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ABSTRACT
This paper proposes a novel optimal control design framework for hybrid nonlinear dynamical systems
involving an interacting combination of continuous-time and discrete-time dynamics. Two numerical
algorithms are proposed to approximate the continuous-time and discrete-time portions of the hybrid
Hamilton-Jacobi-Bellman (HJB) equation. Galerkin’s spectral method is utilised to approximate the value
function involved in the continuous-time HJB equation, thereby computing the optimal control gains
between impulsive events. Employing the spectral collocation method, the discrete-time HJB equation is
then approximated to find the optimal control gain vector at impulsive instants. These two algorithms
are ultimately combined to obtain the desired hybrid nonlinear optimal control law. Describing practical
considerations for implementing the algorithms, some illustrative examples are presented to evaluate the
functionality of the proposed hybrid nonlinear optimal controller.
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1. Introduction

Modern complex engineering systems typically involve mul-
tiple modes of operation, placing stringent demands on con-
troller design and implementation of increasing complexity.
Such systems possess an interactingmixture of continuous-time
and discrete-time dynamics, exhibiting discontinuous flows on
appropriate manifolds, and hence give rise to hybrid dynamics
(Haddad et al., 2006). The ability to develop a control design
framework for hybrid dynamical systems is therefore crucial
considering the increasingly complex nature of such systems,
including advanced high-performance tactical fighter aircrafts,
air transportation systems, and swarms of air and space vehicles
to name but a few (Haddad et al., 2006).

Hybrid dynamical systems, as an emerging discipline within
dynamical systems theory and control, can be defined as an
interacting countable collection of dynamical systems involv-
ing a mixture of continuous-time dynamics and discrete-time
events (Haddad et al., 2006). Such systems consist of three
major elements; a continuous-time set of differential equa-
tions, which characterises the motion of the dynamical system
between impulsive events, a set of difference equations, which
governs the way through which the states of the system are
instantaneously changed when an impulse occurs, and a crite-
rion to determine when impulses are to be applied (i.e. when
the states of the system are to be reset). For example, mechani-
cal systems subject to unilateral constraints on system positions
introduce hybrid dynamical systems. These systems involve dis-
continuous solutions wherein discontinuities arise primarily
from impacts when the system trajectories encounter the uni-
lateral constraints (Haddad et al., 2006). Since hybrid dynamical
systems can involve impulses at variable times, they are in gen-
eral time-varying systemswherein the impulsive events are both
a function of time and the system’s state.
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Although the control theory for hybrid nonlinear dynamical
systems is well-developed (See Haddad et al., 2006 and refer-
ences therein), there have been no applications due to the lack
of efficient numerical methods for dealing with these systems.
This paper aims to bridge the gap between theory and prac-
tice by developing a novel optimal control design framework
for hybrid nonlinear dynamical systems involving an interacting
combination of continuous-time and discrete-time dynamics.
Modern spacecraft with mass expulsion devices (thrusters) are
good examples to illustrate the main motivation behind this
work. Being equipped with propellantless propulsion technol-
ogy as a continuous-time renewable source of actuation, such
systems exchange energy andmomentumwith the environment
wherein the spacecraft operates as well as expending propellant
(solar sails (McInnes, 1999) and electrodynamic tethers (Cosmo
& Lorenzini, 1997) are examples of propellantless propulsion
systemswhich interactwith the sun and a planet’smagnetic field
respectively for actuation). Since impulsive actuation provided
by thrusters is directly related to expendable chemical fuel, an
optimal set of impulsive thrusting, including optimal impulsive
control inputs and the optimal time instants at which impulses
are to be applied, is thus required to reduce fuel usage, thereby
extending the duration of such space missions. Furthermore,
by optimal combination of continuous-time control input and
impulsive thrusts, the use of both continuous-time and impul-
sive control inputs is optimised, hence the hybrid performance
index is significantly improved.

The proposed hybrid algorithm has a wide range of
applications amongst which two practical space applications,
namely magnetic/impulsive spacecraft attitude control (Sharifi
& Damaren, 2020b) and Lorentz/impulsive spacecraft forma-
tion flying (Sharifi & Damaren, 2019), will be the subject of
forthcoming papers of the current authors. In both cases, a
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continuous-time controller actuated by the Earth’s magnetic
field, as a renewable source of actuation, is optimally com-
bined with impulsive thrusts to resolve the uncontrollability
issues inherently involved in the continuous-time subsystem,
and accordingly correct the orientation and orbital motion of
the spacecraft respectively.

Simultaneous use of continuous-time and impulsive con-
trol inputs was studied by Sobiesiak and Damaren (2015a)
wherein the so-called hybrid linear quadratic regulator (LQR)
policy was proposed with a prescribed set of impulses to com-
bine the two modes of actuation, namely Lorentz force and
impulsive thrusting, in an optimal manner for spacecraft for-
mation flying. Deriving the necessary and sufficient conditions
for minimising a performance index with respect to impulse
times, optimal thrust application times for an impulsive forma-
tion keeping and reconfiguration strategy was determined in
(Sobiesiak & Damaren, 2015b). The hybrid LQR theory pro-
posed in (Sobiesiak & Damaren, 2015a) was then extended
such that the performance index was minimised with respect
to continuous-time and impulsive control inputs as well as
impulsive application times (Sobiesiak & Damaren, 2016).

The objective of this paper is to extend the solution of hybrid
optimal control problems to nonlinear systems. Using the con-
trol schemeproposed in this researchwork, feedback controllers
are synthesised by considering the full nonlinear dynamics of
the system. No linearisation is involved, neither dynamic feed-
back linearisation nor a priori linearisation of the equations
of motion. This is particularly useful for systems wherein the
required range of operation is large (hence linear approximation
is invalid) and nonlinear controllers are therefore required to
appropriately compensate for the nonlinearities involved in the
system. For such systems, a nonlinear control law defined over
the entire operating range of the system would reduce the com-
plexity and cost of the system while simultaneously increasing
the functional performance.

Two design algorithms are proposed in this paper to approx-
imate the hybrid version of the Hamilton-Jacobi-Bellman (HJB)
equation, thereby addressing the hybrid nonlinear optimal con-
trol problem being considered. Galerkin’s spectral method
(Fletcher, 1984) is used to approximate the value function
involved in the continuous-time HJB equation, thereby com-
puting the continuous-time optimal control law. Employing
the spectral collocation method (Quarteroni et al., 2000), the
discrete-time HJB equation is subsequently approximated to
derive the discrete-time counterpart of the hybrid algorithm.
In the following, the historical background and the main idea
behind each approach are briefly described.

Motivated by the success of optimal control methods for lin-
ear systems like the LQR technique, there has been a great deal
of research devoted to extending this concept to nonlinear sys-
tems. From optimal control theory, it is well-known that when
the system is modelled by nonlinear dynamics or the cost func-
tional to be optimised is non-quadratic, the optimal control is
then a state feedback function that depends upon the solution to
the HJB equation (Lewis et al., 2012). Since the HJB equation is
extremely difficult to solve in general, approximation techniques
are thus necessitated. If an open-loop solution is acceptable,
there are several methods to solve the optimal control problem.
A common approach is to numerically solve for the state and

co-state equations obtained from a Hamiltonian formulation of
the optimal control problem. The problem can be then reduced
to a two-point boundary value problem which can be solved by
various methods (Beard, 1995).

