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The out-of-plane and in-plane deployment dynamics of a flexible space structure, namely, a solar sail quadrant

consisting of a membrane attached to two support booms, are considered. The equations of motion of the system are

obtained using a time-varying generalization of the extended Hamilton’s principle. They are then discretized via

quasi-modal expansion of the deflections as truncated series involving both time- and space-dependent basis

functions. Because all directions are accounted for and plate strains are used to capture the potentially significant

effect of even a small stiffness on the dynamics, nonlinear terms appear in the discretized equations. To increase

computational efficiency, coordinate transformations and linear algebraic manipulations are performed to make all

spatial integrals time invariant. In addition, attempts are made to predict wrinkling using the Miller–Hedgepeth

model: a coarse mesh is defined, the instantaneous state of each region is determined using a wrinkling criterion and

averagedprincipal stresses, and constitutive relation of each region is adjustedbasedon itswrinkling state.Numerical

simulations provide basic validation, sample deployment results, and a comparison against the results of an earlier

linear model with only out-of-plane deflections. The stress predictions are also partially validated using previous

results based on constant-size loaded membrane experiments.

Nomenclature

A = boom cross-sectional area, m2

B = boundary surface of control volume, m2

C = constitutive relation matrix
c = near-hub distance with uniform density, m
D = damping proportionality constant
d = base length of wrinkling mesh elements, m
E = Young’s modulus, N∕m2

e = boom in-plane generalized coordinates
f = membrane in-plane generalized coordinates for u
g = membrane in-plane generalized coordinates for v
g = acceleration due to gravity, m∕s2
I = second moment of area, m4

î = unit vector along x axis

ĵ = unit vector along y axis

K = number of wrinkling mesh elements on each boom

k̂ = unit vector along z axis

L = boom length, m
L = Lagrangian, J
n = number of discretized quasi modes
n̂ = outward unit normal to boundary of control volume
P = axial boom load, N
p = boom out-of-plane generalized coordinates
q = membrane out-of-plane generalized coordinates
r = mass element position vector, m
s = membrane thickness, m
T = kinetic energy, J
t = time, s
U = potential energy, J

U = boundary velocity vector, m∕s
u = in-plane deflection along x axis, m
V = deployment velocity vector, m∕s
v = in-plane deflection along y axis, m
w = out-of-plane deflection along z axis, m
x = states: all generalized coordinates
α = outlet distance from origin, m
ϵ = strain
ϵi = ith principal strain
μ = membrane density per area, kg∕m2

ν = mass element total velocity vector, m∕s
ν = Poisson’s ratio
ξ = membrane in-plane basis functions
ρ = boom density per length, kg∕m
σ = stress, Pa
σi = stress tensor, Pa
σi = ith principal stress, Pa
ϕ = membrane out-of-plane basis functions
ψ = boom basis functions

Subscripts

a = related to boom (a)
ab = related to membrane (ab)
B = related to boom
b = related to boom (b)
c = related to distance c, closed
f = final value
M = related to membrane
nln = nonlinear
o = open
S = slack
T = related to kinetic energy, T ; taut
; t = temporal derivative with respect to t
U = related to potential energy, U
uni = uniform
W = wrinkled
; x = spatial derivative with respect to x
xx = normal component along x
xy = shear component along y normal to x
; y = spatial derivative with respect to y
yx = shear component along x normal to y
yy = normal component along y
0 = initial value
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Superscripts

u = related to deflection u
v = related to deflection v
w = related to deflection w
∼ = augmented (quadrant-level) variable
^ = normalized variable or density

Operators

δ�⋅� = variation
∇ ⋅ �⋅� = divergence of a vector field

I. Introduction

T HIS paper focuses on the deployment dynamics and wrinkling
of solar sails, which are among a class of problems involving

translating continua. Surveys of studies on different types of such
problems, which, in addition to space engineering, also find other
applications, such as in the paper industry, elevators, and magnetic
tapes, are provided in [1–3]. Given that the problem of this study
involves the coupled dynamics of beams andmembranes, the reader
may also be interested in examples of studies on axially translating
beams in [4–7] and axially translating membranes in [8–10]. Of
particular relevance to this paper are the past works that used the
so-called quasi-modal approach, in which both time- and space-
varying basis functions, viewed as snapshots of the modes of the
structures at specific times, are used to expand the deflections.
Examples of such works in the context of spacecraft applications
are [4,11–16]. Focusing specifically on solar sails, there have been
a few flown and future missions following the Interplanetary Kite-
craft Accelerated by Radiation Of the Sun (the first successful solar
sail mission of the world [17]), the most recent and relevant
of which (in terms of their boom-supported configurations)
include LightSatil 2 [18,19], and the Advanced Composite Solar
Sail System [20], which is under development.
Building upon the authors’ earlier works in [16,21], this paper also

adopts the quasi-modal approach used in the literature for deploy-
ment problems because of its simplicity and efficiency compared to
the finite element method (FEM) [15]. Whereas [16] focused on the
out-of-plane deflections of a single quadrant and [21] extended
the formulation to a complete four-quadrant sail upon validating
the constant-size modal analysis results against those in [22], this
paper introduces the in-plane deflections as well. Using plate strains,
this modification results in nonlinear equations of motion (EOM),
allows for wrinkling predictions, and eliminates the need for assum-
ing any boundary stress distributions. Some of the simulation results
in this paper compare the predictions of the new nonlinear model
against those of the linear model in [16] that treated only the out-of-
plane deflections, suggesting close predictions but with nonnegli-
gible differences. Despite its much more complicated formulation,
the nonlinear model should be considered in lieu of the linear one if
more accurate deflection or stress results, orwrinkling predictions are
desired. Surveys of studies on nonlinear dynamics ofmembranes (not
necessarily deploying) were provided in [23,24]. For examples of
other works on translating continua that introduce geometric and/or
material nonlinearity, the reader is referred to [9,25–28].
Unlike the transverse vibration of membranes or plates, to which

many works of literature have been dedicated, in-plane vibration of
such structures is examined less frequently, perhaps because of the
significantly smaller size of such deflections compared to the out-of-
plane ones in practical applications. Examples of in-plane vibration
studies of plates are [29–31]. More relevant to the deployment
problem of interest are [10,32,33], a series of works that treated the
in- and/or out-of-plane vibrations of membranes moving on supports
separated by fixed distances, motivated by the paper production
industry. The inclusion of the in-plane deflections, as is done in
the nonlinear model of the present work, also requires a generaliza-
tion ofHamilton’s principle for systems of changingmass,whichwas
accomplished by McIver [34].

