in R
2 by (Bε(x))c. The boundary of

a set A is defined as ∂A = Ā \ Ao where Ā is the closure of A and Ao is its interior.
If A ⊂ R

2 we denote by −A the set defined as −A := {
x ∈ R

2 : −x ∈ A
}
.

Formation Control Problem (FCP)

In this section the spacecraft model and all the assumptions related to the
spacecraft’s configuration are presented. The Formation Control Problem (FCP) is
then formulated and it is shown that FCP can be cast as an equilibrium stabilization
problem.

Model and Problem Statement

Consider two spacecraft under the gravitational influence of N massive bodies of
the Solar System. In this paper, the superscript (·)i is used to refer to the i-th
spacecraft. Let I denote an inertial reference frame and let Bi = {

ei
1, e

i
2, e

i
3

}
denote the body frame of the i-th spacecraft, for i = 1, 2. The rotation matrix of
frame I with respect to frame Bi is denoted by Ri . We assume initially that the
attitude of spacecraft 2 with respect to frame I is constant and we denote it by
R̄2. In section “Robustness to Attitude Perturbations”, this assumption is relaxed
and a robustness analysis is presented when R2 varies with time, but remains in a
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small neighborhood of its nominal reference value R̄2. Let Xi = (
xi

1, x
i
2, x

i
3

)
and

Vi = (
xi

4, x
i
5, x

i
6

)
denote the position and velocity of spacecraft i with respect to

Earth, expressed in frame I , for i = 1, 2. The state vector of each spacecraft is taken
to be χ i := (Xi , Vi ) ∈ R

6. Let rj,1(t) be the position vector of planet j with respect
to Earth, expressed in the reference frame I . The leader, spacecraft 1, is assumed to
be unactuated and it follows a natural trajectory, while the follower is fully actuated.
We denote by u2 = (

u2
1, u

2
2, u

2
3

)
the follower’s control accelerations expressed in B2,

generated by on-board thrusters. The equations of motion of the two spacecraft are

Ẋ1 = V1 Ẋ2 = V2

V̇1 = G1(χ1, t), V̇2 = G2(χ2, t) + R̄2u2 (1)

where
Gi (χ i , t) = Fi (χ i , t) + Hi (χ i , t)

In the above, Fi (χ i , t) models the effects of the gravitational fields of N planets on
the i-th spacecraft,

Fi (χ i , t) = −μ1
Xi

||Xi ||3 +
N∑

j=2

μj

(
rj,1(t) − Xi

||rj,1(t) − Xi ||3 − rj,1(t)

||rj,1(t)||3
)

(2)

μj is the gravitational parameter of planet j , and Hi (χi, t) models all of the external
disturbances acting on the spacecraft. The model in Eq. 1 is the standard set of relative
equations of motion with respect to Earth for the n-body problem, formulated in
frame I (EPHEM model, [4]).

It is assumed that the follower spacecraft (spacecraft 2) can measure only its
relative position and velocity with respect to the leader in its own body frame, i.e.
the quantities �X := R̄T

2

(
X2 − X1

)
and d

dt
�X := R̄T

2

(
V2 − V1

)
. It is assumed that

the follower is equipped with six constant-thrust electric thrusters, each providing a
control acceleration ω̄ > 0. We assume that the thrusters are assembled in opposing
pairs, each aligned with a different body axis, so as to provide full position actuation.
With this assumption, we may express the control input of spacecraft 2 as

u2 = ω̄

⎛
⎝

σ1
σ2
σ3

⎞
⎠

where σk ∈ {−1, 0, +1}, for k = 1, 2, 3 represents the on-off state of each thruster
pair.

We define the distance dF (t) between the two spacecraft at time t as

dF (t) =
√

(x2
1 − x1

1)2 + (x2
2 − x1

2)2 + (x2
3 − x1

3)2

and the angles αF (t) and βF (t) (indicated in Fig. 1) as αF (t) :=
sin−1 ((x2

3 − x1
3)/dF ) and βF (t) := tan−1 ((x2

2 − x1
2)/(x2

1 − x1
1)). In the following,

a formation configuration will be indicated using the triple (dF (t), αF (t), βF (t)).
This paper investigates the problem of achieving formations of two spacecraft
with prescribed triple (d̄F (t), ᾱF (t), β̄F (t)). Figure 1 illustrates such a formation
configuration.
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Fig. 1 Illustration of the formation configuration parameters (dF (t), αF (t), βF (t))

Formation Control Problem (FCP) Consider two spacecraft modeled as in
Eq. 1. Consider a desired formation configuration (d̄F (t), ᾱF (t), β̄F (t)) with
d̄F (t), ᾱF (t), β̄F (t) being twice differentiable bounded functions with bounded first
and second derivative. We denote the associated set of constant admissible tolerances
(δdF , δαF , δβF ). Design the on-off thrusters’ switching cycles, using only measure-
ments of the relative position in body frame, �X = R̄T

2

(
X2 − X1

)
and relative

velocity �Ẋ = R̄T
2

(
V2 − V1

)
of the follower with respect to the leader, such that

the distance between the two spacecraft and the orientation of the formation converge
and remain within a neighborhood (d̄F (t) ± δdF , ᾱF (t) ± δαF , β̄F (t) ± δβF ) of the
desired formation configuration (d̄F (t), ᾱF (t), β̄F (t)), by switching the on-off state
of each thruster with finite frequency.

