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Nomenclature

A∕m = area-to-mass ratio of spacecraft, m2∕kg
CR = solar radiation pressure coefficient
Fg = Earth-centered inertial coordinate system

Fo = local-vertical–local-horizontal coordinate system
Fp = perifocal coordinate system

F s = constructed solar sail coordinate system
n̂ = normal vector of solar sail
P⊙ = characteristic solar radiation pressure, N∕m2

u = control vector
x = state vector
α = cone angle of solar sail
δ = clock angle of solar sail
μ3 = gravitational parameter of the third body, m3∕s
μ� = gravitational parameter of the Earth, m3∕s

Subscripts

sat = satellite
� = Earth
⊙ = Sun

I. Introduction

T HE increasing population of space debris in the Geostationary
Equatorial Orbit (GEO) has been alarming in recent years [1].

The latest annual report “Classification of Geosynchronous Objects”
[2] published by the European SpaceAgency (ESA) indicates that the
number of all the known space debris in GEO has been increasing
since 2001, and exceeded 1000 in 2018. At present, debris takes up
more than 70% of the total object amount. To mitigate the severe
situation, the Inter-Agency Space Debris Coordination Committee

(IADC) published the Space Debris Mitigation Guidelines [3] in
2007. According to the guidelines, the GEO protected region should
be protected in respect of space debris generation. The GEO pro-
tected region ranges from 200 km below the GEO altitude
(35,786 km) to 200 km above, and the orbit inclination is restricted
within [−15°,�15°]. End-of-life GEO satellites should be removed
to the GEO graveyard region so as not to interfere with the GEO
protected region. To reach the GEO graveyard region, end-of-life
GEO satellites should be maneuvered to have a minimal altitude
increase of 235 km� �1000 ⋅ CR ⋅ A∕m� (CR and A∕m are the solar
radiation pressure (SRP) coefficient and the area-to-mass ratio of the
spacecraft, respectively), and the terminal orbit eccentricity is
restricted within [0, 0.003].
There exists limited research onGEO debris removal using SRP.

Reference [4] proposed the TugSat concept, in which a 1000 kg
nonfunctional GEO satellite is removed to the GEO graveyard
region using an 800 m2 solar sail. The removal is accomplished by
first raising the orbit semi-major axis by 350 km, then reducing the
eccentricity to zero. Reference [5] derived an analytical removal
solution based on Lyapunov control theory combined with the
calculus of variations. In that work, a particle swarm optimizer
(PSO) is used to optimize user-designed parameters, which then
generates the robust locally time-optimal removal solutions.
Reference [6] applied a global Legendre–Gauss–Radau (LGR)
pseudospectral (PS) method to find theminimum time solar sailing
trajectory for GEO debris removal. In Refs. [4–6], a large area-to-

mass ratio (A∕m) of spacecraft (1 m2∕kg) is required to achieve the
GEO debris removal. References [7,8] proposed analytical GEO
debris removal solutions that required a small A∕m of spacecraft

(about 0.1 m2∕kg). In Ref. [7], a linear optimal hybrid disturbance
accommodation tracking controller was derived to achieve the
GEO debris removal using SRP, and the hybrid removal using
SRP and impulsive thrusts. Reference [8] proposed an “iterations
of linearization” control approach to reduce the terminal state error
in [7], and in themeantime achieved the GEO debris removal using
realistic solar sails. The terminal state error in [7,8] originates from
the inaccuracy of the linearized dynamic systems, whose extent
depends on the selection of the nominal state trajectories. In this
work, a feedback PS method is proposed and applied to further
reduce the terminal state error in [7,8]. In the proposed feedback
PSmethod, the open-loop PSmethod is used to generate a nominal
state trajectory for linearization, and the iterations of the open-
loop PS methods and the linear feedback controllers are applied to
gradually reduce the inaccuracy of the linearized dynamic sys-
tems, thus gradually reducing the terminal state error.
PS methods [9] have been proven very effective in solving non-

