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Abstract
The control problem for linearised three-dimensional perturbations about a nominal laminar boundary layer over a flat plate
(the Blasius profile) is considered. With a view to preventing the laminar to turbulent transition, appropriate inputs, outputs,
and feedback controllers are synthesised that can be used to stabilise the system. The linearised Navier–Stokes equations
are reduced to the Orr–Sommerfeld and Squire equations with wall-normal velocity actuation entering through the boundary
conditions on the wall. An analysis of the work-energy balance is used to identify an appropriate sensor output that leads to
a passive system for certain values of the streamwise and spanwise wavenumbers. Even when the system is unstable, it is
demonstrated that strictly positive real feedback can stabilise this system using the special output.

Keywords Transition Control · Boundary Layer · Passivity

1 Introduction

The viscous effects in unseparated flow over a body are con-
centrated in a thin layer adjacent to the body’s surface known
as the boundary layer. The no-slip condition for the fluid
velocity on this surface leads to a form of drag known as
skin friction drag. The size of this force depends strongly on
whether the flow is laminar or turbulent with laminar bound-
ary layers producing less drag. Hence, there is a great deal of
motivation to prevent transition between the twoflow regimes
from occurring.

Historically, the transition problem has been studied by
linearising the Navier–Stokes equations about a nominal
velocity profile consisting of a baseline laminar flow and
addressing the stability of small perturbations [10,17]. For
boundary layer flows over a flat plate, this profile has
typically been taken to be the two-dimensional Blasius solu-
tion [16]. If a two-dimensional spatial Fourier transform is
taken of the linearised equations (corresponding to assum-
ing spatially oscillating perturbations in the streamwise and
spanwise directions), one arrives at the Orr–Sommerfeld
equation describing the wall-normal velocity component and
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the Squire equation describing the wall-normal vorticity
component. Transition can be studied by determining the
eigenvalues of the Orr–Sommerfeld/Squire model governing
the perturbations (Drazin and Reid 2001).

It has been noted by experimentalists that transition typi-
cally occurs at Reynolds numbers (based on distance along
theplate) that are smaller than those predictedby linear eigen-
value theory [10]. It has been postulated that large transient
growth in the flow perturbations can trigger transition via
nonlinear mechanisms before the linear instability mecha-
nism occurs. Transient growth in the Blasius boundary layer
was studied by Butler and Farrell [7], who noted that at some
Reynolds numbers, the worst case transient growth occurred
at streamwisewavenumbers thatwere zero andnonzero span-
wise wavenumbers.

Linear theory canbe exploited using the associatedmodels
to develop feedback controllers which address stabilisation
at those Reynolds numbers and wavenumbers where the
instabilities would otherwise occur. Active feedback control
requires the introduction of appropriate sensors and actu-
ators and the design of feedback controllers. The history
and use of linear state-space models based on the Orr–
Sommerfeld/Squire system to design feedback controllers
is described by Bewley [4].

Active control design has been investigated for several
flows with emphasis on plane Poiseuille flow [5,12] and
the Blasius boundary layer [1,2]. The Poiseuille flow cor-
responds to the fully developed flow in a channel between
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two parallel infinite plates and the Blasius boundary layer
is the two-dimensional laminar flow over a semi-infinite flat
plate. This paper will concentrate on the latter case. The use
of linear models to develop linear controllers for what is
generally considered to be a nonlinear phenomenon (transi-
tion to turbulence) has been championed by many authors
who have argued that linear control systems based on linear
models can deal with the initial linear amplification of distur-
bances, thus preventing the subsequent nonlinear transition
behaviour [13].

The type and location of the sensors and actuators has
a profound effect on the achievable stability, performance,
and robustness of a feedback strategy. Sensor and actu-
ator locations have been considered by Belson et al. [2]
in the Blasius case. A very useful paradigm for robust
feedback controller design is passivity-based control. Pas-
sive systems [9] are those that only store or dissipate
energy. Strict passivity is a stronger property than passivity
and corresponds to systems that only consume (dissipate)
energy. The passivity theorem [9] states that the nega-
tive feedback interconnection of a passive system and a
strictly passive system (with finite gain) is L2-stable, that
is, L2 (finite energy) inputs produce L2 (finite energy) out-
puts.

In a previous work [8], we studied the passivity prop-
erty in two dimensions in the context of the Orr–Sommerfeld
equation with actuation inputs implemented as wall-normal
velocity. A dual output (based on energy analysis) was
shown to be the second spatial derivative (normal direc-
tion) of the streamwise velocity perturbation at the wall.
Although passivity of themodel relating this input and output
could not be demonstrated, it was shown that an appro-
priate closed-loop system could be made passive with a
baseline Poiseuille flow but not with a Blasius flow. Pas-
sivity ideas have been employed by Sharma et al. [18] and
Heins et al. [11] in the stabilisation of a Poiseuille flow
(the fully developed flow in a channel between two paral-
lel plates).

The paper is organised as follows. Section 2 defines
the key notions involving passivity. In Sect. 3, we resume
the passivity analysis from [8], this time in three spa-
tial dimensions using both the Orr–Sommerfeld and Squire
equations. In Sect. 4, spatial discretisation of the Orr–
Sommerfeld and Squire equations is accomplished using
Hermite cubic finite elements to describe the wall-normal
velocity and vorticity components. This approach was
originally used for the Orr–Sommerfeld equation with
Poiseuille flows by Mamou and Khalid [14]. In Sect. 5,
stabilisation using the passivity-based output is demon-
strated at a Reynolds number and wavenumber pair that
is open-loop unstable. Section 6 presents some concluding
remarks.

