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Christopher J. Damaren
University of Toronto
Institute for Aerospace Studies
4925 Dufferin Street
Toronto, Ontario M3H 5T6, Canada

On the Dynamics
and Control of Flexible
Multibody Systems
with Closed Loops

Abstract

The motion control problem for cooperating flexible robot arms ma-
nipulating a large rigid payload is considered. An output that de-
pends on the payload position and contributions from the joint motion
of each arm is constructed whose rate yields the passivity property
with respect to a special input. The input is a combination of the
torques from each arm and contains a free load-sharing parame-
ter. The passivity property is shown to depend on the payload mass
properties, and in cases where the payload is large, a passivity-based
controller combining feedforward and feedback as elements is de-
vised, which yields tracking. An experimental facility consisting of
two planar 3-DoF arms is used to implement the strategies. Good
tracking is observed and compared with simulation predictions for
closed-loop flexible multibody systems.

KEY WORDS—cooperating robots, flexible manipulators,
trajectory control

1. Introduction

The problem of cooperating robot arms has attracted much
attention within the robotics community. Multiple arms
have many advantages, including increased payload capac-
ity because of the redundant actuation and stiffer structure.
Lightweight arms such as those being developed for the Space
Station introduce the added complexity of structural flexi-
bility. However, the additional compliance can be benefi-
cial. Possible disadvantages include a reduction in the robot
workspace. Motivated by space scenarios, this paper ad-
dresses the motion control problem associated with the ma-
nipulation of large payloads by two lightweight flexible arms.
An overview of the control problem for flexible robot manip-
ulators in a chain topology is presented by Book (1993) and
Canudas de Wit, Siciliano, and Bastin (1996).
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Cooperating robot systems contain a topological closed
loop, which complicates the dynamics and control problem.
In the case where the links are rigid bodies, several procedures
have evolved for solving the forward dynamics problem. One
broad class of methods expresses the motion in terms of the
null basis associated with a homogeneous velocity constraint
(Garcia de Jalon and Bayo 1994). This technique will be used
here in conjunction with the linearized motion equations to
characterize the closed-loop modal characteristics.

Another method for the simulation dynamics decomposes
the accelerations into a free component associated with the
equivalent cut-chain and a closed-loop component chosen to
the satisfy the loop closure constraint (Lilly and Orin 1991).
This method has been applied to rigid loops mounted on a
free spacecraft (Bonaventura and Lilly 1995) and will be used
here to extend our previous simulation capability for flexible
multibody chains (Damaren and Sharf 1995) to deal with the
closed-loop case. The simulation of two planar cooperating
flexible arms has been considered by Krishnamurthy and Yang
(1995) who treated a system similar to the experimental rig
considered here.

The inverse dynamics problem for rigid closed-loop sys-
tems was efficiently solved by Nakamura and Ghodoussi
(1989) who showed how the torques required could be ob-
tained from those of the equivalent cut-loop system. They
also showed how the potentially overactuated nature of these
systems could be used to optimize the torque demand. In
subsequent work, the inverse dynamics solution formed the
basis for a computed torque solution of the control problem
(Uecker, Wang, and Kokkinis 1991). Other contributions to
the control problem for cooperating rigid arms are summa-
rized by Uchiyama (1998) and Unseren (1998) who empha-
size the simultaneous control of payload position and inter-
nal forces. Modeling and control issues for flexible arms in
contact with the environment are discussed by Hu and Ulsoy
(1994) and Yim and Singh (1995).

The passivity property of mechanical systems with col-
located force (torque) actuators and rate (angular rate)
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outputs has played an important role in the development of
robot controllers (Ortega et al. 1998). In structurally flexi-
ble systems, the controlled output is the payload motion that
is noncollocated and typically leads to nonminimum phase,
hence nonpassive, input-output behavior. The origins of our
work can be traced to Wang and Vidyasagar (1990, 1991) who
showed that a modified output (the reflected tip rate) could
yield passivity for a single flexible link. In the multilink case,
we have developed an output that combined joint motions and
tip (payload) motions so as to realize a passive mapping from
(inverse transpose of Jacobian multiplied by) joint torques
to the modified output rate (Damaren 1995). The use of a
strictly passive feedback with this output leads to endpoint
stabilization as well as simultaneous vibration suppression.
A feedforward torque, which preserved passivity in the error
dynamics, was presented in (Damaren 1996a), and an adap-
tive form was explored in (Damaren 1996b). These works
relied on the payload being much more massive than the arm.
Damaren (1998) extended the approach to situations where
the stator mass at each joint could be large as well.

In this paper, the passivity-based approach is extended to
the situation where two flexible arms manipulate a large com-
mon rigid object. A set of inputs and outputs is introduced,
which leads to the passivity property in situations mirroring
those of the corresponding chain topology. These variables
contain a free load-sharing parameter that permits the de-
signer to share the required torque between each arm in a
largely arbitrary fashion. An experimental facility consisting
of two planar arms with three joints each and flexible links
is described in the paper and used to implement the proposed
controllers. The experimental results confirm the theoretical
ideas.

