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Passivity Analysis for Flexible Multilink Space Manipulators

Christopher J. Damaren*
Royal Roads Military College, FMO Victoria, British Columbia VOS 1BO, Canada

The important input-output property of passivity is explored for a general flexible space manipulator with chain
topology. The manipulator is assumed to consist of rigid and/or flexible links interconnected via revolute joints,
and a free rigid spacecraft and cantilevered payload are modeled at the base and tip, respectively. Actuation on the
spacecraft and torques at the joints serve as control inputs and a suitably modified input variable is constructed.
The notion of reflected tip position introduced by Wang and Vidyasagar for a single flexible link is extended
to the multilink case and used to define a corresponding modified output variable. The dynamics governing the
system are developed using a Lagrangian approach and both linearized and nonlinear forms of the mapping
relating modified inputs to modified outputs are examined. Our major result shows that the transfer function in
the linear case is positive real when the spacecraft and payload are much more massive than the manipulator links.
The corresponding nonlinear analysis shows that the mapping is, in fact, passive and uncovers an approximate
static relationship between the elastic coordinates and applied torques. A numerical example employing the Space
Shuttle, remote manipulator system, and payload is used to demonstrate the validity of the theoretical results.
Applications to control system design are indicated.

I. Introduction

C OLLOCATION of sensors and actuators has played an impor-
tant role in the control of flexible structures. It is well known

that the transfer matrix relating collocated force (torque) actuators
to translational rate (angular rate) sensors is positive real (PR).1
Hence, by one form of the passivity theorem, any strictly positive
real (SPR) compensator will stabilize the system. It is important
to note that the property of positive realness holds regardless of
modal uncertainty and the number of modeled vibration modes.2'3
Hence, the stability of the closed-loop system is robust with respect
to uncertainty in these quantities. Although PR and SPR are terms
usually restricted to linear, time-invariant systems, their generaliza-
tions, passivity and strict passivity, can be used to establish stability
for nonlinear systems. For robot manipulators modeled as chains of
rigid bodies, it is known that the forward dynamics map from joint
torques to joint rates (assuming revolute joints) is passive.4 In this
situation, passivity stems from the inherent collocation and cannot
be defeated by the configuration dependence of the mass matrix.
Hence, any strictly passive feedback controller will stabilize the
system. This is one way of establishing the stability provided by
joint-space proportional-derivative control. Plants which satisfy a
passivity constraint are also amenable to model reference adaptive
control techniques.4'5

Space manipulators are characterized by large, lightweight mem-
bers which exhibit significant structural flexibility. Vibration sup-
pression of the Shuttle remote manipulator system (RMS) will be
beneficial to space station subassembly,6 and it will be necessary
for fast, accurate tracking of the next generation of space manip-
ulators. One of the challenges posed by these structures is control
of both joint and elastic motion with fewer actuators than degrees
of freedom. For structurally flexible robot arms, the passivity of the
dynamics relating joint torques to joint rates can still be established
which will emerge as a special case of the results presented here.
However, this is a less useful result since the end-effector motion
depends on the elastic deformations as well. The inherent noncol-
location between joint-based torque actuation and the end-effector
motion has long been noted as the basic problem in control of these
structures. In fact, it has been pointed out that in the case of a single
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flexible link, the transfer function relating joint torque to tip velocity
is nonminimum phase7 and hence cannot be PR.

Given the desirability of the passivity property, some research has
concentrated on modifying the input and/or output of systems so as
to realize this property.8"11 For example, Wang and Vidyasagar10

have introduced the notion of reflected tip position for a single flex-
ible link. They viewed the tip position as being the sum of a rigid
contribution from the joint angle and an elastic contribution stem-
ming from the tip deflection. They defined the reflected tip position
as the rigid portion less the elastic part and showed numerically that
the transfer function from root torque to reflected tip rate is passive.
This was rigorously demonstrated by Pota and Vidyasagar11 using
the properties of the pinned-free modes of the link. The extension
to the case with hub inertia has been treated,12 and passivity over a
range of frequencies was demonstrated for a sufficiently stiff link.

Although a single pinned flexible beam is a useful starting point,
it does not exhibit many of the complex characteristics of flexi-
ble multilink manipulators operating in space. These include mul-
tiple inputs and outputs, coupling to the spacecraft dynamics, and
configuration-dependent mass matrices. In this work, we extend the
concept of reflected tip position to a general flexible space manip-
ulator. It is assumed to be hinged to a free rigid spacecraft and a
rigid payload is cantilevered at the end effector. Our main result fol-
lows from assuming that the masses of the spacecraft and payload
are much greater than those of the individual links. This assump-
tion is not unduly restrictive for many manipulation scenarios in the
space environment. It is shown that in this asymptotic situation, the
mapping relating special inputs and outputs is passive.

