
Hardware Emulation Strategies for Concurrent
Microsatellite Hardware and Software

Development
G. James Wells * Robert E. Zee ** Christopher J. Damaren *

* Institute for Aerospace Studies
University of Toronto

4925 Dufferin Street
Toronto, ON M3H 5T6, Canada

E-mail: wellsj@ecf.utoronto.ca

** Space Flight Laboratory
Institute for Aerospace Studies

University of Toronto

Received 15 February 2002.

1. INTRODUCTION

Microsatellite projects tend to have small budgets and short
schedules. This places constraints on how much work can

be done in the early stage of development. At this stage, some
hardware for the microsatellite might not be available because
it has yet to be developed. The time spent creating this
hardware will delay the development of the flight code that
requires the presence of this hardware. If the functionality of
the hardware can be efficiently emulated using software, then it
would be possible to use a computer simulation system to
replace the missing hardware. Along with a space-environment
software model, this would allow the development of flight
code while the hardware is being developed. The simulator
should be one such that once the hardware is available, it can be
inserted into the simulation, replacing its software emulation.
The simulation system can then be used to test the interaction
between flight code and hardware while working in a simulated
space environment. The simulator can also provide operations
support for the microsatellite after it is launched and be used to
validate upgrades to flight code before they are uploaded to the
orbiting microsatellite.

The use of a hardware-in-the-loop simulator involving the
emulation of hardware is not new in small-satellite
development. Past work has been done at Los Alamos National
Laboratory (Ruud et al., 1997), Utah State University (Fullmer
and Sevilla, 1997), and the Harbin Institute of Technology in
China (Sun et al., 2000). All three institutes used computer
simulator systems that combined both commercial off-the-shelf
(COTS) technology with in-house-developed systems, all three
involved hardware-in-the-loop, and all three used their
simulator to design and test small-satellite systems. If hardware
emulation is going to be frequently used when designing small
satellites, it will be necessary to identify strategies that can be
employed so that work can be done in an expedient manner.
Being able to get a simulator system working quickly and being
able to emulate missing hardware with little effort is critical to
develop flight code at an early stage. The goal is to minimize
any “throw-away” work: work that cannot be used either on the
microsatellite or by the simulation system when it is used as an
engineering model for testing the hardware once it becomes
available.

© 2002 CASI 87

Vol. 48, No. 1, March 2002 Vol. 48, no 1, mars 2002

ABSTRACT
In small-satellite projects on short schedules, there is

often insufficient time to develop new hardware and
subsequently write software once the hardware is tested
and ready. In some cases, it is not possible to build a
satellite and develop new hardware for that same satellite.
However, if the target functionality and performance of the
new hardware elements are known together with their
interfaces to other parts of the system, then emulating these
elements may be useful if the effort involved in doing so is
kept to a minimum. Ideally, the proper hardware interfaces
should be implemented, and the purpose of the emulation
should be to act as a substitute for the missing hardware so
that flight code can be developed concurrently with the
hardware. The use of the real-time development system
RT-Lab™ (RT-Lab is a trademark of Opal-RT), which
combines both software-based emulation and customized
hardware interfaces, provides a flexible environment to
develop embedded software early in the development cycle
of a small satellite. As hardware elements become
available, they can be interfaced with the real-time system,
seamlessly replacing the software modules previously
simulating their performance. This paper investigates the
degree to which hardware can be emulated using the
development of the attitude control system for the MOST
microsatellite as an example. A trade study is presented
that indicates when the cost of programming the emulator
outweighs the benefits, and a law of diminishing returns
applies. A level of hardware emulation is recommended
that facilitates the early development of flight code, but
beyond which only the actual hardware should be used.

continued on page 88

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Objectives

1. Develop a simulator system that combines both real-time
hardware-in-the-loop simulation with easy-to-use software
so that emulations of missing hardware can be made with
as little effort and coding as possible.

