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ABSTRACT
We consider a water distribution system as an example of resource allocation, and investigate the
use of a population game for its control. We use a game-theoretic approach based on two evolution-
ary dynamics, the Brown–von Neumann–Nash and the Smith dynamics. We show that the closed-
loop feedback interconnection of the water distribution system and the game-theoretic-based con-
troller has a Nash equilibrium as an asymptotically stable equilibrium point. The stability analysis is
performed based on passivity concepts and the Lyapunov stability theorem. An additional control
subsystem is considered for disturbance rejection. We verify the effectiveness of the method by sim-
ulations under different scenarios.

1. Introduction

In this work, we consider the distribution of resources
in allocation problems by using a population game-
theoretic approach. This class of allocation problem that
can include distribution of labour, water, fuel, energy, etc.
has become a challenging problem for engineers. As an
example of resource distribution problems, we consider a
water distribution system (WDS), since management of
water distribution networks is one of the most important
issues of concern in big cities.

We use a game-theoretic approach, based on mod-
elling the WDS control as a population game. A popu-
lation game is typically modelled as a memoryless map-
ping from the population state to a set of static payoff
functions (Sandholm, 2010). To specify the process of a
game play, a revision protocol describes how and when
strategy choices are switched. Specific protocols lead to
specific mean dynamics, each with their own properties.
The corresponding mean or evolutionary dynamic can
be analysed to predict the evolution of the game, and
possible convergence to Nash equilibria. Inspired by Fox
and Shamma (2013), in this work, we consider a more
general class of games played over dynamical systems.
This is an extension in that the evolutionary dynamics act
on dynamically modified payoffs instead of static payoff
functions. This modification can be interpreted as a cou-
pling between a set of evolutionary dynamics and a pop-
ulation game with dynamic dependencies.

We consider a WDS modeled as a population
game with dynamic dependencies, as a typical resource
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allocation application (Ramírez-Llanos&Quijano, 2010).
A WDS consists of a number of storage tanks that need
to supply water such that customer demands are satis-
fied while a certain pressure at the tanks output is main-
tained. We consider a water flow model, similar to the
nonatomic game case (Roughgarden, 2007), where there
are a very large number of players, each controlling a neg-
ligible portion of the overall water flow. Thus, as in pop-
ulation games, Sandholm (2010) assume that the tanks
are the possible action choices for the water flow. What
counts is the fraction of the population (hence of the
water flow) that selects a particular tank or strategy.When
a tank is selected, a small portion of the resource is ded-
icated to fill that tank. We assign a payoff to each strat-
egy or tank and design different revision protocols. Using
these protocols, we canmodel the evolution in time of the
game as an interconnection between the corresponding
evolutionary dynamics and the dynamical system mod-
elling the tanks.

We utilise a game-theoretic approach along with a
convex-optimisation-based controller. Unlike Ramírez-
Llanos and Quijano (2010) where only the replicator
dynamics (RD) is used to control the game, we consider
different evolutionary dynamics with better properties.
Specifically, it is well known that by using the replicator
dynamics, a potential problem of non-Nash convergence
can occur (Hofbauer & Sandholm, 2009; Sandholm,
2005). To address this issue, we consider the Brown–von
Neumann–Nash (BNN) and the Smith dynamics, which
discard non-Nash equilibrium points. Furthermore,
we add the total input flow controller to enhance the

©  Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://dx.doi.org/10.1080/00207179.2016.1231422
mailto:pavel@ece.utoronto.ca


2 A. PASHAIE ET AL.

behaviour of the system. We characterise convergence
to a Nash equilibrium as stability of the closed-loop
system. We present sufficient conditions that ensure
stability of the feedback interconnection between the
corresponding evolutionary dynamics and the dynam-
ical system modelling the tanks. These are based on
results for interconnection of passive and strictly passive
dynamical systems and Lyapunov stability theorem. We
show that when the total input flow is constant and can
be tuned externally, a controller designed using either the
BNN or the Smith dynamics achieves globally asymptotic
stability.

Furthermore, we provide an improvement to con-
trollers that achieves a degree of robustness for the
system, by rejecting a certain type of disturbances.
Moreover, we consider a generalisation to a class of
distribution problems that maintains the same stability
properties as for the WDS application. The effectiveness
of our approach is verified by simulations.

1.1 Literature review

Game theory has become a widely used tool to tackle
different problems in many different research fields. An
area of interest in recent years is the design of control
strategies for resource allocation problems. For instance,
in wireless communication networks, some approaches
are to minimise the power consumption while customers
are satisfied with service quality, usually defined based
on signal-to-noise ratio (SNR) (Alpcan, Başar, Srikant,
& Altman, 2002; Altman, Boulogne, El-Azouzi, Jiménez,
& Wynter, 2006; Yaïche, Mazumdar, & Rosenberg, 2000;
Yates, 1995). It is assumed that the power is correlated
with the SNR such that by increasing the power, the
data transmission range will be extended but the noise
level will also be higher (Johari & Tsitsiklis, 2004; Pavel,
2006). The problem of power distribution is solved via
convex optimisation (Boyd & Vandenberghe, 2004),
linear and nonlinear programming (Arrow & Hurwicz,
1958; Bertsekas, 1999), by defining cost functions with
respect to the power and SNR (Fan, Alpcan, Arcak, Wen,
& Başar, 2006; Feijer & Paganini, 2010). However, usually
not all dynamics of the systems are considered, but only
partial dynamics or functions linked to power and ser-
vice quality. Other recent game theoretical approaches
for resource allocation problems are channel assignment
in wireless networks (Bacci, Luise, Poor, & Tulino, 2007;
Miao, Himayat, Li, & Talwar, 2011; Wang, Scutari, &
Palomar, 2011; Zappone, Sanguinetti, Bacci, Jorswieck,
and Debbah, 2016); resource allocation in cloud com-
puting services, routing (Duarte, Fadlullah, Vasilakos, &
Kato, 2012; Khan, Tembine, & Vasilakos, 2012; Niyato,
Vasilakos, & Kun, 2011; Rahimi, Venkatasubramanian,

Mehrotra, & Vasilakos, 2012; Wei, Vasilakos, Zheng,
& Xiong, 2010; Zeng, Xiang, Li, & Vasilakos, 2013), or
security problems (Shan & Zhuang, 2013, 2014). On
the other hand, in Eduardo and Nicanor (2010) and
Ramírez-Llanos and Quijano (2010), the entire dynamics
is considered for the control of a water distribution
network (Bao & Lee, 2007) via an evolutionary dynamics
approach. The RD, first introduced by Taylor in Taylor
and Jonker (1978) as one of the classes of evolutionary
dynamics, is employed as a controller to stabilise and
make the WDS converge to desirable equilibrium points.
Prior to these studies, cost minimisation of materials
such as pipes, vales, and tanks (Broad, Dandy, and
Maier, 2005; Zecchin, Simpson, Maier, & Nixon, 2005) or
water production costs (Araujo, Ramos, & Coelho, 2006;
Camarinha-Matos &Martinelli, 1999) have been consid-
ered, although, no rigorous mathematical proof has been
provided.

