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Single-Link Flexible Manipulator Control
Accommodating Passivity Violations:
Theory and Experiments

James Richard Forbes and Christopher John Damaren

Abstract—The robust control of a system which is nominally
passive, but experiences a passivity violation is considered in this
paper. Specifically, we utilize the hybrid passivity and finite gain
stability theorem to robustly control a single-link flexible manipu-
lator experiment. This system is nominally passive, but passivity is
destroyed by, for example, sensor dynamics. The hybrid theorem
is specifically applicable to such a scenario. We review and develop
further the hybrid passivity and finite gain stability theorem
in a linear time-invariant, single-input-single-output context.
Calculation of the various passivity and finite gain parameters
that classify a system as hybrid is discussed. In the interest of de-
veloping a hybrid controller that is optimal in some sense, we pose
a numerical optimization problem which is constrained by the
hybrid passivity and finite gain stability theorem. The numerical
optimization objective function seeks to have a hybrid controller
mimic a nominal 7 controller. Experimental results successfully
demonstrate tip-based feedback control of a single-link flexible
manipulator.

Index Terms—Controller optimization, passivity-based control,
passivity violations, single-link manipulator, tip-control, vibration
control.

1. INTRODUCTION

ASSIVE systems and passivity-based control schemes

have been actively researched for several decades [1],
[2]. Passivity-based control relies on the passivity theorem
which states that a very strictly passive controller will stabilize
a passive plant when connected in a negative feedback loop
[3]. Passivity-based control schemes are attractive owing to the
robustness properties of the closed-loop.

The control of flexible systems, especially those of aerospace
origin, is an interesting control challenge that has been previ-
ously investigated in the literature [4]—[7]. Passivity-based con-
trol is often used to control flexible, lightly damped systems. As
a result of very little natural damping, the gain of these flexible
systems is nominally quite high, and stabilization via other the-
orems is overly restrictive. For example, the small gain theorem
states that the negative feedback interconnection of two systems
will be stable provided the product of the plant gain and con-
troller gain is less than one [3]. Given that flexible systems have
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high gain, the controller gain must be very small if the small gain
theorem is to ensure stability of the closed-loop system. This
in turn leads to poor closed-loop performance. Passivity-based
control, however, places no gain restriction on the plant, and less
restrictive gain limitations on the control. This allows imple-
mentation of much more aggressive control laws. For example,
in [8] strictly positive real (SPR) rate controllers (which are very
strictly passive when modified slightly) are used to control large
space structures. In [9], the control of large space structures
using linear quadratic Gaussian (LQG) controllers which main-
tain SPRness was considered. Recently in [10] the control of
n-link flexible manipulators using optimal gain-scheduled SPR
controllers was considered.

In the context of n-link flexible robot manipulators, a passive
map between the joint torques and the angular joint rates ex-
ists owing to collocation of the actuators and sensors. The im-
portance of actuator and sensor collocation whilst controlling
flexible systems was first pointed out in [11]. When excellent
end-effector position and rate control is required, it is not suf-
ficient to suppress vibration of the links at the joint level, but
rather the manipulator end-effector position and rate must ex-
plicitly be controlled. Unfortunately, the map between the ma-
nipulator joint torques and tip rate is not passive, and the pas-
sivity theorem can not be employed to robustly stabilize the
system. However, while carrying large payloads a passive input-
output map between a modified joint torque and a modified
tip rate, known as the p-tip rate, does exist as shown in [12].
In [12], passivity-based control of n-link flexible manipulators
using the p-tip rate is considered, and in [13] the effectiveness
of using the p-tip rate is demonstrated experimentally using
a three-link manipulator test bed. In [14] an upper bound for
the parameter y is found based on the collocated and noncol-
located mass ratios of the system when the payload is large,
but not quite massive. The p-tip framework is applicable to
nonlinear, multi-input-multi-output (MIMO) systems, as well
as linear single-input-single-output (SISO) systems. The work
of [12], that is defining and controlling a modified input-output
map that is passive, was originally inspired by [15] and [16]
where the map between the joint torque and the reflected tip
rate of a single-link flexible manipulator was considered. Simi-
larly, in [17] the control of a point along a flexible manipulator,
inboard of the tip, was investigated, which is similar to the ideas
explored in [12], [15], and [16].

Often while employing passivity-based control the affect of
unmodeled sensors and actuators is overlooked. Usually it is as-
sumed that the sensors and actuators (e.g., encoders, tachome-
ters, potentiometers, electrical motors, peizoelectric actuators,
etc.) have dynamics which possess infinite bandwidth and unity
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gain. In practice, such an assumption is false, and these un-
modeled dynamics destroy the nominally passive nature of the
system under control; they induce a passivity violation.

