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Synthesis of Optimal Finite-Frequency Controllers
Able to Accommodate Passivity Violations

James Richard Forbes and Christopher John Damaren

Abstract— In this paper, we explore the relationship between
the hybrid passivity/finite-gain systems framework and the gener-
alized Kalman–Yakubovich–Popov (GKYP) lemma. In particular,
we investigate how to optimally design finite-frequency (FF)
controllers that possess strictly positive real (SPR) properties
over a low-frequency range and bounded real (BR) properties
over a high-frequency range. Such FF SPR/BR controllers will
be used to control systems that have experienced a passivity
violation. We first review the hybrid passive/finite-gain systems
framework and how linear time-invariant hybrid passive/finite-
gain systems relate to systems with low-frequency FF positive real
(PR) or SPR properties, and high-frequency FF BR properties
as characterized by the GKYP lemma. Optimal design of FF
SPR/BR controllers is considered next. A convex optimization
problem constrained by a set of linear matrix inequalities is posed
where constraints are imposed using various forms of the GKYP
lemma, yielding optimal FF SPR/BR controllers. The FF SPR/BR
controllers are optimal in that they approximate the traditional
H2 control solution. Finally, FF SPR/BR controllers are used
within a gain-scheduling architecture to control a two-link flex-
ible manipulator. Experimental results successfully demonstrate
closed-loop stability and good closed-loop performance.

Index Terms— Finite frequency controllers, linear matrix
inequality (LMI) controller synthesis, passivity violations,
two-link manipulator, vibration control.

I. INTRODUCTION

THE PASSIVITY theorem states that a passive plant can be
stabilized by a very strictly passive (VSP) compensator

[1], [2]. Passivity-based control has been successfully used
to control various plants including resistor–inductor–capacitor
circuits, rigid and flexible robots, and spacecraft in linear, non-
linear, and adaptive contexts [3]–[9]. Passivity-based control is
robust when perturbations do not destroy the passive nature of
the plant. For example, flexible robotic manipulators that have
colocated (rate) sensors and actuators are robust to mass and
stiffness modeling errors because such errors do not destroy
the passive nature of the structure being controlled.

In practice, plant inputs and outputs are applied by actuators
and measured by sensors that are dynamic. Additionally,
filters are often used to filter high-frequency signal noise
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or to estimate unmeasured parameters. Actuators, sensors,
and filters that have unity gain and zero phase lag over all
frequencies do not exist. Such dynamics unfortunately do
destroy the passive input–output (IO) map of the plant being
controlled; passivity is violated, and the traditional passivity
theorem cannot be used to guarantee closed-loop stability. In
a linear sense, passivity violations generally occur at high
frequencies where actuator, sensor, and filter dynamics induce
phase lag and have gain that rolls off. For instance, a passive
plant augmented with sensor dynamics tends to maintain a
passive IO map at low frequency, and, although the IO map
at high frequency is not passive, its gain is finite because the
gain of both the plant and sensor dynamics naturally subsides.

Various authors have independently investigated describing
and controlling systems that have an IO map that is not
purely passive, but rather a mixture, blend, or combination
of a passive IO map and a finite-gain IO map. Linear time-
invariant (LTI) systems that have this property are positive real
(PR) within a bandwidth and bounded real (BR), i.e., have gain
that is finite, outside the PR bandwidth. Examples include [10]
and [11], in which “mixed” systems are defined; [12] and [13]
in which, finite-frequency PR and BR systems are defined; and
[14], in which “hybrid” passive and finite-gain (passive/finite
gain) systems are defined.

The hybrid passive/finite-gain systems theory was originally
created specifically to overcome passivity violations [14]. It
was developed with [10] and [11] as the starting points.
The hybrid passive/finite-gain systems theory is quite general,
being applicable to linear single-input single-output as well as
nonlinear multi-input multi-output (MIMO) systems. Recent
work has focused on the numerical optimization of LTI con-
trollers using frequency domain inequalities to constrain the
controllers to be strictly positive real (SPR) within a bandwidth
and BR past a critical frequency [15], [16]. Additionally, [16]
shows that a set of hybrid VSP/finite-gain subcontrollers gain-
scheduled appropriately yields a gain-scheduled controller
that is also hybrid VSP/finite-gain. Experimental results have
shown that the hybrid passive/finite-gain systems framework as
well as the controller synthesis procedures considered perform
well in practice. In [15], control of a single-link flexible
manipulator experiment is demonstrated, and in [16] a two-
link flexible manipulator experiment system is controlled. Both
these systems are nominally passive, but passivity is destroyed
when rate information is acquired by a derivative filter.

The generalized Kalman–Yakubovich–Popov (GKYP)
lemma developed by Iwasaki et al. [12], [13], [17]–[22]
can be used to characterize LTI systems that have PR or
BR characteristics over a finite bandwidth in the frequency
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domain. As mentioned above, Iwasaki and Hara call these
systems finite-frequency (FF) PR and BR systems (FF PR
and FF BR) because the PR and BR properties hold over a
finite-frequency range rather than an infinite-frequency range.
Their work aligns harmoniously with the LTI form of the
hybrid passive/finite-gain systems framework. An LTI system
that is passive at low frequency, no longer passive but still
possesses a gain that is finite at high frequency, is not only
a hybrid passive/finite-gain system but is also an FF PR/BR
system as expressed by the low- and high-frequency PR and
BR forms of the GKYP lemma. The hybrid passive/finite-gain
systems framework and the GKYP lemma form an excellent
match; the hybrid passive/finite-gain systems framework
provides closed-loop stability criteria, while the GKYP
lemma provides an elegant means to determine whether a
system is PR or BR over a finite-frequency range. Noting and
exploiting this relationship is one of the contributions of this
paper.

Although the controller optimization formulations presented
in [15] and [16] are effective, the formulations are nonconvex
and essentially enforce FF SPR/BR constraints in a brute-force
manner. One of the objectives of this paper is to formulate
a controller synthesis procedure that is convex by defining
a convex objective function and expressing the FF SPR/BR
constraints in terms of linear matrix inequalities (LMIs) via the
GYKP lemma. Convex optimization problems are simple and
efficient to solve numerically [23], [24]. The formulation we
present here will make extensive use of the PR, SPR, and BR
forms of the GKYP lemma in low- and high-frequency ranges.
The GKYP Lemma has been used to design FF proportional-
integral-derivative controllers [21] as well as FF H∞ filters
[25]. In the interest of optimality, the convex objective function
we define will, in essence, have the controller mimic a standard
H2 controller. Our controller (or, to be specific, our FF
SPR/BR controller) will mimic an H2 controller so that the
closed-loop performance is as close to optimal as possible
while simultaneously being robust to passivity violations.
The controller synthesis method developed in this paper will
be used to control a two-link flexible manipulator that has
experienced a passivity violation, and experimental results will
be included. Other systems that are nominally passive and have
experienced a passivity violation can also be controlled using
the results of this paper and our companion papers [14]–[16].

