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given by (6) can successfully shorten the settling time of h e  tracking 
control at different operation speeds. In our experimental setup the 
settling time is in the range of 0.50 N 0.65 s for the conveyor belt 
running between 9.43 N 26.60 c d s .  As we have seen, this is a great 
improvement in the tracking control compared with that where no 
special care is taken to compensate for the feedback signal when 
the sensor is operating in the saturated region. Again, the aidvantage 
of the predictive method becomes more evident as the speed of the 
conveyor becomes faster. 

VI. CONCLUSION 
This paper presents a position tracking control for use in produc- 

tion lines. The concept of synchronous tracking and working is of 
great industrial applicability, and has positive effects on shortening 
manufacturing time and increasing manufacturing efficiency. An 
H a  robust controller has been implemented successfully in an 
experimental setup with a robot arm sitting on the working table. 
The design problem of sensor output saturation was successfully dealt 
with by using a predictive method while the sensor is operating in 
the saturated range. 

In our experiments only one processing mechanisrn was used 
at a time. It might be possible, however, to use two or more 
simultaneously tracking and working devices in conjunction, and 
thereby further increase productivity. 
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Approximate Inverse Dynamics and Passive Feedback 
for Flexible Manipulators with Large Payloads 

Christopher J. Damaren 

Absfract-A derivation is presented of an approximate form of the 
dynamics governing a structurally flexible manipulator carrying a mas- 
sive payload at its end-effector. An output called the p-tip rate which 
incorporates end-effector and elastic motions is introduced. The input- 
output mapping relating a transformed version of the joint torques to 
the p-tip rates is shown to be passive for large payloads. A feedforward 
torque strategy is developed which preserves the passivity property 
in the error dynamics and a suitable Lyapunov function is used to 
demonstrate global asymptotic stability of the tracking provided by a 
PD law. Implementation of the controllers without measurements of 
the elastic coordinates and rates is shown to be possible. Simulation 
studies of a six DOF manipulator with flexible links, modeled after 
the Shuttle Remote Manipulator System, demonstrate excellent tracking 
in all six Cartesian end-effector coordinates, even for payloads with 
modest mass properties. A major conclusion is that some of the problems 
normally associated with lack of collocation in flexible manipulators can 
be surmounted when large (massive) payloads are involved. 

1. INTRODUCTION 

In the last two decades, a coherent theory of control for rigid robot 
manipulators has emerged. Globally stable trajectory tracking has 
been demonstrated with respect to “exact” nonlinear models of rigid 
robot dynamics. The tutorial paper [l], while primarily focusing on 
adaptive control, presents a useful subdivision of globally stabilizing 
controllers into those based on feedback linearization and those which 
exploit the concept of passivity. The success of controllers in the latter 
group can be attributed to the collocation of torque actuation and 
joint rate sensing which ensures passivity in the open-loop forward 
dynamics operator [2] .  

General mechanical systems possessing collocation of force inputs 
and rate outputs such as flexible space structures [3] exhibit passivity 
on account of the energy balance between the system Hamiltonian 
and the work done by inputs and dissipative influences. The major 
importance of this concept in controller synthesis arises from the 
Passivity Theorem (see [4] for example) which states that the 
feedback interconnection of a passive system and a strictly passive 
one is input-output stable. The recognition that passive systems 
possess a natural Lyapunov function in the form of the storage 
function [5], [6] leads to the more common notion of Lyapunov 
stability. For passive mechanical systems, the storage function can 
usually be identified with the Hamiltonian which has been fully 
exploited in controlling rigid manipulators. In the case of structurally 
flexible manipulators, the passivity of the map relating the applied 
torques to the joint rates persists given the physical collocation. 
However, this knowledge is less strategic than in the rigid case since 
the true goal is usually tracking of a prescribed end-effector trajectory. 

In general, the map from joint torques to end-effector rates is not 
passive for a flexible arm. In the case of a single flexible link, it 
is well-known that the transfer function from joint torque to tip 
rate is nonminimum phase. As noted in [7], the forward dynamics 
operator in the multilink case exhibits the nonlinear analog of the 
nonminimum phase property in linear systems, namely instability 
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of the so-called zero dynamics. Hence, inversion of the forward 
dynamics map from joint torque to generalized end-effector rates 
leads to a noncausal solution which was obtained in [8] using a 
frequency domain approach. Given these difficulties noted, many 
approaches to the control of flexible manipulators have employed 
joint-based control schemes. The joint space inversion strategy in 
[9] yielded stabilization of the joint trajectory errors and inherent 
structural damping provided stability of the elastic coordinates. 

Given the desirability of the passivity and/or minimum phase 
properties, some research has concentrated on modifying the output of 
robotic systems in order to realize this property. Wang and Vidyasagas 
[9], [lo] have introduced the reflected tip position for a single flexible 
link. The tip position was taken as the sum of a rigid contribution 
from the joint angle and an elastic contribution from the tip deflection. 
They defined the reflected tip position as the rigid portion less 
the elastic part and showed numerically that the transfer function 
from root torque to reflected tip rate is passive. This was rigorously 
demonstrated by Pota and Vidyasagar [l 11 using the properties of the 
pinned-free modes of the link. Other well-behaved transfer functions 
were studied in [la]. Mjnimum phase (but not passive) behavior of a 
transfer function employing the tip position was demonstrated in [13] 
as the mass distribution was shifted toward the link tip. The authors 
of [14] have considered the effect of payload mass on the control of 
a single flexible link. 