The solution of FCP is derived in the ideal case of R2 = R̄2 = const. A robustness
analysis with respect to attitude perturbations is presented in section “Robustness to
Attitude Perturbations”.

FCP as an Equilibrium Stabilization Problem in Relative Coordinates

To solve FCP it is convenient to study the relative dynamics of the two spacecraft.
Let Ẑ, V̂ be defined as

Ẑ = �X = R̄T
2

(
X2 − X1

)

V̂ = �Ẋ = R̄T
2

(
V2 − V1

)
(3)

Stabilizing the formation (d̄F (t), ᾱF (t), β̄F )(t) is equivalent to stabilizing the

relative state (Z�(t), V�(t)) = (R̄T
2 Z̄, R̄T

2
˙̄Z), where

Z̄(t) = (d̄F (t) cos (ᾱF (t)) cos (β̄F (t)), d̄F (t) cos (ᾱF (t)) sin (β̄F (t)), d̄F (t) sin (ᾱF (t))).

Consider the error coordinates

Z = Ẑ − Z�(t)

V = V̂ − V�(t) (4)
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The error dynamics are

Ż = V

V̇ = D(Z, V, χ1, t) + u2, (5)

where
D(Z, V, χ1, t) = −V̇�(t) + R̄T

2

(
G2(χ2, t) − G1(χ1, t)

)

Since G1 and G2 are bounded functions (if a neighborhood of the planets’
centers is excluded) and V̇�(t) is bounded, we have that D(Z, V, χ1, t) is bounded.
Without any loss in generality, D(Z, V, χ1, t) can be seen an exogenous, time depen-
dent signal D(t) = (d1(t), d2(t), d3(t)) bounded by a positive constant d̄ . Note
that stabilizing the origin of system (5) is equivalent to stabilizing the formation
configuration (d̄F (t), ᾱF (t), β̄F (t)). System (5) can be rewritten as follows

ż1 = z4

ż4 = d1(t) + ω̄σ1

ż2 = z5

ż5 = d2(t) + ω̄σ2

ż3 = z6

ż6 = d3(t) + ω̄σ3 (6)

where σj is the control input, j = 1, 2, 3. System (6) can be thought of as a unit
point-mass under the effect of a time-varying acceleration field D(t). The point-mass
in question is fully actuated with on-off inputs of magnitude ω̄ along three mutually
orthogonal directions. Note that z = (Z, V) is available for feedback. Since the three
double integrators are formally decoupled, the desired formation configuration can
be achieved by designing a stabilizer of the origin for the subsystem

ẋ1 = x2

ẋ2 = d(t) + ω̄σ (7)

with control input σ having values in {−1, 0, +1}, and using such controller in each
of the subsystems of Eq. 6. In the following the solution of system (7) with initial
conditions x0 at t0 is denoted by φ(t, t0, x0). We denote the class of piecewise con-
tinuous functions d : R → R by U . In light of these observations, FCP can be
reformulated as follows.

Revised FCP (RFCP) Consider system (7) with control input σ . Assume that d(·) ∈
U is a function bounded by d̄ > 0, i.e. for all t ≥ 0, 0 ≤ |d(t)| ≤ d̄ . For a given
control magnitude ω̄ > 0, design a feedback controller with values in {−1, 0, +1}
such that

(i) The point x = 0 is globally practically stable (see [14]), i.e., for all r > 0 there
exist controller parameters such that for all x0 ∈ R

2 and for all t0 ∈ R there
exists T > 0 such that φ(t, t0, x0) ∈ Br(0) for all t ≥ T ,

(ii) given any compact time interval [t0, t1], σ switches value a finite number of
times.
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It must be noted that while specification (i) is related to a stability property that
the controller is required to enforce, specification (ii) follows from practical consid-
erations related to the nature of the on-board thrusters. Given the type of electric
thrusters on the spacecraft, we must avoid any high frequency switching behaviour.
The control system must then be able to reach and stay in a desired neighborhood
of the formation configuration, switching only a finite number of times over any
compact interval of time.

Development

In this section the basic intuition leading to the solution of RFCP is presented. It is
useful to first study the case with d(t) ≡ 0. Consider the double integrator

ẋ1 = x2

ẋ2 = ω̄σ, (8)

with states x = (x1, x2) ∈ R
2, and let ω̄ > 0 be fixed. Consider the problem of

stabilizing the origin of system (8) by designing a switching function σ with values in
the set {−1, 0, +1}. One obvious solution to this problem is the time-optimal control
law (see, e.g., [15, 16])

σ =
⎧⎨
⎩

−1, x ∈ 
+
+1, x ∈ 
−
0, x = 0

(9)

where 
+ and 
− are defined as (see Fig. 2a)


+ = {(x1, x2) ∈ R
2 : x1 > 0, x2 > −√

2ω̄x1} ∪ {(x1, x2) ∈ R
2 : x1 < 0, x2 ≥ √−2ω̄x1},


− = {(x1, x2) ∈ R
2 : x1 > 0, x2 ≤ −√

2ω̄x1} ∪ {(x1, x2) ∈ R
2 : x1 < 0, x2 <

√−2ω̄x1}.

