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Abstract

A hybrid finite frequency controller is proposed for the vibration suppression of a large flexible structure mounted

with collocated sensors and actuators. The controller has passive characteristics at low frequencies and small gain

characteristics at high frequencies. Compared with a strictly positive real controller based on the standard Kalman–

Yakubovich–Popov lemma, the hybrid finite frequency controller has less energy consumption but can obtain approxi-

mately identical performance. Furthermore, when the plant passivity is violated at high frequencies by noncollocation of

sensors and actuators, the strictly positive real controller based on the Kalman–Yakubovich–Popov lemma is no longer

able to attenuate the vibration of the large flexible structures, while the hybrid finite frequency controller is effective in

suppressing the vibration and avoiding spillover instability. Simulation results are presented to validate the effectiveness of

the hybrid finite frequency controller.
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Introduction

Vibration attenuation for large flexible structures
has been an attractive academic topic in the past
few decades. This problem has many applications
such as robotic manipulators,1–4 flexible spacecraft,5–8

etc. Specifically, large flexible structures can possess
passivity when sensors and actuators are collocated,
which is an ideal physical configuration. Input–output
stability of passive structures can be provided using
the passivity theorem, which states that a closed-loop
system is stable if it consists of the negative feedback
interconnection of a strictly passive controller and a
passive plant. The passivity theorem can be used to
show that control of large flexible structures is robust
with respect to stiffness and mass modeling errors.
However, in practical applications, it is essentially
impossible to mount sensors and actuators at exactly
the same sites, which is called the noncollocation con-
figuration, and consequently the passivity of the struc-
tures is violated. In particular, if the noncollocated
sensors and actuators are closely placed, the plant
may still be passive in a low-frequency range but
may not be passive beyond a certain frequency. For
a spacecraft with noncollocation configuration, an
experiment-based active damping control approach
was addressed to attenuate its flexible appendages.9

Similar active damping control schemes have been
developed for noncollocated dynamic systems.10–12

A virtual (recalculated) collocation method has been
proposed for a flexible rotor to reduce the effects due
to noncollocation.13 A delayed feedback was added
into the recurrent wavelet neural network controller
to reject disturbance for flexible structures with non-
collocated sensors and actuators.14 However, none of
the control schemes in the above literature were devel-
oped in the frequency domain for a noncollocated
configuration.

To produce a scheme for accommodating passivity
violations, the hybrid passive/finite gain stability the-
orem has been proposed by Forbes.15 This theorem
stemmed from the mixed passive/finite gain stability
as addressed in by Griggs.16,17 It focused on a hybrid
system, which maintains passivity in a low-frequency
range and has finite gain at high frequencies. At low
frequencies, the passive property can permit relatively
large gains. At high frequencies, the small gain
property can compensate for the inapplicability of
the passivity theorem as the passivity is destroyed.
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As applications of the hybrid passive/finite gain the-
orem, the hybrid strictly passive/finite gain controllers
have been developed to overcome passivity violation
caused by the sensor dynamics in robotic manipulator
systems.18,19 These applications were all concentrating
on the dynamic systems modeled using all of the finite
physical coordinates. In practice, however, common
large flexible structures like plates are usually modeled
by reduced order models. The modal truncation inev-
itably separates the real system into a modeled part
and an unmodeled part. The unmodeled part makes
the hybrid passive/finite gain control of a such a pas-
sivity-violated system at high frequencies a serious
challenge.

In the field of feedback control, the Kalman–
Yakubovich–Popov (KYP) lemma is of crucial
importance for stabilization of a nominally passive
dynamic system, which has been investigated.20

However, the KYP lemma primarily deals with the
systems which are passive over an infinite frequency
range, i.e. have positive real transfer functions. For
large flexible structures, the modeled parts usually
contain low-frequency modes. It is intuitive that the
controllers designed to be passive at low frequencies
might be more powerful than the controllers based on
the KYP lemma over an infinite frequency range.