The above works furnished the original motivation for our approach 
which was initiated in [15]. There, the modified output idea was 
extended to the case of a general, nonredundant, flexible manipulator 
attached to a free spacecraft and carrying a payload. The linearized 
dynamics in the vicinity of a constant setpoint were formulated 
and the transfer matrix relating suitably defined inputs and outputs 
was shown to be positive real-equivalent to passivity for linear 
time-invariant systems-when the payload was very massive. This 
situation is well-represented in space-based manipulation scenarios 
where necessarily flimsy robots currently maneuver large satellites 
and are presently being developed for Space Station assembly. 

The contributions of the present work are as follows. The approx- 
imate (nonlinear) dynamics (AD) governing a flexible manipulator 
when the payload is much more massive than the manipulator are 
developed in Section 111. Building on [15], we establish the passivity 
properties inherent in the AD using a special outpuf involving 
the end-effector rates. A feedforward strategy based on the AD is 
formulated which preserves the passivity property in the tracking 
error dynamics. Feedback strategies using the modified output are 
developed in Section V and Lyapunov analysis is used to demonstrate 
global asymptotic stability for the end-effector tracking errors. The 
previous ideas are validated using an "exact" simdation of a six 
rigid DOF model of the Space Shuttle Remote Manipulator System 
with link flexiblity. An attempt is made to establish the vaLidity of 
the approach over a range of payload mass properties. Consideration 
will be given to controllers which do not require direct sensing of 
the elastic coordinates or their rates. 

11. SYSTEM DESCFWTION 
The system under consideration consists of a chain of bodies, 

{ B o , . ~ . , B ~ + ~ } ,  with reference frame F ,  in B,. The frame FO 
represents a fixed inertial reference frame (BO is fixed). The bodies 
are taken to be rigid or flexible and interconnected with single DOF 
revolute joints; the joint angles are B=col(B,(t)}, n E [l, NI, and 
the ensemble of elastic coordinates describing the flexible deforma- 
tions will be designated qe( t )  = col{qn,e} where qn,e = col{qncl} 
are the expansion coefficients in the spatial discretization of link n. 
Cantilevered to the end of BN is a rigid payload, BN+l .  Hence, 

A 

A A 

its body-fixed frame FN+l locates the end-effector and it will be 
assumed that BNfl is significantly more massive than the link bodies, 

The motion equations of the system described above are of the 
(B1,. . . 1 BN}. 

standard form 

M(q)G + ~q + Kq = BT(t) + f n o ,  (9, b) ,  CO~{O, s e ) .  (1) 

M = MT > 0 is the mass matrix, ~ ( t )  is a coLumn of applied joint 
torques, and f,,, are nonlinear inertial forces which are quadratic 
in q. If it is assumed that the elastic coordinates are generated 
using clamped-fhee boundary conditions for each link, then the 
damping, stiffness, and input matrices can be further partitioned as 
D = diag{O,D,,}, K = diag(O,K,,}, and BT = [l 01. The 
matrices De, and K,, are positive-definite and for simplicity it will 
be assumed that they are constant. However, nonlinear effects such 
as geometric stiffening can be captured through the use of nonlinear 
strain displacement relations which leads to a quadratic dependence 
on q, in Kee. Letting T and V be the kinetic and strain energies 
respectively, the Hamiltonian for the system and its rate satisfy 

BO = T+V = ~ q T M ( q ) q + $ q ~ K e , q , ,  HO = T e-qe D e e q e  

(2) 
i.e., HO evolves according to the work done by T and the dissipative 
influences. 

The forward kinematics describing the end-effector position and 
orientation can be summarized by constructing C ~ + l , ~ ( e , q ~ ) ,  the 
rotation matrix from FO to FN+I ,  and rO,N+l (e, s e ) ,  the position 
of FN+I with respect to F O  expressed in the latter frame. The 
generalized Cartesian position of the payload, p ( t ) ,  is a 6-tuple whose 
upper half consists of the position coordinates, i.e., rO,N+1, and 
whose bottom half contains 3 integrable attitude coordinates (Euler 
angles) parametrizing the rotation matrix C ~ + 1 , 0 .  The Cartesian 
velocities of the end-effector can be related to the joint and elastic 
coordinates rates 

T '  T 

i = Je(6 ,  + J d e ,  %)be (3) 

where Je shall be referred to as the rigid Jacobian and J ,  as the 
elassic Jacobian. The construction of the two Jacobian matrices given 
the geometric and elastic link properties is described in the companion 
work [15]. The matrix JS (e, 0) can be identified with the Jacobian 
of the corresponding rigid manipulator. 

Let vN+1 and WN+1 denote the absolute velocity and angular 
velocity of BN+I expressed in FN+I .  They can be collected into 
a single generalized velocity vector vt = col{vrJ+I, W N + l }  which 
satisfies 

vt = p t ( p ) j ,  = 3ee + ? e q e >  Pt = diag{CN+l,o(p), SN+i,o(p)} 
(4) 

where S N + I  ,O is the configuration-dependent matrix mapping Euler 
rates into angular velocity. The hatted Jacobians 3s PtJe and 
3,s P t J ,  yield velocities in the payload coordinate system. We 
also define 

A 

$ 5  [v;+l W?+l vtT@ = 0 (5)  

which will be used extensively in the next section. The notation (.) 
denotes the 3 x 3 skew-symmetric matrix used to implement the 
vector cross product. 

