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Abstract: Control of systems that have had their passive input–output map partially violated is the motivation of this study. The
hybrid passivity/finite-gain systems framework is specifically well suited to systems that have experienced a passivity violation.
The focus of this study is the extension and application of the hybrid passivity/finite-gain systems framework to a multi-input
multi-output (MIMO) control problem. Calculation of the hybrid passivity/finite-gain parameters in a linear time-invariant
(LTI) MIMO context is considered. Additionally, we show that a set of hybrid very strictly passive/finite-gain (VSP/finite-
gain) controllers gain-scheduled in a particular way also possesses hybrid VSP/finite-gain properties. To synthesise hybrid
VSP/finite-gain controllers a frequency-weighted optimal control scheme is used to parameterise controllers that are then
constrained and optimised within a numerical optimisation framework. The theoretical contributions of this work are validated
experimentally using a two-link flexible manipulator apparatus. Results highlight the utility of the hybrid passivity/finite-gain
framework, the scheduling scheme and controller design method.
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1 Introduction

Passive systems, their stability in feedback and
passivity-based control formulations are well documented
[1–7]. While using a passivity-based control scheme, it is
generally assumed that control inputs can be applied
exactly, and plant outputs can be measured directly.
In practice, desired control inputs are applied via actuators
that are dynamical. Similarly, the plant outputs are
generally measured by sensors that have dynamics, or
estimated via a filtering technique. Actuators, sensors and
filters that have unity gain and zero phase lag over all
frequencies do not exist. Such dynamics generally destroy
the nominally passive input–output (I–O) map to be used as
the basis for robust stabilisation via the passivity theorem;
in reality passivity is ‘violated’.
Motivated by passivity violations, the hybrid passivity and

finite-gain (hybrid passivity/finite gain) systems framework
has been developed [8, 9]. The hybrid systems framework
is of the I–O type, much like the traditional passivity and
small-gain framework. Hybrid passivity/finite-gain systems
are similar to the ‘mixed’ systems discussed in [10, 11],
and the finite frequency positive real systems explored in
[12]. In a linear time-invariant (LTI) context, hybrid
passivity/finite-gain systems are those that possess a passive
I–O map over a frequency band, and a finite-gain I–O map
when passivity has been violated. Although it is perhaps
intuitive to think in terms of a system’s frequency response,
the hybrid passivity/finite-gain systems framework is
applicable to non-linear systems as well. For control, the
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negative feedback interconnection of hybrid passivity/
finite-gain systems is of interest, as addressed by the hybrid
passivity/finite-gain stability theorem. The hybrid passivity/
finite-gain stability theorem relies on both passivity and
small-gain arguments in tandem; when a passive I–O map
exists stability is guaranteed via a passivity theorem type
argument, and when a passivity violation occurs bounded
plant and controller gains ensure destabilisation does not
occur. The word hybrid is used to highlight how the
passivity theorem and the small-gain theorem are used in a
‘hybrid’, ‘mixed’ or ‘blended’ fashion within the hybrid
passivity/finite-gain systems framework; the word hybrid is
not used in the sense that there is some sort of switching.
The goal of this paper is to further develop and

experimentally validate the hybrid passivity/finite-gain
systems framework. In particular, joint-based control of a
flexible robotic manipulator is considered. Control of a
flexible robotic manipulator is challenging owing to the
non-linear nature of the problem, but also has performance
issues associated with vibration suppression and trajectory
tracking [13–17]. To explicitly motivate the use of the
hybrid passivity/finite-gain systems framework, the
nominally passive nature of the flexible manipulator to be
controlled is discussed, as well as a simple passivity
violation induced by filtering of the available
measurements. With a clear motivation, paper [8] is
reviewed and expanded upon. The very strictly passive
(VSP) and finite-gain parameters associated with hybrid
systems will be defined in an LTI, multi-input multi-output
(MIMO) context. With the control of a non-linear plant in
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mind, a set of hybrid VSP/finite-gain subsystems scheduled
(that is to say ‘gain-scheduled’) in a particular fashion is
shown to possesses hybrid VSP/finite-gain properties.
The design of LTI MIMO controllers using a
frequency-weighted optimal control parameterisation is then
considered. A numerical optimisation scheme is employed
to tune the controllers, so that the controllers to be
scheduled satisfy hybrid VSP/finite-gain constraints. Last,
hybrid VSP/finite-gain controllers optimally designed are
used within the scheduling scheme discussed to control a
two-link flexible manipulator. Experimental results confirm
that good closed-loop tracking and vibration suppression is
attained. This paper builds upon [8, 9] in many ways. First,
the paper [8] does not consider the computation of the
various hybrid passivity/finite-gain parameters, while paper
[9] only considers computation of the various parameters in
a single-input single-output (SISO) context. Second, we
consider the gain-scheduling of controllers, and show that
provided the controllers are scheduled in an appropriate
way, I–O stability is assured. This result is not considered
in [8, 9]. Third, we present a novel controller synthesis
method, distinctly different than the method in [9], as well
as others presented in the literature. Last, we consider the
control of a non-linear system, while [9] considers the
control of linear (time-invariant) systems only.

2 Flexible robotic systems

2.1 Ideal I-O model

A flexible robotic manipulator with Nr joints is described by

M(q)q̈+ Dq̇+Kq = B̂t+ fn(q, q̇) (1)

where M . 0, D ≥ 0, and K ≥ 0 are the symmetric mass,
damping, and stiffness matrices, fn are the non-linear
inertial forces, B̂ = [1 0]`, t = [t1 · · · tNr ]

` are the joint

torques, q = [u` q`e ]
`, u = [u1 · · · uNr

]` are the joint
angles, and qe are the elastic coordinates associated with
the Rayleigh–Ritz discretisation of the flexible links.
It is well known that in the context of flexible mechanical

systems, collocated force/torque actuators and velocity/
angular velocity rate sensor yield a passive I–O map
[16, 18]. In particular, the map t � u̇ associated with
flexible robotic manipulators is a passive one. The map
remains passive regardless of the assumed modes or
discretisation method, mass distribution, etc. To robustly
stabilise via the passivity theorem, an appropriate control
law would be of the following form (see [16], section 4.4.3;
[19, 20])

t(s) = tff (s)−
1

s
Kp +GVSP(s)

[ ]
u̇(s) (2)

where tff is a feedforward control that effectively negates a
portion of the non-linear manipulator dynamics,

Kp = K`
p . 0 realises proportional control (note,

1

s
Kp is

passive), and GVSP(s) is a VSP transfer matrix. This control
ensures that robust I–O stability of the closed-loop system
in the presence of disturbances. In instances where u̇ can be
directly measured, such a control law may be employed.
In practice, however, u̇ is not directly measured, but
estimated by filtering or finite differencing of θ
measurements.
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2.2 Violation of passivity

In many practical situations θ will be measured directly, but u̇
will not be. With θ directly available, proportional control
may be implemented without difficulty, and the result (i.e.
the flexible system compensated by proportional control) is
a passive plant with no rigid-body modes.
For rate control to be implemented u̇ must be estimated.

