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Abstract: The problem of finding the optimal 
strictly positive real (SPR) approximation to a 
given stable transfer function is considered. The 
transfer function is further assumed to be strictly 
proper and the SPR approximation is constrained 
to have the same pole structure. The optimisation 
is carried out using the (weighted) H2-norm and 
the problem is reduced to a strictly convex 
quadratic programming problem with linear 
inequality constraints. At the heart of the method 
is a parametrisation for all SPR compensators 
which possess a given denominator polynomial. 
Motivation for the problem stems from the 
robust stability provided by SPR compensation 
for passive plants such as flexible structures with 
collocated sensing and actuation. Numerical 
examples are provided, as well as the 
experimental implementation of an optimal 
approximation to the control of a single-flexible- 
link manipulator. 

1 Introduction 

An important result from input-output stability theory 
is the passivity theorem [l] which states that the feed- 
back interconnection of a passive system and a strictly 
passive one is input-output stable. Restricting our 
attention to causal linear time-invariant (LTI) systems, 
the concepts of passivity and strict passivity are closely 
related to the notions of positive real and strictly posi- 
tive real [2, 31. Specifically, the transfer function of an 
LTI system is positive real if and only if it is passive. 
An SPR system with positive-definite high-frequency 
gain is strictly passive. Of greater interest is the case 
where the SPR system is restricted to be strictly proper. 
In this case, one can show that the feedback intercon- 
nection of a passive subsystem (linear or not) and a 
strictly proper SPR one is always closed-loop stable. 
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These observations are of paramount importance in 
applications where the plant under control is known to 
be passive, but where there exists large uncertainty in 
the actual model, such as in the control of flexible 
manipulators [4] and large space structures [5 ] .  In these 
cases, the passivity theorem guarantees that any SPR 
compensator provides closed-loop stability for any pos- 
sible plant. Motivated by these ideas, a great deal of 
research has focused on the design of feedback loops 
for passive plants using SPR compensators [6-81. A 
possible design procedure begins by obtaining a finite- 
dimensional LTI model of the original, possibly high 
order, nonlinear plant. Then one would design a linear 
controller K(s) subject to the constraint that K(s) is 
SPR. 

The main difficulty with this approach is that the 
SPR condition imposed on the compensator is rather 
difficult to use as a design constraint. An obvious way 
to ensure that the compensator is SPR is to choose a 
lead-lag type control law. However, owing to the com- 
plexity of the plants under consideration, and increased 
demands for performance, optimal techniques are usu- 
ally required. The results which have appeared in the 
literature consider the linear quadratic Gaussian (LQG) 
[7] or H, problems [8] and concentrate on selecting the 
weighting matrices to ensure that the resulting compen- 
sator satisfies the Kalman-Yakubovich lemma (i.e. is 
SPR). Since the design parameters are a priori limited, 
the final properties of the overall design may not be 
guaranteed. Other approaches to the problem have 
considered compensator designs which render the 
closed-loop system positive real [9-111, which provides 
robust stability with respect to additive passive uncer- 
tainties. 

In this paper, a radically new approach is proposed. 
To begin it is assumed that, following any design pro- 
cedure, a stable controller K(s) is obtained. No restric- 
tions are placed on K(s) other than stability. In 
particular, K(s) can be obtained using any optimal con- 
trol technique, such as LQG or H,. An H,-optimal 
SPR approximation K,,(s) to the original compensator 
K(s) is then found. The approximation is further 
assumed to possess the same pole structure as K(s); this 
ensures that the closed-loop properties are close to 
those of the original design. This approach is analo- 
gous to the so-called indirect methods of controller 
reduction [12]. There, a full-order controller is designed 
and then the order is reduced so as to approximate the 
controller and its closed-loop properties. The related 
work [ 131 considered optimal H2-approximation with 
prescribed poles for general stable transfer functions. 
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2 Definitions and problem statement 

