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with Closed Loops

Abstract Cooperating robot systems contain a topological closed
loop, which complicates the dynamics and control problem.
The motion control problem for cooperating flexible robot arms main the case where the links are rigid bodies, several procedures
nipulating a large rigid payload is considered. An output that dehave evolved for solving the forward dynamics problem. One
pends on the payload position and contributions from the joint motioproad class of methods expresses the motion in terms of the
of each arm is constructed whose rate yields the passivity propetyill basis associated with a homogeneous velocity constraint
with respect to a special input. The input is a combination of théGarcia de Jalon and Bayo 1994). This technique will be used
torques from each arm and contains a free load-sharing paramérere in conjunction with the linearized motion equations to
ter. The passivity property is shown to depend on the payload masisaracterize the closed-loop modal characteristics.
properties, and in cases where the payload is large, a passivity-based Another method for the simulation dynamics decomposes
controller combining feedforward and feedback as elements is dihe accelerations into a free component associated with the
vised, which yields tracking. An experimental facility consisting aéquivalent cut-chain and a closed-loop component chosen to
two planar 3-DoF arms is used to implement the strategies. Goatle satisfy the loop closure constraint (Lilly and Orin 1991).
tracking is observed and compared with simulation predictions faThis method has been applied to rigid loops mounted on a
closed-loop flexible multibody systems. free spacecraft (Bonaventura and Lilly 1995) and will be used
KEY WORDS—cooperating robots, flexible manipulators,here_ to extend_ our previous simulation capability for flgxible
trajectory control multibody chains (Damaren anq Sharf 1995) to deal with t.he
closed-loop case. The simulation of two planar cooperating
flexible arms has been considered by Krishnamurthy and Yang
(1995) who treated a system similar to the experimental rig
considered here.
) The inverse dynamics problem for rigid closed-loop sys-
The problem of cooperating robot arms has attracted mughins was efficiently solved by Nakamura and Ghodoussi
attention within the robotics community. Multiple arms(19g9) who showed how the torques required could be ob-
have many advantages, including increased payload capgifineq from those of the equivalent cut-loop system. They
ity because of the redundant actuation and stiffer structurgq, showed how the potentially overactuated nature of these
Lightweight arms such as those being developed for the Spaﬁ%tems could be used to optimize the torque demand. In
Station introduce the added complexity of structural flexig,psequent work, the inverse dynamics solution formed the
bility. However, the additional compliance can be benefiyagis for a computed torque solution of the control problem
cial. Possible disadvantages include a reduction in the rOb(‘E]ecker, Wang, and Kokkinis 1991). Other contributions to
workspace. Motivated by space scenarios, this paper aflg control problem for cooperating rigid arms are summa-

dresses the motion control problem associated with the mas 4 by Uchiyama (1998) and Unseren (1998) who empha-
nipulation of large payloads by two lightweight flexible arms;, e the simultaneous control of payload position and inter-

An overview of the control problem for flexible robot manip-p 5| torces. Modeling and control issues for flexible arms in

ulators in & chain topology is presented by Book (1993) angyntact with the environment are discussed by Hu and Ulsoy
Canudas de Wit, Siciliano, and Bastin (1996). (1994) and Yim and Singh (1995).
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outputs has played an important role in the development
robot controllers (Ortega et al. 1998). In structurally flexi:
ble systems, the controlled output is the payload motion th
is noncollocated and typically leads to nonminimum phas:
hence nonpassive, input-output behavior. The origins of o /
work can be traced to Wang and Vidyasagar (1990, 1991) wl
showed that a modified output (the reflected tip rate) cou
yield passivity for a single flexible link. In the multilink case,
we have developed an output that combined joint motions apgly 1. Closed-loop multibody system.
tip (payload) motions so as to realize a passive mapping from
(inverse transpose of Jacobian multiplied by) joint torques ] ) . o
to the modified output rate (Damaren 1995). The use of a The motion eguatlon for the' flexible closed loop (omitting
strictly passive feedback with this output leads to endpoififructural damping) can be written as
stabilization as well as si_multaneous vibratipr_1 s_uppression. M@G+Kg =[1 O T +fuon(@. @) +3ITA,  (2)
A feedforward torque, which preserved passivity in the error
dynamics, was presented in (Damaren 1996a), and an adapbject to the constraint in (1)M, K, andz are the mass
tive form was explored in (Damaren 1996b). These work&atrix, stiffness matrix, and joint torques, respectively, and
relied on the payload being much more massive than the arifi¢ nonlinear inertial forcef,,, are quadratic ij. These
Damaren (1998) extended the approach to situations whépétrices can be partitioned consistent vejth
the stator mass at each joint could be large as well. Moo My o o