The generalized Kalman–Yakubovich–Popov
(GKYP) lemma provided a set of linear matrix
inequalities (LMIs), which yield a controller designed
using distinctive finite frequency ranges.21,22

Furthermore, the standard KYP lemma fails to accom-
modate passivity violations since the passivity theorem
is not applicable. A fusion of the GKYP lemma and
the hybrid passive/finite gain theorem has been imple-
mented to stabilize a single-link manipulator.19 This
motivated us to design a finite-frequency controller
using the GKYP lemma to stabilize a partially modeled
passivity-violated large flexible structures with robust-
ness to modeling errors, noncollocation, and spillover
from the unmodeled parts of the structure (i.e. higher
modes).

The contributions of this paper are two-fold. First,
we present a finite-frequency controller using the
GKYP lemma for a nominally passive large flexible
structure and make a comparison with a controller
designed by the KYP lemma. Second, it aims to
implement the hybrid finite frequency strictly pas-
sive/finite gain controller to accommodate passivity
violations, which are caused by noncollocation.
Numerical simulations are presented at the end to
validate the effectiveness of the proposed controller.

Finite frequency control for hybrid
passive/finite-gain system

In this section, we will review the concept of passivity
in the time and frequency domains individually. The
standard KYP lemma and GKYP lemma are pre-
sented as well. Then the GKYP lemma is associated

with the hybrid passive/finite-gain theorem to con-
struct the controller.

Preliminary

Consider a linear time-invariant (LTI) system

_x ¼ Axþ Bu, y ¼ Cx ð1Þ

where x 2 <n is the state, y 2 <m is the output, u 2 <m

is the control input. In the time domain, the passivity
of the system corresponds toZ T

0

yTðtÞuðtÞdt50, 8T50, 8u 2 L2e ð2Þ

The system is strictly passive ifZ T

0

yTðtÞuðtÞ dt5�

Z T

0

uTu dt

ð8T50, 8u 2 L2e, �4 0Þ

ð3Þ

Taking the Laplace transform in equation (1), the
system can be written as yðsÞ ¼ GðsÞuðsÞ, where GðsÞ ¼
Cðs1� AÞ�1B is the transfer function and yðsÞ and uðsÞ
are the Laplace transform of yðtÞ and uðtÞ respectively. In
the frequency domain, the matrix GðsÞ is positive real if

Gð j!Þ þ GH
ð j!Þ50, 8! 2 < ð4Þ

where ð�ÞH is the complex-conjugate transpose. This is
the applicable definition when GðsÞ has no poles on
the imaginary axis. It is well known that the system (1)
is passive if GðsÞ is positive real. An important lemma
related to passivity is given as:

Lemma 1. (KYP lemma) Consider the system GðsÞ ¼
Cðs1� AÞ�1B and assumed that A is Hurwitz and
ðA, B, CÞ is a minimal state-space realization. This
system is strictly positive real (SPR) if and only if
there are matrices P ¼ PT 4 0 and Q ¼ QT 4 0 such
that the following conditions are satisfied:

PAþ ATP ¼ �Q, PB ¼ CT
ð5Þ

For a proof, see Marquez.23 The SPR system GðsÞ
corresponds to a strictly passive system if GðsÞ ¼
Cðs1� AÞ�1Bþ �1 for an arbitrarily small �4 0.

The KYP lemma can be used to design an SPR
controller. However, the passivity of this controller
can be characterized only over an infinite frequency
range. In some practical applications, requirements
given in the finite frequency ranges are not compatible
with the standard KYP lemma. As the extension of
this, the GKYP lemma was proposed by Iwasaki.21,22

Lemma 2. (GKYP lemma) Consider the system
GðsÞ ¼ Cðs1� AÞ�1B and a given matrix � ¼ �H.
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The following statements are equivalent:21,22

(i) Frequency domain condition

Gð j!Þ

1

" #H

�
Gð j!Þ

1

" #
5 0 ð6Þ

(ii) Linear matrix inequality: There are two matrices
P ¼ PT and Q ¼ QT50 such that

A B

1 0

" #H

LðP,QÞ
A B

1 0

" #

þ
C 0

0 1

" #H

�
C 0

0 1

" #
5 0

ð7Þ

Here, the function LðP,QÞ depends on the matrices
P and Q and has particular forms in different frequency
ranges which are described below.