A simple method to estimate u̇ is by filtering θ as follows:

y(s) = F(s)u(s) = diag
i=1···Nr

{f (s)}u(s),

f (s) = v2
f s

s2 + 2zfvf s+ v2
f

(3)

where ωf and ζf are the natural frequency and damping ratio of
the derivative filter f (s). Although the flexible manipulator to
be controlled is non-linear, to facilitate a simpler discussion,
the system’s frequency response will be referred to. At low
frequency F(s) accurately approximates u̇ and as a result the
I–O map t � y behaves as if u̇ were measured directly,
that is, passively. At higher frequencies, however, F(s)
induces phase lag in the measurement signal to be used for
control. As a result, what is fed back to the controller does
not represent u̇ closely, and the I–O map t � y does not
behave passively; passivity has been violated above a
certain frequency. The true I–O map t � y can effectively
be divided into two parts: a low-frequency part where the
I–O map possesses passive characteristics, and a
high-frequency part where passivity is violated. Although
passivity has been violated at high frequency, the I–O map
maintains finite-gain characteristics owing to the small
amount of natural damping in the structure, and the natural
roll-off of F(s). The system is hybrid, possessing both
passive and finite-gain properties. Violation of passivity is
this paper’s motivation, and in particular the motivation
behind the hybrid passivity/finite-gain stability theorem
originally presented in [8].

3 Hybrid passive/finite-gain systems theory

In this section, the hybrid passive/finite-gain systems
framework will be first reviewed, and then built upon [8].
Key notions are as follows: y [ L2 if ‖y‖2 =
ky, yl

1
2 =

��������������1
0 y`(t)y dt

√
, 1, and y [ L2e if ‖y‖2T =������������������1

0 y`
T
(t)y

T
(t) dt

√
, 1, 0 ≤ T , 1 where y

T
(t) = y(t),

0 ≤ t ≤ T and y
T
(t) = 0, t > T [21].

The dissipative systems framework of [22] is similar to the
hybrid passive/finite-gain systems framework. Consider an
m ×m MIMO system y(t) = (GGGGGe)(t), where the operator
GGGGG:L2e � L2e maps e [ L2e to y [ L2e. A hybrid passive/
finite-gain system is one which satisfies [8]

ky
T
, QQQQQy

T
l+ 2ky

T
, SSSSSe

T
l+ ke

T
, RRRRRe

T
l ≥ 0 (4)

where

QQQQQ = −[eAAAAA�AAAAA+ g−1BBBBB�BBBBB],

SSSSS = 1

2
AAAAA�AAAAA,

RRRRR = [gBBBBB�BBBBB − dAAAAA�AAAAA]

(5)
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are operators. The constants δ, ε, and γ are non-negative, and
the operators AAAAA and BBBBB are defined as follows

AAAAA�AAAAA+ BBBBB�BBBBB = 1

⇔ A`(− jv)A(jv)︸��������︷︷��������︸
a(v)1

+B`(− jv)B(jv)︸��������︷︷��������︸
b(v)1

= 1

⇔ a(v)+ b(v) = 1 (6)

where 1 is the m ×m identity operator, 1 is the m ×m identity
matrix, and the transfer matrices (and functions) A(s) = A(s)1
and B(s) = B(s)1 are causal with time-domain equivalent
operators AAAAA:L2 � L2 and BBBBB:L2 � L2. The operator adjoints
of AAAAA and BBBBB are AAAAA� and BBBBB�. The frequency-dependent
functions a:R � {0, 1} and b:R � {0, 1} are theoretical
abstractions used to distinguish between passive system
characteristics and non-passive but still finite-gain system
characteristics. When the system in question possesses a
passive I–O map, a(v) = 1 and b(v) = 0. When the
system fails to possess a passive I–O map, that is the
system has experienced a passivity violation, but the map
has finite gain, a(v) = 0 and b(v) = 1. The divide occurs
at a critical frequency, ωc, which is used to define α and β

a(v) = 1, −vc , v , vc, (passive region)

0, |v| ≥ vc, (finite-gain region)

{ }
= A(− jv)A(jv) = |A(jv)|2

(7)

b(v) = 0, −vc , v , vc, (passive region)

1, |v| ≥ vc, (finite-gain region)

{ }
= B(− jv)B(jv) = |B(jv)|2

(8)

The functions α and β can intuitively be thought of as ideal
low-pass and high-pass filters that filter the I–O signals into
two parts: a passive part and a finite-gain part.
Using (5), (4) can be written as

kAAAAAy
T
, AAAAAe

T
l− dkAAAAAe

T
, AAAAAe

T
l− ekAAAAAy

T
, AAAAAy

T
l+ gkBBBBBe

T
, BBBBBe

T
l

− g−1kBBBBBy
T
, BBBBBy

T
l ≥ 0

Alternatively, (4) can be written in the frequency domain via
Parseval’s theorem

1

2p

∫1
−1

y`
T
(− jv)Q(v)y

T
(jv) dv

+ 1

p
Re

∫1
−1

y`
T
(− jv)S(v)e

T
(jv) dv

+ 1

2p

∫1
−1

e`
T
(− jv)R(v)e

T
(jv) dv ≥ 0

(9)

where Re{ · } is the real part of the argument. By using (6),
we have

Q(v) = −[ea(v)+ g−1b(v)]1, S(v) = 1

2
a(v)1,

R(v) = [gb(v)− da(v)]1.
(10)
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The constants δ and e depend on the passive nature of the
system, and γ depends on the finite-gain nature of
the system when passivity is violated. Note in (10) that the
units of Q(v) and R(v) are consistent: e and g−1 have units
of one over gain, whereas δ and γ have units of gain.
Sufficient conditions for (9) to hold are