In [18] the hybrid passivity and finite gain stability theorem
is presented in a general nonlinear MIMO context. Plants which
are nominally passive, but have somehow had their passivity de-
stroyed by, for example, sensor and actuator dynamics is the
motivation behind this theorem. A hybrid system is a contin-
uous system which possesses a passive input-output map and a
finite gain input-output map when the passive input-output map
no longer exists (i.e., passivity has been violated). Hybrid sys-
tems are similar to “mixed” systems [19], [20] and finite fre-
quency positive real systems [21]. The hybrid passivity and fi-
nite gain stability theorem utilizes both the passivity theorem
and the small gain theorem in tandem; stability is guaranteed via
the passivity theorem when a passive input-output map exists,
but when a passivity violation occurs above a critical frequency,
gain bounds on the plant and control ensure the closed-loop
system is stable. This theorem formalizes what has, at least prac-
tically, always been known: passivity violations (i.e., phase vi-
olations in the linear time-invariant sense) that occur at high
frequency are not destabilizing provided the gain of the plant,
controller, sensors, and actuators has naturally subsided (i.e.,
the gain of each rolls off). The word “hybrid” is used to high-
light the fact that within the hybrid passivity/finite gain frame-
work closed-loop stability is not guaranteed by the passivity the-
orem alone, and not by the small gain theorem alone, but rather
by both passive and finite gain means in a “hybrid”, “tandem”,
“mixed”, or “blended” fashion. Our use of the word hybrid does
not include, describe, nor refer to systems which employ some
sort of discrete switching.

The purpose of this paper is to implement, and validate ex-
perimentally, the hybrid passivity/finite gain stability theorem
in terms of SISO control of a single-link flexible manipulator.
This linear time-invariant (LTI) plant is nominally passive, but
experiences a passivity violation when, for example, sensor dy-
namics are considered. We review hybrid systems theory and
future develop it in a LTI, SISO context. We show how to cal-
culate the passivity and finite gain parameters which are used to
assess closed-loop stability of hybrid systems. We also present a
controller optimization formulation: the frequency response of a
transfer function is numerically optimized to mimic a traditional
‘H controller while simultaneously being constrained to satisfy
the hybrid passivity/finite gain stability theorem. In turn, when
the transfer function is employed as a controller, closed-loop
stability is guaranteed. Last, an optimized hybrid controller is
used to control a single-link flexible manipulator experimental
apparatus, demonstrating the utility and success of the hybrid
theory and optimization formulation.

II. SINGLE-LINK FLEXIBLE MANIPULATOR

A. Input-Output Model

In this study we will control the tip position and rate of a
planar single-link flexible manipulator carrying a large payload
described by

M{ + D4+ Kq = br ()

where M > 0, D > 0, and K > 0 are the mass, damping, and
stiffness matrices, b = [1 0], 7 is the joint torque, q = [# q]]T,
6 is the joint angle of the hub, and q. are the elastic coor-
dinates associated with the flexible link discretization. A non-
planar system can just as easily be considered; gravity may be
considered a known disturbance and compensated by a feedfor-
ward control scheme.

The output we are interested in controlling is the p-tip rate
[12], [13]

Y= pu = Job + pJede (©)

where Jy is the rigid Jacobian, J. is the elastic Jacobian, and 1 is
a fixed scalar parameter that will help us define a passive input-
output map. When g = 1 the output is the true-tip rate, p =
Pu=1, when p = 0 the output is the rigid-tip rate, and when p =
—1 the output is the reflected-tip rate as discussed in [15] and
[16]. Various authors have considered true-tip position and rate
control; for example, one of the earliest works is [22]. The non-
collocated mapping between the joint torque and the true-tip
rate is nonminimum phase, and hence not passive. However, if
0 < g < 1 and the manipulator is carrying a large payload, a
passive input-output map can be defined.

Scaling J. by ¢ when 0 < g < 1 can be thought of as
artificially retarding the natural flexibility of the link. From (2)
we can equivalently write p,, as

pu = Job + I eéle + pJof — 11Ts0
=(1—pu)Job + p(Job + Jeqe)
—

P
= (1= p)Job + . 3)

The above provides an expression for the p-tip position
pp = (1 — ) Jol + pp. “)

By definingu = J, L7, which will be referred to as the modified
joint torque, we can capture the modified input-output dynamics
in terms of a transfer function

y(s) = g(s)u(s)

My'J2 & s
= aba
9(5) S ; §2 4+ 2Cwa s + w2 ¢
Ca = JGHa + /Jf']eqea
bo =0oJy, a=1,...,N, 5)

where y(s) = sp,(s), u(s) = J, '7(s), My is the rigid por-
tion of the mass matrix, and ¢, and w, are the damping ratios
and natural frequencies associated with the N, modes of the
flexible link. The eigenvectors corresponding to the undamped,
unforced form of (1) are o = [f q/,]". The transfer function
g(s) follows from modal decomposition of (1) and (2), followed
by use of the Laplace transform. While carrying a large pay-
load, the above transfer function is passive, that is positive real,
provided 0 < p < 1. Recall a positive real transfer function
has phase bounded by £90°, i.e., —7/2 < arg g(jw) < 7/2
VYw € R. Because u(s) — y(s) is a passive input-output map,
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robust closed-loop stability is guaranteed via the passivity the-
orem when a very strictly passive controller is employed. For
example

) = |52 4 g (9] 69

where K, is the proportional control gain and gygp(s) is a very
strictly passive transfer function would realize robust stabiliza-
tion with respect to uncertain manipulator mass and stiffness.
Unfortunately, the modified output y(s) is generally not directly
available, as discussed in the next section.

