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The on-orbit reconfiguration of a pair of formation-flying satellites in low Earth orbit is studied in the
presence of J2–J6 gravitational perturbations. A methodology for determining a robust and accurate impul-
sive thrusting scheme is developed with the aim of minimizing reconfiguration overshoot errors and fuel
expenditure (�V ). The method uses a state transition matrix based on the Hill–Clohessy–Wiltshire linear
equations of relative motion and the analytical solution to the state-space model to solve for a pair of impul-
sive thrusts. The manoeuvre is then propagated through a fully nonlinear orbital simulator with the thrusts
implemented non-impulsively. A Sequential Quadratic Programming optimizer adjusts the inputs to the
linear state transition matrix to produce impulses that, when applied in the high-fidelity orbital propagator,
mitigates the �V of the manoeuvre while maintaining acceptable overshoot errors.

Keywords: formation-flying satellites; overshoot error; reconfiguration optimization; state transition
matrix

1. Introduction

One of the advantages of formation-flying satellites is their capability to reconfigure their forma-
tions in situ to adapt to multiple mission requirements. Methods for reconfiguring the satellites,
whether through impulsive open-loop manoeuvres or closed-loop feedback control, must be fuel
efficient, accurate, robust, and work effectively in a real orbital environment.

Dimitriu et al. (2007) proposed a formation-flying demonstration in which three satellites are
stationed in a geostationary transfer orbit. The two controlled deputy satellites must transfer
from a random disposition on an 8km sphere to a 250m isosceles triangle configuration with the
uncontrolled chief satellite. Although the control solution uses continuous thrusting with closed-
loop feedback and reference trajectory designs based on Pontryagin’s maximum principle, the
method has a very small stability region and the reconfiguration manoeuvre achieves an accuracy
of only ±8m.

Lovell and Tragesser (2004) developed a three-thrust impulsive reconfiguration scheme based
on solutions to the Hill–Clohessy–Wiltshire (HCW) equations. The scheme provides a simple and
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convenient method for transferring between different along track orbit (ATO) formations, or from
ATO formations into projected circular orbit (PCO) formations. Vaddi et al. (2005) completed
the technique by developing a dual-thrust, impulsive method for transferring between two PCO
orbits of different radii. In each case, however, the techniques are based on Keplerian mechanics
and are valid only for circular orbits.

State transition matrices (STMs) can be used in conjunction with the analytical solution of a
state-space model to develop the impulses required for reconfiguration manoeuvres. Those STMs
based on the linear HCW equations, however, are inaccurate on large time scales (i.e. one orbital
period), and researchers have sought to improve upon them. Gim and Alfriend (2003) used a
geometric method to derive an STM for formation-flying satellites in arbitrarily eccentric orbits
under the influence of J2 perturbation. The STM is presented in terms of both mean and osculating
orbital elements, but is highly complex and deemed too computationally demanding to be solved
in real-time onboard a satellite. These authors later re-examined their STM for minimum energy
reconfiguration purposes (Yan and Alfriend 2007). The resulting reconfiguration trajectories are
slow, spiral transfers between PCO orbits of differing radii, and require continuous thrusting with
feedback control. Researchers have also solved for STMs that function well in a broad range of
elliptical orbits (Yamanaka andAnkersen 2002, Lee et al. 2007).Although these STMs outperform
the HCW equations, they fail to take gravitational perturbations into consideration, which would
lead to high overshoot errors in a real orbital environment.

Optimization has been previously employed for the purposes of satellite formation reconfigura-
tion. Mailhe and Guzman (2004) used a combination of a genetic algorithm and Lawden’s primer
vector theory to find the optimal number of thrusts to minimize the overall �V requirements.
Boutonnet and Martinot (2005) also used the primer vector theory to analytically optimize fuel
consumption during satellite formation deployment. In both cases, however, the authors estab-
lished optimal reconfiguration manoeuvres in the absence of orbital perturbations, thus limiting
their practical application.