The following notation is used: P" is the set of polyno- 
mials of exactly nth degree and H, is the Banach space 
of complex-valued functions of a complex variable that 
are analytic and essentially bounded in the open right 
halfplane (RHP). H, the Banach space of complex- 
valued functions of a complex variable H(s) that are 
analytic in the open RHP and for which the integrals 
J-Z IH(o + jo)I2 do are essentially bounded for all 
o > 0. H2 may also be identified with the Laplace 
transforms H(s) of the time signals h(t) contained in 
L2 = { h  : R+ 4 R@h2(t) dt < m}. The usual noms  on 
H2 and H, are denoted by 11.11, and ll.llm, respectively. 
RH2 is the set of strictly proper, stable, real rational 
functions and RH, is the set of proper, stable, real 
rational functions. L,, is the set of time functions 
whose truncations are square-integrable, i.e. Lze = {x : 
R+ -+ RrTx2(t) dt < a, V T  2 0 }  
Definition 1: Consider a system with input u E Lze and 
output y = Gu E L2e where G: L2e + L2, is a (possibly 
nonlinear) operator. The system G is passive if 
Jzy( t )u( t )  dt 2 0, V u  E L2e, V T  2 0. 
Definition 2: A function of a complex variable G(s) is 
positive real if: 
(i) G(s) is analytic in the open RHP; 
(ii) G(s) is real for real s, and 
(iii) Re[G(s)] 2 0 when Re[s] > 0. 
We say that G(s) is strictly positive real (SPR) if G(s-e) 
is positive real for some E > 0. It is known that an LTI 
system G is passive if and only if its transfer function 
G(s) is positive real. In the LTI case, we do not distin- 
guish G(s) from its corresponding convolution operator 
G.  
Definition 3: Let H(s) E RH,. Then H(s) is weak 
strictly positive real (weak SPR) if 

Yw E [0, CO), Re[H( jw)]  > 0 
and it is strong SPR, or simply SPR, if in addition 

w+cc lim w2Re[H(jw)]  > 0 (1) 
V" will denote the set of strictly positive real transfer 
functions contained in RH2 with denominator in P". 

y,(tl qg---& U p 1  

Fig. 1 Feedback system 

Now consider the system in Fig. 1 and assume that P 
corresponds to a passive, possibly nonlinear, system. 
P(s) is a positive real transfer function corresponding 
to a finite-dimensional LTI approximation of the plant 
P and A = P-P is the error introduced by the approxi- 
mation. In certain situations, such as modal truncation 
of high order models of flexible structures, A corre- 
sponds to the truncated modes and its transfer function 
will be positive real. In these cases, selecting K(s) to 
make the closed-loop system P(s) { ~+P(X)K(S)} -~  SPR 
guarantees closed-loop stability for all positive real A 
[9-111. However, if the original system P is passive but 
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nonlinear, then A is typically not passive. Hence, mak- 
ing the nominal closed-loop system SPR will not pro- 
vide robust stability in this case. 

In general, we advocate making K(s) SPR according 
to the following procedure. Let K(s) = c(s)/a(s) be a 
stabilising compensator for P(s) which has been opti- 
mised with respect to the performance of P(s). 
Although K(s) will stabilise P(s) by design, there is no 
such guarantee that it will stabilise the nonlinear sys- 
tem P = P + A. However, on the basis of the passivity 
theorem, for an SPR controller K,,(s), stability of the 
nonlinear system will also be assured. See, for example, 

Define the sensitivity functions S(s) and Sspr(s) and 
the complementary sensitivity functions T(s) and T,,(s) 
as 

1141. 

S ( s )  = (1 + P(s)K(s)} -1  

T ( s )  = P ( s ) K ( s ) { l  + P(s)K(s)} - l  

SS,T(S) = (1 + P ( s ) K s p T ( s ) } - l  

T s p r ( S )  = P ( w s p T ( S ) { 1  + P(s)JGpT(s)}- l  

The aim is to approximate K(s) using an SPR compen- 
sator Kspr(s) such that S and Sspr on the one hand, and 
T and Tspr on the other, are close in the H2 sense. In 
other words, it is not enough to ensure that Kspr resem- 
bles K. It is required to ensure that the closed-loop 
properties of the overall design are maintained when K 
is replaced by Kspr. 