1

2p
Re

∫vc

−vc

y`
T
(− jv)e

T
(jv)dv≥ d

2p

∫vc

−vc

e`
T
(− jv)e

T
(jv)dv

+ e

2p

∫vc

−vc

y`
T
(− jv)y

T
(jv)dv

(11)

and

1

gp

∫1
vc

y`
T
(− jv)y

T
(jv) dv

≤ g

p

∫1
vc

e`
T
(− jv)e

T
(jv) dv (12)

which is to say adding (11) and (12) gives (9). When
a(v) = 1 (and b(v) = 0) in (9) the I–O map is said to be

1. Passive if d = e = 0,
2. VSP or input strictly passive (ISP) with finite-gain if δ > 0
and e > 0,
3. ISP if δ > 0 and e = 0, and
4. Output strictly passive (OSP) if δ = 0 and e > 0.

If a passive I–O map no longer exists, that is passivity has
been violated, a(v) = 0 (and b(v) = 1) then the I–O map in
(9) is said to be a finite-gain I–O map.
It is worth noting that the I–O signals of the system in

question, e and y, are Fourier transformed, but the system
operator GGGGG:L2e � L2e is not. The hybrid passivity/
finite-gain systems framework holds for both linear and
non-linear systems, although it is perhaps more intuitive to
envision the hybrid character of a plant in terms of a
frequency response, which is a linear concept. Additionally,
note that if a passivity violation does not occur, that is the
system is passive over all frequencies, vc � 1 and from
(4) and (5) (or (9) and (10)) the traditional passivity
inequality is recovered. Similarly, if a system is not passive
but does have finite gain, vc = 0 and from (4) and (5) (or
(9) and (10)) the traditional finite-gain inequality is recovered.
Next the hybrid passivity/finite-gain stability theorem will

be presented [8]. Consider the negative feedback
interconnection of two hybrid passivity/finite-gain systems,
GGGGG1 and GGGGG2, presented in Fig. 1.The passivity and finite-gain
parameters for each system are δ1, e1, and γ1 and δ2, e2, and
γ2, respectively.

Theorem 3.1: Given GGGGG1:L2e � L2e and GGGGG2:L2e � L2e, the
negative feedback interconnection presented in Fig. 1 is
L2-stable if the variables δ1, e1, γ1, δ2, e2 and γ2 satisfy
e1 + d2 . 0, e2 + d1 . 0 and g1g2 , 1.

Proof: See Theorem 2 and Corollary 1 in [8].

The hybrid passivity/finite-gain stability theorem is an
amalgamation of the traditional passivity and small-gain
theorems. Its creation and development is motivated by
systems that are nominally passive, but have had their passive
787
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I–Omap partially destroyed in some way. The hybrid passivity/
finite-gain stability theorem allows high-gain feedback to be
partially reintroduced where the traditional small-gain theorem
would be overly conservative and the traditional passivity
theorem alone would not guarantee closed-loop stability at all.
Note that L2-stability is assured (like the traditional passivity
and small-gain theorems), meaning that provided the
inequalities e1 + d2 . 0, e2 + d1 . 0 and g1g2 , 1 are
satisfied and d, v [ L2, then y, u [ L2.
In order to use the hybrid passivity/finite-gain stability

theorem, the hybrid passivity/finite-gain parameters δ, e and
γ must be quantified. Given a general MIMO system
y(t) = (GGGGGe)(t), possibly non-linear, the passivity/finite-gain
parameters can be approximated using the linearised
system, y(s) = G(s)e(s), where G(s) is the system transfer
matrix. If the original system is LTI, then G(s) exactly
represents the original system, whereas if the system is
non-linear, G(s) represents the linearised system.
Hybrid ISP system properties will be considered first.

To see how the ISP parameter δ can be computed, consider
manipulation of the following inner product

1

2p
Re

∫vc

−vc

y`
T
(−jv)e

T
(jv) dv

= 1

4p

∫vc

−vc

e`
T
(−jv)[G`(−jv)+G(jv)]e

T
(jv) dv

≥ 1

2
inf

−vc,v,vc

l{G`(−jv)+G(jv)}︸��������������������︷︷��������������������︸
d

1

2p

∫vc

−vc

e`
T
(− jv)e

T
(jv) dv

(13)

where d = 1
2 inf−vc,v,vc

l{G`(−jv)+G(jv)} and l{ · } is
the minimum eigenvalue.
Next hybrid VSP system characteristics will be considered,

and in particular the calculation of the OSP parameter e.
Recall that a VSP system is also an ISP system that possess
finite gain. The so-called passive system gain can be
calculated as follows

1

2p

∫vc

−vc

y`
T
(−jv)y

T
(jv) dv

= 1

2p

∫vc

−vc

e`
T
(−jv)G`(− jv)G(jv)e

T
(jv) dv

≤ sup
−vc,v,vc

�s2{G(jv)}︸�����������︷︷�����������︸
k2

1

2p

∫vc

−vc

e`
T
(−jv)e

T
(jv) dv (14)

where �s{ · } is the maximum singular value. Therefore
k = sup−vc,v,vc

�s{G(jv)} and is referred to as the passive
system gain. To show that a hybrid ISP, finite-gain system is
hybrid VSP, start with the hybrid ISP inequality presented in

Fig. 1 General negative feedback interconnection of systems GGGGG1

and GGGGG2
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(13), let �d = d/2, and substitute (14) as follows [21]

1

2p
Re

∫vc

−vc

y`
T
(−jv)e

T
(jv) dv

≥
�d

2p

∫vc

−vc

e`
T
(−jv)e

T
(jv) dv

+
�d

2p

∫vc

−vc

e`
T
(−jv)e

T
(jv) dv

≥
�d

2p

∫vc

−vc

e`
T
(−jv)e

T
(jv) dv

+
�d

k2︸︷︷︸
�e

1

2p

∫vc

−vc

y`
T
(−jv)y

T
(jv) dv (15)

Hence, a hybrid ISP, finite-gain system is clearly hybrid VSP
where the OSP parameter is �d/k2. Therefore stating a hybrid
system has δ > 0 and k , 1 implies δ > 0 and e > 0.
Finally, the finite-gain parameter associated with an I–O

map that is no longer passive can be calculated as follows

1

p

∫1
vc

y`
T
(−jv)y

T
(jv) dv

≤ sup
v≥vc

�s2{G(jv)}︸��������︷︷��������︸
g2

1

p

∫1
vc

e`
T
(−jv)e

T
(jv) dv

(16)

Thus, g = supv≥vc
�s{G(jv)}.