A passive transfer function was obtained for N = 1 in [9] 
by introducing the reflected tip position. This approach can be 
generalized by separating j~ into contributions from the joint motion 
and those due to the link deformations. To this end, define the p-tip 
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rate by 

where p is a real parameter. The true tip rates are captured by p = 1 
while p = 0 considers only joint-induced motion. For p = -1, 
we obtain the multivariable analog of the reflected tip position. The 
variable p, will be referred to as the p-tip position and a technique for 
its determination will be discussed in Section V. Ultimately, we desire 
a control scheme which provides tracking of a prescribed trajectory 
by the true end-effector motions { p , ) } .  

111. APPROXIMATE DYNAMICS FOR LARGE PAYLOADS 
Define the rigid mass matrices (relative to the body frame) of each 

link in the chain by 

where m,, c,, and J, are the mass, first, and second moments of 
inertia respectively defined with respect to F,. The payload mass 
matrix is given the special designation Mt f M N + I , ~ ? -  and we 
assume that the payload is much more massive than the individual 
links, i.e., Mt >> M,, , , ,  n = 1 . .  . N (the ordering is the usual 
one for symmetric positive-definite matrices). It is also assumed that 
N = 6 (the corresponding rigid manipulator is nonredundant) and 
the manipulator trajectories are such that the rigid Jacobian matrix 
JO is invertible. 

The rest of this section is devoted to developing an appropriate 
form of (1) under the above assumptions. The kinetic energy for 
i # 0 can be approximated by that residing within the payload 

T = Tp 2 $uTMtvt = $pTPT(p)MtPt(p)p.  (8) 

This estimate can be refined by augmenting Tp .with the kinetic 
energy consistent with p i~ 0 which implies that 8 = - J i l J e q e .  
Impressing this constraint on the kinetic energy, T in (2) becomes 

= Te = $qeMee(q)&,  Gee(q) k B Z ( q ) M ( q ) B , ( q )  
a -  

(9) 
where BT 2 [-JT J i T  11. It is easy to show that Gee formed 
in this fashion is independent of M t  since the contribution of (8) is 
effectively removed from T, by the substitution for 8 .  We propose 
that the total kinetic energy be approximated by 

T = Tp + T, = kvTMtvt + $qz$,,(q)q,. (10) 

A more rigorous interpretation of (10) is possible. If lMt = EL1Mt 
then the kinetic energy for small E t  can be expanded as T(Et)  = 
T(0)  + O(Et). The energy T, can be identified wirh T ( 0 )  since 
for E t  = 0 the payload becomes infinitely massive and the end- 
effector presents a clamped boundary condition to the manipulator. 
The expression Tp captures the additional contribution to the energy 
for a payload with large but finite mass properties (i.e., neglecting the 
links). The approach can also be justified on the basis of the results 
in [15]: the unconstrained modes of vibration correspon,ding to the 
setpoint linearization of (1) satisfy clamped boundary conditions at 
the end-effector owing to the large payload assumption. 

The potential energy has been noted in (2) and in the sequel 
we shall apply Lagrange’s equations with generalized coordinates 
{ p , q , } .  From (3), the virtual displacements satisfy Sp = JoSO + 
J,Sq, and the virtual work performed by the joint torques is 

h 

The system Lagrangian is L = Tp + T, - V and with a view to 
modeling structural damping, Rayleigh’ s dissipation function is taken 
to be R = :qZDeeqe. Realizing that T, is formed with p =_ 0, 
Lagrange’s equations yield 

The first of these coupled with the definition of Tp yields the 
dynamics of a free rigid body with generalized force distribution 
JLTr .  In [16], it is noted that these are equivalent to the quasi- 
Lagrangian body frame equations 

(13) Mtvt + vyMtvt  = 3iTr(t)  
where the (generalized) force distribution has been expressed in 
F ~ t i .  

Expanding the elastic equation of (12) completes the desired form 
of the approximate dynamics: 

AT --T Gee(q)qe + D ~ ~ G ~  + Keeqe(t) = - J ,  J~ r(t) + C e ( q , 4 e ) q e  
(14) 

h 

where C e ( q , q , ) q e  = -Meeqe  +.$dT,/dq,. Since T, is formed 

under the assumption that p = 0, M e ,  = E, q,kdM,,/dq,k (p  is 
not varied). Using the approach of [l] in the rigid robot case, it is 
readily shown that the matrix C ,  can be chosen so that 2C, +Gee is 
skew-symmetric. Equation (14) is a refinement of the result derived 
in [15], which ignored structural damping and the inertia forces 
associated with the link bodies, i.e., M e ,  = De,  = G, 5 0. 
These substitutions in (14) produce a static approximation for qe 
which, in [15], predicted the elastic displacements quite accurately 
in a simulation context. 

Now, consider the Hamiltonian Ho = T+V with T given by (10). 
Differentiating with respect to time and using (13) and (14) gives 

HO = uTMtvt+q~[$,,q,+K,,q,+kM,,q,] = rT9-q?Deeqe 
(15) 

where (4), the property of w p  in (5), and the skew-symmetry of 
2C, + See have been duly noted. Hence, the energy balance of the 
exact system (1) is preserved by the approximate dynamics (13) and 
(14). 

