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Abstract
This paper proposes a hybrid feedback pseudospectral (PS) method for solving hybrid non-convex non-linear optimal control
problems. The hybrid dynamic system is defined as a continuous dynamic system with discontinuities in state, and the
discontinuities are governed by discrete dynamic equations. First, the local Legendre–Gauss–Lobatto (LGL) PS method is
extended to a hybrid LGL PS method which is capable of solving hybrid non-linear optimal control problems. The extension
is accomplished by breaking the state continuity constraints between the segments and governing the dynamics of the LGL
points on segment boundaries using discrete dynamic equations. Then, a hybrid feedback PS method is proposed, in which
a hybrid linear feedback controller is developed to stabilize the open-loop hybrid LGL PS method when it converges to
a local minimum. The proposed hybrid feedback PS method is applied to the removal of Geostationary debris to the GEO
graveyard region using solar radiation pressure (SRP) and impulsive thrusts. Simulations indicate that the GEO debris removal
is achieved using the proposed hybrid feedback PS method. The terminal state error of the semi-major axis and eccentricity
are reduced to +0.08 km and −8.04 · 10−7, respectively, and an amount of 2.73 m/s impulsive thrust is consumed.

Keywords Feedback pseudospectral method · Hybrid optimal control · GEO debris removal · Impulsive thrusts · Solar
radiation pressure

1 Introduction

During the last 60 years, satellites have been continually
launched into the precious but limited Geostationary Earth
Orbit (GEO), and this results in today’s crowded geosyn-
chronous region [1]. The latest annual report of the European
Space Agency (ESA) showed that the number of the space
debris in GEO has overshoot 1000 as of 2018. Among
the GEO objects, 70% of them are space debris. Collision
probability analysis [2,3] shows that the possibility of col-
lisions between space debris and operational satellites in
GEO is over ten thousand times than what has been pre-
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viously believed. For each active GEO satellite, a collision
is expected every 4 years against one debris within the 1 cm
Resident Space Object (RSO) catalog, and every 50 years
against one from the 20 cm RSO catalog. To mitigate this
severe situation, the Space Debris Mitigation Guidelines [4]
were published in 2007 by the Inter-Agency Space Debris
Coordination Committee (IADC). The guidelines defined
the GEO protected region as a set of orbits with inclina-
tion between [−15◦,+15◦], and the altitude within ± 200
km about the GEO altitude (35786 km). According to the
guidelines, the GEO protected region should be protected
against space debris generation. This means that GEO debris
should be removed to the GEO graveyard region. To do this,
a minimal perigee increase of 235 km + (1000 · CR · A/m)

is required. Here, CR is the solar radiation pressure (SRP)
coefficient, and A/m is the area-to-mass ratio (A/m) of the
spacecraft. The terminal orbit eccentricity of the GEO debris
should be confined within [0, 0.003].

The feasibility of removing a three-axis stabilized GEO
satellite into the GEO graveyard region was first demon-
strated in reference [5]. A concept called TugSat was
proposed in reference [6] to remove an inactive GEO satel-
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lite weighted over 1000 kg using a solar sail with an area of
800 m2. Reference [7] proposed a linear control approach
of end-of-life GEO satellites removal using a combination
of solar sails and impulsive thrusts. Although end-of-life
GEO satellites were removed successfully, the solution in
[7] is subjected to a terminal state error. This problem was
addressed by the authors’ subsequent work that proposed a
feedback pseudospectral (PS) method [8]. The same authors
has also proposed a so-called “iterations of linearization”
approach [9] that generates quasi locally optimal solutions
to further reduce the computation cost in [8]. In this paper, a
hybrid feedback PS method is proposed for the GEO debris
removal mission using a combination of SRP and impulsive
thrusts. This work extends the feedback PSmethod proposed
in [8] for the hybrid, non-convex, and non-linear system. The
terminal state error and the total �V of the required impul-
sive thrusts in [7] are significantly reduced using the proposed
control approach.

Pseudospectralmethods [10] have been proven very effec-
tive in solving non-linear optimal control problems [11]. PS
methods approximate the state and control using a basis of
Lagrange polynomials, so the time derivative of the states at
the collocation pointsmatch the local vector field imposed by
the dynamic system, while the states between the collocation
points can be approximated through polynomial interpola-
tion. In thisway, the optimal control problem is converted into
a non-linear programming (NLP) problem regarding only
the collocation points. PS method varies with the colloca-
tion points applied, including the Legendre–Gauss (LG) [12]
points, the Legendre–Gauss–Lobatto (LGL) [13,14] points,
and the Legendre–Gauss–Radau (LGR) [15] points. Com-
parisons of these three methods can be found in [16,17].

The PS methods can be implemented both locally [18]
or globally [19]. The local implementation breaks the time
interval into several subintervals (segments), so the approxi-
mation within each segment can be accomplished with lower
order polynomials. The segments are usually linked through
continuity constraints on the states or control. The global PS
method treats the whole time interval as a single segment,
and it converges exponentially if the problem has a smooth
solution [11].However, the order of the approximation can be
much higher. The local and global PS methods are compared
in references [20,21]. The current forms of the PS methods
cannot solve hybrid optimal control problems, but the local
LGL PS method provides a natural intuition for the solution.
That is, by relaxing the state continuity constraints between
the segments, the discontinuities between the states on seg-
ment boundaries can be viewed as the results of the impulsive
control inputs. This paper follows this intuition and proposes
a hybrid LGL PS method to solve hybrid optimal control
problems.

PS methods are in nature open-loop methods. The liter-
ature on feedback PS methods is limited. An example can

be found in the references [22,23] which used a sample-and-
hold (SaH) implementation that generates the control input
in each time period from the sampled states in the previ-
ous time interval. Reference [24] enforced a feedback PS
method through receding horizon control (RHC), where ter-
minal state solved from the previous horizon is used as the
initial state for the next. The optimal control problem within
each time horizon is solved using the LGL PS method. Both
the two works above and the traditional open-loop PS meth-
ods rely on the assumption that the solution provided by the
PS methods is globally optimal.