4 Scheduling of hybrid VSP/finite-gain
systems

Wewill show that N hybrid VSP/finite-gain subsystems of the
form yi = (GGGGGiei)(t) (where di . 0, ki , 1 and gi , 1)
‘gain-scheduled’ in an appropriate fashion yields a hybrid
VSP/finite-gain system.To start, recall from (6) that
1 = AAAAA�AAAAA+ BBBBB�BBBBB where 1 is the identity operator.Using
this relationship, a function, such as y, may be written as

y(t) = (1y)(t) = (AAAAA�AAAAAy)(t)+ (BBBBB�BBBBBy)(t) (17)

Next consider the scheduling architecture of Fig. 2 [19, 20].
The scheduling signals, si, are applied to both the input and
output of the subsystems

y(t) =
∑N
i=1

si(t)yi(t), ei(t) = si(t)e(t) (18)

G1

G
N

...

s1

s
N e

e1

eN

s1

s
N

+

+
y

y1

yN

Fig. 2 Scheduling architecture where the
⊗

symbol indicates
multiplication (i.e. ei( t) = si( t)e( t))
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The signals satisfy

∑N
i=1 s

2
i (t) ≥ n . 0 (i.e. one scheduling

signal must be active at all times), and si [ L2e > L1. Using
(17), (18) can be written as

y(t) =
∑N
i=1

si(t)yi(t)

=
∑N
i=1

si(t) (AAAAA�AAAAAyi)(t)+ (BBBBB�BBBBByi)(t)
( )

(19a)

ei(t) = si(t)e(t) = si(t) (AAAAA�AAAAAe)(t)+ (BBBBB�BBBBBe)(t)( )
(19b)

In this paper, we will assume the scheduling signals are a
function of time only, but they could be a function of
another variable

Theorem 4.1: The map e � y of Fig. 2 is hybrid VSP/finite
gain with δ > 0, 0 , k , 1, and 0 , g , 1, if each of the
subsystems yi = (GGGGGiei)(t) is hybrid VSP/finite gain with
di . 0, 0 , ki , 1 and 0 , gi , 1, and are scheduled
via (19).

Proof: Proof of Theorem 4.1 will be executed in two steps:
first it will be shown that a set of subsystems that are ISP
when passivity holds and are scheduled via the architecture
of Fig. 2 yields an overall gain-scheduled system that is
also ISP when passivity holds. Then it will be shown that
provided each hybrid VSP/finite-gain subsystem possesses
finite gain in both the passive and non-passive bands, the
overall gain-scheduled system possess finite gain in the
passive and non-passive bands as well (although the gain in
the passive and non-passive bands may be different).
Combining the ISP and finite-gain nature when passivity
holds, plus the finite-gain nature when passivity is violated,
proves that the scheduled system is a hybrid VSP/finite-gain
system.
The ISP property when passivity holds will be considered
first. To begin, note that

∫1
0
(AAAAA�AAAAAeT )

`(t)(BBBBB�BBBBByT )(t)dt

= 1

2p

∫1
−1

e`T (−jv)A`(−jv)A(jv)︸��������︷︷��������︸
1a(v)

B`(−jv)B(jv)︸�������︷︷�������︸
1b(v)

yT (jv)dv

=0 (20)

owing to the fact that the product a(v)b(v) is zero (refer to
the definition of α and β in (7) and (8) of Section 3). Now,
consider the following integral and subsequent manipulation

∫1
0
(AAAAAeT )`(t)(AAAAAyT )(t) dt

=
∫1
0
(AAAAA�AAAAAeT )`(t)yT (t) dt

=
∫1
0
(AAAAA�AAAAAeT )`(t)

∑N
i=1

si(t) (AAAAA�AAAAAyi,T )(t)
⎧⎩⎧⎪⎪⎪⎩

+(BBBBB�BBBBByi,T )(t)
⎫⎭⎫⎪⎪⎪⎭dt (using (19a))
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=
∑N
i=1

∫1
0
si(t)(AAAAA�AAAAAeT )`(t)(AAAAA�AAAAAyi,T )(t) dt

(simplified using (20))

=
∑N
i=1

∫1
0
si(t) (AAAAA�AAAAAyi,T )`(t)(AAAAA�AAAAAeT )(t)

[
+(AAAAA�AAAAAyi,T )`(t)(BBBBB�BBBBBeT )(t)

]
dt

where zero has been added in the last line. Continuing

∑N
i=1

∫1
0
si(t)(AAAAA�AAAAAyi,T )

`(t) [(AAAAA�AAAAAeT )(t)+ (BBBBB�BBBBBeT )(t)]︸����������������︷︷����������������︸
eT (t)

dt

=
∑N
i=1

∫1
0
si(t)(AAAAA�AAAAAyi,T )

`(t)eT (t) dt

=
∑N
i=1

∫1
0
(AAAAA�AAAAAyi,T )

`(t)[si(t)eT (t)]dt

=
∑N
i=1

∫1
0
(AAAAA�AAAAAyi,T )

`(t)ei,T (t) dt

where the definition of ei,T provided in (18) has been
employed. Knowing that each subsystem is ISP when
passivity holds it follows that

∑N
i=1

∫1
0
(AAAAAyi,T )`(t)(AAAAAei,T )(t) dt

≥
∑N
i=1

di

∫1
0
(AAAAAei,T )`(t)(AAAAAei,T )(t) dt

=
∑N
i=1

di

∫1
0
(AAAAA�AAAAAei,T )`(t) si(t) (AAAAA�AAAAAeT )(t)

⎧⎩⎧⎩
+(BBBBB�BBBBBeT )(t)

⎫⎭⎫⎭dt (using (19b))