The main problem can now be stated. Given a fre- 
quency-dependent weighting function W(s) E RH, and 
given K(s) = c(s)/a(s) E RH,, where c(s) and a(s) are 
coprime polynomials and a(#) E Pn is Hurwitz, find 
Kspr(s) = c^(s)/a(s) E Vn so as to minimise 

J(4 = l lW(s){K(s)  - K S P T ( S ) l I I ;  
00 

=L/ 2ll -m IW(P){K(J4  - KSPT(P) } l 2dw (2) 

Note that Kspr and K have arbitrarily been allowed to 
share the same denominator polynomial. Simple 
manipulations then show that 

Letting @(s) EARH, denote a weighting function and 
defining W = WSPS E RH, to first order in (K-Kspr), 
we can write 

(T - T s p r )  = -(S - S s p r )  = SS,,SP(K - Kspr)  

l l  W T  - TspT) l l z  = I lWS - Sspr)112 

t IlWK - Kspr)112 

5 I l ~ l l ~ I l K  - Kspr112 

Minimising the difference between K and K,,, subject 
to the same pole structure, places an upper bound on 
the right-hand side of the inequality. If the indicated 
choice for W is used in eqn. 2, the weighted approxi- 
mation Kspr provides (weighted) closed-loop properties 
similar to the original design. Note that this result is 
true regardless of the norm selected in eqn. 2. 

The above problem has a nice circuit theoretic inter- 
pretation. Given an active impedance K(s), we find the 
closest impedance Kspr(s) with the same poles is found 
which can be implemented with passive components. 
'Close' is measured using the energy in the difference of 
their impulse responses [assuming that W(s) = 11. 
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3 Parametrisation of SPR transfer functions 

A =  

In preparation for solving the optimisation problem of 
Section 2, all SPR transfer functions with a given 
denominator polynomial are now parametrised. Given 
a Hurwitz polynomial a(s) E Pn, the set 

(3) 
is sought. In other words, the set of polynomials c (̂s) 
of degree n-1 is sought which makes the strictly proper 
function c^ (s)/a(s) SPR. This problem was previously 
studied by the authors in [15]. 

Begin by writing a(s) = sn+alsn-l+ ... +a,, t ( s )  = 
ilsn-'+ ... + in, and defining 6 = [ tl t2 ... &IT and k 
= [kl  k2 ... k,lT. Further, use the coefficients of a(s) to 
form 

Q = {? (s )  E PnP1IK(s) = ?(s ) /u ( s )  E V n }  

- - 
--a1 -a2 -a3 . ' .  -a, 

0 1 0 0 
0 0 1 . . .  0 

- 0 0 0 . . .  1 -  

f .  

X =  

a1 -1 0 

-a3 a2 -a1 

a5 -a4 a3 

an an-1 an-2 

0 0 --a, 

0 0  0 

E Rnxn 

(4) 
It is now demonstrated that the set Q has a simple par- 
ametrisation in terms of n real numbers. 
Theorem 1: Suppose that a(s) is Hurwitz of degree n 2 
2. Suppose that K(s) is defined by a given polynomial 
i(s) E Pn-l. If K is SPR, then there exist n real values 
k l  k2 ... k ,  such that, 
vx 2 0 k ( 2 )  = JC12n-1 + fk2xn--2 +.  t .  + k,  > 0 (5) 
and such that 

X E = k  
Furthermore, X is nonsingular, and, given k l  ... k, sat- 
isfying eqn. 5, if i(s) is chosen according to eqn. 6, 
then K(s) = i?(s)/a(s) is SPR. 
Proof Suppose that K(s) has the form c(s)/a(s). Follow- 
ing [15], decompose a(s) and c(s) into their even and 
odd parts, denoted by a,, a,, ce, and eo, respectively: 

+ CO - (ce + co)(ae - a,) K ( s )  = ~ - 
ae + a o  (a, + ao)(ae - ao) 

- - {ce(S)ae(s )  - co(s )ao(s )}  + {ae(s )co(s )  - ce ( s )ao ( s ) }  
a;(.) - 

It is immediate that 
(i) u;(jw)-u:(jm) is real and nonnegative, and, since 
a(s) is Hurwitz, a:(jw)-u?(jco) > 0; 
(ii) K(S)  = c,(s)a,(s)-c,(s>a,(s) is an even polynomial 
and hence KO") is real; 
(iii) y(s) = ae(s)co(s)-c,(s)ao(s) is an odd polynomial 
and hence do) is imaginary. It follows that Re[K(jo)] 
= IdJw)/[a,2(jw)-a,2(jw)] and, since the denominator is 
greater than zero, Re[K(jw)] > 0 if and only if > 0. 
(Necessity): It is assumed, without loss of generality, 
that n, the degree of a($), is even. Writing 
~ ( s )  = ( - i ) " - 1 ~ l ~ 2 n - 2 + ( - 1 ) ~ - 2 ~ 2 ~ 2 n - 4  +..-+/c, (7) 
 io) = k ( d )  where k(x) is defined by eqn. 5. Further- 
more, K(s) is SPR, so IdJco) > 0, which implies that V x  
2 0, k(x)  > 0. 
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Then, a realisation of the transfer function W(s)K(s) is 
{A, b, E T ,  0}, where 

