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Abstract

An active shape control approach for a circular flexible space structure is studied. The shape of these flexible structures may need
active shape control due to some particular mission objectives. For example, antenna reflectors may have requirements for their shape
accuracy to guarantee communication performance; and some solar sails may change their shape to realize different commissions during
interplanetary flight. This paper investigates an active shape control process executed by the gyricity (stored angular momentum) distri-
bution existing in the circular flexible space structure. The shape of the circular flexible space structure is expected to be reformed from a
plane plate to a paraboloidal plate. An optimal gyricity distribution is derived based on the optimal control theory for systems described
by partial differential equations. Distributed forces can be generated by the optimal gyricity distribution in a rotating field to implement
the active shape control. The dynamic model of the circular flexible space structure is established for the active shape control through the
finite element method. Numerical simulation validates the functionality of the shape control method, and illustrates the shape-adjusting
process of the circular flexible space structure.
� 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Large flexible space structures (LFSS), such as solar
sails, solar arrays, antennas, etc., are commonly used in
space applications. The shape of LFSS is of importance
to realize their functionalities and even to improve their
performance, which makes active shape control worth
studying. For solar arrays and antennas, their shape defor-
mation may be passively incurred by the changing thermal
environment at different positions in their orbits. The
active shape control in these scenarios implements precise
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control to suppress the deformation or attenuate vibrations
of the flexible structures (Tabata and Natori, 1996). For
solar sails, active shape control can be used to change its
shape to attain different purposes which was proposed in
Borggräfe et al. (2013) and its basic idea is sketched in
Fig. 1. When the solar sail sets out from the Earth, the
shape remains a plane plate to obtain as much thrust from
solar pressure as possible (Fig. 1(a)). When the solar sail is
approaching the target destination like asteroids, the shape
is deformed to be a paraboloidal plate such that the solar
sail can serve as an antenna reflector (Fig. 1(b)) or an
energy collector (Fig. 1(c)). When its shape becomes
unsymmetrical, torques for attitude control can be gener-
ated from differential thrusts, as shown in Fig. 1(d).
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Fig. 1. Multi-functional platform of solar sail (Borggräfe et al., 2013): (a) thrust mode; (b) reflector mode; (c) energy collector; (d) a.ttitude control.
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Active shape control methods for LFSS have been
extensively studied by many researchers. An optimal
quasi-static shape control scheme was proposed by Balas
(1985) for large space structures to track a desired shape.
Internal translational actuators were used by Austin et al.
(1994) to design a static shape control scheme for flexible
structures. The shape control of a gossamer space reflector
structure was analyzed using large arrays of distributed
actuators (Gorinevsky et al., 2001). An active robust shape
control method was developed by Hu and Vukovich (2005)
to deal with parameter perturbation uncertainty. Heaters
were employed by Zhang et al. (2013) for the quasi-static
shape control of flexible space structures to minimize the
control energy cost. H1 feedback control was provided
by Xie et al. (2016) for the dynamic shape control of
deployable mesh reflectors in different temperature zones.
An active shape adjustment scheme for a large cable-
mesh reflector was addressed in Xun et al. (2018) using
piezoceramic actuators. Wrinkles distortion was analyzed
by Fan et al. (2020) to show its effects on electromagnetic
performance of an active membrane phased array antenna.
Liu et al. (2021) used the reflectivity control devices to
modulate the solar radiation pressure to control the shape
of reflectors. Topology optimization was utilized to pre-
serve the shape of a flexible structure (Silva et al., 2021).
Zhou et al. (2021) developed an integrated design approach
for active shape morphing of piezo-actuated wings. The
shape of a spinning membrane can be changed by exciting
the static wave to achieve large deformation (Takao et al.,
2022). Different from the above mentioned research results,
which were based on the special material properties of the
flexible space structures, the concept of a gyroelastic con-
tinua is possibly an alternative artifice for the shape control
of large flexible space structures (D’Eleuterio and Hughes,
1987). This concept was proposed by D’Eleuterio and
Hughes (1984) in which the flexible structure is considered
as a continuous distribution of mass, stiffness and gyricity
(stored angular momentum). The identities satisfied by
modal parameters for a gyroelastic continuum were pre-
sented by Hughes and D’Eleuterio (1986). The dynamic
motion of spacecraft with a number of gyric flexible appen-
dages was analyzed by D’Eleuterio and Hughes (1987). An
optimal problem for distributed gyricity was explored for
the shape control of large space structures (Damaren and
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D’Eleuterio, 1989). The conditions of controllability and
observability for gyroelastic flexible structures were dis-
cussed by Damaren and D’Eleuterio (1991). The vibration
of large space structure can be attenuated with an optimal
gyricity distribution using a collection of control moment
gyros (Chee and Damaren, 2015). The dynamics of gyroe-
lastic Euler–Bernoulli beams were extended to Timoshenko
beams by Hassanpour and Heppler (2016), and a numerical
comparison between these two kinds of beams were made
to present the difference. This paper is concerned with the
theory of gyroelastic continuum to design an active shape
control scheme for a large flexible circular space structure.
An optimal gyricity distribution is derived from the opti-
mization theory for systems governed by partial differential
equations to control the structural shape, which is the main
contribution of this paper. The shape of this structure is
expected to be changed from a plane plate to a paraboloi-
dal plate using such an optimal gyricity distribution
derived from the optimization theory of systems governed
by partial differential equations. Note that the optimality
in this paper refers to the most favorable gyricity distribu-
tion which is used to change the shape of the flexible space
structure from a plain plate to a paraboloidal plate.