1.2 Contributions

In this paper, we show that the RD, under some condi-
tions, converges to undesirable equilibrium points (Sand-
holm, 2010) and makes the WDS not function properly.
In order to solve this problem, we propose other classes
of well-behaved evolutionary dynamics, namely the BNN
and Smith dynamics (Fox & Shamma, 2012, 2013; Hof-
bauer & Sandholm, 2009), that discard the undesirable
equilibria. For these classes of evolutionary dynamics,
we extend the existing convergence results in Ramírez-
Llanos and Quijano (2010) to global asymptotic con-
vergence. Moreover, by means of the ideas in Fox and
Shamma (2013), we provide a generalisation to a class
of resource allocation problems to which the WDS is an
example. In terms of stability analysis of the evolutionary
dynamics, we follow similarmethods utilised in Ramírez-
Llanos and Quijano (2010), Sandholm (2010), and Fox
and Shamma (2013) where passivity concepts and Lya-
punov stability theorem (Khalil, 2002) are employed. A
preliminary version of this work appeared in Pashaie,
Pavel, and ChrisDamaren (2015). Here we also include
a section that proposes an additional dynamics for
disturbance rejection, as well as a detailed numerical
study.

The paper is organised as follows. In Section 2, we
introduce some preliminary background material. In
Section 3, we present the problem statement, solution
approach as well as stability analysis. In Section 4, a gen-
eralisation to the system under study is provided. Section
5 presents an additional dynamics for disturbance rejec-
tion, followed by simulation results in Sections 6 and con-
clusions in Section 7.
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2. Background

2.1 Stability and passivity

Consider a dynamical system represented by

ẋ = f (x, u),

y = h(x, u),
(1)

where x ∈ X denotes the state and u ∈ U the input. We
assume that f : X × U → R

n is locally Lipschitz and h :
X × U → R

p is continuous, and that f(0, 0) = h(0, 0) =
0. Let X ⊂ R

n and U ⊂ R
p denote the state-space and

the class of piecewise continuous inputs, respectively. The
definition and the theorems below review passivity and
Lyapunov stability.
Definition 2.1 (Khalil, 2002, Definition 6.3, p. 236):
Consider the system of form (1). If there exists a contin-
uously differentiable nonnegative function V : X → R,
such that ∀(x, u) ∈ X × U

� uTy = V̇ = ∂V
∂x f (x, u), then the system is lossless.

� uTy � V̇ , then the system is called passive.
� uTy � V̇ + ϕ(x), where ϕ(x) > 0 �x � 0, then the
system is strictly passive.

The function V is called the storage function.
Lemma 2.1 (Khalil, 2002, Theorem 4.1 and 4.2, p. 114,
124): Let x= 0 be an equilibrium point for the system in the
form of (1) and let X ⊂ R

n be a domain containing x = 0.
If there exists a continuously differentiable positive definite
candidate Lyapunov function L : X → R such that

L(0) = 0 and L(x) > 0, ∀x ∈ X − {0},
L̇(x) � 0, ∀x ∈ X ,

then, x = 0 is stable. If in addition

L̇(x) < 0, ∀x ∈ X − {0},

then, x = 0 is asymptotically stable. Furthermore, if X =
R

n and L(x) is radially unbounded, i.e.

‖x‖ → ∞ =⇒ L(x) → ∞,

L̇(x) < 0, ∀x 	= 0,

then, x = 0 is globally asymptotically stable.

Lemma2.2 (Khalil, 2002, Theorem 6.1, p. 247):Consider
the feedback interconnection of two dynamical systems of
form (1), as in Figure 1. The closed-loop system is strictly
passive if �1 and �2 are strictly passive with positive def-
inite storage functions V1 and V2 , respectively. Moreover,

Figure . Negative feedback interconnection of two systems.

for u= 0, the origin of the negative feedback interconnected
system is asymptotically stable.

Note that this result extends tomore than two systems.

2.2 Population games and evolutionary dynamics

Consider a large population of players/agents that are
playing a game by selecting among a number of choices
called strategies, denoted by the set S = {1,… , N}.
The simplex or the strategy distribution set of the pop-
ulation is defined as � = {p = [p1, . . . , pi, . . . , pN]T ∈
R

N
+ :

∑
i∈S pi = 1} where p as the vector of players pro-

portions, pi’s, is called the population state.
A game is generally identified by a function that

describes payoffs. Let f : � → R
N denote the payoff

function, which assigns a vector of payoffs to each popu-
lation state. Consider that f is a continuous mapping. We
denote the vector of payoffs by f(p) = [f1(p),… , fN(p)]T,
where fi(p) is a continuous payoff function of playing the
i-th strategy. The Nash equilibrium state of a population
game is a state where every utilised strategy earns the
maximum payoff (Sandholm, 2010), i.e.

NE( f ) = {
p∈�| pi>0 ⇒ fi(p)� f j(p) ∀ j∈S

}
. (2)

Since at an NE, p � NE(f) every utilised strategy receives
the maximum payoff, we can write

∀pi > 0, fi(p) = max
j∈S

f j(p). (3)

At a Nash equilibrium, a player achieves the maximum of
his utility, with respect to its own strategy choice, assum-
ing the others’ strategies are fixed. To specify the pro-
cess of a game play, we consider how decisions are made.
In a population game, once in a while, agents are given
opportunities to change their choices, using a revision
protocol to switch to a better strategy. Revision proto-
cols describe how andwhen strategies are switched, hence



4 A. PASHAIE ET AL.

account for selection and mutation processes. The def-
inition of a revision protocol ρ(f, p) is presented in the
following:

Definition 2.2 (Sandholm, 2010, p. 121):Given the pay-
off vector f and the population state p, a revision proto-
col ρ, ρ : R

N × � → R
N×N
+ , describes the switch from a

strategy to another, through the scalar conditional switch
rate, ρ ij, from strategy i � S to strategy j � S.