Hybrid passive/finite gain system

For simplicity, the notation yð j!Þ indicates the
Fourier transform of a function y. Using Parseval’s

theorem,24 a function yðtÞ 2 L2 if
R1
0 y2ðtÞdt ¼ 1=ð2�Þ

Re
R1
�1

yHð j!Þ yð j!Þd!51. The function yðtÞ 2 L2e

if
R T
0 y2ðtÞdt ¼ 1=ð2�ÞRe

R1
�1

yHT ð j!ÞyTð j!Þd!51, 0

4T5 0, where yTðtÞ ¼ yðtÞ, 04t4T and yTðtÞ ¼ 0
when t4T. A general negative feedback system is
illustrated in Figure 1.

Consider a system y ¼ Ge where the operator G:
L2e ! L2e. The definitions of a hybrid passive/finite
gain system are given as follows:15

Definition 1. A hybrid passive/finite gain system G
satisfies

1

2�

Z 1
�1

yHT ð j!ÞQð!ÞyTð j!Þd!

þ
1

�

Z 1
�1

yHT ð j!ÞSð!ÞeTð j!Þd!

þ
1

2�

Z 1
�1

eHT ð j!ÞRð!ÞeTð j!Þd!50

ð8Þ

where

Qð!Þ ¼ � ��ð!Þ þ ��1ð1� �ð!ÞÞ
� �

1

Sð!Þ ¼
1

2
�ð!Þ1

Rð!Þ ¼ �ð1� �ð!Þ � ��ð!Þ½ �1

ð9Þ

The constant parameters �, � describe the system’s
passivity properties. The constant � describes the finite
gain of the system. The purpose of the variable a is to
split the entire frequency range into two sub-ranges

�ð!Þ ¼
1, �!c4!4!c ð passive regionÞ

0, j!j4!c ð finite gain regionÞ

�
ð10Þ

where !c will be called the critical frequency.
By considering the case �!c4!4!c with �ð!Þ ¼ 1

and j!j4!c with �ð!Þ ¼ 0, equation (8) can be satis-
fied if

1

2�
Re

Z !c

�!c

yHT ð j!ÞeTð j!Þd!

5
�

2�

Z !c

�!c

yHT ð j!ÞyTð j!Þd!

þ
�

2�

Z !c

�!c

eHT ð j!ÞeTð j!Þd!

ð11Þ

and

1

��

Z 1
!c

yHT ð j!ÞyTð j!Þd!4
�

�

Z 1
!c

eHT ð j!ÞeTð j!Þd! ð12Þ

In equation (11), passive characteristics is pos-
sessed at low frequency whereas equation (12)
expresses finite gain at high frequency, i.e.
�maxfGð j!Þg4� for j!j4!c.

We now invoke the GKYP lemma in equation (7).
If a LTI system has passive characteristics for
�!c4!4!c, it was shown by Iwasaki,22 that

� ¼
0 �1

�1 0

� �
makes equation (6) equivalent to equation (11). Then
taking

LðP,QÞ ¼
�Q P

P !2
cQ

� �
one can express (7) as

A B

1 0

� �H
�Q P

P !2
cQ

� �
A B

1 0

� �
þ

C 0

0 1

� �H
0 �1

�1 0

� �
C 0

0 1

� �
40

ð13Þ

e G1

G2

Figure 1. General negative feedback system.
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If the LTI system is SPR over �!c4!4!c, the
inequality (7) can be given by

A B

1 0

� �H
�Q P

P !2
cQ

� �
A B

1 0

� �
þ

C 0

0 1

� �H
0 �1

�1 0

� �
C 0

0 1

� �
5 0

ð14Þ

Equation (6) represents equation (12) if we take

� ¼
1 0

0 ��21

� �
The corresponding choice for LðP,QÞ in equa-

tion (12) is

LðP,QÞ ¼
Q P

P �!2
cQ

� �
so that equation (7) becomes

A B

1 0

" #H
Q P

P �!2
cQ

" #
A B

1 0

" #

þ
C 0

0 1

" #H
1 0

0 ��21

" #
C 0

0 1

" #
5 0

ð15Þ

Stability

In the above section, the critical frequency !c plays a
dominant role in a hybrid system definition. It is the
division between the passive and finite gain region.
The critical frequency !c of the plant system is
assumed to be known in the following. The GKYP
lemma can be implemented for a hybrid system with
its corresponding properties in different frequency
ranges. The stability can be ensured by the hybrid
passivity/finite gain theorem presented in Forbes.15