2. Dynamics of Flexible Multibody Loops

Consider a chain of flexible and/or rigid bodies{B0,B1,B2,

· · · ,BN } with bodiesB0 andBN cantilevered in an inertial
reference frameF0 so as to form a closed loop (Fig. 1). The
bodies are connected by revolute joints, andθθθ = col{θn},
n = 1 · · ·N denotes the collection of joint angles andqe =
col{qen} is the collection ofNe elastic degrees of freedom. It is
assumed that these are generated using cantilevered boundary
conditions for the elastic deflections at the inboard end of each
body. The collection of generalized coordinates can be written
asq = col{θθθ,qe}.

The Cartesian displacement ofBn relative toF0 is written
asρρρn, which is interpreted as a sextuple whose top half con-
tains the position coordinates and whose bottom half is the
orientation parameterized by an integrable attitude represen-
tation, i.e., Euler angles. SinceBN is fixed, the appropriate
kinematical constraint can be written as

ρ̇ρρN = Jc(q)q̇ = 0, (1)

whereJc is the appropriate Jacobian matrix.

Fig. 1. Closed-loop multibody system.

The motion equation for the flexible closed loop (omitting
structural damping) can be written as

M (q)q̈ + Kq = [1 O]T τττ + fnon(q, q̇)+ JTc λλλ, (2)

subject to the constraint in (1).M , K , andτττ are the mass
matrix, stiffness matrix, and joint torques, respectively, and
the nonlinear inertial forcesfnon are quadratic iṅq. These
matrices can be partitioned consistent withq:

M =
[

M θθ M θe

MT
θe M ee

]
, K =

[
O O
O K ee

]
, (3)

with M = MT > O andK ee = K T
ee > O. The constraint

forces required to enforce (1) are given byλλλ, and withλλλ = 0,
(2) is equivalent to the motion equation for the equivalent
chain whereBN is free to move.

The bodyBM , 1 ≤ M ≤ N is taken to be a rigid payload
under manipulation, and it is assumed thatM is equal to the
number of rigid degrees of freedom after loop closure. The
system can be interpreted as two arms cooperatively manip-
ulating the payloadBM . To this end, the joint angles and
elastic coordinates are further partitioned as

θθθ1 = col{θn}, n = 1, · · · ,M,
θθθ2 = col{θn}, n = M + 1, · · · , N (4)

q1e = col{qen}, n = 1, · · · ,M,
q2e = col{qen}, n = M + 1, · · ·N. (5)

The payload position can be summarized by two forms of the
forward kinematics map:ρρρ = F1(θθθ1,qe1) = F2(θθθ2,qe2),
where, for simplicity, we writeρρρ ≡ ρρρM . Hence, the payload
velocity can be written as

ρ̇ρρ = J1θ(θθθ1,q1e)θ̇θθ1 + J1e(θθθ1,q1e)q̇1e

= J2θ (θθθ2,q2e)θ̇θθ2 + J2e(θθθ2,q2e)q̇2e, (6)

whereJiθ , Jie, i = 1,2, are the required Jacobian matrices.
It will be assumed thatJ1θ is invertible.

An output of fundamental importance in the sequel is the
µ-tip rate defined by

ρ̇ρρµ = C1[J1θθ̇θθ1 + µJ1eq̇1e] + C2[J2θθ̇θθ2 + µJ2eq̇2e] (7)

= ρ̇ρρ − (1 − µ)[C1J1eq̇1e + C2J2eq̇2e]
= µρ̇ρρ + (1 − µ)[C1J1θθ̇θθ1 + C2J2θθ̇θθ2], (8)
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whereC1 with 0 < C1 < 1 andC2 = 1 − C1 will be
termedload-sharing parameters. For µ = 1, ρρρµ = ρρρ, the
true payload position, while forµ = 0,ρρρµ describes an out-
put based on the joint motion alone. If the approximations
Jiθ (θθθ i,qie)

.= Jiθ (θθθ i,0), i = 1,2, are made, then the inte-
gral of (8) yields

ρρρµ(t) = µρρρ(t)+ (1 − µ)[C1F1(θθθ1,0)+ C2F2(θθθ2,0)],
(9)

whereFi (θθθ i,0) are the rigid forward kinematical maps. If
one arm is rigid, sayi = 1, thenρρρ = F1(θθθ1,0) andρρρµ can
be constructed from joint measurements alone.

2.1. Forward Dynamics

There are several established techniques for solving the mo-
tion equations (2) for the accelerationsq̈ subject to the con-
straint (1). One uses a suitable decomposition for the accel-
erations, while the other describes the null-space ofJc.

In the first method, the acceleration is written asq̈ = q̈op
+ q̈cl, where the “open-loop” parẗqop is the solution of (2)
with λλλ = 0. It represents the accelerations of the correspond-
ing open chain. The correction̈qcl is the solution of

q̈cl = M−1JTc λλλ, (10)

which follows from substituting the assumed expression for
q̈ into the motion equation. The constraint forces are deter-
mined so that

ρ̈ρρN = Jc(q̈op + q̈cl)+ J̇cq̇ = Jcq̈cl + ρ̈ρρop = 0, (11)

whereρ̈ρρop is the “tip” acceleration calculated usingq̈op and
the current state of the system. It follows from substituting
q̈cl from (10) into (11) so that

λλλ = −333ρ̈ρρop, 333 , (JcM−1JTc )
−1, (12)

and hencëq = q̈op − M−1JTc 333ρ̈ρρop. The advantage of this
approach is that recursive algorithms suitable for the open-
chain case can be used to determineq̈op. Furthermore, the
matrix M−1 and the constraint Jacobian can also be calcu-
lated recursively. The algorithms used here are presented
by Damaren and D’Eleuterio (1989), and the implementation
for flexible chains is comprehensively discussed by Damaren
and Sharf (1995). This approach will form the basis of our
simulation results in Section 6. However, despite its com-
putational efficiency and suitability for simulation, it is not a
useful description for control system design.