=
∑N
i=1

di

∫1
0
si(t)(AAAAA�AAAAAei,T )`(t) (AAAAA�AAAAAeT )(t)︸������︷︷������︸

eT (t)−(BBBBB�BBBBBeT )(t)
dt

(simplified using(20))

=
∑N
i=1

di

∫1
0
si(t)(AAAAA�AAAAAeT )`(t)ei,T (t) dt

=
∑N
i=1

di

∫1
0
s2i (t)(AAAAA�AAAAAeT )`(t)(AAAAA�AAAAAeT )(t) dt

(using (19b) again, then simplifying)

≥ d

∫1
0
(AAAAAeT )`(t)(AAAAAeT )(t) dt

where d = nmini=1,...,N di. Thus, a set of hybrid subsystems
that are ISP when passivity holds scheduled appropriately is
also ISP when passivity holds.
Next the finite-gain nature of the scheduled subsystems in

the passive band will be considered. Only an outline of the
proof will be given; details are left to the reader. Using
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(19a), (19b) and (20) in conjunction with the triangle
inequality it can be shown that

‖AAAAAyT‖2 =
∑N
i=1

si(AAAAA�AAAAAyi,T )

∥∥∥∥∥
∥∥∥∥∥
2

≤
∑N
i=1

‖si(AAAAA�AAAAAyi,T )‖2

≤
∑N
i=1

‖si‖1‖AAAAAyi,T‖2 ≤
∑N
i=1

‖si‖1ki‖AAAAAei,T‖2

≤
∑N
i=1

‖si‖21ki
[ ]
︸�������︷︷�������︸

k

‖AAAAAeT‖2

where 0 , k , 1.
The finite-gain nature of the scheduled subsystems when

passivity has been violated is shown in an identical fashion,
resulting in

‖BBBBByT‖2 ≤
∑N
i=1

‖si‖21gi
[ ]
︸�������︷︷�������︸

g

‖BBBBBeT‖2

where 0 , g , 1. □

5 Hybrid controller design via frequency
weighting and numerical optimisation

With the hybrid passivity/finite-gain stability theorem at
hand, the optimal design of hybrid VSP/finite-gain
controllers will now be considered.Similar to traditional
controller design techniques, it is assumed that a general yet
low fidelity plant model is available. If the plant is
non-linear, it is linearised about an operating point. The
plant model is said to be a ‘low fidelity’ because the true
plant dynamics are modelled with a finite amount of
accuracy, and the passivity-destroying filters, actuators, etc.
are nominally ignored. Consistent with this assumption, it is
assumed that the plant is nominally purely passive with
very little dissipation, that is, d1 = 0 and k1 ≃ 1, a worst
case (where δ1 and κ1 are defined in (13) and (14)).
Furthermore, it is assumed that estimates of ωc and g1 , 1
are available (where γ1 is defined in (16)), given a rough
estimate of how the sensors and actuators behave. It should
be stressed that ωc and γ1 can only be estimated because the
true sensor and actuator dynamics are never truly known.
All that really can be guaranteed is that above some ωc a
passive I–O map no longer exists, but the I–O map
possesses finite gain owing to some natural damping
inherent in the system.
Let us first review the H2 control framework [23]. The

nominal plant to be controlled is

ẋ = Ax+ Bdd+ Buu (21a)

z = Czxx+ Dzuu (21b)

y = Cyxx+ Dyvv (21c)

where x [ Rn is the system state, u [ Rnu is the control
input, y [ Rny is the measurement, z [ Rnz is the regulated
output, d [ Rnd is the disturbance, v [ Rnv is the
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measurement noise, and all matrices are dimensioned
appropriately. It is assumed that

1. (A, Bd) is controllable and (Czx, A) is observable,
2. (A, Bu) is controllable and (Cyx, A) is observable,
3. D`

zuCzx = 0 and D`
zuDzu . 0, and

4. DyvB
`
d = 0 and DyvD

`
yv . 0.

The optimal H2 controller is

ẋc = (A− BuKc −KeCyx)︸������������︷︷������������︸
Ac

xc + Ke︸︷︷︸
Bc

y

−u = Kc︸︷︷︸
Cc

xc

where xc [ Rn is the controller state, and Kc and Ke are the
optimal state feedback and estimator gains.
The closed-loop system is described by

ẋ
ẋc

[ ]
= A −BuCc

BcCyx Ac

[ ]
︸����������︷︷����������︸

Azw

x
xc

[ ]

+ Bd 0
0 BcDyv

[ ]
︸�������︷︷�������︸

Bzw

d
v

[ ]
(22a)

z = [Czx − DzuCc]︸�������︷︷�������︸
Czw

x
xc

[ ]
. (22b)

or equivalently as z(s) = Tzw(s)w(s), where w = [d` v`]`.
The closed-loop H2-norm is

J =
��������������
tr B`

zwPzwBzw

√
(23)

where Pzw is the solution of PzwAzw + A`
zwPzw = −C`

zwCzw.

5.1 Frequency-weighted optimal control
formulation

In contrast to the traditional H2 formulation (i.e.
linear-quadratic Gaussian (LQG) control),
frequency-weighted optimal control design is a technique
that allows tuning of the controller frequency response. This
design method is ideal in terms of numerical optimisation,
where the optimisation algorithm can tune the controller.
Using a numerical optimiser to optimally design the
frequency weighted optimal controller subject to a set of
constraints is one of the contributions of this paper. Before
discussing controller synthesis via numerical optimisation,
the frequency-weighted optimal control formulation will be
reviewed, starting with the design of a state feedback gain
matrix [24–27]. Consider the following cost function

J rf =
1

4p

∫1
−1

[x`(−jv)Qx(jv)x(jv)