The present work also takes interest in wrinkling of a solar sail.
A comprehensive examination and comparison of various wrinkle/
slack models for use with the FEM studies on membranes were
provided in [35], in addition to a new model. It was shown that the
following models provide different physical interpretations of an
equivalent model: the model in [36], based on the concept of “virtual
elongation” such that the recalculated strain matches the real defor-
mations of thewrinkled membrane; that in [37], based on “saturation
in elasticity,” analogous to the concept of saturation in elastoplastic
problems; the model in [38], modifying the strain components in a
way that eliminates the stress components that vanish during wrin-
kling; and that in [39], using the “iterative membrane properties”
(IMP)method tomodify the constitutive relation, in turn based on the
continuum theory of [40]. Also proposed in [35] was a new wrinkle/
slack model, the “virtual deformation model” that, in addition to
the virtual elongation considered in [36], also incorporates “virtual
shear,” and hence providing an explicit expression for the wrinkle
direction. In addition, building upon the “multiparticle model” for
solar sails, Miyazaki and Iwai [41] proposed theoretical consider-
ations for determining the spring constant. With this approach,
applied to a spinning solar sail in [41], the spring constant is set to
zero for wrinkled regions. In [42], the nonlinear buckling FEM was
used to conduct wrinkle analysis, specifically by obtaining the first-
order bucklingmode. Similarly, application of nonlinear dynamics to
the FEM, along with modeling the sail wrinkling using the Miller–
Hedgepeth IMPmodel in [39], was discussed in [43]. Themodel used
in this work is also theMiller–Hedgepethmodel, as it lends itself well
to the formulation of this project.
The next section describes the model and its simplifying assump-

tions. Then, the nonlinear dynamics, including all the relevant terms,
discretized EOM, and algebraic transformations, and wrinkling stud-
ies are treated in separate sections. Lastly, some simulation results are
provided, followed by some concluding remarks in the last section.

II. Model Description

This section describes the assumed model and its features. For
simplicity of exposition, only one sail quadrant, which consists of a
right triangular membrane, attached continuously at all points along
its edges to two booms, is considered in this paper. Such a continuous
attachment configuration was also considered in [44,45] for distrib-
uting the loads more evenly, and resembles Sunjammer (Solar Sail
Demonstrator) that was designed to have many periodic attachment
points along its booms [46]. First, the simplifying assumptions
made to render the problem analytically tractable while capturing
its essential features are presented. Then, the spatial distributions of
the in-plane velocity, mass density, and stress components consistent
with the assumptions are discussed, and lastly, thewrinklingmodel to
be used is presented.

A. Simplifying Assumptions

The sail quadrant is modeled as a thin membrane with a spatially
varying areal density and uniform thickness. Unlike [16], in which
only the out-of-plane deflections, w�x; y; t�, were considered, this
paper treats a more complete model that accounts for the in-plane
deflections, u�x; y; t� and v�x; y; t�, as well. The support booms are
modeled as axially rigid (with no deflections along their longitude)
cantilevered Euler–Bernoulli beams with uniform density, cross-
sectional area, and bending stiffness. They are assumed to have
identical physical and geometric properties, and the same constant-
rate extension or retraction profiles. A sail quadrant with booms (a)
and (b) and membrane (ab) is shown in Fig. 1a, along with their
associated deflections. Although relatively small deformations are
assumed, nonlinear stress relations are used to capture some of
the nonlinearity. Consistent with [16] and as illustrated in Fig. 1b, a
sliding-type deployment is assumed, with the free edge of the mem-
brane remaining straight throughout the process. This assumption is
reasonable as long as the deployment rate is kept constant. In addi-
tion, themembrane is assumed to be under pretension provided by the
support booms.
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B. Velocity Field

The samevelocity field as in [16] and shown in Fig. 1b is used. This
field is independent of the in-plane deflection rates (to be added later)
and is imposed by the deployment rate of the booms. Consistent with
the constant-rate sliding and straight free-edge assumption men-
tioned earlier, starting from the tilted �ξ; η; z� coordinate system in
Fig. 1b and using a 45 deg rotation, we have [16]

Vx �
_L

2

�
1� x − y

x� y

�
; Vy �

_L

2

�
1 −

x − y

x� y

�
(1)

where Vx�x; y� and Vy�x; y� are the x and y components of the

deployment velocity of the mass elements. To avoid the singularity
at the origin, (0, 0), this mass element is removed from the model and
the spatial integrals are taken from small nonzero lower bounds
instead (denoted by 0�). For a spin-deployed sail, accounting for
the rotational speed would also be necessary, but assuming the
deployment is achieved by linearly extending the booms and given
the primary interest in the transient dynamics over the short deploy-
ment phase, only the constrained translational dynamics of the
deploying sail are considered (disregarding the motion of the hub).

For studies on the influence of the deployment rate _L on the linear
stability of a deploying sail (or a quadrant), the reader is referred to
[16,21], which adopt energy- and eigenvalue-based approaches to
stability analysis, respectively.