Since open-loop control is undesirable for practical systems,
various approaches have been investigated to generate closed-
loop solutions to the HJB equation. One technique is the per-
turbation method wherein the nonlinear system is assumed to
be a perturbation of a linear system. The approximation is then
formed by finding a finite number of terms involved in a Taylor
series expansion of the value function (Garrard & Jordan, 1977;
Nishikawa et al., 1971). Perturbationmethods are, however, lim-
ited to systems with analytic optimal cost and control which
only deviate slightly from a linear system. Another approach is
to regularise the cost function so that an analytic expression for
the control can be obtained. The basic idea is to consider a cost
function consisting of a term chosen such that the HJB equation
reduces to a form similar to the Riccati equation (Freeman &
Kokotovic, 1995; Lu, 1993). Although this approach results in
solutions that stabilise the system, it is difficult to estimate how
far the control deviates from the optimal solution. Feedback
linearisation is another technique which uses feedback to can-
cel out the nonlinearities involved in the system (Isidori, 1989;
Nijmeijer & van der Schaft, 1990). The drawback associated
with feedback linearisation is that the control sometimes cancels
out nonlinearities that enhance the stability and performance
of the system. Moreover, the control effort used to cancel the
nonlinearities can be unreasonably large. Neural networks can
be also trained by computing open-loop controls for various
points in the state space to approximate the solution of the HJB
equation (Abu-Khalaf & Lewis, 2005; Cheng et al., 2007; Liu
et al., 2009). Nevertheless, there is no guarantee for the stabil-
ity of the closed-loop system via this approach. Furthermore,
finite difference and finite element techniques have been used
to approximate the HJB equation (Bardi & Capuzzo-Dolcetta,
2008; Richardson & Wang, 2006; Wang et al., 2003). These
methods, however, suffer from the curse of dimensionality since
the computational load and computer memory required for the
approximation grow exponentially with the dimension of the
state of the system.A survey of research directed toward approx-
imating the HJB equation can be found in (Beard, 1995) and
(Beard & McLain, 1998b).

Galerkin’s spectral method can be used to find a uniform
approximation to the continuous-time HJB equation such that
the approximate controls are still stable on a specified set
(Beard, 1995). The successive Galerkin approximation (SGA),
which simultaneously combines successive approximation and
Galerkin approximation, introduces a design algorithm which
systematically improves the closed-loop performance of arbi-
trary stabilising feedback control laws (Beard, 1995). The basic
idea behind successive approximation is to compute the value
function involved in the HJB equation and the associated opti-
mal control iteratively, instead of calculating them simultane-
ously (Beard, 1995; Beard & McLain, 1998b). The essence of
the SGA approach is first to reduce the continuous-time HJB
equation, which is a nonlinear partial differential equation, to
a sequence of linear first-order partial differential equations
known as the Generalized Hamilton-Jacobi-Bellman (GHJB)
equation. Galerkin’s approximation method is then utilised
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with basis functions defined globally on a compact set to
approximate these partial differential equations (Beard, 1995).
Starting with an arbitrary stabilising control law, the GHJB
equation is first solved for the value function associated with
this initial control law, and the optimal control in terms of the
value function is then updated.When this process is iterated, the
solution to the GHJB equation converges uniformly to the solu-
tion of the continuous-time HJB equation, which consequently
solves the optimal control problem being considered (Beard,
1995).

The SGAalgorithm to approximate the continuous-timeHJB
equation first appeared in (Beard, 1995) and then in (Beard
et al., 1996) along with some illustrative examples for time-
invariant control systems. While the convergence of Galerkin’s
approximation for the GHJB equation was shown in (Beard
et al., 1997), the convergence of the SGA algorithm for the
continuous-time HJB equation was demonstrated in (Beard
et al., 1998a). In (Beard&McLain, 1998b) and (Lawton&Beard,
1998), the authors showed how the structure of the algorithm
can be exploited to reduce the amount of computations from
exponential to polynomial growth in the dimension of the state
space. The SGA algorithm was then applied to some real-world
problems; including a hydraulically actuated positioning sys-
tem (McLain & Beard, 1997), an underwater robotic vehicle
(McLain & Beard, 1998a), a missile autopilot (McLain & Beard,
1998b), and an attitude control problem (Lawton et al., 1999); to
design nonlinear optimal control for the infinite-time horizon
systems being considered.

Inspired by (Beard, 1995), the continuous-timeHJB equation
is approximated by the direct application of the Galerkin
method in this paper to synthesise the nonlinear optimal control
for finite-time horizon systems. Using successive approxima-
tion to solve the GHJB equation in a finite-time horizon setting
has the advantage of producing a linear set of differential equa-
tions to be solved for the unknown time-dependent coefficients;
hence no escape in finite-time occurs (Beard, 1995). However,
it is difficult to find a well-defined stabilising control law to ini-
tialise the algorithm with; especially when the time interval is
small, hence asymptotic convergence is difficult or even impos-
sible. Therefore, the differential equations through which the
time-varying control gains are to be computed may become
severely ill-conditioned. As opposed to this, the algorithm pro-
posed in this paper, which applies Galerkin’s spectral method
directly to the continuous-time HJB equation, is completely
independent of any initial stabilising control law. However, the
corresponding differential equations to be solved for the time-
varying control gains are nonlinear, hence finite-time escape is
possible.

As mentioned at the outset, impulsive events are one of the
three elements of hybrid dynamical systems. They introduce
discontinuities in the states of a hybrid dynamical system once a
specific criterion, which determines when the states of the sys-
tem are to be reset, is met. Utilising an optimal control policy to
address impulsive control problems, a variational method was
proposed in (Bryson&Ho, 1975) for systemswhose states expe-
rience discontinuities at interior points. In addition, the impul-
sive maximum principle (Blaquière, 1977) was applied to the
linear quadratic control problem of switched continuous-time
systemswith impulsive inputs byHu et al. (2005). This workwas

then extended by (Sobiesiak & Damaren, 2015a) to explicitly
show how the solution to the Riccati equation resets when the
discrete-time dynamics are applied. The current paper proposes
a novel algorithm to derive the discrete-time portion of a hybrid
nonlinear optimal control law. The proposed approach uses
the spectral collocation method to approximate the discrete-
time HJB equation, hence compute the optimal control gain
vector at impulsive instants. The main idea behind the colloca-
tion method is to project the discrete-time HJB equation onto
a discrete basis to produce as many equations as required for
the unknowns. This is analogous to Galerkin’s spectral method
wherein the error function resulting from approximating the
value function is projected onto a set of basis elements to obtain
N simultaneous equations in N unknows.

This paper is organised as follows. Defining a hybrid non-
linear optimal control problem involving a hybrid performance
index in section 2, hybrid versions of Bellman’s principle of opti-
mality and the HJB equation are first presented. The hybrid
performance functional being considered is then related to
an underlying Lyapunov function in a specific way. This Lya-
punov function is subsequently shown to solve the hybrid HJB
equation, thereby guaranteeing the optimality and asymptotic
stability of the hybrid control system. Two separate numeri-
cal schemes are then proposed in subsections 2.1 and 2.2 to
approximate the continuous-time and discrete-time portions
of the hybrid HJB equation respectively. Combining these two
algorithms, the desired hybrid nonlinear optimal control law
is ultimately presented in subsection 2.3. Section 3 describes
practical considerations for implementing the proposed hybrid
algorithm. Two illustrative examples are lastly presented in
section 4 to evaluate the functionality of the proposed hybrid
controller.