+ u`(−jv)Ru(jv)u(jv)]dv

(24)

which is similar to the standard linear-quadratic regulator
(LQR) cost function, but the weighting matrices Qx(jv) and
Rx(jv) are no longer static, but a function of frequency.
IET Control Theory Appl., 2013, Vol. 7, Iss. 6, pp. 785–795
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The weightsQx(jv) and Ru(jv) can be parameterised in terms
of filters Wx(jv) and Wu(jv): Qx(jv) = W`

x (−jv)Wx(jv)
and Ru(jv) = W`

u (−jv)Wu(jv) where

zx(s) = Wx(s)x(s)
ẋxf = Axf xxf + Bxf x

zx = Cxf xxf + Dxf x

{
,

zu(s) = Wu(s)u(s)
ẋuf = Auf xuf + Buf u

zu = Cuf xuf + Duf u

{

Equation (24) can now be simplified as follows

J rf =
1

4p

∫1
−1

[z`x (jv)zx(jv)+ z`u (jv)zu(jv)]dv

= 1

2

∫1
0
(x`rfQrf xrf + 2x`rfNrf u+ u`Rrf u) dt

= 1

2

∫1
0
[x`rf (Qrf − NrfR

−1
rf N

`
rf )xrf + u′`Rrf u

′]dt

where xrf = [x` x`xf x
`
uf ]

`, u = u′ − R−1
rf N

`
rf xrf and Qrf , Nrf ,

and Rrf can be found via algebraic manipulation (see [24] and
[26] for details). The frequency-weighted optimal state
feedback matrix is then

Krf = R−1
rf (B

`
rf Prf + N`

rf ) = [Kc Kxf Kuf ]

where Prf is found by solving a modified algebraic Riccati
equation [28, 29].
A frequency-weighted optimal state estimator can also be

derived [25, 30, 31]. To do so, the system disturbance, d,
and noise, v, are taken to be the output of a set of
IET Control Theory Appl., 2013, Vol. 7, Iss. 6, pp. 785–795
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differential equations

d(s) = Wd(s)d
′(s)

ẋdf = Adf xdf + Bdf d
′

d = Cdf xdf + Ddf d
′

{
,

v(s) = Wv(s)v
′(s)

ẋvf = Avf xvf + Bvf v
′

v = Cvf xvf + Dvf v
′

{

where d′ and v′ are white noise sources [30]. The frequency
weighted estimator weights are then Qd(jv) = W`

d (−jv)
Wd(jv) and Rv(jv) = W`

v (−jv)Wu(jv). In traditional LQG
control, d and v are both zero mean white noise; here we
are constructing disturbance and noise dynamics that
change as a function of frequency.Constructing an optimal
observer we have

˙̂xef = Aef x̂ef + Bef u−Kef (Cef x̂ef − y)

where x̂`ef = [x̂` x̂`df x̂
`
vf ] and

Kef =
Ke

Kdf

Kvf

⎡
⎣

⎤
⎦

is found by solving a modified algebraic Riccati equation [28,
29]. Aef , Bef and Cef can be found by algebraic manipulation.
It follows then that the complete controller dynamics, that

is the frequency-weighted optimal controller, can be written
as (see equation at the bottom of the page).

5.2 Controller design via numerical optimisation

By adjusting the filters Wx(s), Wu(s), Wd(s), and Wv(s) the
controller can be tuned to satisfy, for example, low and
high-frequency gain criteria.In particular, a controller that is
hybrid VSP/finite gain is sought, possessing VSP properties
below ωc, and finite-gain properties above ωc. Rather than
tuning the filters manually, a numerical optimisation
˙̂x

ẋxf
ẋuf
˙̂xdf
˙̂xvf

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ =

(A−KeCyx − BuKc) −BuKxf BuKuf BdCdf −KeDyvCvf

Bxf Axf 0 0 0

−BufKc −BufKxf (Auf − BufKuf ) 0 0

−KdfCyx 0 0 Adf −KdfDyv

−KvfCyx 0 0 0 (Avf −KvfDyvCvf )

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

︸������������������������������������������������������︷︷������������������������������������������������������︸
�Ac

x̂

xxf
xuf
x̂df
x̂vf

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

︸���︷︷���︸
�xc

+

Ke

0

0

Kdf

Kvf

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

︸���︷︷���︸
�Bc

y

−u = Kc Kxf Kuf 0 0
[ ]︸���������������︷︷���������������︸

�Cc

x̂

xxf
xuf
x̂df
x̂vf

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
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problem will be posed, and the optimiser will tune the
controller while simultaneously ensuring it satisfies the
hybrid VSP/finite-gain constraints.
The optimisation constraints are d2 . 0, k2 , 1,

g1g2 , 1, that is the controller satisfies the hybrid
passivity/finite gain stability theorem. The optimisation
objective function will be minimisation of the closed-loop
H2-norm, as presented in (23), where the
frequency-weighted controller is used in place of the
standard H2 controller in (22). Minimisation of the
closed-loop H2-norm is reasonable in that the closed-loop
system should behave optimally.
How the filters should be parameterised is an interesting

problem. Consider the design of the state feedback gain
matrix where Qx(jv) and Ru(jv) must be parameterised.
At low frequency the control system should perform
very well enabling trajectory tracking, for example.
Logically, Qx(jv) should be large and Ru(jv) should be
small (in a relative sense) at low frequency. At high
frequency however, the bandwidth of the controller
should be limited in order to avoid having
high-frequency disturbances degrade system performance.
Additionally, in order to satisfy the constraint g1g2 , 1,
the controller is expected to have gain that subsides past
ωc. Naturally, Qx(jv) should be small and Ru(jv) should
be large (again, in a relative sense) at high frequency,
and in particular above ωc. If, then, Wx(jv) is a
low-pass filter and Wu(jv) is a high-pass filter, the
controller will have the aforementioned characteristics.
Consider, then, the following Wx(jv) and Wu(jv)
parameterisations

Wx,(i,j)
(s) = Kx,(i,j)

v2
(i,j)

s2 + 2z
(i,j)
v

(i,j)
s+ v2

(i,j)

,

Wu,(i,j)
(s) = Ku,(i,j)

sT
(i,j)

+ 1

sT
(i,j)
a

(i,j)
+ 1

whereWx,(i,j)
(s) is the i− jth element ofWx(s) andWu,(i,j)

(s) is

the i− jth element of Wu(s). Each Wx,(i,j)
(s) transfer function

is a low-pass filter with gain Kx,(i,j)
, while each Wu,(i,j)

(s)
transfer function is a lead filter with gain Ku,(i,j)

. Notice also
that Wx,(i,j)

(s) is strictly proper and rolls off at high
frequency, thus Qx(jv) ≥ 0 over all frequencies. The filter
Wu,(i,j)

(s) however has finite gain even as v � 1, thus

Ru(jv) . 0. In a numerical optimisation setting, Kx,(i,j)
, z

(i,j)
,

v
(i,j)
, Ku,(i,j)

, T
(i,j)
, and a

(i,j)
will be the design variables. With

these filters, some additional constraints must be added;
each filter parameter must be strictly positive and
0 , a

(i,j)
, 1.