In this study, an STM based on the HCW equations is combined with an SQP optimization
algorithm to develop accurate and low �V reconfiguration manoeuvres for formation-flying
satellites. Although this method calculates the reconfiguration impulses using linearized relative
dynamics, the optimizer adjusts the inputs to the STM according to the nonlinear orbital equations
of motion with J2–J6 perturbations. Consequently, the final reconfiguration impulse solutions work
well in a realistic orbital environment. This reconfiguration method is applied to a simulation of the
CanX-4&5 formation-flying nanosatellite mission currently under development at the University
of Toronto. CanX-4&5 are scheduled to demonstrate a 1,000 m ATO formation, a 500 m ATO, a
50 m PCO, and finally a 100 m PCO. The satellites will perform 50 orbits in each formation, and
to transition between each formation they will implement the reconfiguration method developed
in this study.

2. Baseline reconfiguration manoeuvres

Of the reconfiguration manoeuvres previously discussed, only the methods used by Lovell
et al. (2004) and Vaddi et al. (2005) offer a simple, impulsive scheme for transferring from
ATO → ATO,ATO → PCO, and PCO → PCO formations, as required by the CanX-4&5 mission
request for proposal. This method, therefore, will be used in this study as a baseline reconfiguration
method for comparison purposes. A brief review of this method is presented here for reference.
All three reconfiguration manoeuvres are based upon the HCW equations, a set of linearized
equations of relative motion describing the short-term dynamics of the deputy in a local-vertical
local-horizontal (LVLH) reference frame centred in the body of the chief. The HCW equations
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are given by Clohessy and Wiltshire (1960) as

ẍ − 2ωẏ − 3ω2x = 0

ÿ − 2ωẋ = 0

z̈ + ω2z = 0

(1)

where ω = √
μ/R3 is the mean orbital rate. These equations are derived under the assumption

that the chief is in a circular orbit, that the relative separation between the two spacecraft is
negligible compared with the orbital radius, and that no perturbations act on either spacecraft.
These assumptions reduce the long-term predictive power of the HCW equations in a real orbital
environment. Nevertheless, the equations are still useful: their periodic solutions can be used to
develop a set of impulses to transfer a spacecraft between two relative states in the LVLH frame.
The set of HCW solutions used to design the baseline reconfiguration manoeuvres by Lovell
et al. (2004) and Vaddi et al. (2005) are

x = −c1

2
cos(ωt + β) + c4

y = c1 sin(ωt + β) + c3 − 3

2
ωtc4

z = c2 sin(ωt + β)

(2)

where ci is the coefficient of integration and β is the initial reference trajectory phase angle.
Note that c4 corresponds to the difference between the chief and deputy orbital radii, and must
be set to 0 to obtain bounded relative motion. These solutions can also be employed as formation
reference trajectories in the LVLH frame. For ATO formations, c1 = c2 = 0, and c3 = relative
spacecraft separation. For PCO formations, c1 = c2 = relative circular orbit radii, and c3 = 0.
Using the periodic solutions to the HCW equations given in Equation (2), Lovell et al. (2004)
derived a set of general impulsive reconfiguration manoeuvres forATO → ATO andATO → PCO
manoeuvres. Vaddi et al. (2005) used a set of non-singular orbital element differences to develop
a two-impulse manoeuvre for the PCO → PCO transition. Each impulse is implemented at a
specific phase angle β of the relative orbit and in the LVLH direction indicated by the subscript.
The equations describing all three baseline manoeuvres are shown in Table 1.

In Table1, c1 and c2 are the coefficients of integration from Equation (2), ω is the circular orbital
rate, and N is the number of orbits over which the manoeuvre is performed. For the ATO → ATO
and ATO → PCO manoeuvres, �c1 = c1f − c1i , and �c2 = c2f − c2i , where the subscripts i

and f denote quantities before and after the manoeuvres respectively. For the PCO → PCO
manoeuvre, [δa, δq1, δq2, δi, δ�, δλ] are non-singular orbital element differences, which are
derived by Vaddi et al. (2005), and γ = √

a/μ, where a is the semi-major axis of the orbit.

Table 1. Baseline impulsive reconfiguration manoeuvres derived by Lovell et al. (2004) and Vaddi et al. (2005).