In this paper, the passivity-based approach is extended to M= [ MT M ¢ ] K= [ o K } 3)
the situation where two flexible arms manipulate a large com- fe € e
mon rigid object. A set of inputs and outputs is introducedyith M = M7 > O andK,, = KeTe ~ O. The constraint
which leads to the passivity property in situations mirroringorces required to enforce (1) are givenyand withA = 0,
those of the corresponding chain topology. These variablg®) is equivalent to the motion equation for the equivalent
contain a free load-sharing parameter that permits the dehain whereBy is free to move.
signer to share the required torque between each arm in aThe body8,,, 1 < M < N is taken to be a rigid payload
largely arbitrary fashion. An experimental facility consistingunder manipulation, and it is assumed this equal to the
of two planar arms with three joints each and flexible linkgJumber of rigid degrees of freedom after loop closure. The
is described in the paper and used to implement the proposggtem can be interpreted as two arms cooperatively manip-
controllers. The experimental results confirm the theoreticalating the payloadB,;. To this end, the joint angles and

-

ideas. elastic coordinates are further partitioned as
. . . 61 = colib,},n=1,---, M,
2. Dynamics of Flexible Multibody Loops 0, — collg)n=M+1l-. . N 4
Consider a chain of flexible and/or rigid bodigBo, 81, B2, gie = col{Qen},n=1,---, M,
---, By} with bodiesBp and By cantilevered in an inertial Oze = col{Qen},n=M+1,---N. (5)

reference framéeFy so as to form a closed loop (Fig. 1). The

bodies are connected by revolute joints, #hd= col{g,}, The paylo_ad pos_ition can be summarized by two forms of the

n = 1.-- N denotes the collection of joint angles apd= forward kinematics mapp = #1601, Qe1) = F2(62, Qe2),

col{q...} isthe collection ofV, elastic degrees of freedom. Itis Where, for simplicity, we writgp = p. Hence, the payload

assumed that these are generated using cantilevered bound&#9city can be written as

conditions for the elastic deflections at the inboard end of each p = 1001, 91)01 + I1e 01, G10)G1e

body. The collection of generalized coordinates can be written . .

asq = col{e, Jel- = J20(02, 02:)02 + J2 (02, 20) 02, (6)
The Cartesian displacement$f, relative toFg is written whereJig, Jie, i = 1,2, are the required Jacobian matrices.

asp,, which is interpreted as a sextuple whose top half cof il pe assumed thalys is invertible.

tains the position coordinates and whose bottom half is the pp, output of fundamental importance in the sequel is the

orientation parameterized by an integrable attitude represenin rate defined by

tation, i.e., Euler angles. SincBy is fixed, the appropriate . .

kinematical constraint can be written as P = C1[I1001 + 1I1cG1e]l + C2[I2002 + 2. G2.]1  (7)

py =Je(@)g =0, (1) =p — (1= w)[C1d1.41¢ + C22.02.]
wherelJ, is the appropriate Jacobian matrix. = up + (1= W[C1J1601 + C2J202], (8)
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whereCy with 0 < C1; < 1 andC2 = 1 — C1 will be  which automatically satisfies the constraint (1). Rather than
termedload-sharing parameters. Foru = 1, p, = p, the takel.asdpy/3q”,another possible choice forthe constraint
true payload position, while fqu = 0, p,, describes an out- Jacobian is

put based on the joint motion alone. If the approximations

Jio(@;,Qie) = Jip(6;,0),i = 1,2, are made, then the inte- Je=[1 —J2 Jie —J2l, (14)

gral of (8) yields
which also enforces loop closure. Partitioning the indepen-

pu(t) = up(t) + (1 — w)C1F1(61, 0) + C2F2(62, 0)], dent coordinateg = col{z,, z.}, the null basis can be writ-
(9) tenas
where F; (8;, 0) are the rigid forward kinematical maps. If R = [ EG" ';9" } . (15)
one arm is rigid, say = 1, thenp = #1(01, 0) andp, can er ee

be constructed from joint measurements alone. SinceR can always be postmultiplied by a square invertible

matrix, we can without loss in generality select= 61 and

2.1. Forward Dynamics z, = g, so that
There are several established techniques for solving the mo- 1 e}
tion equations (2) for the acceleratiofisubject to the con- Rer = [ Ro, } » Ree = [ Roe ]
straint (1). One uses a suitable decomposition for the accel-
erations, while the other describes the null-spacg. of Rpe = [Rpe1 Rpes2l (16)
In the first method, the acceleration is writtendas: ¢,
R, = O, Ree = 1.