2. Develop a model of the Attitude Control System (ACS)
(processor and peripherals) of the MOST microsatellite
that can be executed on the simulator system. Assume a
maximum development time of 10 months, approximately
how long it will take to develop the actual ACS processor.

Keep track of the amount of work, in terms of time spent,
that goes into emulating missing hardware systems and
developing flight code that can run on the ACS processor
once it is ready. Any code written in under 10 months is
time that the simulator saved in code development after the
ACS processor is available.

3. Using the experience gained from this development, create
a methodology that can be used when doing work on the
simulation system so that throw-away work is minimized.
Based on this methodology, a trade study will be done on
the work performed on the MOST ACS simulation to
determine any relationship between the efficiency of the
work done for each ACS subsystem and the complexity of
the subsystem.

4. Based on the results of the trade study, determine the types
of flight code that can be written early in the life of a
microsatellite project vs. the flight code that should not be
developed until the hardware is available. The trade study
can also be used to determine which hardware systems can
be added with little difficulty to the simulation system once
it is being used as an engineering model test system.

MOST Background
The Microvariability and Oscillation of STars (MOST)

microsatellite (Figure 1), being built in part at Dynacon
Enterprises Limited, the University of Toronto Institute for
Aerospace Studies Space Flight Laboratory, and the University
of British Columbia, will be Canada’s first space telescope.
Being developed under the Canadian Space Agency’s Small
Payloads Program, it is scheduled for launch in 2002 and will
conduct long-duration photometry of nearby stars. MOST
requires an accurate three-axis attitude control system to
successfully complete its mission.

88 © 2002 CASI

Canadian Aeronautics and Space Journal Journal aéronautique et spatial du Canada

suite de la page 87

RÉSUMÉ
Lors du développement de projets de petits satellites

réalisés à court échéancier, le temps accordé à la mise au
point du matériel est insuffisant. En conséquence, les
concepteurs élaborent les logiciels une fois le matériel
testé et prêt à être utilisé. Dans certains cas, il est
impossible de construire tout d’abord le satellite et de
concevoir ensuite les logiciels qui lui sont destinés.
Toutefois, si le rendement et la fonctionnalité de la
nouvelle pièce d’équipement et de son interface sont
connus des autres éléments du système, il peut alors être
utile d’émuler le fonctionnement de ces éléments en
prenant soin de le faire avec modération. Idéalement, il
faudrait intégrer les interfaces matériels appropriés et le
but de l’émulation devrait être de servir de méthode
d’analyse auxiliaire pour le matériel manquant de manière
à ce que les logiciels de bord puissent être développés
parallèlement au matériel. L’utilisation du système de
développement en temps-réel RT-Lab™ (RT-Lab est une
marque de commerce déposée d’Opal-RT), qui permet à la
fois d’effectuer des émulations logicielles et la création
d’interfaces matérielles personnalisées, fournit un
environnement flexible pour la conception de logiciels
intégrés tôt dans le cycle de développement d’un petit
satellite. Au fur et à mesure que les éléments matériels
deviennent disponibles, ils peuvent être couplés aux
système d’exploitation en temps-réel, remplaçant
directement les modules logiciels qui simulaient
antérieurement leur performance. Ce mémoire détermine
jusqu’à quel point les éléments matériels peuvent être
émulés. Le développement du système de commande
d’attitude du microsatellite MOST sert d’ailleurs
d’exemple. Le mémoire présente également une étude
déterminant le moment où la programmation de
l’émulateur n’est plus rentable et l’application de la loi du
rendement non proportionnel. Il est recommandé d’avoir
recours à l’émulation du matériel dans la mesure où elle
facilite le développement des logiciels de vol, mais au-
delà de laquelle seul le véritable équipement devrait être
utilisé.

Figure 1. MOST Microsatellite.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2. SIMULATOR CONFIGURATION

Hardware System
A simulator system, known as RT-Lab, made up of COTS

hardware and software components is used to minimize the
work needed to develop the system. The system has easy-to-use
software for hardware emulation.