2 Feedback controller design

2.1 Passivity and feedback design

Consider the feedback system shown in Fig. 1 where
d1(t), d2(t), m1(t), and m2(t) are functions of time t .

Generically, m ∈ L2 if the L2-norm satisfies ||m||2 �=√∫∞
0 mT (t)m(t) dt < ∞ (the symbol ( )T denotes the

matrix transpose and ( )H denotes the complex-conjugate
transpose). We also have, m ∈ L2e (the extended L2-space)

if ||m||2T �=
√∫ T

0 mT (t)m(t) dt < ∞, 0 ≤ T < ∞. Note
that L2 ⊂ L2e. Consider a system m(t) = (Ge)(t) where
the operator G : L2e → L2e (possibly nonlinear and time-
varying) maps the input e ∈ L2e into the output m ∈ L2e.
The gain of G (which is the induced norm on L2) is defined
to be ||G|| = sup

0 �=e∈L2

||Ge||2/||e||2.
If the systemG is square (the number of inputs in e is equal

to the number of outputs in m), the operator G is defined to
be strictly passive if

∫ T
0 mT (t)e(t) dt = ∫ T

0 eT (t)Ge(t) dt ≥
δ + ε

∫ T
0 eT (t)e(t) dt , ∀e ∈ L2e, 0 ≤ T < ∞, for some

ε > 0 and real constant δ which may depend on the initial
conditions of G. If ε = 0, the system is passive.

IfG is linear time-invariant (LTI) (and finite dimensional),
it is describable by the standard state-space model

ẋ(t) = Ax(t) + Be(t) (1)

m(t) = Cx(t) + De(t) (2)

where ( ˙) denotes the time derivative. This system can be
described using transfer functions: m(s) = G(s)e(s) where
m(s) denotes the Laplace transform of m(t) (a common
abuse of notation) and G(s) is the system transfer (func-
tion) matrix. The quantity s denotes the complex-valued
Laplace transform variable and i = √−1. Note that G(s) =
C(s I−A)−1B+D is the transfermatrix corresponding to the
state-space model in Eqs. (1) and (2). Here, I is the identity
matrix of appropriate dimension. If the system is minimal,
i.e., it is controllable and observable, then L2-stability of
G (e ∈ L2 implies that m = Ge ∈ L2) corresponds to the
matrix A having eigenvalues with negative real parts. For sta-
ble LTI systems, the gain can be shown (Vidyasagar, 1992)
to be ||G|| = ||G(s)||∞ = sup

ω∈R
σ̄ [G(iω)] where σ̄ denote

the largest singular value.
Passive LTI systems of this form correspond to the case

where G(s) is a positive real (PR) transfer function. When
G(s) is a proper real rational matrix function of s, it is pos-
itive real if no element of G(s) has a pole in �e{s} > 0;
He[G(iω)] = (1/2)[G(iω) + GH (iω)] ≥ 0 for all real ω

with iω not a pole of G(s) (He( ) denotes the Hermitian
part of a square matrix); and if iω0 is a pole of any element
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Fig. 2 Closed-loop system with perturbation

of G(s), it is at most a simple pole and the residue matrix
lims→iω0(s − iω0)G(s) is non-negative definite Hermitian.

A stronger property than positive real is strictly pos-
itive real (SPR). A proper real rational matrix function
of s, K (s), is SPR if no element of K (s) has a pole in
�e{s} ≥ 0; He[K (iω)] > 0 for all real ω ∈ (−∞,∞);
and lim

ω→∞ω2He[K (iω)] > 0. A system with transfer matrix

K (s) + ε I is strictly passive with finite gain if K (s) is
SPR and ε > 0. The importance of passivity for feedback
design lies in the passivity theorem [9], which addresses
the feedback system shown in Fig. 1. One form of the pas-
sivity theorem states that if G is passive and K is strictly
passive with finite gain, then d1, d2 ∈ L2 implies that
e1, e2,m1,m2 ∈ L2.

Another useful property of passive systems stems from
the fact that negative feedback interconnections of passive
systems are also passive. Also, the negative feedback inter-
connection of a passive system and a strictly passive one is
also strictly passive. This has important repercussions for
systems with uncertainty modelled as a passive system in
negative feedback with a nominal plant (see Fig. 2 where the
uncertainty is modelled as an operator � : L2e → L2e). It
has been noted by Sharma et al. [18] that the nonlinearities
in the Navier–Stokes equations can be modelled as passive
uncertainty in negative feedback with a linearised model.
With reference to Fig. 2, if the negative feedback intercon-
nection of G andK is strictly passive (this system is denoted
byH) and the perturbation� is passive, then the closed-loop
system is L2-stable, i.e., d1 ∈ L2 implies that m1 ∈ L2.

It should be noted that although passivity of G and strict
passivity ofK are sufficient forH to be strictly passive, they
are not necessary conditions. An interesting design problem
for LTI systems is the following: given G(s) (not necessarily
passive), find K (s) to render H(s) = G(s)[I+K (s)G(s)]−1

SPR [15] which would mean that the system in Fig. 2 is L2-
stable for passive �.