linear optimal control problems [10]. The basic idea of this method
is to approximate the state and control in terms of their values using
a basis of Lagrange polynomials at a finite set of collocation points.
Then the time derivative of the state is approximated by differ-
entiating the polynomial approximations of the state and con-
straining the time derivative to match the vector fields generated
by the dynamic system at the collocation points. In this way, optimal
control problems are transcribed into nonlinear programming
(NLP) problems. The three most commonly used sets of collocation
points are the Legendre–Gauss (LG), the Legendre–Gauss–Lobatto
(LGL), and the Legendre–Gauss–Radau (LGR) points, which cor-
respond to the LG [11], LGL [12,13], and LGR [14] PS methods,
respectively. The comparisons of the LG, LGL, and LGR PS
methods can be found in [15,16]. Reference [17] developed a
unified framework to investigate the validity of all PS methods in
solving optimal control problems, and found that 1) for finite-
horizon optimal control problems, the correct PS methods should
be based on the Gauss–Lobatto points, 2) for infinite-horizon
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optimal control problems, Gauss–Radau points form the right

choice for discretization, and 3) if the wrong PS method is chosen

to solve the optimal control problem, suspicion may be cast on the

validity of the solution obtained from the wrong PS method. The

covector mapping theorems (CMTs) [18,19] showed that one may

treat the outcome of the LGL PS method in terms of a rigorous

application of the Pontryagin’s minimum principle.

Within the PS methods, there are two different and widely used

implementation approaches, namely, the local [20] and global [21]

approaches. The global PS methods, where the state and control are

parameterized using global polynomials, are known to provide accu-

rate state and control approximations that converge exponentially for

problems whose solutions are smooth [10]. In the local PS methods,

the time interval is partitioned into several subintervals called seg-

ments, and the state and control are parameterized by reasonably low-

degree polynomials within each segment. Then the segments are

linked via the continuity constraints on the states, and possibly the

control. Comparisons of the local and global PS methods can be

found in [22,23].

There exists limited literature on feedback PSmethods. References

[24,25] proposed a real-time feedback PSmethod using sample-and-

hold (SaH) implementation. In this method, the control in the current

time interval is generated using PSmethodswith the sampled states in

the previous time interval. Reference [26] used receding horizon

control to implement a feedback PS method. The PS method is first

used to solve the optimal control problem in the current horizon [t,
t� T], then the real-time trajectory in [t, t� T] is obtained using the
control given by the PSmethod, and the real-time state at t� T is fed

back as the new initial state for the next horizon [t� T, t� 2T]. The
procedure is repeated to form receding horizon control. The two

existing feedback PS methods, as well as the ordinary open-loop

PSmethods, are based on the assumption that the applied PSmethods

generate the globally optimal solutions for nonlinear optimal control

problems.

For PS methods to generate the globally optimal solutions, an

important condition is that the NLP solvers are able to find the global

minima of the transcribed NLP problems. This is exactly the case

when the transcribed NLP problems are convex. However, for the

nonconvex nonlinear optimal control problems (such as the GEO

debris removal problem in this work) whose transcribed NLP prob-

lems are nonconvex, NLP solversmay converge to local minima, and

this causes the PS methods to generate locally optimal solutions.

When locally optimal solutions are generated, the control objectives

and desired optimization accuracy may not be achieved. This defi-

ciency is serious because PS methods are open-loop methods. An

effectiveway to solve this problem is to find an effective initial guess

that is close to the globally optimal solution and makes the PS

methods converge to it. However, for complex nonconvex nonlinear

optimal control problems, finding an effective initial guess can be

difficult, because the transcribed NLP problems may possess a large

number of local minima, and this leads to an open-loop searching

process that requires a large computational time. To this end, this

Note proposes a feedback PS method in which a linear feedback

controller is developed to stabilize the open-loop PS method when it

converges to a local minimum.

The main contributions of this Note are as follows. First, we

propose a feedback PS method in which a linear feedback controller

is developed to stabilize the open-loop PS method when it converges

to a local minimum. Second, end-of-life GEO satellites are success-

fully removed to the GEO graveyard region using solar sailing in

conjunction with the proposed feedback PS method, and the

terminal state error of the semi-major axis and eccentricity in [7]

are reduced from �13.65 km to �0.09 km, and from �0.66 ⋅ 10−3
to −4.09 ⋅ 10−6, respectively.
This Note is organized as follows. Section II presents the dynamic

model and the system dynamics for the orbital motion of GEO

satellites. Section III describes the proposed feedback PS method,

and it is used to remove end-of-life GEO satellites in Sec. IV. Sec-

tion V draws conclusions.