In Sec. II, we develop the motion equations using a Lagrangian
approach with an emphasis on the kinematics describing the space-
craft and payload velocities. These are subsequently linearized in
Sec. Ill, and the mode shapes are examined. The transfer function re-
lating suitably modified inputs and outputs is developed and shown
to be positive real for special outputs under the massive spacecraft
and payload assumption. Key ideas borrowed from the single link
analysis are the notion of tip reflection and the use of unconstrained
vibration modes. Although this result holds for the linearized form
of the motion equations, the extension to the nonlinear setting is
tackled in Sec. IV. A byproduct of this approach is an approximate
static relationship relating the applied torques to the elastic coor-
dinates. Although the linear results are subsumed by the nonlinear
analysis, the former approach yields much insight into the struc-
ture of the motion equations and the vibration modes. A numerical
demonstration of the results is provided in Sec. V for a model of
the Space Shuttle, the remote manipulator system, and a payload.
The results fully support the theoretical analyses. Applications to
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DAMAREN: FLEXIBLE MULTILINK SPACE MANIPULATORS 273

control system design and an indication of future directions are
provided.

II. Equations of Motion
The following development is restricted to a chain of bodies,

[Bo,..., BN+I], as shown in Fig. 1. We locate a reference frame Fn
in Bn which in the case of the manipulator links, n = 1 , . . . , N,
is assumed to coincide with the inboard articulation point, On. The
links are taken to be rigid or flexible and interconnected with single-
DOF revolute joints. BQ is a free spacecraft which is modeled as a
rigid body and cantilevered to the end of BN is a rigid pay load, BN+i.
Hence, its body-fixed frame FN+l locates the end effector.

The generalized Cartesian position of the spacecraft, pQ(t), is de-
scribed relative to an inertial frame TI . The vector p0 (t) is a six-tuple
whose upper half consists of the position coordinates RQ and whose
bottom half contains three integrable attitude coordinates (i.e., Euler
angles) parameterizing the rotation matrix C0/. The joint angles are
On(t), n e [1, AH, 0 = col{#n(f)K and the elastic deflections unt6
are discretized using shape functions i/jna that satisfy cantilevered
boundary conditions at On:

For BQ, we shall express the generalized velocity as

v0 = P0(Po)Po (4)

where p0(t) has been described earlier. Hence, P0 = diag{C0/(p0),
EQI (Po)l where EQI is the configuration-dependent matrix mapping
Euler rates into angular velocity. For the case n = — 1, Eq. (3) is
valid provided P,,+i^n+i is replaced with PoPo- F°r the payload,
we take P^+i = 0 and make the identification vt = VN+I where t
connotes tip. We further define the Jacobian-type matrices

(5)
te = matrix{r/J,m+15m+i,m}

Jo — TN+I,QPQ, J e — row{rj

J e = row{r^+i,OT+i5m+i)OT}

where n , m = 1 , . . . , TV and the composite interbody transformation
matrices are given by

Aqn,e — (1)

The ensemble of elastic coordinates describing the flexible deforma-
tions will be designated qe(t) = co\{qn,e}. In the sequel, a Lagrangian
approach will be employed with generalized coordinates

(2)

and it will be demonstrated that the motion equations are of the
standard second-order form.

Kinematics
The notational framework follows that of Sincarsin and Hughes13

and Hughes and Sincarsin.14 The absolute velocity vn and angular
velocity un of the inboard articulation point of Bn,On, are expressed
in Tn. They are collected into a single generalized velocity vector
vn = co\{\n,u>n} which is a 6 x 1 column matrix. The kinemati-
cal relationship governing the generalized velocities can be written
recursively as13

+ Pn+\0n+i-f Sn

Here, Cn+i,n(0n+i>qn,e) denotes the rotation matrix from Fn to Tn+\,
rn,n+i (qn,e) is the deformed position of Tn+\ with respect to Tn (ex-
pressed in the latter frame), and Pn+\ is a projection matrix which
aids in expressing the generalized velocity induced by the joint mo-
tion. Complete descriptions of the matrices Cn+\,n and Sn+itn which
encompass nonlinear elastic effects are given in Ref. 15. Given
the assumption of single-DOF rotational joints, Pn is a constant
6 x 1 vector for n e [1, N]. For future reference, the general-
ized velocities of the manipulator links will be collected together:
Vt = col{vn}, n = 1 , . . . , N.

m=n
m > n

The relationships implied by Eqs. (3) and (4) can be collected into
the global form

vo

=.

-Po 0 0 -
TO Te fe

Jo J e J e
. 0 0 1 _

Po
0
.

• v = T(q)q (6)

which collects the kinematical constraints into one succinct equa-
tion. The definitions of v and Y are obvious, and q was defined in
Eq. (2).