2. Hybrid nonlinear optimal control

In this section, a hybrid feedback nonlinear optimal control
problem is considered over a finite-time horizon, assuming
a hybrid non-quadratic performance index. This hybrid per-
formance functional involves two portions: a continuous-time
cost, which addresses the performance of the continuous-time
dynamics between impulsive events, and a discrete-time cost,
which evaluates the performance of the discrete-time dynamics
when impulses are applied. Consider a hybrid system modelled
by nonlinear equations of the form (Haddad et al., 2001)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(t) = Fct(x(t), uct(t), t), x(t0) = x0,

uct ∈ Uct (x, t) /∈ S
�x(t) = x(t+) − x(t) = Fds(x(t), uds(t), t),

uds ∈ Uds (x, t) ∈ S

(1)

where t ≥ 0, x ∈ D ⊆ R
n is the state vector,D specifies an open

set with 0 ∈ D, (uct , uds) ∈ Uct × Uds ⊆ R
mct × R

mds denotes
the hybrid control input, Fct : D × Uct × R → R

n is Lipschitz
continuous satisfying Fct(0, 0, t) = 0 for every t ∈ [t0, tf], Fds :
S × Uds → R

n is continuous and satisfies Fds(0, 0, t) = 0 for
every t ∈ [t0, tf], and S ⊂ R

n × [0,∞) denotes the resetting
set. It is also assumed that (uct , uds) is restricted to the class
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of admissible control inputs Uct × Uds consisting of measur-
able functions such that (uct , uds) ∈ Uct × Uds, where the con-
straint setUct × Uds is given with (0, 0) ∈ Uct × Uds. Themain
objective is then to determine a hybrid nonlinear control input
(uct , uds) ∈ Uct × Uds such that the following hybrid perfor-
mance index is minimised over all admissible control inputs
(uct , uds) ∈ Uct × Uds (Haddad et al., 2001):

J(x0, uct , uds, t0) =
∫ tf

t0
Lct(x(t), uct(t), t)dt

+
Nimp∑
k=1

Lds(x(tk), uds(tk), tk) (2)

where Lct : D × Uct × R → R and Lds : S × Uds → R are,
respectively, the continuous-time and discrete-time instanta-
neous cost functions, tk specifies the time instants at which
impulses are to be applied with k ∈ Z(t0,tf), and Nimp is the
number of impulses during the operating time.

Given a hybrid control input (uct , uds) ∈ Uct × Uds, the nec-
essary and sufficient conditions for minimising the hybrid per-
formance index (2) are then obtained via a hybrid version of
Bellman’s principle of optimality as below (Haddad et al., 2001).

Lemma 2.1: Let (u∗
ct , u∗

ds) ∈ Uct × Uds be a hybrid optimal con-
trol that generates the trajectory x(t), t ∈ [t0, tf],with x(t0) = x0.
Then the trajectory x from (x0, t0) to (xf, tf) is optimal if and
only if for all t′, t′′ ∈ [t0, tf], the portion of the trajectory x going
from (x(t′), t′) to (x(t′′), t′′) optimises the same cost functional
over [t′, t′′], where xf

�= x(tf) and x(t′) is a point on the optimal
trajectory generated by (u∗

ct , u∗
ds).

Proof: Refer to (Haddad et al., 2001) or (Haddad et al., 2006,
Chapter 9).

In addition, by relating the hybrid performance index (2)
to an underlying Lyapunov function in a judicious way, the
asymptotic stability of the hybrid nonlinear closed-loop system
is consequently guaranteed. This Lyapunov function is shown
to be a solution of the hybrid HJB equation via the following
theorems, thereby guaranteeing both optimality and asymptotic
stability of the hybrid feedback control system (Haddad et al.,
2001).

Let (u∗
ct , u∗

ds) solve the hybrid optimal control problem

(1), and define the optimal cost J∗(x0, t0)
�= J(x0, u∗

ct , u∗
ds, t0).

Furthermore, define the Hamiltonians associated with the
continuous-time and discrete-time dynamics for p ∈ R

n and
q : R

n × R → R as follows:

Hct(x, uct , p(x, t), t)
�= Lct(x, uct , t) + pT(x, t)

× Fct(x, uct , t) (3)

Hds(x, uds, q(x, tk), tk)
�= Lds(x, uds, tk)

+ q(x + Fds(x, uds, tk), tk) − q(x, tk)
(4)

Theorem 2.2: Let J∗(x, t) denote the minimal cost for the hybrid
optimal control problem (1) with x0 = x and t0 = t, and assume

that J∗ is continuously differentiable in x. Then:

∂J∗(x , t)
∂t

+ min
uct∈Uct

{Hct(x, uct , p(x, t), t)} = 0 (x, t) /∈ S
(5)

min
uds∈Uds

{Hds(x, uds, q(x, tk), tk)} = 0 (x, t) ∈ S (6)

where p(x, t) �= ∂J∗(x,t)
∂x and q(x, tk)

�= J∗(x, tk). Furthermore, if
(u∗

ct , u∗
ds) solves the hybrid optimal control problem (1), then:

∂J∗(x , t)
∂t

+ Hct(x, u∗
ct , p(x, t), t) = 0 (x, t) /∈ S (7)

Hds(x, u∗
ds, q(x, tk), tk) = 0 (x, t) ∈ S (8)

Proof: Refer to (Haddad et al., 2001) or (Haddad et al., 2006,
Chapter 9).

Next, a converse result to Theorem 2.2 is obtained as below
(Haddad et al., 2001).

Theorem 2.3: Suppose there exists a continuously differentiable
function V : D × R → R and a hybrid optimal control (u∗

ct , u∗
ds)

such that V(xf , tf) = 0 and

∂V(x , t)
∂t

+ Hct

(
x, u∗

ct ,
∂V(x, t)

∂x
, t
)

= 0 (x, t) /∈ S (9)

Hds(x, u∗
ds,V(x, tk), tk) = 0 (x, t) ∈ S (10)

Hct

(
x, u∗

ct ,
∂V(x, t)

∂x
, t
)

≤ Hct

(
x, uct ,

∂V(x, t)
∂x

, t
)
,

uct ∈ Uct (x, t) /∈ S (11)

Hds(x, u∗
ds,V(x, tk), tk) ≤ Hds(x, uds,V(x, tk), tk),

uds ∈ Uds (x, t) ∈ S (12)

Therefore, (u∗
ct , u∗

ds) solves the hybrid optimal control problem (1),
that is,

J∗(x0, t0) = J(x0, u∗
ct , u

∗
ds, t0) ≤ J(x0, uct , uds, t0),

(uct , uds) ∈ Uct × Uds (13)

and

J∗(x0, t0) = V(x0, t0) (14)

Proof: Refer to (Haddad et al., 2001) or (Haddad et al., 2006,
Chapter 9).

Now, the main theorem for characterising the hybrid feed-
back controllers that guarantee the closed-loop stability and
simultaneously minimise a hybrid non-quadratic performance
index is presented as follows (Haddad et al., 2001).

Theorem 2.4: Consider the hybrid nonlinear system (1) with the
hybrid performance functional (2). Assume there exist a contin-
uously differentiable positive-definite function V : D × R → R
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and a hybrid optimal control law (u∗
ct , u∗

ds) such that the condi-
tions (9)-(12) are satisfied, and

V̇(x , t) = ∂V(x , t)
∂t

+
(

∂V(x, t)
∂x

)T
Fct(x, u∗

ct , t)

< 0, x �= 0 (x, t) /∈ S (15)

�V(x, t) = V(x + Fds(x, u∗
ds, t), t

+) − V(x, t)

≤ 0 (x, t) ∈ S (16)

Then, with the hybrid feedback control (u∗
ct , u∗

ds), there exists a
neighbourhood of the origin D0 ⊆ D such that if x0 ∈ D0, the
zero solution x(t) ≡ 0 of the closed-loop system (1) is locally
asymptotically stable. Furthermore,

J∗(x0, t0) = J(x0, u∗
ct , u

∗
ds, t0) = V(x0, t0) , x0 ∈ D0 (17)

In addition, if x0 ∈ D0, then the hybrid feedback control (u∗
ct , u∗

ds)
minimises J(x0, uct , uds, t0) in the sense that

J(x0, u∗
ct , u

∗
ds, t0) = min

(uct ,uds)∈Uct×Uds
{J(x0, uct , uds, t0)} (18)

Finally, ifD = R
n,Uct = R

mct ,Uds = R
mds , and V(x , t) → ∞

as ||x|| → ∞, then the zero solution x(t) ≡ 0 of the closed-loop
system (1) is globally asymptotically stable.