C. Density Field

Although uniform membrane areal density was assumed in [16],
this would be inconsistent with the ever-increasing length of the free
edge and each cross section parallel to it, especially when significant
changes in size are expected. This issue is better understood by
considering how the mass elements in Fig. 1b are assumed to move
further away from each other. To clarify, the material density (in

kg∕m3) will remain constant throughout, but because the same
amount of material will be distributed over larger areas as the sail

deploys, a spatial decrease in the areal density μ (in kg∕m2) is to be
expected. The following density field is proposed to provide more
consistency between the assumptions:

μ�x; y; t� �

8>>><
>>>:
μc

L0

L�t� ; x̂�t� � ŷ�t� ≤ ĉ0

μc
ĉ�t�
ξ̂�t�

� μc
ĉ�t�

x̂�t� � ŷ�t� ; x̂�t� � ŷ�t� > ĉ0

(2)

where L0 � L�0� is the initial length of the booms; ξ̂�t� ≜
ξ∕�L�t�∕ ���

2
p � is the normalized distance along the diagonal, corre-

sponding to the tilted �ξ; η; z� coordinate system in Fig. 1a; and ĉ�t� ≜
c∕�L�t�∕ ���

2
p � is a small normalized distance on this axis within which

a near-origin uniform density is assumed, with ĉ0 � c∕�L0∕
���
2

p �. In
addition, x̂�t� ≜ x∕L�t� and ŷ�t� ≜ y∕L�t�. The density function in

Eq. (2) takes a spatially constant value of μc for a small distance away
from the hub to avoid singularity. There is a temporal decrease in
this small region to account for a reduction in the near-hub foldings
and to allow for continuity at the x̂� ŷ � ĉ0 interface. The density
then starts dropping proportionally to distance (along the diagonal)
beyond that interface, in accordance with the velocity field in Eq. (1)
and Fig. 1b. For example, for a small sail that will ultimately have
booms of length L � 10 m, setting μc � 50μuni with ĉ0 � 0.01
ensures the fully deployed sail will have a total mass approximately
equal to that with a uniform density of μuni. Lastly, note that this
density field is only reasonable for the constant-rate (nonzero)
deployment assumed in this paper, and additional terms may be
required if acceleration is involved.
The density field in Eq. (2) can be verified via a mass flow study to

ensure conservation of massm is satisfied: the mass flow rate from a

uniform stream of particles through the cross section at ξ̂�t� � ĉ�t� is
given, in the tilted �ξ; η; z� system, by

_m �
Z

c

−c
μ�ξ; η� ⋅ Vξ�ξ; η� dη �

Z
c

−c
μc _L dη � 2μcc _L (3)

Applying the 2-D version of the Leibniz integration rule and
neglecting the small time-varying portion in the first line of Eq. (2),
introduced for numerical considerations only, imply the following
relationship in the �x; y; z� coordinate system:

(4)

which, upon conversion to the tilted �ξ; η; z� coordinate system,
becomes

_m � _L

Z
L�t�∕ ��

2
p

−L�t�∕ ��
2

p �μ�ξ; η��ξ�L�t�∕ ��
2

p dη � _L

Z
L�t�∕ ��

2
p

−L�t�∕ ��
2

p μc
c

L�t�∕ ���
2

p dη

� 2μcc _L (5)

Comparing the results in Eqs. (3) and (5) shows that conservation of
mass is satisfied, for the mass flow out of the hub matches the actual
rate of change of the mass external to it.

D. Stress Field

The formulation of Vatankhahghadim and Damaren [16] based
on the Airy function may be problematic for the non-steady-state
case of a deployment problem and for cases where the boundary
conditions (BCs) are unknown. To alleviate this problem, the non-
linear model that also accounts for the in-plane deflections uses the
deflections to determine the strains, which are then used with a
suitable constitutive relation to estimate the stresses. The resulting

a) Deploying sail quadrant b) Velocity field

Fig. 1 Assumed deploying sail quadrant model and its velocity field.
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EOM will be nonlinear, for example, with stiffness matrices that

depend on the states.
It was pointed out in [35,47] that even a very small stiffness can

play a significant role in the deployment and wrinkling of mem-

branes. As in [28,43], the nonlinear strain terms ϵ are taken to be

based on the von Kármán plate theory that incorporates coupling

between the out-of-plane deflectionsw and the in-plane ones u along
the x axis and v along the y axis [48]:

ϵxx � u;x �
1

2
w2

;x − zw;xx (6a)

ϵyy � v;y �
1

2
w2

;y − zw;yy (6b)

ϵxy �
1

2

�
u;y � v;x � w;xw;y − 2zw;xy

�
(6c)

where z is the out-of-plane coordinate, with z � 0 on the central

(neutral) plane. Although some of the previous works, such as [33],

used linearized approximations of the strains to compute the

stresses, this project maintains the nonlinear forms in both stresses

and strains.

E. Wrinkling Model

A coarse mesh is defined, shown in Fig. 2 and only for the

purposes of wrinkling state determination, and the constitutive

relation is set locally for each mesh element, based on a wrinkling

criterion. For example, if a stress-based criterion is used, a region is

treated as wrinkled if the minor principal stress is negative, but the

major one is positive. This approach should not be confused with

the FEM because the global expansions in Eq. (15) are still appli-

cable and the mesh is not used for spatially discretizing the sail to

treat its dynamics in a local manner. In this project, the mixed

stress/strain criterion from [39,49] is used to select the constitutive

relation, because it is deemed to be more robust than the other

criteria [43]:

σ � Cϵ; C �
8<
:
CS; ϵ1 ≤ 0 �slack�
CW; ϵ1 > 0 and νϵ1 � ϵ2 < 0 �wrinkled�
CT; otherwise �taut�

(7)

where σ ≜ �σxx σyy σxy�⊺ and ϵ ≜ �ϵxx ϵyy ϵxy�⊺ are stresses and

strains, respectively; ϵi are principal strains; and C is a suitable

constitutive relation [39]:

CS � 0; CT � E

1 − ν2

2
664
1 ν 0

ν 1 0

0 0 1 − ν

3
775;