β (rads) ATO → ATO ATO → PCO PCO → PCO

0 �Vy = − 1

6Nπ
ω�c2 �Vy = 1

16
ω�c1 − 1

6π
ω�c2 �V =

[
−

√
δq2

1 + δq2
1

2γ
0 −

√
δi2 + δ�2 sin2 i

γ

]T

π/2 – �Vz = −ω�c1 –

π – �Vy = − 1

8
ω�c1 �V =

[√
δq2

1 + δq2
1

2γ
0 0

]T

2π �Vy = 1

6Nπ
ω�c2 �Vy = 1

16
ω�c1 + 1

6π
ω�c2 –
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To test the baseline reconfiguration method on the CanX-4&5 mission, a fully nonlinear orbital
simulation was developed. A low Earth, sun-synchronous orbit was selected with the orbital
elements presented in Table 2. A fourth-order Runge–Kutta integration method with a time step
of 0.1 s was used to propagate the nonlinear orbital equations of motion of each satellite, which
are given in the geocentric inertial reference (GCI) frame as

R̈c = −μRc

R3
c

+ F(Rc)pert (3)

R̈d = −μRd

R3
d

+ F(Rd)pert + ui (4)

where the c and d subscripts refer to the chief and deputy satellites respectively, μ is Earth’s
gravitational constant, ui is the control force per unit mass applied to the deputy during formation-
flying manoeuvres, and F(R)pert is the perturbing force acting upon each satellite. In low Earth
orbit, the principle perturbing force is the J2 zonal harmonic of the gravitational field, produced
by the oblate shape of the Earth. Higher order terms, from J3 to J6, play a smaller role, but were
also included in this orbital simulation. The impulses presented in Table 1 are given in the LVLH
frame. It is necessary to rotate impulses into the GCI frame before applying them to the orbital
equations of motion. The rotation matrix relating the GCI frame to the LVLH frame is

CT
hi(t) =

[
Rc

Rc

Hc × Rc

|Hc × Rc|
Hc

Hc

]
(5)

where Hc = Rc × Ṙc is the chief’s angular momentum per unit mass. Once the impulse directions
are known in the GCI frame, the impulses are converted into thrusts in order to realistically
simulate the reconfiguration manoeuvres. This is accomplished by solving for the thruster on-
times, given by

Ton = �V

Umax
(6)

where Umax = 0.0008475 N/kg and is the force per unit mass exerted by the CanX-4&5 thrusters
(i.e. a force of 5 mN for a 5.9 kg nanosatellite). The thrusts are then implemented by projecting
Umax in the direction of the impulses to form ui , and then integrating Equations (3) and (4)
over Ton.

The thrusters on CanX-4&5 are sized for low-impulse formation maintenance manoeuvres.
Therefore, the deputy must thrust for extended periods of time in order to generate the �V values
required for each reconfiguration manoeuvre. With the high Ton values, the reconfiguration thrusts
no longer approximate impulses, which is one of the key assumptions of the baseline method. In
addition, these manoeuvres are based on the HCW solutions, which assume a circular orbit with no
gravitational perturbations. When the orbital simulation includes eccentricity, J2–J6 perturbations
and non-impulsive thrusts, the baseline reconfiguration manoeuvres break down and become
highly inaccurate.

Table 2. Orbital elements for CanX-4&5 mission.

Eccentricity 0.025
Right ascension 99.56◦
Argument of perigee 0◦
Altitude at perigee 550 km
Time of perigee passage 0 s
Inclination 97.6◦
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Table 3. The performance of the baseline reconfiguration
method applied to CanX-4&5.

Manoeuvre �V (m/s) Ex (m)

1,000 m ATO → 500 m ATO 0.0559 74.97
500 m ATO → 50 m PCO 0.1152 37.97
50 m PCO → 100 m PCO 0.06749 14.62

The metrics used to assess each reconfiguration manoeuvre are �V , representing the fuel cost,
and the position overshoot error1, defined as

Ex =
√

x̃2
1 + x̃2

2 + x̃2
3 =

√
(x − xT )2 + (y − yT )2 + (z − zT )2 (7)

where [x, y, z] is the deputy’s actual relative position at the end of the reconfiguration manoeuvre
and [xT , yT , zT ] is the target relative position. Table 3 contains the performance metrics when
each baseline reconfiguration manoeuvre from Table 1 is adapted specifically to the CanX-4&5
mission. The high overshoot error values would be unacceptable in an actual formation-flying
mission. Clearly, a reconfiguration method that works in a real orbital environment is required.