The system dynamics consistent with the constraint ut = Pt i  = 0 
are the zero dynamics of the system with the end-effector rates as 
the output. For generic flexible manipulators, the zero dynamics are 
typically unstable [13] and the system is said to be nonminimum 
phase. For large payloads, vt 0 and (13) imply that r = 0 which 
when substituted into (14) yields the zero dynamics. Hence, in this 
limiting case, the zero dynamics are stable but unobservable from 
j or p which is consistent with the clamped nature of the vibration 
modes already noted. This behavior is consistent with [13] where the 
transfer function from T to an end-effector coordinate in the single 
link case was shown to be minimum phase as the mass of the link 
was shifted toward the endpoint. The lack of observability of q, from 
p for large payloads is part of the motivation for introducing the @-tip 
position and rate. In the next section, it will be shown that passivity is 
possible using p, as the output. This represents a stronger condition 
than the minimum phase property since passivity implies Lyapunov 
stability of the zero dynamics [17]. 

h h 

I 

Iv. PASSIVITY ANALYSIS AND FEEDFORWARD DESIGN 
We now consider the input-output properties of the approximate 

dynamics. A recent account of the general theory is [18]; see also 
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[4]. The following notation will be used repeatedly: 

~ ( t )  2 J ; ~ T ( ~ ) .  (16) 

(Omitted arguments of the Jacobian matrices imply quantities mea- 
sured along the trajectory.) Equations (13), (14), and (6) are in- 
terpreted as an operator G : Lze + L2e implementing the map 
p ,  = G(?) (see [IS] for a definition of the extended space Lz,). 
A system H with input U E Lze and output y = fir(,) E Lze is 
strictly passive if there exists E > 0 such that 

LT u T H ( u ) d t  2 6 L T  uTudt, V u  E Lze, QT > 0. (17) 

If (17) is satisfied with E = 0, then the system is passive. We now 
establish this property for G. 

Lemma 1: The map from F to p ,  is passive for p < 1. 
Pro08 Consider the nonnegative function 

H p  = Ho - p(Te  + V )  T p  + (1  - p ) ( Z  + V ) ,  /I < 1 

where Tp,  T,, and V are the kinetic and strain energies defined in 
(8), (9), and (2), respectively. Differentiating H ,  with respect to time 
and using (2) [or (15)J and (14) gives 

H p  = H o  - p( ik  + V )  
h 

= ~~8 - 4 Z D e e G e  - ~ q Z ( G e e q e  + Keeqe + iMeeqe) 
= FTJs8 + p q T J r J i T ~  - (I - p)qTDe,qe 

= P p ,  - (1 - p)qTDeeqe.  (18) 

Integrating the above relationship while taking p < 1 gives 

lT F T p ,  d t  = H,(T) - H,(O) + (1 - p )  

. I T  qTDeeqe d t  2 H,(T) - H,(O). (19) 

Consistent with an input-output treatment, we set H,(O) = 0 which 
establishes the result. 0 

Setting F = 0 in (18) shows that the function H ,  is a Lyapunov 
function for the unforced system. When p = 0, 7Tppli”=o = ~~b 
and Lemma 1 expresses the inherent passivity between the joint 
torques and joint rates. 

We now establish a feedforward law which preserves the passivity 
property of Lemma 1 for the tracking error dynamics. Let { p d , p d }  
designate a prescribed Cartesian end-effector trajectory and define 
U d  Pt(p)pd. The tracking errors are defined by 

(20) 
- A  - A  
p ” p  - P d ,  ut = U t  - U d  = p t ( p ) p .  

Guided by (13), express the joint torque as 
- A - T  

= T d  + 7 ,  T d  = J B  (e, q e )  [MtGd + ‘UFMtVt ] ,  ‘Ud = p t ( P ) > d  

(21) 
where ~d is the feedforward part and 7 is interpreted as the feedback 
portion of the torque. 

Define an estimate for the elastic displacements produced by the 
application of Td(t), q e d ( t ) ,  according to the solution of 

Notice that q e d  is not an arbitrary trajectory in the sense that pd is; 
rather, it is determined by the feedforward T d  which is determined 
by ( p d ( t ) ,  j d ( t ) } .  For this reason, q e d  is inherently reachable being 
defined as a solution of the motion equation in response to a given 
torque. 
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Substituting (21) into (13) and subtracting (22) from (14) gives the 
following description of the error dynamics: 

--T- 
MtSt + GyMtvt = Js  T (23) 
G e e ( q ) G ,  t Dee$, + K e e q e  = 

-T--T- 
- J e  Js + ce(q, q e ) G e ,  Ge = ge - q e d .  (24) 

The desired trajectory for p,, P,d, is defined by its time derivative 
using the last form in (6): 

(25) f p d  = i d  - (1 - P)Je(o, q e ) q e d .  

Hence, using (6) and (25), 

(26) 
L - A  . .  

F,  =F-(1 -p )Jeqe3  P p = P ,  --P,d. 

It will be i m p o m t  to realize that p, E 0 and qe E 0 imply that 
p E 0. We now establish the passivity of the tracking error dynamics. 

Theorem 1: The mapping p,, = G( J i T 7 ) ,  where G is determined 
by (23>-(26), is passive for p < 1. 