Fig. 2 Time optimal controller for double integrators. (a) Illustration of the sets 
+ and 
−. (b) Optimal
solution starting at x0
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The definition of sets 
+ and 
− follows directly from the original solution of
the time-optimal control problem for double integrators, see [15]. The parabola-
shaped boundaries follow from the fact that solutions of system (8) with controller
(9) are given by concatenations of arcs of parabolas.The switching boundary is the
set

{
(x1, x2) ∈ R

2 : x2 = −sign(x1)
√

2ω̄|x1|
}
. It is useful to define the two branches

of the switching boundary using the two parametrizations:

s+ : R>0 → R
2, s+(x) =

(
x, −√

2ω̄x
)

, s− : R<0 → R
2, s−(x) =

(
x,

√−2ω̄x
)

Controller (9) globally stabilizes the origin in finite time with only one switch.
Figure 2b shows an example of a state trajectory converging to the origin in finite
time under controller (9). The state trajectories between switching points are arcs of
parabolas. It is now shown that the time optimal controller (9) violates requirement
(ii) of RFCP when applied to system (7). Return to the perturbed double-integrator
(7), and suppose d(t) ≡ −d̄ , with ω̄ > d̄ > 0. Let x0 = s+(x01) ∈ 
− for some
x01 ∈ R>0, so that σ = +1. Referring to Fig. 3a, the state trajectory hits 
+ in
finite time, inducing a switch to σ = −1. Since d(t) ≡ −d̄ , after an arbitrarily
small interval of time, φ(t, t0, x0) enters 
− again, inducing a new switch to σ =
+1. This process continues indefinitely, inducing a sliding mode along the switching
curve s−(x1) (i.e. the state trajectory is forced by the controller to slide along curve
s−(x1) by means of an infinite number of switchings), as shown in Fig. 3b (only an
approximate representation of the sliding mode can be obtained through simulation).

Despite the fact that sliding modes could be instrumental in stabilizing the
origin, this condition is highly undesirable, since it would induce an infinite num-
ber of switchings on any compact time interval. Controller (9) must be modified in
order to avoid sliding modes. Consider, as above, x0 = s+(x01). A possible modi-
fication consists of disabling switching curve s+(x1) once it has been hit, therefore
allowing a switch if and only if the state trajectory hits the other switching parabola,
s−(x1). Although this eliminates sliding modes, it results in a loss of stability.

(a) (b)

Fig. 3 Sliding mode insurgence. (a) A state trajectory of system (7) when d(t) ≡ −d̄ and σ is given by
(9). (b) Zoom around the sliding mode. This is an illustration of the fact that the time optimal controller
(9) violates requirement (ii) of RFCP
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Fig. 4 Loss of stability with d(t) ≡ −d̄

Consider again the case d(t) ≡ −d̄ . The state trajectory through x0 = s+(x01),
hits the next switching curve in finite time, eventually diverging to infinity after the
switch (Fig. 4).

It has been shown so far that, in order to avoid infinitely many switchings, simply
disabling a switching curve until another one is reached is not desirable, in that it
gives a controller with no robustness to bounded disturbances. Further modifications
are needed. Referring to Fig. 5, two new switching sets are introduced:

�+ = {(x1, x2) : x1 ≤ 0, x2 ≤ 0} ∪ {(x1, x2) : x1 > 0, x2 ≤ s+(x1)}
�− = {(x1, x2) : x1 ≥ 0, x2 ≥ 0} ∪ {(x1, x2) : x1 < 0, x2 ≥ s−(x1)} (10)

Note that the boundary of sets �+ and �− are given by sets

∂�+ = S+ ∪ {(x1, 0) : x1 ≤ 0}, ∂�− = S− ∪ {(x1, 0) : x1 ≥ 0} (11)

where
S+ = {s+(x1) : x1 ∈ R>0}, S− = {s−(x1) : x1 ∈ R<0}

The controller discussed in the following activates and deactivates the switch-
ing sets �+ and �− by means of a discrete variable q. The gap between �+ and
�− (white region) guarantees that when trajectories are away from the origin, the
switching frequency is bounded. Near the origin, the boundedness of the switching
frequency is guaranteed by a basic hysteresis mechanism implemented using two

Fig. 5 Switching sets �− and �+
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Fig. 6 Finite state machine representing the proposed controller

nested balls B̄δ1(0) ⊂ Bδ2(0). Moreover, with this choice of �+ and �−, if d(t) ≡ 0
then by setting δ1 = δ2 = 0 controller 12 reduces to the time-optimal bang-bang
controller for the double integrator. We show in the next section that this control strat-
egy is robust against bounded disturbances and avoids infinite switchings, therefore
solving RFCP.

Solution of RFCP

In this section we present a feedback controller1 solving RFCP, and present a proof
of its convergence properties.

Control Law

The intuition presented above can be formalized by a hybrid control law. The intro-
duction of discrete states qj allows us to activate and deactivate the switching sets
�+, �−. Let r > δ2 > δ1 > 0 be design parameters, where r > 0 is the radius of the
neighborhood that has to be stabilized, δ1 is the radius of the open ball in which the
controller is turned off, and δ2 is the radius of the ball outside which the controller is
turned on again.