The matrices Qd(jv) = W`
d (−jv)Wd(jv) and

Rv(jv) = W`
v (−jv)Wu(jv) are parameterised in a similar

manner. At high frequency, noise will significantly
corrupt the available measurements. Thus, Wv(s) will
be composed of lead filters representing low signal
noise at low frequency, and significant signal noise at
high frequency. External disturbances generally do not
have very large magnitudes at high frequency. As such,
Wd(s) will be composed of low-pass filters to capture
this roll-off effect at high frequency. Wd(jv) (and
hence Qd(jv)) could also be tuned to capture the
presence of specific disturbances at specific frequencies
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[30]. Using this parameterisation, Qd(jv) ≥ 0 and
Rv(jv) . 0 [25].
Our numerical optimisation problem can now be

summarised.

Design Variables: parameterisation of Wx(s), Wu(s), Wd(s),
and Wv(s).
Constraints: d2 . 0, k2 , 1 and g1g2 , 1 and the filter
parameters must be admissible.
Objective Function: minimise J =

��������������
tr B`

zwPzwBzw

√
.

To solve our optimisation problem, the numerical
algorithm employed will be a sequential quadratic
programming (SQP) algorithm where constraints are
enforced via Lagrange multipliers and derivative
information is acquired via finite differencing [32].

6 Experimental implementation and results

6.1 Experimental apparatus

The control architecture discussed in this paper will be
implemented on the two-link flexible manipulator test-bed
shown in Fig. 3. The apparatus is manufactured by Quanser
Consulting Inc. The links are made of steel; the first link is
210.00 mm long, 1.27 mm thick, and 76.20 mm high, while
the second link is 210.00 mm long, 0.89 mm thick, and
38.1 mm high. Affixed to the base of each link is a strain
gauge, while a digital encoder is mounted to the output
shaft of each motor. The encoders provide u = [u1 u2]

`,
the base joint angle θ1 and the elbow joint angle θ2, and the
strain gauges are used to determine the deflection in each
link. Readers interested in other specific details of the
apparatus are referred to [33]. Since θ is directly measured,
proportional control can be implemented with ease;
the proportional control gain will be set to
Kp = diag{40, 40}N ·m/rad. The velocity u̇ is not directly
measured, and will be acquired by filtering θ with F(s) (as
shown in (3)) thus destroying the passive nature of the
nominal plant.
It is worth noting that a passivity violation will occur

regardless of the derivative filter’s bandwidth. However, in

DC motors and harmonic drives.

Second flexible link. Strain gauge. Second joint encoder.

Fig. 3 Two-link flexible robot experiment manufactured by
Quanser Inc
IET Control Theory Appl., 2013, Vol. 7, Iss. 6, pp. 785–795
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some instances that passivity violation may occur at lower
frequencies. Ideally the derivative filter’s bandwidth is high
enough that the derivative filter dynamics and the plant
dynamics (i.e. the structural dynamics of the manipulator)
do not interact. In this situation, the passivity violation
would occur at high frequency. In practice, the derivative
filter’s bandwidth is reduced in order to avoid the excitation
of high-frequency measurement noise. As such, the
derivative filter dynamics will interact with the plant
dynamics. In this case, the passivity violation will occur at
a lower frequency.

6.2 Controller optimisation results

Rather than controlling the two-link manipulator system with
one hybrid VSP/finite gain controller, two LTI hybrid VSP/
finite gain controllers will be used within the scheduling
architecture of Section 4. The first controller will be
designed about set-point one corresponding to
u1 = [u1,1 u1,2] = [0 0]` rad, and the second about
u2 = [u2,1 u2,2] = [p/4 p/4]` rad.
The two-link system is non-linear; to use the optimisation

scheme proposed in Section 5.2, the dynamics are linearised
about a specific joint configuration, ui. Given the ideal plant
along with some assumed sensor and actuator dynamics
based on the test-bed discussed in Section 6.1, the critical
frequency and high frequency gain, ωc and γ1, about set
point ui can be estimated; in particular, vc = 250 rad/s,
while g1 = 0.2 rad/(N ·m · s) for each set point. Because
the true system is non-linear, it is assumed that the true
non-linear high-frequency gain is close in magnitude to the
estimated value γ1. Note that there is uncertainty associated
with ωc and γ1 because there is uncertainty associated with
the additional dynamics that violate passivity. However, the
values of ωc and γ1 are chosen in a slightly conservative
way; the passivity violation may occur at a higher
frequency, and γ1 may in fact be smaller. However,
attempting to determine ωc and γ1 more accurately would
contradict the motivation behind the use of the hybrid
passivity/finite gain stability theorem. The hybrid passivity/
finite gain stability theorem is being used because below ωc

the plant has passive characteristics, and above ωc the plant
has finite gain.
Recall from Section 2.1 that the ideal system has a passive

map from t to u̇. This map remains passive regardless of the
number of flexible modes modelled, or the mass distribution
of the manipulator, which is why passivity-based control is
robust. When a passivity violation has been experienced
and the hybrid passivity/finite gain framework is employed,
at low frequency we enjoy these robustness properties
because the plant remains passive and the controller is VSP
in this range, and at high frequency we also enjoy
robustness provided the gain of the plant remains below the
critical value of γ1, which is conservatively chosen.
The optimisation formulation of Section 5.2 is used to

design two controllers. In Fig. 4, is the frequency response
of the controller optimally designed about set-point one.
The maximum singular value is �s(G(jv)) and the minimum
Hermitian part is 1

2 l[G
`(− jv)+G(jv)], where G(jv) is

the transfer matrix of controller one. Also included in Fig. 4
is the frequency response of a traditional H2 controller
designed about set-point one where �Qx = Qx(j0) and
�Ru = Ru(j0) are used to design the state feedback matrices,
and �Qd = Qd(j0) and �Rv = Rv(j0) are used to calculate
the observer gain matrices. Compared with the hybrid
IET Control Theory Appl., 2013, Vol. 7, Iss. 6, pp. 785–795
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VSP/finite controller, the H2 controller has greater gain at
high frequency, and with the linearised plant model do not
satisfy the hybrid passivity/finite gain stability theorem.