CW � E

4

2
664
2�1� R� 0 2Q

0 2�1 − R� 2Q

Q Q 2

3
775 (8)

where R ≜ �ϵxx − ϵyy�∕�ϵ1 − ϵ2� and Q ≜ 2ϵxy∕�ϵ1 − ϵ2�. Also, E
and ν are the Young’s modulus and Poisson’s ratio of the mem-

brane, respectively. The principal strains, ϵ1 and ϵ2, are computed

as

ϵ1;2 �
ϵxx � ϵyy

2
�

����������������������������������������
ϵxx − ϵyy

2

�
2

� ϵ2xy

s
(9)

where averaged values are used to obtain single values of ϵxx, ϵyy,
and ϵxy for each element. For instance, the stress components at

several representative points around the center of each mesh

element in Fig. 2 (shown with crosses in the top-right corner of

the figure) can be evaluated using Eq. (6) and subsequently com-

bined to yield an average for use in Eqs. (9) and (8).
On the other hand, for analysis purposes and for generating stress

contours throughout the membrane, the constitutive relation in

Eq. (7) is used with the actual point strains (not the averaged values)

obtained by Eq. (6). To this end, the principal stresses, σ1 and σ2, at
each point are evaluated as

σ1;2 �
σxx � σyy

2
�

������������������������������������������
σxx − σyy

2

�
2

� σ2xy

s
(10)

where the elasticity matrix corresponding to each mesh element

based on Eq. (8) is used along with the constitutive relation in

Eq. (7) to obtain the σxx, σyy, and σxy components of each point.

Lastly, given that the axial loadwithin the boomsmust balance out the

boundary forces applied by the membrane, we have the following

axial loads:

Pa � σxy�x; 0; 0�A; Pb � σyx�0; y; 0�A (11)

for which known space-dependent functions similar to those in [16]

are no longer available. As an average, the midplane (z � 0) shear
stress of the membrane is assumed throughout the cross sections of

the booms.

III. Nonlinear Dynamics

This section treats the nonlinear dynamics of the assumed model

by accounting for both in- and out-of-plane deflections. Similar to the

approach used for the linear EOM in [16,21], the approach in this

paper is based on Lagrangian mechanics, starting from application of

a time-varying generalization of the extended Hamilton’s principle,

due to [34]. Then, the Lagrangian and EOM of a sail quadrant are

examined, and to reduce the computational effort, a set of linear

algebraicmanipulations are subsequently performed on the nonlinear

terms. Lastly, the approach for wrinkling predictions is discussed.

A. Use of Hamilton’s Principle for Time-Varying Systems

In an Eulerian reference frame (fixed to the hub), the system of

interest (external portions of the deploying sail) involves changing

mass, and so the extendedHamilton’s principle in its classical form is

no longer applicable. The following time-varying generalization,

however, is available [34]:

Fig. 2 Mesh for wrinkling studies; top-right: numbers label the corners
and crosses (×) show the points used for averaged strains.
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δ

Z
tf

t0

�T − U�o dt�
Z

tf

t0

�ZZ
Bc�Bo

δr ⋅ σ ⋅ n̂ dS

�
ZZ

Bo

m̂�ν ⋅ δr��U − ν� ⋅ n̂dS
�
dt � 0 (12)

where T and U denote the kinetic and strain energies, respectively;

Bo andBc are the open and closed boundary surfaces, respectively; m̂
is the mass density (set to μ or ρ for the membrane or the boom);U is

the boundary velocity that is set to zero at the fixed hub outlet; and n̂
and σ are the unit normal vector and the stress tensor, respectively.

Upon permitting the in-plane deflections, their rate of change should

also be added, similarly to [33], to the deployment velocity expres-

sions in Eq. (1) to completely describe the velocity ν, of each mass

element located at position r. Thus

r � �x� u�î� �y� v�ĵ� �z� w�k̂ (13a)

ν � �Vx � u;t � Vxu;x � Vyu;y�î� �Vy � v;t � Vxv;x � Vyv;y�ĵ
� �w;t � Vxw;x � Vyw;y�k̂ (13b)

where the deflections along the x, y, and z axes, with unit vectors î, ĵ,

and k̂, are u, v, and w, respectively, and the subscripts after commas

denote differentiation. Lastly,Vx andVy are the deployment velocity

components in Eq. (1).

B. Quadrant Lagrangian

Consider the quadrant in Fig. 1a. The kinetic and strain energies, T
andU, ofmembrane (ab) and boom (a) are influenced by both out-of-
and in-plane deflections, and their derivatives

T M;ab �
Z

L�t�

0�

Z
L�t�−x

0�

μ

2
ν ⋅ ν dy dx;

UM;ab �
Z

s∕2

−s∕2

Z
L�t�

0�

Z
L�t�−x

0�

1

2

h
σxxϵxx � σyyϵyy � 2σxyϵxy

i
dy dx dz

(14a)

T B;a �
Z

L�t�

0�

ρ

2
�ν · ν�y�0 dx;

UB;a �
Z

L�t�

0�

1

2

h
EI�w2

a;xx � v2a;xx� �Pa�w2
a;x � v2a;x�

i
y�0

dx (14b)

where μ and ρ are the membrane and boom mass densities (per area

and length, respectively), s is the membrane thickness, EI is the

bending stiffness of the booms, and Pa is the axial load on boom (a).
Using Eq. (14) and the corresponding boom (b) terms, the

Lagrangian for Eq. (12) is obtained as L ≜ �T M;ab − UM;ab��
�T B;a − UB;a� � �T B;b − UB;b�.