This paper is organized as follows. We will first review
the hybrid passivity/finite-gain systems framework, as well as
the low- and high-frequency PR, SPR, and BR forms of the
GKYP lemma. In particular, we will highlight how LTI hybrid
passivity/finite-gain and LTI hybrid VSP/finite-gain systems
are related to FF PR/BR and FF SPR/BR systems as char-
acterized by the GKYP lemma. We then pose our controller
optimization problem in terms of a convex objective function
and a set of LMIs that force the controller to be FF SPR/BR.
Control of a two-link flexible manipulator will be considered.
The manipulator dynamics along with how passivity is violated
will be briefly discussed, clearly motivating the definition
of a hybrid passive/finite-gain system. Controller synthesis
results will be presented, along with experimental results.
In particular, the two-link manipulator will be controlled by

gain-scheduling two FF SPR/BR controllers, each optimally
designed about two different set points. We will close with
some final remarks.

II. HYBRID PASSIVE/FINITE-GAIN SYSTEMS AND THE

GKYP LEMMA

A. Hybrid Passive/Finite-Gain Systems Theory

In this section we will briefly review hybrid passive/finite-
gain systems and the hybrid passivity/finite-gain stability
theorem originally developed in [14]. To start, recall that

y ∈ L2 if ‖y‖2 = 〈y, y〉1
2 =

√∫ ∞
0 yT(t)y(t)dt < ∞, and

y ∈ L2e if ‖y‖2T =
√∫ ∞

0 yT
T
(t)yT (t)dt < ∞, 0 ≤ T < ∞,

where yT (t) = y(t), 0 ≤ t ≤ T , and yT (t) = 0, t > T
[1], [2]. An inner product such as 〈y, e〉

T
= ∫ ∞

0 yT
T
(t)

eT (t)dt can equivalently be written as 〈y, e〉
T

= (1/2π)

Re
∫ ∞
−∞ yH

T
( jω)eT ( jω)dω via Parseval’s theorem, where

e( jω) is the Fourier transform of e(t), and eH( jω) = eT(− jω)
is the complex-conjugate transpose of e( jω).

Hybrid passive/finite-gain systems theory can be thought of
as an extension or generalization of the dissipative systems
framework [26], and was originally motivated by the mixed
systems framework presented in [10] and [11]. Consider a
general MIMO system, linear or nonlinear, y(t) = (Ge) (t),
where the operator G : L2e → L2e maps the input e ∈ L2e to
the output y ∈ L2e. The system is a hybrid passive/finite-gain
system if

1
2π

∫ ∞

−∞
yT

T
(− jω)Q(ω)yT ( jω)dω

+ 1
π Re

∫ ∞

−∞
yT

T
(− jω)S(ω)eT ( jω)dω

+ 1
2π

∫ ∞

−∞
eT

T
(− jω)R(ω)eT ( jω)dω ≥ 0 (1)

holds, where

Q(ω) = −
[
εα(ω) + γ −1(1 − α(ω))

]
1

S(ω) = 1
2α(ω)1

R(ω) = [
γ (1 − α(ω)) − δα(ω)

]
1. (2)

The constant parameters 0 ≤ δ < ∞ and 0 ≤ ε < ∞
depend on the passive nature of the system, and 0 < γ < ∞
depends on the finite-gain nature of the system when passivity
has been violated. Notice that the units of Q(·) and R(·) are
consistent; ε and γ −1 have units of one over gain, while δ and
γ have units of gain. The variable α can be 0 or 1, and it is
used to distinguish between passive system characteristics and
nonpassive but still finite-gain system characteristics. When
the system in question possesses a passive IO map, α(ω) = 1.
When the system fails to possess a passive IO map, i.e., the
system has experienced a passivity violation, but the map has
finite gain, α(ω) = 0. The divide occurs at a critical frequency
ωc ∈ [0,∞], which is used to define α

α(ω) =
{

1 ∀ω ∈ �l

0 ∀ω ∈ �h
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Fig. 1. General negative feedback interconnection of systems G1 and G2.

where

�l = {ω ∈ R : |ω| < ωc}
�h = {ω ∈ R ∪ {∞} : |ω| ≥ ωc}.

We can intuitively think of α as an ideal low-pass filter filtering
the signals into two parts: a passive part and a finite-gain part.

Sufficient conditions for (1) to hold are

1

2π
Re

∫ ωc

−ωc

yH
T
( jω)eT ( jω)dω ≥ δ

2π

∫ ωc

−ωc

eH
T
( jω)eT ( jω)dω

+ ε

2π

∫ ωc

−ωc

yH
T
( jω)yT ( jω)dω (3)

and
1

πγ

∫ ∞

ωc

yH
T
( jω)yT ( jω)dω ≤ γ

π

∫ ∞

ωc

eH
T
( jω)eT ( jω)dω. (4)

When α(ω) = 1 in (1), the IO map is said to be:
1) VSP when 0 < δ < ∞ and 0 < ε < ∞;
2) input strictly passive (ISP) when 0 < δ < ∞ and ε = 0;
3) output strictly passive (OSP) when δ = 0 and 0 < ε <

∞;
4) passive when δ = ε = 0.
If the system is hybrid ISP and has finite gain when α(ω) =

1, then the system is hybrid VSP when α(ω) = 1 [15], [16].
The gain, 0 < κ < ∞, when α(ω) = 1 satisfies

1

2πκ

∫ ωc

−ωc

yT
T
(− jω)yT ( jω)dω ≤ κ

2π

∫ ωc

−ωc

eT
T
(− jω)eT ( jω)dω.

(5)
The parameter κ is called the passive system gain. Upon
violation of passivity α(ω) = 0, the IO map is no longer
passive, and (1) is said to be a finite-gain IO map.