It is now possible to isolate the differential kinematics describing
the end-effector motion with respect to BQ. From the third row of
Eq. (6), we have

(7)

where v,0 is the relative pay load velocity with respect to FQ. For con-
trol purposes, integrable coordinates are of greater interest; define
P, by

Pt =

Hence, pt is a 6 x 1 vector consisting of the payload position with
respect to J-"Q (expressed in FQ) and three Euler angles parameter-
izing the rotation matrix CN+\tQ. Combining Eqs. (7) and (8) gives
the relationship

pt=MO,qe)0+Je(e,qe)qe, Je ± P-P7lJe
(9)

where Je shall be referred to as the rigid Jacobian and Je as the
elastic Jacobian. If the elastic dependence in the rigid Jacobian is
suppressed, Je(9, 0) can be identified with the Jacobian of the cor-
responding terrestrial-based, rigid manipulator.

Modified Output
The fundamental output variables are taken to be the spacecraft

rates p0 and the corresponding variables for the end effector pt. We
wish to generalize the latter quantities by separating the contribu-
tions of the joint motion from those due to the link deformations:

= J60 + , qe)0 (10)

Fig. 1 Spacecraft—manipulator—payload system.

where ^ is a real parameter. The true tip rates (with respect to BQ)
are captured by ̂  — 1 whereas n — 0 considers only joint-induced
motion. For ^ = — 1 , the variables ptyi shall be called the reflected
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274 DAMAREN: FLEXIBLE MULTILINK SPACE MANIPULATORS

Fig. 2 A single flexible link.

tip position as suggested by Wang and Vidyasagar10 in the case of
a single pinned-free planar beam. The latter situation is illustrated
in Fig. 2 and Eq. (10) is the logical extension of this concept to
multi-DOF arms.

It would be desirable if ptfj/ and ptfji could be constructed from
joint measurements {0,0} and tip measurements {pt, pt], thus ex-
cusing the requirement for direct measurements of the elastic coor-
dinates qe. In general, this is not possible unless JQ is approximated
by its rigid counterpart Je(9, 0). In this case, ptfj/(t) can be fash-
ioned from the tip position pt (measured with respect to BQ) and the
rigid forward kinematics map. The total output vector consists of
the spacecraft rates and the modified tip rates,

A Po= UJ (ID
and a corresponding modified input will be described in the next
section.

Dynamics
The kinetic energy of the chain can be written as

7 _ I[VT
1 — 2 I/O

~M0,rr

0
0

_ 0

0
Mrr

0
MT

re

0
0

Mt

0

o -
Mre

0
Mee.

v0

= {vTMv (12)

where the matrices Afrr, Mr<?, and Mee are block diagonal assemblies
of the corresponding body matrices defined subsequently. The rigid
mass matrix is defined by

(13)

where ran, cn, and /„ are the zeroth (mass), first, and second mo-
ments of inertia, respectively. For an exact treatment, the latter two
are defined allowing for elastic deformation.15 The portion of the link
mass matrices coupling rigid and elastic motions Mnje is formed
from the elastic momentum and (deformed) angular momentum
coefficients.13'15

The strain energy is given by

V —A** —
(14)

Mn,ee and Kn,ee are the mass and strain energy matrices relative to
the chosen basis functions. Geometric stiffening can be captured
through the use of nonlinear strain displacement relations15 which
leads to a quartic dependence on qe in V and, hence, Kntee(qn>e) is
a function of the elastic coordinates. In later numerical work, the
selected basis functions are the constrained natural modes of each
body and, hence, Mn,ee = 1 and Kniee(Q) is a diagonal matrix of
squared constrained natural frequencies.

Now, using Eq. (6), the kinetic energy given by Eq. (12) becomes

T = ^qTM(q)q, M = TT(q)MT(q)

A/oo MQQ MQ€

ML Mee MBe

MT
(15)

where the global mass matrix M has been partitioned to agree with
the definition of q in Eq. (2) and

MOQ = PQMQ!rrPQ + T^Mrrf0^JT
QMtjQ (16)

(17)

(18)

Mee = * Mre

(19)

(20)

"T
eMre + MT

refe +JT
eMtje + Mee (21)Mee =

Terms involving the payload and spacecraft have been underlined for
future reference. The matrix M is symmetric and positive definite,
and the matrix K is symmetric and positive semidefinite.

To complete this section, it is assumed that BO is fully actuated in
translation and rotation. The column of forces/torques acting on it is
denoted by/o,c. The joint torques acting at the inboard end of each
link will be designated ra(t) and T — col{rn}. Hence, the virtual
work of the nonconservative control influences is given by

SWe = o + rrS0 = (22)

where /o = P%fo,c is a column of forces and Euler torques and
/c=COl{/0,T,0}.

Equations of Motion
The equations of motion can be derived by forming the

Lagrangian L = T — V. Hamilton's (extended) principle gives

Applying these to the energy and work expressions (14), (15), and
(22) yields

M(q)q + K(q)q =fc(t) +fm(q, q) (23)

where/non are nonlinear terms which are quadratic in q. An explicit
description of/non will not be needed. The stiffness term is con-
structed so that JKg = dV/dq and, therefore, K = diag{0, 0, Kee}. If
linear strain-displacement relations are used, Kee = Kee.