+ §e, where the “open-loop” pad,, is the solution of (2)
with A = 0. It represents the accelerations of the correspon

ing open chain. The correctidjy, is the solution of g;lven these descriptions, the original Jacobian matrices are

connected by
s =M1I72, 10 N = 5
G c M0 5 = 3pRer. I = J2Rocr, Iz = ~JpRoca (A7)
which follows from substituting the assumed expression for . . S T
g into the motion equation. The constraint forces are deter- %ubsututlng (13) into (2) and premultiplication iy
mined so that yielas
" . . o M (Z+K.z=R'[1 O]t

PN = Jc(Qop + Get) +3c4 = Il + Pop = 0, (11) (@) “ [ ]

: : : _ + R [f1on(d, §) — MRZ], 18

wherep,,, is the “tip” acceleration calculated using, and [taon (@, @) ] (18)
the current state of the system. It follows from substitutinghere the constraint vector has been eliminated on account
de from (10) into (11) so that of the property relating andR, and

A=—Ap,, AEIM NI (12) M..=R’MR, K..=R’KR, (19)

and hencdj = ¢, — M*lJCTA}iO,,. The advantage of this The reader may verify that relative fothe reduced mass and
approach is that recursive algorithms suitable for the opestiffness matrices take the forms

chain case can be used to determipg. Furthermore, the

matrix M ~1 and the constraint Jacobian can also be calcupy,, = [ Msz,rr Mzz.re } , Ko = [ o O } , (20)
lated recursively. The algorithms used here are presented Mz e Mzzee - O Kee

by Damaren and D’Eleuterio (1989), and the implementation

for flexible chains is comprehensively discussed by DamardereM . .- = Rj.MooRor, Mz re = R}, [MogRoc+Moe].
and Sharf (1995). This approach will form the basis of our

simul_ation re_SL_JIts in Sectio_n 6: _ Howe\_/er, de_spitg _its com3 Modal Analysis

putational efficiency and suitability for simulation, it is not a

useful description for control system design. . Now consider small excursions of the coordinatés, =
With the second method, we determine the maRix)  R(g)sq, in the vicinity of a constant configuratiog =
such thatl.R = O and then expand the solution as col{d, 0}. In this caseR(q) can be effectively calculated

. . from the singular value decomposition &f(q) by forming
q=R@2z (13) its columns from the right singular vectors corresponding to
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the N + N, — M zero singular values. It must be postmul-The system in (29) is passive ]BT pg?dz > 0,VT > 0,
tiplied by a square invgrtiblg transformation cho;en to yieldngvs such thatfoT 773 dt < co. For linear time-invariant
the forms in (16). The linearized form of eq. (18) is systems, this is equivalent to positive realness of the corre-
e — R(A T _ sponding transfer functios(s), i.e., G(s) is analytic and
Me: @02+ K02 =B(Qr, B (Rer Roel. (21) G(s) + G (s) > O for s in the open right-half plane. Since
and the corresponding eigenproblem can be writtenas 1 /s ands/(s% + wg) are positive realG(s) in (29) is positive
2 - . real if and only ifJ3,gM -1 _JT andc,b! are symmetric and
~0uMz (@2 +Kza =0, (22) positive-semidefinite (Zliigr\/vé%mb, 19(?6). Clearly this is true
wherew, are the unconstrained (joints unlocked) vibratiorfor the rigid contribution. The easiest way farb! > O is
frequencies and, = col{f, Qew} = R(O)Zy, @ =1---N,, Cy = by, Which occurs fop. = 0; then,p,, depends only on
are the eigenvectors (mode shapes). Notéthate the mode the joint motion. The next section seeks to enlarge the range
slopes at each joint axis and it is assumed@aindg,, can of u leading to passivity, thus introducing the payload motion
be further partitioned as in (4) and (5). Giventhe assumptiong,into p,, according to (8).
there are als@/ zero-frequency rigid modes collectively of
theformz, = [1 O]”. The modes satisfy standard orthonor

. ) X 4. Linear Passivity Analysis for Flexible Closed
mality relations with respect tl ., andK ;: y y

Loops
2uMecZp =bap - 2 MacZr = O, (23) Let us define the modal amplitude at the payload ding t
et us aefine the modal amplitude a e payload according to
2TK..25 = w28ap. ZK..Z, = O, a,f=1---N.. P pay g
(24) Pa = J1001a + Jleqleo{ = J2(902¢x + JZquea- (31)