The reminder of this paper is as follows. In Section 2,
some fundamental knowledge about gyroelastic continua
is reviewed and the problem studied in this paper is intro-
duced. In Section 3, the optimal gyricity distribution is
derived from the optimal theory about systems governed
by partial differential equations. The dynamic process of
the active shape control is illustrated by numerical simula-
tions in Section 4. Some conclusions are remarked in
Section 5.
2. Preliminaries

2.1. Gyricity distribution

This paper selects a circular plate to represent a flexible
space structure. As a general shape, a circular shape is a
general centrally symmetric and appears in many typical
space flexible structures, such as solar sails (Hu et al.,
2016), space antennas (Sanz-Fernandez et al., 2015), etc.
The functions of these space structures can also be realized
by a single body with multiple shapes corresponding to
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multiple functions, as suggested by Borggräfe et al. (2013).
A circular flexible space structure is simply sketched in
Fig. 2. Take an arbitrary point of this structure. The posi-

tion vector of this point is r ¼ x; y; z½ �>, which is expressed
in the local reference frame originated at the center of the
flexible structure. This point’s total displacement wðr; tÞ
can be written as

wðr; tÞ ¼ w0 � r�hþ ueðr; tÞ ð1Þ
where w0 is the translation of the origin point O,

h ¼ h1; h2; h3½ �> is the small rotation of this flexible space
structure, and ue is the small elastic deformation at r. Note
that the vector h is the small angle approximation of the
Euler angles used in the direction cosine matrix, namely
C � 1� h�. The notation ð�Þ� represents the skew symmet-

ric matrix of an arbitrary vector a ¼ a1; a2; a3½ �> and is
given by:

a� ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
64

3
75 ð2Þ

The structural dynamics are given by (D’Eleuterio and
Hughes, 1984; Damaren and D’Eleuterio, 1989; Damaren
and D’Eleuterio, 1991):

M€wþ G _wþKw ¼ F ð3Þ
Here, M is the self-adjoint mass operator and specified as
M ¼ qðrÞ1, where qðrÞ is the mass density at r and 1 is the
identity operator, and K is the self-adjoint stiffness opera-
tor. The external force is denoted by F . The term G is called
gyricity operator which is given by:
Fig. 2. Circular gyroelastic space flexible structure.

Fig. 3. Diagram for the shape deforma
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G ¼ � 1

4
r�h�s r� ð4Þ

where the term r is the gradient operator, and hsðrÞ is
called the gyricity distribution of the structure at r which
indicates the stored angular momentum in each unit vol-
ume of the flexible space structure, as shown in Fig. 2. Note
that the gyricity distribution is assumed to be continuous in
order to yield the optimal gyricity distribution for struc-
ture’s shape control. In practice, the continuous gyricity
distribution can be realized by discrete distribution using
a limited number of wheels embedded into the flexible
structure, which has already been discussed by Damaren
and D’Eleuterio (1991, 2015) and hence is omitted in this
paper.
2.2. Problem statement

Assume that the circular flexible space structure is
imbued with a continuous gyricity distribution. When the
circular flexible space structure is rotating, the shape of
the structure is aiming to be deformed from a plane-plate
shape to a paraboloidal shape using the gyricity distribu-
tion, as depicted in Fig. 3 (This figure is the projection of
the x� z plane of Fig. 2). Specifically, the circular flexible
space structure is assumed to be rotating about its z-axis
by the angular velocity X. The final objective shape of
the circular flexible space structure is expected to be a para-
boloid. This indicates that the vertical displacement w�

e of
the point at the radius r in the final objective stage is given
by:

w�
e ¼ Cr2 ð5Þ

where C is a constant. Essentially, the forces produced by
the rotating gyricity distribution balance out the stiffness
forces due to elasticity. The objective is to determine an
optimal gyricity distribution which can render the shape
control of the flexible structure.
3. Optimal gyricity distribution

The circular flexible space structure shown in Fig. 2 is
now projected on the x� y plane for illustrating the notion
of the gyricity distribution, as depicted in Fig. 4. The small
circle with an arrow in Fig. 4 represents a nominal wheel
which can generate angular momentum. The positive direc-
tion of the angular momentum is assumed to be from the
tion of the flexible space structure.