III. Linear Passivity Analysis
We now consider small motions in the vicinity of the constant con-

figuration qd = co\{pd, 9d, 0}. By abuse of notation, the variables
q(t) (and, therefore, p0, 9, and ptlJ) will refer to motions relative to
the set point. The linearized motion equations are given by

(24)

(25)

Similarly, the linearized form of Eq. (10) becomes

ptf, = Je(0d, 0)

For the duration of this section the set-point dependence of M(qd),
K(qd)Je(Od, 0), andje(0d, 0) will not be displayed.

Consider the eigenvalue problem corresponding to the homoge-
neous form of Eq. (24):

qa + Kqa = 0 (26)
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DAMAREN: FLEXIBLE MULTILINK SPACE MANIPULATORS 275

where a>a are the vibration frequencies. The rigid modes (coa = 0)
span the null space of K,

KQr = 0, Qr =

The first column corresponds to the six rigid modes of #o, whereas
the second corresponds to the rigid rotational motions of each joint.
For the vibrational modes, partition the eigenvector according to
Eq. (2): qa = col{p0a, 0a, qea}. They satisfy the standard orthonor-
mality relations

and the qa are also orthogonal to Qr (with respect to M and K). These
modes have been termed hinges-free vehicle modes by Hablani,16

but we shall call them unconstrained modes (#0 free, joints un-
locked). They represent the natural extension of the pinned-free
modes of a single link.

The eigenvectors form a complete set. Hence, the solution to the
linearized motion equation can be expanded as follows:

Ne

(27)

where {pr, 9r] are the rigid modal coordinates and r)a is associ-
ated with qa. Substituting this modal expansion into Eq. (24) and
observing the orthonormality relationships gives

Me 0r

r/oi
[T\

(28)

The mass matrix M is that corresponding to the system if it were
rigid. The partition MQQ fully described in Eq. (17) captures the
coupling between the rigid joint motion and the spacecraft motion.
It is at this point that structural damping, neglected so far, could
be most easily incorporated in the form of modal damping factors.
Since light damping would not substantially change the subsequent
results, it will be neglected.

Assumption 1
The manipulator is nonredundant (N = 6), and the reference

configuration qd is kinematically nonsingular,

rank Je — 6 (29)

This ensures that all possible local joint motions produce payload
motion. The following modified version of the joint torques can then
be defined:

r(t)=J~Tr(t) (30)

The assumption N = 6 is required for invertibility of Je. For N > 6,
J0l can be replaced with the pseudoinverse but this complicates the
subsequent discussion. For rigid robots, it is well known that r is
the equivalent set of (generalized) forces applied at the end effector.
They can be combined with the spacecraft inputs by defining

11(0 = C0l{/o, f} (31)

to produce an input vector with the same dimension as j^, i.e., 12.
In the following, Laplace transformed quantities will be indicated
by the argument s.

Lemma 1
The transfer matrix relating the modified input u(s) to the modi-

fied output y^ (s) is given by

1 I"* 01 ~ t |~J
"W = l[o J.\M [O

where

[ 1
Poor

(33)

Proof
Taking Laplace transforms of the output defined by Eqs. (11) and

(25) and noting the modal expansions (27) gives

POa (34)

Laplace transforming the modal equations (28) and substituting into
Eq. (34) while observing the definition of M in Eq. (31) givesj^ (s) =
G M (s )u(s) where GM is given in the statement of the Lemma. D

Definition 1
A square matrix function G(s) is positive real17 if 1) All elements

G(s) are analytic for Re{s] > 0, 2) G(s) is real for real positive s,
and 3) G(s) + GH(s) '> 0 for Re{s] > 0. The main importance of
positive real functions is that they can be stabilized by any feedback
compensator H(s) which is strictly positive real, i.e., H(s — €) is
PR for some € > 0, and the region of analyticity in 1 is extended to
include the imaginary axis.

Using a result of Anderson and Vongpanitlerd,17 G^(s) is positive
real if the coefficient matrices of the scalar positive real functions
1/5 and s/(s2 -f co2) are symmetric and at least positive semidef-
inite. This is certainly the case when IJL == 0 which corresponds to
considering only the joint-induced tip rate. In the present situation,
the transfer matrix would be lossless17 reflecting conservation of
energy in the unforced system. Before tackling the case of nonzero
)ti, we shall connect our results with those of Pota and Vidyasagar.11

Begin by eliminating the spacecraft degrees of freedom in
Eqs. (32) and (33):

]

-Je

\r(s) (35)

We see that in the case of a terrestrial-based flexible manipulator,
the requirement for positive realness is positive semidefiniteness of
(J00a + nJeqea)(JeOa)T for each vibration mode. Further special-
izing to the case of a single link, consider the scalar form of Eq. (35)
where pt(JL was illustrated in Figure 2 and Moe becomes the link
moment of inertia about the joint axis. The PR condition for each
mode becomes

(36)