B. Violation of Passivity

At any given time £ and p are measured, and p, can be cal-
culated using (4). Using p,,, proportional control of the form
K,pu(s) can be applied to the system without issue because
proportional control does not alter the passivity of the system.
Let p.(s) = gp(s)u(s) be the plant with proportional control
included. In order to implement rate control p,, is needed. By fil-
tering p,, with a derivative filter f(s), p,, can be approximated
as y1(s) = f(s)pu(s). If f(s) = s, that is perfect differenti-
ation were possible, y1(s) = p,(s) and use of the traditional
passivity theorem would be appropriate. Unfortunately, a real
derivative filter possesses dynamics and has a finite bandwidth;
a realistic derivative filter is

w}
f(s)=s (52+2waf8+wf> ©)

and as a result the true plant output (which is the controller
input) is really y1(s) = g1(s)u(s), where g1(s) = f(s)gp(s).
Although the nominal plant g(s) is passive, g1 (s) is not passive
owing to the presence of the filter f(s). Fortunately, however,
g1(s) is still passive within a bandwidth; in a low frequency re-
gion the passive characteristics of ¢(s) are maintained because
f(s) essentially has no phase delay. As such, we would expect
g1(s) to be phase bounded by +90° at low frequency. At high
frequency, however, f(s) induces phase delay, thus destroying
the positive realness of the plant; g1 (s) is expected to have phase
that exceeds +90°, that is to say passivity is violated at high fre-
quency. However, in this high frequency region the plant will
have finite gain due to the roll off of the both g,,(s) and f(s). The
plant g1 (s) can be segmented into two parts: a low frequency
passive (i.e., positive real) part, and a high frequency finite gain
part. The hybrid passivity/finite gain framework is ideal for such
systems.

III. LINEAR HYBRID PASSIVITY/FINITE GAIN
STABILITY THEORY

Here we will review the definition of a hybrid system, and
the hybrid passivity/finite gain stability theorem in the context
of LTT, SISO systems. This theory is fully developed in a general
context (i.e., MIMO and nonlinear) in [18].

Recall that a time dependent function y € Lo if

o ()dt /(27) f_ Jw)dw<ocandy€
Lo 1ff0 dt /(27) f_ —jw)y, (Jw) dw < oo,
0<T< o0, whereyT(t) —y() 0 StSTandyT( ) —0,
t > T. We abuse notation and y(jw) denotes the Fourier
transform of y.

A. SISO, LTI Hybrid Systems

Consider a LTI, SISO system mapping inputs e € Lg, to out-
puts y € Lo, through the operator G : Lo, — Lo, that is
y(t) = (Ge)(t). Via Laplace transforms the system mapping
may be expressed as y(s) = g(s)e(s), where g(s) € C is the
system transfer function. The system is considered a hybrid pas-
sive/finite gain system if

g;._f)yT(_jw)Q(wﬁh(jw)dw
+ %Re [w yT(_jLU)S(w)eT(jw) dw
+ % _oo eT(_jw)R((A))eT (JW) dw Z 0 (7)
where
s I[ea(w) +77H(1 = a(w))]
S(w) = 50&((,0)
R() = (1 - a()) - da(w)] ®)

The constant parameters ¢ and ¢ depend on the passive nature of
the system, and v depends on the finite gain nature of the system.
Notice the units of Q and R are consistent; € and ! have units
of one over gain, while § and -y have units of gain. The frequency
variable @ : R — {0,1} is a theoretical abstraction used to
distinguish between passive system characteristics and nonpas-
sive but still finite gain system characteristics. When the system
in question possesses a passive input-output map, a(w) = 1.
When the system fails to possess a passive input-output map,
that is the system has experienced a passivity violation, but the
map has finite gain, a(w) = 0. The divide occurs at a critical
frequency, w., which is used to define a:
—we < w < We

L,
“”‘{&IMZ@
= A(—jw)A(jw)
= |A(jw)P*.
The transfer function A(s) is causal and can be expressed by the
operator A : Ly — L. We can intuitively think of « as an ideal
low pass filter, filtering the signals into two parts: a passive part
and a finite gain part.
When the system maintains passive properties a(w) = 1 and
(7) reduces to

1 We ) . 6 We
aele [ u(ile ) doz o [ e,

J—w, J—w,

(passive region)
(finite gain region)

(jw)|* duw
e [ 9
Tor ) |y (jw)]” dw.
Within this frequency band we say that the hybrid system has
characteristics which are as follows:
1) passive when § = ¢ = 0;
2) very strictly passive, or input strictly passive with finite
gain when § > 0 and € > 0;
3) input strictly passive when § > 0 and € = 0;
4) output strictly passive when § = 0 and € > 0.
Upon violation of passivity, a(w) = 0, and (7) gives
G de < [T e o)l de
™ Jo. T T e
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Within this frequency band we say the system has finite gain.

Notice that if a passivity violation does not occur at all, then
w, = oo and from (7) and (8) the traditional definition of a input
strictly, output strictly, very strictly, or simply passive system is
recovered. Similarly, if w, = 0, that is the system possess a map
which is never passive but does have finite gain, the traditional
definition of a finite gain system is recovered.

B. Defining Hybrid Parameters for SISO, LTI Hybrid Systems

We will start by defining the input strictly passive parameter

5
R /w,_, (—jw)y, (jw) dw
el B R

1 e
= —Re/
2r .

er(—jw)lg(jw)e, (jw)] dw

. . 1 We NP
> b Relg(je) 5 Re / lenlol® do
Y
5[,
=5 le, (jw)|® dw ©)]

J—w,

where Re{-} represents the real part. Therefore, § =
inf_y, cw<w. Re{g(]w)}

Next we will consider the output strictly passive parameter
€ in the context of a finite gain, input strictly passive hybrid
system, i.e., a very strictly passive hybrid system. An input
strictly passive hybrid system that possesses finite gain satisfies
(9) in addition to

1 e
27 K2 '/wc

where k, the gain of the system over —w. < w < w,, can be
calculated in the following way:

"We

. 1
|y, (jw)|? dw < 7 / e,

J—w,

(jw)|? dw  (10)

1 We
. 2
o |y, (jw)|” dw
1 e o
=50 lg(jw)es (jw)|” dw
a1
< s P o [ eGP do
—we<w<we 0 —Wwe
Iﬁ:2 wcl )
=2 [ el de
we

Therefore, & = sup_,_ <, |9(jw)| and is referred to as the
passive system gain. To show that an input strictly passive, finite
gain hybrid system is in fact very strictly passive when passivity
holds, we will start with (9), let § = § /2, and then manipulate
using (10) [23]

1 We
—Re /
27 ,wc

€r (_jw)y'l' (Jw) dw

5
> [ e, (7W|2dw+—/ (jw)* dw

2 J_,
> 2 e, Gl dw e S —/ i, ()2 do.
T2 ), k2 2w J_, "

€

U1 G1 Y1

_l’_

G
Y2 2 s ¥ ug

Fig. 1. General negative feedback interconnection of systems G'; and G».

Therefore, a finite gain, input strictly hybrid passive system is
clearly a very strictly passive hybrid system. Henceforth, stating
a very strictly passive hybrid system has § > 0 and Kk < o0
implies 6 > 0 and € > 0.

The gain of the system when passivity has been violated can

be calculated via
1 [ .
] lentio)? do.
™ w,

c

1 [~ . .
= G dw < sup loGo)P

w>w,
| ——
~2

c

(1)

Therefore, v = sup, >, |g(jw)|.

It should be clear that the parameters 6, €, and -y associated
with a hybrid passive/finite gain system are not equivalent to the
traditional definitions associated with completely passive sys-
tems or completely finite gain systems. Here we have defined 6,
€, and y over specific frequency bands. In the traditional defini-
tions these parameters are defined over all frequencies.

C. Stability of Interconnected Hybrid Passive/Finite Gain
Systems

Consider the negative feedback interconnection of two hybrid
systems presented in Fig. 1. The passivity and finite gain param-
eters for each system (G1 and G are defined as 61, €1, and 71
and 02, €2, and -2, respectively.

Theorem 3.1—Hybrid Passivity and Finite Gain Stability
Theorem: Given that G; : Lo, — Lo, and G : Lo, — Lo,
the negative feedback interconnection presented in Fig. 1 is
Lo-stable if the variables 61, €1, 71, 02, €2, and o satisfy
€1+ 62 >0, e + 01 > 0, and y1v2 < 1.

Proof: See [18]. O

The hybrid passivity and finite gain stability theorem as stated
above is a fusion of the passivity theorem and the small gain
theorem. It allows the control gain to be large within the corre-
sponding passive frequency band of the plant being controlled.
When the plant has its passivity violated but maintains finite
gain the control is then required to satisfy a gain constraint, that
is 7172 < 1, but only outside of the passive frequency band.
The hybrid passivity and finite gain stability theorem allows
high gain compensation to be reintroduced (in a frequency band)
where the traditional small gain theorem would be overly con-
servative and the traditional passivity theorem alone would not
guarantee stability at all.

In this paper, the plant to be controlled is a single-link flex-
ible manipulator. As discussed in Section II-B the nominal plant
is passive, but in reality passivity is violated as a result of rate
signal approximation via the filter f(s). The system has become
hybrid possessing passive dynamics at low frequency, and finite
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gain dynamics above a critical frequency. With the hybrid sys-
tems theory at our disposal, provided we design a controller to
satisfy the hybrid stability criteria discussed above, closed-loop
stability can be guaranteed. The optimal design of such a con-
troller is the topic of Section IV.

IV. CONTROLLER DESIGN AND SYNTHESIS

The hybrid passivity and finite gain stability theorem pro-
vides sufficient conditions for closed-loop stability. The the-
orem does not address how to design an optimal controller for a
specific plant. The traditional Hy formulation yields an optimal
controller given certain weighting matrices on the states, con-
trol, disturbances, and noise. In theory, a Hs controller should
work exceptionally well in any situation, but in practice un-
modeled plant dynamics and excessive noise often lead to poor
closed-loop system characteristics, and in some cases an un-
stable closed loop.

Knowing that a H controller should yield a closed-loop with
an optimal system response, we seek a controller that mimics
the Hy solution as closely as possible, but simultaneously sat-
isfies the hybrid passivity/finite gain stability theorem in order
to provide robustness. To find such a controller, we will pose a
numerical optimization problem. Although the plant we wish to
eventually control is SISO, for generality we will pose our nu-
merical optimization problem in a MIMO context.

To properly pose our numerical optimization problem, let us
review the traditional H» formulation [24]. The nominal system
(i.e., one which ignores sensors, actuators, etc., which induce
passivity violations) to be controlled is

x=Ax+B;w+ Bsu
zZ = 01X + D1211
y = Cox + Dy1w

where x € R™ is the system state, u € R™» is the control input,
y € R"v is the measurement, z € R”- is the regulated output,
the disturbances/noise are w = [dT v']T € R™~, and all ma-
trices are dimensioned appropriately. The following is assumed:

1) (A,B;) is controllable and (C1, A) is observable;

2) (A,B,) is controllable and (Cs, A) is observable;

3) DI,C; = 0and D],Dy5 > 0;

4) Dy;B] = 0 and Dy; DI, > 0.
The Ho optimal controller takes the following form:

Al B
i - - =
Xe = (A_B2Kc_KeC2) X: + Ke Yy
-u = K, x.
~~
Ct

c

& —u(s) = G*(s)y(s) = Ci(s1 — A%) 'Biy(s) (12)
where K, is the optimal feedback gain matrix and K. is the
optimal observer gain matrix.