Proof: Local and global asymptotic stability is a direct con-
sequence of (15) and (16) by applying Theorem 2.6 in (Haddad
et al., 2006) to the closed-loop system (1). Conditions (17) and
(18) are a direct consequence of Theorem 2.3.

Therefore, the hybrid feedback controller, (u∗
ct , u∗

ds), guaran-
tees both closed-loop stability and optimality of the feedback-
controlled hybrid system via the Lyapunov function.

Assuming that the resetting set S is defined by a prescribed
sequence of impulsive times which are independent of the state
x, i.e. S = D × T = D × {t1, . . . , tNimp}, the results presented
above are specialised in the following subsections to address an
optimal control problem for a hybrid nonlinear system of the
form

ẋ = f (x, t) + g(x, t)uct(x, t), x(0) = x0 t �= tk (19)

�x(tk) = x(t+k ) − x(t−k ) = Bdsuds,k t = tk (20)

where f : D × R → R
n and g : D × R → R

n×mct are assumed
to be Lipschitz continuous on D, and uct denotes the
continuous-time control input. In addition, x(t−k ) ∈ D and
x(t+k ) ∈ D are, respectively, the state vector immediately before
and after the discrete-time dynamics are applied at t = tk,
Bds ∈ R

n×mds is the discrete-time control input matrix, and
uds(x(tk), tk)

�= uds,k denotes the discrete-time control input.
As stressed earlier, the nonlinear optimal control depends

on the solution to the HJB equation, which is generally diffi-
cult to solve, hence approximation techniques are necessitated.
Two numerical approaches are therefore employed in the fol-
lowing subsections to approximate the continuous-time and
discrete-time portions of the hybrid HJB equation.

2.1 Numerical solution to the continuous-time HJB
equation

Applying theGalerkin spectralmethoddirectly to the continuous-
time portion of the hybrid HJB equation, a continuous-time set
of differential equations is derived in this section to compute the
time-varying optimal control gains between impulsive instants.
Defining Lct(x, uct , t) = lct(x) + ||uct(x , t)||2Rct

, (5) can be writ-
ten as (Lewis et al., 2012):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂V(x , t)
∂t + min

uct∈Uct

{(
∂V(x , t)

∂x

)T
(f (x , t) + g(x , t)uct(x , t))

+ lct(x) + ||uct(x , t)||2Rct

}
= 0

V(xf, tf) = 0
(21)

where V : D × R → R specifies the value function (the opti-
mumvalue of the performance index), lct : D → R is a positive-
definite function called the continuous-time state penalty func-
tion, and Rct ∈ R

mct×mct denotes a symmetric positive-definite
matrix called the continuous-time control penalty matrix. Min-
imising (21) with respect to uct , the continuous-time optimal
control law in terms of V(x , t) is found as follows:

u∗
ct(x , t) = −1

2
R−1
ct g

T(x , t)
∂V(x , t)

∂x
(22)

By substituting (22) into (21), the continuous-time HJB
equation can be thus formulated as:{

HJBct(V) = ∂V
∂t + (

∂V
∂x

)Tf − 1
4
(

∂V
∂x

)TgR−1
ct gT

∂V
∂x + lct = 0

V(xf , tf) = 0
(23)

The continuous-time HJB equation, as a nonlinear partial dif-
ferential equation, is difficult to solve in general, thereby neces-
sitating approximation techniques. Galerkin’s spectral method
can be therefore exploited to approximate the solution to (23).
The basic idea underlying the Galerkin approach is to assume
that the solution of the continuous-time HJB equation can be
expressed as an infinite sum of known basis functions (Beard,
1995). In addition, for the Galerkinmethod to be applicable, the
problem must be placed in a suitable inner product space such
that the projection is well-defined in terms of n-dimensional
integrations (Beard, 1995). The approximation is thus restricted
to a closed and bounded set in D, namely a compact set �,
which defines the bounded domain of the state space of inter-
est. Consequently, it is first assumed that the value function can
be discretized by an infinite series of prescribed state-dependent
basis functions, which are continuous and defined everywhere
on�, and unknown coefficientswith time-dependency as below
(Beard, 1995):

V(x , t) :=
∞∑
j=1

c∗j (t) φj(x) (24)

From a practical perspective, using an infinite number of
terms in the discretization is impossible; the approximation for
V(x , t) is therefore carried one step further by considering a
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truncated version of the infinite series (i.e. the first N terms)
(Beard, 1995):

VN(x , t) :=
N∑
j=1

c∗j (t) φj(x) = �T
N(x)C∗

N(t) (25)

wherein�N(x) = [φ1 , . . . , φN]T,C∗
N(t) = [c∗1 , . . . , c∗N]T, and

N denotes the number of basis elements, i.e. the order of approx-
imation. Substituting (25) into (23) results in an error func-
tion due primarily to approximating the value function with
VN(x , t):

error(x , t) = HJBct

⎛
⎝ N∑

j=1
c∗j (t) φj(x)

⎞
⎠ (26)

Following the Galerkin method, the unknown coefficients,
C∗
N(t), are determined such that the resulting error is min-

imised. To this end, the error is projected onto the same basis
functions retained in the truncated series (the linear finite basis
spanned by {φj}N1 ), and the outcome is set equal to zero in order
to obtain N simultaneous equations with N unknows (Beard,
1995): ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈
HJBct

(
N∑
j=1

c∗j (t) φj(x)

)
, �N(x)

〉
�

= 0〈
N∑
j=1

c∗j (tf) φj(xf) , �N(x)

〉
�

= 0
(27)

wherein the projection operator is the inner product in
an appropriate Hilbert space defined by 〈(·) , φi(x)〉� �=∫
�

(·)φi(x)dx. The equation (27) represents the Galerkin-based
projection of the continuous-time HJB equation in a compact
form, which can be expanded as below:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈�N ,�N〉�Ċ∗
N(t) + 〈Jx(�N)f ,�N〉�C∗

N(t)

− 1
4

[ N∑
k=1

c∗k(t)
〈
Jx(�N)gR−1

ct gT
∂φk
∂x ,�N

〉
�

]
C∗
N(t)

+〈lct ,�N〉� = 0

〈�N ,�N〉�C∗
N(tf) = 0

(28)

wherein Jx denotes the Jacobian operator (matrix) with respect
to x. The error expression then reduces to the following set ofN
equations with N unknowns:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ċ∗
N(t) + 〈�N ,�N〉−1

�

(〈Jx(�N)f ,�N〉�
− 1

4

[ N∑
k=1

c∗k(t)
〈
Jx(�N)gR−1

ct gT
∂φk
∂x ,�N

〉
�

])
C∗
N(t)

+〈�N ,�N〉−1
� 〈lct ,�N〉� = 0

C∗
N(tf) = 0

(29)

The following set of nonlinear ordinary differential equations
termed the continuous-time optimal control gain equations needs
therefore to be solved forC∗

N(t) in order to find the continuous-
time optimal control law, assuming the equations have no escape

in finite-time:

Ċ∗
N(t) + A(t, c∗k(t))C

∗
N(t) + b = 0 , C∗

N(tf) = 0 (30)

where

M(t, c∗k(t)) =
N∑
k=1

c∗k(t)
〈
Jx(�N)gR−1

ct gT
∂φk
∂x ,�N

〉
�

A(t, c∗k(t)) = 〈�N ,�N〉−1
�

[〈Jx(�N)f ,�N〉� − 1
4M(t, c∗k(t))

]
b = 〈�N ,�N〉−1

� 〈lct ,�N〉�
(31)

Once the optimal control gains, C∗
N(t), are computed via back-

ward integration of (30), the continuous-time optimal control
law can be obtained by:

u∗
ct(x , t) = −1

2
R−1
ct g

T(x , t)JTx (�N(x))C∗
N(t) (32)

In summary, starting with f , g, lct , Rct , �N , and� as input,
some definite n-dimensional integrals are first computed over
a stability region defined by �. A nonlinear set of differential
equations is then integrated backward in time using a fixed-step
numerical scheme like fourth-order Runge–Kutta solver, RK4
(Quarteroni et al., 2000), to compute the optimal control gains,
and the continuous-time nonlinear optimal control law is finally
obtained as the output of the algorithm.