Fig. 4. Diagram for gyricity distribution.
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circular flexible space structure’s central point to its edge
along the radial direction.

Recall the total displacement wðr; tÞ in Eq. (1). Taking
the derivative and second-order derivative of wðr; tÞ with
respect to time gives

_w ¼ �r� _hþ _ue

€w ¼ �r�€hþ €ue
ð6Þ

where the translation w0 is regarded as a constant. The cir-
cular flexible space structure is expected to rotate about its

z-axis by the angular velocity X, it means _h ¼ 0; 0;X½ �> and
€h ¼ 0. Assume that only the elastic deformation in z-axis
(vertical displacement), we, is considered here such that

ue ¼ 0; 0;we½ �>. Taking ue to be a small displacement, we
have _ue ¼ 0 and €ue ¼ 0. When the external force F is not
considered, Eq. (3) can be simplified as:

G _wþKw ¼ 0 ð7Þ

Remark 1. Note that Eq. (7) is the fundamental equation
to obtain the optimal gyricity distribution for the shape
control of the circular flexible space structure. The shape
deformation is triggered by the equilibrium between the
structure’s stiffness (related to K in Eq. (7)) and the
distributed forces produced by the gyricity distribution
hs(related to G in Eq. (7)) in a rotating field (The structure
is rotating about its z-axis with the angular velocity X). The
gyricity distribution is actually the source of control force
to implement shape deformation.
According to the Kirchhoff plate theory (Timoshenko
and Woinowsky-Krieger, 1959), the stiffness operator K
is given by:

K ¼ Dr2r2; D ¼ h3E
12ð1� m2Þ ð8Þ
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where h is the thickness of the plate, E is the elastic modu-
lus, and m is the Poisson’s ratio. Given that the flexible
space structure is circular, cylindrical coordinates are much
easier to formulate the structural dynamics compared with
the Cartesian coordinates. Notice that the operator r� in
Cartesian coordinates satisfies the skew-symmetric prop-

erty r� ¼ �ðr�Þ>. But this property is not held by r�

in cylindrical coordinates. Thus, the operator r� is
renamed as curl in cylindrical coordinates and it is given
by:

curl ¼
0 � @

@z
1
r

@
@h

@
@z 0 � @

@r

� 1
r

@
@h

1
r

@
@r ðr�Þ 0

2
64

3
75 ð9Þ

As mentioned before, the distributed nominal wheels
(shown in Fig. 4) can produce the radial gyricity distribu-
tion (radial angular momentum distribution) hr whose
direction is starting from the central point of the flexible
structure to its edge. Hence, hs can be expressed in the
cylindrical coordinate as:

hs ¼
hrðrÞ
0

0

2
64

3
75 ð10Þ

Substituting Eqs. (4), (8), and (10) into Eq. (7), the sub-
sequent result can be simplified to give

D
@4we

@r4
¼ X

1

r
þ @

@r

� �
hr ð11Þ

Since the circular flexible space structure shown in Fig. 4
is centrally symmetric, Eq. (11) is formulated in a scalar
form. From Eq. (11), it can be noticed that this is a partial
differential equation with respect to the state, namely the
vertical displacement we. The radial gyricity distribution
hr can be regarded as the equivalent control input of this
partial differential equation [Eq. (11)] governing the flexible
structure system, which is compatible with the optimal con-
trol theory for systems described by partial differential
equations (Lions, 1971). Hence, Eq. (11) can be rewritten
as

Awe ¼ Bhr ð12Þ
where

A ¼ D
X

@4

@r4
ð�Þ; B ¼ 1

r
þ @

@r

� �
ð�Þ ð13Þ

A tiny-size hole is set at the central point of the circular
structure to avoid the potential singularity issue due to the
term 1=r. Define an objective function as

J ¼
Z R

rh

fðwe � Cr2Þ2 þ Nh2rgdr ð14Þ

where rh is the radius of the central hole and R is the outer
radius of the flexible space structure. C and N in Eq. (14)
are two positive constants, where C is the coefficient of
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the paraboloidal shape (Cr2) and N is the weight parameter
defined in the objective function. The selections of both
constants depend on the specific practical situation. Denote
an admissible control set Uad(this is the set of square-
integrable functions on rh;R½ �). The problem studied in this
paper can be elaborated as: find an optimal radial gyricity
distribution h�r such that

J ðh�r Þ ¼ min
hr2Uad

J ðhrÞ ð15Þ

In order to solve this optimization problem, we select an
adjoint state pðhrÞ to formulate an adjoint state equation:

A�pðhrÞ ¼ we � Cr2 ð16Þ
where A� is the adjoint operator of A and its form is given
by