Whether the PS methods admit the globally optimal solu-
tion is dependent on the converted NLP problem. The global
optimality of the NLP solution can be guaranteed when the
problem is convex.However, this cannot be generally assured
for non-convex problems.Because the transcribedNLPprob-
lems are usually non-convex when the original optimal
control problems are non-convex (such as the GEO debris
removal studied in this paper), the open-loop PSmethods are
prone to locally optimal solutions. The local optimality is a
serious challenge for the open-loop PS method. A straight-
forward approach to circumvent this challenge is to provide
an appropriate initial guess, i.e., close enough to the global
optimum. However, finding an appropriate initial guess for
the non-convex non-linear optimal control problem is not
easy, since the transcribed NLP problems can contain a large
number of local minima, and the open-loop searching may
require a large amount of computational time. The second
contribution of this paper is a novel concept that drives the
solution out of the local minimum through a linear feedback
controller.

A general linear approach to solve an optimal hybrid
non-linear time-varying problem is to linearize the dynamic
system along a nominal trajectory and then obtain a linear
time-varying (LTV) system based on which the hybrid linear
feedback controllers can be applied. For the hybrid linear
feedback controllers to achieve the control objectives, an
important condition is that the nominal trajectory should not
deviate too far from the desired trajectory. This is because the
real-time trajectory ought to be in the vicinity of the nominal
trajectory, for the purpose that the LTV system obtained from
linearization can validly approximate the non-linear time-
varying dynamic system.

Finding an effective nominal trajectory can be problematic
for some optimal hybrid non-linear time-varying problems,
since there is no general rule to follow and the searching
could have to rely on trial and error. The advantage of the
open-loop hybrid PS method is that, even though the glob-
ally optimal solution is not generated, the locally optimal
trajectory generated by the locally optimal solution provides
a natural nominal trajectory to linearize about. Using the
linearization and the hybrid linear feedback controller, the
optimization accuracy can be further improved based on the
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locally optimal solution. The open-loop hybrid PS method
and the hybrid linear feedback controller make a perfect pair,
since the open-loop hybrid PS method provides a natural
nominal trajectory for linearization, and in turn using the lin-
earization, the hybrid linear feedback controller stabilizes the
open-loop hybrid PS method.

The contributions of this paper are threefold. Firstly, we
extend the local LGL PSmethod to a hybrid LGL PSmethod
by breaking the state continuity constraints between the seg-
ments and governing the dynamics of the LGL points on
segment boundaries using discrete dynamic equations. Sec-
ondly, we propose a hybrid feedback PS method in which
a hybrid linear feedback controller is developed to stabilize
the open-loop hybrid PS method when it converges to a local
minimum. Thirdly, GEO debris are successfully removed to
theGEOgraveyard region using SRP and impulsive thrusts in
conjunction with the proposed hybrid feedback PS method.
The terminal state error of the semi-major axis and eccen-
tricity in reference [7] are reduced from +28.64 km to +0.08
km, and from+7.26 ·10−4 to−8.04 ·10−7, respectively, and
the total�V of the required impulsive thrusts is significantly
reduced from 10.59 m/s to 2.73 m/s.

This paper is organized as follows. Section 2 presents
the dynamic model and the system dynamics for the orbital
motion of GEO satellites. Section 3 elaborates on the pro-
posed hybrid feedback PSmethod, and it is utilized to remove
GEO debris using SRP and impulsive thrusts in Sect. 4. Sec-
tion 5 draws conclusions.

2 Spacecraft dynamics and systemmodeling

2.1 Spacecraft dynamics

This work utilizes the dynamic model proposed in the refer-
ences [7–9], which is based on the magnitude comparisons
of different accelerations exerted on GEO satellites, and the
drifts of the classical orbital elements due to each perturbative
term over the satellites’ removal time. To generate general
GEO debris removal results that are independent of the mass
of GEO satellites, the dynamic model is built upon the accel-
erations rather than the forces exerted on GEO satellites. The
total acceleration exerted on a GEO satellite can be described
as r̈ = r̈⊕ + r̈3+ r̈ SRP . Here, r̈⊕ is the Earth’s gravitational
acceleration, including the two-body gravitational acceler-
ation and the Earth’s gravitational perturbations, r̈3 is the
third-body (the Sun and Moon) gravitational perturbation,
and r̈ SRP denotes the acceleration caused by SRP which can
be controlled by the solar sail control angles.

SRP is caused by the photons emitted by the Sun. For
an ideal solar sail, all the incoming photons from the Sun
are reflected. The acceleration due to SRP is caused by the

reflection of the photons, and it is given as [25]

r̈ SRP =
(
2P�

A

m
cos2 α

)
n̂. (1)

Here, P� is the magnitude of SRP. Around the Earth, P�
at 1 AU (1.496 · 108 km) from the Sun is equal to 4.56 ·
10−6 N/m2. The quantity A/m is the area-to-mass ratio of
the spacecraft. The control angleα (α ∈ [0◦, 90◦]) is the cone
angle (the pitch angle in the 2D case) of the solar sail, which
is the angle between the sail normal vector n̂ and the Sun-line
vector û (Fig. 1b). The eclipse by the Earth is considered in
this work, and it is detailed in references [7–9].

Earth’s gravitational potential is given by [26]

U = μ⊕
r

− μ⊕
r

∞∑
l=2

Jl

(
R⊕
r

)l

Pl(sin φ)

+ μ⊕
r

∞∑
l=2

l∑
m=1

(
R⊕
r

)l

Pl,m(sin φ)

{
Cl,m cos(mλsat ) +Sl,m sin(mλsat )

}
.