II. Spacecraft Dynamics and System Modeling

A. Spacecraft Dynamics

This work uses the dynamic model proposed in [7], which is based

on the magnitude comparisons of different accelerations exerted on

GEO satellites, and the drifts of orbital elements due to each pertur-

bative term over the removal period. The total acceleration exerted on

a GEO satellite can be described as �r � �r� � �r3 � �rSRP. Here, �r�
denotes the Earth gravitational acceleration, including the two-body

acceleration and Earth gravitational perturbations, �r3 is the third-

body (the Sun and Moon) gravitational perturbation, and �rSRP
denotes the acceleration due to SRP. Earth’s gravitational potential

is given by ([27] p. 545)

U � μ�
r

−
μ�
r

X∞
l�2

Jl

0
@R�

r

1
Al

Pl�sinϕ�

� μ�
r

X∞
l�2

Xl
m�1

0
@R�

r

1
Al

Pl;m�sinϕ�fCl;m cos�mλsat�

� Sl;m sin�mλsat�g (1)

Here, μ� is the Earth’s gravitational parameter, r themagnitude of the

satellite position vector in the Earth-centered–Earth-fixed (ECEF)

frame, ϕ and λ are the latitude and longitude of satellite, Pl (Pl;m)

denotes the conventional (associated) Legendre polynomials, and Jl
(Cl;m, Sl;m) are the zonal (sectoral and tesseral) harmonics. Earth’s

gravitational acceleration in the ECEF frame can be obtained by

taking the gradient of the total gravitational potential. As in [7], this

work applies the second- and the third-order terms of the Earth’s

gravitational perturbation in the dynamic model.
The equation of motion of a three-body system is given by ([27]

p. 574)

�r�sat � −
μ�r�sat

r3�sat

� μ3

 
rsat3
r3sat3

−
r�3

r3�3

!
(2)

Here μ3 is the gravitational parameter of the third body. By expanding

the term rsat3∕r3sat3 in Eq. (2) using Legendre polynomials, Eq. (2)

becomes

�r�sat�−
μ�r�sat

r3�sat

−μ3

0
@−rsat3�3B�3B2�B3��r�sat

r3�3

1
A (3)

B �
X∞
j�1

Pj�cos ς�
0
@r�sat

r�3

1
Aj

(4)

Here ς is the angle between r�3 and r�sat. Equation (4) can be

partitioned as B � B1 � B2 � B3� · · · . As in [7], this work uses

the following dynamic model for the third-body gravitational accel-

erations. For the Sun, the B1 andB2 terms are applied. For theMoon,

the B1, B2, and B3 terms are considered when A∕m ≥ 0.1 m2∕kg,
whereas the B4 and B5 terms are also taken into consideration

when A∕m ≥ 0.001 m2∕kg.
The acceleration caused by SRP for a perfectly reflecting solar sail

is given by ([28] p. 39)

�rSRP �
�
2P⊙

A

m
cos2α

�
n̂ (5)

Here P⊙ denotes the magnitude of SRP that at 1 AU from the Sun is

equal to 4.56 × 10−6 N∕m2. A∕m is the area-to-mass ratio of space-

craft, and α denotes the cone angle (the pitch angle in the 2D case) of

the solar sail, which is the angle between the sail normal vector n̂ and
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the sun-linevector û. AGEOsatellite experiences eclipse by theEarth

in the summer and winter. This works applies the cylindrical eclipse

shadow model, which is detailed in [7].

B. System Modeling

This work takes the classical orbital elements x � �a; e; i;ω;Ω; θ�
as the state. The classical orbital elements exhibit singularities in

GEO. When the inclination i and eccentricity e reach zero, the

argument of perigee ω and right ascension of ascending node

(RAAN) Ω are not defined. However, the orbital elements that are

to be maneuvered (semi-major axis, eccentricity, and inclination) are

well-defined in GEO. We can set the initial inclination and eccen-

tricity to small numbers (but not zero) to avoid numerical difficulties

in the orbit propagation. The time derivative of the state is given by

([27] p. 636)

d

dt

0
BBBBBBBBBB@
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(6)

Here fr, fθ, fz denote the perturbative forces in the local-vertical–

local-horizontal (LVLH, denoted as Fo) frame.
To express the acceleration due to SRP, a new frame F s is con-

structed. As depicted in Fig. 1a, axis ŝ1 is aligned with the sun-line

vector û (points from the Sun to the satellite), axis ŝ3 lies in the plane
constructed by ŝ1 and ĝ3 and being perpendicular to ŝ1, and axis ŝ2
completes the right-hand rule.
The sail normal vector n̂ in F s is given by ns � �cos α;

sin�α� sin�δ�; sin�α� cos�δ��T , where α (∈ [0°, 90°]) and δ (∈ [0°,

360°]) are the cone angle and clock angle of the sail (Fig. 1b). The

rotation matrix from F s to F g is given by CGS � fg ⋅ fT
s , in which

fg defines the vectrix denoted as fg � �ĝ1; ĝ2; ĝ3�T and similarly

f s � �ŝ1; ŝ2; ŝ3�T . Recall that the acceleration due to SRP for an ideal
solar sail is equal to 2P⊙ ⋅ �A∕m� ⋅ cos2�α� ⋅ n̂; thus the acceleration
due to SRP in the LVLH frame (F o) can be expressed as