A� ¼ D
X

@4

@r4
ð�Þ ¼ A; ð17Þ

i.e. A is self-adjoint. According to the optimal control the-
ory of systems governed by partial differential equations
(Lions, 1971), the solution of the optimal problem shown
in Eq. (15) is expressed as:

h�r ¼ �N�1B�p ð18Þ
where B� is the adjoint operator of B which is given by

B� ¼ 1

r
� @

@r

� �
ð�Þ ð19Þ

Substituting Eq. (19) into Eq. (18), one can have

h�r ¼ �N�1 1

r
p þ N�1 @p

@r
ð20Þ

Substituting the above result into Eq. (11) yields

D
X

@4we
@r4 ¼ 1

r þ @
@r

� �
h�r

¼ 1
r þ @

@r

� � �N�1 1
r pþN�1 @

@r p
� �

¼� 1
r2N

�1pþ 1
r N

�1 @p
@r �N�1 @

@r
1
r p
� �þN�1 @

@r
@p
@r

� �
¼� 1

r2N
�1pþ 1

r N
�1 @p

@r þ 1
r2N

�1p� 1
r N

�1 @p
@r þN�1 @

@r
@p
@r

� �
¼ N�1 @2p

@r2

ð21Þ
This implies that

D
X

@4we

@r4
¼ N�1 @

2p
@r2

ð22Þ

Recalling Eq. (16), the adjoint state equation can be
written as

D
X

@4p
@r4

¼ we � Cr2 ð23Þ

In Eq. (22), taking partial derivatives twice with respect
to r gives

@2

@r2
D
X

@4we

@r4

� �
¼ @2

@r2
N�1 @

2p
@r2

� �
ð24Þ

Thus,
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D
X

@6we

@r6
¼ N�1 @

4p
@r4

ð25Þ

Substituting Eq. (23) into Eq. (25) yields an ordinary
differential equation:

D
X

@6we

@r6
� X
D
N�1we ¼ �X

D
N�1Cr2 ð26Þ

The characteristic equation of Eq. (26) is given by:

k6 � X2N�1

D2
¼ 0 ð27Þ

The roots of Eq. (27) can be written as

kn ¼ mn þ ln iðn ¼ 1; 2; � � � ; 6Þ ð28Þ
where i is the imaginary unit. Hence, the solution of Eq.
(26) is given by

we ¼ C1em1r cosðl1rÞþC2em2r sinðl2rÞþC3em3r cosðl3rÞþ
C4em4r sinðl4rÞþC5em5r cosðl5rÞþC6em6r sinðl6rÞþCr2

ð29Þ
where C1;C2; � � � ;C6 are six constant numbers which will be
determined by the boundary conditions governing Eq. (26).
The boundary conditions for Eq. (26) are set as

weðrhÞ ¼ w0
eðrhÞ ¼ w00

eðRÞ ¼ w000
e ðRÞ ¼ wð4Þ

e ðRÞ
¼ wð5Þ

e ðRÞ ¼ 0 ð30Þ
where rh is the radius of the central hole and R is the outer
radius of the flexible structure. The reason why the bound-
ary condition is given at weðrhÞ instead of weð0Þ is to avoid
the singularity issue due to the term 1=r in Eq. (20). Note
that the boundary conditions in Eq. (30) are set to obtain
the six constants in Eq. (29) mathematically. As Remark
1 indicates, the shape deformation is attained by the equi-
librium between the structure’s stiffness and the distributed
forces created by the gyricity at every time instant of the
entire shape control process, which has no direct tie to
the boundary conditions. Then, substituting Eq. (29) and
the constants C1;C2; � � � ;C6 into Eq. (23) gives

D
X

@4p
@r4 ¼ C1em1r cosðl1rÞ þ C2em2r sinðl2rÞ þ C3em3r cosðl3rÞþ

C4em4r sinðl4rÞ þ C5em5r cosðl5rÞ þ C6em6r sinðl6rÞ
¼ ð�Þ

ð31Þ
Integrating both sides of Eq. (31) four times gives

D
X p

000 ¼ R ð�Þ þ Cp1

D
X p

00 ¼ R R ð�Þ þ Cp1r þ Cp2

D
X p

0 ¼ R R R ð�Þ þ 1
2
Cp1r2 þ Cp2r þ Cp3

D
X p ¼ R R R R ð�Þ þ 1

6
Cp1r3 þ 1

2
Cp2r2 þ Cp3r þ Cp4

ð32Þ

where Cp1;Cp2;Cp3, and Cp4 are four constant numbers
which will be determined by the boundary conditions gov-
erning Eq. (23). These boundary conditions are set as:
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pðrhÞ ¼ p0ðrhÞ ¼ pðRÞ ¼ p0ðRÞ ¼ 0 ð33Þ
When the constants Cp1;Cp2;Cp3, and Cp4 are calculated,

substituting Eq. (32) into Eq. (20) gives the final result of
the optimal solution h�r .