The control law is described by the finite state machine in Fig. 6, characterized
by discrete states Q = {q1, q2, q3}, continuous states x ∈ R

2 and hybrid feedback
σ�(·) : Q → R with

σ�(q1) = −1

σ�(q2) = +1

σ�(q3) = 0. (12)

1The controller discussed in this section is also discussed in the conference proceedings [13].
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In the following, the state transitions from state qj to state qk , with k �= j , will be
denoted by qj → qk . Referring to Fig. 6, if x0 ∈ 
+ \ B̄δ1(0) the discrete state is
initialized at q1 and, therefore, the control value is σ�(q1) = −1. The only allowable
state transition from q1 occurs either when x(t) enters B̄δ1(0) (q1 → q3), in which
case the control value is switched to σ�(q3) = 0, or when x(t) enters �+ \ B̄δ1(0),
(q1 → q2), in which case σ is switched to σ�(q2) = +1. Therefore the switching
set �− is disabled when the discrete state is at q1. Similarly, in q2 the switching set
�+ is disabled and the control value can only switch when the state enters B̄δ1(0)

or when it enters set �− \ B̄δ1(0). In q3, the controller is turned off, and it will be
turned on only when the state exits Bδ2(0). In particular, the control value will be
switched to +1 when x(t) enters 
− \Bδ2(0) (q3 → q2), and to −1 when x(t) enters

+ \ Bδ2(0), (q3 → q1).

In a mutually exclusive manner, the finite state machine in Fig. 6, by means of the
discrete states {q1, q2, q3}, enables and disables the switching sets and regulates the
hysteresis of the controller near the origin. If δ1, δ2 are picked sufficiently small, the
state trajectory enters Br(0) in finite time and never leaves it.

Theorem 1 Controller (12) solves RFCP if the thrust magnitude ω̄ satisfies the con-

dition ω̄ > d̄/2
(

1 + √
5
)

. In particular, if this inequality holds, then for any r > 0

there exist scalars δ1, δ2 with 0 < δ1 < δ2 < r , such that for all solutions through x0
there is Tx0 > 0 such that x(t) ∈ Br(0) for all t ≥ Tx0 .

Remark 1 It is possible to show that the conditions of Theorem 1 are also necessary,
not just sufficient, but this is beyond the scope of this paper.

Preliminaries

In the remaining part of the section we present the proof of Theorem 1. We begin
with some preliminary results. Fix an initial condition x0 and an automaton state qj

with j ∈ {1, 2}.
Definition 1 The attainable set A qj (x0, t) from x0 at time t of system (7) is the set

A qj (x0, t) = {x(t) : there exists d ∈ U such that x(t) is a solution of (7) through x0

with perturbation d(t) and σ = σ�(qj )}.
The attainable set A qj (x0) from x0 is the set A qj (x0) = ⋃

t≥0 A qj (x0, t).

It is shown in [17] that the boundary of the attainable set A qj (x0) from x0 of
a certain class of planar nonlinear systems is a union of phase curves of two spe-
cial differential equations, the so-called extremal vector fields. Their solutions are
denoted φ

qj

L (t, x0) and φ
qj

R (t, x0). We refer to [17] for the details on how to con-
struct φ

qj

L (t, x0), φ
qj

R (t, x0). Given qj ∈ Q, curves φ
qj

L (s, x0) and φ
qj

R (s, x0) are the
curves of maximum and minimum acceleration, for all the admissible d(t) ∈ U . It
naturally follows that φ

qj

L (s, x0) and φ
qj

R (s, x0) form the boundary of the attainable
set A qj (x0). In the case of system (7), by applying the results in [17], the extremal
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solutions can be computed analytically and are concatenations of arcs of parabolas
defined as

X
qj
s (x0) =

[ (−d̄ + (−1)j ω̄
)

s2

2 + x02s + x01(−d̄ + (−1)j ω̄
)
s + x02

]

Y
qj
s (x0) =

[ (
d̄ + (−1)j ω̄

)
s2

2 + x02s + x01(
d̄ + (−1)j ω̄

)
s + x02

]

with j ∈ {1, 2}, where j refers to the index of the current value of the automaton
state, qj . The concatenation occurs when the solution hits {x2 = 0}. More precisely,
for all x0 ∈ R− = {x ∈ R

2 : x2 < 0} (with R+ = {x ∈ R
2 : x2 > 0}), φ

qj

L (s, x0),
φ

qj

R (s, x0) are given by

φ
qj

L (s, x0) =
{

Y
qj
s (x0), if Y

qj
s (x0) ∈ R−

X
qj

s−s
j
Y (x0)

◦ Y
qj

s
j
Y (x0)

(x0), if Y
qj
s (x0) ∈ R+ (13)

φ
qj

R (s, x0) =
{

X
qj
s (x0), if X

qj
s (x0) ∈ R−

Y
qj

s−s
j
X(x0)

◦ X
qj

s
j
X(x0)

(x0), if X
qj
s (x0) ∈ R+ (14)

where s
j
X(x0) = − x02

(−1)j ω̄−d̄
, s

j
Y (x0) = − x02

(−1)j ω̄+d̄
. If x0 ∈ R+ the extremal curves

are defined equivalently by substituting X
qj
s (x0) with Y

qj
s (x0), s

j
X with s

j
Y and vice

versa in (13) and (14) (we refer to [17] for an extensive treatment of extremal vector
fields of planar non linear systems). Using this fact we prove that the first discrete
transition qj → qk , with j, k ∈ {1, 2, 3}, exists for all x0 ∈ R

2 if ω̄ > d̄ .

Lemma 1 Let 0 < δ1 < δ2. If ω̄ > d̄ , then for all x0 ∈ (B̄δ1(0))c and all d ∈ U ,
there exists a finite τ > 0 such that qj → qk when t = τ , for some j, k ∈ {1, 2, 3},
k �= j .