A =  [ A bc; ] b =  [?:I and e =  [ E ]  (9) 0 A, 
Writing K,,(s) = i(s)/a(s), the function W(s)K,,(s) can 
be realised in the same way, with 6 replacing c. Using 
a standard result for the calculation of the H2-norm, 
the cost functional in eqn. 2 can be expressed as 

J ( E )  = (c  - t )TL(C - e )  (10) 
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where L represents the upper n x n partition of the 
matrix L which satisfies the Lyapunov equation 

Under the given assumptions, there is a unique 
positive-definite solution L to eqn. 11 and hence L is 
positive-definite. It is important to realise that L can be 
calculated a priori from the given functions a(s) and 
W(S). 

Using theorem I ,  the constraints on the optimisation 
are easily realised. E = X-'k, where the k, satisfy eqn. 5. 
The constraints placed on the k,  by k(x) > 0 can be 
made explicit using the classical Sturm test [17]. This is 
straightforward for given numerical values of k but 
symbolic calculations are very tedious for n > 3 (see 
[17] for n = 4). Numerical enforcement of the 
constraints is proposed. At x = 0, eqn. 5 implies that k, 
> 0 and as x -+ w, it implies that kl > 0. In the 
intermediate regime, eqn. 5 can be imposed at N 
discrete values x, > 0, i = 1 ,..., N .  Defining 

the constraints are invoked as 

(11) AL + LAT = - b b T  

x, = [.a-' 2 ; - 2  ' . '  2, 1IT 

7cl > E  k ,  2 E kTX, > E  Z =  1, ..., N (12) 
where E > 0 is a small prescribed number. In the sequel, 
the N values of x, are prescribed using M decades and 
m logarithmically spaced values per decade. 

Using the parametrisation in eqn. 6, the cost function 
eqn. 10 becomes 

which is a strictly convex (quadratic) function. It is 
subject to the convex (linear) constraints in eqn. 12. 
The resulting quadratic-programming problem has a 
unique global minimum which can be obtained using 
specialised numerical approaches. Here the method of 
Goldfarb and Idnani [18] is used as implemented in 
[19]. This algorithm is well known for its reliability and 
efficiency [20]. To ensure the validity of the solutions, 
an independent approach was taken using the optimisa- 
tion software package Minos 1211. 

By way of example, consider the stable transfer func- 
tion 

J(k) = (C - X-'k)TL(C - X-lk) (13) 

(14) 
( s  + 25)(s + 35)(s + 38)(s  + 180)(s + 185) 
(s + l)(s + 3 ) ( s  + 90)2(s + 95)(s + 100) 

K ( s )  = 

where K('ju) exhibits multiple crossovers of the imagi- 
nary axis and hence is not SPR. First consider the 
unweighted optimisation problem (W = 1). Using the 
numerical procedure in Section 3, the constraint was 
enforced using m logarithmically distributed values of 
x, using M decades beginning with 0.01 (rad/s)2; 
E = The resulting optimal value of J for several 
cases is given in Table 1. 

Table 1 Optimal value of Jfor varying constraints 

Decades Points/decade 11K- K,,I1,2 
( M )  ( m )  ( J )  

Case 

10 

10 

2 

10 

20 

40 

10 

40 

0.497884 

0.498253 

0.50081 1 

0.504091 

0.504122 
0.504163 

0.504091 

0.504163 

The Bode plots showing both the given function and 
the optimal approximation ( M  = 6, m = 40) are given 
in Figs. 2 and 3. The approximations obtained for 
cases 4 8  in Table 1 were graphically indistinguishable 
from one another. Also shown is the case where W(s) = 
H4(s), a fourth order lowpass Butterworth transfer 
function with unity DC gain and corner frequency 
10radIs. The weighted case exhibits better magnitude 
agreement in the passband. Enforcement of the SPR 
constraint is clear for both weightings. For cases 1-3, 
the SPR constraint was not enforced at some frequen- 
cies 

lo- '  I O 0  I O '  1 o2 
w, rad/s 

Fig. 2 
__ m) Numerical example magnitude against frequency 

KP,> W = 1 
Kpr, W =  H4 

-~~~ 

10-2 10-1 100 I O '  102  103 
w, rad/s 

Fig. 3 
~ K(s) 

Numerical example: phase against frequency 

Kpr. W = 1 
Kspr, W =  H4 

_ _ _ _  
. . . . . . . . . . 