It should be noted that this algorithm can be used alone
to synthesise optimal feedback controllers for the continuous-
time finite-time horizon nonlinear systems (See section 4.1 and
Sharifi & Damaren, 2020a).

2.2 Numerical solution to the discrete-time HJB equation

With the continuous-time optimal control gain equations, (30),
thus derived, a set of algebraic equations is developed in this
section to be solved for the optimal control gain vector associ-
ated with each jump at t = tk. With the discrete-time dynamics
(20) in mind, the impulsive Hamiltonian can be rewritten as
below:

Hds(x−
k , uds,k,V(x, tk), tk) = Lds(x−

k , uds,k, tk) + V(x+
k , t

+
k )

− V(x−
k , t

−
k ) (33)

wherein x±
k

�= x(t±k ), and V(x+
k , t

+
k ) = V(x−

k + Bdsuds,k, t+k ).
Defining Lds = lds(x−

k ) + ||uds,k||2Rds
, the discrete-time HJB

equation, (6), at t = tk can be expressed as:

min
uds,k∈Uds

{lds(x−
k ) + ||uds,k||2Rds

+ V(x−
k + Bdsuds,k, t+k ) − V(x−

k , t
−
k )} = 0 (34)

wherein lds : D → R is the discrete-time state penalty func-
tion, and Rds ∈ R

mds×mds denotes a symmetric positive-definite
matrix called the discrete-time control penaltymatrix.Minimis-
ing (34) with respect to uds,k, the discrete-time optimal control
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law, u∗
ds,k, is therefore obtained by:

u∗
ds,k = −1

2
R−1
ds B

T
ds

∂V(x+
k , t

+
k )

∂x

= −1
2
R−1
ds B

T
ds

∂V(x−
k + Bdsu∗

ds,k, t
+
k )

∂x
(35)

Armed with the discrete-time optimal control law in terms of
V(xk, tk), (35), and due to the fact that u∗

ds,k solves the impulsive
optimal control problem (8), the discrete-time HJB equation in
terms of x−

k can be accordingly formulated by substituting (35)
into (34):

HJBds(V) = lds(x−
k ) + 1

4

(
∂V(x−

k + Bdsu∗
ds,k, t

+
k )

∂x

)T

× BdsR
−1
ds B

T
ds

∂V(x−
k + Bdsu∗

ds,k, t
+
k )

∂x
+ V(x−

k + Bdsu∗
ds,k, t

+
k ) − V(x−

k , t
−
k ) = 0 (36)

Next, the truncated version of the discretized value func-
tion, (25), is substituted into (36) to obtain the following set of
algebraic equations at each jump instant, t = tk:

lds(x−
k ) + 1

4
[JTx (�N(x))|x=x−

k +Bdsu∗
ds,k

C∗
N(t+k )]TBds

× R−1
ds B

T
ds[J

T
x (�N(x))|x=x−

k +Bdsu∗
ds,k

C∗
N(t+k )]

+ �T
N(x−

k + Bdsu∗
ds,k)C

∗
N(t+k ) − �T

N(x−
k )C∗

N(t−k ) = 0 (37)

Having the knowledge of C∗
N(t+k ) available from the backward

integration of the continuous-time optimal control gain equa-
tions, (30), C∗

N(t−k ) can be computed through the preceding
set of equations. With the discrete-time optimal control gain
equations, (37), thus derived, there are two main avenues of
further formulation to approximate two unknown quantities at
each jump instant, namely x−

k and u∗
ds,k. The former is han-

dled through collocating x−
k with a suitable set of points, x̄ =

row
m

{x̄m} = [x̄1 , . . . , x̄N]n×N , while the latter is dealt with by
defining the following function (via substituting (25) into (35)
and then rearranging the resulting equation) in terms of u∗

ds,k
and x−

k with known quantities c∗j (t
+
k ), and employing an appro-

priate numerical scheme to solve the resulting nonlinear set of
algebraic equations for u∗

ds,k:

F(u∗
ds,k) = 2Rdsu∗

ds,k + BT
ds

N∑
j=1

c∗j (t
+
k )

∂φj(x−
k + Bdsu∗

ds,k)

∂x
= 0

(38)

The required tools are now in place to solve the discrete-time
optimal control gain equations, (37), for C∗

N(t−k ). To this end,
Newton’s method (Quarteroni et al., 2000) is employed to iter-
atively solve the equation F(u∗

ds,k) = 0 for u∗(i+1)

ds,k , starting with

u∗(i)

ds,k:

u∗(i+1)

ds,k = u∗(i)

ds,k −
(

∂F(u∗(i)

ds,k)

∂u∗T
ds,k

)−1

F(u∗(i)

ds,k) (39)

Substituting (38) into (39) along with use of chain rule yields:

u∗(i+1)

ds,k = u∗(i)

ds,k −
⎛
⎝2Rds + BT

ds

N∑
j=1

c∗j (t
+
k )Hx(φj(x))|x=χ+

k
Bds

⎞
⎠

−1

× (2Rdsu∗(i)

ds,k + BT
dsJ

T
x (�N(x))|x=χ+

k
C∗
N(t+k )) (40)

wherein χ+
k = x−

k + Bdsu∗(i)

ds,k, andHx is the Hessian matrix with
respect to x.

At this juncture in the development, x−
k at each jump instant

is collocated with x̄m, m = 1, . . . , N, and (40) is rewritten as
follows with x−

k = x̄m:

u∗(i+1)

ds,k = u∗(i)

ds,k −
⎛
⎝2Rds + BT

ds

N∑
j=1

c∗j (t
+
k )Hx(φj(x))|x=χ+

k,m
Bds

⎞
⎠

−1

× (2Rdsu∗(i)

ds,k + BT
dsJ

T
x (�N(x))|x=χ+

k,m
C∗
N(t+k )) (41)

where χ+
k,m = x̄m + Bdsu∗(i)

ds,k, and the convergence criteria at
each iteration can be defined as:

| ||u∗(i+1)

ds,k || − ||u∗(i)

ds,k|| | < ε or ||F(u∗(i)

ds,k)|| < δ (42)

wherein ε and δ are two sufficiently small positive arbitrary
numbers.