3. Analytical solution to a state-space model

The analytical solution of the state-space model for the satellites provides an alternate method for
calculating the impulses required to reconfigure a satellite formation. The state-space represen-
tation of the deputy’s relative dynamics with respect to the chief (in the LVLH frame) is given
by

ẋ(t) = Ax(t) + Bu (8)

where x(t) = [x y z ẋ ẏ ż]T , A is the system matrix containing the linearized HCW dynamics,
B is the input matrix, and u is the control force (per unit mass) matrix. The deputy’s state at any
time t is given by the analytical solution of this state-space model

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ )dτ (9)

Given that the state is a 6 × 1 column matrix, it is necessary to have two separate three-component
impulses to render the problem square and solvable.When the impulses are discretized, the integral
in Equation (9) can be replaced by the sum of the two impulses

x(t) = �(t, 0)x(0) + B1û1 + B2û2 (10)

where Bi = �(t, ti)B, ti is the time at which impulse i is performed, û1 and û2 are the two recon-
figuration impulses in the LVLH frame, and �(t, ti) = eAt is the STM for the HCW dynamics.
�(t, ti) must satisfy the following properties:

�(ti , ti) = 1 (11)

�̇(t, ti) = A�(t, ti) (12)
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The HCW STM is given analytically by Melton (2000) as

�(t, ti) =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 − c 0 0 s/ω 2(1 − c)/ω 0
6(s − ω�t) 1 0 −2(1 − c)/ω (4s − 3ω�t)/ω 0

0 0 c 0 0 s/ω

3ωs 0 0 c 2s 0
−6(s − ω�t) 0 0 −2s 4c − 3 0

0 0 −ωs 0 0 c

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

where �t = t − ti , s = sin(ωt) and c = cos(ωt). By rearranging Equation (10), and setting the
final relative state to the target state, x(t) = xT (t), the two reconfiguration impulses can be
determined simultaneously:

[
û1

û2

]
= [B1 B2]−1(xT (t) − �(t, 0)x(0)) (14)

Thus, for given impulse times t1 and t2, we can solve for the two impulses û1 and û2 required
to transfer the deputy from the initial relative state x(0) to the final target state of xT (t). These
impulses can be applied to the orbital model by first rotating them into the GCI frame, determining
their individual Ton values from Equation (6), and then solving for the accelerations ui . Finally,
Equations (3) and (4) are integrated over the full reconfiguration time (typically one orbital period)
with each thrust applied over the interval [ti , ti + Ton_i].

4. State-transition-matrix optimization method

Since the dynamics of the STM are based on the linear HCW equations, the impulses calculated
from Equation (14) do not accurately reconfigure the formation when they are applied in a realistic,
nonlinear orbital propagator. The principal advantage of the HCW dynamics, however, is that a
simple analytical form of the STM exists, allowing calculations to be carried out with a minimum
amount of computational effort. CanX-4&5 satellites will be equipped with on-board computers
dedicated to running a formation-flying control algorithm. Each computer will feature a 7 MHz
ARM7 microcontroller with 2 MB of SRAM and 256 MB of flash memory. As a result of the very
limited processing power of these computers, the formation-flying control algorithm—including
the formation reconfiguration code—must be computationally efficient, even at the expense of
performance accuracy.

The inaccuracies of the HCW STM can be circumvented by posing the reconfiguration impulse
design as an optimization problem. In Equation (14), ti , the time at which each impulse is per-
formed during the reconfiguration orbit, is an independent variable that can strongly affect the
accuracy of the manoeuvres. By optimizing the ti value for each impulse and determining its
effects on the reconfiguration accuracy using a high-fidelity orbital propagator, it is possible to
design reconfiguration manoeuvres which are accurate, have moderate �V requirements, and
work in a realistic, nonlinear orbital simulator.