Since the analytic form of the optimal solution h�r is
fairly complicated, a graphical depiction of this solution
is given instead. Select the constant parameters for present-

ing h�r as: N ¼ 1� 10�7;X ¼ 2prad=s;C ¼ 0:02. The opti-
mal gyricity distribution h�r is depicted in Fig. 5.

Remark 2. The small rotation h is only used in Section 3 to
facilitate the calculation the optimal gyricity distribution.
This restriction will be relaxed as full-angle rotation in the
subsequent sections since it is the real case of flexible space
structure operating in space.
4. Active shape control for circular flexible structures with an

optimal gyricity distribution

Recalling Fig. 3, the aim of this paper is to change the
shape of the circular flexible space structure from a plane
plate to a paraboloidal plate. From Section 3, the optimal
gyricity distribution h�r has already been obtained using the
optimal control theory for the flexible system governed by
the partial differential equation [Eq. (7)]. In this section, the
shape adjusting is modelled using the finite element method
(FEM), which is a numerical approximate approach to pre-
sent the dynamic shape-control process.

4.1. Structural dynamics

The dynamic equation of the flexible space structure can
be spatially discretized using the FEM as:

M€qþ G _qþ Kq ¼ f ð34Þ
where q are the total general coordinates of the discrete sys-
tem for wðr; tÞ. The matrices M ;G and K are correspond-
Fig. 5. Optimal gyricity distribution.

808
ing to the operators M;G and K respectively. The term f
is the total force and its specific form will be given later.

The specific elemental configuration for the circular flex-
ible space structure using the FEM is given in the
Appendix.

In order to demonstrate the active shape control process
comprehensively, the in-plane displacement of the flexible
structure will be considered. Thus, the elastic deformation

ue is hereinafter written as ue ¼ ur; vh;we½ �> where ur and vh
are the in-plane displacements and we is the vertical dis-
placement. Based on the theory of the FEM (Petyt,
2010), one uses

ue ¼ DqeðtÞ ð35Þ
where D are the shape functions and qe is a column vector
of all of the elements’ general coordinates qee. More details
about the shape function and the general coordinates are
referred to the Appendix.

The specific form of the matrix M is given by

M ¼ M rr M re

M>
re Mee

� �
ð36Þ

Here,

M rr ¼
m1 �ðRV rdmÞ�

ðRV rdmÞ� I

" #
ð37Þ

where m is the mass, I is the moment of inertia of the flex-
ible space structure and 1 is the identity matrix. The rigid-
elastic coupling matrix M re is given by (Hughes and
D’Eleuterio, 1986)

M re ¼
row Paf g
row Haf g

� �
; Pa ¼

Z
V
Ddm; Ha ¼

Z
V
q�Ddm

ð38Þ
The global mass matrixMee can be assembled by the ele-

mental mass matrix mee which is given by:

mee ¼
ZZ

Ae

D>
e De dm ð39Þ

where De is the elemental shape function shown in the
Appendix.

Since we consider the in-plane displacement uv and vh,
the potential energy of the flexible space structure is written
in two parts as (Timoshenko and Woinowsky-Krieger,
1959)