Notice that as ωc → ∞, (1) and (2) reduce to the traditional
definition of a passive system. Similarly, as ωc → 0, the
traditional definition of a finite-gain system is recovered. Also,
notice that the hybrid passive/finite-gain parameters δ, ε (or κ),
and γ are not defined globally, but rather in terms of specific
IO mappings. Using the GKYP lemma to ensure that an LTI
system is hybrid passive/finite-gain or hybrid VSP/finite-gain
will be explored in Section II-B.

Consider the negative feedback interconnection of two sys-
tems G1 : L2e → L2e and G2 : L2e → L2e, presented in
Fig. 1. The critical frequency ωc is assumed to be known,
and the hybrid passivity/finite-gain parameters associated with
each system are δ1, ε1, and γ1 and δ2, ε2, and γ2, respectively.
The hybrid passivity/finite-gain stability theorem states that
the negative feedback interconnection presented in Fig. 1 is
L2-stable if the variables δ1, ε1, γ1, δ2, ε2, and γ2 satisfy
ε1 + δ2 > 0, ε2 + δ1 > 0, and γ1γ2 < 1 [14].

The hybrid passivity/finite-gain stability theorem is a combi-
nation or amalgamation of the traditional passivity and small-
gain theorems. Its development is motivated by systems that
are nominally passive but have had their passive IO map
partially destroyed in some way. The theorem allows high-
gain feedback to be partially reintroduced where the tradi-
tional small-gain theorem would be overly conservative and
the traditional passivity theorem alone would not guarantee
closed-loop stability.

A specific form of the hybrid passivity/finite-gain stability
theorem that we will make use of is the negative feedback
interconnection of a hybrid passive/finite-gain plant and a
hybrid VSP/finite-gain controller. A hybrid passive/finite-gain
plant will have δ1 = ε1 = 0 (κ1 = ∞), and 0 < γ1 < ∞.
A hybrid VSP/finite-gain controller will have 0 < δ2 < ∞,
0 < ε2 < ∞ (0 < κ2 < ∞), and 0 < γ2 < ∞. In this
particular situation, if γ1γ2 < 1, the closed-loop system will
be stable. This form of the theorem is particularly useful for
stabilizing plants that are nominally passive in the traditional
sense (i.e., in an LTI context with PR over all frequencies) but
have their passive IO map destroyed in some way.

B. State-Space Representation of Hybrid Passive/Finite-Gain
Systems Using the GKYP Lemma

To use the hybrid passivity/finite-gain stability theorem,
we must know or be able to estimate the δ, ε, and γ
parameters associated with the plant being controlled and
design a controller, which, together with the plant, satisfies the
hybrid passivity/finite-gain stability theorem. Given a general
MIMO system y(t) = (Ge)(t), we can approximate the hybrid
passivity/finite-gain parameters using a linearization of the
system, y(s) = G(s)e(s), where G(s) = C(s1 − A)−1B + D
is the system transfer matrix, and (A, B, C, D) is a minimal
state-space realization. We assume that G(s) is composed
of real rational transfer functions. If the original system is
LTI, then G(s) exactly represents the original system. If the
original system is nonlinear, G(s) represents the linearized
system. We will assume that the linearized system captures the
hybrid passive/finite-gain properties of the nonlinear system
reasonably well.

We will begin our discussion with LTI systems that are
passive within a low-frequency bandwidth, i.e., those that
satisfy (3) with δ = 0 and ε = 0. An LTI system that is
passive ∀ω ∈ �l is PR ∀ω ∈ �l , also called FF PR. a transfer
matrix G(s) ∈ C

n×n is PR ∀ω ∈ �l if [12], [19]
[

G(s)
1

]H

�p

[
G(s)

1

]
≤ 0 ∀ω ∈

{
ω ∈ R : det( jω1 − A)

�= 0, |ω| ≤ (ωc − ω̄c)

}
(6)

where

�p =
[

0 −1
−1 0

]

and ω̄c is a trivially small number that effectively transforms
|ω| ≤ (ωc − ω̄c) into the strict inequality |ω| < ωc. This
condition can also be written in terms of an LMI using the
GKYP lemma [12], [19]. The system G(s) = C(s1−A)−1B+
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D is PR ∀ω ∈ {ω ∈ R : det( jω1 − A) �= 0, |ω| ≤ (ωc − ω̄c)}
if there ∃ P, Q ∈ R

n×n where P = PT and Q = QT ≥ 0 such
that
[

A B
1 0

]T [ −Q P
P (ωc − ω̄c)

2Q

] [
A B
1 0

]

+
[

C D
0 1

]T

�p

[
C D
0 1

]
≤ 0. (7)

To be clear, both P and Q are symmetric, and although Q must
be positive semidefinite, P could be negative semidefinite,
positive semidefinite, or indefinite. It is also worth noting that
the FF PR definitions given in (6) and (7) permit poles on
the imaginary axis, including the origin [12]. Additionally, if
ωc → ∞, then P = PT > 0, Q = 0, and the traditional PR
lemma is recovered [3].

Next, we will consider systems that are ISP and have finite
gain within a low-frequency bandwidth. Such a system must
satisfy (3); that is, there must exist 0 < δ < ∞ and 0 < ε <
∞. In particular, if there exists 0 < δ < ∞ and 0 < κ < ∞
where κ satisfies (5), then (3) will be satisfied [15], [16]. In
terms of LTI systems, a system that is ISP and finite gain
∀ω ∈ �l is SPR ∀ω ∈ �l , or called FF SPR. A transfer
matrix G(s) ∈ C

n×n is SPR ∀ω ∈ �l if all the poles of G(s)
are in the open left-half plane and [17]
[

G(s)
1

]H

�p

[
G(s)

1

]
<0 ∀ω ∈ {ω ∈ R : |ω| ≤ (ωc−ω̄c)}.

This strict inequality can be written as an LMI using the GKYP
lemma [13], [17], [18]. The system G(s) = C(s1−A)−1B+D
is SPR ∀ω ∈ �l if there ∃ P, Q ∈ R

n×n , where P = PT and
Q = QT > 0 such that
[

A B
1 0

]T [ −Q P
P (ωc − ω̄c)

2Q

] [
A B
1 0

]

+
[

C D
0 1

]T

�p

[
C D
0 1

]
<0. (8)

Let us now move on to discuss the properties of LTI systems
at high frequency. A system that has finite gain above ωc is
BR above ωc. Such a system satisfies (4) with 0 < γ < ∞.
A transfer matrix G(s) ∈ C

n×n is BR ∀ω ∈ �h with gain
0 < γ < ∞ if all the poles of G(s) are in the open left-half
plane and [20]

[
G(s)

1

]H

�b

[
G(s)

1

]
≤ 0 ∀ω ∈ �h

where

�b =
[

1 0
0 −γ 21

]
.