Now let us move on to formulating our numerical optimiza-
tion problem. Consider a plant that is nominally passive, al-
though passivity will be destroyed via sensors, actuators, etc.,
rendering the true plant hybrid. Estimated values of the critical
frequency, w., and the high frequency gain, -1, associated with

the hybrid plant are assumed available (via approximate mod-
eling, for example), for the true passivity violation is never fully
known. To be conservative we assume 6; = 0 and k; ~ oo.
Assuming §; = 0 is reasonable because the nominal plant to
be controlled is passive/positive real. Assuming k1 & o0 is rea-
sonable because, again, the nominal plant is passive, but also the
system to be controlled most likely has finite gain, but it is dif-
ficult to characterize (such as in the context of flexible manipu-
lator control). Therefore, a conservative assumption is K1 /% co.

Given our assumptions and an estimated passivity violation,
for the closed-loop to be stable the controller Go(s) must sat-
isfy 62 > 0, ko < 00, and y1y2 < 1. A Hs design provides the
controller G%(s). This controller will not necessarily satisfy the
hybrid requirements (it may by chance, however), but will per-
form well in simulation; it is optimal but not generally robust.

Let W(s) be a filter, Ga,(s) = Ga(s)W(s), and
G3,,(s) = G3(s)W(s), where

Gate) = | 5 |
%@=éﬁ T} (13)
pa

The matrices A and B depend on both the controller and filter
state-space matrices
< A* B*C, - | B*D,,
S CrS
Notice that the only difference between the Ho controller,
G3(s), and the hybrid controller, Ga(s), to be optimally
designed is the matrix C. Let
A | B
5= |60
= G35, (5) = Gau(s)
= [G3(s) — Ga(s)]W(s)
which represents the filtered difference between the two con-

trollers.
Consider the following objective function [25]:

ﬂ@:%/m

— 00

tr Hjw)H' (—jw)dw.

Our objective function minimizes the filtered difference be-
tween G3 ,(s) and Go ., (s) over all frequencies. The filter
adds flexibility into the design of Ga(s). Letting W(s) be
lowpass allows G3(s) and Go(s) to differ at high frequency,
while letting W (s) = 1 ensures Ga(s) is as close to G3(s) as
possible over all frequencies. The above objective function can
be written as

J(C) = tr(C — C*TL(C - C¥)
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where L is the upper n x n part of the matrix L which is the
solution of the Lyapunov equation LA + ATL = —-BB".Ina
SISO context 7 (C) = (C—C*)TL(C— C*) because C, C* €
R Ixn .

We are now poised to state our numerical optimization

problem.
Design Variables: The elements of C.
Constraints: Go(s) must satisfy d > 0, ko < o0, and
my2 < L.
Objective Function: Minimize J(C) =
C*)TL(C - C*).

It is worth noting that we have chosen the above parameteri-
zation because it is simple; the SISO form of the objective func-
tion 7(C) = (C — C*)TL(C — C*) has a quadratic form ideal
for numerical optimization.

The numerical algorithm employed to solve our optimization
problem will be a sequential quadratic programming (SQP) al-
gorithm where constraints are enforced via Lagrange multipliers
and derivative information is acquired via finite differencing
[26]. A SQP that employs finite differencing is used because it
is simple to setup the optimization problem; only the objective
function and the constraints must be provided to the optimizer.
In particular, the optimization software we will use to solve our
problem is fmincon within MATLAB’s optimization toolbox.

Before continuing, some comments on our controller design
and synthesis method are in order. The way we go about de-
signing a hybrid controller involves two approximations. First,
it would be best if we could somehow synthesize a controller by
directly minimizing the closed-loop H2 norm subject to a set
of constraints which ensure the controller is hybrid. Unfortu-
nately, doing so is rather intractable; instead we are minimizing
the difference (in an Hy sense) between our hybrid controller
and an unconstrained Hs controller. This is our first approxi-
mation which is done so that our problem (that is, synthesizing
a hybrid controller that is close to optimal) is tractable. Second,
we parameterize our hybrid controller in terms of feedback gain
matrix C; the dynamics matrix and input matrix of Go(s) are
taken from the H3 controller G3(s) [i.e., both Ga(s) and G5(s)
use A* and B*; see (13)]. This is our second approximation
which leads to a tractable optimization problem easily solved
by a numerical solver such as a SQP algorithm. To summarize,
our controller design and synthesis procedure employs two ap-
proximations which leads to an optimization problem that can
be easily solved.

tr(C —

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A. Experimental Apparatus

The theoretical developments discussed in the previous sec-
tions will be tested on a experimental apparatus, specifically, the
single-link flexible manipulator shown in Fig. 2. This test-bed is
manufactured by Quanser Consulting Inc. [27], and is in fact a
two-link apparatus. We have removed the second link thus cre-
ating a single-link test bed. The motor and gearbox usually used
to move the second link remain affixed to the end of the first
link thus acting as a large payload. When we say large, we are
referring to the fact the payload is much more massive than the
slender flexible link.

. DC motor and harmonic drive.
Strain gauge assembly.

Slender, flexible link.

Large payload.

Fig. 2. Single-link flexible robot experiment manufactured by Quanser Con-
sulting Inc.