C. Quasi-Modal Expansion

The quasi-modal approach with time-varying basis functions for

the out-of-plane deflections used in [16], in turn inspired by [15,50],

for example, is extended with the in-plane deflections in mind. The

deflections of the booms and those of the membrane (superimposed

over the former) are expanded as

wa�x; t� � p⊺
a�t�ψa�x; t�; wb�y; t� � p⊺

b�t�ψb�y; t�
wab�x; y; t� � wa�x; t� � wb�y; t� � q⊺ab�t�ϕab�x; y; t� (15a)

(15b)

(15c)

from which x ≜ �p⊺
a p⊺

b q⊺ab e⊺b f⊺
ab e⊺a g⊺ab�⊺ is defined to contain all

generalized coordinates, with each block a columnmatrix of size nB or
nM, the number of boom or membrane quasi modes. Note that ua � 0
and vb � 0 owing to the axial rigidity assumption on the booms. The
time-varying components of ψ, ϕ, ξu, and ξv, which contain the basis
functions for the deflections of the booms, the out-of-plane deflections
of the membrane, and the in-plane deflections of the membrane along
the x and y axes, respectively, depend on x∕L�t� and/or y∕L�t�. Given
that the out-of-plane and in-planedeflectionsof themembranehave the
sameBCs along the edges, their basis functions (the components ofϕ,
ξu, and ξv) are all set to be the same. The following functions, based on
the eigenfunctions of a cantilevered beam and a squaremembranewith
all edges clamped from [51], are used:

ψk�x; t� � cos

�
βk

x

L�t�
�
− cosh

�
βk

x

L�t�
�

− κk

�
sin

�
βk

x

L�t�
�
− sinh

�
βk

x

L�t�
��

(16a)

ϕk�x; y; t� � sin

�
iπ

x

L�t�
�
sin

�
jπ

y

L�t�
�

(16b)

ξuk�x; y; t� � sin

�
iπ

x

L�t�
�
sin

�
jπ

y

L�t�
�
� ξvk�x; y; t� (16c)

where fi; jg ∈ f1; 2; : : : ; �������
nM

p g are ordered pairs of coefficients cor-
responding to the kthmode out of a total of nM membranemodes. The
variables βk are the solutions of cos�βk� cosh�βk� � 1 � 0, and κk is
defined as κk ≜ �cos�βk� � cosh�βk��∕�sin�βk� � sinh�βk�� [52].

D. Transformed System Matrices: Linear Terms

The coordinate transformation discussed in [16], in which new
normalized coordinates between 0 and 1 are defined as x̂ ≜ x∕L�t�
and ŷ ≜ y∕L�t�, is adapted, necessitating the use of the following
space and time derivatives corresponding to the transformed coor-
dinates:

∂
∂x

�⋅� � 1

L

∂
∂x̂

�⋅�; ∂
∂y

�⋅� � 1

L

∂
∂ŷ

�⋅� (17a)

∂2

∂x2
�⋅� � 1

L2

∂2

∂x̂2
�⋅�; ∂2

∂y2
�⋅� � 1

L2

∂2

∂ŷ2
�⋅�; ∂2

∂x∂y
�⋅� � 1

L2

∂2

∂x̂∂ŷ
�⋅�

(17b)

∂
∂t
�⋅�

				
�x;y�

� ∂
∂t
�⋅�

				
�x̂;ŷ�

−
x̂ _L

L

∂
∂x̂

�⋅�
				
�x̂;ŷ�

−
ŷ _L

L

∂
∂ŷ

�⋅�
				
�x̂;ŷ�

(17c)

using which the following boom-related matrices are obtained
[excluding the strain energy from the compression of the booms,
the second term in the integrand of UB;a in Eq. (14b), to be treated in

the last subsection of this section]:

MB � ρL�t�
Z

1

0�
ψa�x̂�ψ⊺

a�x̂� dx̂ (18a)

GB � ρ _L

Z
1

0�
�1 − x̂�ψa�x̂�ψ⊺

a;x̂�x̂� dx̂ (18b)

KB;T � ρ
_L2

L�t�
Z

1

0�
�1 − x̂�2ψa;x̂�x̂�ψ⊺

a;x̂�x̂� dx̂ (18c)
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KB;U;2 �
EI

L3�t�
Z

1

0�
ψa;x̂ x̂�x̂�ψ⊺

a;x̂ x̂�x̂� dx̂ (18d)

where ψa�x̂� stores the beam eigenfunctions in terms of x̂, and
ψa;x̂�x̂� � L�t�ψa;x�x; t� and ψa;x̂ x̂�x̂� � L2�t�ψa;xx�x; t� are its

spatial derivatives with respect to x̂. Because all of the integrals in
Eq. (18) are only x̂ dependent, numerical integration in the absence of

analytical expressions is required only once, and not at each
time step. For later use in the nonlinear EOM in Eq. (33), thematrices

in Eq. (18) are placed in quadrant-level augmented n × n block-
diagonal form corresponding to x, with 0nM×nM blocks associated

with the membrane generalized coordinates. For example

~MB ≜ blockdiagfMB;MB; 0;MB; 0;MB; 0g (19)

To achieve time independence of the density field in Eq. (2), but

allow for its space dependence,we can define μ̂ � L�t� ⋅ μ as follows:

μ̂�x̂; ŷ� �

8>><
>>:

μcL0; x̂� ŷ ≤ ĉ0

μc
c

���
2

p

x̂� ŷ
; x̂� ŷ > ĉ0

(20)

Using this density function, the following membrane-related matri-

ces are obtained [excluding the strain energy owing to the stress field,
namely, UM;ab in Eq. (14a), to be treated in the last subsection of this

section]:

~MM � L�t�
Z

1

0�

Z
1−x̂

0�
μ̂

2
4 âwâw⊺

0 0
0 âuâu⊺ 0
0 0 âvâv⊺

3
5 dŷ dx̂ (21a)

~GM � _L

Z
1

0�

Z
1−x̂

0�
μ̂

2
4 âwb̂

w⊺
0 0

0 âub̂u
⊺

0
0 0 âvb̂

v⊺

3
5 dŷ dx̂ (21b)

~KM;T �
_L2

L�t�
Z

1

0�

Z
1−x̂

0�
μ̂

2
4 b̂

w
b̂
w⊺

0 0
0 b̂

u
b̂
u⊺ 0

0 0 b̂
v
b̂
v⊺

3
5 dŷ dx̂ (21c)

~αM � _LL�t�
Z

1

0�

Z
1−x̂

0�
μ̂

2
64

0

V̂xâ
u

V̂yâ
v

3
75 dŷ dx̂ (21d)