Prooj? Define the nonnegative function 
AT- L s, = $$M,Ft + f(1 - P ) [ S ,  Meeq, + 4:KeeGe1, P < 1. 

DiEerentiating the above with respect to time and using (23) and 
(24) gives 

s ---T ;T - I - A  
p - V t  Mtgt + (1 - p)qe [Mce(q)G, + Keeqe + SMeeq,] 

A-T- AT -T--T- 
= GT[-$Mtut + J s  T ]  - (1  - p ) q ,  [J, J e  7 + Dee&,] 
= [Gt - (1  - p)3e$,]T3,T7 - (1 - p ) q e  LT D,,q, .L 

= $:(JgT?) - (1  - p ) q e  Deeq,. (27) 
AT L 

Integrating the above relationship gives 

p ( J i T 7 )  dt = S,(T) - S,(O) + (1 - p)  lT 
.lT $?Dee6,dt 2 S,(T) - S,(O) (28) 

0 which establishes the result upon setting S,(0) = 0. 

V. ~ D B A C K  DESIGN AND L Y ~ W O V  STABILITY ANALYSIS 
With reference to the feedback system in Fig. 1, the passivity 

theorem states that if G : Lze + Lze is passive and H : Lze + Lae 
is strictly passive then the feedback system depicted in Fig., 1 is Lz-  
stable, i.e., if U E L2 (a bounded disturbance torque) then 5, E Lz .  
Based on the passivity theorem, we select the feedback portion of 
the controller to be 

where K d  = KZ > 0 and K, = K,” > 0. Although H ( . )  can 
be any strictly passive operator, we have selected a PI law (a PD 
law with respect to P,) to keep the presentation simple. Since the 
integral operator is passive (see [4]) and a positive gain is strictly 
passive, H is also strictly passive. The main advantage of the input- 
output approach is the specification of a large family of stabilizing 
controllers. However, there is no analog of the LaSalle invariance 
principle which is ultimately needed to show that the position errors 
are well-behaved. Hence, a Lyapunov approach is employed below 
using the Lyapunov function suggested by Theorem 1. 

= i; = qe = 6, 5 0 of the closed- 
loop system given by (23)-(26) and (29) is globally asymptotically 
stable if p 4 1. 

Theorem 2: The equilibrium 
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Property P 
( m )  

Link 1 0.9 
Link 2 6.4 
Link 3 7.0 
Link 4 0.5 
Link 5 0.8 
Link 6 0.6 

~ 
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Mass 4 Jl! 

(kg) (kg.m2> (ksm2) (ksm2) 
95.0 0.2 25.75 25.75 

138.0 0.4 1884.36 1884.36 
85.0 0.4 1388.53 1388.53 
8.0 0.2 0.76 0.76 

44.0 0.2 9.49 9.49 
41.0 0.2 5.02 5.02 

Fig. 1. Feedback system. 

Stiffnesses 
Link 2 
Link 3 

Prooj? We adopt as a Lyapunov function 

V = S, + $pEKpp,,  p < 1 (30) 

which is easily shown to be positive-definite in Ihe state 
x e col{$, qe, p, se}.  Using (27) and (29), we have 

9 = S, + $KpFp 
- - i: pi'? + K,;,,] - (1 - p)G:Deeqe 

(Nm2) ( N d )  (NI 
4 . 0 4 6 ~ 1 0 ~  2 . 0 4 0 ~ 1 0 ~  2 .790~10'  
2 . 8 1 2 ~ 1 0 ~ .  1 . 4 1 7 ~ 1 0 ~  1 . 1 9 4 ~ 1 0 ~  

The original form of LaSalle's Theorem only applied to autonomous 
systems; the system here is nonautonomous owing to the config- 
uration dependence on pd( t )  and jld(t). However, the invariance 
principle extends to nonautonomous systems which exhibit bounded 
dependence on t or are asymptotically autonomous [19]. Such is the 
case here if p d ( t )  -+ p d  (a constant) as t -+ 00. If V <I - W ( x )  
where W(x) 2 0, then all bounded solutions tend to the largest 
invariant set which satisfies W(x) 0. From (30) and (31), all 
solutions are bounded. Using the invariance principle and setting 
pp = Se 3 0, it follows from (26) and (20) that 5 = Ut = 0. 
From (23), 7 3 0 and then (24) shows that qe = 0. The control law 

17 
Although any strictly passive feedback controller can be used, 

linear time-invariant ones are desirable from an implementation 
standpoint. Included in this class are some strictly positive real 
transfer functions. Even simpler is the PD law used here. The design 
is most easily carried out for a linearization of the system but we 
are guaranteed that it will stabilize the nonlinear passive system. 
Substituting (29) into (21) gives the combined feedforwarcUfeedback 
controller 

T ( t )  = 3T(8 ,qe )  [Mtwd + v f M t v t ]  -J : (@,  se) [K$ ,  + KpF,i. 

Let us linearize the system (1) in the vicinity of a constant target 
pd = 3 (9, = 0 )  with corresponding joint angles e. The target 
configuration vector is q = col{8,0} and let S q  = q - q, 
Sp,, = p, - 3. The linearized forms of the the kinematics (6) and 
the dynamics (1) with De,  = 0 can be written as 

(29) then gives 7, 0 and we conclude that p --$ 0. 