Expanding the solution of eq. (21) in terms of eigenvectors,

52(1) = Zomr () +Y,, Zana (1), itis relatively straightforward -EMMA 1. Ifpo =0, =1--- N, i.e.all vibration modes
to obtain the modal equations exhibit a node at the payload, th&is) in (29) is positive real

foru < 1.
Mz i)y = RgTrT(f)» Ta +w§r/a :051 , a=1---N,

(28'5) Proof. From (31),J;cQic.a = —JdigBia, i = 1,2, so that
¢y = (1 — w)b,. Hence from (29),
The modal expansion fatz is equivalent to@ = Ry, n, v
+ 2,107, 03,1 ne andsqe = Y-, 141, G3.,]" 1a- Lin- R T e B T
earizing the expansion for thetip rate in (7) and substituting Gls) = $I0M i J1 + 2‘; 52 4 w2 (1= 0bab,
the modal expansion gives = 32)
Ne I .
P = (Crdao + C2J20§0r)i7r n anﬁa, (26) which is positive real fop < 1. a
a=1 Note that controllability and observability of each mode

Co 2 C1(J16010 + 1I1eU1ea) + Co(J29024 + 11d2e0200),  depends ow bl # 0 n'ecessitati'ngc.< 1. We glso Qisallow
(27) €1 = 0 andC; = 0 since localization of a vibration mode
i . within a single armfy,, = 0 0r 02, = 0) leads toc,b! =0
where all Jacobian matrices are evaluated at the referengg,ne of these cases according to (30). It is also clear from
conqmon. Now assume that the torques are determined 36z form of eq. (32) that a PD feedback applieg foleads to
cording to active damping of the vibration modes in addition to control
T =[Cly Cxdxl'T, (28) of the rigid body mode. This is possible for= 0, but the
. ' ' ' . tip position no longer appears in the measurement.
whereT is a collection ofM control inputs. This motivates  |n Damaren (1998), a necessary and sufficient condition for

the term load-sharing parameter for tie po =0, = 1---N,, was uncovered for aflexible multibody
Using Laplace transforms in conjunction with (25) througlthain manipulating a payload at its tip:

(28), while noting thatls Ry, = Jip andCy + C» = 1, the .
dynamics of the linearized system relatifigo p,, can be MooJdy ~Je = M. (33)

captured by the input-output description: This was shown to be closely achievable for large payloads

pu(s) = GET(), in general and, with or without large stator masses at the end
N, of each link, for planar two- and three-link arms. The corre-
G(s) = }JMMZ—Z}”J{& + Z . s anborw (29) sponding result for the closed-loop system is given below.
s R LEMMA 2. The mode shapes, = Rz, of (22) satisfy

by = C1J19014 + C2J202,. (30) pqu £0,0=1---N,,ifand only if
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and
~ 1
Mz I3 31 = Mz e, 34) M, =R{MggRoe + Mg
whereJ,; = [J.1 O]. =[1 R} {[ 89 o Roe + c“;e o
Proof. Using the eigenequation (22) and the partitioning of — M @) 0]
the mass and stiffness matrices in (2), the eigencolumns sat- ~ = ¢ ’
iSfy Mz rrZra + Moz reZea = 0. Thus, ThereforeM Y, 33531, = My 3531, Ol = [M{) Ol
PN =M.
J160 10 + J1e01ea = J10(Zro + J]_gl\]le)zea Wzﬁg;i =2,
=JME (M. 375000 — M, o) Zew. . [O O
10Vl 7z, rr( zz,rrd1g Vel zz,re) eo Mg?,, _ RgTnggRgr -1 R(;T,][ o M(Z) i| |: ﬁl ]
Clearly, we have sufficiency. Now, suppose tlpat = 0. 66 or
Since theN, z., = Q.o are linearly mdependent the null _RT M(Z)R
space of theW x N, matrix (M, rer JLl M. re) Must - or
have dimensiomV,; henceM, ;37131 — M. e = O. O and
. . (2 — T
It is now shown that the property in Lemma 2 is closel);vI cre = Rg[MooRoe +Moc]
achieved for large payloads. Decompose the mass matrix into ~r O O 0] O O
= [1 Rer] o) M(z) /FEG' + 0] M(Z)
M =M + [J19 O J1, OI"Mp[J19 0 J1. O],  (35) o SO ‘ Oe
= Rng% Rge + [O RQ,M 1. (38)

whereM p is the payload contribution aniM denotes the N
remainder. Correspondingly, using (26) seq., (16), and From (17),Rpe.1 = Jp3Je1, Roe2 = —J5dc2, andRy, =

17, —J;2301. Hence,
M. s = M. + R] [J1601"M p[J1601R, M2, 3850 = RIMER,I;15.