(2)

Here, μ⊕ is the Earth’s gravitational parameter, r is the dis-
tance of the satellite from the Earth, φ and λ are the latitude
and longitude of satellite, Pl (Pl,m) denote the conventional
(associated) Legendre polynomials, and Jl (Cl,m , Sl,m) are
the zonal (sectoral and tesseral) harmonics. Earth’s gravita-
tional acceleration in the Earth Centered Earth Fixed (ECEF)
frame can be obtained by taking the gradient of the total grav-
itational potential. As in [7], this work uses the second- and
the third-order terms of the Earth’s gravitational perturbation
in the dynamic model.

The equation of motion of a three-body system is given
by [26]

r̈⊕sat = −μ⊕r⊕sat

r3⊕sat
+ μ3

(
rsat3
r3sat3

− r⊕3

r3⊕3

)
. (3)

Here, μ3 is the third-body’s gravitational parameter. By
expanding the term rsat3

r3sat3
in Eq. (3) using Legendre poly-

nomials, Eq. (3) becomes

r̈⊕sat = −μ⊕r⊕sat

r3⊕sat
− μ3

(
−rsat3(3B + 3B2 + B3) + r⊕sat

r3⊕3

)
,

(4)

where

B =
∞∑
j=1

Pj [cos ς ]
(
r⊕sat

r⊕3

) j

. (5)
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Here, ς is the angle between r⊕3 and r⊕sat . Equation (5)
can be partitioned as B = B1 + B2 + B3 + · · · . As in [7],
this work utilizes the following dynamic model for the third-
body gravitational accelerations. For the Sun, the B1 and B2

terms are applied. For the Moon, the B1, B2 and B3 terms
are applied when A/m ≥ 0.1 m2/kg, while the B4 and B5

terms are also considered when A/m ≥ 0.001 m2/kg.

2.2 Dynamic systemmodeling

Thiswork takes the classical orbital elements x = [a e i ω�θ ]T
as the state. The time derivative of the state is given by [26]

ẋ(t) = P(x) f t + b(x), (6)

where

P(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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√
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, (7)

and

b(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0√

μ⊕
a3

(1+e cos(θ))2√
(1−e2)3
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. (8)

In Eqs. (6)–(8), f t = [ fr , fθ , fz]T are the perturbative accel-
erations expressed in the Local-Vertical Local-Horizontal
(LVLH, denoted as Fo) frame, and μ⊕ is the Earth’s gravi-
tational parameter.

To express the acceleration caused by SRP, a solar sail
frame Fs is constructed. As depicted in Fig. 1 (a), axis ŝ1
is along the direction of the Sun-line vector (which points
from the Sun to the satellite) û, axis ŝ3 lies in the plane
constructed by ŝ1 and ĝ3 (with Fg being the ECI frame) and
being perpendicular to ŝ1. Axis ŝ2 completes the right-hand
rule. In the solar sail frameFs , fromFig. 1 (b), the sail normal
vector n̂ in Fs can be expressed as

n̂s = [cosα, sin(α) sin(δ), sin(α) cos(δ)]T, (9)

where α (∈ [0◦, 90◦]) and δ (∈ [0◦, 360◦]) are the cone
angle and clock angle of the solar sail, respectively. The
rotation matrix from the solar sail frame (Fs) to the Earth
Centered Inertial (ECI) frame (Fg) can be calculated as
CGS = f g · f Ts , in which f g is the vectrix [27] defined
as f g = ( ĝ1, ĝ2, ĝ3)

T, and similarly, f s = (ŝ1, ŝ2, ŝ3)T.
Combining Eq. (1), the acceleration caused by SRP in the
solar sail frame (Fs) is equal to 2P� · (A/m) · cos2(α) · n̂;
thus, the acceleration caused by SRP in the LVLH frame (Fo)
can be expressed as

f SRP (x, u) = 2P� · A/m · cos2(α)

· COP (x)C PG(x)CGS(t) · n̂s .
(10)

Here, COP (x) = C3(θ), C PG(x) = C3(ω)C1(i)C3(�)

are the rotation matrices from the perifocal frame (Fp) to
the LVLH frame (Fo) and from the ECI frame (Fg) to
the perifocal frame (Fp), respectively. Taking the two-body
acceleration and the disturbance accelerations into account,
we have

ẋ(t) = f c(x, u, t) � P(x) · f SRP (x, u) + b(x) + d(t).

(11)

Here, P(x) · f SRP (x, u) is the time derivative of the state
due to SRP, in which the sail normal vector n̂s in f SRP (x, u)

is determined by the solar sail control angles α and δ. The
column b(x) is defined in Eq. (8), and it is the time deriva-
tive of the true anomaly due to the two-body acceleration.
The quantity d(t) = P(x(t)) · ad(t) is the disturbance to the
dynamic system, in which ad(t) is the perturbative accel-
eration expressed in the LVLH frame (Fo). Note that in this
work, the disturbance acceleration is approximated andmod-
eled as a function only of time. This approximation is valid
when the real-time state trajectory is close to the nominal
state trajectory along which the disturbance is modeled.
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Fig. 1 Express SRP in the
constructed frame Fs

(a) The Fs Frame

(b) Cone Angle and Clock Angle in Fs

2.3 Equation of motion under an impulsive thrust

Consider an impulsive thrust applied at time epoch tk

ẋ(t) = P(x)· f SRP (x, u)+b(x)+d(t)+P(x)v(tk)·δD(t−tk). (12)

Here, v(tk) is the thrust vector expressed in the LVLH frame
(Fo). The function δD(t) is the Dirac function defined as
δD(t) = 0 (t 	= 0), δD(t) = +∞ (t = 0) and

∫ +∞
−∞ δD(t) =

1. Note that the first three terms on the right-hand side of
Eq. (12) are continuous in time. By integrating Eq. (12) from
time epoch t−k to t+k , we have

∫ t+k

t−k
ẋ(t)dt =

∫ t+k

t−k
P(x)v(tk) · δD(t − tk)dt, (13)

which results in

x(t+k ) � f d(x(t−k ), v(tk)) = x(t−k ) + P(xt−k
)v(tk). (14)

Here, P(xt−k
) denotes the P(x) matrix at the time epoch tk ,

and v(tk) is the impulsive thrust applied at tk expressed in the
LVLH frame (Fo). In thiswork,we consider the accelerations
(not forces) exerted on the GEO spacecraft. Thus, the unit of
the impulse v(tk) is m/s.