Initialising (41) with a suitable choice of u∗(0)

ds,k (for instance
u∗(0)

ds,k = 0), the discrete-time optimal control corresponding to
each x̄m at t = tk, u

∗
ds,k(x̄m, tk), can be therefore computed for

m = 1 , . . . , N. Utilising the spectral collocation method at
each jump instant and substituting u∗

ds,k(x̄m, tk) computed from
(41) into (37), the discrete-time optimal control gain equations
are ultimately obtained to be solved for C∗

N(t−k ) as follows:

C∗
N(t−k ) = (�−

k (x̄))−1[Wk(x̄) + �+
k (x̄)C∗

N(t+k )] (43)
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where

ϒ(x̄m) = JTx (�N(x))|x=x̄m+Bdsu∗
ds,k(x̄m,tk) C

∗
N(t+k )

Wk(x̄) = column
m

{
lds(x̄m) + 1

4
(ϒT(x̄m)BdsR−1

ds B
T
dsϒ(x̄m))

}

=

⎡
⎢⎣

lds(x̄1) + 1
4 (ϒ

T(x̄1)BdsR−1
ds B

T
dsϒ(x̄1))

...
lds(x̄N) + 1

4 (ϒ
T(x̄N)BdsR−1

ds B
T
dsϒ(x̄N))

⎤
⎥⎦
N×1

�−
k (x̄) = matrix

m , j
{φj(x̄m)} =

⎡
⎢⎣

φ1(x̄1) · · · φN(x̄1)
...

. . .
...

φ1(x̄N) · · · φN(x̄N)

⎤
⎥⎦
N×N

�+
k (x̄) = matrix

m , j
{φj(x̄m + Bdsu∗

ds,k(x̄m, tk))}

=

⎡
⎢⎣

φ1(x̄1 + Bdsu∗
ds,k(x̄1, tk)) · · ·

...
. . .

φ1(x̄N + Bdsu∗
ds,k(x̄N , tk)) · · ·

φN(x̄1 + Bdsu∗
ds,k(x̄1, tk))

...
φN(x̄N + Bdsu∗

ds,k(x̄N , tk))

⎤
⎥⎦
N×N

(44)

To succinctly summarise, the discrete-time portion of
the hybrid algorithm being proposed is initialised with
Bds, lds, Rds, Qds, and x̄ as input. Employing Newton’s method
to compute u∗

ds,k(x̄m, tk) at each jump instant, C∗
N(t−k ) is then

found through the discrete-time optimal control gain equations.
In the final step, (40) fed by x−

k and C∗
N(t+k ) is evoked at each

jump to obtain the discrete-time nonlinear optimal control as
the output of the algorithm.

It must be noted that the system (19) and (20) are assumed
to be controllable on � × [t0, tf] throughout this paper.

2.2.1 Specialisation to the LQR case
In this section, the numerical scheme employed to solve the
equation (38), and the proposed approach to drive the discrete-
time optimal control gain equations are specialised to the LQR
case to analytically evaluate the approaches being proposed. By
definingV(x, t) = xTP(t)x corresponding to the LQR case, (38)
can be written as:

F(u∗
ds,k) = 2Rdsu∗

ds,k + 2BT
dsP

+
k (x−

k + Bdsu∗
ds,k) = 0 (45)

whereP(t) denotes the time-varying Riccati solution, andP±
k

�=
P(t±k ). The proposed numerical scheme to solve (45), namely
Newton’s method, is therefore arranged as:

u∗(i+1)

ds,k = u∗(i)

ds,k − (Rds + BT
dsP

+
k Bds)

−1

× [Rdsu∗(i)

ds,k + BT
dsP

+
k (x−

k + Bdsu∗(i)

ds,k)] (46)

As is evident, when (46) is initialised by a simple choice of
u∗(0)

ds,k = 0, the discrete-time optimal control law computed via
the approximation converges to the discrete-time Riccati opti-
mal control immediately after one iteration (i.e. u∗

ds,k is the exact

solution when V(x, t) = xTP(t)x):

u∗(1)

ds,k = − [Rds + BT
dsP

+
k Bds]−1BT

dsP
+
k x

−
k (47)

With V(x, t) = xTP(t)x, the proposed approach to develop
the discrete-time optimal control gain equations can be now
assessed for the LQR case. In this regard, the discrete-
time optimal control law, (35), can be simplified as u∗

ds,k =
−R−1

ds B
T
dsP

+
k (x−

k + Bdsu∗
ds,k). Therefore:

u∗
ds,k = −[Rds + BT

dsP
+
k Bds]−1BT

dsP
+
k x

−
k (48)

which is the discrete-time Riccati optimal control law at t = tk
(Sobiesiak & Damaren, 2015a). Choosing lds(x−

k ) = x−T

k Qdsx−
k ,

substitution of V(x, t) = xTP(t)x and (48) into (36) yields:

x−T

k P+
k Bds[Rds + BT

dsP
+
k Bds]−TRds[Rds + BT

dsP
+
k Bds]−1BT

dsP
+
k x

−
k

+ x−T

k Qdsx−
k + x+T

k P+
k x

+
k − x−T

k P−
k x

−
k = 0 (49)

The discrete-time optimal control gain equations are therefore
reduced to:

P−
k = Qds − P+

k Bds[Rds + BT
dsP

+
k Bds]−1BT

dsP
+
k + P+

k (50)

which are the discrete-time Riccati-based optimal control gain
equations at t = tk (i.e. the optimal control gain vector at t = tk
is the exact solution when V(x, t) = xTP(t)x).

2.3 Hybrid nonlinear optimal control law

Armed with the continuous-time and discrete-time optimal
control gain equations, (30) and (43) respectively, the desired
hybrid nonlinear optimal control gains can be now computed at
each time instant through solving the following sets of equations
(known as the hybrid optimal control gain equations) for C∗

N(t):⎧⎪⎪⎨
⎪⎪⎩
Ċ∗
N(t) + A(t, c∗k(t))C

∗
N(t) + b = 0 , C∗

N(tf) = 0
(See (31)) t �= tk

C∗
N(t−k ) = (�−

k (x̄))−1[Wk(x̄) + �+
k (x̄)C∗

N(t+k )]
(See (44)) t = tk

(51)

Starting with the boundary conditions at the terminal time,
C∗
N(tf) = 0, the continuous-time optimal control gain equations

are first integrated backward in time to compute C∗
N(t) between

impulsive instants. At each jump instant, t = tk, an impulse is
then induced in the solution using the discrete-time optimal
control gain equations, and C∗

N(t−k ) computed at each jump is
subsequently used as a new set of terminal conditions for the
continuous-time optimal control gain equations to be integrated
backward from t−k to t+k−1. This integration process is repeated
until time zero is reached.

With the hybrid nonlinear optimal control gain vector thus
computed at each time instant, the hybrid nonlinear optimal
control law can be ultimately found by:{
u∗
ct(x , t) = − 1

2R
−1
ct gT(x , t)JTx (�N(x))C∗

N(t) t �= tk
u∗
ds,k(x

+
k , t

+
k ) = − 1

2R
−1
ds B

T
dsJ

T
x (�N(x))|x = x+

k
C∗
N(t+k ) t = tk

(52)
Shown in Figure 1, the proposed hybrid algorithm for nonlin-
ear systems is compared to the hybrid LQR approach (Sobiesiak
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Figure 1. Comparison between the proposed hybrid nonlinear optimal control (left) and the hybrid Riccati-based (LQR) control (right).

& Damaren, 2015a) applicable for linear systems wherein
V(x , t) := xTP(t)x. Defining (xeq, ueq) as desired equilibrium
for the hybrid dynamical system being considered, the dynamic
and control input matrices for the LQR case shown in Figure 1
can be respectively found by:

Act(t) = Jx(Fct(x, uct , t))|x=xeq , uct=ueq
Bct(t) = Juct (Fct(x, uct , t))|x=xeq , uct=ueq

(53)

As opposed to the LQR method wherein the state penalty
functionsmust be necessarily quadratic, lct(x) and lds(x−

k ) in the
proposed nonlinear approach can be any positive-definite func-
tion of x; although they are commonly chosen to be quadratic.