Under the assumption of a large population, the
stochastic process of strategy selection is well approxi-
mated in the limit as the population tends to infinity by
a set of ordinary differential equations called the mean
dynamic (Sandholm, 2010). The mean dynamic of a pop-
ulation game is defined next.

Definition 2.3 (Sandholm, 2010, p. 124): The mean
dynamic of the population game f is a set of ordinary dif-
ferential equations that describe the evolution in time of
the population state p under a given revision protocol ρ,

ṗ = V ( f , p), (4)

where

Vi( f , p) =
∑
j∈S

p jρ ji( f , p) − pi
∑
j∈S

ρi j( f , p), (5)

and, in general, is called the evolutionary dynamic.

The deterministic mean (evolutionary) dynamics
describes the process under the revision protocol: the
first term captures switches from other strategies to
strategy i (inflow), while the second captures switches
from strategy i to others (outflow).

Notice that under the condition that V : R
N × � →

R
N is Lipschitz continuous, existence and uniqueness of

the solution to Equation (4) follows from standard results
(Khalil, 2002; Sandholm, 2010). Therefore, we ensure the
Lipschitz continuity ofV(f, p) by assuming that f andρ are
Lipschitz continuous. That being the case, by considering
theDefinitions 2.2 and 2.3, one can conclude that the evo-
lutionary dynamic is amapping from the payoff function f
to the population state of the game under which themean
dynamic is generated.

Considering population games as mappings from the
population state to the payoffs, we can view the connec-
tion of the evolutionary dynamic with the correspond-
ing population game as a closed-loop system, as shown
in Figure 2.

As explained in detail in Fox and Shamma (2012,
2013), this closed loop can be modelled as a feed-
back interconnection between two input–output systems

Figure . Connection of population game and mean dynamic.

shown in Figure 1, where �1 and �2 are the input–
output models of the population game and the evolution-
ary dynamic, respectively. Next, an extension to this inter-
connection is provided.

2.3 Gameswith dynamic dependencies

Traditionally, population games are considered as mem-
oryless mappings from the population state p to the pay-
offs f(p) where the payoffs are static functions. In Fox and
Shamma (2012, 2013), the authors extend these results
to a more general class of games. As an extension from
static games, they consider games that have dynamics,
which means that the games are being played through
dynamical systems. In this setup, evolutionary dynam-
ics act on dynamically modified payoffs instead of static
payoff functions. This modification can be interpreted as
a coupling between a set of evolutionary dynamics and
a population game with dynamic dependencies. In this
configuration, dynamicallymodified games aremappings
from strategy trajectories p(t) to payoff trajectories f(t) (Fox
& Shamma, 2013). Figure 3 demonstrates this configura-
tion, in which x(t) is the state vector and f(x(t)) is the pay-
off vector of the dynamically modified game, respectively.
In other words, modified games can be written as

ẋ = F(x, p), (6)

Figure . Connection of dynamic population game with evolu-
tionary dynamics (Fox & Shamma, ).
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Figure . Water distribution system.

where the Lipschitz continuous function F : R
N × � →

R
N describes the dynamical model of the modified game.

As can be seen, the payoffs are not necessarily functions of
the population state only, but also of some auxiliary states
of the dynamical system as a solution of Equation (6). As
a consequence, these new payoff functions correspond to
the dynamics of the game. This is exactly the case for the
dynamic WDS which we present in the next section.

3. WDS –modelling/control problem

3.1 Water distribution system

We consider aWDS as a typical example application, and
model it as a population game with dynamic dependen-
cies. As in Ramírez-Llanos and Quijano (2010), theWDS
consists of a number of storage tanks and is employed
to supply water to its customers who require a specific
amount of water stored in their tanks and a certain pres-
sure at the tanks’ output. We assume that there exists a
total input flow of water as the resource to fill the tanks
with water. Thus, if we assign a certain portion of the total
input flow to each tank, we can control the amount of
water in the tanks.

We consider a water flow model, similar to the
nonatomic game case (Roughgarden, 2007), where there
are a very large number of agents, each controlling a neg-
ligible portion of the overall water flow. Thus, as in pop-
ulation games, Sandholm (2010) assume that the tanks
are the possible action choices for the water flow. What
counts is the fraction of the agent population (hence of
the water flow) that selects a particular tank or strategy.
When a tank is selected, a small portion of the resource is
dedicated to fill that tank.We assign a payoff to each strat-
egy or tank and design different revision protocols. Using
these protocols, we canmodel the evolution in time of the
game as an interconnection between the corresponding
evolutionary dynamics and the dynamical system mod-
elling the tanks.

AWDS, illustrated in Figure 4, is used to supply water
to all of its consumers and meet their demands. Assume
that N different tanks need to deliver water to N con-
sumers by allocating a total available flow of water, Q.
Let the volume, input and output flow of the i-th tank
be denoted by v i, qini and qouti , respectively. The change
with respect to time of the water volume in each tank is
described by Ramírez-Llanos and Quijano (2010),

dvi

dt
= qini − qouti , (7)

for i = 1,… , N. We formulate the WDS as a population
gamewith dynamic dependencies and design a controller
based on the mean dynamic of the corresponding game
under a given revision protocol.We assume that each tank
is equipped with a control valve at its input pipe to limit
the water flow. Since pi’s, which are the fractions of the
flow or of the population selecting the i-th tank, are pro-
portions between 0 and 1, they can be used as gates of the
control valves to determine the percentage of how open
or close the valves are to let water in the tanks. Therefore,
the share of the i-th tank will be

qini = Qpi. (8)

To model the output flow, we assume that the tanks
are being drained over the atmospheric pressure (gravity
tank system; Bao&Lee, 2007; Ramírez-Llanos&Quijano,
2010), so that the output flow, qouti , depends on the water
height in the tank, hi, and on the pipe transversal area,Ai.
Therefore, if we assume that the transversal area of each
tank, denoted by Si, is constant and independent of hi,
we can model the output flow of the i-th tank as follows
(Ramírez-Llanos & Quijano, 2010):

qouti = AiCi
√
2ghi = AiCi

√
2gvi
Si

, (9)

where g is the acceleration due to the gravity, Ci is the
loss coefficient and v i = hiSi. Therefore, by using Equa-
tions (7)–(9), differential equations of the WDS dynami-
cal model are given by

v̇i = Qpi − ci
√

vi . (10)

The parameter ci = AiCi
√
2g/Si for each tank depends on

its output pipe and the transversal area.