Theorem 1. (Hybrid passivity finite gain theorem)
Consider the two systems G1 : L2e ! L2e and
G2 : L2e ! L2e interconnected with negative feedback
as illustrated in Figure 1. Assumed these two systems
are hybrid passivity/finite gain system with correspond-
ing parameters as G1 : �1, �1, �1 and G2 : �2, �2, �2 sat-
isfying (11) and (12). The interconnected system
with G1 and G2 is L2 stable if �1 þ �2 4 0, �2 þ �1 4 0
and �1�2 5 1.

For a proof, see Forbes.15

Application to large flexible structures

The main application in this paper is a large rectangu-
lar plate. The dynamic structure is shown in Figure 2.
The plate is assumed to be a thin plate satisfying the
Kirchhoff plate theory. The finite element method

(FEM) is used as the numerical approach to build
the dynamic equations. The rectangular element is
employed in the FEM. The rectangular plate is canti-
levered at the center point, which removes the rigid
body modes. Each node has three degrees of freedom
(w,wx,wy), where w is the vertical displacement of the
node and wx ¼ @w=@x,wy ¼ @w=@y indicate two rota-
tions of the node with respect to ð�yÞ-axis and x-axis
respectively. For each four-node element, the degrees
of freedom qee can be given as

qee ¼ ½w1,wx1,wy1, . . . ,w4,wx4,wy4�
T

ð16Þ

The twelve-term polynomial describing wðx, y, tÞ in
each element is given by

wðx̂, ŷ, tÞ ¼ Nðx̂, ŷÞqeeðtÞ ð17Þ

where Nðx̂, ŷÞ is suitably chosen and x̂ and ŷ are
given by

x̂ ¼
x

a
, ŷ ¼

y

b
ð18Þ

For the rectangular plate with mass density per
unit volume q and thickness h, the kinetic energy of
an element is given as

Te ¼
1

2

Z Z
Ae

�h _w2dA

¼
1

2
�h

Z Z
Ae

_qTeeN
TN _qeedA

¼
1

2
_qTeemee _qee

ð19Þ

where

mee ¼ �h

Z Z
Ae

NTNdA ð20Þ

Figure 2. Dynamic model.
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The potential energy is given by

Ue ¼
1

2
D

Z Z
Ae

w2
xx þ w2

yy þ 2wxxwyy þ 2 1� �p
� �

w2
xy

h i
dA

¼
1

2
qTeekeeqee

ð21Þ

where

kee ¼ D

Z Z
Ae

NT
xxNxx þNT

yyNyy þNT
xxNyy

h
þNT

yyNxx þ 2ð1� �pÞN
T
xyNxy

i
dA

ð22Þ

The rigidity D is defined as D ¼ Eh3=ð12ð1� �2p ÞÞ,
where E is the Young’s modulus, and �p is the
Poisson’s ratio.

The global mass matrix Mg and stiffness matrix Kg

can be assembled using the standard FEM proced-
ures. Therefore, the dynamic equation of the rect-
angular plate can be yielded as

Mg €qþ Kgq ¼ bu ð23Þ

where q is the global vector, which contains the ver-
tical displacement w and two-axis rotations (wx, wy)
for all of the nodes. The input matrix b indicates the
positions of the actuators used on the plate. The
output equation is

y ¼ c _q ð24Þ

where the output matrix c indicates positions of the
rate sensors on the plate.