The RT-Lab system is a multiprocessor platform that enables
real-time simulation of complex models. The system also
includes software that creates, executes, and controls the real-
time simulation. The system used here consists of two Pentium
II 400 MHz computers and its configuration is shown in
Figure 2.

The first computer is the host computer of the RT-Lab
system. It has Windows NT as its operating system and runs the
RT-Lab software. It is from this machine that the user creates
the model that will be simulated in real-time. The host machine
is also used to display and store data collected during the
simulation run. The user can also interact with the model on the
host machine by giving it input either before the simulation is
started or while the simulation is running.

The software used to create the simulation model is
MatrixX/SystemBuild™.1 SystemBuild is a control block
mathematical program; using built-in mathematical function
blocks and user-designed code blocks written in C, the user can
design a state model of a system. Past aerospace-related model
development on SystemBuild include aircraft, spacecraft, and
robotic systems. On the RT-Lab system, model work can also
be done using Matlab/Simulink™,2 a program very similar to
SystemBuild.

The second computer in the RT-Lab distributed system is the
target computer. This machine runs the QNX operating system.
QNX is a version of UNIX that specializes in real-time
computation. After a model is designed in SystemBuild on the
NT host, it is simulated on the QNX machine to take advantage
of the real-time kernel, timers, and interrupts that are available.
These real-time tools make for an accurate simulation test bed.
The target computer is also used to link hardware with the
simulation. Using the motherboard slots on the target computer,
PCI cards can be connected to provide a variety of data
communication interfaces. These interfaces are used to connect
hardware systems to the simulator. This hardware reacts to the
model in every way, providing both input and reacting to the

simulation as necessary. The simulator used here has interfaces
for serial communication–RS-232 and RS-422/485 formats,
and digital/analog IO. For very complex models, the RT-Lab
system can include multiple target computers, each one
handling one aspect of the model being simulated. For the
purposes of this simulation, one target computer is enough.

The RT-Lab software provides an easy to use interface that
can be used to perform all the necessary functions to run the
simulation. Once a SystemBuild model is designed on the NT
computer, RT-Lab then uses AutoCode, another ISI software
program, to convert the model into C code. This code is then
transferred by RT-Lab to the QNX computer via an ethernet
connection, where it is then compiled and readied for
execution. RT-Lab can then be used to control the speed of
execution, as well as to store data continuously or upon being
triggered by certain events.

Software/Model Design Philosophy
In SystemBuild, a block that contains many other types of

system blocks is called a SuperBlock. The top level SuperBlock
(Figure 3) contains two other SuperBlocks: the Master block
and the Console block. The Master block contains all the model
blocks pertaining to the actual simulation. Everything that was
to be executed on the QNX target computer is placed here. The
Console block contains all of the tools used to send and display
simulation data on the host computer.

A constraint on the model design is that these two blocks
must be included so that the model can work with the RT-Lab
system. When the RT-Lab software converts the model into C
code and sends it to the target node, it looks for the Master
block to know which blocks are to be used in the simulation. It
also creates a tool using the Console block information that can
be used by the user on the Host computer to interact with the
simulation running on the target computer.

When designing a model, the strategy is to maximize the use
of built-in SystemBuild mathematical blocks whenever

© 2002 CASI 89

Vol. 48, No. 1, March 2002 Vol. 48, no 1, mars 2002

Figure 2. RT-Lab Computer C onfiguration.

Figure 3. Simulation Top-Level SuperBlock.

1 MatrixX/SystemBuild is a trademark of Integrated Systems Inc. (ISI).
2 Matlab/Simulink is a trademark of MathWorks.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

possible for sections of the simulation that are emulating
missing hardware (e.g., sensors, actuators). At the same time,
the use of C-code user blocks is maximized for systems
requiring flight code development (e.g., ACS processor). If
developed with the right interfaces, the code written in these
user-code blocks can be used, with minor modifications, on the
microsatellite itself. The ultimate goal is to reduce the amount
of time spent emulating missing hardware while still generating
usable flight code early in a microsatellite project.