~βM � _L2

Z
1

0�

Z
1−x̂

0�
μ̂

2
64

0

V̂xb̂
u

V̂yb̂
v

3
775 dŷ dx̂ (21e)

for which the following intermediate matrices are defined:

âw�x̂; ŷ� ≜

2
664

ψa�x̂�
ψb�ŷ�

ϕab�x̂; ŷ�

3
775;

b̂
w�x̂; ŷ� ≜

2
664

�V̂x − x̂�ψa;x̂�x̂�
�V̂y − ŷ�ψb;ŷ�ŷ�

�V̂x − x̂�ϕab;x̂�x̂; ŷ� � �V̂y − ŷ�ϕab;ŷ�x̂; ŷ�

3
775 (22a)

âu�x̂; ŷ� ≜
"

ψb�ŷ�
ξuab�x̂; ŷ�

#
;

b̂
u�x̂; ŷ� ≜

" �V̂y − ŷ�ψb;ŷ�ŷ�
�V̂x − x̂�ξuab;x̂�x̂; ŷ� � �V̂y − ŷ�ξuab;ŷ�x̂; ŷ�

#
(22b)

âv�x̂; ŷ� ≜
"

ψa�x̂�
ξvab�x̂; ŷ�

#
;

b̂v�x̂; ŷ� ≜
" �V̂x − x̂�ψa;x̂�x̂�
�V̂x − x̂�ξvab;x̂�x̂; ŷ� � �V̂y − ŷ�ξvab;ŷ�x̂; ŷ�

#
(22c)

where V̂x ≜ Vx∕ _L and V̂y ≜ Vy∕ _L are the rate-normalized analogs of

the velocity field components in Eq. (1). These matrices could be

extended in a form corresponding to the complete quadrant-level

generalized coordinates x as

~aw ≜

2
664
âw

0

0

3
775; ~au ≜

2
664

0

âu

0

3
775; ~av ≜

2
664

0

0

âv

3
775;

~bw ≜

2
664
b̂
w

0

0

3
775; ~bu ≜

2
664

0

b̂
u

0

3
775; ~bv ≜

2
664

0

0

b̂v

3
775 (23)

which will simplify the notation in the subsequent sections. The

same comments as those made about the computational efficiency

of evaluating the time-invariant integrals of Eq. (18) hold with regard

to those in Eq. (21).

E. Transformed System Matrices: Nonlinear Terms

Some algebraic operations will be performed in the next subsec-

tion on the terms involved in the nonlinear model to increase numeri-

cal efficiency. In preparation for these operations, the discretized

deflections of the membrane in Eq. (15) are written in terms of the

complete states as

wab � x⊺ ~aw (24a)

uab � x⊺ ~au (24b)

vab � x⊺ ~av (24c)

where ~aw, ~au, and ~av, as defined in Eq. (23), are employed. Then,

using Eq. (17), the strain terms in Eq. (6) are rewritten as

ϵxx �
1

L

�
x⊺
�
~au
;x̂ −

z

L
~aw
;x̂ x̂

�
� 1

2L
x⊺� ~aw

;x̂
~aw⊺

;x̂ �x
�

(25a)

ϵyy �
1

L

�
x⊺
�
~av
;ŷ −

z

L
~aw
;ŷ ŷ

�
� 1

2L
x⊺� ~aw

;ŷ
~aw⊺

;ŷ �x
�

(25b)

ϵxy �
1

2L

�
x⊺
�
~au
;ŷ � ~av

;x̂ − 2
z

L
~aw
;x̂ ŷ

�
� 1

2L
x⊺�2 ~aw

;x̂
~aw⊺

;ŷ �x
�

(25c)

The stress components are rewritten in a similarmanner. Based on the

constitutive relation in Eq. (7) and the regular Hookean elasticity

matrix, CT in Eq. (8), the stresses in the taut region satisfy:

σT;xx �
E

�1 − ν2�L
�
x⊺
�
~au
;x̂ � ν ~av

;ŷ −
z

L

�
~aw
;x̂ x̂ � ν ~aw

;ŷ ŷ

��

� 1

2L
x⊺
�
~aw
;x̂
~aw⊺

;x̂ � ν ~aw
;ŷ
~aw⊺

;ŷ

�
x

�
(26a)

σT;yy �
E

�1 − ν2�L
�
x⊺
�
ν ~au

;x̂ � ~av
;ŷ −

z

L

�
ν ~aw

;x̂ x̂ � ~aw
;ŷ ŷ

��

� 1

2L
x⊺
�
ν ~aw

;x̂
~aw⊺

;x̂ � ~aw
;ŷ
~aw⊺

;ŷ

�
x

�
(26b)
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σT;xy �
E

2�1� ν�L
�
x⊺
�
~au
;ŷ � ~av

;x̂ − 2
z

L
~aw
;x̂ ŷ

�

� 1

2L
x⊺
�
2 ~aw

;x̂
~aw⊺

;ŷ

�
x

�
(26c)

In addition, referring back to Eq. (7) but using the adjusted elasticity

matrix, CW in Eq. (8), the stress components in the wrinkled region

satisfy:

σW;xx �
E

4L

�
x⊺
�
2�1� R� ~au

;x̂ �Q
�
~au
;ŷ � ~av

;x̂

�

−
z

L

�
2�1� R� ~aw

;x̂ x̂ � 2Q ~aw
;x̂ ŷ

��

� 1

2L
x⊺
�
2�1� R� ~aw

;x̂
~aw⊺

;x̂ � 2Q ~aw
;x̂
~aw⊺

;ŷ

�
x

�
(27a)

σW;yy �
E

4L

�
x⊺
�
2�1 − R� ~av

;ŷ �Q
�
~au
;ŷ � ~av

;x̂

�

−
z

L

�
2�1 − R� ~aw

;ŷ ŷ � 2Q ~aw
;x̂ ŷ

��

� 1

2L
x⊺
�
2�1 − R� ~aw

;ŷ
~aw⊺

;ŷ � 2Q ~aw
;x̂
~aw⊺

;ŷ

�
x

�
(27b)

σW;xy �
E

4L

�
x⊺
�
Q
�
~au
;x̂ � ~av

;ŷ

�
�

�
~au
;ŷ � ~av

;x̂

�

−
z

L

�
Q ~aw

;x̂ x̂ �Q ~aw
;ŷ ŷ � 2 ~aw

;x̂ ŷ

��

� 1

2L
x⊺
�
Q ~aw

;x̂
~aw⊺

;x̂ �Q ~aw
;ŷ
~aw⊺

;ŷ � 2 ~aw
;x̂
~aw⊺

;ŷ

�
x

�
(27c)

The boom compression terms in Eq. (14b) are then set to

Pa � Aσxy�x; 0; 0� and Pb � Aσxy�0; y; 0� from Eq. (11), where,

as an average, the midplane (z � 0) shear stress of the membrane

is assumed throughout the cross-sectional area A of the booms.