The eigenproblem of the unforced equation in
equation (23) is

�!2
�Mg þ Kg

� �
q� ¼ 0, � ¼ 1, 2, 3, . . . ð25Þ

where !� are the natural frequencies. The eigenvectors
q� can be normalized according to

qT�Mgq	 ¼ ��	, qT�Kgq	 ¼ !
2
���	

where ��	 is the Kronecker delta. We expand the
global vector as qðtÞ ¼

Pn
�¼1 q�
�ðtÞ to get decoupled

equations like

€
� þ 2��!� _
� þ !
2
�
� ¼

bB�ubB� ¼ qT�b, � ¼ 1, 2, 3, . . . , n
ð26Þ

where n is the number of degrees of freedom in the
FEM, and �� are the modal damping factors intro-
duced at this step to indicate viscous damping. It is
reasonable to add damping since damping effects exist
in almost all materials. The modal coordinates are

used to form the state

x ¼ col g, _g
	 


, g ¼ ½ 
1 
2 � � � 
n �
T

The output in equation (24) can be written as

y ¼
Xn
�¼1

bC� _
�, bC� ¼ cq� ð27Þ

The state-space model can be established as in
equation (1) where

A ¼
0 1

��2 �bD
� �

,� ¼ diag !�f g

bD ¼ diag 2��!�f g, B ¼
0bB

� �
, bB ¼ col bB�n o

,

C ¼ 0 bCh i
, bC ¼ row bC�n o

ð28Þ

Main results for controller design

This section considers the design of a controller for
the rectangular plate. In the above section, the exact
positions of the actuators and sensors were not pre-
scribed. There are two options: one is collocation, in
which the rate sensors and force actuators are
mounted at the same places. This is ideal for large
flexible structures control, since the plant maintains
passivity. The other one is noncollocation, which
means these two are laid at different places. In this
case, the passivity violation happens at this condition.
The controllers designed in this paper will target these
two situations individually.

Case A: Plate with collocated sensors and actuators

The scheme of a rectangular plate used in this case is
also shown in Figure 3. The sensor and actuator are
collocated on the first corner of the rectangular plate.
As a result, the rectangular plate is a passive system
where c ¼ bT. One form of the passivity theorem
states that a passive system can be stabilized if it is
interconnected in negative feedback with an SPR con-
troller. Following this theorem, the basic idea for con-
troller design is to arrive at an SPR controller. In this

Figure 3. Plate with collocated sensors and actuators.
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case, the controller is set as

xc ¼ Acxc þ Bcuc, yc ¼ Ccxc ð29Þ

where xc is the state of this controller, yc is the output
of the controller. Since negative feedback is used,
yc ¼ �u and y ¼ uc. The standard KYP lemma
shown as Lemma 1 is a good approach to obtain a
controller which maintains strictly positive realness.
Motivated by Benhabib,20 the value of the gain Cc is
obtained as the state feedback gain from the linear
quadratic regulator (LQR) with suitable selection of
the weight matrices Q ¼ QT 4 0 and R ¼ RT 4 0
along with matrices A and B in the system in equation
(1) as well. A Hurwitz matrix Ac can be set as

Ac ¼ A� BCc ð30Þ

Substituting Ac into equation (5) with suitable
Qc ¼ QT

c 4 0, we can find Pc by solving

PcAc þ AT
c Pc ¼ �Qc ð31Þ

Then

Bc ¼ P�1c CT
c ð32Þ

An SPR controller G1ðsÞ ¼ Ccðs1� AcÞ
�1Bc results

on the basis of the standard KYP lemma. However,
this design process is accomplished in the time domain
which implies that passivity is achieved over the entire
frequency range. The gain at high-frequency range is
not taken into account. It might lead to a relative
large gain for the controller, which is undesirable in
real practical applications. For the rectangular plate
used in this paper, the state-space equation used for
controller design results from modal truncation at a
certain order. In fact, the states of the plant in equa-
tion (1) only contain the low-frequency entries of the
modal coordinates g. This provides a possibility for
designing a controller for the low-frequency range
rather than the entire frequency range.