3 Hybrid feedback pseudospectral method

In Sect. 3.1, the local Legendre–Gauss–Lobatto (LGL) PS
method is first extended to a hybrid LGL PS method which
is capable of solving hybrid non-linear optimal control prob-
lems. Sections 3.2, 3.3 and 3.4 elaborate on the proposed
hybrid feedback PS method, in which a hybrid linear feed-
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Fig. 2 General description of the hybrid LGL PS method

back controller is developed to stabilize the open-loop hybrid
LGL PS method when it converges to a local minimum.

3.1 Hybrid Legendre–Gauss–Lobatto
pseudospectral method

Figure 2 generally describes the proposed hybrid LGL PS
method. The basic idea of this method is to approximate the
state and the continuous control using polynomials that inter-
polate their values at the LGL collocation points, and govern
the dynamics of the LGL points on the segment boundaries
using discrete dynamic equations.

A general hybrid optimal control problem is formulated
as follows. Determine the state-control group {x ∈ R

Nx , u ∈
R

Nu , v ∈ R
Nv }, that minimizes the hybrid cost functional

J = φ[x(t f ), t f ] +
M∑
k=1

∫ t−k

t+k−1

L(x(t), u(t), t)dt

+
M−1∑
k=1

M(x(t−k ), v(tk), tk),

(15)

subject to

ẋ(t) = f (x(t), u(t), t), t 	= tk, (16)

x(t+k ) = g(x(t−k ), v(tk), tk), t = tk, (17)

Cc(x, u, t) = 0, (18)

Cd(x(t−k ), v(tk), tk) = 0, t = tk, (19)

Hc(x, u, t) ≤ 0, (20)

Hd(x(t−k ), v(tk), tk) ≤ 0, t = tk, (21)

E(x(t0), x(t f ), t0, t f ) = 0. (22)

Here, t+0 = t0, t
−
M = t f , and tk (k = 1, ..., M − 1) rep-

resents the M − 1 prescribed impulse time epochs. In Eq.
(15), the functions φ, L and M are the terminal, continu-
ous, and discrete cost functions, respectively. The functions

f : RNx × R
Nu × R → R

Nx , g : RNx × R
Nv × R → R

Nx

are the continuous and discrete system dynamic constraints,
respectively. The functions Cc : RNx × R

Nu × R → R
Ncc ,

Hc : RNx ×R
Nu×R → R

Nhc are the continuous equality and
inequality constraints. The functionsCd : RNx ×R

Nv ×R →
R

Ncd , Hd : RNx ×R
Nv ×R → R

Nhd are the discrete equality
and inequality constraints, and E : RNx ×R

Nx ×R×R →
R

Ne represents the boundary conditions. Here, we propose
a hybrid LGL PS method that transforms the general hybrid
optimal control problem given by Eqs. (15)–(22) into anNLP
problem.

First, the original time interval I = [t0, t f ] is divided
into M subintervals Ik (k = 1, ..., M), such that Ik =
[tk−1, tk] and

M⋃
i=1

Ik = I . The boundaries of the subin-

tervals are selected as the M − 1 impulse time epochs
tk (k = 1, ..., M − 1), together with the initial and termi-
nal time t0 and t f . For each subinterval Ik , the time span in
Ik (denoted as t (k), tk−1 ≤ t (k) ≤ tk) is transformed into
τ = [−1, 1] via the affine transformation

τ = 2t (k)

tk − tk−1
− tk + tk−1

tk − tk−1
. (23)

The state and the continuous control in each subinterval Ik are
approximated using a basis of N + 1 Lagrange polynomials
Li (τ ) (i = 0, ..., N ):

x(k)(τ ) =
N∑
i=0

X(k)
i Li (τ ), (24)

u(k)(τ ) =
N∑
i=0

U (k)
i Li (τ ), (25)

where X(k)
i andU (k)

i are the coordinates of the state and con-
tinuous control under the Lagrange polynomial basis Li (τ )

in the subinterval Ik . The LGL collocation points are dis-
tributed over the interval [−1, 1] and are given as t0 = −1,
tN = 1, and tl (1 ≤ l ≤ N − 1) are the zeros of L̇ N . By
differentiating Eq. (24) and evaluating at the j th collocation
point, we have

ẋ(k)(τ j ) =
N∑
i=0

X(k)
i L̇ i (τ j ) =

N∑
i=0

DjiX
(k)
i (τ j ). (26)

The state derivatives at the collocation points should match
the local vector fields imposed by Eq. (16), and the dynamics
of the LGL points on segment boundaries are governed by
the discrete dynamic equation [Eq. (17)], thus

DX(k)
0:N =

(
tk − tk−1

2

)
F(X (k)

0:N ,U (k)
0:N , t (k)(τ 0:N )), (27)
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x(k+1)(τ0) =
N∑
i=0

X(k+1)
i Li (τ0)

= G(X(k)
N , v(k)(t (k)(τN ))), t (k)(τN )). (28)

Here, the (N + 1) × (N + 1) square matrix D is the Lobatto
PS differentiation matrix. The column matrix X(k)

N (k =
1, ..., M − 1), the (N + 1)th column of X(k)

0:N , represents
the coordinate of the state under the basis Li (τ ) before the
kth impulse, and x(k+1)(τ0) is the state after the kth impulse.
Note that the i th column (i = 0, 1, ..., N ) of X(k)

0:N repre-
sents the coordinate of the state under the basis Li (τ ) at the
i th collocation point in the kth subinterval.