3.2 Replicator dynamics as system controller

In Ramírez-Llanos andQuijano (2010), the RD is consid-
ered as an evolutionary dynamic to control theWDS. For
this, first, a payoff function should be associatedwith each



6 A. PASHAIE ET AL.

tank. The authors in Ramírez-Llanos and Quijano (2010)
considered the logistic-type function (see Britton, 2003)
of form

fi = − ri
vmi

vi + ri, (11)

for i = 1,… , N. For each tank i, vmi and ri denote the
maximum possible level of water and the maximum pay-
off. In this configuration, the payoff function decreases as
the volume of each tank gets closer to its maximum level,
and therefore empty tanks are more attractive.

The RD, in the class of pairwise proportional imitation
dynamics, is generated by the following revision protocol
prototype (Sandholm, 2010; Taylor & Jonker, 1978):

ρi j = p j
[
f j(p) − fi(p)

]
+ , (12)

where [·]+ denotes the projection to positive numbers.
Substituting this revision protocol in (5) leads to the RD
having the form

ṗi = pi

⎛
⎝− ri

vmi

vi + ri −
N∑
j=1

p j

(
− r j

vmj

v j + r j

)⎞
⎠ .

(13)

Consider the feedback interconnection between theWDS
and the RD as in Figure 3, or as in the block diagram of
Figure 1. The components �1 and �2 are identified as
theWDS tank system and the RD.�1 and�2 are charac-
terised by the state variables v = [v1,… , vN]T, the volume
of water in the tanks, and p = [p1,… , pN]T, the popula-
tion state of the RD, respectively. The outputs are y1 =
[v1,… , vN]T and y2 = −[p1,… , pN]T and the input u is
zero. For simplicity, it is assumed that the maximum lev-
els and the maximum payoffs of all tanks are equal, i.e.
vmi = vm and ri = r. Therefore, by (10) and (13), the dif-
ferential equations for the negative feedback interconnec-
tion become

�1 :
{

v̇i = Qpi − ci
√

vi
y1i = vi, u1i = pi

,

�2 :

⎧⎪⎨
⎪⎩

ṗi = − r
vm
pi

(
vi −

N∑
j=1

p jv j

)

y2i = −pi, u2i = vi

,

(14)

where i = 1,… , N. The equilibrium points v∗
i ’s and p∗

i ’s
of the zero-input interconnected system satisfy

− r
vm

p∗
i

⎛
⎝v∗

i −
N∑
j=1

p∗
jv

∗
j

⎞
⎠ = 0, (15)

Qp∗
i − ci

√
v∗
i = 0. (16)

In Equation (15), we can simply see that v∗
i ’s are equal

since

v∗
i −

N∑
j=1

v∗
j p

∗
j = 0 ⇒ v∗

i =
N∑
j=1

v∗
j p

∗
j = v∗. (17)

By summing the left-hand side of (16) over i and using
C = ∑N

i=1 ci, we get

Q
N∑
i=1

p∗
i − √

v∗
N∑
i=1

ci = 0 ⇒ v∗ =
(
Q
C

)2

, (18)

which, substituted in (16), yields

p∗
i = ci

C
. (19)

The interconnected system (14) that uses the RD was
analysed in Ramírez-Llanos and Quijano (2010), based
on the Lyapunov stability theorem. The RD model of the
evolutionary dynamic is one of the most known dynam-
ics. However, it has a disadvantage which could cause
some undesirable behaviours for the system. The prob-
lem occurs because the RD admits non-Nash equilibrium
points on the boundary of the simplex (Sandholm, 2010).
For instance, consider

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∗
j = 0 ⇒ v∗

j = 0

p∗
i = ci∑

k	= j
ck

⇒ v∗
i =

⎛
⎜⎝ Q∑

k	= j
ck

⎞
⎟⎠

2

, i 	= j, (20)

This is an equilibrium point but it is not desired because
the j-th tank is empty and, by the definition, is not a
Nash equilibrium. As discussed in Sandholm (2010), this
is due to the fact that the RD does not satisfy the prop-
erty of Nash Stationary, namely that the NEs of a popula-
tion game coincide with the equilibria of the correspond-
ing evolutionary dynamic (Sandholm, 2005). Therefore,
the RD can admit non-Nash equilibrium points. In addi-
tion, as shown inRamírez-Llanos andQuijano (2010), the
RD is lossless, and hence Theorem 2.2 is not applicable
and asymptotic stability of the desired equilibrium is not
guaranteed.
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3.3 BNN and Smith dynamics as system controller

In this paper, we consider new evolutionary dynamics
with better properties that discard the undesirable equi-
librium points and are convergent only to theNEs. More-
over, we show that unlike the RD, the new set of dynamics
are strictly passive.

In the following discussion, adapted from Sandholm
(2005, 2010), two revision protocols that lead to these dif-
ferent evolutionary dynamics are introduced.