With the second method, we determine the matrixR(q)
such thatJcR = O and then expand the solution as

q̇ = R(q)ż, (13)

which automatically satisfies the constraint (1). Rather than
takeJc as∂ρρρN/∂qT , another possible choice for the constraint
Jacobian is

Jc = [J1θ −J2θ J1e −J2e], (14)

which also enforces loop closure. Partitioning the indepen-
dent coordinatesz = col{zr , ze}, the null basis can be writ-
ten as

R =
[

Rθr Rθe
Rer Ree

]
. (15)

SinceR can always be postmultiplied by a square invertible
matrix, we can without loss in generality selectzr = θθθ1 and
ze = qe so that

Rθr =
[

1
R̂θr

]
, Rθe =

[
O

R̂θe

]
,

R̂θe = [R̂θe,1 R̂θe,2] (16)

Rer = O, Ree = 1.

Given these descriptions, the original Jacobian matrices are
connected by

J1θ = J2θ R̂θr , J1e = J2θ R̂θe,1, J2e = −J2θ R̂θe,2. (17)

Substituting (13) into (2) and premultiplication byRT

yields

M zz(q)z̈ + K zzz = RT [1 O]T τττ
+ RT [fnon(q, q̇)− MṘż], (18)

where the constraint vector has been eliminated on account
of the property relatingJ andR, and

M zz = RTMR , K zz = RTKR . (19)

The reader may verify that relative toz, the reduced mass and
stiffness matrices take the forms

M zz =
[

M zz,rr M zz,re

MT
zz,re M zz,ee

]
, K zz =

[
O O
O K ee

]
, (20)

whereM zz,rr = RT
θrM θθRθr ,M zz,re = RT

θr [M θθRθe+M θe].

3. Modal Analysis

Now consider small excursions of the coordinates,δz =
R(q̄)δq, in the vicinity of a constant configuration̄q =
col{θ̄θθ,0}. In this case,R(q̄) can be effectively calculated
from the singular value decomposition ofJc(q̄) by forming
its columns from the right singular vectors corresponding to
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theN + Ne −M zero singular values. It must be postmul-
tiplied by a square invertible transformation chosen to yield
the forms in (16). The linearized form of eq. (18) is

M zz(q̄)δz̈ + K zzδz = B(q̄)τττ , BT = [Rθr Rθe], (21)

and the corresponding eigenproblem can be written as

−ω2
αM zz(q̄)zα + Kzα = 0, (22)

whereωα are the unconstrained (joints unlocked) vibration
frequencies andqα = col{θθθα,qeα} = R(q̄)zα, α = 1 · · ·Ne,
are the eigenvectors (mode shapes). Note thatθθθα are the mode
slopes at each joint axis and it is assumed thatθθθα andqeα can
be further partitioned as in (4) and (5). Given the assumptions,
there are alsoM zero-frequency rigid modes collectively of
the formZr = [1 O]T . The modes satisfy standard orthonor-
mality relations with respect toM zz andK zz:

zTαM zzzβ = δαβ, zTαM zzZr = O, (23)

zTαK zzzβ = ω2
αδαβ, zTαK zzZr = O, α, β = 1 · · ·Ne.

(24)

Expanding the solution of eq. (21) in terms of eigenvectors,
δz(t) = Zrηηηr(t)+∑

α zαηα(t), it is relatively straightforward
to obtain the modal equations

M zz,rrη̈ηηr = RT
θrτττ (t), η̈α + ω2

αηα = θθθTατττ , α = 1 · · ·Ne.
(25)

The modal expansion forδz is equivalent toδθθθ = Rθrηηηr
+ ∑

α[θθθT1α θθθT2α]T ηα andδqe = ∑
α[qT1eα qT2eα]T ηα. Lin-

earizing the expansion for theµ-tip rate in (7) and substituting
the modal expansion gives

ρ̇ρρµ = (C1J1θ + C2J2θ R̂θr )η̇ηηr +
Ne∑
α=1

cαη̇α, (26)

cα , C1(J1θθθθ1α + µJ1eq1eα)+ C2(J2θθθθ2α + µJ2eq2eα),

(27)

where all Jacobian matrices are evaluated at the reference
condition. Now assume that the torques are determined ac-
cording to

τττ = [C1J1θ C2J2θ ]T τ̂ττ , (28)

whereτ̂ττ is a collection ofM control inputs. This motivates
the term load-sharing parameter for theCi .