The flexible link is made of steel, is 210.00 mm long, 1.27 mm
thick, and 76.20 mm high. The payload mass is 0.6 kg, while
the hub inertia (including the gearbox) is 6.4 x 1072 kg-m?.
The flexible links first natural frequency is 19.5 rad/s. Affixed
to the base of the link is a strain gauge, while a digital encoder is
mounted to the output shaft of the motor. The encoder provides
a measurement of 6, and the strain gauge and encoder together
can be used to calculate the true tip position, p. Thus, as men-
tioned in Section II-B, p,, can be calculated via (4) and propor-
tional control can be implemented in a straightforward manner.
In practice, the proportional control gain is set to K, = 20 N/m.
Note that 6 and p are not directly measured, and as mentioned
in Section II-B, p,, will be acquired by filtering p,,(s) using the
derivative filter f(s) shown in (6), where w; = 45 rad/s and
(r = 1.15. Readers interested in other specific details of the ap-
paratus are referred to [27].

Guided by the theoretical developments of [14] i was found
to be approximately 0.4. However, [14] only provides an esti-
mate of y; in practice ;. = 0.6 is used which satisfies 0 < p <
1 and, after experimental testing, was found to provide better
closed-loop performance.

B. PFassivity Violation Approximation

In order to design and implement a hybrid controller we must
estimate various parameters associated with the hybrid pas-
sivity/finite gain stability theorem such as the critical frequency
w, and 1. Recall from Section IV that 6, = 0 and k1 ~ oo. Itis
reasonable to assume §; = 0 because the ideal plant is passive,
but also because at the point passivity is violated 61 = 0 by
definition. With respect to x1, the flexible system will have
some natural damping (both rigid body and modal damping),
therefore r is realistically large, but not infinite. We assume
so mainly because it is difficult to estimate the damping of the
system, and hence estimate k.

To estimate w. and ; we will consider our ideal plant
and the affect of f(s), as discussed in Section II-B. Re-
call from Section II-B that g,(s) = pu(s)/u(s) is the
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Fig. 3. Frequency response of ideal and perturbed plant. The ideal plant in-
cludes a pure derivative operator s, while the perturbed plant includes the deriva-
tive filter f(s).

plant compensated with proportional control. As such,
91(s) = sgp(s) = pu(s)/u(s) represents the ideal pas-
sive/positive real plant, while g1 (s) = f(s)gp(s) = y1(s)/u(s)
is the perturbed plant that uses the derivative filter f(s) to
estimate p,,. Both gi(s) and g1 (s) are shown in Fig. 3; clearly
the ideal plant g3 (s) is positive real (i.e., has phase bounded by
+90°). The system g1 () is positive real up until approximately
8.25 rad/s. Above this frequency gi(s) has finite gain, but
does not behave passively. The system g1 (s) is clearly hybrid
possessing a passive region below 8.25 rad/s, and a non-passive
but finite gain region above 8.25 rad/s.

Given the assumed frequency response of g;(s) in Fig. 3, w.
and ; of g1(s) are chosen to be 8.25 rad/s and 0.85 m/(N - s).
It should be stressed that we can only estimate w. and y;; given
our original plant model and an idea of how the sensors behave,
we are estimating the value of w.. In turn, we are estimating
the range where the plant behaves passively, and above such
range we are confident the plant has finite gain, but again, we
are estimating the gain v; as well.

C. Controller Optimization Results

The numerical optimization formulation of Section I'V will be
used to design a hybrid controller for the single-link manipulator
under consideration. The nominal plant used as the basis for
optimization is g (s) (i.e., the “perfect” plant augmented with
proportional control). The weights D{,D15 = 1 x 1072 and
Dy DI, = 1 x 107 are used for controller synthesis. Recall
the use of the transfer function W (s) within the general MIMO
optimization formulation; in the SISO context this filter is just
the transfer function w(s), which we will specify to be a fourth
order lowpass Butterworth transfer function with a bandwidth
of w, = 100 rad/s. By choosing this bandwidth the optimization
algorithm neglects differences in the magnitude responses of the
‘Ho controller and the hybrid controller being optimized above
w,. We do this because we expect the hybrid controller to roll-off
owing to the high frequency gain constraint y;7y2 < 1. At the
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Fig.4. Frequency response of > controller and hybrid passive/finite gain con-
troller.

same time, we desire our hybrid controller to perform well at
low frequency, and should mimic the Hy controller as closely
as possible.

During optimization, 2, k2, and 5 can be calculated in order
to enforce the required optimization constraints. Specifically,
for a SISO controller ga(s) 62 = inf_,, <w<w. Re{g2(jw)},
K2 = SUP_y, cuew, |92(jw)l, and y2 = sup,>,, [92(jw)] as
presented in Section III-B.

The frequency response of the numerically optimized hybrid
controller, g»(s), as well as the traditional H5 controller, g3(s),
used within the optimization formulation are shown in Fig. 4.
The gain of the go(s) is less than the gain of g3(s) over all
frequencies. Because y1y2 < 1 must be satisfied above w,, the
gain of g»(s) is reduced over all frequencies (including DC).
Notice that at approximately 19.6 and 66.0 rad/s the magnitude
of the Hs controller increases. The hybrid controller also has a
slight increase in gain at these two frequencies. Similarly, at 19.6
rad/s the phase of g3 (s) dips below —135°, and g»(s) attempts
to mimic the phase response by dipping to —65°. Clearly the
hybrid controller is attempting to mimic the Ho controller as
best it can while satisfying a low frequency phase constraint and
high frequency gain constraint.