= M pJ1g (36) = —RIMP3 3,4 O
M:zre = SM_z re + R, [31601" M p ([J1601Rs, + [Jc10]) = RIMP[Rp.1 O

= JfM pdet, (37)  Using (38) and the property stated in the lemma,
where we have ultimately included only the payload terms. M@, = Rl (M$)[Rpe.1 Ree 2l +1[0 M2 3713,20)
LEMMA 3. AséM;; — O, the conditions of Lemma 1 are - RQrMézg)[RQe 1 0]
satisfied. - M@ 3 1\]61’

Zz,rr

PTroof. . Using (36) and (37) givesMzzrrdyyJes which establishes the result. O
J]_@M plie = Mzz,re-
4 . The main utility of this result lies in the ability to apply the
Let M, andM), i = 1,2, denote the contributions results of (Damaren 1998) to the closed-loop case. In particu-
from each arm tdMy9 andMy,, respectively. The follow- |ar, two planar 3-DoF arms manipulating a large payload will
ing Lemma shows that if the condition in (33) is satisfied byyossess the nodal property leading to passivity in (32) even
each arm, modeled as a single chain, then the correspondjfghe presence of large stator masses at the outboard end of
closed-loop condition in Lemma 2 also holds. each link. This is important because although the links can be
Comi 4 W WS, = NI < 12 hen e dute O Sectomagpetc st wh il e
i -15 i i i
Mgz)’”‘]ﬂl‘]ﬂ - M§z),re whereM gz)’” andMgz),,e are th'e con- payload. This is an accurate depiction of the experimental
tributions toM ., - andM_ .., respectively, due t¥ ((919) and apparatus used in Section 6.

MY i=1,2.
Proof. First considei = 1. Then, 5. Approximate Nonlinear Dynamics and
@ Controller Design
) T B 5T My, ©O 1
|\/|ZZ rr = RerMQQRQr = [1 Rer] ’R* . . . . . o
0 O or Given a desired payload trajectdpy, o4, P4}, itis proposed
e to use a controller containing feedforward and feedback el-
= Mgy ements. The general paradigm for passivity-based control
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is described by Ortega et al. (1998). The feedforward will Given the neglect ofl. in the mass matrices, the elastic
typically be based on the motion equations and preserve thtion equation can be simplified. The last two terms in (44)
passivity property in the error dynamics. The goal here is tgre neglected leaving,y, . = _meeqe_ Since the elastic
establish this using the asymptotic form of the dynamics cogquations have been generated under the assumption that the
responding to the property in Lemma 1. The kinetic energyayload is nodal, the elastic energy for unforced motion is
canbewrittena® = "M = 32'M_.zwithM_. asgiven T, 1 v, and its derivative is

in (20) withz" = [0 q7]. Letting§1 = J7}(p — J1eQe)

and usingM ; ,,Jp1de1 = M. . leads toT = T, + T, Ty 4 Vo = 7 (Fheetie + Koo+ Rioee)
where >
1 B 1qT|\’ﬁ ;
T, = EPTMp,opy Mo = J]TQTMZZ,rrJIQl, (39) 54e Meee-

T, = }qzmeeqe’ Mee 2Mozee =ML M2 M, . Arguing that7, + V, should be conservedV.. is skew-

2 ' ' symmetric but sincd/ ., is symmetric, it should be taken as

(40)  constant. This suggests that the vibration frequencies and

the elastic component®1..q, 02..«} Of the modes should
i i 1 '= be independent of configuration, a fact that has been ob-
choice of torques in (28), the virtual work can be writteryeryed numerically in the large payload case. However,
assWe = 1760 = T7[C1Jp1801 + C2329592_] = ’.T[‘SP the joint participation in each mode will be governed by
— C1Je180e1 — C2J.280,2]. Lagrange’s equations with gen-g. ~3;,10)J; .(6)0ic «, which depends on configuration
eralized coordinatelp, .}, in conjunction with the workand ;5 the Jalczobiané. Henée, we adopt
energy expressions, yield

The potential energy i9, = %quKegqg, and using the

. . meeqe + KeeQe = —[C1I1. CZ‘JZe]T? (46)
Mppp = T+ fuonp (41)

Meetie + KeeQe = —[C1der C2deal T + faome, (42) 8S the elastic motion equation.

with 5.1. Controller Design

T S . LT . Given the desired trajectopy;, lett; denote the feedforward
fron.p = =M, + Ea(p Mppp +dc MecGe) /0P, (43) signal, which will be defined momentarily. The correspond-