.. Excess payoff target dynamic (EPT)
In this class of dynamics, in switching strategies, only the
difference between a randomly selected strategy’s payoff
and the population’s average payoff is considered. A pro-
totype of this switching logic is the BNN dynamic with

ρi j( f , p) = [ f̂ j( f , p)]+ = [ f j(p) −
N∑
k=1

pk fk]+,

where f̂ j is called the excess payoff function. By substi-
tuting this type of revision protocol in Equation (5), the
BNN dynamic will be of the form

ṗi = [
f̂i( f , p)

]
+ − pi

N∑
j=1

[
f̂ j( f , p)

]
+. (21)

.. Pairwise comparison dynamic
In this class, the difference between the payoffs of the
current strategy and a randomly selected strategy is
important. An example of this class is called the Smith
dynamic:

ṗi=
N∑
j=1

p j
[
fi(p)− f j(p)

]
+ − pi

N∑
j=1

[
f j(p)− fi(p)

]
+,

(22)
where

ρi j( f , p) = ρi j( f j − fi) = [
f j(p) − fi(p)

]
+ ,

is the revision protocol prototype.
Clearly, in the BNN and the Smith dynamics, pj = 0 is

not an equilibrium point. Moreover, the NEs of the cor-
responding population games are the only equilibria of
these dynamics where fi = fj = fmax for a p � NE(f).

3.4 Stability analysis with the BNN and Smith
dynamics

In order to analyse the stability of the WDS with the evo-
lutionary dynamic as in (10), (21) and (22), we utilise a
new approach introduced in Fox and Shamma (2013),

based on extended systems. In general, for the system
of form (1), the extended system is defined as (Fox &
Shamma, 2013)

u̇ = ue,
ẋ = f (x, u),

ye = ẏ = ∇xh(x, u)ẋ + ∇uh(x, u)u̇,
(23)

where the input and output of ue and ye are the time
derivatives of the original input and output, respectively.
We write (10), (21) and (22) as extended systems and, for
convenience, we write the equations in error coordinates
a standard notation. To write the equations in the stan-
dard form, let

v = [v1, . . . , vN]T = [x11, . . . , x1N]T = x1,

p = [p1, . . . , pN]T = [x21, . . . , x2N]T = x2,
v∗ = x∗

1, p∗ = x∗
2,

(24)

and

�x1 = x1 − x∗
11 = v − v∗1,

�x2 = x2 − x∗
2 = p− p∗,

where 1 = [1, . . . , 1]T ∈ R
N . Then, as in (23), we con-

struct the extended game dynamic from theWDS and the
extended evolutionary dynamic as

Extended
Game �1
Dynamic

:

⎧⎨
⎩

�ẋ1i=Q(�x2i+x∗
2i)−ci

√
�x1i + x∗

1
u̇1i = �ẋ2i = ue1i
ye1i = ẏ1i = �ẋ1i

,

(25)
Extended
BNN �2
Dynamic

:

⎧⎪⎪⎨
⎪⎪⎩

�ẋ2i=
[
f̂i
]
+−(�x2i+x∗

2i)
N∑
j=1

[
f̂ j
]
+

u̇2i = �ẋ1i = ue2i
ye2i = ẏ2i = −�ẋ2i

,

(26)

Extended
Smith �2
Dynamic

:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�ẋ2i=
N∑
j=1

(�x2 j+x∗
2 j)

[
fi− f j

]
+

−(�x2i+x∗
2i)

N∑
j=1

[
f j− fi

]
+

u̇2i = �ẋ1i = ue2i
ye2i = ẏ2i = −�ẋ2i

.

(27)
Moreover, we impose the following domain:

X =
{
�x = [�xT1 , �xT2 ]

T ∈ R
2N : �x1i > −x∗

1,

�x2 + x∗
2 ∈ �, ∀i ∈ {1, . . . ,N}

}
, (28)
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to ensure that the system equations remain Lipschitz con-
tinuous throughout the following analysis. The following
theorem shows the passivity properties of the extended
WDS system.
Theorem 3.1: The extended water distribution system as
the extended game dynamic, shown in Equation (25), is
strictly passive with the following positive definite storage
function:

V1 = 1
2Q

N∑
j=1

(
�ẋ1 j

)2
. (29)

Proof: (see Appendix). �

The passivity properties of the extended BNN and
Smith dynamics are presented in Lemmas 3.1 and 3.2,
adapted from Sandholm (2010), Fox and Shamma (2013),
and Hofbauer and Sandholm (2009).
Lemma 3.1: The extended BNN evolutionary dynamic,
shown in Equation (26), is strictly passive with the follow-
ing positive definite storage function:

V2 = vm

r

N∑
j=1

∫ f̂ j

0
[s]+ ds, (30)

where f̂ j = r
vm

(∑N
k=1 �x1k(�x2k + x∗

2k) − �x1 j
)
.

Proof: See Appendix. �
Lemma 3.2 (Fox & Shamma, 2013; Hofbauer & Sand-
holm, 2009): The extended Smith evolutionary dynamic,
shown in Equation (27), is strictly passive with the follow-
ing positive definite storage function:

V3 = vm

r

N∑
i=1

(
�x2i + x∗

2i
) N∑

j=1

∫ f j− fi

0
[s]+ ds. (31)

Now consider for�1 and�2 a new storage function of
form

Vnew = V1 + V2, (32)

or

Vnew = V1 + V3, (33)

where V1, V2 and V3 are defined in Equations (29)–
(31). By Lemma 2.2, one can conclude that the negative
feedback interconnection of the extended game dynamic
�1 and the extended evolutionary dynamic �2 (as in
Figure 1) is strictly passive. Also, since the storage func-
tionV1 is radially unbounded, by Lemma 2.1, the equilib-
rium point is globally asymptotically stable for zero input.

Thus, V−1
new(0) that coincides with the NE of the underly-

ing population game (Sandholm, 2010) is globally asymp-
totically stable.

4. Generalisation to a class of affine games

In this section, a generalisation to a class of popula-
tion games with dynamic dependencies is presented. This
class of games has the property of strict passivity, and
hence, by Lemma 2.2, its negative feedback interconnec-
tion with a set of strictly passive evolutionary dynamic,
shown in Figure 1, converges to the Nash equilibrium
points of the game. As a result, we can alternatively show
the convergence forWDS by using the stability properties
of this generalisation.