U ¼ U e þ U in ð40Þ
Here,

Ue ¼ D
2

RR
Ae

@2we
@r2 þ 1

r
@we
@r þ 1

r2
@2we

@h2

� 	2
�

�2ð1� mÞ @2we
@r2

1
r
@we
@r þ 1

r2
@2we

@h2

� 	
þ2ð1� mÞ 1

r
@2we
@r@h � 1

r2
@we
@h

� 	2
�
rdrdh

ð41Þ

and
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Uin ¼
ZZ

Ae

rrr�rr þ rhh�hh þ srhcrhð Þrdrdh ð42Þ

where

�rr ¼ @ur
@r

ð43aÞ

�hh ¼ 1

r
@vh
@h

þ ur
r

ð43bÞ

crh ¼
1

2

1

r
@ur
@h

þ @vh
@r

� vh
r

� �
ð43cÞ

rrr ¼ E
1� m2

�rr þ m�hhð Þ ð43dÞ

rhh ¼ E
1� m2

�hh þ m�rrð Þ ð43eÞ

srh ¼ E
2ð1þ mÞ crh ð43fÞ

In this way, the stiffness matrix K ee in the FEM can be
obtained from

U ¼ 1

2
q>e K eeqe ð43Þ

The stiffness matrix K in Eq. (34) is given by

K ¼ 0 0

0 K ee

� �
ð44Þ

In Eq. (34), the specific form of G can be written as

G ¼
Z
V

~D>G~DdV ð45Þ

where

~D ¼
1

�r�

D

2
64

3
75 ð46Þ

Furthermore, the matrix G can be decomposed as

G ¼
G rr G rx G re

G>
rx Gxx Gxe

G>
re G>

xe Gee

2
64

3
75 ð47Þ

where

G rr ¼
Z

V
1ð�curlh�s curlÞ1dV ¼ 0 ð49aÞ

G rx ¼
Z

V
1ð�curlh�s curlÞð�r�ÞdV ¼ 0 ð49bÞ

G re ¼
Z

V
1ð�curlh�s curlÞDdV ¼ 0 ð49cÞ

and

Gxx ¼ R
V ð�r�Þð�curlh�s ÞdV
¼ h

RR
Ah

�
s rdrdh

¼ h � 2p R h�s rdr

ð50Þ
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In Eq. (50), h is the thickness of the flexible space struc-
ture. According to the optimal gyricity distribution
(Fig. (5)) yielded from Section 3, it can be verified thatZ R

rh

h�r rdr ¼ 0 ð51Þ

That is

Gxx ¼ 0 ð52Þ
Also, in Eq. (47), the term Gwe is given by

Gwe ¼
Z

V
ðcurl�DÞ>h�s dV ð53Þ

As mentioned in Remark 1, the gyricity distribution is
the source of control force implementing the shape defor-
mation of the flexible structure. The force f h, which is pro-
vided by the optimal gyricity distribution developed in
Section 3, is written as

f hðr; tÞ ¼ �G _w ð54Þ
According Eq. (6), we have

f h ¼ �Gð�r� _hþ _ueÞ ¼ Gr� _h� G _ue ð55Þ
where the term G _ue is the source of the matrix Gee. Accord-
ing to the FEM, the corresponding elemental gyricity
matrix gee is given by

gee ¼ �
Z

V
ðcurlDeÞ>h�s ðcurlDeÞdV ð56Þ

where De is the element shape function. The global gyricity
matrix Gee is constructed by the standard assembling pro-
cedure of the FEM using the elemental gyricity matrix gee.

The term Gr� _h is the source of modal force f e which can
be calculated as:

f e ¼
Z

V
D>curlhs _hdV ð57Þ

Since the direction of the optimal gyricity distribution h�r
is radial, the direction of f e is along with z-axis in the rotat-
ing field to balance the stiffness of the structure, as men-
tioned previously. Hence, the elemental force matrix f ee

can be written as

f ee ¼
ZZ

Ae

D>
e X

1

r
þ @

@r

� �
hrrdrdh ð58Þ

The global force matrix f e is assembled using f ee and the
standard procedure of the FEM. In Eq. (34), the total force
f is given by

f ¼
f t

s

f e

2
64

3
75 ð59Þ

where f t and s are the external force and torque corre-
sponding to the translation and rotation of the structure
respectively. Assuming that the translation of the flexible
space structure is not considered, this implies that



Fig. 6. Angular velocity around zaxis vs time.
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f t ¼ 0; 0; 0½ �>. Evoking Section 3, the radial gyricity distri-
bution hr is used to generate the distributed forces to
change the shape of the flexible structure when it is rotating
about its z-axis. The torque s in Eq. (59) is the source of
this rotation so that

s ¼
0

0

I z _X

2
64

3
75 ð60Þ

where Iz is the moment of inertia of the flexible structure in
the z-axis and X is the angular velocity about the z-axis.

4.2. Numerical simulation

The simulation of the active shape control process of the
circular flexible space structure is implemented here. The
eigenvalue problem of Eq. (34) without the consideration
of the force term f and gyricity term G _q can be written as

� x2
aMqa þ Kqa ¼ 0; a ¼ 1; 2; 3; � � � ð61Þ

where xa are the eigenvalues and qa are the corresponding
eigenvectors which satisfy

q>a Mqb ¼ dab; q>a Kqb ¼ x2
adab ð62Þ

Here, dab is the Kronecker delta (dab ¼ 1 when a ¼ b and
dab ¼ 0 when a – b).

The solution of Eq. (61) can be approximated as

qðtÞ ¼
XNt

a¼1

qagaðtÞ ð63Þ

where Nt is the truncated order and gaðtÞ; a ¼ 1; 2; 3; � � �,
are the modal coordinates. In this way, Eq. (61) can be
written as

q>bM
XNt

a¼1

qa€gaðtÞ þ q>bG
XNt

a¼1

qa _gaðtÞ þ q>bK
XNt

a¼1

qagaðtÞ

¼ q>b f ; b ¼ 1; 2; 3; � � � ð64Þ
Fig. 7. Shape of the flexible
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To conduct the numerical simulation, the physical
parameters of the flexible space structure are described as
follows. The elastic modulus is E ¼ 70GPa. The Poisson

ratio is c ¼ 0:3. The density is 2:7� 103 kg=m3. The thick-
ness is h ¼ 0:01m. The outer radius of the structure is
r ¼ 1:01m. The radius of the central hole is rh ¼ 0:01m.
The flexible space structure is rotating about its z-axis with
angular velocity X given by

XðtÞ ¼ Xd

1þ ðXd
a � 1Þe�kt

ð65Þ

where Xd is the final value of XðtÞ, and a and k are two con-
stants. Here, they are taken as Xd ¼ 2p rad=s; a ¼ 0:1rad=s
and k ¼ 0:2 s�1. The evolution of X is shown in Fig. 6.