1. Contribution from Strain Energy

As mentioned earlier, the matrices in Eqs. (18) and (21) do not

capture parts of the boom andmembrane strain energies in Eqs. (14b)

and (14a). The following nonlinear (in states) terms are to appear in

theEOMinEq. (33) as contribution of these remaining portions to the

Lagrangian in Eq. (12):

~kM;nln �
∂UM;ab

∂x

� L2
∂
∂x

Z
s∕2

−s∕2

Z
1

0�

Z
1−x̂

0�

1

2
�σxxϵxx � σyyϵyy � 2σxyϵxy�dŷdx̂dz

(28a)

~kB;nln � L
∂
∂x

Z
1

0�

1

2

h
Pa�w2

a;x � v2a;x�
i
y�0

dx̂

� L
∂
∂x

Z
1

0�

1

2

h
Pb�w2

b;y � u2b;y�
i
x�0

dŷ (28b)

In a numerical framework, the preceding differentiationswith respect

to states can be handled symbolically. However, owing to the com-

plicated expressions and the time-varying nature of the spatial triple

integrals in their present form, to be reevaluated at each time step, the

symbolic approach was determined to be prohibitively computation-

ally expensive. To alleviate this issue, some algebraic operations,

presented in Subsection G, can be performed to eliminate the state

dependence of the spatial integrals.

2. Contribution from Outlet Work and Momentum Transfer

An assumption is needed about the outlet of the hub

through which mass flow occurs. Two possibilities are shown in

Fig. 3. The circular shape in Fig. 3a would be mathematically

convenient because the unit normal and velocity vectors along it

would be parallel, but such an interface may introduce practical or

production difficulties in a real system. Assuming the linear shape

in Fig. 3b, parallel to the free edge and from x � α on Boom (a) to

y � α on boom (b), the work and momentum transport terms in

Eq. (12) are

ZZ
Bc�Bo

δr ⋅σ ⋅ n̂dS

�
Z

s∕2

−s∕2

Z
α

0�

"
δu

δv

#⊤"σxx σxy

σxy σyy

#0@−
���
2

p

2

"
1

1

#1A
						
y�α−x

dxdy

�−
���
2

p

2
L

Z
s∕2

−s∕2

Z
α∕L

0�
��σxx�σxy�δu��σyy�σxy�δv�ŷ��α∕L�−x̂dx̂dz

(29a)

(29b)

where the vertical deflection along the outlet is constrained by

δw ≡ 0, resulting in no contribution from the booms (because they

are also assumed to be axially rigid) and the following variation of

the position vector in Eq. (13a):

(30)

where themodal expansion of Eq. (24) is used. In addition, the x and
y components of the velocity of the mass elements in Eq. (13b),

expressed in terms of x̂ and ŷ, are given by

νx � _LV̂x � _x⊺ ~au �
_L

L
x⊺ ~bu (31a)

νy � _LV̂y � _x⊺ ~av �
_L

L
x⊺ ~bv (31b)

a) Circular b) Linear

Fig. 3 Two possible hub outlet shapes.

Article in Advance / VATANKHAHGHADIM AND DAMAREN 7

D
ow

nl
oa

de
d 

by
 1

84
.1

46
.1

29
.2

05
 o

n 
Ju

ne
 2

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
34

96
2 



where ~au, ~av, ~bu, and ~bv are as defined in Eq. (23). After substituting
the expressions in Eqs. (29–31) into the generalization of Hamil-
ton’s principle in Eq. (12) and factoring δx out of the spatial
integrals, the following column matrices appear in the EOM:

~wM � −
���
2

p

2
L

×
Z

s∕2

−s∕2

Z
α∕L

0�
��σxx � σxy� ~au � �σyy � σxy� ~av�ŷ��α∕L�−x̂ dx̂ dz

(32a)

~mM �
���
2

p

2
s

Z
α∕L

0�

h
μ̂�νx � νy��νx ~au � νy ~a

v�
i
ŷ��α∕L�−x̂

dx̂ (32b)

Similarly to the nonlinear contribution of the strain energy in
Eq. (28), both of the expressions in Eq. (32) can be manipulated
to extract their state-dependent portions and render their required
spatial integrals time invariant. This procedure and its results are
omitted for brevity, but can be found in [53].

F. Quadrant-Level Equations of In- and Out-of-Plane Motion

Using the time-varying generalization of the extended Hamilton’s
principle in Eq. (12), applying the standard Lagrangian mechanics
formulation, and using the expansions in Eq. (15) and their deriva-
tives, the discretized nonlinear EOM of the system are

h
~MM� ~MB

i
�x�

h�
_~MM� _~MB

�
�
�
~GM− ~G⊺

M

�
�
�
~GB− ~G⊺

B

�
� ~D

i
_x

�
h
~kM;nln�x�� ~kB;nln�x�

i
�
h�

_~GM� _~GB

�
−
�
~KM;T� ~KB;T

�
� ~KB;U;2

i
x� ~mM�x; _x�� ~wM�x�� _~αM− ~βM�0 (33)

which can also be extended to a four-quadrant sail, as described in
[21]. Compared against the linear EOM in [16], the nonlinear EOM in
Eq. (33) of this paper involve nonlinear stiffness terms, ~kM;nln and
~kB;nln, arising from the stresses and plate strains used to determine the

strain energies in Eq. (14). In addition, the momentum transport and
work terms in Eq. (12) result in ~mM and ~wM, given by Eq. (32).