Consider a dynamically modified population game,
presented in Figure 3 and described by Equation (6):

ẋ = F(x, p), (34)

that is being controlled in a feedback interconnection
with a set of strictly passive evolutionary dynamics, given
by

ṗ = V (p, f ),

where V(p, f) can be either the extended BNN or Smith
dynamics. In this configuration, x ∈ R

N is the state vec-
tor of the game and p ∈ � ⊂ R

N is the population state.
Since in a dynamically modified game, payoff functions
are defined with respect to the game state vector (Fox &
Shamma, 2013) (i.e. f(x)), one can reconsider the notation
of the evolutionary dynamic as follows:

ṗ = V (p, f (x)) = V (p, x). (35)

If we model the dynamically modified game and the evo-
lutionary dynamic, shown in Equations (34) and (35),
as the extended input–output systems of form (23), we
arrive at

Extended
Modified Game :

{
ẋ = F(x, p)
u1 = ṗ, y1 = ẋ , (36)

Extended
Mean Dynamic :

{
ṗ = V (p, x)
u2 = ẋ, y2 = − ṗ . (37)

Thus, we can utilise the configuration of Figure 3 and
model the connection with a negative feedback intercon-
nection as in Figure 1. Theorem 4.1 sums up the stabil-
ity analysis of the feedback interconnection mentioned
above.
Theorem 4.1: Suppose that a dynamically modified pop-
ulation game in the form of an extended input–output
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dynamical system is described by Equation (36), where
F: R

N × � → R
N is Lipschitz continuous. The negative

feedback interconnection of the modified population game
with a set of strictly passive evolutionary dynamic described
by Equation (37) is strictly passive if

� F is strictly decreasing in x, and
� F is linear and strictly increasing in p.

Furthermore, for zero input, the origin of the feedback
interconnected system is asymptotically stable.

Proof: See Appendix. �

Theorem 4.1 is adapted from Fox and Shamma (2013)
where the smoothed payoffs are considered as the dynam-
ically modified payoffs. Fox and Shamma (2013) intro-
duced a dynamical system tomodel and present themod-
ified payoffs as a result of payoff smoothing. This system
is defined as

ẋ = λ(Ap+ b− x), (38)

whereλ, b> 0 andA< 0. It is shown that the system in the
form of (38) is a strictly passive mapping from strategies
to smoothed modified payoffs.

However, in our system, dynamically modified payoffs
are derived by defining the payoffs with respect to the
existing dynamical model of the WDS in Equation (11).
We have also reformulated and generalised this class of
payoff modification in Equation (A1) where g(x) could
be any decreasing function of the strategy trajectories. It
is easy to show that the WDS could be described in this
setup.

5. Disturbance rejection

In this section, we assume that the input u, shown in
Figure 1, plays the role of a disturbance to the system.
This disturbance could be considered as an extra usage of
water, a change in water consumption pattern or type of
the demands or a problem in piping system which has to
deliver water to the consumers. It could cause a difference
between the actual and the desired volume in the tanks, so
themain task is to reject the disturbance. In this problem,
it is assumed that the disturbance is a step-like (constant)
function that is applied to the system for a limited time
interval.

In addition, we consider a model to dynamically con-
trol the total input flowof the system,Q, based on the con-
sumers’ demands and the desirable level of water in the
tanks. We assume that instant overloads of Q are allowed
in the total input flow system but persistent over-usages

Figure . Interconnected system with gradient controller.

may cause damage to the system, and let Q̂ be the max-
imum possible flow of water as the resource. Consider a
quadratic cost J

J = Q

⎛
⎝γ − α + β

N∑
j=1

v j

⎞
⎠ + α

2Q̂
Q2, (39)

which penalises higher volume of water in the tanks;
α and γ are parameters chosen such that α > γ . We
consider an optimisation-based controller, as gradient-
descent of the cost J,

Q̇ = −k
dJ
dQ

= k

⎛
⎝α

(
1 − Q

Q̂

)
− γ − β

N∑
j=1

v j

⎞
⎠ ,

(40)
where k > 0. In error coordinates, (40) is written as �3,

�3 :

⎧⎨
⎩�ẋ3 = −kα

Q̂
�x3 − kβu3

y3 = −�x3
, (41)

and the interconnected system is as in Figure 5. To this
we add an integrator �4, which can ensure asymptotic
disturbance rejection to step-like signals. Since themodel
is in feedback interconnection, we just add �4 with gain
k1 > 0 to the feedback loop of the gradient controller
(Figure 6).

�4 :
{
�ẋ4 = u4
y4 = k1�x4

. (42)

We consider an extra feedback loop with gain k2 > 0, in
order to be able to move the pole from the origin to the
open-left half-plane as needed for passivity (see Figures 6
and 7).
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Figure . Interconnected system with added integrator.

Figure . Integrator and the gradient controller,�′
3.

In the following, we discuss the passivity properties of
the new system. Consider the upper feedback loop of the
system, that consists of the gradient controller and the
integrator as shown in Figure 7.We concatenate these two
subsystems, �3 and �4, and call the augmented subsys-
tem�′

3. Then, the interconnected system is as in Figure 5,
but with �′

3 instead of �3.
Theorem 5.1 characterises the passivity of �′

3.

Theorem 5.1: The system �′
3 in Figure 7 is passive from

input u5 to output y3 if k1 �
kα
Q̂

+ kβk2. Furthermore, if

k1 <
kα
Q̂

+ kβk2, then �′
3 is strictly passive.

Proof: See Appendix. �

This section presented an augmented subsystem to
reject external disturbances to the system. The stability
analysis follows the same argument, based on passivity
of the interconnected system and deriving a condition
under which the system remains strictly passive. Specif-
ically, since �′

3 is strictly passive by Theorem 5.1, it fol-
lows that all components, �1, �2 and �′

3, of the feed-
back interconnected system shown in Figure 6 are strictly
passive. Then, by the same argument as in Lemma 2.1, it
follows that interconnected system is asymptotically sta-
ble for zero inputs.

t (s)

v
(m

3
)

v 1
v 2
v 3

(a) 

t (s)

f

f 1

f 2

f 3

(b)

t (s)

p

p 1

p 2

p 3

(c)

t (s)

Q
(m

3 /
s
)

Q

(d)

Figure . Tank systemwith replicator dynamic (initial condition ).
(a) Tank volumes vs. time; (b) payoffs vs. time; (c) population state
vs. time; (d) total input flow vs. time.