Using Laplace transforms in conjunction with (25) through
(28), while noting thatJ2θ R̂θr = J1θ andC1 + C2 = 1, the
dynamics of the linearized system relatingτ̂ττ to ρ̇ρρµ can be
captured by the input-output description:

ρ̇ρρµ(s) = G(s)̂τττ (s),

G(s) = 1

s
J1θM−1

zz,rrJ
T
1θ +

Ne∑
α=1

s

s2 + ω2
α

cαbTα , (29)

bα = C1J1θθθθ1α + C2J2θθθθ2α. (30)

The system in (29) is passive if
∫ T

0 ρ̇ρρ
T
µτ̂ττ dt ≥ 0, ∀T ≥ 0,

and∀̂τττ such that
∫ T

0 τ̂ττ
T τ̂ττ dt < ∞. For linear time-invariant

systems, this is equivalent to positive realness of the corre-
sponding transfer functionG(s), i.e., G(s) is analytic and
G(s)+ GH (s) ≥ O for s in the open right-half plane. Since
1/s ands/(s2 +ω2

α) are positive real,G(s) in (29) is positive
real if and only ifJ1θM−1

zz,rrJ
T
1θ andcαbTα are symmetric and

positive-semidefinite (Newcomb, 1966). Clearly this is true
for the rigid contribution. The easiest way forcαbTα ≥ O is
cα = bα, which occurs forµ = 0; then,ρ̇ρρµ depends only on
the joint motion. The next section seeks to enlarge the range
ofµ leading to passivity, thus introducing the payload motion
ρ̇ρρ into ρ̇ρρµ according to (8).

4. Linear Passivity Analysis for Flexible Closed
Loops

Let us define the modal amplitude at the payload according to

ρρρα , J1θθθθ1α + J1eq1eα = J2θθθθ2α + J2eq2eα. (31)

LEMMA 1. If ρρρα = 0, α = 1 · · ·Ne, i.e., all vibration modes
exhibit a node at the payload, thenG(s) in (29) is positive real
for µ < 1.

Proof. From (31),Jieqie,α = −Jiθθθθ iα, i = 1,2, so that
cα = (1 − µ)bα. Hence from (29),

G(s) = 1

s
J1θM−1

zz,rrJ
T
1θ +

Ne∑
α=1

s

s2 + ω2
α

(1 − µ)bαbTα ,

(32)

which is positive real forµ < 1. �
Note that controllability and observability of each mode

depends oncαbTα 6= 0 necessitatingµ < 1. We also disallow
C1 = 0 andC2 = 0 since localization of a vibration mode
within a single arm (θθθ1α = 0 or θθθ2α = 0) leads tocαbTα = 0
in one of these cases according to (30). It is also clear from
the form of eq. (32) that a PD feedback applied toρρρµ leads to
active damping of the vibration modes in addition to control
of the rigid body mode. This is possible forµ = 0, but the
tip position no longer appears in the measurement.

In Damaren (1998), a necessary and sufficient condition for
ρρρα = 0,α = 1 · · ·Ne, was uncovered for a flexible multibody
chain manipulating a payload at its tip:

M θθJ
−1
θ Je = M θe. (33)

This was shown to be closely achievable for large payloads
in general and, with or without large stator masses at the end
of each link, for planar two- and three-link arms. The corre-
sponding result for the closed-loop system is given below.

LEMMA 2. The mode shapes,qα = Rzα, of (22) satisfy
ρρρα , 0, α = 1 · · ·Ne, if and only if
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M zz,rrJ
−1
1θ Ĵe1 = M zz,re, (34)

wherêJe1 = [Je1 O].
Proof. Using the eigenequation (22) and the partitioning of
the mass and stiffness matrices in (2), the eigencolumns sat-
isfy M zz,rrzrα + M zz,rezeα = 0. Thus,

J1θθθθ1α + J1eq1eα = J1θ(zrα + J−1
1θ Ĵ1e)zeα

= J1θM−1
zz,rr (M zz,rrJ

−1
1θ Ĵe1 − M zz,re)zeα.

Clearly, we have sufficiency. Now, suppose thatρρρα = 0.
Since theNe zeα = qeα are linearly independent, the null
space of theM × Ne matrix (M zz,rrJ

−1
1θ Ĵe1 − M zz,re) must

have dimensionNe; henceM zz,rrJ
−1
1θ Ĵe1 − M zz,re = O. �

It is now shown that the property in Lemma 2 is closely
achieved for large payloads. Decompose the mass matrix into

M = δM + [J1θ O J1e O]TMP [J1θ O J1e O], (35)

whereMP is the payload contribution andδM denotes the
remainder. Correspondingly, using (20)et seq., (16), and
(17),

M zz,rr = δM zz,rr + RT
θr [J1θO]TMP [J1θO]Rθr

.= JT1θMP J1θ (36)

M zz,re = δM zz,re + RT
θr [J1θO]TMP ([J1θO]Rθe + [Je1O])

.= JT1θMP Ĵe1, (37)

where we have ultimately included only the payload terms.

LEMMA 3. As δM zz → O, the conditions of Lemma 1 are
satisfied.

Proof. Using (36) and (37) givesM zz,rrJ
−1
1θ Ĵe1 =

JT1θMP Ĵ1e = M zz,re. �

Let M (i)
θθ and M (i)

θe , i = 1,2, denote the contributions
from each arm toM θθ andM θe, respectively. The follow-
ing Lemma shows that if the condition in (33) is satisfied by
each arm, modeled as a single chain, then the corresponding
closed-loop condition in Lemma 2 also holds.

LEMMA 4. If M (i)
θθ J−1

θi Jei = M (i)
θe , i = 1,2, then

M (i)
zz,rrJ

−1
θ1 Ĵe1 = M (i)

zz,re whereM (i)
zz,rr andM (i)

zz,re are the con-

tributions toM zz,rr andM zz,re, respectively, due toM (i)
θθ and

M (i)
θe , i = 1,2.