Proof Suppose ω̄ > d̄ and let, without loss of generality, x0 ∈ 
− \ B̄δ1(0). Con-
troller (12) is initialized at q2, with σ = σ�(q2) = +1. Set A q2(x0) is represented in
Fig. 7. Note that A q2(x0) is bounded. Suppose, by way of contradiction, that for some

Fig. 7 Attainable set from x0, A q2 (x0). The shaded region indicates the region accessible to x(t) before
inducing a discrete state transition q2 → qj , j ∈ {1, 3}
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d ∈ U , the solution x(t) of Eq. 7 with initial condition x0 and σ = σ�(q2) = +1
does not enter the set �− ∪ B̄δ1(0). Therefore x(t) must remain in the shaded region
of Fig. 7 for all t ≥ 0. However, the inequality ẋ2 = d(t) + ω̄ ≥ ω̄ − d̄ > 0 implies
that the solution x(t) is unbounded, which gives a contradiction.

We propose in the following a formal definition of switching time and switching
point.

Definition 2 Let x(t) be a solution of system (7) with hybrid feedback (12). A time
instant ti , with i ∈ N, is called a switching time if x(ti) ∈ (

S+ ∪ S− ∪ B̄δ1(0)
)

and at time t = ti a state transition qj → qk , with j, k ∈ {1, 2, 3}, j �= k

occurs. The value of the state at a switching time, xi = x(ti) is called a switching
point.

The definition of switching point allows us to investigate the types of state tra-
jectories induced by controller (12). Consider, without loss of generality, xi ∈ S+.
By Lemma 1 the state trajectory will either hit the switching set �− on S− or on
the x1-axis. If the trajectory hits �− on S−, then, by Definition 2, switching point
xi+1 ∈ S− is defined. This situation is depicted in Fig. 8a and is referred to as 1-
switch. If, on the other hand, the trajectory hits �− on the x1-axis, one can show,
by applying Lemma 1 with the new control value σ = σ�(q1) = −1, that the state
trajectory must later hit the active switching set �+ on S+, inducing switching point
xi+1 ∈ S+. This situation is depicted in Fig. 8b and is referred to as 2-switch. If x(t)

enters B̄δ1(0), then switching point xi+1 ∈ B̄δ1(0) is denoted 0-switch. One can show
that these are the only possible trajectories induced by controller (12).

To summarize, if ω̄ > d̄ , only three types of switching points are possible (see
Fig. 8).

– xi+1 is a 1-switch from xi , if one of xi or xi+1 belongs to S+, and the other one
belongs to S−.

(a) (b)

Fig. 8 Types of switching points induced by hybrid feedback (12). (a) 1-Switch. The state trajectory starts
from xi ∈ S+ and hits set �− on S−. (b) 2-Switch. The state trajectory starts from xi ∈ S+, hits �− on
the positive x1 axis and returns to set �+ on S+
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– xi+1 is a 2-switch from xi , if both xi , xi+1 belong to the same arc of parabola,
S+ or S−.

– xi+1 is a 0-switch from xi , if xi+1 ∈ B̄δ1(0).

By Lemma 1, if ω̄ > d̄, then controller (12) induces a sequence of switching
points {xi}i∈I , with i ∈ I ⊂ N nonempty, such that

(
x1, . . . , xi ∈ (B̄δ1(0))c

) ⇒
i + 1 ∈ I . We now show that the sequence of switching points converge to the
origin if ω̄ > d̄(1 + √

5)/2, by showing that the sequence {||xi ||}i∈I contracts.
In particular, we show that if xi, xi+1 ∈ (B̄δ1(0))c, ||xi+1|| ≤ ᾱ||xi ||, for some
0 < ᾱ < 1.

Consider the intersection of the attainable set A qj (xi) from xi ∈ S+ with the
active switching set �− ∪ B̄δ1(0) and let p, v be defined as in Fig. 9.

If x(t) performs a 1-Switch, xi+1 ∈ A q2(xi) ∩ ∂�−, and therefore ||xi+1|| ≤
||p||. By using the analytic form of φ

q2
R (s, xi) in Eq. 13, one can show that p1 =

−α2
1xi

1 where α2
1 = (

d̄(d̄ + ω̄)
)
/
(
(ω̄ − d̄)(2ω̄ + d̄)

)
. This implies that ||xi+1|| ≤

||p|| ≤ α1||xi ||. If ω̄ > d̄(1 + √
5)/2, then α1 < 1. If, on the other hand, x(t)

performs a 2-switch, |xi+1
1 | ≤ |v1|, since A q1(v) is delimited by parabolas with

negative concavity from v. By using the analytic expression of φ
q2
L (s, xi), one can

show that |v1| = α2
2 |xi

1|, where α2
2 = (

1 − ū/(ū + f̄ )
)
. If ω̄ > d̄(1 + √

5)/2, then
α2 < 1 and ||xi+1|| ≤ α2||xi ||. Therefore if ω̄ > d̄(1 + √

5)/2, then ||xi+1|| ≤
ᾱ||xi ||, with ᾱ = max {α1, α2} < 1.

We have proved the following result.

Lemma 2 Consider system (7) with hybrid feedback (12), and pick δ1, δ2 such that

0 < δ1 < δ2. If ω̄ > d̄
(

1 + √
5
)

/2, there exists ᾱ ∈ (0, 1) such that for any

d ∈ U and any initial condition, the sequence {xi}i∈I of switching points induced
by the solution x(t) of (7) with hybrid feedback (12) is contracting as long as
xi �∈ B̄δ1(0).