2P⊙ ⋅ A∕m ⋅ cos2�α� ⋅ COPCPGCGS ⋅ ns. Here COP � C3�θ�, CPG �
C3�ω�C1�i�C3�Ω� are rotationmatrices from the perifocal coordinate

frame (denoted asFp) toF o and fromFg toFp, respectively. Taking

the disturbances into account, we have

_x �t� ≜ fc�x;u; t� � fSRP�x; u; t� � d�t� (7)

Here fSRP�x;u; t�� 2P⊙ ⋅ �A∕m� ⋅cos2�α� ⋅P�x� ⋅COPCPGCGS ⋅ns�
b�x� defines the time derivative of the state due to SRP, in which ns is

determined by the control angles α and δ. The term d�t� � P�x�t�� ⋅
ad�t� denotes the disturbance, where ad�t� is the perturbative accel-

eration expressed in F o. Note that in this work the disturbance is
approximated and modeled as a function only of time.

III. Feedback Pseudospectral Method

A. General Description

The convergence of the PSmethods depends on the initial guesses,
especially when solving nonconvex nonlinear optimal control prob-
lems. An effective initial guess makes the PS method converge to the
global minimum, whereas an ineffective initial guess causes the PS
method to converge to a local minimum. When the local minima are
reached, the control objectives and the desired optimization accuracy
may not be achieved. For complex nonconvex nonlinear optimal
control problems, finding an effective initial guess can be difficult,
because the transcribedNLPproblemsmay possess a large number of
local minima, and the open-loop searching process could cost a large

computational time. This deficiency is serious because PS methods

are open-loop methods. This work applies feedback approaches to

counter this deficiency.
As shown in Fig. 2, when the initial guess is ineffective, the open-

loop PS method first converges to a local minimum. Then we

linearize the dynamic system along the locally optimal state trajec-

tory and design a linear feedback controller to further reduce the cost

function. The penalty matrices in the linear feedback controller can

be chosen based on trial and error. The real-time control is the

addition of the feedforward control generated by the open-loop PS

method, and the feedback control obtained from the linear feedback

controller.
Furthermore, the real-time state trajectory obtained from the linear

feedback controller deviates from the nominal trajectory alongwhich

the dynamic system is linearized, and this causes error in the linear-

ized dynamic system, which further causes terminal state error. This

work proposes two iterative approaches to gradually reduce the

inaccuracy of the linearized dynamic systems, thus gradually reduc-

ing the terminal state error. In the iterative approach I, the dynamic

system is linearized along the real-time state trajectory generated by

the linear feedback controller in the last iteration, and another linear

feedback controller is applied to further reduce the cost function. The

penalty matrices in the linear feedback controllers can be chosen

based on trial and error. In the iterative approach II, the real-time

control and state trajectory act as the initial guesses for the open-loop

PS method in the next iteration, and another linear feedback con-

troller is applied to stabilize the open-loop PS method. During the

iterations, the bounds on the states can be shrunk in each step of the
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open-loop PS optimization, and the penalty matrices in the linear

feedback controllers can be chosen based on trial and error. Figure 2

illustrates the proposed feedback PS method and is summarized as

follows:
1) The locally optimal state trajectory generated by the open-loop

PS method acts as a nominal trajectory. Then the dynamic system is
linearized along the nominal trajectory.
2) Based on the linearized system in step 1), a linear feedback

controller is developed to further reduce the cost function.
3) The real-time control is the addition of the feedforward control

generated by the open-loop PS method and the feedback control
obtained from the linear feedback controller.
4) In the iterative approach I, the dynamic system is linearized

along the real-time state trajectory generated by the linear feedback
controller in the last iteration, and another linear feedback controller
is applied to further reduce the cost function. The penalty matrices
in the linear feedback controllers can be chosen based on trial
and error.
5) In the iterative approach II, the real-time control and state

trajectory act as the initial guesses for the open-loop PS method in
the next iteration, and another linear feedback controller is applied to
stabilize the open-loop PS method. During the iterations, the bounds
on the states can be shrunk in each step of the open-loop PS opti-
mization, and the penalty matrices in the linear feedback controllers
can be chosen based on trial and error.