When the systemH in Fig. 2 is not passive, some robust-
ness properties can still be obtained using the notions of conic
sectors and the conic sector theorem. Following Zames [20]
and Bridgeman and Forbes [6], the system H : L2e → L2e

is in the conic sector [ac, bc] (denoted H ∈ cone[ac, bc])
where ac < bc and bc > 0 if

− 1

bc
||He||22T+

(
1+ ac

bc

)∫ T

0
eT (t)He(t) dt−ac||e||22T ≥ 0,

(3)

∀e ∈ L2e, T ≥ 0. It is strictly in the conic sector (denoted
H ∈ cone(ac, bc)) if H ∈ cone[ac + ε, bc − ε] for some
small ε > 0. From this definition, it clear that for a passive
system H ∈ cone[0,∞].

We will be interested in systems H ∈ cone[ac,∞] with
ac < 0. For a stable LTI system with transfer matrix H(s), a
simple (temporal) Fourier transform of Eq. (3) shows that

He[H(iω)] ≥ ac I, ∀ω ∈ R (4)

The conic sector theorem [20] as presented byBridgemanand
Forbes [6] states that the system in Fig. 2 is L2-stable ifH ∈
cone[ac, bc] with ac < 0 and � ∈ cone(−1/bc,−1/ac). In
particular, we have L2 stability if H ∈ cone[ac,∞] with
ac < 0 and � ∈ cone(0,−1/ac). This implies that � is
passive and it is possible to show that ||�|| < −1/ac. Hence,
a stable LTI systemHwith transfer matrix satisfying Eq. (4)
in negative feedback with a passive system� whose L2 gain
is less than −1/ac will be L2-stable.

2.2 Strictly positive real design

Consider the case whereG andK correspond to LTI systems
with transfer matrices G(s) = C(s I − A)−1B + D and
K (s) = K c(s I − Ac)

−1K e Consider the plant model ẋ =
Ax + Bν (i.e., d1 = d2 = 0). A state feedback gain can be
chosen to minimise the quadratic performance index

JLQR = 1

2

∫ ∞

0

(
xT (t)Qx(t) + νT (t)Rν(t)

)
dt (5)

where the weighting matrices are chosen such that Q is
symmetric and non-negative definite and R is selected
to be symmetric and positive definite. This is the well-
known linear quadratic regulator (LQR) which has the
feedback solution ν(t) = −KLQRx(t) with feedback gain
KLQR = R−1BTPLQR. The matrix PLQR is the solution
of the algebraic Riccati equation PLQRA + AT PLQR −
PLQRBR−1BT PLQR + Q = 0.
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Our approach to SPR design is based on [3]. The SPR
controller is given by K c = KLQR , Ac = A− BKLQR, and
K e = P−1K T

c where

P Ac + AT
c P = −Qc (6)

The non-negative definite matrix Q and the positive definite
matrices R (used to design K LQR) and Qc are free design
parameters. Eq. (6) coupled with PK e = K T

c ensures that
the control system satisfies the Kalman–Yakubovich Lemma
[19] and hence is SPR.

2.3 Model order reduction

The controller designs presented above have assumed a full-
order model. A controller with a reduced number of states
can be developed by employing a controller design using a
reduced-order model. Assume that the system G(s) has been
transformed to modal form. Assuming that the eigenvalues
of A, λi , are distinct, the modal system is given by

G(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0 b̂
H
1

0 λ2 · · · 0 b̂
H
2

...
...

. . .
...

...

0 0 · · · λn b̂
H
n

ĉ1 ĉ2 · · · ĉn D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

If distinct eigenvalues are assumed, the conditions for modal
controllability and modal observability are ||b̂α|| > 0 and
||ĉα|| > 0. A reduced-ordermodel can be created using those
modes with the largest values of ||b̂α||·||ĉα||. Hence, they are
the most controllable/observable as measured by the product
of the modal controllability and observability norms.

2.4 Motivation for a passivity analysis and
passivity-based control

This paper seeks to analyse the passivity properties of the
linearised system relating the wall-normal velocity as actu-
ation to an appropriate sensor output in the case of the
flow perturbations acting on the Blasius boundary layer.
Hence, the passivity analysis answers the question “what
should be measured if the actuation is wall-normal blow-
ing and suction?” Determining an output that leads to
a passive system produces a system that is easy to sta-
bilise since any strictly passive negative feedback controller
leads to this result. Hence, a large family of stabilising
controllers is available. Using a strictly passive feedback
controller (or an SPR controller in the LTI case), one pro-
duces a closed-loop system whose stability is robust with
respect to passive perturbations connected in a feedforward
arrangement (which continues to produce a passive plant)

�

�

z, w

x, u

y, v

U(y)
U0

� �mr mi νr, νi

��
��
��
��

�����
��

��� ��� ��� ��� ��� ���

Fig. 3 Blasius boundary layer

or a negative feedback arrangement (which is stable if the
nominal closed-loop system is strictly passive). As will be
examined in a later section, the feedforward perturbation
could correspond to the system nonlinearities. The feed-
back perturbation could correspond to unmodelled sensor
and actuator dynamics.