The STM optimization problem can be posed as:

Minimize : �Vtotal =
2∑

i=1

�Vi, where �Vi = UmaxTon_i



Engineering Optimization 425

With respect to : t1 and t2

Subject to : |x̃i | ≤ 2.5, for i = 1, 2, 3

|ṽi | ≤ 0.1, for i = 1, 2, 3

0 ≤ t1 < t2 < Tperiod

where Ton_i is the individual thruster on times, t1 and t2 the start time for each impulse, and x̃i and
ṽi are the position and velocity overshoot errors in each coordinate direction of the LVLH frame,
as defined in Equation (7). After a full exploration of the design space (see Sections 4 and 5),
constraints of 2.5m on the position overshoot error and of 0.1 m/s on the velocity overshoot error
were selected for the CanX-4&5 mission. The constraints on the impulse times simply indicate
that the first impulse should not occur prior to beginning the reconfiguration orbit, that the first
impulse should precede the second, and that the second impulse must occur before the end of
the reconfiguration orbit. �Vtotal was selected as the objective function even though the main
impetus for the new reconfiguration scheme is to minimize the overshoot errors associated with
the manoeuvre. The reasons for this are twofold. First, �Vtotal represents the fuel requirements
of each reconfiguration manoeuvre, and minimizing this value is desirable. Second, the overshoot
errors have six components, whereas the �Vtotal has only one, which simplifies the optimization
process. Therefore, �Vtotal is minimized with tight constraints applied to the overshoot errors
such that, when a feasible solution is found, the manoeuvre will have an acceptable accuracy for
a minimum �V .

It would be technically possible to structure the reconfiguration optimization around the fully
perturbed, nonlinear equations of orbital motion and forgo the STM altogether. Such an opti-
mization problem, however, would require eight design variables (the three Cartesian impulse
directions plus the ti value for each of the two impulses), increasing the complexity of optimiza-
tion procedure significantly. By including the STM, the six impulse directions are solved for
us, simplifying the optimization problem to two design variables. And although these impulse
directions are initially inaccurate because of the linear HCW dynamics, the optimizer adjusts the
ti values to compensate and achieve accurate solutions.

The STM optimization algorithm is outlined in Figure 1. The main point of this algorithm is
that, although the impulses are computed using the linear dynamics of the HCW equations, they
are optimized using the full, nonlinear orbital equations of motion with J2 to J6 perturbations
and implemented non-impulsively. The final impulse solutions would not be accurate in a simple,
linearized orbital simulation, but they have been optimized to function correctly in a realistic,
nonlinear environment.

In Figure 1, x(t) = [x y z ẋ ẏ ż]T in the LVLH frame and X(t) = [Rc Ṙc Rd Ṙd ]T in the GCI
frame, where Rc = [XYZ]T , etc.

Since the optimization problem is highly constrained, Sequential Quadratic Programming
(SQP) was selected to optimize the �Vtotal value for each reconfiguration manoeuvre. SQP is a
robust optimization algorithm which models the function at the current point as a quadratic approx-
imation and then uses the minimum of that model to find the next point. During each optimization
step, a Hessian matrix is assembled from the second-order partial derivatives of the function and
is used in combination with a Jacobian of the constraints to determine the optimization search
direction, p. A step length in the direction of p is found from a simple back-tracking line search
that tests for a sufficient decrease of φ(t1, t2, μ), a penalized objective function defined as

ϕ(t1, t2, μ) = f (t1, t2) + 1

μ
‖∇c‖ (15)

where μ is a positive penalty parameter and ‖∇c‖ is the L1 norm of the constraints.
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Figure 1. The state-transition-matrix optimization algorithm.

5. Design-space exploration

The formation-flying reconfiguration optimization problem consists of two design variables and
a single objective function subject to multiple constraints, making it possible to completely
explore the design space for each manoeuvre. This is useful for identifying feasible regions
to select as the starting points for the STM optimization procedure described in Figure 1. Figure 2
illustrates the design-space surface for the 1,000 m ATO → 500 m ATO manoeuvre. The promi-
nent ridge dominating the centre of the design space is an artefact caused by the STM: when the
two impulse start times are equal, the matrix [B1 B2]−1 in Equation (14) is singular. As a result,
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Figure 2. The design space for the ATO → ATO reconfiguration manoeuvre optimization.

the impulses û1 and û2 are divergent. In addition, t1 > t2 on the right side of the ridge. Since this
violates one of the optimization constraints, this region is unfeasible and is ignored.