(3 ) 

Sp, = JsS8 + p J e q e r  M S q +  KSq = Br. (33) 

The overbar notation (T) designates configuration dependent quan- 
tities evaluated at the setpoint e. It was shown in [15] that the 
transfer matrix relating JiT7 to S p ,  was positive real under the 
payload assumption made here. Furthermore, the vibrational modes 
were shown to be unobservable from Sp, or S i ,  when p = 1. A 
valuable use for p < I is the introduction of the vibrational modes 
into controller input. Indeed, this is essential since they will typically 
be lightly damped. 

Equation (33) along with the the linearized form of the control law 
(29) (6d = 0) will be used for analysis of the controller gains. An 
obvious choice for K ,  and Kd is 

K ,  = CL'PTMtPt, Kd = 2(lClPTMtPt (34) 

1 1  

11 12 
I 

Fig. 2. Architecture of the SRMS. 

Payload 11 - 1 15,000 I 30,000 1 515,000 1 515,000 
Elastic 11 EI I GJ I E A  

which yields identical eigenvalues for the corresponding payload- 
dominated rigid system. 

It would be desirable if i, and p, could be constructed from 
joint measurements { 8 ( t ) ,  b( t )}  and tip measurements { p ( t ) ,  j ( t ) }  
alone, which would excuse the requirement for direct measurement 
of the elastic coordinates q,. However, the latter are required in 
the evaluation of the Jacobian matrix JO (8, qe) and the formation 
of the p-tip positions and rates. Both problems can_be avoided by 
approximating the Jacobian in (32) by J e ( B , O )  (.70(6,0) in the 
feedforward part). Furthermore, the penultimate form in (6) gives 

where we have also set j P d  p d  (hence P,d  = pd) .  This rids us 
of the need to construct q e d  and q e d  and is justified on the grounds 
that our numerical results indicate that an appropriate value for p 
is nearly 1. The p-tip position error can be determined from the 
integral of (35): 

(36) 

where F(8)  represents the rigid forward kinematics map. A further 
simplification is possible if we take W d  = Pt(pd)i)d, i.e., replace 
P t ( p )  with P t ( p d )  in calculating V d  and v d .  In our numerical 
example, we shall incorporate the above simplifications into the 
controller (32). 

Fp = [PP(t )  + (1 - P)F(0)I - P d ( t )  

VI. NUMERICAL EXAMPLE 
The previous analytical results have been predicated on the veracity 

of the approximate motion equations. The goal of this section is to 
illustrate their validity and implement the proposed controllers using 
a simulation based on the full motion equations. The manipulator 
consists of six joints and is modeled after the Space Shuttle Remote 
Manipulator (SRMS) Arm. Included in the model is a payload, 
modeled by a cylindrical drum, which represents a spin-stabilized 
satellite, and the Space Shuttle (cantilevered for this example). The 
geometric and mass properties of the of the system are summarized 
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FF(2,3) 
FB(2,3) 
FB(2,4) 
FB(2.3) 
FB(2,3) 
FB(2,3) 

x 0.2 
E. 
3 0.1 

'2 - 0.0 
. 1  g 

-0.1 

-0.2 

- 

1.0 1.7 x 10-I 2.8 x lo-' 6.5 x 10-1 7.8 x 10-1 337.8 
1.0 1.9 x lop3 5.1 x 1.4 x lop2 2.0 x lo-' 360.6 
1.0 8.5 x lop3 2.9 x IOh2 8.5 x 1.3 x lo-' 383.2 
0.1 1.0 x 3.1 x lod3 1.2 x lo-' 1.7 x loe2 36.9 
0.01 7.3 x 1.8 x loe2 4.9 x lov2 5.9 x 4.8 
0.001 4.1 x low2 7.8 x low2 2.1 x 10-1 1.8 x lo-' 1.9 

Euler Rate 1 Error vs. Time Eufer Rate 2 Error vs. Xme 

. I .  

I I 

I I I I -0.1 I L I -0.2 
.-;' ', 

J O  15 20 25 O time(sec1 J O  15 20 25 time (sec) 

Euler Rate 3 Error vs. Time 

! 
I I I I 

10 15 20 25 
time (sec) 

Fig. 3 .  End-effector velocity tracking errors (1 = full Jacobian, 2 = approximate Jacobian, 3 = known payload, and 4 = uncertain payload). 

TABLE D[ 
TRACKING ERRORS 

in Table I and the architecture of the Arm is shown in Fig. 2. The 
only flexible bodies are links 2 and 3 which are the lower and upper 
arm booms. 