3 Passivity analysis of the
Orr–Sommerfeld/Squire equations

3.1 Blasius boundary layer

We consider a three-dimensional flow field occupying the
region (x, y, z) ∈ [0,∞]×[a, b]×[−∞,∞]with a base par-
allel laminar flow (U (y), 0, 0) and associated pressure field
P(x, y, z, t). The Blasius boundary layer flow (Schlicht-
ing, 1979) is depicted in Fig. 3 and we shall take a = 0.
Although b → ∞, a finite computational boundary for b
will be employed as discussed below. The nominal lami-
nar flow (U , V , 0) is known to be nonparallel (V �= 0),
but we shall make the approximation V = 0 and take
U (y) to be the Blasius solution: U (y) = d f (η)/dη (this
has been nondimensionalised using the free-stream veloc-
ity U0) where η = yd

√
ρU0/(μxd) (xd, yd, and zd refer

to dimensional coordinates) and f (η) is the solution of
2d3 f /dη3 + (d2 f /dη2) f = 0 with d f (0)/dη = f (0) = 0
and d2 f (0)/dη2 = 0.33205733622 which yields the correct
asymptotic boundary condition d f (η)/dη = 1 as η → ∞.

The displacement thickness is given by H = δ∗ =
1.7207876573

√
μxd/(ρU0) where the free-stream veloc-

ity is U0. The local Reynolds number will be denoted by
Re = ρU0δ

∗/μ where ρ is the fluid density and μ is the
absolute viscosity. The displacement thickness δ∗ will nondi-
mensionalise length andU0 will nondimensionalise velocity.
As noted above, we will use a finite computational domain
with b = (24/H)

√
μxd/(ρU0) (dimensionless) and at this

boundary we will impose an inviscid asymptotic solution to
be described in the next section.
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3.2 Orr–Sommerfeld/Squire equations

Assuming small perturbations u(x, y, z, t), v(x, y, z, t),
w(x, y, z, t), and p(x, y, z, t) about the Blasius flow, the lin-
earised incompressible Navier–Stokes equations [10] are

∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z
= 0 (8)

∂u

∂t
+U

∂u

∂x
+U ′v = −∂ p

∂x
+ 1

Re
∇2u (9)

∂v

∂t
+U

∂v

∂x
= −∂ p

∂ y
+ 1

Re
∇2v (10)

∂w

∂t
+U

∂w

∂x
= −∂ p

∂z
+ 1

Re
∇2w (11)

where U ′(y) = dU (y)/dy and ∇2 = ∂2/∂x2 + ∂2/∂ y2 +
∂2/∂z2. It has been assumed that quantities are nondimen-
sionalised using the velocityU0 and distance H . The bound-
ary conditions are taken to be u(x, a, z, t) = u(x, b, z, t) =
v(x, b, z, t) = w(x, a, z, t) = w(x, b, z, t) = 0 and the con-
trol variable is taken to be v(x, a, z, t), which corresponds
to wall-normal blowing and suction.

Introducing the wall-normal vorticity

ζ(x, y, z, t)
�= ∂u

∂z
− ∂w

∂x
(12)

it can be shown [17] that Eqs. (8)–(11) can be simplified to
yield equations for the wall-normal velocity v and vorticity
ζ :

− ∇2v̇ +
{
U

∂

∂x
∇2 −U ′′ ∂

∂x
− ∇2∇2/Re

}
v = 0 (13)

ζ̇ +U ′ ∂v

∂z
+
{
U

∂

∂x
− ∇2/Re

}
ζ = 0 (14)

Introducing the spatial Fourier transform in the x and z
directions, or alternatively letting

v(x, y, z, t) = �e
{
v̂(y, t) exp[i(αx + βz)]} (15)

ζ(x, y, z, t) = �e
{
ζ̂ (y, t) exp[i(αx + βz)]

}
(16)

where v̂ and ζ̂ are the complex amplitudes and α, β are the
real wavenumbers, leads to the Orr–Sommerfeld and Squire
equations [17]:

[Mos 0
0 Msq

][ ˙̂v
˙̂
ζ

]
+
[Kos 0
Kc Ksq

] [
v̂

ζ̂

]
=
[
0
0

]
(17)

where

Mos = −�, Msq = I, � = ∂2/∂ y2 − α2 − β2 (18)

Kos = −iαU� + iαU ′′ + ��/Re, Kc = iβU ′, (19)

Ksq = iαU − �/Re (20)

and I is the identity operator. The boundary conditions are
v̂y(a, t) = ζ̂ (a, t) = 0, v̂(b, t) = −kv̂y(b, t) (the inviscid
asymptotic) and ζ̂ (b, t) = 0. The (real) control inputs are
taken to be

ν(t) = [�e{v̂(a, t)} �m{v̂(a, t)}]T = [νr (t) νi (t)]T (21)

(the vector ν should not be confused with the scalar velocity
components u and v; note that the symbol ν will not be used
in this paper to refer to a fluid’s kinematic viscosity).

3.3 Passivity analysis

In this section, it will be assumed that b → ∞with boundary
conditions v̂y(a, t) = v̂y(b, t) = v̂(b, t) = 0, and ζ̂ (a, t) =
ζ̂ (b, t) = 0. The energy E(t) ≥ 0 is taken to be [17]

E(t) = αβ

8π2

∫ 2π/β

0

∫ 2π/α

0

∫ b

a
(u2 + v2 + w2) dy dx dz

= Eos(t) + Esq(t)

where

Eos = 1

4k2

∫ b

a

(
v̂∗
y v̂y + k2v̂∗v̂

)
dy, Esq = 1

4k2

∫ b

a
ζ̂ ∗ζ̂ dy ≥ 0

and k2 = α2+β2. (Note that the subscript notation ( )y indi-
cates the corresponding partial derivative; the superscript ( )∗
denotes the complex conjugate). Taking the time derivative
of these two equations yields