In the absence of constraints, the region of interest in Figure 2 is unimodal and smooth. Figure 3
illustrates the constrained design space, where a contour plot of the objective function is shown
with the contours of the constraints, ci , overlaid at ci = 0 (for i = 1, 2 . . . 9).

The active constraints are the x̃1 and x̃2 overshoot errors. The intersection between these two
constraints form small, isolated feasible regions. The constrained design space is multimodal, pre-
senting difficulties for the optimization algorithm. As a gradient-based optimizer, SQP performs
best when the starting point lies in a feasible region. In this study, the need for tight constraints
on the overshoot errors has reduced the size of the feasible regions to the point where random
starting locations will mostly be unfeasible. A domain-spanning optimization method, such as a
genetic algorithm with penalty functions to approximate the constraints, would be applicable but
could easily miss the small global minimum and would not be as precise as the SQP method.
Instead, by using Figure 3 to identify the local minima, it is possible to select a starting point
for the SQP method in each of the feasible regions and allow the optimizer to precisely locate
the global minima. It is worth noting that �Vtotal and Ex are competing metrics: tightening the
constraints to reduce Ex will shrink the feasible regions in Figure 3, and the current global min-
imum will be quickly eliminated. The next local minima to the right will take its place as the
global minimum, but with a higher �Vtotal value than the original. This performance trade-off is
analysed in Section 5.

Figure 4 shows a contour plot of the constrained design space for the ATO → PCO manoeuvre.
Like the contour plot for the ATO → ATO manoeuvre, the feasible regions are small, isolated
areas defined by the x̃1 and x̃2 overshoot error constraints. Since the series of feasible regions runs
parallel to the contours of the objective function, tightening the constraints will simultaneously
reduce the size of all feasible regions. The secondary ridge which dominates the centre of Figure 4
is caused by the stronger impulses necessary to implement the plane change near the perigee during
the ATO → PCO manoeuvre.

Figure 5 shows the contour plot of the constrained design space for the PCO → PCO manoeu-
vre. The feasible region is much larger than the previous manoeuvres with an easily identifiable
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Figure 3. Contour plot for the ATO → ATO manoeuvre optimization.

Figure 4. Contour plot for the ATO → PCO manoeuvre optimization.
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Figure 5. Contour plot for the PCO → PCO manoeuvre optimization.

global minimum and no local minima. At the global minimum, the active constraints are t1 ≥ 0
and x̃2 ≤ 2.5 m. There is a direct trade off between the x̃2 constraint and the �Vtotal objective
function: relaxing x̃2 will decrease the �Vtotal values but increase the overshoot errors, and vice
versa.

6. Performance trade-off

As previously mentioned, the �Vtotal requirements and overshoot errors are competing metrics in
the reconfiguration optimization procedure. The direct relationship between these metrics can be
assessed for each manoeuvre by alternately tightening and relaxing the overshoot error constraints
and determining the impact on the �Vtotal value of the optimized solution. This will establish
a Pareto frontier of potential reconfiguration designs based on different weighting choices for
each metric. This enables us to select a design which strikes an appropriate balance between fuel
requirements and overshoot errors while avoiding Pareto inefficient design choices that do not lie
on the frontier.

Figure 6 shows the Pareto frontier for the ATO → ATO manoeuvre. The baseline reconfigura-
tion manoeuvre is also indicated on this graph, and since it lies far inside the Pareto frontier, it is
not Pareto efficient and therefore not a viable reconfiguration design option. Any of the designs
lying along the frontier would offer superior performance, but since more emphasis is placed
on manoeuvre accuracy in this study, a design on the upper left section of the frontier has been
selected as the final solution.
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Figure 6. Pareto frontier for the ATO → ATO manoeuvre design.

Figures 7 and 8 show the Pareto frontiers for the ATO → PCO and PCO → PCO reconfigu-
ration manoeuvres. In each case, the baseline manoeuvres are also identified and are clearly not
Pareto efficient. The selected reconfiguration solution is represented by a circle in each case.

Figure 7. Pareto frontier for the ATO → PCO manoeuvre design.
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Figure 8. Pareto frontier for the PCO → PCO manoeuvre design.