Lemma 2 implies that the sequence {xi}i∈I converges to B̄δ1(0) and so for
all x0 ∈ R

2 and for all δ2 > 0 there exists Tx0 ≥ 0 such that x(Tx0) ∈
B̄δ2(0). The following lemma shows that for all r > 0, one can pick δ1 <

Fig. 9 Attainable switching set from xi
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δ2 < r so that, after entering Bδ2(0), x(t) remains in Br(0), switching with finite
frequency.

Lemma 3 Consider system (7) with the hybrid feedback (12). For any r > 0 there
exist δ1, δ2, 0 < δ1 < δ2 < r , and a compact positively invariant set Q such that
B̄δ2(0) ⊂ Q ⊂ Br(0).

Proof Let Pi be the compact region depicted in Fig. 10, delimited by the extremal
solutions φ

q2
R (s, xi), φ

q2
L (s, xi), and by ∂�−. Let Qi = Pi ∪ −Pi . Extremal

solutions φ
q2
L (s, xi), φ

q2
R (s, xi) have the property [17] that all solutions of (7) with

σ = σ�(qj ) cross the curve φ
q2
L to the left, and φ

q2
R to the right. Therefore

solutions in Pi can only exit it through ∂�−. Since Pi ∩ ∂�− ⊂ −Pi and
−Pi ∩ ∂�+ ⊂ P i , it follows that Qi is positively invariant. One can read-
ily see that there exists c > 0 such that, for all i, Qi ⊂ Bc‖xi‖(0). Since the
sequence {xi}i∈I is contracting, there exists i ∈ I such that c‖xi‖ < r , so that
Qi ⊂ Br(0). Clearly 0 ∈ intQi so there exists δ2 > 0 such that B̄δ2(0) ⊂
intQi . δ2 > 0 can be computed as follows. If (ω̄− d̄)2 +ω̄d̄− d̄

√
ω̄2 + c2r2 < 0 then

pick δ2 <

√
2d̄(−ω̄ + √

ω̄2 + c2r2) − (ω̄ − d̄)2, otherwise pick δ2 < | −d̄

ω̄−d̄
(−ω̄ +

√
ω̄2 + c2r2)|, where c = min {1,

(
(ω̄ − d̄)2/d̄2 + 2ω̄(ω̄ − d̄)/(rd̄)

) 1
2 }. Next, pick

δ1 ∈ (0, δ2). The choice of δ1 affects only the frequency of the controller near the ori-
gin. The positive invariance of Qi is preserved with these choices of δ1, δ2 because
B̄δ2(0) ∩ ∂Qi = ∅.

Remark 2 The conditions on the admissible value of δ2 are only sufficient. As such,
they can be very conservative when considering practical applications, increasing the
switching frequency of the controller. One can adjust the value of δ2 by a simple trial
and error process.

Proof of Theorem 1

We are now ready to prove the main result of the paper.

Fig. 10 Set Pi
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Proof For any r > 0, by Lemma 3 there exists a positively invariant set Q and
0 < δ1 < δ2 such that B̄δ2 ⊂ Q ⊂ Br(0). For any initial condition in (B̄δ1(0))c and
any d ∈ U , the solution x(t) gives rise to a well-defined switching sequence {xi}i∈I .
By Lemma 2, this sequence is contracting as long as xi �∈ B̄δ1(0). Since B̄δ1(0) ⊂
B̄δ2(0) ⊂ Q, xi ∈ Q for sufficiently large i. By Lemma 3, x(t) ∈ Q ⊂ Br(0) for all
t ≥ ti .

Robustness to Attitude Perturbations

In this section we study the robustness of controller (12) with respect to perturba-
tions on the attitude of the follower spacecraft. The results presented in this section
are twofold. We first show that, by choosing ω̄ according to Theorem 1, controller
(12) solves FCP if the perturbation on the follower’s attitude is small enough. We
then show that, if the performances of the attitude control system are known, ω̄

can be chosen so as to compensate the perturbations acting on the spacecraft. Sup-
pose that, according to Theorem 1, ω̄ has been chosen so that ω̄ = λd̄(1 + √

5)/2,
with λ > 1. Suppose that the attitude of the follower is perturbed around its target
configuration R̄2. Let θ1, θ2, θ3 denote the angles associated with the 1 − 2 − 3 Euler
angle sequence. Let θ̄1, θ̄2, θ̄3 be the angles associated with the target spacecraft ori-
entation R̄2 (assuming, without loss of generality that the reference configuration
does not correspond to the singularity of the Euler representation). Under the assump-
tion of small attitude perturbations, the rotation of the follower can be linearized and
written as

R2(t) ≈ (13 − δψ(t)×)R̄2 (15)

where 13 is the 3 × 3 identity matrix and δψ(t) = S(θ̄2, θ̄3)δθ(t) with

S(θ̄2, θ̄3) =
⎡
⎣

cos θ̄2 cos θ̄3 sin θ̄3 0
− cos θ̄2 sin θ̄3 cos θ̄3 0

sin θ̄2 0 1

⎤
⎦

The vector δθ(t) = [δθ1(t) δθ2(t) δθ3(t)] denotes the perturbations on each angle of
the Euler sequence. The equations of motion of the follower can be rewritten as

Ẋ2 = V2

V̇2 = G2(χ2, t) + (13 − δψ(t)×)R̄2u2(t) (16)

Consider the coordinate transformation proposed in Eqs. 3 and 4

Z = R̄T
2

(
X2 − X1

)
− Z�(t)

V = R̄T
2

(
V2 − V1

)
− V�(t) (17)