2k2 Ėos = 1

2

∫ b

a

( ˙̂v∗
y v̂y + v̂∗

y
˙̂vy + k2 ˙̂v∗v̂ + k2v̂∗ ˙̂v

)
dy

2k2 Ėsq = 1

2

∫ b

a

( ˙̂
ζ ∗ζ̂ + ζ̂ ∗ ˙̂

ζ
)
dy

Integrating the first two terms by parts and introducing
the boundary conditions, the Orr–Sommerfeld equation, the
Squire equation, and their complex conjugates leads to equa-
tions in which the terms containing D4 can be integrated by
parts twice and the terms containing D2 once, while enforc-
ing the boundary conditions, to arrive at

2k2 Ėos = −Re−1

(∫ b

a
k4|v̂|2 + 2k2|Dv̂|2 + |D2v̂|2

)
dy

−α

∫ b

a
U ′(y)�m[v̂v̂∗

y ] dy+Re−1�e[v̂∗D3v̂]y=a (22)

2k2 Ėsq = −Re−1
(
|Dζ̂ |2+k2|ζ̂ |2

)
dy−β

∫ b

a
U ′(y)�m

[
v̂∗ζ̂

]
dy (23)
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Since û = (i/k2)(αDv̂ −βζ̂ ), the sum of these equations
can be simplified to

2k2 Ė =−Re−1
(∫ b

a
k4|v̂|2+2k2|Dv̂|2+|D2v̂|2

+|Dζ̂ |2+k2|ζ̂ |2
)
dy

−k2
∫ b

a
U ′(y)�e[û∗v̂] dy+Re−1�e[v̂∗D3v̂]y=a (24)

In the hopes of obtaining a passive input–output pair, the
observation is defined to be

mos(t) = [�e{D3v̂(a, t)} �m{D3v̂(a, t)}]T = [mos,r (t) mos,i (t)]T .

(25)

In the next section, it will be demonstrated that the output
mos can be obtained from physically measurable pressure
quantities at the wall.

Now, noting that �e[v̂∗D3v̂]y=a = mT
os(t)ν(t), while

integrating Eq. (22) with respect to time, yields

∫ T

0
mT

osν dt =
∫ T

0

∫ b

a

(
k4|v̂|2 + 2k2|Dv̂|2 + |D2v̂|2

)
dy dt

+2k2ReEos(T ) + αRe
∫ T

0

∫ b

a
U ′(y)�e[v̂∗

y v̂] dy dt
−2k2ReEos(0) (26)

Clearly, the first three integrated terms on the right-hand side
of these two equations, as well as 2k2ReEos(T ), are non-
negative. However, the term containing U ′(y) is indefinite
and, potentially, destroys the passivity of the mapping from
the input ν to the output mos. In the absence of this term, the
mapping is passive. In particular, for α = 0, we have from
Eq. (26), that

∫ T

0
mT

osν

∣∣∣
α=0

dt ≥ δ = −2β2ReEos(0) (27)

which is a statement of passivity. This can be significant
because it was shown by Butler and Farrell [7] that for
Re = 1000, the case ofmaximum transient growth occurs for
α = 0, β = 0.65. In physical terms, Eq. (27) states that the
work done on the fluid as measured by the sensor/actuator
combination is non-negative (neglecting the initial condi-
tions); hence, the work done by the fluid is not positive
indicating that it only stores or consumes energy.

In general, there are stabilising influences to be had
using this sensor/actuator pair. For example, using the
simplest strictly passive output feedback law, ν(t) =
−K̄mos(t), K̄ > 0, may lead to a stable closed-loop sys-

tem. Introducing it into Eq. (24) yields

Ė = −(2k2Re)−1
(∫ b

a
k4|v̂|2 + 2k2|Dv̂|2

+|D2v̂|2 + |Dζ̂ |2 + k2|ζ̂ |2
)
dy

−(2k2Re)−1 K̄mos
Tmos− 1

2

∫ b

a
U ′(y)�e[û∗v̂] dy (28)

which demonstrates the potential of the output feedback law
to lead to an energy-dissipative closed-loop system if the
two terms containing (2k2Re)−1 are able to dominate the
last term. Similar results can be obtained using an SPR con-
troller which essentially mimics a positive definite gain on a
frequency-by-frequency basis.

3.4 Measurements

Taking the Fourier transform of the continuity equation in
Eq. (8) while differentiating twice with respect to y yields

v̂yyy = −i
(
αû yy + βŵyy

)
(29)

Taking the Fourier transform of Eqs. (9) and (10) and evalu-
ating at the lower wall [with û(a, t) = ŵ(a, t) = 0] yields

U ′(a)v̂(a, t) = −iα p̂(a, t) + 1

Re
ûyy(a, t)

0 = −iβ p̂(a, t) + 1

Re
ŵyy(a, t)

Multiplying the first of these by α and the second by β and
adding the results produces αû yy + βwyy = Re[αU ′(a)

v̂(a, t) + ik2 p̂]. When this is substituted into Eq. (29), we
arrive at

v̂yyy(a, t) = Rek2 p̂(a, t) − iReαU ′(a)v̂(a, t) (30)

which is the desired result. This shows that the special output
identified above, mos, is obtainable from pressure measure-
ments at the wall and knowledge of the control input ν. In
the case where α = 0, the control input is not required.