The basic idea is dividing the entire frequency
range into two parts using the critical frequency !c,
namely low- and high-frequency ranges. The form of
the controller in equation (29) designed in this case
will be maintained in these two frequency ranges. The
computational process for the matrices Ac and Bc is
identical with equations (30) to (32). The output gain
of the controller is renamed as K. The new controller
designed using finite frequency ranges is denoted by
G2ðsÞ ¼ Kðs1� AcÞ

�1Bc.
We design the controller to be SPR at low frequen-

cies. Recall equation (7) in the GKYP lemma men-
tioned in Lemma 2, the controller is SPR when !4!c if

Ac Bc

1 0

� �H
�Ql Pl

Pl !2
cQl

� �
Ac Bc

1 0

� �

þ
K 0

0 1

� �H
0 �1

�1 0

� �
K 0

0 1

� �
5 0 ð33Þ

where Pl ¼ PT
l and Ql ¼ QT

l 4 0. The variables in the
LMI are K, Pl, and Ql. Even though the plant state-
space equation using modal coordinates concentrates
on the low-frequency modes, the real plate system
contains the entire frequency range. The constraint
on K in the LMI in equation (33) is not sufficient
for designing the high-frequency range. An extra con-
straint is proposed for the high-frequency range.

In the high-frequency range j!j4!c, the gain �2
should be finite, which implies the controller system is
bounded real. By using Theorem 1, the gain �2 5 1=�1
where, recall �1 is the high frequency gain of the plant.
Recalling equation (15) in Lemma 2, the controller is
bounded real when j!j4!c if

Ac Bc

1 0

� �H Qh Ph

Ph �!
2
cQh

� �
Ac Bc

1 0

� �
þ

K 0

0 1

� �H
1 0

0 ��221

� �
K 0

0 1

� �
5 0

ð34Þ

Noticing that the left hand side of equation (34)
contains a nonlinear term with respect to K, the
Schur complement is employed to transform equation
(34) into equation (35).

AT
cQhAc þ PhAc

þAT
c Ph � !

2
cQh

( )
AT

c QhBc þ PhBc KT

sym BT
cQh � �

2
21 0

sym sym �1

266664
3777755 0

ð35Þ

The variables in the LMI in equation (35) are
K, Ph ¼ PT

h and Qh ¼ QT
h 4 0. This controller is a

hybrid passive/finite gain system, which can stabilize
the passive rectangular plate system (1) along with
Theorem 1 if the gain K satisfies the two constraints
shown in the LMIs in equations (33) and (35).
However, feasible solutions of LMIs (33) and (35)
might not be unique. Optimization is an applicable
approach to obtain an exclusive solution for gain K.
We choose an objective function to be minimized

J ¼ tr½ðK� CcÞðK� CcÞ
T
� ð36Þ

This objective function will force the controller
designed with the GKYP lemma to mimic the control-
ler from the standard KYP lemma.

Using similar means in Forbes19 for solving
the LMIs, an additional variable Z ¼ ZT50 is intro-
duced and two additional constraints are employed as

tr½Z�4J ð37aÞ

6 Proc IMechE Part G: J Aerospace Engineering 0(0)



ðK� CcÞðK� CcÞ
T4Z ð37bÞ

These additional constraints are logical since min-
imal J implies minimal tr½Z� as ðK� CcÞðK� CcÞ

T is
being minimized. Since the left hand of equation (37b)
is nonlinear in K, the Schur complement is used to
transform it as

�
Z ðK� CcÞ

T

sym 1

" #
40 ð38Þ

The optimal K can be determined from following
optimization problem

min J ðK,Pl,Ql,Ph,Qh,Z Þ

subject to LMIs in ð33Þ, ð35Þ, ð38Þ
ð39Þ

Up to here, a hybrid SPR/finite gain controller
G2 ¼ Kðs1� AcÞ

�1Bc has been determining using the
GKYP lemma and the optimization algorithm
simultaneously.