P 1. .7 . T ing desired behavior for the elastic displacements is defined by
fnan,e =-M eeqe + Ea(p Mppp + qe Meeqe)/aqe~ (44)

meeded + Keeqed = —[C1da CZJeZ]T?d9 (47)
These are coupled by virtue of the configuration dependence
of M pp, M, Jg, andJd,. and the desired form g, is defined byp,; = p; — (1
The mass matriced ,, andM., depend oM andq,, but  — 1)[C13e1810a + C2J2.02.4]1. Tracking errors are defined

a suitable approximation is to neglect the elastic coordina@p = p — pd, P, = Py — Pud: de = e — Uea, and the
dependence and také , (p), M..(p) with 8; = F,;*(p), filtered error iss, = P, + Ap, with A = AT > O. The
Where}’rlfl(),i = 1,2, aretherigid inverse kinematics mapsyvirtual reference trajectory is defined py = p, — Ap,, and
If one further neglects thé@(||d.||%) term in (43), it becomes the corresponding error tfy, =p—p, = P+ Ap,.
equivalent to the rigid-bodysk-space motion equations: The chosen feedforward is

Mppp+Cp(p,p)p Z?, Mpp(p)/.jr +Cp(Ps p)pr z?d' (48)

L -1 . Subtracting this from (45) and (47) from (46) gives
Colo 296 = Moy — 06" M o) [0, (45) 9 (45) and (47) from (46) g

, M ()8, + Cy(p. p)P, =T — T4 (49)
whereC, (p, p) can be constructed so tHdt— 2C, is skew- ~ ~ ~ o~
p(p p) P Mequ + Keeqe = _[ClJel CZJeZ]T(t - Ta')-

symmetric. A further simplification is possible if one includes
only the payload contributions td ,,. Using the definition

in (39) and the approximation in (36) givés,, = Mp. In  Now consider the function
general,M p will be configuration dependent since it is the

body mass matrix expressed relative to the absolute Cartesiany, _ }ﬁTM
frame. However, for planar geometries wjghiocating the 27"
payload mass centd¥] p is constant and henég, = O. (51)

(50)

~ 1 ~To < ~TO ~
pppr + 5(1 - M)[qg Mequ + qe Keeqe]~
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Its time derivative is
. ~T 1. ~ AL
vV = P, (EMpppr + Mpppr)
~T & 2 =~
+@a- M)[qe M eele + Keeqe)]
~T ~ ~ ~T o~ A~
= 5, @—-T))— (11— w{, [Cla C2e2l" @ —70)
= s\@-7a). (52)

Integration of this establishes passivity frqin— 7,) to s,
and selecting a strictly passive feedback, say

T=7,-Kys,, K=Kl >0, (53)

yieldsV = —s[Ks,. Hences, € Ly, and it follows from a
standard result (Ortega et al., 1998, Lemma A.12) fhat
Ly andp, — 0ast — oo. Itis also possible to show
thatp — 0 under additional hypotheses that guarantee that
g. — 0 (Damaren 1996b). The final form of the control law
follows from combining (28), (48), and (53):

0, 1 B
9,0 53 30 T
T =[C1J19(01) C2320(02)]" [Mpp(Hy — AP,) /@ — ng ’\6]—04
\
\

+Co0. ) pa—AB) ~KaGu+ MBI B8 g B, \ Bi.

In the implementation that follows, the approximatjmg; = / \
paismade sothdi, = p, —p4 with p,, calculated using (9). @7 2\ >§§

6. Experimental Results 0, \

Fig. 2. Experimental robot (photograph).

Bl\\( \
In this section, the controller will be implemented on a testbe \ \ \
consisting of two flexible arms manipulating a rigid body. A 6\ C >
photograph is shown in Figure 2 and a schematic represe _J B, = B \J
tation is shown in Figure 3. The two bodies in each arr 0= ~6 |
(B1, B2 and B4, Bs) are modeled as an inboard rigid as- _96
sembly (rotor), a homogeneous isotropic flexible link, and
outboard rigid body (stator). The links are 6 mm thick al
minum. The payload central body consists of an aluminum

cannister containing steel rigid rings with inertia augmentaynerey is the coordinate along the neutral axis with= 0

tion via cantilevered lead blocks. It is connected to the Wri%inciding with the attachment to the rotor. Although the

motors of each arm via two steel links. The entire assemb lynomialsy; (x) = x+1 have worked extremely well for

is modeled as a single rigid payload bodys. The mass qhen.chain versions of the system under study, they had poor

properties of each body are presented in Table 2. The fitgln ergence characteristics for the closed-loop problem. Bet-