3.5 Nonlinear passivity analysis

In this section, we will find it helpful to define wall functions
using the notational paradigm

vw(x, z, t) = v(x, a, y, t) (31)
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with corresponding two-dimensional spatial Fourier trans-
form

v̂w,αβ(t) =
∫ ∞

−∞

∫ ∞

0
vw(x, z, t) exp[−i(αx + βz)] dx dz

(32)

(note that the wave number dependence has been explicitly
indicated.) It will be helpful to introduce an inner product for
wall functions:

〈mw, ew〉T ,w =
∫ T

0

∫ ∞

−∞

∫ ∞

0
mT

wew dx dz dt

= 1

4π2

∫ T

0

∫ ∞

−∞

∫ ∞

−∞
�e(m̂H

w êw) dα dβ dt (33)

where we have used Parseval’s theorem for the latter expres-
sion.

We introduce an extended space of wall functions accord-
ing to L2e,w = {ew | 〈ew, ew〉T ,w < ∞, 0 ≤ T < ∞}.
Consider a system Hw : L2e,w → L2e,w with input ew and
output mw = Hwew. We will say that Hw is in the conic
sector [ac, bc] where ac < bc with bc > 0 if

− 1

bc
〈Hwew,Hwew〉T ,w +

(
1 + ac

bc

)
〈ew,Hwew〉T ,w

−ac〈ew, ew〉T ,w ≥ 0 (34)

∀ew ∈ L2e,w, T ≥ 0. Comparing this with Eq. (3), it is
clear that the inner product and corresponding norm have
been generalized from temporal functions to functions of
both space and time on the wall.

Using the Parseval relation on this, we can write the conic
sector relation as

1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ T

0

[
− 1

bc
m̂H

w,αβ m̂w,αβ

+
(
1 + ac

bc

)
�e{m̂H

w,αβ êw,αβ} − ac ê
H
w,αβ êw,αβ

]

dt dα dβ ≥ 0 (35)

Making the identifications êw = v̂w, m̂w = v̂yyy,w, and
recalling the definitions in Eqs. (21) and (25), the above can
be written as:

1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ T

0

[
− 1

bc
mT

os,αβmos,αβ

+
(
1 + ac

bc

)
mT

os,αβναβ − acν
T
αβναβ

]

dt dα dβ ≥ 0 (36)

where we have explicitly indicated the spatial wavenumber
dependence on (α, β). Hence, if the mapping from ναβ(t) to
mos,αβ(t) is in the conic sector [ac, bc] for each wavenumber
pair (α, β) (that is the inner integral with respect to time
is non-negative for each wavenumber pair (α, β)), then the
correspondingwall operatorHw is in the conic sector [ac, bc]
(that is the triple integral with respect to space and time is
non-negative). This justifies an approach to controller design
which seeks to stabilise the systemwith individual controller
designs at each wavenumber pair (α, β).

Hence, if the mapping from ναβ(t) to mos,αβ(t) is
expressed in the (temporal) frequencydomain asmos,αβ(s) =
Gαβ(s)ναβ(s) then one can seek a feedback controller design
at each (α, β) pair according to ναβ(s) = −Kαβ(s)mos,αβ(s)
with corresponding closed-loop transfer matrix Hαβ(s) =
Gαβ(s)[I + Kαβ(s)Gαβ(s)]−1. If Kαβ(s) can be designed
such that Hαβ(s) satisfies Eq. (4) at each value of (α, β),
then the corresponding operator Hw in the combined time
and space domains will also be in the cone [ac,∞]. This
approach to controller design is depicted in Fig. 4. In this
figure, the blocks FT and I FT correspond to the (spatial)
Fourier transform and its inverse, respectively. The blockN
corresponds to a parallel feedforward representing the non-
linear part of the mapping from vw to vyyy,w.

Let us express the time and space domain mapping from
vw to vyyy,w as

vyyy,w = L(vw) + N (vw) (37)

where L is the linear mapping expressed in Eq. (30) and
N is nonlinear. Consider the fully nonlinear incompressible
Navier–Stokes equations describing the flow field (U (y) +
u, v, w) and the pressure field P + p(x, y, z, t) (the precur-
sor of the linearised equations in Eqs. (8)-(11); we do not
write them down to conserve space). If one differentiates the
nonlinear version of Eq. (9) with respect to x , the nonlinear
version of Eq. (10) with respect to y, and the nonlinear ver-
sion of Eq. (11) with respect to z and evaluates them at the
wall, one arrives at

pxx,w = 1

Re
∇2ux,w −U ′(a)vx,w (38)

pyy,w = 1

Re
∇2vy,w −U ′(a)vx,w (39)

pzz,w = 1

Re
∇2wz,w (40)

where the no-slip boundary conditions have been applied in
conjunction with the continuity equation. Interestingly, one
arrives at the same equations using the linearised Navier–
Stokes equations.

Using Eq. (39), one can write

vyyy,w = L(vw) + N (vw) = Re(pyy,w +U ′(a)vx,w) (41)
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Fig. 4 Approach to feedback
design
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The linear part of the mapping follows from the inverse (spa-
tial) Fourier transform of Eq. (30):

L(vw) = −Re(pxx,w + pzz,w +U ′(a)vx,w) (42)

Combining these two equations yields

N (vw) = Re(∇2 pw + 2U ′(a)vx,w) (43)

Adding Eqs. (38)–(40) while using the continuity equation
yields

∇2 pw = −2U ′(a)vx,w (44)

which when used in Eq. (43) implies that N (vw) = 0. This
has been reflected in Fig. 4. Hence, the mapping between our
chosen control inputs and measured outputs is linear within
the scope of the assumptions that have been made.