3. Practical considerations

Given the dynamics and a performance index for a hybrid
nonlinear dynamical system, three major parameters must be
appropriately chosen to apply the proposed hybrid algorithm:

• A compact set that contains the origin as an interior point
and is preferably symmetric about it,

• A set of basis functions that can adequately approximate the
value function, and

• A set of collocation points that locates inside and on the
boundaries of the compact set.

The compact set (or stability region or a bounded domain
of the state space), �, is defined as the domain of possible
values for the states. � can be determined according to some
physical, kinematical or practical limitations (physical capabili-
ties) of the system, and the likely deviation of the system states
from their nominal value of zero (Beard, 1995). For instance,
when an attitude control problem using Gibbs parameters is
concerned, the domain of the state space for Gibbs parameters
should be around [−3, 3] radians because the singularities asso-
ciated with Gibbs parameters occur at −π and π . For angular
velocity components, however, there is no kinematical limita-
tion; their stability region can be therefore chosen on the basis
of practical considerations.

The proper selection of basis functions is critical to the
design of the nonlinear optimal controllers. Two important
requirements, namely characteristic and quantity, must be sat-
isfied in order to make an appropriate choice of basis functions.
For the control to compensate adequately for the nonlinear
dynamics of the system, basis functions must be able to capture
the essential nonlinear dynamics of the system. If the system has
dynamics that are not spanned by the basis functions, then the
control will not be able to compensate for the dynamics of the
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system (characteristic requirement) (Beard, 1995; Beard et al.,
1996). The number of basis elements must also be sufficiently
large to approximate the value function with sufficient accu-
racy (quantity requirement) (Beard, 1995; Beard et al., 1996).
Therefore, the accuracy of VN depends on the characteris-
tics and quantities of the basis elements chosen to form the
approximation.

As demonstrated in Beard (1995), polynomials are proven
to work very well as basis functions in this algorithm. To the
knowledge of the current authors, the best way to find an
appropriate choice of basis functions for finite-time horizon
systems is to start with the quadratic basis elements obtained
by the second-order expansion of the states, eliminating those
terms whose corresponding control gains are either zero or
very small as compared to the other terms. The remaining
basis elements (effective quadratic terms) are then augmented by
some extra higher-order terms to capture the essential nonlin-
ear dynamics of the system, and to improve the performance
of the system. Due to multiplication of gT(x , t) and JTx (�N(x))
in the continuous-time optimal control law, (32), these extra
higher-order basis elementsmust be selected such that their par-
tial derivatives with respect to those states which correspond
to non-zero elements of g(x , t) in (32) result in desired func-
tions of the states to ultimately appear in the optimal control
law, hence capture the dominant nonlinear dynamics of the sys-
tem. For clarification, consider a four-dimensional system with
the following control input function:

g(x , t) =
[

0 0 g31 0
0 0 0 g42

]T

where x = [
x1 x2 x3 x4

]T, and g31 and g42 represent the
non-zero elements of g. In this case, any basis element consisting
of either x3 or x4 associated with g31 and g42 respectively will
show up in the optimal control law as follows:

u∗
ct(x , t) = −1

2
R−1
ct g

TJTx (�N(x))C∗
N(t)

= −1
2
R−1
ct

[
0 0 g31 0
0 0 0 g42

]⎡
⎢⎢⎣

∂φ1
∂x1 · · · ∂φN

∂x1
...

...
∂φ1
∂x4 · · · ∂φN

∂x4

⎤
⎥⎥⎦

×

⎡
⎢⎣

c∗1(t)
...

c∗N(t)

⎤
⎥⎦

= −1
2
R−1
ct

[
g31 ∂φ1

∂x3 · · · g31 ∂φN
∂x3

g42 ∂φ1
∂x4 · · · g42 ∂φN

∂x4

]⎡
⎢⎣

c∗1(t)
...

c∗N(t)

⎤
⎥⎦

Extra higher-order basis elements must be therefore chosen
such that their partial derivatives with respect to x3 and x4 give
rise to some desired functions of x to ultimately emerge in the
optimal control law, and consequently capture the significant
nonlinear dynamics of the system. For example, if the dynam-
ics consist of a nonlinear term like x21x2, basis elements of the
form x21x2x3 or x

2
1x2x4 (or even x21x2x3x4) will eventually pro-

duce x21x2 in the optimal control law to capture the nonlinear
terms involved in the dynamics.

By increasing the number of basis elements in a manner
consistent with the characteristic requirement, VN gradually
approaches to V . At a certain number of basis elements, the
hybrid performance index is ultimately converged, i.e. VN ∼=
V , and the quantity requirement is accordingly met. Hence-
forth, any further increase in the number of basis elements
yields insignificant improvement in the performance index at
the expense of computational cost. This process requires a deep
understanding of the dynamical behaviour of the system, as
well as trial and error. In addition to characteristic and quan-
tity requirements stressed above, an appropriate choice of basis
functions must also produce an invertible 〈�N ,�N〉� matrix.

It should be noted that the optimal control law (32) can be
linear or nonlinear depending upon the structure of the func-
tion g and the characteristics of the basis elements. If g is only
constant or time-dependent, (32) is linear if the basis func-
tions are only constructed by quadratic terms, and nonlinear if
�N contains extra higher-order terms as well. However, if g is
state-dependent, whether time-dependent or not, (32) might be
nonlinear even if �N only contains quadratic terms depending
on the structure of g.

A suitable set of collocation points is also necessary to design
the discrete-time optimal controller. Collocation points can
be chosen from the entire compact set excluding the origin,
provided the rank condition required to produce an invert-
ible �−

k (x̄) in (43) is satisfied. Although this rank test is the
only requirement for any set of collocation points to be admis-
sible, for those systems whose discrete-time control penalty
matrix, Rds, is desired to be minimum (to apply the largest
possible impulsive thrusts), a condition number test is also rec-
ommended. By performing this condition number test, a choice
of x̄, amongst all available candidates satisfying the rank require-
ment, which produces the smallest possible condition number
for�−

k (x̄) is obtained. This choice expands the acceptable range
of Rds from lower bound ( Rds in the denominator of (41) must
be sufficiently large for the equation to converge) and makes it
possible to choose a smaller Rds as necessary.

As might be expected, the main drawback associated with
this approach is the curse of dimensionality. Depending upon
the dimension of the state space of the system, n, the calcula-
tion of the optimal control gains,C∗

N(t), can be computationally
demanding. However, there are numerous options to deal effec-
tively with the dimensionality problem. First of all, through
judicious selection of basis functions, the curse of dimension-
ality can be significantly mitigated. For instance, under certain
conditions, the characteristics of the basis elements can be con-
fined to even polynomials in the states (Beard et al., 1997).
In addition, the structure of the algorithm can be exploited to
reduce the amount of computations from exponential to poly-
nomial growth in the dimension of the state space (Beard &
McLain, 1998b; Lawton & Beard, 1998). For example, if the
system equations are separable, and � is symmetric about the
origin, then the n-dimensional integrals reduce to iterated one-
dimensional ones (Beard et al., 1996; Beard & McLain, 1998b).
As another example, if the penalty functions involved in the
algorithm are defined to be quadratic, the weighting matrices
corresponding to both state and control penalty functions can
be taken outside the integral, thereby tuning the system compu-
tationally fast (Beard et al., 1997). Moreover, symbolic software
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is recommended to use for further alleviation of the computa-
tional cost associated with the integrations (Beard, 1995).