3. SIMULATION DESIGN

The simulation model designed on the RT-Lab system is
based on some of the systems of the MOST microsatellite.
Figure 4 is a system diagram of MOST. The shaded boxes
indicate which systems are part of the simulation model. The
simulation model focused on the primary ACS processor and its
peripherals. The systems modeled include a full set of actuators
(three reaction wheels and three magnetorquers) and a full
sensor package (a three-axis magnetometer, three rate sensors,
and a two-axis Sun sensor). The model also includes an orbital

environment simulation, complete with both a dynamic and
attitude models along with a model of the Earth’s magnetic
field. The important model parameters used in the simulation
are detailed in Table 1. The simple propagator error model was
used initially so that the simulator could be up and running as
quickly as possible. More complicated error models can be
inserted later using SystemBuild blocks. The sensor noise is
additive with discrete-time covariance.

As the model progressed from its initial configuration to its
current state, ACS flight code was developed. All of the ACS
flight code was placed in one SuperBlock. The ACS code
written covered the following functionality:

• Serial Communication With Reaction Wheels

• Actuator Torque Estimation

• State Estimator/Kalman Filter

• Detumbling Control Law (Pastena and Grassi, 1998)

• Coarse-Pointing Control Law

• Momentum Desaturation Control Law (Chen et al., 1999)

90 © 2002 CASI

Canadian Aeronautics and Space Journal Journal aéronautique et spatial du Canada

Figure 4. MOST System Diagram.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The emulation strategies described in the previous section
were employed and sped up the development of flight code.
Table 2 lists by system the number of SystemBuild
mathematical blocks and lines of C code that were used to
model each system. The C code listed for the ACS model
includes the flight code that was written. The majority of
systems could be quickly and easily emulated using only
SystemBuild blocks, which saved much time. It took only three
months to develop all of the flight code and environment code,
including the time required to develop the entire model and test
the functionality of the flight code. Table 2 is ordered from top
to bottom by the complexity of the emulation required to model
each system, which reflects how long it took to create the
emulation. The sensors were easiest to emulate, while the ACS
model was the most difficult to create.

The quick development time was also made possible
because testing and debugging the simulation and flight code
was done on a block-model simulator system. The graphical
aspect of the system made it simpler to spot errors and the
software Console interface to the model made it easy to control
the simulation and create different scenarios to test the ACS
code and the fidelity of the actuator and sensor emulations.

Approximately one-sixth of the three month development
time was spent working with SystemBuild mathematical blocks
while the rest of the time was spent writing, debugging, and

testing C code. Based on that time line, the approximate work
time required to emulate each system is also listed in Table 2.

One of the three software reaction wheels was replaced with
an actual reaction wheel.3 While connected to the simulation
via an RS-422/485 port on the target computer and
communicating at 19.2 kbaud, it was very easy to replace the
emulation blocks with blocks used to communicate with the
wheel over the serial connection. The hardware reaction wheel
reacted just like the software emulations; there were some
slight differences in terms of maintaining very low wheel
speeds when the actual wheel plant was compared with the
software wheel plant, so the software emulations were modified
to better match the hardware.

4. MODEL DEVELOPMENT METHODOLOGY

Using the simulator system made it possible to develop
important ACS flight code in three months, even without the
presence of the ACS processor hardware. Assuming a typical
processor development time of around 8 to 10 months, this
allows concurrent hardware and software and hardware
development, which shortens the amount of time that will be
spent developing software after the ACS processor is built.