This inequality can be written as an LMI using the GKYP
lemma. The system G(s) = C(s1−A)−1B+D is BR ∀ω ∈ �h

with gain 0 < γ < ∞ if there ∃ P, Q ∈ R
n×n , where P = PT

and Q = QT ≥ 0 such that
[

A B
1 0

]T [
Q P
P −ω2

c Q

] [
A B
1 0

]
+

[
C D
0 1

]T

�b

[
C D
0 1

]
≤ 0.

(9)

Of interest to us are systems that are hybrid, possessing
passive or ISP and finite-gain properties below ωc (i.e., at low
frequency), and finite-gain properties above ωc (i.e., at high
frequency). In particular, an LTI system G(s) that is passive
below ωc and finite-gain above ωc is a hybrid passive/finite-
gain system, but also an FF PR/BR system. FF PR/BR systems
generally describe plants that have experienced a passivity
violation. An LTI system G(s) that is ISP and has finite
gain below ωc and has a finite-gain mapping above ωc is
a hybrid VSP/finite-gain system, but also an FF SPR/BR
system. FF SPR/BR systems will be used as controllers to
control FF PR/BR systems where stability will be guaranteed
via the hybrid passivity/finite-gain stability theorem. Note
that, although an FF SPR/BR system has finite gain over all
frequencies, the gain at low frequency is different from that
at high frequency.

III. CONTROLLER DESIGN

This paper pertains to systems that are ideally PR over
all frequencies, but have their PR nature destroyed and are
rendered hybrid having PR properties below ωc and BR
properties above ωc, i.e., FF PR/BR. In terms of the passivity
and finite gain parameters, as just discussed in Section II-B,
an LTI plant G1(s) that is FF PR/BR will have δ1 = 0, ε = 0,
and 0 < γ1 < ∞. In order to stabilize such a system via
the hybrid passivity/finite-gain stability theorem, a controller
G2(s) must be synthesized so that 0 < δ2 < ∞, 0 < ε2 < ∞
(i.e., 0 < δ2 < ∞ and 0 < κ2 < ∞), and 0 < γ2 < ∞ where
γ1γ2 < 1. As discussed in Section II-B, such a controller takes
the form of an FF SPR/BR transfer matrix. We assume that we
do not know ωc and γ1 exactly because we do not know the
exact effect of unmodeled actuator, sensor, and filter dynamics.
However, we are confident that these unmodeled dynamics
render the plant hybrid passive/finite-gain (FF PR/BR) and
that we are able to estimate both ωc and γ1.

The purpose of this section is to formulate a convex opti-
mization problem that yields an FF SPR/BR system, given
estimates of ωc and γ1, to act as a controller. In particular,
our approach will be to mimic a classic H2 controller as
closely as possible to ensure that the FF SPR/BR controller is
optimal in some sense. We will first review the standard H2
formulation [27]. The nominal system (i.e., one that ignores
sensors, actuators, etc., which induce passivity violations) to
be controlled is

ẋ = Ax + B1w + B2u

z = C1x + D12u

y = C2x + D21w

where x ∈ R
n is the system state, u ∈ R

nu is the control
input, y ∈ R

ny is the measurement, z ∈ R
nz is the regulated

output, the disturbances/noise are w = [
dT vT

]T ∈ R
nw , and

all matrices are dimensioned appropriately. It is assumed that:

1) (A, B1) is controllable and (C1, A) is observable;
2) (A, B2) is controllable and (C2, A) is observable;
3) DT

12C1 = 0 and DT
12D12 > 0;

4) D21BT
1 = 0 and D21DT

21 > 0.



1812 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 5, SEPTEMBER 2013

The H2 optimal controller takes the following form:

ẋc =
Ac︷ ︸︸ ︷

(A−B2Kc−KeC2) xc+ Key
−u = Kcxc

⎫
⎬
⎭

⇔−u(s)= G

2(s)y(s)=Kc(s1−Ac)

−1Key(s) (10)

where Kc is the optimal state-feedback gain matrix, and Ke is
the optimal estimator gain matrix. Both Kc and Ke are found
by solving two different Riccati equations.

Our approach to designing an optimal FF SPR/BR controller
is to keep the controller dynamic matrix Ac and input matrix
Ke the same as the standard H2 controller, and then to find a
state-feedback gain matrix Ko that renders G2(s) = Ko(s1 −
Ac)

−1Ke FF SPR/BR. The state-feedback gain matrix Ko will
ultimately render our controller FF SPR/BR. This approach
is similar to the approaches proposed in [15] and [28], but
here we will form a convex optimization problem using LMIs,
much like in [29]–[31].

Let us first discuss our controller constraints. As previously
mentioned, given ωc and γ1, we must design our controller
G2(s) to be FF SPR/BR. We assume that G2(s) = Ko(s1 −
Ac)

−1Ke is Hurwitz for any Ko by assuming that the nominal
H2 solution renders Ac Hurwitz. By using (8), the controller
G2(s) will be SPR ∀ω ∈ �l if there ∃ Pp, Qp ∈ R

n×n where
Pp = PT

p and Qp = QT
p > 0 such that

[
Ac Ke

1 0

]T [−Qp Pp

Pp (ωc−ω̄c)
2Qp

] [
Ac Ke

1 0

]
+

[
0 −KT

o
−Ko 0

]

< 0. (11)

Notice that this is an LMI in Ko, Pp , and Qp (because Ac

is fixed). Next, using (9) our controller will be BR ∀ω ∈ �h

with gain γ2 < 1/γ1 if there ∃ Pb, Qb ∈ R
n×n where Pb = PT

b
and Qb = QT

b ≥ 0 such that
[

Ac Ke

1 0

]T [
Qb Pb

Pb −ω2
c Qb

] [
Ac Ke

1 0

]
+

[
KT

o Ko 0
0 −γ 2

2 1

]
≤ 0.