The tip position of the link can be written as

ue(x,t) =

and comparing with Eq. (9), we can identify the Jacobian matrices
as Je = t, Je = row {V^CO}. From the eigenvectors^ = col{0a,
qea}, the pinned-free modes of the beam can be constructed as

=xOa + uea(x),
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276 DAMAREN: FLEXIBLE MULTILINK SPACE MANIPULATORS

where the identifications 6a = p'a(Q)anduea(£) =Jeqecc = pa(t) —
ip'a (0) can be made. The requirement for positive realness, Eq. (36),
then simplifies to

This inequality has been shown to hold for each a for the pinned-free
modes of a uniform beam when ^ = — 1 (Ref. 11). An analytical
representation for pa (x) was used. Therefore, the mapping between
joint torque and reflected tip rate is positive real. Although Eq. (36)
clearly holds for /x = 0, in general it does not hold when /^ = 1 for
a beam without payload or hub inertia.

Let us now enumerate possible extensions of this result. For the
terrestrial-based multilink flexible manipulator, it does not seem
possible that the transfer function in Eq. (35) can be PR in general.
A sufficient requirement is that there exist constants Ka such that
Jeqea = KaJ09a and 1 -f ^Ka > 0. Despite the single-link success,
this is not expected to hold in general. However, there is one case of
practical interest where not only does it hold but in the spacecraft-
based case, the matrix products CaBT

a defined by Eq. (33) are also
positive semidefinite.

Assumption 2
The spacecraft and payload are much more massive than the in-

dividual links, i.e.,

Afn,rr, M, »Mn,rr, 7i = (37)

where the ordering is the usual one for symmetric positive-definite
matrices.

One need only consider the common situation of Shuttle RMS
satellite deployment to realize that the proposed scenario is not
unduly restrictive. For this situation we have the following theorem.

Theorem 1 (Main Result)
When assumptions 1 and 2 hold, the vibration modes satisfy

POa = 0, a = l,...,Ne (38)

(The symbol = will be used for those equalities that hold by virtue
of assumptions 1 and 2). In this case, the transfer matrix G^(s) is
positive real for IJL < I .

Proof
The structure of M in Eq. (15) and K = K(qd) in Eq. (14) gives

the following for the first two rows contained in the eigenequation
(26):

= 0

a + Meeqea = 0

Assumptions 1 and 2 allow us to use only the underlined terms in
Eqs. (16-20). Performing these substitutions gives

+JoOct + Jeqea] = 0

= 0

Given assumption 1 and the positive definiteness of Mt and M0)rr,
we conclude that

PO« = 0, JeOa+Jeqea =0, (39)

Premultiplying the second relationship by P~l and noting Eq. (9)
establishes the second-half of Eq. (38). Therefore, the coefficient
matrix in the am term of GM takes the form

(40)

which is positive semidefinite provided /x < 1. Hence, G^(s) is PR.

Theorem 1 shows that the velocity produced at the end effector
from joint motion in mode a is equal and opposite to that created by
the link deformations. Hence, in this limiting situation neither the
spacecraft nor the payload participate in the vibration mode. The
vibrations are internalized among the joints and link deformations,
and the modes may be described as clamped-clamped. Interestingly,
the properties (38) are due to the spacecraft and payload mass prop-
erties which provide boundary conditions, yet the vibration frequen-
cies will asymptotically depend only on the link properties. From
Eq. (40), positive realness can be obtained when /z = 1, i.e., using
the true tip rates. In this case, the transfer matrix GM behaves in
a rigid fashion which would seem desirable. However, the vibra-
tion modes in a state-space realization would become unobservable
viaj^ since Ca = 0. This situation is avoided when JJL < 1, and
decreasing \JL enhances the observability of the vibration modes.

The major application of Theorem 1 is to control system design.
By the passivity theorem (precisely stated in Sec. IV), any strictly
passive feedback compensator will stabilize the system. For exam-
ple, we could take

0
0

Ht(s) K spQ(s)
*»,„(.: (41)

where H0(s) and Ht(s) are SPR and/0)C(s) = P^/o.cO), r(s) =
J0T(s). Hence, the stationkeeping and attitude control for BQ can
proceed independently of that for positioning of the end effector. It
has been noted18 that most control strategies that work in a terrestrial
setting can also be employed for space-based rigid manipulators.
This is borne out by the present result. A candidate controller for
both is of the form H(s) = Kd + Kps~l with Kd and Kp positive
definite which represents PD control. The robustness properties of
this controller have been well studied for attitude control of flexible
spacecraft.2 The design of dynamic SPR compensators has received
some attention3*19 and they have been applied to the control of flex-
ible manipulators with joint feedback.20

IV. Nonlinear Passivity Analysis
Since the positive real property of the linear transfer function

holds for generic nonsingular configurations, it is worthwhile in-
vestigating the full nonlinear system. PR transfer functions are an
example of the more general notion of passive systems.21"23 The fol-
lowing general definitions are taken from Ref. 22 where the reader
will find a complete description of input-output stability and precise
definitions of the function space £2 and its extended counterpart £2e •
(By abuse of notation, we omit the subscripts indicating the length of
the vector elements in £2 and £2*?.) The norm in £2 will be indicated
by 11(0112.