Once the ACS processor hardware is available, it would be
beneficial if the simulator could still be used to work on the

© 2002 CASI 91

Vol. 48, No. 1, March 2002 Vol. 48, no 1, mars 2002

Orbit Sun synchronous, 06:00–18:00 nodes, Alt. = 785 km

Principal moments of inertia (kg m2) I1 = 1.0, I2 = 1.2, I3 = 0.2
Reaction wheel moment of inertia (kg m2) 0.0001685
Max. magnetorquer magnetic moments (A m2) m1 = 5.3, m2 = 5.3, m3 = 4.48
Sensor noise (σ: random number between 0 and 1 with uniform

distribution) Magnetometer: 12 (2 10)
1
2

–7× −








σ T

Rate sensors: 0.016
1
2

deg/ secσ −





Sun sensor: 0.14
1
2

degσ −










On-board orbit propagator for ACS estimator Uses simulation orbit model with a 5–10% error introduced
Simulation step period 0.1 s
Actuator alignment The 3 magnetorquers and 3 reaction wheels are aligned along

the principal axis frame of the microsatellite

Table 1. Simulation parameters.

No. blocks required Lines of code required Approx. total work (days)

Magnetometer emulation 6 0 1.7
Rate sensor emulations (×3) 6 0 1.7
Sun sensor emulation 6 0 1.7
Magnetorquer emulations (×3) 13 0 3.8
Reaction wheel emulations (×3) 12 155 12.4
Environment emulation 6 360 22.4
ACS emulation 3 790 46.3
Total 52 1305 90

Table 2. System modelling breakdown.

3 A Dynacon Enterprises Ltd. Miniature Reaction Wheel or “Microwheel”.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

microsatellite. From the experience gained in using the
simulator to write ACS flight code, a methodology was
developed to help write flight code and prepare the simulator
once the ACS processor was ready. This methodology helps
reduce the amount of wasted work: work that cannot be used
either as flight code or as part of simulator code once the ACS
processor is connected as hardware-in-the-loop. Though the
methodology is focused on simulating the ACS processor, it
can be applied to any microsatellite processor with peripheral
systems, e.g., Star Tracker processor connected to a CCD
camera.

1. Using empty SuperBlocks, do a basic modeling of the ACS
system (processor, sensors, actuators, and all the links
between the systems) on the simulator.

2. Start creating software emulations of the peripherals,
starting with those that can be done using only
SystemBuild blocks. Continue with the models that require
some C code to develop. Prioritize writing any code that
will be used as flight code on the peripherals (e.g., control
code on a reaction wheel). Link these emulations to an
environment model so that actuators will affect the attitude
of the satellite and sensors will observe the environment.

3. Once the peripheral emulations are complete, start writing
code for the ACS SuperBlock. The code should focus on
functions that interact with the peripherals, which in the
case of the ACS SuperBlock involves attitude control code
and all the software-to-software interfaces to the
peripherals. Test the code using the simulation. Debugging
and testing will be an easier process because of the use of a
block-model simulator system.

4. If any peripheral hardware becomes available before the
ACS processor is completed, insert the hardware into the
simulation and compare its behaviour to its software
emulation. Update the emulation if there are any
significant differences. Remove the hardware from the
simulation.

5. Repeat Step 3 if the ACS code has to be updated due to any
changes to the peripheral emulations. Repeat Step 4 if any
more peripheral hardware becomes available.

6. Once the actual ACS processor is ready, move all of the
ACS SuperBlock code to the processor and connect it to
the simulation system. The processor is now interacting
with the software emulation of all its peripherals. Now that
the connection between the ACS processor and the
peripherals is a hardware–software connection, the
interfaces to the peripheral emulations will have to be
replaced.

7. This system is now the basis for a microsatellite
engineering model. As other processors become available
(e.g., Housekeeping, Science), they can be connected to
the ACS processor. The functionality of the entire
microsatellite system can now be tested, with the

simulation system taking the place of the environment,
sensors, and actuators.