Now, the NLP problem obtained from transcribing the
hybrid optimal control problem given in Eqs. (15)–(22) can
be written in the following manner. Minimize

J = φ[X(M)
N , t f ]

+
M∑
k=1

(
tk − tk−1

2

) N∑
i=0

ωiL(X (k)
i ,U (k)

i , t (k)(τi ))

+
M−1∑
k=1

M(X(k)
N , v(k)(t (k)(τN ))), t (k)(τN )),

(29)

subject to

DX(k)
0:N −

(
tk − tk−1

2

)
F(X(k)

0:N ,U (k)
0:N , t (k)(τ 0:N )) = 0,

(30)
N∑
i=0

X(k+1)
i Li (τ0) − G(X(k)

N , v(k)(t (k)(τN ))),

t (k)(τN )) = 0, (31)

Cc(X
(k)
0:N ,U (k)

0:N , t (k)(τ 0:N )) = 0, (32)

Cd(X
(k)
N , v(k)(t (k)(τN ))), t (k)(τN )) = 0, (33)

Hc(X
(k)
0:N ,U (k)

0:N , t (k)(τ 0:N )) ≤ 0, (34)

Hd(X
(k)
N , v(k)(t (k)(τN ))), t (k)(τN )) ≤ 0, (35)

E(X(k)
0 , X (k)

N , t (k)(τ0), t
(k)(τN )) = 0. (36)

For Eqs. (29), (30), (32), (34), and (36), k (k = 1, 2..., M)

denotes the kth subinterval. For Eqs. (31), (33), and (35),
k (k = 1, 2..., M − 1) denotes the kth impulsive. The quan-
tities ωi (i = 0, 1, ..., N ) in Eq. (29) are the LGL weights
and are given as

ωi = 2

N (N + 1)

1

[LN (ti )]2 , i = 0, 1, ..., N . (37)

Fig. 3 General description of the hybrid feedback PS method

3.2 Hybrid feedback pseudospectral method

In the open-loop hybrid LGL PS method, the initial guess
is an important factor. An inappropriate initial guess can
cause the solution to be trapped at a local minimum. Finding
an effective initial guess for the open-loop hybrid LGL PS
method is a challenging problem, especially when solving
complex non-convex non-linear optimal control problems.
This is because when the transcribed NLP problem contains
a large number of local minima, the open-loop search of an
effective initial guess could cost a large computational time.
This deficiency is serious, since PS methods are open-loop
methods.

This paper uses feedback approaches to tackle this prob-
lem. The concept is illustrated in Fig. 3. When the open-loop
hybrid PS method converges to a local minimum, the
dynamic system is linearized along the locally optimal state
trajectory (called the nominal state trajectory) and a hybrid
linear feedback controller is designed. If the open-loop
hybrid PS solution is a locally optimal solution, the cost
function can be further reduced using the hybrid linear feed-
back controller. The real-time control is the addition of the
feedforward control generated by the open-loop hybrid PS
method, and the feedback control obtained from the hybrid
linear feedback controller. The penalty matrices in the hybrid
linear feedback controller need to be chosen subtly and judi-
ciously, so that the desired optimization accuracy can be
achieved. The solution is finalized when the cost function
is within a threshold.

123



44 Aerospace Systems (2023) 6:37–51

3.3 Hybrid linear feedback controller

Consider the continuous dynamic system in Eq. (11), ẋ(t) =
f c(x(t), u(t), t), where u = [α, δ]T. Let {xn(t), un(t),
vn(tk), dn(t)} (k = 1, ..., M − 1) be the locally optimal
state trajectory generated by the open-loop hybrid LGL PS
method. By linearizing the continuous dynamic system along
the locally optimal state trajectory, we have

δ ẋ = ∂ f c
∂x

[xn, un, t]︸ ︷︷ ︸
denote as A(t)

δx(t) + ∂ f c
∂u

[xn, un, t]︸ ︷︷ ︸
denote as B(t)

δu(t).

(38)

Equation (38) is a first-order approximation of the error
dynamics. In Eq. (38), δx(t) ≈ x(t) − xn(t), δu(t) ≈
u(t) − un(t) are deviations from the nominal trajectory and
nominal control input, respectively. Let X(t) � δx(t) be the
state of the linearized dynamic system, and U(t) � δu(t) be
the control of the linearized dynamic system, then Eq. (38)
can be written as

Ẋ(t) = A(t)X(t) + B(t)U(t). (39)

This is a linear time-varying (LTV) dynamic system. The
system matrix A(t) and the control matrix B(t) are modeled
along the nominal trajectory {xn(t), un(t), vn(tk), dn(t)}.
Note that the nominal trajectory is discontinuous due to the
impulses. When discontinuity occurs, xn(t

+
k ) = xn(t

−
k ) +

P(xtk )vn(tk). Combining X(t±k ) = x(t±k )− xn(t
±
k ), the dis-

crete dynamic equation in Eq. (14) becomes

X(t+k ) = X(t−k ) + P(xtk )V (tk). (40)

Here, V (tk) = v(tk) − vn(tk) denotes the deviation of the
real-time impulse v(tk) from the nominal impulse vn(tk) at
the time epoch tk .