(c) and sec.ond. (Y mass moments are taken relative to the,, performance was obtained by choosingwher) to be the

corresponding inboard attachment point for that segment. gya ¢t cantilevered free bending modes of a uniform beam. For
The six motors are standard brushed DC motors drivinge simulation results to follow, two such modes were used

through low backlash planetary gearheads. The motor rofRy; each link. The results of eigenproblem in eq. (22) were
inertias are effectively multiplied by the square of the geg§piained using 10 modes per link.

ratio and are lumped with the joint degree of freedom. Thisis E£qcoders at each joint are used to measure the angles, and
distinct from the inboard rotor asseblies, which are associatgﬁinme differencing was used to obtain their rates. Three
with the totz_;tl (apsolute) _angqlar velocity of the joint. Thegirain gages on each of links 4 and 5 are used to fit the
motor rotor inertias are given in Table 2. _ coefficients in an assumed deflection profile of the form
The in-plane bending of each link is modeled using EuIerl;n(x’ 1) = Gen 1()X? + gen2(t)x3. The payload position
Bernoulli beam theory with spatial discretization according t9(02 Q2e) was then calculated by forward kinematics and

:Pig. 3. Experimental robot (schematic).

Ne the prediction was validated using a 2D CCD camera placed
vy (X, 1) = qun,i(t)lﬂi (x), above the table. Simple differencing was again used to de-
i=1 terminep. It was found that the CCD measurement failed to

Downloaded from ijr.sagepub.com at RYERSON UNIV on June 24, 2014


http://ijr.sagepub.com/

Damaren / Flexible Multibody Systems with Closed Loops 245

Table 1. Robot Mass Properties

Y4 m c J EI
(m) (kg) (9-m) (g-nf) (N-m?)
Base (8B) 0.600
Arm 1
B1 rotor 0.037 2.657 1.84 0.232
B1 link 0.406 0.196 40.4 10.9 39.3
B stator 0.062 1.924 112. 8.43
B, rotor 0.082 1.802 15.8 2.19
B> link 0.360 0.177 32.3 7.76 39.3
B stator 0.067 0.934 54.6 4.15
Payload 0.598 15.71 4667 1951
(B3)
Arm 2
B4 rotor 0.067 0.934 7.99 1.02
Ba link 0.327 0.188 26.1 9.69 39.3
B4 Stator 0.112 2.100 206. 24.3
Bs rotor 0.077 2.234 10.2 3.26
Bs link 0.390 0.157 37.3 5.69 39.3
Bs stator 0.037 2.532 92.5 131.3
Table 2. Rotor Inertias Table 3. Experimental Frequencies
joint (g-m) (g-m?) wo (HZ) wo (Hz)
1,6 127.8 127.8 o numerical expt.
2,5 150.4 306.9 1 4.1 4.1
3,4 16.05 16.05 2 5.4 4.6
3 8.4 7.6
. ) . 4 9.8 7.6
provide a good rate measurement under differencing on ac- 5 27.3 15.3
count of quantization effects. Torque control of each motor 6 29.6 15.2

is accomplished using a high-gain Pl law for current driving
the motor voltage through a standard H-bridge.

Prior to examining the experimental tracking, the modeor the first six vibration modes (see Fig. 5). The configuration
shapes corresponding to (22) for the configuratmn= dependence od, is shown in Figure 6 whera, is plotted
[-0.3m 08m Q)7 are given in Figure 4. The numerical fre-as a function of payload position asis varied from 0.9 to
quencies and the experimental ones, obtained by sinusoida® m for fixedx = —0.3 m andg = 0. The corresponding
torque sweeps, are shown in Table 3. The agreement is gdesjuency variation is shown in Figure 7 and supports the
for the two lowest modes but grows progressively worse. Feissumption regarding the constancyvb, .
each vibration mode, the quality of the node at the endpoint The first maneuver is a straight line connectipg =
has been evaluated according to [-0.6m08m Q7 topr =[008m Q7 inT =2 sec. The
desired trajectory fop(t) is obtained by applying forward
_ llpall2 . . L : . : L .