The actual ACS processor had not yet been interfaced with
the RT-Lab system by the time of this writing. However, an
analysis can be made on the ratio of throw-away work to useful
work for the various software emulations when the processor is
eventually connected to the simulation system. All the work
done on the simulator system can be divided into two types:
flight-code development and simulator-specific development.
All flight code is useful work while simulator-specific work can
either be useful or throw-away work depending on if it can be
used on the engineering model described in Step 7. Figure 5
explains this breakdown.

Applying these definitions to the work done on RT-Lab, a
trade study on work efficiency was done. Table 3 details by
system how much of the work for each emulation was useful, in
terms of the number of SystemBuild blocks, lines of code, and
work time. The work inefficiency ratio is also given for each
system, where

Work Inefficiency Ratio
Throw- Away Work

Useful Work
=

By focusing the model development on developing only ACS
code that interfaces with the peripherals (Step 3), the amount of
throw-away work is limited to blocks and (or) code that
interface the software ACS SuperBlock to the peripheral
emulations. These interfaces will have to be changed if the ACS
code on the actual processor is to be linked to the peripheral
emulations. Figure 6 shows the work inefficiency ratio as a
function of the complexity (i.e., required work time to develop)
of each system emulation, which is in order from the top of
Table 3 to the bottom. The three sensor emulations, being
essentially the same in complexity, were placed in the plot as
one data point. A trend is developed from the data points.

The goal of efficient flight code and simulation development
is to focus on work that is within the bottom end of this trend,
work with a work inefficiency ratio much less than 1.0.

92 © 2002 CASI

Canadian Aeronautics and Space Journal Journal aéronautique et spatial du Canada

Figure 5. Simulator Work Breakdown.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5. SIMULATOR LIMITATIONS

Flight-Code Development Limitations
With this efficiency curve developed, the next step was to

study the possibility of developing more flight code requiring
more detailed software emulation of the ACS system. Would
the curve remain below 1.0, or would it rise above that level?
Two types of high-detail flight-code development were studied:
intra-processor code and inter-processor code.

Intra-Processor Code: This flight code includes reading
telemetry sensors placed on the processor board (temperature,
power, voltage), memory access and storage, and some low-
level software driver development. The amount of flight code
needed to perform these functions tends to be small, around 10
lines of code each, for a total of around 30 to 50. However, to do
any useful development work, it will require a low-level
emulation of the ACS processor and its linkages to other
devices on the processor board, such as the memory devices
and telemetry sensors. Such processor simulations, based on
experience, tend to require at least 100 to 200 lines of throw-
away C code and would also need a few SystemBuild blocks to
emulate the sensors. This results in a work inefficiency ratio of
2 at best, 6.666 at worse. Given the high work inefficiency ratio,
this type of flight code should not be written until the processor
hardware is available.

Inter-Processor Code: This flight code includes all of the
serial software drivers needed to communicate between the
model ACS processor and a model of the Housekeeping (HK)
processor. It also includes the application program interfaces
(APIs) needed to create and decode serial packets and the code
that uses the APIs to send commands and receive telemetry
over the serial bus. The most important aspect of inter-
processor communications that can be checked using the
simulator is the timing of packet transmissions: response
acknowledgements to commands and the handling of
commands that time-out. An attempt was made to write code
for inter-processor communication using the simulator since
the serial packet APIs had been previously been written by
other members of the MOST team, but the attempt was
eventually abandoned. It was proving too difficult to simulate
the timers for each processor, and without an accurate
simulation, any of the application code written using the APIs
would be suspect when used on the actual processors; it could
all end up being throw-away work, which would give a very
high work inefficiency ratio. Since the APIs can be written
without the processor hardware or the simulator, there is no
point in developing inter-processor communication code until
the hardware is available.

As model complexity continues to increase, it is found by
extrapolation that the work inefficiency ratio also increases, as
is shown in Figure 7. It is important to keep all flight code and
simulator development within the minimum of the curve to get
work efficiently done early in the life of the microsatellite and
to have a good simulator system ready when the hardware is
ready so that an engineering-model test system can be easily
created.