Note that R̄2 is constant. Z, V are no longer the relative position and relative velocity
between the two spacecraft expressed in frame B2. Z, V must be estimated by the
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spacecraft. By applying such coordinate transformation to (16), the error dynamics
can be rewritten as

Ż = V

V̇ = D̃(t) + u2(t) (18)

where

D̃(t) = D(t) − R̄T
2 δψ(t)×R̄2u2(t) (19)

As in section “FCP as an Equilibrium Stabilization Problem in Relative
Coordinates”, stabilizing the origin of system (18) is equivalent to stabilizing the
desired formation configuration. The function D̃(t) is bounded. The dependence of
D̃(t) by u(t) does not prevent us from applying the results of Theorem 1, since D̃(t)

is still a time-varying bounded function in U . We are interested in finding a bound on
the attitude perturbation δθ(t) so that, whenever the follower’s attitude is kept inside
such bound, controller (12) still meets its control objectives.

||D̃(t)|| ≤ d̄ + ‖R̄T
2 δψ(t)×R̄2u2(t)‖ ≤ d̄ + ‖R̄T

2 (R̄2u2(t))×δψ(t)‖
≤ d̄ + ‖(u2(t))×R̄T

2 S(θ̄2, θ̄3)‖‖δθ(t)‖ ≤ d̄ + ‖(u2(t))×‖‖S(θ̄2, θ̄3)‖‖δθ(t)‖

It can be easily shown that ‖(u2(t))×‖ ≤ √
3 ω̄ and ‖S(θ̄2, θ̄3)‖ =

√
1 + | sin θ̄2|

Therefore

‖D̃(t)‖ ≤ d̄ + √
3 ω̄

(√
1 + | sin θ̄2|

)
‖δθ(t)‖ (20)

By Theorem 1, if ω̄ > ‖D̃(t)‖
(

1 + √
5
)

/2 then controller (12) solves RFCP. If

ω̄ >

(
d̄ + √

3 ω̄

(√
1 + | sin θ̄2|

)
‖δθ(t)‖

) (
1 + √

5
)

/2 (21)

then the condition required by Theorem 1 is satisfied. By using the fact that ω̄ =
λd̄(1 + √

5)/2 the bound on the attitude perturbation δθ can be easily computed as

‖δθ(t)‖ <
2 (λ − 1)

λ
√

3
(

1 + √
5
) √

1 + | sin θ̄2|
(22)

As long as the follower’s orientation satisfies the bounds given by condi-
tion (22), controller (12) successfully achieves the control objectives. Suppose,
on the other hand, that we are given the maximum orientation error allowed
by the on-board attitude control system, denoted by ‖δθ‖max. If ‖δθ‖max <

2/
(√

3(1 + √
5)

√
1 + | sin θ̄2|

)
, relation (21) can be used to find the value of ω̄ that

allows to reject the disturbance and achieve the main control specifications

ω̄ >
d̄

(
1 + √

5
)

2 − √
3

(
1 + √

5
) (√

1 + | sin θ̄2|
)

‖δθ‖max

(23)
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Simulations

In this section we present some simulation results in order to prove the effectiveness
of controller (12). Let m1 = m2 = 400 kg be the mass of the two spacecraft. The
leader is not controlled and follows a Halo orbit around the libration point L2 of the
Sun-Earth/Moon system, Fig. 11. We assume here as inertial frame I an ecliptic
frame centered at the Sun. The dynamics of the two vehicles is modeled as in Eq. 1,
the motion of the Sun and the Earth/Moon system is assumed to be circular while the
gravitational perturbations of all the planets have been considered.

It is assumed that the follower (spacecraft 2) is fully actuated with a total of 6
electric thrusters providing a constant thrust of T̄ = 40μN each. We consider a case
of practical interest for interferometric missions: we assume the target configuration
to be described by constant triple (200 m, π

9 , π
6 ). This triple describes a fixed for-

mation in I that allows the cluster to perform the observation of a fixed target. We
assume that the attitude of the follower with respect to frame I is constant and given
by the rotation matrix:

R =
⎡
⎢⎣

−0.2988 −0.5794 −0.7583

−0.9543 0.1814 0.2374

0 0.7946 −0.6072

⎤
⎥⎦

As shown in section Robustness to Attitude Perturbations, this last assumption is not
essential, in that a time varying orientation would result only in additional disturbance
terms, easily compensated by feedback 12. For these simulations it was assumed that
the spacecraft have access to the exact value of their relative position and velocity.

The simulated scenario is similar to the mission profile of the SI mission [1]: three
control phases are defined in the following, characterized by increasingly tighter
tolerances on dF , αF and βF .