6.3 Experimental results

The hybrid VSP/finite gain controllers designed using the
optimisation formulation of Section 5.2 have been used
within the scheduling architecture of Section 4 to control
the two-link manipulator discussed in Section 6.1 (shown in
Fig. 3).
The manipulator is to follow a desired trajectory starting at

u1, moving to u2, then moving back to u1. The desired
trajectory between set-points is

ud(t) = 10
t

tf

( )3

−15
t

tf

( )4

+6
t

tf

( )5
[ ]

(uf − ui)+ ui

where tf is 2 s, uf is the final angular position, and ui is the
initial angular position. Between manoeuvres there is a 2 s
dwell. It is worth noting that closed-loop stability of the
system does not hinge on the trajectory chosen, nor on any
sort of coupled motion of the two links. Although the
trajectory is not all that challenging for a rigid manipulator,
when the manipulator is flexible there is significant
structure/controller interaction. Additionally, this trajectory
uses up a significant portion of the torque capability of the
motors. Should a more aggressive manoeuvre be
considered, saturation would occur, which should be avoided.
Because two controllers are used within the scheduling

architecture, there are two scheduling signals, s1 and s2. For
simplicity, both scheduling signals will be linear functions
of time, as shown in Fig. 5. Scheduling in this fashion is
equivalent to scheduling in terms of the assumed trajectory
of the manipulator. Because the scheduling signals are a
function of time, the overall gain-scheduled controller is
linear time-varying.
Recall the overall gain-scheduled controller maintains its

hybrid VSP/finite-gain property as long as one scheduling
signal is active at all times, and si [ L2e > L1. As such,
robust L2-stability of the closed-loop system is assured via
the hybrid passivity/finite-gain stability theorem. Even if the
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Fig. 4 Hybrid VSP/finite gain (solid line) and traditional H2

(dashed line) controllers designed about set-point one
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manipulator deviates from the desired trajectory because of
disturbances, the gain-scheduled controller sill maintains its
hybrid VSP/finite gain property, and the controller is
assured to yield L2-stability. Admittedly, the performance
may suffer if the manipulator trajectory deviates from the
desired trajectory.
Fig. 6 shows the response of the system controlled in two

ways: the system is controlled by controller one only (ie no
scheduling), and the system is controlled by both controllers
and scheduled appropriately. Fig. 7 presents the error of
each control scheme, while Table 1 presents the rms errors.
Note the increase in performance when scheduling is used.
In particular, in Figs. 6 and 7 one can clearly see a small
vibration in θ2 at set-point two that is not suppressed
immediately. When scheduling is used, there is no vibration
in θ2 at set-point two. An explanation for this is simple:
controller two is used in the scheduling scheme, and is fully
active when the manipulator is at set-point two. Without
scheduling, only controller one is used, and controller one
is not optimally designed about set-point two, hence
performance is degraded when the manipulator is away
from set-point one.
We attempted to control the two-link system using the

traditional H2 controllers. We found that the closed-loop was
actually unstable when these controllers were used, which is
why we do not present any trajectory or error plots. The
reason the closed-loop is unstable is the gain of the
traditional H2 controllers is very large at high frequency.

Fig. 5 Scheduling signal profiles (tf = 2 s)
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Fig. 6 System response using hybrid VSP/finite-gain control and
gain-scheduled hybrid control
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During operation high frequency noise and unmodelled
dynamics are excited leading to instability. Comparatively,
the hybrid VSP/finite gain controllers are forced to roll off to
satisfy the hybrid passivity/finite-gain stability theorem. Note
that the H2 controllers were not able to stabilise the system
for the particular controller gains and derivative filter used. If
more effort is made (i.e. tuning the controller further, tuning
the derivative filter, modelling the plant more accurately,
etc.) the H2 controllers do indeed work. However, it is
interesting to note that the hybrid VSP/finite gain controllers
(i.e. both the set-point one controller alone and the
gain-scheduled controller) are able to stabilise and control the
closed-loop system without such additional tuning.

7 Closing remarks

This paper considers closed-loop stability and controller
design within the hybrid passive/finite-gain systems
framework. Motivation is derived from the fact that
nominally passive systems often have their passive I–O map
destroyed in practice. In particular, the passive nature of a
generic flexible robotic manipulator is discussed, as is a
passivity violation induced by rate filters used to estimate
the joint velocities of the manipulator.With a clear
motivation, hybrid passive/finite gain systems and their
stability in feedback are discussed. In particular, the VSP
and finite gain parameters associated with LTI MIMO
hybrid VSP/finite-gain systems are defined in terms of the
Hermitian part and singular values of the system transfer
matrix. The scheduling of hybrid VSP/finite-gain systems is
considered as well, and it is shown that a set of hybrid
VSP/finite-gain subsystems (which, in practice are often
controllers) scheduled in an appropriate manner possesses
properties that are hybrid VSP/finite gain. Controller design
using a frequency-weighted optimal control formulation is
also presented. Control of an experimental apparatus, a
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Fig. 7 Position and velocity errors

Table 1 Position and velocity rms errors

θ2 rms
error (rad)

θ2 rms
error (rad)

u̇1 rms error
(rad/s)

u̇2 rms error
(rad/s)

Unscheduled 6.0 × 10−3 2.2 × 10−3 1.9 × 10−2 1.6 × 10−2

Scheduled 4.9 × 10−3 1.6 × 10−3 1.8 × 10−2 1.6 × 10−2
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two-link flexible manipulator, successfully demonstrates
practical application of the controller design formulation.
Although the controller designed about one set-point
performs well on its own, better closed-loop performance is
attained while using two controllers (each optimal about a
different set-point) scheduled appropriately.To summarise,
the novel contributions of this work are:

1. Calculating the hybrid passivity and finite gain parameters
δ, e, and γ in an LTI MIMO context.
2. Showing that a gain-scheduled controller composed of
hybrid VSP/finite gain subsystems has hybrid VSP/finite
gain properties.
3. Using a frequency weighted optimal control formulation in
conjunction with a numerical optimisation algorithm to
design hybrid VSP/finite gain controllers.
4. Experimentally validating the controller design and
scheduling schemes presented.
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