6) The solution is generated when the cost value is smaller than the
cost threshold, and it is given by the real-time control and state
trajectory generated by the last iteration.

B. Legendre–Gauss–Lobatto (Open-Loop) Pseudospectral Method

A general continuous optimal control problem is formulated as
follows. Determine the state-control pair {x ∈ RNx , u ∈ RNu} that
minimizes the Bolza form cost functional:

J � ϕ�x�tf�; tf� �
Z

tf

t0

L�x�t�;u�t�; t� dt (8)

subject to

_x�t� � f�x�t�; u�t�; t� (9)

C�x; u; t� � 0 (10)

H�x; u; t� ≤ 0 (11)

E�x�t0�; x�tf�; t0; tf� � 0 (12)

where f :RNx × RNu × R → RNx is the system dynamic constraint;

C:RNx × RNu × R → RNc and H:RNx × RNu × R → RNh are the

equality and inequality constraints, respectively; andE:RNx × RNx ×
R × R → RNe denotes the boundary conditions. The optimal control
problem can be transformed into an NLP problem using the LGL PS
method. The basic idea of this method is to approximate the state and
control using polynomials that interpolate their values at the LGL
points.
The N � 1 LGL points (ti; i � 0; : : : ; N) are distributed over the

interval �−1; 1� and are given by t0 � −1, tN � 1, and tl�1 ≤ l ≤
N − 1� are the zeros of _LN . First the problem is transformed from
t � �t0; tf� into τ � �−1; 1� using

τ � 2t

tf − t0
−
tf � t0
tf − t0

(13)

Then the state and control are approximated using the Lagrange basis
polynomials Li�τ�:

x�τ� �
XN
i�0

XiLi�τ� (14)

u�τ� �
XN
i�0

UiLi�τ� (15)

whereXi andUi are the coordinates of the state and control under the
basis Li�τ�.

Fig. 1 The solar sail frame and control angles.

Fig. 2 General description of the feedback pseudospectral method.
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Differentiating Eq. (14) and evaluating at the k th collocation point
results in

_x�τk� �
XN
i�0

Xi
_Li�τk� �

XN
i�0

DkiXi�τk� (16)

The state derivatives at the collocation points should match the local

vector fields imposed by Eq. (9); thus

DX0:N �
�
tf − t0

2

�
F�X0:N;U0:N; t�τ0:N�� (17)

where the �N � 1� × �N � 1� square matrix D is the Lobatto PS

differentiation matrix.
Now the NLP problem obtained from transcribing the optimal

control problem given by Eqs. (8–12) can be written in the following

manner. Minimize

J � ϕ�XN; tf� � �tf − t0
2

�
XN
i�0

ωiL�Xi;Ui; t�τi�� (18)

subject to

DX0:N −
�
tf − t0

2

�
F�X0:N;U0:N; t�τ0:N�� � 0 (19)

C�X0:N;U0:N; t�τ0:N�� � 0 (20)

H�X0:N;U0:N; t�τ0:N�� ≤ 0 (21)

E�X0;XN; t0; tf� � 0 (22)

where ωi�i � 0; 1; : : : ; N� in Eq. (18) are the LGL weights and are

given as

ωi �
2

N�N � 1�
1

�LN�ti��2
; i � 0; 1; : : : ; N (23)

C. Linear Feedback Controller

Consider the dynamic system in Eq. (7), _x�t� � g�x�t�; u�t�; t�,
where u � �α; δ�T . By linearizing the dynamic system along the

nominal trajectory fxn�t�; un�t�;dn�t�g generated by the open-loop

PS method in Sec. III.B, we have

_x�t� � _xn�t� � � _δx��t� (24)

_xn�t� � g�xn�t�; un�t�; t� (25)

_x�t� � g�xn�t�; un�t�; t� �
∂g
∂x

�xn; un; t�δx�t� �
∂g
∂u

�xn; un; t�δu�t�
(26)

which result in

� _δx��t� � ∂g
∂x

�xn; un; t�|������{z������}
denote× as×A�t�

δx�t� � ∂g
∂u

�xn; un; t�|������{z������}
denote× as×B�t�

δu�t�
(27)

Here δx�t� � x�t� − xn�t� and δu�t� � u�t� − un�t� are deviations

from the nominal trajectory and nominal control input, respectively.