Each of the flexible booms is modeled using engineering beam 
theory and the exact cantilevered cigenfunctions are used for dis- 
cretization. Each boom is modeled with six modes: two bending 
modes in each of the in-plane and out-of-plane directions, one 
stretch mode, and one torsional mode. The simulation model used 
here is the EEE model fully described in [20] (see also [21]}. 
Structural damping is neglected in the simulation and the desired end- 
effector trajectory is generated as follows. The initial configuration 
corresponds to O , ( O )  = 0,n = 1. . .6 ,  and the desired terminal 
configuration is O,(T) = 0.4 rad,n = 1 . .  .6, where T = 20 s.  
The prescribed trajectory { p d ( t ) , i d ( t ) }  is fashioned from the rigid 
forward kinematic solution corresponding to the joint trajectories 

(37) 
A 3-2-1 Euler sequence {$I, $ 2 ,  $3)  is used to characterize the end- 
ffector orientation. We begin by analyzing the simulation values for 
p = i - id, p ( t )  = [z y z $1 $2 $SI*, in response to the 
feedforward portion of (32). The velocity tracking errors are given in 
Fig. 3 and have been normalized using the maximum absolute values 
of pd. The Jacobian matrix for the curves labeled FF(1,3) have been 

calculated using the "measured" values of @(t) and q,(t) obtained 
from the simulation. They show reasonable agreement between p and 
pd,  thus demonstrating the validity of the approximate dynamics upon 
which the feedforward controller is based. If the elastic dependence 
in the rigid Jacobian matrix is suppressed, the curves labeled FE(2,3) 
are obtained. The tracking degradation illustrates the importance of 
the elastic coordinates in the Jacobian for the approximate dynamics 
solution. 

adopted: 
As indicators of tracking performance, the following measures are ' 

where T denotes truncation at T = 20 s, and the subscripts 2t  and 
2b refer to &-norms applied to the top (translational) and bottom 
(rotational) three-tuples of the argument, respectively. The tracking 
errors and the &-norm of the truncated torques will be gathered in 
Table II. 

The validity of the elastic motion equation (14) can be established 
by comparing the natural frequencies of the system 



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12.. NO. 1, FEBRUARY 1996 137 

open-lot 
exact 
0, 0 
0, 0 
0, 0 
0, 0 
0, 0 
0, 0 

f316.95 
f382.79 
fj97.69 
k3100.9 
f3198.5 
fj234.9 
f3385.4 
f3662,4 
fj706.2 
fj1057. 
fj1399. 
f32996. 

approx. 
- 
- 
- 
- 
- 
- 

fj17.09 
fj82.91 
fj98.37 
f3102.4 
fj198.7 
fj237.4 
fj385.5 
fj662.5 
f3706.9 
f31059. 
fj1402. 
fj2998. - 

TABLE III 
EIGENVALUES OF THE LINEARIZED SYSTEM 
-- -- 

closed-loop (rad/ 
p = 1  

-1.'78 f30.60 
-1.88 f 3 0.44 
-1.94 f 30.30 
-1.99 f 3 0.02 
-1.99 f J 0 . 0 1  

-- 

-2.07, -1.94 -- 
3.06 f 317.27 

3.27 f 398.15 
4.31 f 3102.7 
1.83 f 3198.7 
1.88 f 3237.3 

-2.39 f 382.96 

-1.66 f 3385.5 
-9.28 f ~ 6 6 2 . 8  
-3.47 f 3706.7 

1.88 f 31059. 
1.11 f 31402. 
0.57 f 12998. 

with those of the undamped, unforced, linearized fonn of (1). The 
latter includes the six zero frequencies which are effectively removed 
from (39) by clamping the tip. The natural frequencies in both cases 
for the terminal configuration (e, 3 0.4 rad) are given in Table 111. 
The agreement is very good (within 1.6% for all modes;) and showed 
steady improvement as the the payload mass and inertia were made 
larger (the frequencies were within 0.15% for a payload ten times 
more massive: M t  -+ 10Mt). 

The proposed feedback compensator is now added to thle controller 
with K, and Kd selected using (34) with R = 2 rad/s and C = 1. 
The eigenvalues of the closed-loop system given by (321) (terminal 
configuration) and (32) (wd = 0 )  are given in Table [I1 for various 
values of p. For p = 1, the system is slightly unstable but as the 
payload was made more massive (for fixed K, and K d ) ,  the vibration 
modes migrated to the imaginary axis, tending toward complete 
unobservability. A value of p = 0, corresponding to joint and joint 
rate feedback, produces poor damping of some vibrabon modes and 
very overdamped response for the rigid modes. This was typical of 
small positive values and all negative values of p.  

As can be gleaned from the table, a value of p = 0.99 yields 
a good compromise between vibration damping and attainment of 
the target rigid eigenvalues. The velocity tracking eirroirs using the 
controller specified by (32) with p = 0.99 are also givlen in Fig. 3 
(curve FB(2,3)). All simplifications discussed in the last paragraph 
of Section V have been incorporated. The tracking performance is 
excellent despite the poor results observed when the feedforward 
component, without elastic information, was used alone. The sit- 
uation where the control system designer's knowledge of Mt is 
replaced with 0.5Mt for design of both the feedforward and feedback 
controllers is also illustrated in Fig. 3 (curve FB(2,4)). Stability is 
preserved and the tracking is still quite good in spite of badly- 
placed eigenvalues and a feedforward component which performs 
very poorly if used alone. The position graphs for both feedback 
controllers (not shown on account of space limitations) showed very 
little discernible difference between the simulated and prescribed 
end-effector trajectories. 