This matrix inequality is linear in Pb and Qb, but not linear in
Ko. By using the Schur complement [23], we can transform
it into an LMI as
⎡
⎢⎢⎣

[
Ac Ke

1 0

]T [
Qb Pb

Pb −ω2
cQb

] [
Ac Ke

1 0

]
+

[
0 0
0 −γ 2

2 1

] [
KT

o
0

]

[
Ko 0

] −1

⎤
⎥⎥⎦

≤ 0. (12)

This is now an LMI in terms of Ko, Pb, and Qb. Therefore,
the controller G2(s) = Ko(s1 − Ac)

−1Ke will be FF SPR/BR
if there ∃ Pp, Qp, Pb, Qb ∈ R

n×n , where Pp = PT
p, Qp =

QT
p > 0, Pb = PT

b , and Qb = QT
b ≥ 0 such that both (11) and

(12) are satisfied.
Although any G2(s) that is FF SPR/BR will stabilize an

FF PR/BR plant via the hybrid passivity/finite-gain stability
theorem, we want a G2(s) that is optimal in some sense. As
mentioned at the beginning of this section, we will formulate
our convex optimization problem so that G2(s) mimics G


2(s)
as best as it can while simultaneously satisfying the FF

SPR/BR constraints [i.e., the LMIs in (11) and (12)]. As such,
consider the following objective function to be minimized:

J = tr
[
(Ko − Kc)(Ko − Kc)

T
]
. (13)

The “closer” Ko is to Kc, the closer the FF SPR/BR controller
is to the nominal H2 controller used as the basis for controller
design. It can also be shown that minimizing the difference
between Ko and Kc minimizes an approximate upper bound on
the difference between the optimal and optimized sensitivity
functions, S(s) = [1 + G1(s)G2(s)]−1 and S
(s) = [1 +
G1(s)G


2(s)]−1, as discussed next. Noting that S(s) = [1 +
G1(s)G


2(s) + G1(s)(G2(s) − G

2(s))]−1, then to first order in

G2(s) − G

2(s) = (Ko − Kc)(s1 − Ac)

−1Ke, we have

S(s) = S
(s) − S
(s)G1(s)[G2(s) − G

2(s)]S
(s).

Following the arguments in [32], in general we can write
||A(s)B(s)C(s)||2 ≤ ||A(s)||∞||B(s)||2||C(s)||∞, where
||(·)||2 is the usual H2 norm and ||(·)||∞ is the usual H∞
norm. Therefore

||S − S
||2 ≤ ||S
G1||∞||G2 − G

2||2||S
||∞. (14)

The usual calculation of the H2 norm yields

||G2 − G

2||22 = tr[(Ko − Kc)Pc(Ko − Kc)

T]
= tr[Pc(Ko − Kc)

T(Ko − Kc)] (15)

where Pc is the positive-definite solution of the Lyapunov
equation AcPc + PcAT

c = −KeKT
e . From [33], we have

the identify |tr(PQ)| ≤ σ̄ (P)trQ if P and Q are positive-
semidefinite matrices and σ̄ (·) denotes the maximum singular
value. Applying this identity to (15) and using the result with
(14) yields

||S − S
||2 ≤ ||S
G1||∞||S
||∞
×

√
σ̄ (Pc) · tr[(Ko − Kc)(Ko − Kc)T]. (16)

Hence, minimizing J minimizes an estimated upper bound on
the difference between the optimal and optimized sensitivity
functions where it has been assumed that Ko and Kc remain
close after performing the constrained optimization. Similar
arguments can be used to estimate bounds on other closed-
loop transfer functions (complementary sensitivity function,
control sensitivity function, etc.).

We will now rewrite the objective function given in (13). By
using the “slack” variable g ∈ R

+ and the symmetric positive-
semidefinite “slack” matrix Z ∈ R

nu×nu , the objective function
given in (13) can be equivalently written as

J = g (17)

subject to

tr [Z] ≤ g (18a)

(Ko − Kc)(Ko − Kc)
T ≤ Z. (18b)

As g is minimized, Z is minimized, and as Z is minimized,
(Ko − Kc)(Ko − Kc)

T is minimized. By using the Schur
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complement, the constraint (Ko − Kc)(Ko − Kc)
T ≤ Z can

be equivalently written as
[

Z (Ko − Kc)

(Ko − Kc)
T 1

]
≥ 0. (19)

If the objective function in (17) is minimized subject to the
constraints given in (11), (12), (18a), and (19), the resultant
controller will be FF SPR/BR, but also in effect will mimic
an unconstrained H2 controller.

Our optimization problem can be summarized as follows:

minimize J (Ko, Pp, Qp, Pb, Qb, g, Z) = g

with respect to Ko, Pp, Qp, Pb, Qb, g, Z

s.t. Qp = QT
p > 0, (11), Qb = QT

b ≥ 0

(12), Z = ZT ≥ 0, (18a), (19).

This optimization problem is convex; in fact, this optimiza-
tion problem is a semidefinite program easily solved by a
numerical algorithm such as an interior point method [23],
[24]. In particular, we will use the MATLAB interface YALMIP
[34] and the solver SeDuMi [35].

Ideally, we would like to be able to minimize the closed-
loop H2 norm directly while simultaneously constraining the
controller to be FF SPR/BR. Unfortunately, doing so does
not yield a convex optimization problem. As such, to pose
a convex optimization problem we deliberately parameter-
ize in terms of Ko the controller state-feedback gain, and
attempt to mimic an unconstrained H2 by minimizing the
difference between Kc (the nominal state-feedback gain) and
Ko. Parameterizing in terms of Ko alone is indeed restrictive,
as is simply mimicking an unconstrained H2. However, we do
so in order to pose a tractable convex optimization problem
constrained by LMIs.

IV. FLEXIBLE ROBOTIC MANIPULATORS: NOMINAL

PASSIVITY AND VIOLATION THEREOF

The FF SPR/BR controller synthesis method of Section III
will be used to control a two-link flexible manipulator. This
system is nominally passive; however, as we will show,
a simple filter dynamics destroys the passive IO proper-
ties of the system, rendering it hybrid passive/finite-gain in
nature.

A. Two-Link Flexible Manipulator Dynamics and I/O Map

Consider the two-link flexible manipulator in Fig. 2(a). The
first link is 210.00-mm long, 1.27-mm thick, and 76.20-mm
high. The second link is 210.00-mm long, 0.89-mm thick,
and 38.1-mm high. Each link is made of steel and has a
strain gauge at its base. The manipulator is manufactured
by Quanser Consulting Inc. Additional information can be
found in [36]. The dynamics of the system is described by the
following second-order nonlinear matrix differential equation
[5], [6]:

M(q)q̈ + Dq̇ + Kq = B̂τ + fn(q, q̇) (20)

where M = MT > 0 is the mass matrix, D = DT ≥ 0 is
the damping matrix, K = KT ≥ 0 is the stiffness matrix, and
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Fig. 2. Two-link experimental apparatus, ideal frequency response, and
realistic frequency response. (a) Two-link flexible manipulator apparatus.
(b) Frequency response of the ideal two-link system and the two-link system
that uses F(s) to estimate rates.