It should be noted that is it not possible to extend the Pareto frontiers to zero overshoot error,
since the feasible regions in Figures 3–5 disappear as Ex → 0. This inability to achieve perfect
accuracy is due to the inherent limitations of the linear HCW STM.

7. Reconfiguration optimization results

The feasible region containing the global minimum was identified in the design space of each
reconfiguration manoeuvre. A starting point [t1, t2] was selected from the feasible region and the
optimizer was run. In each case, the orbital simulator propagated the nonlinear orbital equations
of motion (Equations [3] and [4]) with J2–J6 perturbations using a fourth-order Runge–Kutta
method with a time step of 0.1 s. All thrusts were implemented non-impulsively with the thrust
level set to 5 mN, as determined by the CanX-4&5 propulsion system. The orbital elements used
for each simulation are given in Table 1.

Since the optimization problem was well posed and the objective function unimodal within the
feasible region(s), the SQP optimization algorithm was able to readily converge to the constrained
global minimum for each manoeuvre. Figure 9 depicts the convergence of the SQP algorithm for
theATO → ATO manoeuvre from three separate starting points in the feasible region. In each case,
the algorithm converges within 6–13 iterations. Similarly, the ATO → PCO and PCO → PCO
manoeuvres converge to their respective global minima within approximately 15 iterations when
the starting points lie within the appropriate feasible regions. Note that the large dips in Figure 9
below the convergence level occur when the optimizer steps outside of the feasible region.

Once the optimization algorithm had located the global minimum for each manoeuvre, the
resulting impulse start times and corresponding Ton values were used to test the reconfiguration
trajectory solutions in a fully nonlinear simulation (including J2–J6 perturbations). Figures 10–12
show the STM optimized reconfiguration trajectory solutions projected onto the xy-plane and
yz-plane of the LVLH reference frame. The small cross represents the initial relative position of
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Figure 9. Convergence of the ATO → ATO manoeuvre optimization.

Figure 10. The 1,000 m ATO → 500 m ATO reconfiguration manoeuvre.

the deputy, the circle identifies the target state, and the large cross represents the location of the
chief.

Table 4 contains the performance metrics of each STM optimized reconfiguration manoeuvre.
As anticipated, the SQP optimizer located the global minimum on the overshoot constraints for
each manoeuvre. As a result, the accuracy of the manoeuvres has been significantly improved over
the baseline for marginal increases in the �V requirements. The thrust start times assume that
the reconfiguration manoeuvres begin at t = 0 sec and end one period later at t = T = 5955 sec
for the ATO → ATO and ATO → PCO, and end at t = T/2 for the PCO → PCO manoeuvre.

Table 5 gives the change in each metric between the baseline and STM optimized method.
In each case, the STM optimized trajectories reach the target positions with a much greater
accuracy than the equivalent baseline trajectories. But this improved accuracy comes at the cost of
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Figure 11. The 500 m ATO → 50 m PCO reconfiguration manoeuvre.

Figure 12. The 50 m PCO → 100 m PCO reconfiguration manoeuvre.

Table 4. The performance of the state transition matrix optimization method applied to CanX-4&5.

Manoeuvre Impulse direction (LVLH) [t1, t2] (s) [Ton−1, Ton−2] (s) �V (m/s) Ex (m)

1,000 m ATO → 500 m ATO

⎡
⎣0.8176

0.5758
0

⎤
⎦,

⎡
⎣ 0.8267

−0.5626
0

⎤
⎦ [4.35, 4768.73] [51.57, 51.54] 0.0880 2.713

500 m ATO → 50 m PCO

⎡
⎣ 0.6574

0.4199
−0.6258

⎤
⎦,

⎡
⎣ 0.6259

−0.4107
−0.6631

⎤
⎦ [854.15, 5183.20] [73.47, 74.31] 0.1204 3.297

50 m PCO → 100 m PCO

⎡
⎣0.05133

−0.2309
−0.9716

⎤
⎦,

⎡
⎣ 0.9210

0.3891
0.01863

⎤
⎦ [0.57, 1639.69] [63.93, 37.69] 0.0849 3.491

increased �V requirements. CanX-4&5 are allocated approximately 300 mL of liquefied sulphur-
hexafluoride (SF6) as a propellant. With an ISP of 35 s, this provides a total �V = 14.22 m/s.
Table 5 gives the percentage of the total �V being used by the STM optimized reconfiguration
manoeuvres. In total, the STM optimized manoeuvres account for 2.063% of the available �V ,
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Table 5. The change in performance metrics between the baseline and STM optimized manoeuvres.