Definition 2
A square system G with input u(t) 6 £2* and output y ( t ) =

G(u) e £2* is passive if

fT fT
I yTudt = uTG(u)dt>0,

Jo JQ
V 7 > 0

Definition 3
The preceding system is strictly passive if there exists s > 0 such

that

/ uTG(u)dt>s f uTudt,
Jo JQ

V T > 0

It can be shown that for linear, time-invariant systems, positive re-
alness is equivalent to passivity23 and strict positive realness with
positive-definite high-frequency gain implies strict passivity.21

Definition 4
The system G is £2-stable if u e £2 implies that G(u) e £2.With

reference to the feedback system in Fig. 3, there is the following
powerful theorem.
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DAMAREN: FLEXIBLE MULTILINK SPACE MANIPULATORS 277

yjft)
I " II————' 'y2(t) I— \H

Fig. 3 Feedback system.

Passivity Theorem21'24

If G is passive and H is strictly passive with finite gain (i.e.,
there exists y, 0 < y < oo, such that ||//(M)||2 < y ||M||2) then the
feedback system depicted in Fig. 3 is £2 -stable in the sense that if
{Mi ,M2} G £2 then {y 1,3^2} G £2- In this case, the errors e\ = u\ —y2
and e2 = u2 +y\ are also in £2. If the finite gain assumption on H
is not honored and if M2 = 0, u\ G £2 implies that 3^1 G £2 but e\ is
not necessarily square integrable.21

Although this is an input-output result, it has been extended to a
nonlinear state-space setting.25 Essentially, £2-stability of the feed-
back system coupled with reachability and zero-state detectability
of each system (controllability and observability for linear systems)
implies global asymptotic stability of the origin for the unforced
system (MI — M2 = 0).

We will now show that the mapping from u(t} to y^t) for the
problem under consideration is passive for /x < 1. For the system
defined by Eq. (23), define the Hamiltonian by

H(t) = q T - L = \?

which is the total energy. Using Lagrange's equations, it follows
that

d
TTJeO (42)

or, in words, the total energy evolves in accordance with the work
done by the control influences. A nice demonstration of this result
in the case of a rigid terrestrial-based manipulator is provided in
Ref. 4.

Using definition 2, the passivity of the mapping from modified
input to modified output depends on the integral

I
Jo

= H(T) - tf (0) •r .to (43)

where we have noted Eqs. (11) and (10) and used Eq. (42). Con-
sistent with an input-output treatment, we take H(Q) = 0, and it is
immediately clear that the mapping is passive when /i = 0 since
H(T) > 0. It must be emphasized that this holds regardless of
any approximations governing the spacecraft and payload and is a
ramification of the effective collocation of actuation and sensing.

For nonzero /x, demonstration of passivity is made difficult by the
last integral in Eq. (43). It can be simplified under the assumptions
made by appealing to d'Alembert's form of the principle of virtual
work. Given assumptions 1 and 2, the only generalized inertial forces
that need be considered are those associated with the motion of BQ
and BN+I. This is equivalent to including only the underlined terms
in Eqs. (16-21) and permits a treatment of/non, which is consistent
with this. The inertia forces are defined by

T -r0/-AD/o =--

f (0 _ (TT Mv}f> - - + , , A / , v , ) ,

where some care has been taken to perform the differentiation in TI .
The off-diagonal partitions in TOI and TN+IJ capture the contribution
of the momentum to the total angular momentum with respect to
the origin of T\ .

T - \CN+I-' ~C»+i.'r*.N+i 1TN+u-[ Q c^ J

The virtual work of the elastic forces must equal that of the applied
and inertial forces.

8qT
eKeeqe = T89

+ \ T j N + l f t j (j o8pQ + J 089 + Je&qe) (44)
where the definitions of VQ, Eq. (4), and v,, Eq. (7), have been used
to construct the Cartesian virtual displacements. The transformation
matrices introduced in Eq. (44), satisfy T/0 = T^ and TItN+l =
7VJ! 7. They are used to correctly form the inertial force and torque
in jr0 and FN+I, respectively.

Since 5p0, 80, and 8qe are arbitrary, we conclude from Eq. (44)
that

pT f ( i ) pTTT f ( i ) _i. f
I.N+lJt M) 1 70/0 ~ /O

rTTTJ *-

(45)

(46)

(47)

which is a restatement of the motion equations (23) under assump-
tions 1 and 2. If/0

0) and//0 are replaced by static applied forces at
the base and tip, respectively, then the above are the requirements
for static equilibrium. This gives a dual interpretation for the elastic
Jacobian Je\ it enables the static deflections produced by tip loads
to be calculated using Eq. (47). Combining Eqs. (46) and (47) gives

jT T-Tn (48)

which must hold for payload/spacecraft-dominated dynamics.
Equation (48) illustrates a static relationship between applied torque
and elastic deformation. This approximate relation should be very
useful for trajectory planning since historically one of the chal-
lenges for flexible manipulators has been a specification for the
elastic coordinates.