In Fig. 4, a disturbance input dw(x, z, t) has been added
in addition to the control input vw(x, z, t) as well as a
feedback perturbation �w : L2e,w → L2e,w. To present
the fundamental stability result governing this setup, let
us define the space of finite energy functions L2,w =
{ew | limT→∞〈ew, ew〉w,T < ∞}.NowapplyZames’s conic
sector theorem [20] to this setup. Let us assume that the feed-
back systems Hαβ(s) = Gαβ(s)[I + Kαβ(s)Gαβ(s)]−1 are
in the cone [ac,∞] for each (α, β). Hence, the time and space
domain operator Hw ∈ cone[ac,∞] and we can state that
dw ∈ L2,w ⇒ vyyy,w ∈ L2,w if �w ∈ cone(0,−1/ac).

4 Spatial discretisation using finite elements

It is assumed that the y-domain [a, b] is broken into Ne

equally sized finite elements (width �) with the value of y
at the nodes (element boundaries) denoted by y j = ( j −1)�,
j = 1, . . . , Ne + 1 where � = (b− a)/Ne. Let us denote the
value of v̂ and its derivative at the nodes by v j (t) = v̂(y j , t)

and v′
j (t) = v̂y(y j , t) with similar definitions for ζ j (t) and

ζ ′
j (t). Within the j th element, the following trial solutions

are assumed:

v̂(y, t) = [1 ŷ ŷ2 ŷ3]

⎡
⎢⎢⎣

1 0 0 0
0 � 0 0

−3 −2� 3 −�

2 � −2 �

⎤
⎥⎥⎦

[v j (t) v′
j (t) v j+1(t) v′

j+1(t)]T
= Y T (ŷ)Lq( j)

os (t) (45)

and

ζ̂ (y, t) = Y T (ŷ)Lq( j)
sq (t), q( j)

sq (t) = [ζ j (t) ζ ′
j (t) ζ j+1(t) ζ ′

j+1(t)]T
(46)

where y = ( j − 1+ ŷ)� and ŷ is a local element coordinate
systemwith 0 ≤ ŷ ≤ 1.This element descriptionwas usedby
Mamou and Khalid [14] in the case of the Orr–Sommerfeld
equation for Poiseuille flow.Our application to the controlled
Orr–Sommerfeld/Squire equations is novel.

Defining q̂os = [v1 v′
1 · · · vNe+1 v′

Ne+1]T , q̂sq =
[ζ1 ζ ′

1 · · · ζNe+1 ζ ′
Ne+1]T , and q̂ = [̂qTos q̂Tsq]T , the usual

procedures of the finite element method using Eqs. (45) and
(46) in conjunction with the Orr–Sommerfeld/Squire equa-
tions leads to

M̂r ˙̂q + (K̂ r + iK̂ i )̂q = 0 (47)

where the global matrices and can be partitioned as

M̂r =
[
M̂os,r 0
0 M̂sq,r

]
, K̂ r =

[
K̂ os,r 0
0 K̂ sq,r

]
, K̂ i =

[
K̂ os,i 0
K̂ c,i K̂ sq,i

]

(48)

The boundary conditions are now applied by setting
v′
1 = ζ1 = ζNe+1 = 0 and taking the terms involving
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v1 to the right-hand side of the equation to form the con-
trol input. We also set v′

Ne+1 = −kvNe+1. Defining qos =
[v2 v′

2 · · · vNe v′
Ne

vNe+1]T , qsq = [ζ ′
1 ζ2 ζ ′

2 · · · ζNe ζ ′
Ne

ζ ′
Ne+1]T , q = [qTos qTsq]T , and removing the appropriate rows
and columns from the above equation yields

Mr q̇ + (K r + iK i )q = (B1r + iB1i )v1 + B2r v̇1 (49)

where Mr , K r , and K i are the reduced matrices which
can be partitioned analogous to those in Eq. (48). Addi-
tional terms are added to the last row and last column of
each Orr–Sommerfeldmatrix on the left-hand side to enforce
v′
Ne+1 = −kvNe+1. It is straightforward to form B1r from

the entries of K̂ os,r , B1i from the entries of K̂ os,i and K̂ c,i ,
and B2r from the entries of M̂os,r .

Now, take the (real) control input to be e = [�e{v1} �m
{v1}]T and the (real) measurement output is taken to be
m(t) = mos(t) = [�e{v̂yyy(a, t)} �m{v̂yyy(a, t)}]T . If the
(real) state vector is taken as x = [qTos,r qTos,i q

T
sq,r qTsq,i ]T −

blockdiag{M−1
r B2r , M−1

r B2r }e where qos,r = �e{qos},
qos,i = �m{qos}, qsq,r = �e{qsq}, qsq,i = �m{qsq}, then
the methods of Damaren [8] can be used to derive a state-
space model of the form in Eqs. (1) and (2).