Proof. First consideri = 1. Then,

M (1)
zz,rr = RT

θrM θθRθr = [1 R̂T
θr ]

[
M (1)
θθ O

O O

] [
1

R̂θr

]

= M (1)
θθ

and

M (1)
zz,re = RT

θr [M θθRθe + M θe]

= [1 R̂T
θr ]

{[
M (1)
θθ O

O O

][
O

R̂θe

]
+

[
M (1)
θe O

O O

]}
= [M (1)

θe O].
Therefore,M (1)

zz,rrJ
−1
1θ Ĵ1e = M (1)

θθ J−1
θ1 [J1e O] = [M (1)

θe O]
= M (1)

zz,re.
Wheni = 2,

M (2)
zz,rr = RT

θrM θθRθr = [1 R̂T
θr ]

[
O O
O M (2)

θθ

] [
1

R̂θr

]

= R̂T
θrM

(2)
θθ R̂θr

and

M (2)
zz,re = RT

θr [M θθRθe + M θe]

= [1 R̂T
θr ]

{[
O O
O M (2)

θθ

] [
O

R̂θe

]
+

[
O O
O M (2)

θe

]}
= R̂T

θrM
(2)
θθ R̂θe + [O R̂T

θrM
(2)
θe ]. (38)

From (17),R̂θe,1 = J−1
θ2 Je1, R̂θe,2 = −J−1

θ2 Je2, andR̂θr =
−J−1

θ2 Jθ1. Hence,

M (2)
zz,rrJ

−1
θ1 Ĵe1 = R̂T

θrM
(2)
θθ R̂θrJ

−1
θ1 Ĵe1

= −R̂T
θrM

(2)
θθ J−1

θ2 [Je1 O]
= R̂T

θrM
(2)
θθ [R̂θe,1 O].

Using (38) and the property stated in the lemma,

M (2)
zz,re = R̂T

θr (M
(2)
θθ [R̂θe,1 R̂θe,2] + [O M (2)

θθ J−1
θ2 Je2])

= R̂T
θrM

(2)
θθ [R̂θe,1 O]

= M (2)
zz,rrJ

−1
θ1 Ĵe1,

which establishes the result. �
The main utility of this result lies in the ability to apply the

results of (Damaren 1998) to the closed-loop case. In particu-
lar, two planar 3-DoF arms manipulating a large payload will
possess the nodal property leading to passivity in (32) even
in the presence of large stator masses at the outboard end of
each link. This is important because although the links can be
made quite light, electromagnetic actuators will typically be
large to meet the torque requirements of manipulating a large
payload. This is an accurate depiction of the experimental
apparatus used in Section 6.

5. Approximate Nonlinear Dynamics and
Controller Design

Given a desired payload trajectory{ρρρd, ρ̇ρρd, ρ̈ρρd}, it is proposed
to use a controller containing feedforward and feedback el-
ements. The general paradigm for passivity-based control
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is described by Ortega et al. (1998). The feedforward will
typically be based on the motion equations and preserve the
passivity property in the error dynamics. The goal here is to
establish this using the asymptotic form of the dynamics cor-
responding to the property in Lemma 1. The kinetic energy
can be written asT = 1

2q̇TMq̇ = 1
2 żTM zzżwith M zz as given

in (20) with zT = [θθθT1 qTe ]. Letting θ̇θθ1 = J−1
1θ (ρ̇ρρ − Ĵ1eq̇e)

and usingM zz,rrJ
−1
θ1 Ĵe1 = M zz,re leads toT = Tρ + Te,

where

Tρ = 1

2
ρ̇ρρTMρρρ̇ρρ, Mρρ , J−T

1θ M zz,rrJ
−1
1θ , (39)

Te = 1

2
q̇Te M̂ eeq̇e, M̂ ee , M zz,ee − MT

zz,reM
−1
zz,rrM zz,re.

(40)

The potential energy isVe = 1
2qTe K eeqe, and using the

choice of torques in (28), the virtual work can be written
as δWe = τττT δθθθ = τ̂ττ T [C1Jθ1δθθθ1 + C2J2θ δθθθ2] = τ̂ττ T [δρρρ
− C1Je1δqe1 − C2Je2δqe2]. Lagrange’s equations with gen-
eralized coordinates{ρρρ,qe}, in conjunction with the work and
energy expressions, yield

Mρρρ̈ρρ = τ̂ττ + fnon,ρ (41)

M̂ eeq̈e + K eeqe = −[C1Je1 C2Je2]T τ̂ττ + fnon,e, (42)

with

fnon,ρ = −Ṁρρρ̇ρρ + 1

2
∂(ρ̇ρρTMρρρ̇ρρ + q̇Te M̂ eeq̇e)/∂ρρρ, (43)

fnon,e = − ˙̂M eeq̇e + 1

2
∂(ρ̇ρρTMρρρ̇ρρ + q̇Te M̂ eeq̇e)/∂qe. (44)

These are coupled by virtue of the configuration dependence
of Mρρ , M̂ ee, Jθ , andJe.