Premultiplication of Eq. (48) by qT
e yields

dV
qT

eKeeqe = — = -tf-Wr

which upon integration can be substituted into Eq. (43). Taking
//(O) = V(0) = 0 gives the desired result, that is,r = H(T) - nV(T) = T(T) + (1 - (49)

which is clearly non-negative when /x < 1. We conclude that un-
der assumptions 1 and 2, the nonlinear scenario provides the same
conclusion as the linear case (theorem 1). In particular, the mapping
from modified spacecraft forces and joint torques to spacecraft rates
and (partially) reflected tip rates is passive. By the passivity theo-
rem, any strictly passive feedback compensator with finite gain will
stabilize the system independent of the manipulator properties.

V. Numerical Example
The goal of the present section is to illustrate the key results

given in Eqs. (38) and (48) in the context of a six-degree-of-freedom
manipulator, modeled after the Space Shuttle remote manipulator
(SRMS) arm. Included in the model is the Space Shuttle and a pay-
load, modeled by a cylindrical drum to represent a spin-stabilized
satellite. The properties of the members of the system are summa-
rized in Table 1 and the architecture of the arm is shown in Fig. 4.
The only flexible bodies are links 2 and 3 which are the lower- and
upper-arm booms.

Each of the flexible booms is modeled using the natural con-
strained modes for discretization. The expansion for the elastic de-
flection in each boom is given by

ua
0

. ° -

-zu/,1 * r o i
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Table 1 Properties of the SRMS

Property I, m Mass, kg kg-m2
/.'.

kg-m2 kg-m2

Space Shuttle
Linkl
Link 2
Link 3
Link 4
LinkS
Link 6
Payload

Elastic
stiffnesses

Link 2
Link 3

(r0i)a 93,270
0.9 95
6.4 138
7.0 85
0.5 8
0.8 44
0.6 41

15,000

El, N-m2

4.046 x 106

2.812 x 106

1.17x 106 9.1 x 106

0.2 25.75
0.4 1884.36
0.4 1388.53
0.2 0.76
0.2 9.49
0.2 5.02

30,000 515,000

GJ,N-m2

2.040 x 106

1.417 x 106

9.5 x 106

25.75
1884.36
1388.53

0.76
9.49
5.02

515,000

£A,N

2.790 x 109

1.194x 109

a(r0i = [-10.88 - 2.45 0.93]r m).

l-> 4* /*2 *3 *4 45 '6

Fig. 4 Architecture of the SRMS.

where va(x) = wa(x) are the normalized bending mode shapes
of a cantilevered uniform Euler-Bernoulli beam, and the functions
ua(x) and 0aO) are the normalized stretching and torsional mode
shapes of a uniform rod. Each boom is modeled with six modes: two
bending modes in each of the in-plane and out-of-plane directions,
one stretch mode, and one torsional mode.

Once the basis functions have been specified, the mass and stiff-
ness matrices for the links and the various integrals of the basis
functions required for evaluation of the motion equations can be
derived. All modal integrals required have been performed analyt-
ically for the present choice of shape functions. The elastic mass
matrices and^the (nominal) stiffness matrices have the simple diag-
onal forms Mn,ee = diag{l},£„,<>*(0) = diag{w2

a) where a)na are
the natural frequencies of the body in isolation and cantilevered at
the inboard articulation point. The 3-2-1 Euler sequences are used
to describe both the spacecraft and pay load orientations. The matrix
M is assembled according to Eqs. (15), (12), (6), and (5), and the
matrix Y is evaluated at qd = col{0, 9d, 0} where Od is as follows:

ft/i =

= -7T/4,

Od2 = 7T/2,

ft/5 = 7T/6,

ft/3 = -7T/4

f t /6=0

The datum for each joint angle is as given in Fig. 4 and because of
space limitations only this configuration is treated.

We wish to numerically examine the size of the spacecraft
modal coefficents p^ and the tip modal coefficients JeOa + Jeqea-
Given the mixed translational/rotational character of these six-
dimensional quantities, let us define the following norms: if XT =
[jci J t 2 , . . . , Xfi] then

i j
||-fr.|| — ["-v-2 I v^ I v^l 2 Hi-II. — fv^ J_ v^ _i_ v2"| 2

10-

10-3

10-4

(a)£tp>avs. £0

10-5
10-2 10'1 p 10°to

Fig. 5a Norms of the spacecraft modal coefficient vs. spacecraft size.

10°

10-2

10-5

(b)£te?avs. et

10-2 10-1 10°

Fig. 5b Norms of the tip modal coefficients vs. payload size.

although keeping the payload characteristics unchanged. The quan-
tites Etpta are plotted vs £0 in Fig. 5a for the first 10 vibration modes.
The general tendency of these quantities to diminish with increasing
spacecraft size is evident, and the rotational quantities EbpjCt showed
similar behavior.