If x is partitioned as x = col{xos, xsq}, then the matrices
in the state-space model can be partitioned as

A =
[
Aos 0
Ac Asq

]
, B =

[
Bos

Bsq

]
,C = [Cos Csq ], D (50)

Given the structure of A, the modes can be decomposed
into two sets [17]. The Orr–Sommerfeld modes correspond
to the eigenvalues of Aos with eigenvectors of the form
x̄ = col{x̄os, x̄sq} (note that x̄sq = 0 when β = 0
since Ac = 0 in that case). The Squire modes corre-
spond to eigenvalues of Asq with eigenvectors of the form
x̄ = col{0, x̄sq}. Hence, there is the possibility that both
the Orr–Sommerfeld and Squire modes are controllable
using e. However, all of the Squire modes are completely
unobservable using the output mos for which Csq = 0.
This can be mitigated to some extent because all of the
Squire modes are asymptotically stable [17] and hence
are stabilisable. However, it was noted by Butler and Far-
rell [7] that the initial conditions contributing the most
to transient energy growth contained streamwise vortices.
Given that the stability properties predicted by the passiv-
ity theorem are input–output results, we do not speculate
on the ability of the proposed input/output combination to
suppress large transient growth imparted by the initial con-
ditions.

Table 1 Orr–Sommerfeld/Squire eigenvalues for Blasius case, Re =
800, α = 0.25, β = 0.2

Schmid and Henningson Damaren (Ne = 240, b = 24)

�e{λ/α} �m{λ/α} �e{λ/α} �m{λ/α}
Orr–Sommerfeld

+ 0.00287572 0.39065421 + 0.002826 0.390610

− 0.23434181 0.54772364 − 0.234257 0.547720

− 0.31005379 0.33866341 − 0.309990 0.338641

− 0.37872068 0.79181869 − 0.378502 0.791717

− 0.40505900 0.65749147 − 0.404910 0.657402

Squire

− 0.13769021 0.23869653 − 0.137679 0.238688

− 0.23747142 0.41904327 − 0.237431 0.419016

− 0.31360121 0.57017612 − 0.313527 0.570123

− 0.37342899 0.70889059 − 0.373318 0.708801

− 0.41937502 0.84255313 − 0.419228 0.842414

5 Numerical example

In an effort to validate our numerical approach, we begin
by considering Ne = 240 finite elements and an upper edge
dimension of b = 24. Given the availability of data from
Schmid and Henningson, [17] , the initial parameters are
taken to be Re = 800, α = 0.25, β = 0.2. The ensuing
discrete spectrum that is obtained from the eigenvalues of A
in Eq. (50) is given in Table 1 along with the corresponding
values from Schmid and Henningson [17]. In general, there
is agreement to four significant figures with the exception of
the unstable mode at +0.0029 ± i0.3907 which only agrees
with two significant figures.

For the case Re = 800, α = 0, β = 0.2, the corre-
sponding multivariable Nyquist plot of G(s) = C(s I −
A)−1C + D (i.e., the eigenloci of G(iω)) is given in Fig. 5
for m = mos. The eigenvalues λ j have been scaled to
(4/π) tan−1(|λ j |)[exp(i arg(λ j )] which preserves the phase,
maps zero to zero, maps the unit circle onto the unit circle,
and maps ∞ onto a a circle with radius two. Clearly, this
transfer matrix is positive real (since�e{λ j [G(iω)]} ≥ 0) as
predicted by our passivity analysis in Sect. 3. It is straighfor-
ward to verify that a non-negative Hermitian part of G(iω)

corresponds to �e{λ j [G(iω)]} ≥ 0.
Let us return to the case Re = 800, α = 0.25, and

β = 0.20 which is unstable (and hence nonpassive). Exam-
ining the eigenvalues of A − BD−1C reveals a zero at
s = 0.2412 and hence the system is unstable and nonmini-
mum phase. However, as intimated in Eq. (28) et seq., energy
dissipativeness may be possible using an SPR controller. To
illustrate this, we employed the design procedure of Sec. 2.2
using a reduced-order modal model with the 16most control-
lable/observable modes and Q = CT

r Cr (it is only positive
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Fig. 5 Nyquist plot (m = mos, Re = 800, α = 0, β = 0.2)
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Fig. 6 Eigenvalues of the Hermitian part of the closed-loop transfer
matrix H(s) using reduced-order SPR control

semidefinite in this case), R = I , and Qc = 5I , where Cr is
the output matrix of the reduced-order model. This leads to a
stable closed-loop system. The eigenvalues of the Hermitian
part of the closed-loop transfer matrix from d1 to m1 = mos

(H(s) = G(s)[I + K (s)G(s)]−1) are depicted in Fig. 6.
Although K (s) is determined using a reduced-order model,
the closed-loop stability calculation and the determination of
H(s) make use of the full-order model of G(s). Given the
negative excursion of the smallest eigenvalue, we conclude
that H(s) is not positive real since ac

.= −0.108. However,
it does belong to the conic sector [ac,∞] and hence is guar-
anteed to be stable when placed in negative feedback with
an uncertainty block � strictly belonging to the conic sector
(0,−1/ac).

6 Conclusions

The important property of passivity has been examined in the
case of the boundary-feedback controlled Orr–Sommerfeld/
Squire equations. A study of the work-energy balance was
used to select the appropriate sensed variables corresponding
to wall-normal velocity actuation. This corresponded to the
third derivative (wall-normal direction) of the wall-normal
velocity, which it was demonstrated can be constructed from
pressure measurements made along the wall. This choice of
sensing and actuation was shown to lead to passivity when
the streamwise wavenumber α was equal to zero. This was
validated by looking at the Nyquist plot for a typical case.
Unfortunately, the Squire modes are not observable from this
output which limited its applicability. However, it was shown
that stabilisation could be achieved in an unstable case using
a strictly positive real controller and this output. An analysis
was presented that showed that a series of stabilising linear
designs at each wavenumber pair could provide stability of
the original nonlinear distributed parameter system.
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