Manoeuvre Change in �V (m/s) % of total �V Change in Ex (m)

1,000 m ATO → 500 m ATO +0.0321 0.6188 −71.29
500 m ATO → 50 m PCO +0.0052 0.8467 −34.67
50 m PCO → 100 m PCO +0.0174 0.5970 −11.13

whereas the baseline manoeuvres would account for only 1.678%. This amounts to a 0.385%
increase in �V required by the new reconfiguration manoeuvres, which is deemed an acceptable
cost for such a significant improvement in manoeuvre accuracy.

8. Thrust timing error analysis

In the simulated orbital environment developed for this study, it is possible to implement the
STM optimized reconfiguration impulses at precisely the right time to achieve highly accurate
manoeuvres. On orbit, however, higher order gravitational harmonics and atmospheric drag will
perturb the formation to a greater extent than predicted by our orbital propagator.After performing
50 orbits in each formation, it is conceivable that these perturbations will introduce some phase
lead or lag into the relative orbits. In reality, therefore, the deputy might not have the same relative
state as that predicted by the simulator, and the reconfiguration impulses would be implemented
at the wrong times. Although these timing errors could be minimized by increasing the fidelity of
the orbital simulator, it is instructive to determine the robustness of each reconfiguration solution
found in this study using just J2–J6 perturbations.

To this end, timing errors were introduced systematically to all three manoeuvres: the start
time of each impulse was varied between −10 sec and +10 sec from its optimal value, and the Ex

values were recorded. The resulting increases in the overshoot error are shown in Table 6. The bold
values represent the overshoot errors when one impulse start time, either t1 or t2, is held constant
while the other is varied. The centre value of each 3 × 3 grid indicates the optimized value,
where �t1 = �t2 = 0. A few general trends can be observed in Table 6. For the ATO → ATO
and ATO → PCO manoeuvres, the �t2 = 0 column of each 3 × 3 grid indicates that the accuracy
of the reconfiguration is relatively insensitive to timing errors on the first impulse. Values in the
�t1 = 0 row show that the manoeuvres are highly sensitive to errors on the second impulse,
however. For the PCO → PCO manoeuvre, the accuracy is least affected by changes in the
diagonal where both thrusts are either too early or too late. For all other timing combinations,
however, the overshoot errors increase substantially.

Table 6. Thrust timing error analysis.

Ex (m)

Manoeuvre �t2 �t1 −10 sec 0 sec +10 sec

1,000 m ATO → 500 m ATO −10 sec 68.2 6.9 58.0
0 sec 60.2 2.71 61.3

+10 sec 55.3 8.6 64.6
500 m ATO → 50 m PCO −10 sec 71.1 10.1 76.6

0 sec 70.6 3.29 75.7
+10 sec 68.9 10.3 74.8

50 m PCO → 100m PCO −10 sec 5.7 15.1 30.6
0 sec 15.0 3.49 18.9

+10 sec 34.2 17.6 9.8
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9. Conclusions

Using an STM based on the linear HCW equations and an SQP optimization algorithm acting on a
realistic, fully non-linear orbital simulation, a new method for calculating optimal reconfiguration
thrusts for formation-flying satellites was presented. This STM optimization technique was applied
to the CanX-4&5 mission plan, which calls for reconfiguration manoeuvres between along track
orbit formations and projected circular orbit formations. In each case, the method greatly improved
the accuracy of the reconfiguration manoeuvres over the baseline reconfiguration strategy for
a marginal increase in the �V requirements. Furthermore, the method is relatively robust to
timing errors on the first thrust in the sequence, and is simple to implement from an engineering
standpoint.

Note

1. A similar equation can be written for the velocity overshoot error, Ev =√
(vx − vxT )2 +(vy − vyT )2 + (vz − vzT )2.

However, the velocity errors associated with the reconfiguration manoeuvres in this study are comparatively low and
as such Ev is not considered a primary performance metric. The velocity errors are still considered as optimization
constraints in Section 3.
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