If the state X(t) ≈ x(t)− xn(t) in the linearized dynamic
system (Eqs. (39)) is equal to the desired state Z(t) defined
as Z(t) � xd(t) − xn(t), then x(t) ≈ xd(t), which is the
desired situation. Here, x(t) is approximately equal to xd(t),
because the linear state X(t) is a first-order approximation.
This recovers the control objective and gives rise to a hybrid
tracking problem. The goal of this hybrid tracking problem is
to minimize the hybrid cost functional (for completeness, we
rewrite the discrete dynamic system into the complete form
X(t+k ) = CkX(t−k ) + DkV (tk). In this section, Ck = I6,
Dk = P(xtk ))

J (X(t), Z(t),U(t), V (tk)) = 1

2
eT (t f )Se(t f )

+
M∑
k=1

∫ t−k

t+k−1

(
1

2
eT (t)Qe(t) + 1

2
UT (t)RU(t)

)
dt

+
M−1∑
k=1

(
1

2
eT (t−k )Qke(t

−
k ) + 1

2
V T (tk)RkV (tk)

)
,

(41)

where e(t) = X(t)− Z(t) is the tracking error. The matrices
S = ST ≥ 0 penalize the terminal state error, Q = QT ≥ 0,
R = RT > 0 penalize the continuous-time tracking error
and control inputs, and Qk = QT

k ≥ 0, Rk = RT
k > 0

set the discrete-time tracking error and control penalties. The
epochs tk (k = 1, 2..., M−1) represent theM−1 prescribed
time instances when the impulsive thrusts are applied. The
solutions of this hybrid tracking problem can be found in
Eqs. (51) and (57) of reference [7] with the disturbance term
being zero, which are given by

U∗(t) = −R−1BT (t) (G(t)X(t) − g(t)) , (42)

V ∗(tk) = −R−1
k DT

k C
−T
k

(
(G(t−k )

−Qk)X(t−k ) − g(t−k ) + QkZ(tk)
)
, (43)

in which G(t) and g(t) can be calculated by integrating the
following equations simultaneously backward:

Ġ(t) = −Q − AT (t)G(t) − G(t)A(t)

+G(t)B(t)R−1BT (t)G(t), (44)

ġ(t) = −QZ(t) −
(
AT (t)

−G(t)B(t)R−1BT (t)
)
g(t), (45)

using the boundary conditions

G(t f ) = S, (46)

g(t f ) = SZ(t f ). (47)

At the impulse epochs, G(t) and g(t) experience disconti-
nuities, which can be solved by

G(t−k ) = Qk + CT
k (G−1(t+k ) + DkR

−1
k DT

k )−1Ck, (48)

g(t−k ) = CT
k (G−1(t+k )

+DkR
−1
k DT

k )−1G−1(t+k )g(t+k ) + QkZ(tk). (49)

Starting from the terminal condition G(t f ) = S and g(t f ) =
SZ(t f ), G(t) and g(t) are integrated backward using Eqs.
(44) and (45) from t f to t

+
M−1. At t = t+M−1, integration stops,

and G(t−M−1) and g(t−M−1) are calculated using the discrete
dynamics in Eqs. (48) and (49). Then, G(t−M−1) and g(t−M−1)

are used as the new initial condition for integration in the time
period from t−M−1 to t

+
M−2, and so on and so forth.
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3.4 Real-time control

The real-time control is a combination of the feedforward
control and the linear feedback control, i.e., urealtime =
ufeedforward + ufeedback. The feedforward control ufeedforward
is generated by the open-loop hybrid LGLPSmethod in Sect.
3.1, and the feedback control ufeedback is obtained from the
hybrid linear feedback controller discussed in Sect. 3.3 and
given by Eqs. (42) and (43).

4 GEO debris removal

The control objective of removing GEO debris to the GEO
graveyard region contains two aspects. On the one hand, the
semi-major axis of the terminal orbit needs to be raisedby305
km. On the other hand, the eccentricity of the terminal orbit
needs to be smaller than 10−4. Consequently, the terminal
perigee will be raised slightly more than 300 km, thereby it
is within the GEO graveyard region.

In the simulation, the initial position of the satellite is set to
be [0.0m, 42164.8 km, 1.0m] in theECI frame, and the initial
time is set as Jan 1st, 2017, 00:00:00, with the time constants
�UT(UT1 − UTC) = 0.359485 s,�AT(TAI − UTC) = 37.0
s. The removal time is chosen as 350 days; therefore, t f =
350. The time step of the simulation 30 s. The A/m of the
spacecraft is chosen as 0.13 m2/kg.

4.1 Formulation and setup

We seek to minimize

J = (| at f − ad |, | et f − ed |, Vt ) · Sol , (50)

subject to

ẋ(t) = f c(x(t), u(t), t), t 	= tk,

x(t+k ) = f d(x(t−k ), v(tk)), t = tk,

xl ≤ x(t) ≤ xu,

ul ≤ u(t) ≤ uu,

vl(tk) ≤ v(tk) ≤ vu(tk),

x(t0) = x0.

(51)

Here, ad = 42164 km+305 km = 42469 km and ed = 10−4

are the desired semi-major axis and eccentricity, respec-
tively. The quantity Vt is the magnitude of the total impulsive
thrusts. The cost in Eq. (50) is a combination of the termi-
nal cost (i.e., the terminal state error) and the discrete cost
(i.e., the total magnitude of the impulses). The continuous
and discrete dynamic equations are given by Eqs. (11) and
(14), respectively, and tk (k = 1, ..., M − 1) represents the
M − 1 prescribed impulse time epochs. The lower bound of

the state xl = [42164−10 km, 0, 0, 0, 0, 0]T, and the upper
bound xu = [42164+ 350 km, 0.1, π

180 , 3π, 2π, 700π ]T.
The lower bound of the control angles ul = [0, 0]T, and
the upper bound uu = [π

2 , 2π ]T. The initial state x0 is
given by the initial position of the satellite in the ECI frame.
The results in reference [7] show that, when the removal
time is 350 days and the A/m of spacecraft is equal to
0.13 m2/kg, the terminal semi-major axis and eccentricity
are close to the desired values; thus, only small impulses
are required. After some trial and error, the upper bound
magnitude of the impulsive thrusts in each direction is set
to be 0.2 m/s. Thus, vl(tk) = −[0.2, 0.2, 0.2]T m/s,
vu(tk) = [0.2, 0.2, 0.2]T m/s.