B̂ = [1 0]T. The column matrix q = [θT qT
e ]T is composed

of the joint angles θ = [θ1 θ2]T and the elastic coordinates
associated with the discretization of each link, qe. The term fn

stems from nonlinear inertial forces. Joint torques τ = [τ1 τ2]T
are applied by motors at the base of each link. The apparatus in
Fig. 2(a) is equipped with two encoders, one affixed to each
joint [36]. The joint encoders provide θ1 and θ2. As such,
proportional control can be implemented easily.

For rate control to be implemented, θ̇ must be made
available. Unfortunately, our apparatus is not equipped with
any sort of rate sensor, and as such θ̇ will be acquired through
some sort of differentiation. If perfect differentiation were
possible, then the mapping τ → y where y(s) = sθ(s) would
be passive. In practice, perfect differentiation is not possible
and can only be approximated. In particular, we will use the
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following derivative filter:

y(s) = F(s)θ(s) = diag
i=1,2

{ fi (s)} θ(s)

fi (s) = ω2
f,i s

s2 + 2ζ f,iω f,i s + ω2
f,i

. (21)

The derivative filter F(s) destroys the nominal passive IO map
of the plant because each fi (s) within F(s) has a gain that rolls
off and a phase that lags at high frequency. The addition of
F(s) induces a passivity violation.

Knowing that F(s) destroys passivity, we cannot rely on the
traditional passivity theorem for control. Therefore, we will
control the system via the hybrid passivity/finite-gain stability
theorem. To do so, we must be able to estimate the nature
of the passivity violation. In particular, we will linearize the
two-link system and investigate the FF PR/BR nature of the
linearized system.

Consider the manipulator dynamics presented in (20)
augmented with proportional control and linearized about
a specific joint configuration θd . The proportional control
gain used is Kp = diag {40, 40} N · m. The linearized
unforced/undamped augmented system can be written as

Mδq̈ + Kaδq = 0

where Ka = KT
a > 0 is the augmented stiffness matrix, and

δq = q−qd where qd = [θT
d 0]T. By solving the eigenproblem

associated with this simplified system, we can define a set
of modal coordinates δq = Qeη, where η are the modal
coordinates and Qe = row {qα} where qα are the eigenvectors
normalized with respect to the mass matrix (i.e., qT

αMqβ =
δαβ ). Additionally, we can define � = diag {ωα}, where ωα

are the natural frequencies of each mode corresponding to the
eigenvalues associated with the original eigenproblem.

We can now write the linearized equations in the following
first-order state-space form:

ẋ =

A︷ ︸︸ ︷[
0 �

−� −2Z̄�

]
x︷ ︸︸ ︷[

�η

η̇

]
+

B︷ ︸︸ ︷[
0

QT
e B̂

]
τ (22)

where Z̄ = diag {ζα} and ζα is the damping ratio associated
with each mode. Note that we are deliberately writing the
linearized motion equations in this form because numerical
computations tend to be much more stable (as we found
out when actually computing controllers using the method in
Section III). Given the above state-space form, the relation
between x, θ , and θ̇ is

θ = [
B̂TQe�

−1 0
]

︸ ︷︷ ︸
Cp

x, θ̇ = [
0 B̂TQe

]
︸ ︷︷ ︸

C

x. (23)

Let θ(s) = Gp(s)τ (s) = Cp(s1 − A)−1Bτ (s), and θ̇(s) =
G(s)τ (s) = C(s1 − A)−1Bτ (s), where G(s) := sGp(s).

The frequency response of the ideal (linearized) system
G(s) is shown in Fig. 2(b). The linearization is performed
about θd = [−π/4 0]T. Within Fig. 2(b) is plotted the
maximum singular value of G(s) and the minimum Hermitian
part as a function of frequency. The maximum singular value

(a)

(b)

Fig. 3. Scheduling architecture and scheduling signals. (a) Scheduling
architecture. (b) Time-dependent scheduling signals.

of G( jω) is σ̄ (G( jω)) =
√

λ
[
GH( jω)G( jω)

]
, while the min-

imum Hermitian part is (1/2)λ
[
G( jω) + GH( jω)

]
. Clearly,

the linearized system is PR over all frequencies owing to the
fact the Hermitian part is positive over all frequencies. This
result is expected.

Now consider the IO mapping where θ̇ is not directly
measured, but acquired via differentiation using F(s), i.e.,
y(s) = G1(s)τ (s) where G1(s) = F(s)Gp(s). The frequency
response of this transfer matrix is also plotted in Fig. 2(b). The
system G1(s) is PR over a specific frequency range; below
approximately 100 rad/s the transfer matrix has a Hermitian
part that is positive, and hence PR. Above 100 rad/s, the sys-
tem is no longer PR (i.e., the Hermitian part is negative) but is
BR. The system is clearly hybrid passive/finite-gain possessing
a frequency response that is FF PR/BR. Assuming that our lin-
earized model accurately approximates the nonlinear system,
by using the hybrid passivity/finite-gain stability theorem this
system can be stabilized by an FF SPR/BR controller.

V. CONTROLLER SYNTHESIS AND

EXPERIMENTAL RESULTS

Rather than using one FF SPR/BR controller, we will
synthesize and use two FF SPR/BR controllers within a
scheduling architecture, i.e., we will gain-schedule two FF
SPR/BR controllers. Consider the scheduling architecture
shown in Fig. 3(a). Notice that the two scheduling signals
s1 and s2 each influence the input and the output of the
FF SPR/BR rate controllers they schedule (while the pro-
portional control is not scheduled). As discussed in [16],
this particular scheduling architecture ensures that the overall
gain-scheduling controller maintains a hybrid VSP/finite-gain
character. A similar scheduling architectures can be found in
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[37] and [38] (although these works only consider the control
of passive systems that have not experienced a passivity
violation).