Referring to Fig. 3, notice the flexible links lower two modes
are excited at approximately 19.6 and 66.0 rad/s. The gain in-
crease in both g»(s) and g3(s) at 19.6 and 66.0 rad/s can be
attributed to damping these two modes.

Consider the open-loop frequency response of gf(s) and
g5(s), as well as g§(s) and go(s) shown in Fig. 5. Notice that
the overall shape of the two frequency responses is similar.
Because the hybrid controller g»(s) was designed to mimic the
‘H> controller g3(s), it is logical that the open-loop frequency
response g7 (s)g2(s) mimics the open-loop frequency response
of g7(s)g3(s). When controlled by the H2 controller g3(jw),
the ideal system can tolerate a gain decrease of 5.1 dB (at 25.0
rad/s) before instability, while the phase margin is 49.6° (at 131
rad/s). When the hybrid controller g»(jw) is used to control
g7 (jw), the system is significantly more robust; the gain margin
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Fig. 5. Frequency response of open-loop systems g;(jw)gs(jw) and
g7 (jw)ga(jw).

is infinite, while the phase margin is 86.9° (at 8.16 rad/s). The
gain margin is infinite because, by chance (that is to say, not
by design on our part), the optimal hybrid controller is actually
SPR over all frequencies, not just at low frequency. It is well
known the gain margin associated with a positive real plant
being controlled by a SPR controller is infinite.

Now let’s investigate how the robustness properties of the
system change (in terms of gain margin and phase margin)
when g3(s) and g2(s) are used to control g1(s), the plant that
uses f(s) to acquire rate information. Interestingly, when the
"Ho controller g3(s) is used to control g (s), the closed-loop is
unstable. As such, plotting the open-loop frequency response
91(jw)g5(jw) is meaningless, as is stating gain and phase
margins. When g»(s) is used to control g1(s) the closed-loop
system is stable (as we would expect), but the gain and phase
margins are quite good as well. The open-loop frequency
response g1 (s)g2(s) is shown in Fig. 6. The gain margin is
14.3 dB (¢g4m = 66.0 rad/s) while the phase margin is 64.3°
(¢pm = 8.1 rad/s). These margins indicate the closed-loop
system is quite robust in that the system can tolerate additional
perturbations before instability ensues. Compared to the perfect
plant being controlled by g»(s), although the gain and phase
margins are deteriorated when f(s) is present, they have not
been destroyed all together.

D. Experimental Results

The controllers go(s) and g5(s) depicted in Fig. 4 have been
used to control the single-link flexible manipulator apparatus
depicted in Fig. 2. The manipulator is to follow a desired trajec-
tory, pg = Jgbg, starting at p, = Jyb,, moving to p, = Jyb,
then moving back to p,. Specifically, 8, = —n/4 rad, while
6, = /4 rad. The desired trajectory between set points is

= [m (5)3_15 (%)16(%)5] 0 — 6 + 6,

where t¢ is 2 s, f¢ is the final angular position, and 6; is the
initial angular position. Between maneuvers there is a 2 s dwell.
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Fig. 6. Frequency response of open-loop system g1 (jw)g2(jw).
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Fig. 7. System response: tip position and tip rate.

Fig. 7 shows the system response of the manipulator as con-
trolled by the hybrid controller and Hs controller, while Fig. 8
shows the system response error where e = p — pg. The rms
error is shown in Table I; the hybrid control outperforms the tra-
ditional Hs2 controller. In Fig. 7 one can see, especially around 4
s, that the H controller does not suppress the tip-rate as quickly
as the hybrid controller does. The hybrid controller is a better
rate controller. With respect to tip position errors, the system
controlled by g5 (s) never reaches a steady-state tip position
error of zero, as shown in the tip position plot of Fig. 7 and
the tip position error plot of Fig. 8. This can be attributed to
the fact that the gearbox stiction (i.e., static friction) is not per-
fectly compensated, and there is no integral term (with respect to
the p-tip position) in the feedback control loop that would force
zero steady-state tip position error. The system controlled by
92(s) has basically zero steady-state tip position error because
both the rate and position tracking are quite good as the manipu-
lator slews to and from each set-point, and hence the error upon
completion of the maneuver is very small.
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Fig. 8. System response error: tip position error and tip rate error.

TABLE I
SYSTEM RESPONSE RMS ERROR

€rms (m) ] érms (m/ﬁ)
Hybrid Control | 2.664 x 1073 | 2.258 x 1072
Hy Control 13.058 x 10~3 | 10.7074 x 102

The hybrid controller performs well for a variety of reasons.
Recall that the hybrid controller is optimally designed assuming
an accurate plant model within a low frequency range (i.e., w €
(—we, we)). Therefore, the hybrid controller approximates the
optimal H2 controller as best it can at low frequency while satis-
fying the hybrid passivity/finite gain stability requirements. Par-
ticularly, the hybrid controller has higher gain at low frequency,
gain increases at certain frequencies (i.e., 19.6 and 66.0 rad/s),
and a phase response that tries to approximates the Hs solution.
However, above w., where passivity has been violated and it is
assumed the nominal plant model is not representative of the
true system, the controller rolls-off, essentially ignoring high
frequency information contained in the feedback measurement.
Additionally, the high frequency gain constraint forces the con-
troller to have gain that is less than the /5 controller in the pas-
sive band. This rejection of high frequency data, and noise, but
retention of “good” low frequency data yields the performance
observed.