With X ≜ δx and U ≜ δu, Eq. (27) becomes

_X�t� � A�t�X�t� � B�t�U�t� (28)

This is a linear time varying (LTV) system, whereA�t� and B�t� are
modeled along the nominal trajectory fxn�t�; un�t�;dn�t�g.
If the stateX�t� � x�t� − xn�t� in the linearized system (Eq. (28))

tracks the desired trajectory Z�t� defined as xd�t� − xn�t�, then
x�t� � xd�t�, which is the desired situation. Therefore, it turns out
to be a tracking problem ([29] Sec. 6). We seek to minimize the cost
functional

J �X�t�;Z�t�;U�t�� � 1

2
eT�tf�Se�tf� �

Z
tf

t0

�
1

2
eT�t�Qe�t�

� 1

2
UT�t�RU�t�

�
dt (29)

where e�t� � X�t� − Z�t� denotes the tracking error. ThematrixS �
ST ≥ 0 penalizes the terminal tracking error,Q � QT ≥ 0 penalizes
the tracking error, andR � RT > 0 penalizes the control inputs. The
solution of this problem can be obtained from Eq. (51) in [7] by
setting the disturbance term to zero, and it is given by

U	�t� � −R−1BT�t��P�t�X�t� − g�t�� (30)

where P�t� and g�t� can be calculated by integrating the following
equations simultaneously backward:

_P�t� � −Q −AT�t�P�t� − P�t�A�t� � P�t�B�t�R−1BT�t�P�t�
(31)

_g�t� � −QZ�t� − �AT�t� − P�t�B�t�R−1BT�t��g�t� (32)

using the boundary conditions

P�tf� � S (33)

g�tf� � SZ�tf� (34)

D. Real-Time Control

The real-time control is given by

urealtime � ufeedforward � ufeedback (35)

Hereufeedforward is generated by the open-loopPSmethod in Sec. III.B
and ufeedback is obtained from the linear feedback controller in
Sec. III.C and given by Eq. (30).

IV. End-of-Life GEO Satellites Removal

The control objective is to raise the orbit semi-major axis by 305 km
and make the terminal eccentricity smaller than 10−4. In this way, the
terminal perigee will be raised slightly more than 300 km and the
terminal orbitwill be placed in theGEOgraveyard region. To avoid the
singularity of the classical orbital elements, the desired eccentricity of

the terminal orbit is set to be a small but nonzero number (10−4).
The initial position of the satellite in the ECI frame is set to

be [0.0 m, 42,164.8 km, 1.0 m]. The initial time is Jan 1st,
2017, 00:00:00, with the time constants ΔUT�UT1 − UTC� �
0.359485 s and ΔAT�TAI − UTC� � 37.0 s. The terminal time

tf � 350 days. The A∕m of the spacecraft is equal to 0.14 m2∕kg.
The real-time state trajectory is propagated using the fourth-order
Runge–Kutta method (RK4), and the time step is set to be 30 s.

A. Optimization Using the LGL Pseudospectral (Open-Loop) Method

a) Formulation and setup
We seek to minimize

J � �jatf − adj; jetf − edj� ⋅ Sol (36)

subject to

574 J. GUIDANCE, VOL. 45, NO. 3: ENGINEERING NOTES

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

Ju
ly

 2
1,

 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.G

00
56

31
 



_x�t� � g�x�t�; u�t�;d�t��
�42164 − 10 km; 0; 0; 0; 0; 0�T ≤ x ≤

×
h
42164� 350 km; 0.1;

π

180
; 3π; 2π; 700π

i
T

�0; 0�T ≤ u ≤
�
π

2
; 2π

�
T

x�t0� � x0 (37)

Here ad � 42164 km� 305 km � 42469 km and ed � 10−4 are

the desired semi-major axis and eccentricity, respectively. The

dynamic equation is given in Eq. (7). A local LGL PS method is used

to transform the optimal control problem into an NLP problem. The

initial guesses for the states and control are given by the nominal

trajectory in [7]. In the nominal trajectory, the argument of perigee and

RAAN show oscillations in the first 20 days, during which the local

LGL PS method shows poor convergence. Thus in this work, the first

20 days are cut off, and the real-time state at the end of the 20th day acts

as the initial state for the local LGL PS optimization. The resulting

initial guesses for the remaining 330 days are presented in Fig. 3. In the

initial guess, the terminal state error of the semi-major axis and

eccentricity are�26.6954 km and�4.0415 ⋅ 10−4, respectively.
In the initial guess, the cone angle α is equal to 0°when the satellite