Simulation Development Limitations
The philosophy of simulator development as shown in

Figure 7 can be applied to the simulator after the ACS
processor has been interfaced as hardware-in-the-loop. It can
help determine what other peripherals or processors can be
inserted efficiently as hardware-in-the-loop. It is a bit more
difficult to quantify a work inefficiency ratio at this point
because all work done at this point is useful both for developing
the engineering model as well as refining the systems and flight
code of the microsatellite. However, it can be shown that

© 2002 CASI 93

Vol. 48, No. 1, March 2002 Vol. 48, no 1, mars 2002

Useful blocks Useful code Useful work (days) Work inefficiency ratio

Magnetometer emulation 3 0 0.9 1.000
Rate sensor emulations (×3) 3 0 0.9 1.000
Sun sensor emulation 3 0 0.9 1.000
Magnetorquer emulations (×3) 10 0 2.9 0.300
Reaction wheel emulations (×3) 12 115 10.1 0.228
Environment emulation 6 360 22.4 0.000
ACS Emulation 0 690 39.7 0.167
Total 37 1165 77.6

Table 3. Useful work breakdown by system.

Figure 6. Work Inefficiency Plot based on MOST Simulation.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

adding certain hardware systems to the simulator is more
difficult as compared with other systems.

Processor Cards: Interfacing any of the other processors
(HK, Science, Star Tracker) to the simulator system should be
relatively simple because it only requires a hardware–hardware
connection to the ACS processor. Since the other processors
never need to communicate with the peripheral software
emulations nor with the environment model directly, no
interfaces need to be made between these processors and the
simulator. With the HK processor now part of the simulation
system, serial packet communication tests with the ACS
processor can be done, and the ACS processor can react with
realistic data because it is connected to the environmental
model and emulations of all the sensors and actuators. The
inclusion of the HK processor also makes it possible to add the
Telemetry, Tracking and Control (TT&C) system, and radios to
the engineering model.

Sensors and Actuator Hardware: Interfacing the majority
of the sensors and actuators to the simulator system so that
work beyond simply characterizing their performance, which
can be done without the ACS processor as described in Step 3
of the methodology, would be difficult. It would require the use
of ground-support equipment, such as an air-bearing table,
magnetic isolation chamber, and a bright-light source. The
magnetic chamber and light source, by replacing the Sun and
magnetic software models, must also be interfaced directly
with the simulation system so that the equipment knows where
the microsatellite is positioned in its simulated orbit so that the
correct environmental conditions can be reproduced. The
simplest of these systems to interface to the simulator would be
the reaction wheels and rate sensors; the reaction wheel is
already designed to feedback its speed and torque telemetry and
the air bearing table does not need to be interfaced with the
simulation system. However, the other systems will prove to be
very difficult to interface properly.

It is interesting to note that before the ACS processor is
available, it is better to work on simulating the actuators and
sensors than on simulating processor interaction. Once the ACS

processor is interfaced with the simulator, other processor
hardware can be added to the simulator system with little
difficulty while one should be cautious in adding sensor and
actuator hardware to the system if testing time is at a premium.
This result helps to clearly define what missing hardware
systems can be efficiently emulated early on in the life of a
microsatellite, and what software work should wait until the
hardware is available.

6. CONCLUSIONS

Using the RT-Lab real-time simulator, a simulation of the
ACS system of MOST was created without need of the actual
ACS processor. Using the experience gained from doing this, a
simulation design methodology was developed to help
minimize wasted work, to maximize the amount of flight code
that can be developed early, and maximize any simulation work
that could be used as part of a future microsatellite simulator
for command software verification once the ACS processor is
available. Using a work efficiency trade study based on the
result of the simulation, it was determined what flight code can
be developed early, and what flight code should be delayed
until the processor hardware is ready (Table 4). The same trade
study was also used to determine what hardware could be added
to the microsatellite simulator once the ACS processor is
available, and what hardware should be emulated (Table 5).