The mass matricesMρρ andM̂ ee depend onθθθ andqe, but
a suitable approximation is to neglect the elastic coordinate
dependence and takeMρρ(ρρρ), M̂ ee(ρρρ) with θθθi = F −1

ri (ρρρ),
whereF −1

ri (·), i = 1,2, are the rigid inverse kinematics maps.
If one further neglects theO(‖q̇e‖2) term in (43), it becomes
equivalent to the rigid-bodytask-space motion equations:

Mρρρ̈ρρ + Cρ(ρρρ, ρ̇ρρ)ρ̇ρρ = τ̂ττ ,

Cρ(ρρρ, ρ̇ρρ)ρ̇ρρ = Ṁρρρ̇ρρ − 1

2
∂(ρ̇ρρTMρρρ̇ρρ)/∂ρρρ, (45)

whereCρ(ρρρ, ρ̇ρρ) can be constructed so thatṀ − 2Cρ is skew-
symmetric. A further simplification is possible if one includes
only the payload contributions toMρρ . Using the definition
in (39) and the approximation in (36) givesMρρ = MP . In
general,MP will be configuration dependent since it is the
body mass matrix expressed relative to the absolute Cartesian
frame. However, for planar geometries withρρρ locating the
payload mass center,MP is constant and henceCρ = O.

Given the neglect ofqe in the mass matrices, the elastic
motion equation can be simplified. The last two terms in (44)

are neglected leavingfnon,e = − ˙̂M eeq̇e. Since the elastic
equations have been generated under the assumption that the
payload is nodal, the elastic energy for unforced motion is
Te + Ve and its derivative is

Ṫe + V̇e = q̇Te (M̂ eeq̈e + K eeqe + 1

2
˙̂M eeq̇e)

= −1

2
q̇Te

˙̂M eeq̇e.

Arguing thatTe + Ve should be conserved,̂̇M ee is skew-
symmetric but sincêM ee is symmetric, it should be taken as
constant. This suggests that the vibration frequencies and
the elastic components{q1e,α,q2e,α} of the modes should
be independent of configuration, a fact that has been ob-
served numerically in the large payload case. However,
the joint participation in each mode will be governed by
θθθi,α = −J−1

iθ (θθθ)Ji,e(θθθ)qie,α, which depends on configuration
via the Jacobians. Hence, we adopt

M̂ eeq̈e + K eeqe = −[C1J1e C2J2e]T τ̂ττ (46)

as the elastic motion equation.

5.1. Controller Design

Given the desired trajectoryρρρd , letτ̂ττ d denote the feedforward
signal, which will be defined momentarily. The correspond-
ing desired behavior for the elastic displacements is defined by

M̂ eeq̈ed + K eeqed = −[C1Je1 C2Je2]T τ̂ττ d, (47)

and the desired form ofρρρµ is defined byρ̇ρρµd = ρ̇ρρd − (1
− µ)[C1Je1q̇1ed + C2J2eq̇2ed ]. Tracking errors are defined
asρ̃ρρ = ρρρ − ρρρd , ρ̃ρρµ = ρρρµ − ρρρµd , q̃e = qe − qed , and the
filtered error issµ = ˙̃ρρρµ +333ρ̃ρρµ with 333 = 333T > O. The
virtual reference trajectory is defined byρ̇ρρr = ρ̇ρρd −333ρ̃ρρµ and
the corresponding error bỹ̇ρρρr = ρ̇ρρ − ρ̇ρρr = ˙̃ρρρ +333ρ̃ρρµ.

The chosen feedforward is

Mρρ(ρρρ)ρ̈ρρr + Cρ(ρρρ, ρ̇ρρ)ρ̇ρρr = τ̂ττ d . (48)

Subtracting this from (45) and (47) from (46) gives

Mρρ(ρρρ) ¨̃ρρρr + Cρ(ρρρ, ρ̇ρρ) ˙̃ρρρr = τ̂ττ − τ̂ττ d (49)

M̂ ee
¨̃qe + K eeq̃e = −[C1Je1 C2Je2]T (̂τττ − τ̂ττ d).

(50)

Now consider the function

V = 1

2
˙̃ρρρTr Mρρ

˙̃ρρρr + 1

2
(1 − µ)[ ˙̃qTe M̂ ee

˙̃qe + q̃Te K̂ eeq̃e].
(51)
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Its time derivative is

V̇ = ˙̃ρρρTr (
1

2
Ṁρρ

˙̃ρρρr + Mρρ
¨̃ρρρr)

+ (1 − µ)[ ˙̃qTe (M̂ ee
¨̃qe + K̂ eeq̃e)]

= ˙̃ρρρTr (̂τττ − τ̂ττ d)− (1 − µ) ˙̃qTe [C1Je1 C2Je2]T (̂τττ − τ̂ττ d)
= sTµ(̂τττ − τ̂ττ d). (52)

Integration of this establishes passivity from(̂τττ − τ̂ττ d) to su
and selecting a strictly passive feedback, say

τ̂ττ = τ̂ττ d − Kdsµ, Kd = K T
d > O, (53)

yieldsV̇ = −sTµKdsµ. Hence,sµ ∈ L2, and it follows from a
standard result (Ortega et al., 1998, Lemma A.12) thatρ̃ρρµ ∈
L2 and ρ̃ρρµ → 0 as t → ∞. It is also possible to show
that ρ̃ρρ → 0 under additional hypotheses that guarantee that
q̃e → 0 (Damaren 1996b). The final form of the control law
follows from combining (28), (48), and (53):

τττ = [C1J1θ(θθθ1) C2J2θ (θθθ2)]T [Mρρρρρρ(ρ̈ρρd −333 ˙̃ρρρµ)
+ Cρ(ρρρ, ρ̇ρρ)(ρ̇ρρd −333ρ̃ρρµ)− Kd( ˙̃ρρρµ +333ρ̃ρρµ)]. (54)

In the implementation that follows, the approximationρρρµd
.=

ρρρd is made so that̃ρρρµ = ρρρµ−ρρρd withρρρµ calculated using (9).