Fig. 11 Nominal Halo orbit in the Sun-Earth/Moon system, as seen in the classical Sun-Earth rotating
frame
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Table 1 Components of sets U
j
i for each phase of the mission

Tolerance Phase 1 Phase 2 Phase 3

δz1 0.7281 m 0.0728 m 6.81 · 10−4 m

δz2 1.0018 m 0.1002 m 6.918 · 10−4 m

δz3 0.7179 m 0.0718 m 6.859 · 10−4 m

δz4 3 · 10−4 m/s 1 · 10−4 m/s 1 · 10−5 m/s

δz5 3 · 10−4 m/s 1 · 10−4 m/s 1 · 10−5 m/s

δz6 3 · 10−4 m/s 1 · 10−4 m/s 1 · 10−5 m/s

– Phase 1 (rough control): (δdF , δαF , δβF ) = (1 m, 0.017 rad, 0.017 rad)

– Phase 2 (intermediate control): (δdF , δαF , δβF ) = (10 cm, 0.0017 rad,

0.0017 rad)

– Phase 3 (fine control): (δdF , δαF , δβF ) = (1 mm, 5 · 10−6 rad, 5 · 10−6 rad)

The scenario has been simulated for a total time interval of T = 16 days.
Note that open balls Bri (0) can be substituted with open boxes U

j
i defined as

U
j
i =

(
−δz

j
i , δz

j
i

)
×

(
−δz

j

i+3, δz
j

i+3

)
, where δz

j
i refers to the tolerance for state zi

during phase j . Equivalently, balls Bδ1(0) and Bδ1(0) have been replaced by boxes.
As mentioned in Remark 2, their size has been adjusted by trial and error (Table 1).

The relative initial conditions have been assumed to be Ẑ0 = R̄T
2 (−5, 5, 5) m

and V̂0 = R̄T
2 (−1.2 · 10−3, 2 · 10−3, 10−4) m/s. Figure 12a presents the approach-

ing phase to the desired neighborhood of (200, π
9 , π

6 ) in the phase plane of the
subsystem z1 − z4. Note that the state trajectory closely resembles the original undis-
turbed case, thanks to the low intensity of the gravity differential between the two
spacecraft. Figures 12b, 13a and 13b present a magnification of the behaviour of the

(a) (b)

Fig. 12 Phase 1 (a) (z1; z4) subsystem. The state trajectory approaches a neighborhood of the origin. (b)
Formation keeping for phase 1. The state is successfully kept inside the target set
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(a) (b)

Fig. 13 Phases 2 and 3. (a) Formation keeping for phase 2. The state is successfully kept inside the target
set. (b) Formation keeping for phase 3. The state is successfully kept inside the target set

(a) (b)

Fig. 14 Distance between the spacecraft dF (t). (a) The distance between the spacecraft approaches a
neighborhood of dF (t) . (b) After short transients, dF (t) is kept, during each phase, inside the desired
bounds

15 15.2 15.4 15.6 15.8 16

199.996

199.997

199.998

199.999

200

200.001

200.002

200.003

200.004

Fig. 15 After a short transient, dF (t) is kept in the target bound of phase 3
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(a) (b)

Fig. 16 Angle between the spacecraft αF (t). (a) After short transients, αF (t) is kept, during each phase,
inside the desired bounds. (b) After a short transient, αF (t) is kept in the target bound of phase 3

state trajectory in the selected neighborhoods, during each phase of the mission, for
subsystem z1 −z4. As the figures suggest, the proposed controller successfully keeps
the state trajectory inside the target sets. Equivalent results are obtained for subsys-
tems z2 − z5 and z3 − z6. As can be seen in Fig. 14a, the distance between the
two spacecraft approaches a neighborhood of the target configuration. Figures 14,
15, 16, 17 and 18 confirm that not only the pair of spacecraft approaches the nom-
inal configuration (d̄F , ᾱF , β̄F ), but also that during each phase of the mission,
after short transients, the corresponding tolerance bounds are satisfied. Moreover,
it must be stressed that the only limit to the level of accuracy achievable by con-
troller (12) is given by the accuracy of the on-board sensors and by the maximum
on-off frequency sustainable by the selected thrusters. Figure 19a presents the on-
off switching function for one of the thrusters of the follower spacecraft over the
entire simulation interval. Figure 19a presents the switching history for phase 3 of
the simulation. The other five thrusters present similar switching histories. They are

(a) (b)

Fig. 17 Angle between the spacecraft βF (t). (a) After short transients, βF (t) is kept, during each phase,
inside the desired bounds. (b) After a short transient, βF (t) is kept in the target bound of phase 3
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Fig. 18 Trajectory of the follower spacecraft seen by the leader. The relative position components x̂k with
k = 1, 2, 3 are defined as x̂k = x2

k − x1
k

therefore not shown here. Note from Figs. 19a and 19b that feedback (12) turns
on and off each thruster with finite frequency. Indeed, as Fig. 19b shows, under
tight tolerance requirements each correction maneuver lasts for a few minutes while
the time between two successive activations of the thruster is of the order of one
hour. Figures 12 to 17 show that controller (12), successfully achieves and keeps the
desired formation configuration meeting the specified tolerance limits, by means of
a total of 6 constant thrust electric thrusters. In the worst case scenario (no inter-
vals with thrusters off), the total cost of the mission would be of approximately
�v = 4.66 m/s over a timespan of 180 days (the period of the Halo orbit). The cost
is then very limited, especially considering that such a �v is to be obtained using
electric thrusters. Recent developments in the field of FEEP propulsion systems, as
in [18], showed that similar performances can be obtained with just few grams of
propellant.

(a) (b)

Fig. 19 Switching function for thruster 1. (a) On-off switching function. (b) On-off switching function,
phase 3
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Conclusions

The paper introduces a new hybrid controller for the stabilization of spacecraft for-
mations flying in the vicinity of the L2 libration point of the Sun-Earth/Moon system,
by using on-off electric thrusters. Such a controller permits the achievement and
maintenance of the formation meeting any tolerance level on the formation’s length
and orientation (sufficient conditions on the thrust magnitude are provided). This is
obtained by properly coordinating the on-off cycles of the on board thrusters. By
design the controller is robust to bounded unmodeled disturbances.
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