« =7 , (55) kinematics to joint trajectories obeying quintic polynomials
511916010 + J20024 |2 matchingé, (0) = 6, (0) = 6,(T) = 6,(T) = 0 and the re-

wherel|(-)||2 denotes the Euclidean norm in three-space. F&L_Jired endpoints. The controller is selepted according to (54)
« = 2,5,and 6,), < 0.06, which corresponds to modes thatVith: My, = Mp > diag{mp,mp, Jp}, withmp = 15.7 kg,
are largely confined to Arm 1. Far= 1, 3, and 4], isnot /P = 0-537 kg-m?, andC,, = O. The gains are chosen such
as small. The difference between the two sets of modes cmt
be attributed to thg larger motor rotor inertia at Fhe glbpw of KeA = 92Mp, Ky+MpA =2¢Q2Mp, (56)
arm 2. As noted in Damaren (1998), the rotor inertia is the
dominant agent in lessening the quality of the payload nodwith Q. = 2.3 rad/s and¢. = 0.4. The value ofx is 0.8.

To gage the effect of the payload size dp M p was The desired, simulated, and experimental task space tra-
replaced withe pM p andJ,, determined as a function ef>  jectories are shown in Figure 8 fal, = Co = 0.5. Also
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Fig. 4. Unconstrained mode shapes%£4—0.3m0.8m0]7).

shown are the tip deflections at the “end” of links 4 and Fhe next three circles are performed with= 2/ T (con-
(i.e., atjoints 4 and 5, respectively). Here, the desired curvetant), and the last semicircle is a deceleration phase termi-
correspond to the static solution of (47), id.,. = O, with  nating withy(5T) = 7/2 andy(5T) = /(5T) = 0, with
T4 = T. The tracking is reasonably good and agrees welt (57 —t) = w — v (¢),0 <t < T. The payload tracking and
with the simulation prediction. The joint angle trajectoriedink deflections are shown in Figure 126 = C> = 0.5 us-
are shown in Figure 9. As expected, the simulation and eing the same controller parameters as before except.92.
perimental results do not follow the rigid trajectory very wellThe predictions for the link deflections agree quite well, but
but show reasonable agreement with each other, especidlig experimentad-tracking is not very good. For this maneu-
joints 1 and 3. Task space and link deflections are shown wer, the elbow angles experience large angular accelerations
Figures 10 and 11 faf; = 0.25 andC; = 0.75, respectively. and the absence of their rotor contributions to the feedforward
The payload tracking is as good@s = 0.5 and demonstrates plays a large part in the discrepancy.
the success of the load-sharing scheme.

The second trajectory is a circle with constant orientation
(¢ = 0) for the payload. The center of the circle is given by7. Conclusions
x. = —0.3, y. = 0.75, and its radius is, = 0.15 m. The

angley (1) measures the payload position around the circlg passivity-based controller has been developed for the ma-
with 4 (r) = 0 corresponding to the “3 o’clock” position. It pipylation of large rigid payloads by two lightweight flexi-
is selected so that the first semicircle is an acceleration phasg ropot arms. Payload nodal properties for the vibration
with (0) = 7/2,4(0) = 0, ¥(0) = 0, ¥(T) = 27/T,and  modes, which are present for each arm viewed as an open
¥ (T) = 0 with chain, were shown to be inherited by the closed-loop system.
This property was used to show that fheip rate was passive
wl ol with respect to a suitably defined torque input. The nonlinear

/g .
H=—=+4+——sin—. i . _ . i . .
v 2 + T T equations of motion consistent with the linearized modal ideas
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100.

102 1 1T TTT LR -2
-1 0 1 10 I I | I i
10 107, 10 03 04 05 06 07 08 09
_ . _ y(m)
Fig. 5. Payload nodal quality versus payload size o
[—0.3m0.8m0]7). Fig. 6. Payload nodal quality versysconfiguration (x=
—0.3m, ¢ = 0).
were developed by formulating the nodal condition in term~
of the the system’s kinematical and dynamical matrices. 30 0=6
free load-sharing parameter was introduced and its symmet o=5
use in forming the passive output as well as distributing tr
torques was key to the passivity arguments. 251
The experimental implementation of the controller: Wa
showed reasonably good tracking and vibration suppressic
Furthermore, a simulation methodology was validated expe (Hz) 201
imentally, which extended key techniques from the forwar
dynamics problem of rigid closed-loop systems.
The results presented here, when viewed with their cou 151
terparts for open flexible chains, demonstrate thatuthig
rate is an effective and relatively simple way of coping witt 4
difficulties incurred by noncollocation in flexble systems ma 104 g;3
nipulating large objects.
5 o=2
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Fig. 8. Results fox-translation (@ = 0.5, C> = 0.5).
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Fig. 9. Joint angles far-translation (G = 0.5, C, = 0.5).
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Fig. 11. Results fok-translation (@ = 0.75, C; = 0.25).
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Fig. 12. Results for circle trajectory (G= 0.5, C> = 0.5).
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