6. Experimental Results

In this section, the controller will be implemented on a testbed
consisting of two flexible arms manipulating a rigid body. A
photograph is shown in Figure 2 and a schematic represen-
tation is shown in Figure 3. The two bodies in each arm
(B1,B2 and B4,B5) are modeled as an inboard rigid as-
sembly (rotor), a homogeneous isotropic flexible link, and an
outboard rigid body (stator). The links are 6 mm thick alu-
minum. The payload central body consists of an aluminum
cannister containing steel rigid rings with inertia augmenta-
tion via cantilevered lead blocks. It is connected to the wrist
motors of each arm via two steel links. The entire assembly
is modeled as a single rigid payload body,B3. The mass
properties of each body are presented in Table 2. The first
(c) and second (J) mass moments are taken relative to the
corresponding inboard attachment point for that segment.

The six motors are standard brushed DC motors driving
through low backlash planetary gearheads. The motor rotor
inertias are effectively multiplied by the square of the gear
ratio and are lumped with the joint degree of freedom. This is
distinct from the inboard rotor asseblies, which are associated
with the total (absolute) angular velocity of the joint. The
motor rotor inertias are given in Table 2.

The in-plane bending of each link is modeled using Euler-
Bernoulli beam theory with spatial discretization according to

vn(x, t) =
ne∑
i=1

qen,i(t)ψi(x),

Fig. 2. Experimental robot (photograph).

Fig. 3. Experimental robot (schematic).

wherex is the coordinate along the neutral axis withx = 0
coinciding with the attachment to the rotor. Although the
polynomialsψi(x) = xi+1 have worked extremely well for
open-chain versions of the system under study, they had poor
convergence characteristics for the closed-loop problem. Bet-
ter performance was obtained by choosing theψi(x) to be the
exact cantilevered free bending modes of a uniform beam. For
the simulation results to follow, two such modes were used
for each link. The results of eigenproblem in eq. (22) were
obtained using 10 modes per link.

Encoders at each joint are used to measure the angles, and
simple differencing was used to obtain their rates. Three
strain gages on each of links 4 and 5 are used to fit the
coefficients in an assumed deflection profile of the form
vn(x, t) = qen,1(t)x

2 + qen,2(t)x
3. The payload position

ρρρ(θθθ2,q2e) was then calculated by forward kinematics and
the prediction was validated using a 2D CCD camera placed
above the table. Simple differencing was again used to de-
termineρ̇ρρ. It was found that the CCD measurement failed to
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Table 1. Robot Mass Properties

` m c J EI

(m) (kg) (g·m) (g·m2) (N·m2)

Base (B0) 0.600

Arm 1
B1 rotor 0.037 2.657 1.84 0.232
B1 link 0.406 0.196 40.4 10.9 39.3
B1 stator 0.062 1.924 112. 8.43
B2 rotor 0.082 1.802 15.8 2.19
B2 link 0.360 0.177 32.3 7.76 39.3
B2 stator 0.067 0.934 54.6 4.15

Payload
(B3)

0.598 15.71 4667 1951

Arm 2
B4 rotor 0.067 0.934 7.99 1.02
B4 link 0.327 0.188 26.1 9.69 39.3
B4 stator 0.112 2.100 206. 24.3
B5 rotor 0.077 2.234 10.2 3.26
B5 link 0.390 0.157 37.3 5.69 39.3
B5 stator 0.037 2.532 92.5 131.3

Table 2. Rotor Inertias
joint (g·m2) (g·m2)

1, 6 127.8 127.8
2, 5 150.4 306.9
3, 4 16.05 16.05

provide a good rate measurement under differencing on ac-
count of quantization effects. Torque control of each motor
is accomplished using a high-gain PI law for current driving
the motor voltage through a standard H-bridge.

Prior to examining the experimental tracking, the mode
shapes corresponding to (22) for the configurationρρρ =
[−0.3 m 0.8 m 0]T are given in Figure 4. The numerical fre-
quencies and the experimental ones, obtained by sinusoidal
torque sweeps, are shown in Table 3. The agreement is good
for the two lowest modes but grows progressively worse. For
each vibration mode, the quality of the node at the endpoint
has been evaluated according to

Jα = ||ρρρα||2
1
2||J1θθθθ1α + J2θθθθ2α||2

, (55)

where||( · )||2 denotes the Euclidean norm in three-space. For
α = 2,5, and 6,Jα < 0.06, which corresponds to modes that
are largely confined to Arm 1. Forα = 1, 3, and 4,Jα is not
as small. The difference between the two sets of modes can
be attributed to the larger motor rotor inertia at the elbow of
arm 2. As noted in Damaren (1998), the rotor inertia is the
dominant agent in lessening the quality of the payload node.