By having these lists of what work should be done when
using the simulator, early flight-code development for the
microsatellite should prove to be efficient. Beyond that, a law
of diminishing returns comes into play and work inefficiency
increases. At that point, flight-code development should wait
until the hardware is available. The savings in time that will
result by minimizing work inefficiency are invaluable for a
small-satellite project with a short development schedule.

94 © 2002 CASI

Canadian Aeronautics and Space Journal Journal aéronautique et spatial du Canada

Figure 7. Work Inefficiency Extrapolation.

Early
When ACS processor is
available

ACS Comm. with reaction
wheels

Software drivers

Actuator torque estimation Telemetry processing
State estimator/Kalman filter Memory access and storage
Attitude control laws ACS Comm. with other

processors
Any peripheral system code

Table 4. Flight code development conclusions.

Hardware-in-the-loop Software emulations

ACS processor Magnetorquers
HK processor – TT&C, radios Magnetometer
Science processor Sun sensor
Star tracker processor Reaction wheels*
Reaction wheels* Rate sensors*
Rate sensors*

*Depends on availability of air-bearing table.

Table 5. Microsatellite simulator conclusions.

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ACKNOWLEDGEMENTS

The first author would like to acknowledge the Natural
Sciences and Engineering Research Council of Canada
(NSERC) and the Canadian Space Agency (CSA) for its
generous financial support of his graduate studies. He would
also like to acknowledge the MOST engineering team for its
help and support.

The UTIAS Space Flight Laboratory would like to
acknowledge the support of Dynacon Enterprises Limited, the
Ontario Research and Development Challenge Fund, the
Center for Research in Earth and Space Technologies
(CRESTech), the University of Toronto, and the Natural
Sciences and Engineering Research Council of Canada
(NSERC) for financially supporting the MOST project and the
installation of lab facilities.

The authors would also like to acknowledge the following
sponsors who have donated software or equipment to
UTIAS/SFL, and whose generosity has helped to create a
world-class university microsatellite laboratory:

Analytical Graphics Incorporated
Agilent Technologies
Structural Dynamics Research Corp (SDRC)
Integrated Systems Incorporated
Autodesk
National Instruments
Cadence
Raymond RMC
Micrografx
Tasking Incorporated
Altera
ATI Technologies
ENCAD
Rogers Microwave Materials Division
JDL Productions

REFERENCES

Chen, X., Steyn, W.H., Hodgart, S, and Hashida, Y. (1999). “Optimal
Combined Reaction-Wheel Momentum Management for Earth-Pointing
Satellites”. J. Guid. Control Dyn. Vol. 22, No. 4, July–August 1999, pp. 543–
550.

Fullmer, R.R., and Sevilla, P. (1997). “An Integrated Development System
for Small Satellite Attitude Control Systems”. Proceedings of the Workshop on
Control of Small Spacecraft, Breckenridge, Colorado. 5 February 1997.

Pastena, M., and Grassi, M. (1998). “SMART Attitude Acquisition and
Control”. J. Astronaut. Sci. Vol. 46, No. 4, October–December 1998, pp. 379–
393.

Ruud, K.K., Murray, H.S., and Moore, T.K. (1997). “FORTE Hardware-in-
Loop Simulation”. Proceedings of the 11th Annual AIAA/USU Conference on
Small Satellites, Logan, Utah. 15–17 September 1997, Session II.

Sun, Z., Xu, G., Lin, X, and Cao, X. (2000). “The Integrated System for
Design, Analysis, System Simulation and Evaluation of the Small Satellite”.
Adv. Eng. Software. Vol. 31, No. 7, July 2000, pp. 437–443.

© 2002 CASI 95

Vol. 48, No. 1, March 2002 Vol. 48, no 1, mars 2002

I:\casj\4801\Q02-010.vp
Friday, June 21, 2002 10:57:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