6. Simulation results

In this section, we present simulation results for a N = 3
tank system where the output flows are under the atmo-
spheric pressure. In order to compare our results with
those similar in the literature, for the tank system we use
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the same parameters as in Ramírez-Llanos and Quijano
(2010), summarised in Table A1 (Appendix). We begin
with a comparison between the proposed BNNand Smith
dynamics versus the RD as used in Ramírez-Llanos and
Quijano (2010). Then, we consider disturbance rejection
scenarios.

t (s)

v
(m

3
)

v 1
v 2
v 3

(a)

t (s)

f

y

f 1

f 2

f 3

(b)

t (s)

p

p

p 1

p 2

p 3

(c)

t (s)

Q
(m

3 /
s
)

Q

(d)

Figure . Tank system with BNN dynamic (initial condition ). (a)
Tank volumes vs. time; (b) payoffs vs. time; (c) population state vs.
time; (d) total input flow vs. time

6.1 Convergence to the interior NE

First, we show tank simulation results with the RD
(Ramírez-Llanos & Quijano, 2010), and with the BNN
and Smith dynamics and the total flow controller as
in Figure 5 (no integrator). The initial conditions are

v
(
m

3
)

v 1

v 2

v 3

(a): Tank volumes vs. time
t ( s )

f

f 1

f 2

f 3

(b): Payoffs vs. time.

t ( s )

t ( s )

p

p 1

p 2

p 3

(c): Population State vs. time.

t ( s )

Q
(
m

3 /
s
)

Q

(d): Total Input flow vs. time.

Figure . Tank system with replicator dynamic (initial
condition ).
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t (s)

p

p 1

p 2
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(c): Population State vs. time.
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3 /
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)
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(d): Total Input flow vs. time.

Figure . Tank system with BNN dynamic (initial condition ).

chosen as v(0) = [30, 30, 30]T m3, p(0) = 0.1, 0.2, 0.7]T,
Q(0) = 0.1 m3/s (called system initial condition 1).
Controller parameters are as in Table A1 (Appendix).
Figures 8 and 9 show the results for the tank system with
the RD and with the BNN dynamic, respectively.

Figure 8(a) shows the evolution in time of the volume
of water when the RD is used, Figure 8(b) shows the pay-
offs vs. time, while Figure 8(c,d) shows the evolution of
the fraction of the water flow (controller or population
state), and total input flow, respectively.

Similarly, Figure 9(a) shows the evolution in time of
the volume of water when the BNN dynamic is used,
Figure 9(b) shows the payoffs vs. time, while Figure 9(c,d)
shows the evolution of the fraction of the water flow
(controller or population state), and total input flow, Q,
respectively.

It can be seen that in both cases, the RD controllers and
the BNNdynamic controllers drive the system toward the
interiorNE. The final volume of the tanks is the same and
payoffs are the maximum available. As can be seen from
the plots, the tank system in connection with the BNN
dynamic is slightly faster than the RD in converging to
the NE. The Smith dynamics has a similar performance
as the BNN.

Next, we change initial conditions to v(0) = [1200,
300, 30]T m3 (initial condition 2). We plot the results of
theWDS system interconnected with the RD in Figure 10
and with the BNN dynamics in Figure 11, respectively.

Figure 10(a) shows the evolution in time of the vol-
ume of water when the RD is used, Figure 10(b) shows the
payoffs vs. time, while Figure 10(c,d) shows the evolution
of the fraction of the water flow (controller or popula-
tion state), and total input flow, Q, respectively. Similarly,
Figure 11(a) shows the evolution in time of the volume of
water when the BNNdynamic is used, Figure 11(b) shows
the payoffs vs. time, while Figure 11(c,d) shows the evo-
lution of the fraction of the water flow (controller or pop-
ulation state), and total input flow, Q, respectively.

In this case, it can be seen (see Figure 10(a)) that for
the RD controllers, the volume of tank 1 converges to 0,
and the corresponding fraction p1 = 0 (see Figure 10(c)).
This shows convergence to boundary rest points which
are non-Nash equilibria, hence not the desired NE.

Indeed, it is clear from Figure 10(a) that the first tank
remains empty while the total input flow is being dis-
tributed between tanks 2 and 3. Furthermore, due to
the payoff configuration, empty tanks have higher pay-
offs; therefore, it is desirable to switch to tank 1 as strat-
egy. However, since p1 = 0 is one of the equilibria, the
RD will remain at this point, indicating convergence to
a boundary-fixed point (non-Nash). However, having an
empty tank is not desired, hence the RD is not a suit-
able controller. On the other hand, the results with the
BNN dynamic controller in Figure 11 show an improved
behaviour. From Figure 11(a,c), it can be seen that nei-
ther of the tanks remains empty and all tanks converge
to the NE (Equations (18) and (19)). Figure 11(b) shows
that the payoffs are the same and maximum available.
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(c): Tank volumes with dynamic Q and the integrator.

Figure . Tank system and the Smith dynamic.

Similar results are obtained with the Smith dynamics
and are not shown. Both these dynamics are known to
have the Nash-stationarity property (Sandholm, 2010).
Thus, the BNN dynamics and the Smith dynamics are
effective alternatives to control the WDS, since conver-
gence to non-Nash equilibrium points (on the boundary)
is avoided.

6.2 Simulation results: disturbance rejection

In this section, the effects of the total input flow controller
with respect to disturbance rejection will be discussed.
We consider u as a step-like disturbance, for example, as
an extra water consumption or as some malfunctioning
in the water supply system.

We show the results (see Figure 12) for three cases of
the total input flow controller: (a) Q is static, (b) Q is the
dynamic but with no integrator component, and (c) Q is
dynamic with an integrator component.

t (s)
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u
t
(m

3 /
s
)

R e al i s t i c Outpu t F l ow

q out
1

q out
2

Figure . Stochastic rectangular disturbance pulses.

A step-like disturbance is applied to the first and sec-
ond tank systems for a period of 3000 s, but leave the third
tank being drained under the atmospheric pressure to
see the effects of the disturbance on non-disturbed tanks
while others are disturbed.

The sub-figures in Figure 12 show the response of the
tank system with the Smith dynamics in the presence of
disturbance, for each of these three cases. In Figure 12(a),
Q is a constant parameter, while in Figure 12(b,c), Q
has dynamics; in Figure 12(c), the integrator component
(Figure 6) is also added. Each of the figures shows the evo-
lution in time of the volume of water in each of the three
tanks. Comparing the plots shown in these figures indi-
cates that the response of the system in converging to the
NE in the presence of disturbance has been dramatically
improved. In Figure 12(a), the system cannot reject the
disturbance.WithQ dynamic, it can be seen that a smaller
residual offset is present in Figure 12(b) when compared
to Figure 12(a). This offset is completely removed due
to the introduction of the integrator component, as seen
in Figure 12(c), indicating a perfect asymptotic distur-
bance rejection. Similar results are obtained for the BNN
dynamics and are not shown.