Using the angular velocity shown in Fig. 6 and the opti-
mal gyricity distribution h�r , the model force f e can be cal-
culated by Eq. (57). The shape of the flexible structure is
deformed by the distributed force applied on all points
on this structure rather than any one. The time responses
of the distributed forces are hard to be depicted by figures.
Alternatively, its illustration is replaced by the optimal
gyricity distribution, the core part of the distributed force,
structure when t ¼ 0s.
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which has already been depicted in Fig. 5. As addressed in
Section 3, in fact, the gyricity distribution is regarded as the
equivalent control input of the system.

The simulation results of the shape adjusting process are
shown from Fig. 7 (t ¼ 0s) to Fig. 13 (t ¼ 60s) in a nondi-
mensional way. Note that the left side of each figure shows
Fig. 8. Shape of the flexible

Fig. 9. Shape of the flexible

Fig. 10. Shape of the flexible
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the three-dimentional shape of the flexible structure during
the shape deformation process, and the right side of each
figure manifests the two-dimensional shape looking from
the x axis at the y � z plane. At the initial stage of deforma-
tion (t ¼ 0s), the shape of the flexible structure is a plane-
plate which is shown in Fig. 7. As time goes on, the shape is
structure when t ¼ 10s.

structure when t ¼ 20s.

structure when t ¼ 30s.



Fig. 11. Shape of flexible structure when t ¼ 40s.

Fig. 12. Shape of flexible structure when t ¼ 50s.

Fig. 13. Shape of flexible structure when t ¼ 60s.
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approaching the desired paraboloidal shape, which are
depicted in Figs. 8–13. From these results, it can be seen
that the shape of the flexible structure is changed by the
distributed forces produced from the optimal gyricity dis-
tribution h�r when the structure is rotating about its z-
axis. A point at the edge of the flexible structure is selected
as a representative, and the time response of its vertical dis-
placement is shown in Fig. 15. It can be seen that the ver-
tical displacement of this point is continuously increasing
812
until the paraboloidal shape of the flexible structure is
formed. No structural oscillation appears during the entire
shape control process. To evaluate the performance of the
optimal gyricity, the comparison between the expected
shape and the real shape is illustrated at Fig. 14. The real
shape is not identical with the expected shape. The reason
for the discrepancy is that the derivation of the optimal
gyricity distribution in Section 3 does not use the in-
plane structural dynamics but the simulation does. To



Fig. 14. Comparison between the expected shape and the real shape
(t = 60s).

Fig. 15. Time response of a point at the edge of the flexible structure.
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quantize the discrepancy during the entire shape deforma-
tion process, a notion of root-mean-square-like error EðtÞ
presented in Zong et al. (2016) was utilized in this paper,
and it is given by
EðtÞ ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zirðtÞ � zid
� �2

nnode

s
ð66Þ
Fig. 16. Time response of the root-mean-square-like error EðtÞ.
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where zriðtÞ is the real vertical displacement of node i at the
time instant t and zid is the desired vertical displacement of
node i. nnode is the total number of all nodes used in FEM.
The time response of EðtÞ is depicted in Fig. 16 where the
shape discrepancy is continuously decreasing, although
there is still a small discrepancy existing at the final stage.
Denote the maximum vertical displacement of the structure
during the simulation as zmax. The relative error at the final
stage is Eðtf Þ=zmax � 100% ¼ 4:26%(tf is the final time of
simulation), which is relatively small (less than 5%) under
the proposed shape control scheme.
5. Conclusions

In this paper, the optimal gyricity distribution has been
derived using optimal control theory for the systems
described by partial differential equations. The shape of
the circular flexible space structure is deformed by the dis-
tributed forces which are triggered by the optimal gyricity
distribution in a rotating field. The dynamics of the shape
control is presented using the finite element method, and
the forms of the gyricity matrix and modal force vector
are given explicitly. Numerical simulation demonstrates
the effectiveness of the proposed active shape control
method, where the shape is deformed from a plane plate
to a paraboloidal shape.
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Appendix A. Elemental configuration of the flexible space