The scheduling signals may be a function of θ2 or time. We
elect to specify the scheduling signals to be an explicit function
of time only. The scheduling signal profiles are shown in
Fig. 3(b), where t f = 2.5 s. This form of scheduling is simple
to implement, and essentially is scheduling the controllers
based on the assumed position of the manipulator. It should
be noted, however, that scheduling can be a function of any
other variable an engineer wishes to choose.

A. Controller Synthesis Results

The two controllers within the scheduling algorithm, G21(s)
and G22(s), will each be designed about a specific linearization
point: G21(s) about set point 1, and G22(s) about set point 2.
Set point 1 corresponds to [−π/4 0]T rad, while set point 2
corresponds to [(π/4) (π/3)]T rad. The weights used for
controller synthesis are

B1 = 10
[

B 0
]

C1 =
⎡
⎣

100Cp

2C
0

⎤
⎦

D12 =
[

0
1

]

D21 = [
0 1

]
(24)

where B, Cp , and C are given in (22) and (23).
To design the FF SPR/BR controller, both ωc and γ1 must

be estimated. From Fig. 2(b), ωc = 100 rad/s while γ1 = 1.25
rad/(N · m · s). Note that these values are estimated based on
a linearization and an assumed filter F(s); the true nonlinear
high-frequency gain may not be the γ1 we have chosen.
However, with no way to calculate a true nonlinear gain, we
resort to estimating the high-frequency gain in this way.

The frequency response of the FF SPR/BR controllers
synthesized about set points 1 and 2 using the scheme pre-
sented in Section III are shown in Fig. 4(a) and (b). The
frequency responses of the H2 controllers used as the basis
controllers for the the FF SPR/BR controllers are also shown in
Fig. 4(a) and (b) as well. The singular value and Hermitian part
profiles of each FF SPR/BR controller mimic the H2 controller
frequency responses as close as possible without violating the
low-frequency FF SPR and high-frequency FF BR constraints.
In particular, notice that the Hermitian part of the FF SPR/BR
controllers trace the Hermitian part of the H2 controllers, but
each always remains positive in the frequency range below ωc,
thus adhering to the low-frequency FF SPR constraint. The
gain profile of each FF SPR/BR controller is reduced below
that of the H2 controller so that the constraint γ1γ2 < 1 is
satisfied as well. Interestingly, above ωc, the Hermitian part
of G22(s) dips below zero slightly. This is permitted, as the
controller is not constrained to be SPR at high frequency, but
only BR, such that γ1γ2 < 1 holds.

The value of the closed-loop H2 norm using the H2 and FF
SPR/BR controllers about set point 1 is 178.45 and 201.59,

(a)

(b)

Fig. 4. Frequency response of FF SPR/BR controllers designed about set
points 1 and 2. (a) Controller designed about set point 1, G21(s). (b) Controller
designed about set point 2, G22(s).

respectively. The closed-loop H2 norm using the H2 and FF
SPR/BR controllers about set point 2 is 221.94 and 247.57,
respectively. As expected, when using the FF SPR/BR con-
trollers, the value of the closed-loop H2 norm is larger because
the FF SPR/BR controllers, although designed to mimic the
standard H2 controllers, are constrained and unable to exactly
match the value of the closed-loop H2 norm attained when
using the standard H2 controllers. Shown in Fig. 5(a) and (b)
are the maximum singular values of the sensitivity functions
associated with the linearized plant controlled by both the
H2 and FF SPR/BR controllers designed about set points
1 and 2. Notice that the difference between the sensitivity
functions at low frequency is small owing to the fact that the
H2 and FF SPR/BR controllers do not differ significantly at
low frequency.

B. Experimental Results

The FF SPR/BR controllers of Fig. 4(a) and (b) have been
used within the scheduling architecture described above to
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Fig. 5. Maximum singular value of the sensitivity function versus frequency
for both H2 and FF SPR/BR control about set points 1 and 2. (a) Sensitivity
function frequency responses about set point 1. (b) Sensitivity function
frequency responses about set point 2.

control the two-link manipulator. The manipulator is to follow
a desired trajectory starting at set point 1, moving to set
point 2, and then moving back to set point 1. The desired
trajectory between set points is

θ D =
[

10

(
t

t f

)3

− 15

(
t

t f

)4

+ 6

(
t

t f

)5
]

(
θ f − θ i

) + θ i

where t f is 2.5 s, θ f is the final angular position, and θ i is the
initial angular position. Between maneuvers, there is a 2.5 s
dwell.

Fig. 6(a) shows the position and rate response of the system
controlled by set point 1 controller alone (i.e., there is no
controller scheduling, and only G21(s) is used) and the gain-
scheduled controller. Fig. 6(b) shows the position and rate
error of the system controlled by each scheme where e =
θ − θ D . The root mean square (RMS) errors are presented in
Table I.
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Fig. 6. Two-link experimental results. (a) System response using hybrid
control and gain-scheduled hybrid control. (b) Joint position and rate errors.

TABLE I

POSITION AND RATE RMS ERRORS

θ1 RMS
error (rad)

θ2 RMS
error (rad)

θ̇1 RMS
error

(rad/s)

θ̇2 RMS
error

(rad/s)

Unscheduled 3.586 ×
10−3

1.894 ×
10−3

15.841 ×
10−3

19.095 ×
10−3

Scheduled 3.404 ×
10−3

1.510 ×
10−3

15.670 ×
10−3

15.085 ×
10−3

Although it is perhaps hard to visually discern the quality
of the controlled responses, Table I clearly shows that the
scheduled FF SPR/BR control scheme realizes lower position
and rate errors as compared to the control that uses G21(s)
alone. Although errors associated with the first link do not
change significantly (there is only a modest improvement),
the errors associated with the second link are improved greatly
when the scheduled controller is used.

Controlling the two-link manipulator experimental appa-
ratus using each of the H2 controllers designed about
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Fig. 7. SPR controllers designed about set points 1 and 2. (a) SPR controller
designed about set point 1. (b) SPR controller designed about set point 2.

set points 1 and 2 was attempted, as was gain-scheduling the
two H2 controllers. It was found that the closed loop was
unstable when the individual H2 controllers were used, as
well as when each H2 controller was gain-scheduled. This
fact highlights the robust nature of the FF SPR/BR controllers
and the gain-scheduling scheme, as well as the inability of
the nominal H2 controllers (designed about set points 1 and
2) to control such a nonideal plant. If more care is taken in
modeling the plant, an H2 controller will be able to control
the system. However, as highlighted by these results, the FF
SPR/BR controller that mimics the H2 controller does not need
a high-fidelity plant model to successfully control the two-link
manipulator system.