Next, we present a more realistic output flow of the
tanks, as due to changes in the pattern of the consumers’
demands. This could be represented by the following
stochastic rectangular pulses as shown in Figure 13.

The response of the WDS system with the Smith
dynamic controller in the presence of this type of dis-
turbance is presented in Figure 14. In Figure 14(a), Q
is a constant parameter while in Figure 14(b,c), Q has
dynamics. The integrator component is also considered
in Figure 14(c)).

A comparison of these results shows robustness of the
WDS system with the Smith dynamics and Q controller
with integrator (Figure 14(c)). The numerical results in
Section 6.1 show the benefits of the proposed schemes
when compared to the RD (Ramírez-Llanos & Quijano
(2010)); while the RD can lead to convergence to bound-
ary equilibrium points, the BNN and Smith dynamics do
not have this problem and converge to interior NEs. The
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Figure . Tank system with the Smith dynamic.

results in Section 6.2 verify the robustness of the proposed
schemes in the presence of demand disturbance.

7. Conclusions

In this paper, we investigated the WDS as a straight-
forward example of a resource allocation problem. We
utilised a novel population game-theoretic approach to
control and stabilise the WDS based on its consumers’
demands, by using BNN and Smith evolutionary dynam-
ics. We showed that the feedback interconnection of
the WDS and the evolutionary dynamic controller con-
verged to a globally asymptotically stable equilibrium
point. Numerical results showed the benefits when com-
pared to the RD, since convergence to non-Nash equilib-
rium points (on the boundary) is avoided. Furthermore,
we introduced an additional dynamics for disturbance

rejection and verified the proposed scheme robustness to
demand variation.
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Appendix

Proof of Theorem 3.1: By taking the derivative of V1
along (25), we obtain

V̇1 = 1
Q

N∑
j=1

Q�ẋ2 j�ẋ1 j + −1
2Q

N∑
j=1

c j
(�ẋ1 j)2√
�x1 j + x∗

1
.

It is clear that the second term is strictly negative, so

V̇1 = uTe1ye1 +
(−1
2Q

N∑
j=1

c j
(�ẋ1 j)2√
�x1 j + x∗

1

)
< uTe1ye1,

which shows that the extended WDS is strictly passive.

Table A. Tank system parameters and total
input flow controller parameters.

Parameter Value Parameter Value

vm  m C 
r  C 
S  m C 
S  m c .
S  m c .
A . m c .
A . m g . m/s

A . m N 
α . k .
β . k .
γ . k 
Q̂  m/s
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Proof of Lemma 3.1: By taking the derivative along
(25) and (26), we get

V̇2 =
N∑
j=1

[
(�x2 j + x∗

2 j)

N∑
k=1

[ f̂k]+ − [ f̂ j]+
]
�ẋ1 j

+
N∑
k=1

[ f̂k]+
N∑
j=1

�x1 j�ẋ2 j

= − �ẋT2 �ẋ1 +
(−vm

r
f T�ẋ2

N∑
k=1

[ f̂k]+
)
.

Due to the non-negativity of [fj]+ and the positive cor-
relation property of the BNN dynamic – ṗ 	= 0 implies
f T ṗ > 0 (See Sandholm (2005) for a thorough discus-
sion) – the second term on the right-hand side of the
above equation is negative definite. So

V̇2 < uTe2ye2,

which proves the system of (26) is strictly passive.
Proof of Theorem 4.1: The first condition of being

strictly decreasing means that �x F < 0 and the second
condition says that there exists a constant symmetric pos-
itive definite matrix M such that ∇p F = M > 0. Thus,
we can represent this type of dynamically modified pop-
ulation game as

F(x, p) = Mp+ g(x), (43)

where g(x) is Lipschitz continuous and �x g < 0. There-
fore, if we consider the following storage function (Fox &
Shamma, 2013):

L(x, p) = 1
2
ẋTM−1ẋ = F(x, p)TM−1(Mp+ g(x)

)
,

(44)

by taking the derivative along the trajectories we obtain

L̇ = ẋT M−1 ∇x F ẋ + ẋT M−1 ∇p F ṗ

= ẋT M−1 ∇x g ẋ + ẋT M−1 M ṗ

< ẋT ṗ = uT1 y1.

The last inequality is due to the fact that �x g = �x F <

0 and M−1 > 0. This proves that the dynamically mod-
ified game is strictly passive. Suppose we have a set of
strictly passive evolutionary dynamic of form (37) such as
the extended BNN or Smith dynamics (Fox & Shamma,
2013). By Lemma 2.2, one can conclude that the negative
feedback interconnection of this type of modified game
and the corresponding evolutionary dynamic is strictly
passive and for zero input, the origin is asymptotically sta-
ble. Moreover, if g(x) is radially unbounded in x, the stor-
age function L is also unbounded and the system will be
globally asymptotically stable.

Proof of Theorem 5.1: Using (41) and (42) and the
interconnections in Figure 7, �′

3 is described by

�′
3 :

⎧⎪⎨
⎪⎩

�ẋ3 = −
(
kα
Q̂

+ kβk2
)

�x3 − kβk1�x4 − kβu5,
�ẋ4 = k2�x3 + u5,
y3 = −�x3

,

hence is linear time-invariant. The transfer function of�′
3

can be calculated to be

G(s) = kβ (s + k1)
s2 + s

( kα
Q̂

+ kβk2
) + kβk1k2

.

Clearly, since all of the parameters are positive, poles of
�′

3 are in the open left-half plane. Let s = jω, and

G( jω) = kβ
(
jω + k1

)
( jω)2 + jω

( kα
Q̂

+ kβk2
) + kβk1k2

It can be easily verified that k1 < kα
Q̂

+ kβk2 implies that
Re[G(jω)] > 0, which means that G(s) is strictly positive
real and by Lemma 6.4 in Khalil (2002),�′

3 is strictly pas-
sive.
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