structure

The dynamic equation of the circular flexible space
structure is established using the FEM. The following for-
mulation is mainly based on Petyt (2010). The circular flex-
ible space structure is regarded as a thin plate and its mesh
configuration is shown in Fig. 17. A rectangular-like ele-
ment is used to approximate each element in the mesh con-
figuration. Given the structure is a circular shape with a
tiny hole at the center, the cylindrical coordinate system
is used with the FEM. The polar coordinate part ðr; hÞ lies
within the plate plane and its original point is fixed at the
plate’s geometric center (Note that the notation r and h
are herein used for the formulation of the FEM in this
Appendix and are different from the same notations used
in the former parts of this paper). The z-axis is perpendic-
ular to the ðr; hÞ coordinate to calibrate all nodes’ vertical
displacements. Four nodes are considered for each
rectangular-like element which has the inside radius r1, out-
side radius r2, subtends angle b and straight length re. For
the sake of simplicity, the vertical displacement we and its
two affiliated rotation wer ¼ @we=@r and weh ¼ @we=@h of



Fig. 17. Finite element mesh and a single element.
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a node are discussed at first and in-plane displacements are
analyzed later. In the mesh element, a local polar coordi-

nate ðr̂; ĥÞ is used and it can be converted to the global
polar coordinate ðr; hÞ by:
r ¼ rh þ ði� 1Þre þ rer̂

h ¼ hj þ bĥ
ð67Þ

where i and hj are the position indices for the element in the
mesh configuration and rh is the central hole’s radius. The
rotations wer and weh can be expressed as

wr ¼ 1

re

@w
@r̂

¼ wr̂

re
;wh ¼ 1

b
@w

@ĥ
¼ wĥ

b
ð68Þ

The vertical displacement we can be approximated by a
twelve-term polynomial as

weðr̂; ĥ; tÞ ¼ a1 þ a2 r̂ þ a3ĥþ a4 r̂2 þ a5r̂ĥþ a6ĥ2 þ a7 r̂3 þ a8r̂2ĥ

þa9 r̂ĥ2 þ a10ĥ3 þ a11 r̂3ĥþ a12r̂ĥ3

¼ Cðr̂; ĥÞaðtÞ
ð69Þ

Here,

Cðr̂; ĥÞ¼ ½1 r̂ ĥ r̂2 r̂ĥ ĥ2 r̂3 r̂2ĥ r̂ĥ2 ĥ3 r̂3ĥ r̂ĥ3 � ð70Þ
and

aðtÞ ¼ ½ a1ðtÞ a2ðtÞ � � � a12ðtÞ �> ð71Þ
The vertical displacement and two rotations of the node

i are described as:

wei

wer̂i

weĥi

2
64

3
75 ¼

1 r̂i ĥi r̂iĥi r̂2i ĥ2i r̂2i ĥi r̂iĥ2i r̂3i ĥ3i r̂3i ĥi r̂i ĥ3i
0 1 0 ĥi 2r̂2i 0 2r̂i ĥi ĥ2i 3r̂i 0 3r̂2i ĥi ĥ3i
0 0 1 r̂i 0 2ĥi r̂2i 2r̂i ĥi 0 3ĥ2i r̂3i 3r̂iĥ2i

2
664

3
775aðtÞ
ð72Þ
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In the local polar coordinate system ðr̂; ĥÞ, the coordi-
nates of an element’s four nodes are 1 (0; 0), 2 (1; 0), 3
(1; 1), and 4 (0; 1). Hence, the degrees of freedom for a sin-
gle element qee are written as:

qee ¼ ½we1 rewer1 bweh1 � � � we4 rewer4 bweh4 �> ¼AeaðtÞ
ð73Þ

where

Ae ¼

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 1 0 0 0

0 1 0 0 2 0 0 0 3 0 0 0

0 0 1 1 0 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 2 0 2 1 3 0 3 1

0 0 1 1 0 2 1 2 0 3 1 3

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 1 0 0 0 1

0 0 1 0 0 2 0 0 0 3 0 0

2
666666666666666666666664

3
777777777777777777777775

ð74Þ

Substituting Eqs. (73) and (74) into Eq. (69) gives

weðr; h; tÞ ¼ Cðr; hÞaðtÞ ¼ Cðr; hÞA�1
e qeeðtÞ

¼ Nðr; hÞqweðtÞ ð75Þ

where

Nðr; hÞ ¼ Cðr; hÞA�1
e ¼ N1;N2;N3;N4½ � ð76Þ
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When the in-plane displacement ur and vh are consid-

ered, the elastic deformation ue ¼ ur; vh;we½ �> can be
reformed based on the theory of the FEM as

ue ¼ Deqee ð77Þ
where qee ¼ qur ; qvh ; qwe

� �>
and De is the elemental shape

function which is given by:

De ¼
N1 0 N2 0 N3 0 N4 0 0

0 N1 0 N2 0 N3 0 N4 0

0 0 0 0 0 0 0 0 N

2
64

3
75¼

Nur

N vh

Nwe

2
64

3
75
ð78Þ
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