5 Controller-design example 

Now consider a controller design for an experimental 
apparatus consisting of a single flexible beam (alumi- 
num, 1000 x 50.8 x 3.1") mounted to the output 
shaft of a direct-drive DC motor, Let e(t) denote the 
motor angle and z(t) be the applied torque. Sensors 
consist of a 51 500 pulseirev encoder and an analogue 
tachometer measurement created using frequency-to- 
voltage conversion of the encoder pulses. The motor 
torque is commanded with a 12-bit digital-analogue 
converter. The controller to be developed below is 
implemented in fixed-point arithmetic using a 16-bit 
80C 196KB microcontroller. 

The transfer function for this single-link robot is 
given by 

The first term is the rigid mode and 1, = 0.1449kg,m2 is 
the moment of inertia of the link plus motor rotor. 
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Subsequent terms represent the unconstrained (pinned- 
free) modes of the link. Good agreement was obtained 
between the measured natural frequencies and those 
obtained from the analytical model (ma) which uses 
clamped-free mode shapes for discretisation of the link 
deflection. The damping ratios 5, were experimentally 
measured by forcing the link at the natural frequencies 
and then observing the free decay. The values of the 
mode slopes 0, represent the joint participation in the 
ath mode shape. The values of the various parameters 
are given in Table 2. Note that P(s) is passive (positive 
real) regardless of the number of modes that are kept 
in eqn. 15. 

Table 2 Properties of the single flexible link 

0 0 0.0 - 4.034 

1 65.35 0.0230 8.465 66.68 
2 162.6 0.0110 13.06 163.95 
3 316.3 0.0103 7.688 316.57 
4 582.2 0.0022 3.841 582.21 

Of ultimate interest is the joint-angle tracking; it is 
proposed that the controller be given by 

where the proportional loop Kp is closed first and then 
Kks) is designed for this closed-loop plant. Since the 
damping ratios are typically poorly known, set them to 
zero for design of the controllers. Hence, the closure of 
the proportional loop merely shifts the vibration fre- 
quencies (including the rigid zero-frequency mode) 
along the imaginary axis. The new vibration frequen- 
cies 13~ are also given in Table 2 for Kp = 2.5Ndrad. 

The closure of the proportional loop does not alter 
the passivity of the plant since this represents the feed- 
back interconnection of positive real transfer functions. 
Let {Ap, bp, c:, 0) denote a realisation of this modified 
plant. The nominal controller Kks) is selected to be 
K ~ ( s )  = k,T[sI - (A, - b,k,T - k,Cp)] T -1 k, (16) 

where the controller/estimator feedback gains k, and k, 
are designed using pole placement. The plant poles are 
placed so as to preserve the undamped natural frequen- 
cies given in Table 3 (aa) but with a damping ratio of 
1.0. The estimator eigenvalues have the same damping 
ratio but are 2.2 times faster. The closed-loop eigenval- 
ues for the nominal plant (rigid plus first two vibration 
modes) and the resulting sixth-order controller are 
given in Table 3. Also shown are the eigenvalues for 
this controller in feedback with the full-order plant 
(rigid mode plus four vibration modes). For this calcu- 
lation, the open-loop damping ratios have been 
included in the plant model. As can be gleaned from 
the Table 3, a spillover instability has occured. 