moves away from the Sun, and 90°whenmoves toward the Sun. Each

of the 0 and 90° periods lasts about half an orbit (about 12 h for aGEO

satellite). To make the polynomial approximation of the cone angle α
as accurate as possible, the segment boundaries of the local LGL PS

method are chosen to be the first epochs of the 0 and 90° periods. In

this way, each segment in the local LGL PS method corresponds to a

single 0 or 90° period of the cone angle α.
b) Implementation using receding horizon control
The local LGL PS optimization is implemented using receding

horizon control, which is detailed in [26]. The real-time state at the

end of the current horizon acts as the initial state for the local LGL PS

optimization in the next horizon. In this work, the horizon is set to be

one sidereal day. The optimization goal of each horizon day is to
reduce the terminal semi-major axis and eccentricity error in the
initial guess by a portion of 1/330 (80.89 m and 1.22 ⋅ 10−6 for
semi-major axis and eccentricity, respectively). The removal time is
330 days. For each horizon day, the desired semi-major axis

adhor � ��42164.8� 305� ⋅ 103 � 26695.4 − k ⋅ 80.89� m, the

desired eccentricity edhor�1⋅10−4�4.04⋅10−4−k⋅1.22⋅10−6, and
k � 1; 2; : : : ; 330 is the number of the horizon day. For each segment
in the local LGL PS method, 20 collocation points are applied. The

penalty matrix in Eq. (36) is set to be Sol � �10−3; 105�T . The tran-
scribed NLP problem is solved using SNOPT [30], and the major

optimality/feasibility tolerance in SNOPT is set to be 10−5. On each
horizon day, the bounds on the states are set to be a little higher
(lower) than the maximum (minimum) value of the initial guesses.
Figure 4 presents the optimization results of the first horizon day.
The real-time state at the end of the first horizon day acts as the

initial state for the local LGL PS optimization in the second horizon
day.Repeating this process to form receding horizon control, the real-
time control and state trajectory for thewhole removal time (330days)
are presented in Fig. 5. Figures 5e and 5f show the tracking error of
the semi-major axis and eccentricity at the end of each horizon day,
from which we can see that the semi-major axis and eccentricity
tracking error grow with time. This is because the trajectories of the
initial guesses deviate from the real-time state trajectories as the
tracking error accumulates. Using the local LGL PS method, the
terminal state error of the semi-major axis and eccentricity are
reduced from �26.6954 to �11.1413 km, and from

�4.0415 ⋅ 10−4 to�1.6025 ⋅ 10−4, respectively, and the cost is also
reduced from 67.1094 to 27.1663. Themaximal rate of change of the
control angles is about 16 deg per minute.

B. Optimization Using the Feedback PS Method

Now we linearize the dynamic system given in Eq. (7) along the
locally optimal state trajectory generated by the local LGL PS
method, and apply the linear feedback controller developed in
Sec. III.C to further reduce the cost function. The real-time control

Fig. 3 The initial guesses for the states and control angles.
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is given by urealtime � ufeedforward � ufeedback, where ufeedforward is
generated by the open-loop PS method presented in Fig. 5, and
ufeedback is obtained from the linear feedback controller and given
by Eq. (30). The penalty matrices in Eq. (29) are set to be

S � diag�10; 1010; 1; 1; 1; 1�, Q � diag�10; 106; 1; 1; 1; 1�, R�diag

�1014;1014�. The feedback and real-time control, along with the real-
time state trajectory, are presented in Fig. 6. The terminal state error of
the semi-major axis and eccentricity are reduced from �11.1413 to

�7.5692 km, and from �1.6025 ⋅ 10−4 to �5.7399 ⋅ 10−5, respec-
tively, and the cost is reduced from 27.1663 to 13.3091.

The real-time state trajectory deviates from the nominal trajec-

tory along which the dynamic system is linearized, and this causes

error in the LTV system, which further causes terminal state error.

Here we apply two iterative approaches to gradually reduce the

inaccuracy of the LTV systems, thus gradually reducing the termi-

nal state error.

Fig. 5 The real-time states and control angles for the whole removal time (330 days), optimization using the local LGL PS method.

Fig. 4 Optimization using the local LGL PS method on the first horizon day.