Case B: Plate with noncollocated sensors and
actuators

In this case, the rectangular plate is equipped with
noncollocated sensors and actuators, as shown in
Figure 4. The sensor and actuator are placed at dif-
ferent positions. In this case, the sensor’s site is
assumed to be not too far away from the actuator’s
location, which implies that passivity is maintained by
the plant below a critical frequency !c but it would be
violated beyond !c. The plant has passive character-
istics only in a low-frequency range rather than the
entire frequency range. Therefore, the controller (29)
based on the standard KYP lemma is pointless since it
is incompatible with the passivity theorem. In this
sense, the advantage is apparent if the hybrid passive/
finite gain controller is designed under the GKYP
lemma. The passivity violation at high-frequency
range can be accommodated by estimating an upper
bound on the plant gain beyond !c.

Since the controller G1 based on the standard KYP
lemma is not suitable in this case, the optimization
problem is abandoned. The gain K of the controller
G2 ¼ Kðs1� AcÞ

�1Bc is obtained directly by solving

the LMIs (33) and (35) instead of equation (39).
Therefore, the solution of the gain K is not unique
without the optimization used in Case A. The compu-
tation processes of parameters Ac and Bc remains the
same as in Case A.

Simulations and discussions

In this section, two numerical simulation results are
given to show the improvement provided by the con-
troller based on the GKYP lemma. The common initial
parameters for simulation are set first. The rectangular
plate is cantilevered at the center point. The displace-
ment wcenter and rotations wxðcenterÞ,wyðcenterÞ of
the central node are zeros for all time, which are the
boundary conditions. This effectively removes the
rigid body modes. The dynamics in equation (23) are
built using the FEM with the parameters E ¼ 2:1�
1011Pa, �p ¼ 0:3, � ¼ 2:7� 103kg=m3, and h ¼
0:01m. The size of the plate is 2:5m� 2m. The mesh
has 21� 21 nodes for the plate in the FEM. When a
force 5N is applied on the fourth corner labeled as in
Figures 2 and 4, the initial coordinates for the vertical
displacement of all nodes can be obtained from

qinitial ¼ K�1g P ð40Þ

where P is all zeros except for a one corresponding to
the force location.

Simulation for Case A

Case A aims at a plate with collocated sensors and
actuators. One sensor and one actuator are placed at
the first corner, which is shown in Figure 2. Since the
actuator is placed at the first node of the plate,

b ¼ ½1, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
n�1

�
T. The collocation leads to c ¼ bT.

For the modal equations (26), the first 13 modal equa-
tions are used to build the state-space equation in (1)

Figure 4. Plate with noncollocated sensors and actuator. Figure 5. Frequency response of the plant.
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with the damping � ¼ 0:01. The bode plot of the rect-
angular plate is shown in Figure 5. It is obvious that
the plant is passive since the phase shift is always in
½�90

�

, 90
�

�. Controller A satisfying the standard KYP
lemma (KYP controller) and controller B satisfying
the GKYP lemma (GKYP controller) are applied to
generate a comparison between them. First, we
choose the weights of the LQR algorithm with
Q ¼ 1� 1, Qc ¼ 1� 1, and R ¼ 0:5� 1, where 1 is
an identity matrix with suitable size required by the

LQR algorithm. The parameters of the KYP control-
ler are computed by the standard KYP lemma. The
GKYP controller is designed with parameters
!c ¼ 202:5358 rad=s and �2 ¼ 2:2492. The parameters
Ac and Bc are same as the KYP controller.

Figure 6 depicts approximately the identical time
response of the displacement of the four plate corners
for the KYP controller and the GKYP controller.
The identical performance validates the effectiveness
of the GKYP controller. The frequency responses

(a)

(d)(c)

(b)

Figure 6. Displacements of four plate corners: (a) #1 corner; (b) #2 corner; (c) #3 corner; (d) #4 corner.

Figure 7. Frequency response of controllers GKYP and KYP. Figure 8. Control force.
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for these two controllers are shown in Figure 7.
The GKYP controller has smaller gain compared
with the KYP controller. This advantageous feature
is clearly depicted in Figure 8 which shows the control
force. The gain of GKYP controller has lower peak
values than the gain in KYP controller. It is more
straightforward if defining an energy-consumption
norm Ec as

Ec ¼
1

tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ tf

0

uTudt

s
ð41Þ

where tf is the time interval of simulation. It holds that
EcðGKYPÞ ¼ 0:0041N while EcðKYPÞ ¼ 0:0071N.
Because of that, less energy is consumed by the actu-
ators under the controller GKYP.