Now obtain the H2-optimal SPR approximation, 
K,,(s), to the controller, Kks). The Bode diagrams for 
the pole placement controller and its SPR approxima- 
tion [M = 6 starting with 0.01 (rad/s)2, m = 30, E = 

are given in Figs. 3, 4 and 5. The SPR controller 
guarantees stability for any number modes, regardless 
of the values of ma, e,, ca and the proportional feed- 
back gain K4 > 0. The closed-loop eigenvalues using it 
also appear in Table 3 and no instabilities are present. 
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Table 3 Closed-loop eigenvalues 

Nominal plant plus Full plant plus Full plant plus K(s) 
K( s) K,M 
-4.03, -4.03 -3.1 1, -22.1 -1.44-cjl .81 
-66.7, -66.7 -4.64zj2.63 -6.78-cj9.70 
-163.9, -163.9 -29.7zj14.0 -14.4-cj29.5 
-9.28, -9.28 -49.6-cj81.3 -26.5-cj 104.1 
-153.4, -153.4 -87.4ej200.5 -13.1*j311.5 
-377.1, -377.1 0.91ej315.7 -136.9-cj302.0 

-5.61-cj573.6 -6.87-cj573.5 

-594kj547.1 -575.8-cj510.7 

The sensitivity and complementary sensitivity functions 
are given in Figs. 6 and 7 for the nominal controller 
and its approximation. They are calculated assuming 
that the loop transfer function is given by P(s)K(s) = 
s-'P(s)(K,+ sKds)}. As expected, the two sets of curves 
exhibit close agreement. 

I I 

10-1 I O 0  I O '  I O 2  i o 3  I O 4  
w, rad/s 

Fig. 4 
~ nominal 
- _ - -  optimal approximation 

Controller designs: magnitude against frequency 

10-1 I O 0  i o 1  i o 2  i o 3  i o 4  
w, rad/s 

Fig. 5 
~ nominal 
_ _ _ _  optima1 approximation 

Controller designs: phase against frequency 

For experimental implementation of the controller, 
bilinear transformation of Kspy using a sample period of 
0.0025s was used. To avoid numerical problems, the 
resulting discrete compensator K,,,(z) was factored 
into a cascade of three biquadratic transfer functions. 
The proportional controller was not changed by the 
discretisation. It is important to realise that the zero- 
order hold employed in applying the control torque to 
the plant effectively destroys the passivity of the plant 
model. However, the bilinear transformation preserves 
the passivity of the controller. Both the simulated and 
experimental responses to a step command for the joint 

54 1 



angle (0, = z/6) are shown in Fig. 8. No attempt was 
made to compensate for the static friction and hence 
the experimental result exhibits significant steady-state 
error for this value of Kp. However, the stability prop- 
erties predicted using continuous-time arguments are 
readily apparent as is the instability incurred when 
using the nominal controller. 

- e o {  1 1 1 1 1 1  I I I I I I I I  I I i i i i i i i  I I I I I I I I ~  I I I I I I I I  

10-1 100 I O ’  I O 2  i o 3  i o 4  
w, rad/s 

Fig. 6 
_____ nominal 

Controller properties: sensitivity against frequency 

_ _ _ _  optimal approximation 

2 o l  0 

lo-’ I O 0  1 o1 IO* l o 3  i o 4  
w, rad/s 

Fig. 7 Controller propeuties: complementary sensitivity against fie- 
guency - .  
_____ nominal 
_ _ _ _  optimal approximation 

LO 

3 0  

el 
a, 
U 
I 

t: 20  
m 

1 0  

0 
05 1 0  1 5  2 0  2 5  

time, s 
Fig.8 Step uesponse 
_____ simulation (SPR) 
. . . . . . . . . . 
_ _ _ _  experimental (SPR) 
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simulation (non-SPR) 

6 Concluding remarks 

In this paper, a systematic methodology has been 
developed for finding the closest SPR transfer function 
to a given stable transfer function. The approximation 
is assumed to possess the same poles as the given func- 
tion; this is in order to maintain the closed-loop prop- 
erties of a controller design. More importantly, the 
representation of all SPR functions in this case is as a 
linear parametrisation in terms of values ki, i = 1, ..., n. 
By discretising the constraints placed on the k ,  it is 
possible to reduce the constrained H2-optimisation to a 
standard quadratic-programming problem. 

The primary motivation in seeking the SPR approxi- 
mations is the robust stability which they afford for 
passive systems. The example involving an experimen- 
tal flexible structure demonstrated clearly that the SPR 
approximation can be used to remove the spillover phe- 
nomenon from an otherwise good controller design. 
Although the results of the paper are single-inputkin- 
gle-output in character, they can be directly applied to 
decentralised feedback loops. 
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