To gage the effect of the payload size onJα, MP was
replaced withεPMP andJα determined as a function ofεP

Table 3. Experimental Frequencies

ωα (Hz) ωα (Hz)
α numerical expt.

1 4.1 4.1
2 5.4 4.6
3 8.4 7.6
4 9.8 7.6
5 27.3 15.3
6 29.6 15.2

for the first six vibration modes (see Fig. 5). The configuration
dependence onJα is shown in Figure 6 whereJα is plotted
as a function of payload position asy is varied from 0.9 to
0.3 m for fixedx = −0.3 m andφ = 0. The corresponding
frequency variation is shown in Figure 7 and supports the
assumption regarding the constancy ofM̂ ee.

The first maneuver is a straight line connectingρρρ0 =
[−0.6 m 0.8 m 0]T toρρρT = [0 0.8 m 0]T in T = 2 sec. The
desired trajectory forρρρ(t) is obtained by applying forward
kinematics to joint trajectories obeying quintic polynomials
matchingθ̇n(0) = θ̈n(0) = θ̇n(T ) = θ̈n(T ) = 0 and the re-
quired endpoints. The controller is selected according to (54)
with, Mρρ

.= MP = diag{mP ,mP , JP }, withmP = 15.7 kg,
JP = 0.537 kg·m2, andCρ = O. The gains are chosen such
that

Kd333 = �2
cMP , Kd + MP333 = 2ζ�cMP , (56)

with �c = 2.3 rad/s andζc = 0.4. The value ofµ is 0.8.
The desired, simulated, and experimental task space tra-

jectories are shown in Figure 8 forC1 = C2 = 0.5. Also
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Fig. 4. Unconstrained mode shapes (ρ= [−0.3m0.8m0]T ).

shown are the tip deflections at the “end” of links 4 and 5
(i.e., at joints 4 and 5, respectively). Here, the desired curves
correspond to the static solution of (47), i.e.,M̂ ee = O, with
τ̂ττ d = τ̂ττ . The tracking is reasonably good and agrees well
with the simulation prediction. The joint angle trajectories
are shown in Figure 9. As expected, the simulation and ex-
perimental results do not follow the rigid trajectory very well
but show reasonable agreement with each other, especially
joints 1 and 3. Task space and link deflections are shown in
Figures 10 and 11 forC1 = 0.25 andC1 = 0.75, respectively.
The payload tracking is as good asC1 = 0.5 and demonstrates
the success of the load-sharing scheme.

The second trajectory is a circle with constant orientation
(φ = 0) for the payload. The center of the circle is given by
xc = −0.3, yc = 0.75, and its radius isrc = 0.15 m. The
angleψ(t) measures the payload position around the circle
with ψ(t) = 0 corresponding to the “3 o’clock” position. It
is selected so that the first semicircle is an acceleration phase
with ψ(0) = π/2, ψ̇(0) = 0, ψ̈(0) = 0, ψ̇(T ) = 2π/T , and
ψ̈(T ) = 0 with

ψ(t) = π

2
+ πt

T
− sin

πt

T
.

The next three circles are performed withψ̇ = 2π/T (con-
stant), and the last semicircle is a deceleration phase termi-
nating withψ(5T ) = π/2 andψ̇(5T ) = ψ̈(5T ) = 0, with
ψ(5T− t) = π−ψ(t), 0 ≤ t ≤ T . The payload tracking and
link deflections are shown in Figure 12 forC1 = C2 = 0.5 us-
ing the same controller parameters as before exceptµ = 0.92.
The predictions for the link deflections agree quite well, but
the experimentaly-tracking is not very good. For this maneu-
ver, the elbow angles experience large angular accelerations
and the absence of their rotor contributions to the feedforward
plays a large part in the discrepancy.

7. Conclusions

A passivity-based controller has been developed for the ma-
nipulation of large rigid payloads by two lightweight flexi-
ble robot arms. Payload nodal properties for the vibration
modes, which are present for each arm viewed as an open
chain, were shown to be inherited by the closed-loop system.
This property was used to show that theµ-tip rate was passive
with respect to a suitably defined torque input. The nonlinear
equations of motion consistent with the linearized modal ideas
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Fig. 5. Payload nodal quality versus payload size (ρ=
[−0.3m0.8m0]T ).

were developed by formulating the nodal condition in terms
of the the system’s kinematical and dynamical matrices. A
free load-sharing parameter was introduced and its symmetric
use in forming the passive output as well as distributing the
torques was key to the passivity arguments.

The experimental implementation of the controllers
showed reasonably good tracking and vibration suppression.
Furthermore, a simulation methodology was validated exper-
imentally, which extended key techniques from the forward
dynamics problem of rigid closed-loop systems.

The results presented here, when viewed with their coun-
terparts for open flexible chains, demonstrate that theµ-tip
rate is an effective and relatively simple way of coping with
difficulties incurred by noncollocation in flexble systems ma-
nipulating large objects.
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−0.3m,φ = 0).

Fig. 7. Vibration frequencies versusy-configuration (x=
−0.3m,φ = 0).
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Fig. 8. Results forx-translation (C1 = 0.5, C2 = 0.5).
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Fig. 9. Joint angles forx-translation (C1 = 0.5, C2 = 0.5).
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Fig. 10. Results forx-translation (C1 = 0.25, C2 = 0.75).
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Fig. 11. Results forx-translation (C1 = 0.75, C2 = 0.25).
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