For the next case, we replace the payload mass matrix Mt with
stMt and vary et although not tampering with the Shuttle mass char-
acteristics. The variation of Ete,a vs e0 is depicted in Fig. 5b for the
given configuration. The curves for Ebe,a are similar. Extrapolating
the curves, the main result of lemma 1 is seen to hold when the pay-
load is much more massive than the manipulator. For the nominal
payload (st = 1), the vectors JeOa and —Jeqea agree to within 3%
for all vibration modes in both translation and rotation. Most modes
exhibit significantly better agreement than this ceiling formed by the
first mode. From the graphs, it would appear that, asymptotically,
Etp,a oc l/£o and Ete,a &• !/£/ with similar comments holding true
for the rotational components.

The key result underpinning the nonlinear analysis was given in
Eq. (48). We shall compare its behavior with the exact values of qe (t)
generated by simulation. The model is subjected to control torques
r(t) and spacecraft forces /o)C(0 which are determined using the
inverse dynamics equations for the rigid model of the system, with
the prescribed joint angles parametrized by

1 2nt

For each vibration mode, the following quantities are proposed as
appropriate norms:

j-, II Atoll/ c, ll/00a+J«0«*llf

\\J00a\\,

and also the corresponding bottom quantities EbojCt and EbptU. The
dependence of these quantities on the spacecraft and payload mass
characteristics will now be illustrated. For the first situation, we
replace the spacecraft mass matrix Mo,rr with e^M^ and vary e0

where 9nT = 0.5 rad, 9nQ = 0.1 rad (n ^ 3), and for n = 3,
9nT = -0.5 rad, 9nQ = —0.1 rad. The desired spacecraft behav-
ior is constant, i.e., p0(t) = 0. This trajectory for the duration
time T = 40 s represents a generic rest-to-rest maneuver. A com-
plete simulation code has been developed15 which uses a recursive
Newton-Euler formulation of the motion equations to determine the
accelerations q(t) which are integrated to produce q(t) and q(t). All
configuration dependencies as outlined in Sec. II are included as
well as all nonlinearites which accrue from them. The geometric
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bending mode 1 vs. time
- simulation

x-— static approx.

stretch mode vs. time

0 10 20 30 40
t (sec)

bending mode 2 vs. time

0 10 20 30 40
t (sec)

torsional mode vs. time

10 20 30
t (sec)

10 20 30
t (sec)

Fig. 6 Simulation and approximate values of the elastic coordinates
(Link 2).

stiffening effect is captured using nonlinear strain-displacement
relationships.26

The exact values of q2e(t) generated by numerically integrating
the motion equations are given in Fig. 6 along with those predicted
by the approximation in Eq. (48). For the latter, we have suppressed
the elastic dependence in the rigid and elastic Jacobian matrices
so that only the joint angles generated by the simulation are used
to update them. However, the simulation values of qe (t) are used
to update the stiffness matrix. From the graphs, it is clear that the
approximation holds quite accurately. Discrepancies between the
two sets are not discernible from the plots and when the elastic
dependence was incorporated into the Jacobians the agreement im-
proved. The agreement obtained for the third link was very similar.
It is worth mentioning the foreshortening of the link which is mani-
fested by the stretch coordinate. It is a result of the coupling between
bending and stretching which arises from inclusion of the geomet-
ric stiffening phenomenon. Note that the static approximation also
captures the effect since it is due to nonlinearties in the stiffness
matrix.

VI. Concluding Remarks
In this work, the important property of passivity in flexible space

manipulator systems has been investigated. A very general anal-
ysis showed that the notion of reflected tip position can be ex-
tended to the multi-DOF case for space-based robots and that, in
this noncollocated system, passivity is possible for massive pay-
loads. This represents a significant extension of previous research
which considered a pinned-free beam operating in the plane. Al-
though the main results of the paper are approximate in nature,
numerical examples showed them to hold quite accurately for a
realistic model of a flexible 6-DOF manipulator carrying a large
payload.

An added benefit of the approach taken here is an approximate
static relationship between the applied torques and the discrete elas-
tic coordinates. The elastic Jacobian matrix, in addition to determin-
ing the end-effector velocity, was shown to have an important role
in this calculation. One of the difficulties in planning trajectories
for flexible manipulators has been an a priori specification for the
elastic coordinates. It is felt that the result presented here will be
of some use in this regard. The linearized treatment of the motion
equations yielded insight into the clamped-clamped behavior of the
vibration modes.

Current research focuses on the exploitation of these results in
the design of end-effector tracking controllers. Specifically, adap-
tive schemes which can handle large but otherwise uncertain pay-
loads are being considered. Important in applications is the ability to
synthesize the reflected tip position and its rates without measuring
the elastic coordinates.
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