Fig. 6 Optimization using the feedback PS method.
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a) Iterative approach I: iterations of linearization

As shown in Fig. 2, we linearize the dynamic system in Eq. (7)

along the real-time trajectory generated by the linear feedback con-

troller in the last iteration, and apply another linear feedback con-

troller to further reduce the terminal state error. The penalty

matrices in the linear feedback controllers are chosen based on trial

and error. In the following set of simulations, the penalty matrices are

set to be S � diag�1; 1011; 1; 1; 1; 1�, Q � diag�1; 106; 1; 1; 1; 1�,
R � diag�5 ⋅ 1014; 5 ⋅ 1014�. Using the third linear feedback control-

ler, the terminal state error of the semi-major axis and eccentricity are

reduced to �2.8390 km and −7.6065 ⋅ 10−6, respectively. As a

result, the cost in Eq. (36) is reduced to 3.5997. The optimization

history is shown in Fig. 7.

b) Iterative approach II: iterative feedback PS method

As shown in Fig. 2, the real-time control and state trajectory act as

the initial guesses for the open-loop PS method in the next iteration,

and another linear feedback controller is applied to stabilize the open-

loop PSmethod. In the iterations, the bounds on the states are shrunk

Fig. 7 History of the terminal state error and cost value for each step of optimization, using the iterations of linearization.

Fig. 8 History of the terminal state error and cost value for each step of optimization, using the iterative feedback PS method.

Table 1 Comparisons between the optimization methods

Optimization method Accuracy Computation cost

1. Global LGR PS method [6] Terminal a error: — ∼432 nodes/day, ∼38; 880 nodes in total
Terminal e error:— Global optimization

Terminal cost: <1 Major optimality/feasibility tolerance: 10−6

2. Linear feedback controller [7] Terminal a error: �13.65 km Linear feedback control ×1
Terminal e error:�0.66 ⋅ 10−3 Time cost: ∼55 min

Terminal cost: 79.65
3. Local LGL PS method Terminal a error: �11.14 km 20 nodes/segment, 60 nodes/day

Terminal e error:�1.60 ⋅ 10−4 Major optimality/feasibility tolerance: 10−5

Terminal cost: 27.16 Time cost: ∼3; 600 min

4. Feedback PS method, iteration I Terminal a error: �2.83 km Local LGL PS optimization ×1
Terminal e error: −7.60 ⋅ 10−6 Linear feedback control ×3

Terminal cost: 3.59 Time cost: ∼3; 765 min

5. Feedback PS method, iteration II Terminal a error: �0.09 km Local LGL PS optimization ×5
Terminal e error: −4.09 ⋅ 10−6 Linear feedback control ×5

Terminal cost: 0.49 Time cost: ∼18; 275 min

The optimization methods 2–5 use an Intel i5-9600 K 3.70 GHz CPU, 48.0 GB RAM desktop for calculation.
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in each step of the open-loop PS optimization, and the penalty
matrices in the linear feedback controllers are chosen based on trial
and error. Using the iterative feedback PS method, the terminal state
error of the semi-major axis and eccentricity are gradually reduced,
and finally to �0.0903 km and −4.0962 ⋅ 10−6, respectively. As a
result, the cost in Eq. (36) is reduced to 0.4999. The optimization
history is shown in Fig. 8.

C. Comparisons

Table 1 shows the comparisons between the control approaches
applied in [6,7], the local LGL PS method, and the feedback PS
method proposed in this work. Compared with the global LGR PS
method applied in [6], the proposed feedback PSmethod requires far
fewer nodes, thus costing far less computational time. By using the
iterations of the open-loop PS methods and the linear feedback
controllers, the proposed feedback PS method greatly improves the
optimization accuracy of the linear feedback controller applied in [7]
and the local LGL PS method. Within the proposed feedback PS
methods, the iterative approach II shows better optimization accu-
racy, but costs much longer computational time.

V. Conclusions

This Note proposes a feedback PS method for solving nonconvex
nonlinear optimal control problems. The feedback is achieved by
linearizing thedynamic systemalong the locally optimal state trajectory
generated by the open-loop PS method, then developing a linear feed-
back controller to stabilize the open-loop PS method. The proposed
feedback PS method is particularly useful when it is difficult to find an
effective initial guess for the open-loop PS method. The proposed
feedback PS method is applied to the removal of end-of-life GEO
satellites to the GEO graveyard region using solar sailing. Simulations
indicate that end-of-life GEO satellites are successfully removed to the
GEOgraveyard regionusing theproposed feedbackPSmethod, and the
terminal state error of the semi-major axis and eccentricity are reduced
to 0.0903 km and −4.0962 ⋅ 10−6, respectively.
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