Simulation for Case B

In this case, sensors and actuators are placed on dif-
ferent sites in the rectangular plate. A force actuator is
placed at the first node of the plate, thus

b ¼ ½1, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
n�1

�
T. A sensor is put on the fourth node

on the plate, so c ¼ ½0, . . . , 0|fflfflfflffl{zfflfflfflffl}
9

, 1, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
n�10

�. The state

matrix is the same as it in Case A. The frequency
response of the noncollocated plant is depicted in
Figure 9.

The phase shift is beyond �90
�

when ! ¼
313:7 rad=s, which shows that the passivity of the
plant is violated when !4 313:7 rad=s. Since the
GKYP controller uses the same parameters Ac and
Bc as the KYP controller, the weights of the LQR
algorithm are set as Q ¼ 100� 1, Qc ¼ 1� 1 and
R ¼ 0:01� 1, where 1 is an identity matrix with suit-
able size required by the LQR algorithm. Figure 10
depicts the time response of the four corners’ displace-
ment. The system is destabilized by the globally SPR
design. It is undoubtedly due to the passivity

(a) (b)

(d)(c)

Figure 10. Displacements of four plate corners with KYP controller: (a) #1 corner; (b) #2 corner; (c) #3 corner; (d) #4 corner.

Figure 9. Frequency response of the plant.
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violation. However, with the same parameters Ac and
Bc, the GKYP controller can stabilize the system as
shown in Figures 11 and 12. The critical frequency is
picked as 279:5rad=s which matches with the passive
range for the plant. The gain �1 is obtained by evalu-
ating the gain peak of the plant beyond !c from
Figure 9. Since �2 5 1=�1, we pick the limiting gain
�2 ¼ 7:7012 for the controller. The controller’s fre-
quency response is shown in Figure 13. The gain of
the controller is decaying when !4!c.

The simulation results in both cases use the first 13
modes to build the state-space equation in (1). The
GKYP controller is also based on these reduced-
order modal equations. However, this controller is
still effective if it is applied to a model with more
modes. For Case A (collocation case), the stability
of the closed-loop system will be guaranteed by
the passivity theorem no matter how many modes
are considered. For Case B (noncollocation case),
we will demonstrate the effectiveness of the controller
by applying it to a model that is built using the first
one hundred modes, which is given by

_x ¼ Amxþ Bmu, y ¼ Cmx ð42Þ

where Am, Bm, and Cm are calculated using the
same approach shown in equation (28) but consider-
ing one hundred modes. The controller is the same as
equation (29) and synthesized using the first 13 modes

as presented before. Combining the new higher order
state-space equation (42) and the GKYP controller
(29) gives

_x

_xc

" #
¼

Am �BmK

BcCm Ac

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Acom

x

xc

" #
ð43Þ

The eigenvalues of Acom were checked and
ReflfAcomgg5 0. This confirms the stability of the

(a) (b)

(d)(c)

Figure 11. Displacements of four plate corners with GKYP controller: (a) #1 corner; (b) #2 corner; (c) #3 corner; (d) #4 corner.

Figure 12. Control force.

10 Proc IMechE Part G: J Aerospace Engineering 0(0)



closed-loop system when the proposed control scheme
is applied to a higher order modal model.

Conclusions

In this paper, a hybrid finite frequency controller has
been presented for control of large flexible structures.
Compared with the infinite frequency controller based
on the KYP lemma, the hybrid finite frequency con-
troller is more efficient. This controller can consume
less energy to get approximately identical perform-
ance. When the standard KYP design failed to stabil-
ize a large flexible structure when noncollocation
destroyed its passivity, the hybrid finite frequency
controller was still able to suppress the vibration of
the plate. Here, robustness to spillover was achieved
by limiting the gain (not the phase) at higher frequen-
cies beyond the critical value. The numerical simula-
tion demonstrated the effectiveness of the proposed
controllers.
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