Lastly, all computations involved in the algorithm are per-
formed off-line (prior to implementation); once the optimal
control gains, C∗

N(t), are determined through numerically solv-
ing (51), the optimal control architecture can be implemented
in hardware and run in real time. However, there are some pos-
sibilities to facilitate the implementation of the proposed hybrid
controller. For instance, assuming a periodic or quasi-periodic
nature for the optimal control gains over the operating time,
Fourier series (Boyce & DiPrima, 1992) can be employed to
approximate the steady-state part ofC∗

N(t) by discarding the ini-
tial transient phase coming backward from tf (See section V in
Sharifi & Damaren, 2020a as an example). Rather than storing
the entire time history of C∗

N(t), the Fourier coefficients associ-
ated with Fourier-based approximation can be stored onboard.
As a consequence, not only the storage memory requirement
is significantly reduced, but also C∗

N(t) is no longer restricted to
the time interval from0 to tf (defined by user for control design),
and can be extended to any desired operating time. However,
the number of coefficients in Fourier series must be sufficiently
large to accurately capture the actual periodic part of C∗

N(t).

4. Illustrative examples

This section serves to evaluate the functionality of the pro-
posed control design framework through two examples. The
first example is a one-dimensional continuous-time linear sys-
tem for which it is easy to find the actual optimal solution.
Therefore, the results obtained by the approximation can be
compared to the exact optimal solution, thereby evaluating the
algorithm proposed in section 2.1. The second example demon-
strates the applicability of the proposed hybrid algorithm sum-
marised in Figure 1 for a four-dimensional system. In both
examples, a fixed-step fourth-order Runge–Kutta scheme (RK4)
is used to integrate the differential equations backward and for-
ward in time. In addition, the state penalty functions are chosen
to be quadratic for both examples:

lct(x) = xTQctx , lds(x−
k ) = x−T

k Qdsx−
k

where Qct and Qds are symmetric positive semi-definite matri-
ces called the continuous-time and discrete-time state penalty
matrices respectively.

4.1 One-dimensional continuous-time system

The first example demonstrates the proposed approach associ-
ated with the continuous-time subsystem for a one-state linear
systemwith time variation in the control input function, g, and a
quadratic cost. In this example, the analytical solution obtained
by solving the differential Riccati equation, as an exact optimal
solution, is used to validate the approximate solution:

ẋ = −x + sin(t)uct

Using even polynomials in x up to order eight as the basis func-
tions, the stability region and the penalty matrices are chosen
as:

�N = {x2, x4, x6, x8} , � = [ −1 1
]

Qct = 1 , Rct = 1

The numerical results are shown is Figures 2 and 3. As is appar-
ent in Figure 2, the time-varying control gains obtained from the
approximation and the Riccati solution are in complete analogy.
Interestingly, except for x2, the control gains associated with the
remaining basis elements are all zero consistent with the Ric-
cati solution. This clearly shows that the proposed algorithm
associated with the continuous-time subsystem reduces to the
differential Riccati equation, and the resulting control law is
therefore the exact optimal solution when V(x , t) := xTP(t)x.
The time histories of the state and the control effort are also
depicted in Figure 3 for x(0) = 1.

4.2 Four-dimensionalmass-spring system

For this multi-state example, the control of a two-mass two-
spring system, shown in Figure 4, is considered. Applying a
continuous-time force tomass 1 and a single impulsive action to
mass 2, the equations of motion for the system being considered

Figure 2. Control gains computed from approximation (left) and Riccati solution (right) for one-dimensional continuous-time linear system.
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Figure 3. Time histories of the state and the continuous-time control effort for one-dimensional continuous-time linear system.

Figure 4. A schematic representation of the two-mass two-spring system.

in a state-space representation can be formulated as:

ẋ =

⎡
⎢⎢⎢⎣

x3
x4
k2x2+k2α2

2x
3
2−k1x1−k1α2

1x
3
1−k2x1−k2α2

2x
3
1

m1
k2x1+k2α2

2x
3
1−k2x2−k2α2

2x
3
2

m2

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

0
0

cos(ωt)
m1
0

⎤
⎥⎥⎦ uct +

Nimp∑
k=1

⎡
⎢⎢⎣

0
0
0
1
m2

⎤
⎥⎥⎦ uds,kδ(t − tk)

where m1 = 1 kg, m2 = 0.5 kg, α1 = 1, α2 = 2, k1 = 1, k2 =
1.5, ω = 1, and δ(t) is the Dirac delta function located at each
impulse time tk.

With f (x, t), g(x, t), and Bds coming directly form the equa-
tions of motion, the domain of the states and the weighting
matrices are determined as follows:

� = [ −2 2
]
x1

× [ −2 2
]
x2

× [ −1 1
]
x3

× [ −1 1
]
x4

Qct = diag( 102 102 103 103 ), Rct = 10

Qds = diag( 102 102 103 103 ), Rds = 102

As is apparent, there are two nonlinear terms in the dynamics
of the system, namely x31 and x32. For the control to adequately

capture these nonlinear terms, the quadratic basis elements
must be thus augmented by some extra higher-order terms.
Since x3 is the only state which corresponds to a non-zero ele-
ment in g, two basis elements in the form of x31x3 and x32x3 are
accordingly selected to capture the nonlinear terms involved in
the dynamics:

�N = {x21, x1x2, x1x3, x1x4, x22, x2x3, x2x4, x23,
x3x4, x24, x

3
1x3, x

3
2x3}

To find impulsive application times for this example, the so-
called guess-and-check approach is employed. In this regard, the
hybrid performance index defined by (2) is used as a criterion
to determine the time instants which give rise to a minimum
performance index.

The time histories of the positions and velocities of m1 and
m2 for 5 equally spaced impulses with x(0) = [ 0.1 −0.2 0 0 ]T are
shown in Figure 5. As is evident, the speed of the response
is reasonably quick and well-damped for both position and
velocity. In addition, Figure 6 depicts the time histories of the
continuous-time and impulsive control inputs for the two-mass
two-spring hybrid systemwherein both control inputs are stable
after 10 s.

5. Conclusion

A novel optimal control design framework for finite-time hori-
zon hybrid nonlinear dynamical systems has been developed
in this paper. Assuming a prescribed sequence of impulsive
application times, the proposed algorithm simultaneously com-
bined a continuous-time control input with impulsive inputs
in an optimal manner. The Galerkin spectral method and the
spectral collocation technique were employed to approximate
the continuous-time and discrete-time portions of the hybrid
Hamilton-Jacobi-Bellman equation respectively. The outcome
was therefore a hybrid nonlinear control inputwhichminimised
the hybrid performance index being considered. Practical con-
siderations for implementing the proposed hybrid approach
were discussed in detail, and the applicability of the algorithm
was evaluated through two examples. The proposed hybrid
control approach possesses several advantages; 1) the approx-
imate control is in an explicit feedback formwith a well-defined
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Figure 5. Time histories of the position and velocity for two-mass two-spring hybrid system.

Figure 6. Time histories of the continuous-time and impulsive control inputs for two-mass two-spring hybrid system.

region of stability, 2) as the complexity of the approximation is
increased, VN gradually approaches to V , hence the approxi-
mation converges to the optimal control, 3) the control remains
stable when the approximation is truncated at a finite degree of
complexity, 4) the stability region is specified by the designer,
and 5) computations are performed off-line (prior to implemen-
tation). On the other hand, the algorithm suffers from the curse
of dimensionality as its main drawback. However, there are a
variety of possibilities to effectively alleviate the dimensionality
problem. The proposed algorithm has been successfully applied
to two complex real-world space problems with highly non-
linear nature, namely magnetic/impulsive spacecraft attitude
control and Lorentz/impulsive spacecraft formation flying, with
significant improvement in the performance of each system.
The results on these topics will be the subject of forthcoming
papers.
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