On the other hand, the Hs controller assumes the nominal
plant is accurate over all frequencies, including the region where
passivity has been violated. The gain of the Hy controller is
(relatively) high above w., where the nominal plant model does
not accurately represent the true plant. Additionally, the gain
profile of the H5 controller does not reject high frequency noise,
which is amplified, as shown in the error signals of Fig. 8.

It is interesting to see that although that closed-loop involving
g1(s) (the plant with f(s)) and g3(s) is theoretically unstable,
the Ho controller stabilizes the physical manipulator test-bed.
This fact highlights the reality that our plant and derivative filter
model representing g1 (s) do not capture the true dynamics of
the system.

E. Attempted Modifications to the Controller Optimization
Scheme

It is unfortunate that the optimal hybrid controller g5(s) has
gain that is less than that of g5(s) at low frequency (see Fig. 4).
It would be ideal if the low frequency gain of g»(s) was closer to
that of g3 (s), thus realizing better performance. An attempt was
made to do so; within the optimization formulation another con-
straint was added in which the DC gain of ¢»(s) had to be greater
than or equal to the DC gain of g3(s), i.e., |92(j0)| > |g5(50)|-
It was found that this constraint severely conflicted with the
constraint y;y2 < 1, and as such the optimization procedure
could not converge (i.e., no solution was found). The constraint
lg2(j0)| > |g5(j0)| pushes the low frequency gain of g2(s) up,
while the constraint 412 < 1 pulls down the gain of g»(s)
around and above w,.. The controller cannot satisfy |g2(j0)| >
|g5(50)], roll-off fast enough to satisfy 172 < 1, and satisfy
the required low frequency phase constraint 2 > 0. However,
if w, were much larger (e.g., 100 or 1000 rad/s), then including
lg2(50)| > |g5(70)| may be tolerable because g»(s) would not
have to roll-off as fast in the low frequency passive/positive real
frequency band.

Picking different w, values during the optimization process
was also investigated. Recall that w, is the frequency where
w(s) rolls off. For example, when w, is set to 30 rad/s, the opti-
mization scheme converges, however, it was found the resultant
controller did not perform as well g»(s), the controller shown in
Fig. 4 which was optimized using w, = 100 rad/s. The reason
is related to having the controller suppress the second vibra-
tion mode of the link. The Hy controller gain is high at 66.0
rad/s, and hence g3 (s) suppresses the second vibration mode of
the link. When the cutoff of w(s) is set to 100 rad/s, the hy-
brid controller is forced to mimic the Hs controller (or, said
another way, penalized if it does not mimic Hs controller), and
hence the hybrid controller tries to suppress the vibration mode
at 66.0 rad/s just as the Hs controller does. However, when the
cutoff of w(s) is set to 30 rad/s the hybrid controller synthesized
during optimization is not penalized for not mimicking the the
‘H controller above 30 rad/s; the resultant hybrid controller es-
sentially ignores the vibration mode at 66.0 rad/s that should be
suppressed, which was found to lead to a decrease in closed-loop
performance.

VI. CLOSING REMARKS

In this paper we considered the design and optimization of
a hybrid passivity/finite gain controller to control a single-link
flexible manipulator which has experienced a passivity viola-
tion. After discussing the single-link flexible manipulator model
and the relevant passive input-output mapping, hybrid systems
theory was reviewed in a LTI, SISO context. We discussed
0, €, and ~y in terms of phase and gain in different frequency
bands. The hybrid passivity/finite gain stability theorem was
also stated, and briefly discussed in terms of its relation to the
traditional passivity and small gain theorems. Next, a numerical
optimization problem was posed whereby a hybrid controller
was designed to mimic a traditional Hy controller subject to
constraints dictated by the hybrid passivity/finite gain stability
theorem. Experimental results confirmed the success of the
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optimal hybrid controller found relative to a traditional H,
controller.

In this paper we have focused on the control of a single-link
system to fully elucidate the hybrid theory and p-tip rate con-
trol in a SISO context. However, we would like to reiterate
that the hybrid theory presented is also applicable to nonlinear
MIMO systems, as discussed in [18]. Future work will consider
joint-based control of a two-link manipulator where joint rates
are acquired via a derivative filter. For n-link flexible robotic
systems, it is well known that the map between joint torques
and joint rates is passive. However, as in this paper, acquiring
rate information via a derivative filter induces a passivity vio-
lation. Similarly, the p-tip theory used in this paper to control
the tip-rate of the single-link manipulator is equally applicable
to n-link manipulators provided the manipulator is carrying a
large payload; this is demonstrated in [13]. Unfortunately, our
two-link experimental apparatus is not designed to carry a mas-
sive payload, thus p-tip theory can not be used, which is why
our future work will focus on joint-based control of a two-link
manipulator.

In addition to more experimental work (i.e., two-link manip-
ulator control), another research area we intend on perusing is
the control of systems that can be described in terms of three re-
gions: a passive region, an intermediate passive and finite gain
region, and a finite gain region where passivity has been vio-
lated. Such an extension would be similar, although not iden-
tical, to the mixed systems frame work presented in [19] and
[20]. Additionally, less conservative means to synthesize hybrid
controllers will be investigated in the future. It is hoped that we
can pose a convex optimization problem where the hybrid con-
troller constraints are enforced using linear matrix inequalities.
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