The hybrid optimal control problem in Eqs. (51) and (50)
is converted into an NLP problem using the hybrid LGL PS
method proposed in Sect. 3.1. The initial guess is the nominal
trajectory solved in reference [7] excluding the first 20 days.
This is because the argument of perigee andRAAN in the first
20 days exhibit oscillations. The oscillations are caused by
the nature of GEO, since when the orbital initial eccentricity
and inclination are small, the argument of perigee andRAAN
will oscillate around 0◦ (360◦) due to orbital perturbations.
The oscillations are not favorable for polynomial approxima-
tions and will obstruct the convergence of the hybrid LGL
PS method. Thus, in this work, the hybrid LGL PS optimiza-
tion is focused on the last 330 days, and the real-time state
at the end of the 20th day serves as the initial state. This ini-
tial guesses for the states and control are shown in Fig. 4.
The corresponding terminal state error is +3.68 km for the
semi-major axis and+3.54 ·10−4 for the eccentricity, respec-
tively. The resulting terminal perigee is 10.58 km below the
GEO graveyard threshold (42164.5 + 300 = 42464.5 km),
thus impulsive thrusts are applied to assist the GEO debris
removal. The initial guess for the cone angle α is chosen to
be 0◦ (90◦) when the satellite moves away from (toward)
the Sun. Each of the 0◦ and 90◦ periods lasts about half an
orbit (about 12 h for a GEO satellite). To capture this feature
in the hybrid LGL PS method, the segment boundaries are
chosen as the switching points of the cone angle; thus, the
cone angle in each segment is either α = 0◦ or α = 90◦. The
impulsive thrusts are designed to be applied at the segment
boundaries, and the initial guesses for the impulsive thrusts
are zero.

4.1.1 Implementation using receding horizon control

The hybrid LGL PS optimization is implemented through
the receding horizon control described in [24], where the
real-time state of the previous horizon serves as the ini-
tial state of the consecutive horizon. The horizon cho-
sen in this work is one sidereal day. The optimization
goal of each horizon day is to reduce the terminal semi-
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Fig. 4 The initial guesses for
the states and control

(a) Semi-major axis vs time (b) Eccentricity vs time

(c) Inclination vs time (d) Argument of perigee vs time

(e) Right ascension of the ascending
node (RAAN) vs time

(f) True anomaly vs time

(g) Control angles vs time (h) Magnitude of impulsive thrusts vs
time

major axis and eccentricity error in the initial guess by
a portion of 1/330 (0.0112 km and 1.0751 · 10−6 for
semi-major axis and eccentricity, respectively. The removal
time is 330 days). Specifically, at the end of the kth
the horizon day, the desired semi-major axis adhor =
[(42, 164.8 + 305 + 3.6852) − k · 0.0112] km, the desired
eccentricity edhor = 1 · 10−4 + 3.5478 · 10−4 − k · 1.0751 ·
10−6, and k = 1, 2, ..., 330 is the number of horizon day.

4.2 Convergence test of the hybrid LGL PSmethod

In the convergence test, the simulation time is set to be thefirst
30 days of the GEO debris removal problem. For each seg-
ment in the hybrid PS method, 10, 15, 20, 25, 30 collocation
points are applied in different sets of simulations. The penalty
matrix in Eq. (50) is set to be Sol = [1, 109, 1.5 · 108]T. The
transcribed NLP problem is solved using SNOPT [28]. The

Major Optimality and Feasibility Tolerance in SNOPT are
both set to be 10−5.

The unit of the impulse is m/s; thus, we can use �V
to quantify the amount of the impulses. Table 1 and Fig. 5
present the state tracking error (relative to the desired state
on each horizon day adhor and edhor ) and the total�V of the
impulses corresponding to the number of nodes applied per
segment. We can see that as the number of nodes increases,
the state tracking error and the total �V of the impulses
decrease and at last converge to a small value. The positive
error means that the terminal state is larger than the desired
state.

4.3 Optimization using the hybrid LGL PSmethod

In the GEO debris removal problem, the simulation time is
330 days. The number of collocation points chosen is 30
for each segment. The penalty matrix in Eq. (50) is set to
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Table 1 State tracking error and
total �V of the impulses
corresponding to different
number of nodes applied per
segment

Number of nodes a Error (km) e Error (10−7) Total �V (m/s)

10 1.95 −164.50 14.04

15 −1.32 +1.72 7.90

20 0.20 +0.14 0.18

25 0.31 +27.06 0.12

30 −0.01 +0.13 0.10

Fig. 5 State tracking error and
total �V of the impulses
corresponding to different
number of nodes applied per
segment

(a) Semi-major axis tracking error, rel-
ative to the desired value adhor on each
horizon day

(b) Eccentricity tracking error, relative
to the desired value edhor on each horizon
day

(c) Total ΔV of the impulses

be Sol = [1, 109, 5 · 109]T. The NLP solver used is still
SNOPT [28]. Because the goal of the open-loop hybrid PS
optimization is to create a nominal trajectory for lineariza-
tion, the optimization result does not to be accurate. Thus,
the Major Optimality and Feasibility Tolerance for SNOPT
are both set as 10−5 (which are larger than the default values
10−6). In this way, the computation cost of the hybrid PS
method is reduced.