In the context of traditional passivity-based control, an SPR
controller or two gain-scheduled SPR controllers would be
used to control the two-link manipulator system. Not only
did we attempt control using FF SPR/BR and standard H2
controllers, but we also considered closed-loop control using
standard SPR controllers (designed about set points 1 and 2)

as well as gain-scheduling two SPR controllers. The SPR
controllers were synthesized in a very similar way as the
FF SPR/BR controllers about set points 1 and 2; see the
Appendix for the synthesis procedure. Referring to Fig. 7(a)
and (b) in the Appendix, the frequency responses of the
two SPR controllers designed about set points 1 and 2 are
almost identical to the frequency response of the correspond-
ing traditional H2 controllers. The SPR controllers have a
minimum Hermitian part that is strictly greater than zero,
as required. When closed-loop control was attempted, it was
found that neither of the SPR controllers designed about set
points 1 or 2 could stabilize the closed-loop system, nor
could the corresponding gain-scheduled SPR controller. Recall
that the two-link system under control has experienced a
passivity violation, so neither the individual SPR controllers
nor the gain-scheduled SPR controller is assured to stabilize
the closed-loop via the traditional passivity theorem.

The most likely reason why H2, SPR, and corresponding
gain-scheduled H2 and SPR controllers do not stabilize the
closed-loop system is related to the high-frequency gain (i.e.,
the gain above ωc) of the H2 and SPR controllers designed
about set points 1 and 2. Referring to Figs. 4(a) and (b)
and 7(a) and (b), notice that the high-frequency gain of
the FF SPR/BR controllers designed about set points 1 and
2 is low compared to both the H2 and SPR controllers.
The unmodeled high-frequency dynamics associated with the
passivity violation, as well as other unmodeled dynamics, are
most likely destabilized by the high-frequency gain of the
H2 and SPR controllers. Note that, if greater care is taken
in modeling the system and better sensors are available (e.g.,
rate sensors), the H2 and SPR controllers would be able to
stabilize the closed-loop system. What we have shown is that
the FF SPR/BR controllers are able to control the system given
a low-fidelity plant model and a passivity violation.

VI. CONCLUSION

In this paper, we investigated the design of optimal FF
controllers to control systems, such as flexible robotic manipu-
lators, that have experienced a passivity violation. The contri-
butions of this paper have been: 1) highlighting the connection
between the hybrid passivity/finite-gain systems framework
and the GKYP lemma; 2) formulating a means to synthesize
FF SPR/BR controllers that mimic a nominal H2 controller
to stabilize FF PR/BR plants; and 3) experimentally testing
the synthesis procedure by controlling a two-link flexible
manipulator.

Future work will focus on other synthesis procedures that
yield controllers that are FF SPR/BR. If the LMIs in (11) and
(12) are expanded, there are terms such as AT

c QpAc. These
product terms make it difficult to parameterize controllers in
terms of the dynamic matrix Ac because the matrix inequality
in question is no longer an LMI. In the future, we hope
to explore ways to overcome this issue. Another possible
avenue we hope to explore is the design of controllers that
have three finite-frequency regions with specific SPR or BR
properties in each region. For example, motivated by [10]
and [11], controllers with low-frequency (i.e., below ω1) FF
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SPR properties, mid-frequency (i.e., between ω1 and ω2 where
ω1 < ω2) FF SPR and FF BR properties, and high-frequency
(i.e., above ω2) FF BR properties would be of interest. Specifi-
cally, the controller synthesis procedure presented in this paper
would be applicable provided another mid-frequency LMI
constraint was added. It should be noted that FF SPR or FF
BR characteristics over mid-frequency ranges (i.e., between
ω1 and ω2) can be characterized using the GKYP lemma
[13], [20].

APPENDIX

In this appendix, we will consider the optimal design of
traditional SPR controllers, i.e., controllers that are SPR over
all frequencies. Rather than using one of the synthesis meth-
ods presented in [28]–[31], we will modify the FF SPR/BR
controller design procedure in Section III in order to present a
fair comparison of closed-loop control of the two-link flexible
manipulator system using FF SPR/BR controllers and SPR
controllers, both used alone and within a gain-scheduling
algorithm.

Consider G2(s) = Ko(s1 − Ac)
−1Ke, where the dynamic

matrix Ac and input matrix Ke are taken from a standard
H2 controller design. The dynamic matrix Ac is assumed to
be Hurwitz, and (Ac, Ke) and (Ko, Ac) are assumed to be
controllable and observable, respectively. During optimization,
Ac and Ke are held fixed. As in Section III, we wish to design
a Ko that renders the controller G2(s) SPR. Additionally, we
want Ko to render G2(s) as close to the nominal H2 controller
as possible. Recall that G2(s) will be SPR if there exists
Pc = PT

c > 0 such that [29]

PcAc + AT
c Pc < 0. (25a)

KT
e Pc = Ko. (25b)

The LMI given in (25a) will be used to constrain G2(s) to be
SPR. Consider the following objective function:

J = tr
[
(Ko − Kc)(Ko − Kc)

T
]

= tr
[
(KT

e Pc − Kc)(KT
e Pc − Kc)

T
]

(26)

where Kc is the state-feedback gain from the nominal H2
controller, and (25b) has been used to replace Ko with KT

e P.
Using the slack variable g ∈ R

+ and the positive-semidefinite
slack matrix Z ∈ R

nu×nu , we can write the objective function
given in (26) as

J = g

tr [Z] ≤ g (27a)[
Z (KT

e Pc − Kc)

(KT
e Pc − Kc)

T 1

]
≥ 0. (27b)

In summary, the SPR synthesis procedure is as follows:

minimize J (Ko, Pc, g, Z) = g

with respect to Ko, Pc , g Z

s.t. Pc = PT
c > 0, (25a)

Z = ZT ≥ 0, (27a), (27b).

As in Section V, the two-link flexible manipulator dynamics
will be linearized about set points 1 and 2, and two SPR
controllers will be synthesized using the procedure outlined
in this section. The weights used to design traditional H2
controllers about the same set points are the same weights
given in (24). The frequency response of the two SPR con-
trollers are shown in Fig. 7(a) and (b) along with the frequency
response of the two H2 used as the basis for design. Notice
that: 1) the minimum Hermitian part of each controller is
strictly greater than zero and 2) the SPR controllers mimic
the H2 very closely.
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