p = 0.99 
-1.80 f 3 0.60 
-1.93 f 3 0.39 
-1.99 f 30.20 
-2.19, -1.86 
-1.15 f 32.51 
-0.97 f 3 2.41 
-1.43, -3203 
-1.41, -37640 
-12.1 f 351.9 
-18.6 f391 .9  
-12.7 f 3102. 
-14.4 f 3227. 
-167. f 3148. 
-36.2 f3309 .  
-104. f 3629. 
-41.6 f 31047 
-288. f 31130 
-39.1 f 12959 

p = O  
-1.84 f 30.57 
-1.70, -3.90 
-0.86 f 3 2.28 
-0.38 f 3 1.75 
-0.01 f 3 0.33 
-0.001 f 30.30 
-1.20, -376000 
-1.21, -33800 
-1.31, -80895 
-1.41, -45749 
-6.47, -1289 
-2.32 f 374.3 
-5.98 f 3184. 
-14.3 f 3223. 
-208. f 3220. 
-17.9 f 3711. 
-60.7 f 3910. 
-2.52 f 12898 

For the previous simulation results, m7 = 36.5(C:=, m,). We 
now consider the situation where the true payload mass matrix 
Mt is replaced with PtMt (fit < 1) and Pt is reduced in all 
facets: simulation model, feedforward design, and feedback gain 
selection. The closed-loop tracking errors also appear in Table 11. 
The performance for pt = 0.1 actually exceeds the baseline but 
smaller values lead to decline; instability was not observed. It should 
be borne in mind, that little attempt has been made to optimize the 
gains of the feedback controller. All trajectories shown here started in 
a kinematic singularity (Jo  ( 0 , O )  is singular) but this does not seem 
to have hindered performance. 

VII. CONCLUDWG REMARKS 

The forward dynamics map from joint torques to tip rates is non- 
minimum phase (hence not passive) for a typical flexible manipulator. 
This paper has shown that when a large payload is involved, this 
map becomes rigid in character since the dynamics governing the 
elastic coordinates become unobservable from the tip. By introducing 
the p-tip rates, the elastic coordinates were rendered observable and 
the map from torques (actually J i T 7 )  to p-tip rates was shown 
to be passive. Using the rigid dynamics of the payload, we were 
able to create a feedforward torque which preserved passivity for 
the p-tip rate tracking errors. Hence, stable tracking could then be 
demonstrated using a strictly passive feedback (a PD law in this case). 
This represents a significant extension of the single link case, which is 
SISO and linear, time-invariant, but at the expense of a large payload 
assumption. 

The controllers presented here have a simple structure and represent 
a modest departure from those previously advocated for rigid manip- 
ulators. Although they require measurements of end-effector position 
and velocity in addition to the joint angles and rates, the elastic 
coordinates were not required for implementation. The presented 
simulation study demonstrated excellent tracking performance for the 
controller under the key assumption. Relaxation of the large payload 
assumption still led to reasonable controller performance. In this 
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light, it is possible that the success of the p-tip rate concept can 
be explained with concepts other than passivity. 

Although the base body, EO, has been constrained in this paper, this 
was largely to simplify the presentation. If it is replaced with a free, 
fully-actuated rigid spacecraft, then the passivity analysis is easily 
extended by augmenting the input vector to include the spacecraft 
actuation and augmenting the p t i p  rate with the spacecraft rates. 
There are many other important extensions. The simple PD feedback 
controller used here can be replaced with dynamic SPR compensation 
(plus a proportional term) whose systematic design for stabilization 
of nonlinear passive systems has been largely unexplored. We also 
note that the feedforward controller used here is linear in the payload 
mass properties. This characteristic coupled with the passive structure 
of the error dynamics permits the development of an adaptive version 
of the controller using techniques similar to those of the rigid case 
[11, P I .  
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High-Resolution Beam Forming for Ultrasonic Arrays 

P. Webb and C. Wykes 

Absfiact- Array processing techniques are common in radar, sonar, 
and m e d i d  ultrasound. However, little work has been reported on the 
use of array processing with airborne ultrasound. This paper describes 
the application of array beam forming to airborne ultrasound. It also 
introduces a processing method which allows the separation between 
receiving elements to be increased above the traditional X/2  limitation. 
This has the eE& of increasing the resolution significantly above that 
normally expected from traditional array processing methods. A full 
evaluation of the method is given, a full error analysis of the resulting 
system is provided, and a comprehensive set of results are presented. The 
angular and longitudinal resolution of the improved beam former are 
also derived. 

I. INTRODUCTION 
If robot systems are to be provided with greater levels of autonomy 

then they require a detailed knowledge of their surrounding environ- 
ment. This knowledge may either be preprogrammed or obtained 
dynamically &om sensor systems. One of the most common sensing 
techniques used for this purpose is ultrasound. The success of this 
technique has often been limited by the available transducers. The 
majority of airborne ultrasonic systems have relied on the Polaroid 
tmnsducer. This is manufactured by the Polaroid Corporation for use 
as a camera range finder [1]-[4]. A major limitation of this transducer 
is its limited beamwidth (-30’) which prevents the construction of 
phased arrays. 

The application of array processing to radar, sonar and medical 
ultrasound is extensively documented [5]-[7]. Less work has been 
reported on the application of array processing techniques to airborne 
ultrasound. Some work has been reported in limited detail by Kay 
[SJ. A system using 16 microphones has also been successfully 
demonstrated by Horiguchi [9]. The size of the microphones used here 
meant the spacing between microphones was above the traditional 
X/2 limitation [5], resulting in grating lobes and therefore a limited 
unambiguous angle of view. A system for use on a mobile robot has 
also been developed by Seagar et al. [IO] but this has only limited 
resolution because of the separation of the elements. Peremans et 
aZ. [ll] used a cluster of three sensors. This system detects the 
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