The optimization results are presented in Fig. 6. After the
hybrid LGL PS optimization, the terminal state error of the
semi-major axis is reduced from+3.68 km to+3.53 km,while
the eccentricity is reduced from+3.54·10−4 to+6.30·10−5.
An amount of 2.78 m/s impulsive thrusts are consumed. The
largest impulsive thrust reaches about 0.17 m/s, and occurs
on the 128th horizon day (results shown in Fig. 7). From
Fig. 7, we can see that the impulsive thrust is applied at the
first segment boundary epoch, and it causes a jump in the
semi-major axis error from 133.7 km to 134.0 km, and in
the eccentricity error from 2.21 · 10−3 to 2.22 · 10−3. The
real-time control, semi-major axis, and eccentricity error are
presented in Fig. 8. Themaximal changing rate of the control
angles is about 16 degrees per minute.

It can be seen from Fig. 6 that the solution generated by
the open-loop hybrid LGL PS method is locally optimal.
Because the terminal semi-major axis is 3.53 km larger than

the desired one, and the spare orbit height can be used to
further reduce the orbit eccentricity and the magnitude of the
total impulsive thrusts, thus reducing the cost function. In the
next section, the hybrid linear feedback controller developed
in Sect. 3.3 will be applied to further reduce the terminal
state error and the cost function, thus stabilizing the open-
loop hybrid LGL PS method.

4.4 Optimization using the hybrid feedback
pseudospectral method

In this section, the dynamic system is first linearized along
the locally optimal trajectory generated by the open-loop
hybrid LGL PS method, and then, the hybrid linear feedback
controller designed in Sect. 3.3 is used to stabilize the open-
loop hybrid LGL PS method. The real-time control applied
is a combination of the feedforward and feedback controls,
i.e., urealtime = ufeedforward + ufeedback, where ufeedforward
is the solution of the open-loop hybrid LGL PS method, as
shown in Fig. 6, and ufeedback is the linear feedback control
presented in Eqs. (42) and (43). The control objective is to
reduce the terminal semi-major axis and eccentricity error.
Thus, in the penalty matrix S and Q, we make the first two
parameters relatively larger. We want to focus on the termi-
nal state error; thus, we make the elements in S relatively
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Fig. 6 Real-time control and states, optimization using the hybrid LGL PS method

Fig. 7 Optimized control and states, optimization using the hybrid LGL PS method on the 128th horizon day
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Fig. 8 Real-time control and states, optimization using the hybrid LGL PS method on the 128th horizon day

Fig. 9 Real-time control and states, optimization using the hybrid feedback PS method

larger than the elements in Q. We want to use as little fuel
as possible; thus, the penalty matrix Rk is chosen as large as
possible. Through appropriate tuning, the penalty matrices
in Eq. (41) are chosen as S = diag[103, 1020, 1, 1, 1, 1],
Q = diag[1, 108, 1, 1, 1, 1], R = 1.5 · 1015 · I2, Qk =
I6, Rk = 3.5 · 1023 · I3, where In (n = 2, 3, 6) is the n × n
identity matrix.

The optimization results are shown in Fig. 9. The feedback
α and δ are around 10◦ and 3◦, respectively, and are gradu-
ally converging to 0◦. The magnitude of the total feedback
impulsive thrusts is 0.15 m/s, which results in a reduction of

0.06 m/s in the magnitude of the total real-time impulsive
thrusts. Note that 0.15 m/s > 0.06 m/s is the result of vector
addition of the nominal and feedback impulsive thrusts. After
the hybrid feedback PS optimization, the terminal state error
of the semi-major axis is reduced from +3.53 km to +0.08
km, and the eccentricity is reduced from +6.30 · 10−5 to
−8.04 · 10−7. Consequently, the cost value is reduced from
1.39 · 1010 to 1.36 · 1010. The terminal state error and the
cost value are further reduced by the hybrid linear feedback
controller, and the optimization accuracy is improved. As a
result a conclusion can be drawn that the open-loop hybrid
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Table 2 History of the terminal
state error and the total �V of
the required impulsive thrusts

Optimization step Terminal a error (km) Terminal e error Total �V (m/s)

Initial guess +3.68 +3.54 · 10−4 –

Hybrid PS method +3.53 +6.30 · 10−5 2.78

Hybrid feedback PS method +0.08 −8.04 · 10−7 2.73

LGL PS method is stabilized by the hybrid linear feedback
controller.

5 Conclusion and future work

This paper first extends the local LGL PS method to a hybrid
LGL PS method which is capable of solving hybrid non-
linear optimal control problems. Then, a hybrid feedback PS
method is proposed, in which a hybrid linear feedback con-
troller is developed to stabilize the open-loop hybrid LGL PS
method when it converges to a local minimum. Simulations
indicate that GEO debris are successfully removed to the
GEO graveyard region using SRP and impulsive thrusts in
conjunction with the proposed hybrid feedback PS method.
The terminal state error of semi-major axis and eccentricity
in reference [7] are reduced from +28.64 km to +0.08 km,
and from +7.26 · 10−4 to −8.04 · 10−7, respectively, and the
total �V of the required impulsive thrusts is significantly
reduced from 10.59 m/s to 2.73 m/s.

Rigorous proofs of the stability and convergence proper-
ties of the hybrid feedback PS method are not contained in
this work. It is challenging to prove the stability and the
convergence properties of a time-varying optimal control
method whose time span is [0, t f ] (t f is some prescribed
terminal time). For an LTI system, we can prove the con-
vergence properties and the stability in the Lyapunov sense
of an LQR controller on an infinite time interval, because
the solution of the algebraic Riccati equation is a constant
matrix. However, when the dynamic system is time-varying
and on a finite time interval, the solution of the Riccati
equation goes time-varying. In this case, the solution of the
Riccati equation depends on the LTV system, and this makes
it challenging to derive general stability and convergence
property conclusions. In this work, we have used numeri-
cal examples to show the convergence of the hybrid LGL
PS method and the validity of the proposed feedback PS
method. We leave the stability and convergence proofs to
future work.
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