Lastly, extra _~αM and ~βM terms are present, provided in Eqs. (21d) and
(21e). These terms arise from the revisited kinetic energies in Eq. (14)
and the modified velocity in Eq (13b). To make the model more
realistic and in hopes of speeding up the simulations, a damping

term of the form ~D � D� ~MM � ~MB� is also added, which, in some
simulation cases, is necessary to avoid time integration failures,
possibly arising from high-frequency oscillations. For some wrin-
kling studies, given that the interest is only in the steady-state shape,
the proportionality constant D is increased to quickly eliminate the
transient oscillations. Damping was also used in most of the simu-
lations in [43].

G. Linear Algebraic Manipulations

The nonlinear state-dependent terms inEq. (33) are problematic, in
part because of the computational cost of reevaluating their spatial
integrals at each time step, whereas updating the other matrices, with
their transformed time-invariant integrals, simply involves multipli-
cation by functions of L�t� or its rates. To significantly improve
efficiency, the following linear-algebra-based identities are devel-
oped and used to extract x and/or _x out of the nonlinear terms, such as
~kB;nln and ~kM;nln, and have themmultiply a time-invariantmatrix from

left and/or right:

�x⊺s�t � �ts⊺�x (34a)

�x⊺s�Tx � X⊺�T⊺
rows⊺�x (34b)

�x⊺Sx�t � �tS⊺
col�Xx (34c)

�x⊺Sx�Tx � X⊺�T⊺
rowS

⊺
col�Xx (34d)

where x, which can be replaced by _x, is a time-dependent n × 1
matrix, s and t are generic space-dependent n × 1matrices; whereas

S and T are generic space-dependent n × n matrices. In addition,

Scol ≜ �S1⊺ · · · Sn⊺ �⊺ is a column matrix of the columns of S, and
Trow ≜ �T1 · · · Tn� is a row matrix of the rows of T. Lastly,

X ≜ blockdiagfx; : : : ; xg.
If x is set to be the generalized coordinates of Eq. (15), the spatial

integration of the expressions on the left-hand side of Eq. (34) needs

to keep x�t�within the integrals: for example, sT is dimensionally not

valid. However, the right-hand side that has time-invariant matrices

sandwiched between functions of x�t� can have such functions

moved out. Although the required matrices can grow as large as

proportionally to n4, they are sparse and eliminate the need for

reintegration at each time step. For example, the time integration of

a test casewould take about 40 h using the symbolic implementation,

but transformations of this section reduced the same integration to

about 30min, at the one-time overhead cost of computing and storing

the spatial integrals (possibly up to a few days for a large n).
All the stress and strain expressions in Eqs. (25–27) are in the

following form:

σij � x⊺sij �
1

2
x⊺Sijx; sij ≜ sij;1�x; y; L� � sij;2�x; y; z; L2�

(35a)

ϵij � x⊺tij �
1

2
x⊺Tijx; tij ≜ tij;1�x; y; L� � tij;2�x; y; z; L2�

(35b)

where the subscript ij belongs to fxx; yy; xyg, and the coefficients s,
t, S, and T are state independent but time dependent [owing to L�t�].
Therefore, expressions similar to the following (for each direction)

appear as part of the nonlinear membrane strain term, ~kM;nln, in

Eq. (28a):

∂
∂x

�σijϵij� �
�
x⊺sij �

1

2
x⊺Sijx

�
�tij � Tijx�

�
�
x⊺tij �

1

2
x⊺Tijx

�
�sij � Sijx� (36)

to all terms of which the expressions in Eq. (34) are applicable. More

specifically, focusing on the stress terms of the taut regions inEq. (26)

and the strains as written in Eq. (25), the following state-independent

coefficients correspond to the forms in Eq. (35):

σT;xx: sxx;1 ≜
C1

L

�
~au
;x̂ � ν ~av

;ŷ

�
; sxx;2 ≜

−C1z

L2

�
~aw
;x̂ x̂ � ν ~aw

;ŷ ŷ

�
;

Sxx ≜
C1

L2

�
~aw
;x̂
~aw⊺

;x̂ � ν ~aw
;ŷ
~aw⊺

;ŷ

�
ϵxx: txx;1 ≜

1

L
~au
;x̂; txx;2 ≜

−z
L2

~aw
;x̂ x̂; Txx ≜

1

L2
~aw
;x̂
~aw⊺

;x̂ (37a)

σT;yy: syy;1 ≜
C1

L

�
ν ~au

;x̂ � ~av
;ŷ

�
; syy;2 ≜

−C1z

L2

�
ν ~aw

;x̂ x̂ � ~aw
;ŷ ŷ

�
;

Syy ≜
C1

L2

�
ν ~aw

;x̂
~aw⊺

;x̂ � ~aw
;ŷ
~aw⊺

;ŷ

�
ϵyy: tyy;1 ≜

1

L
~av
;ŷ; tyy;2 ≜

−z
L2

~aw
;ŷ ŷ; Tyy ≜

1

L2
~aw
;ŷ
~aw⊺

;ŷ (37b)

8 Article in Advance / VATANKHAHGHADIM AND DAMAREN

D
ow

nl
oa

de
d 

by
 1

84
.1

46
.1

29
.2

05
 o

n 
Ju

ne
 2

1,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
34

96
2 



σT;xy: sxy;1 ≜
C2

L

�
1

2
� ~au

;ŷ � ~av
;x̂�
�
; sxy;2 ≜

−C2z

L2
~aw
;x̂ ŷ;

Sxy ≜
C2

L2
~aw
;x̂
~aw⊺

;ŷ

ϵxy: txy;1 ≜
1

L

�
1

2
� ~au

;ŷ � ~av
;x̂�
�
; txy;2 ≜

−z
L2

~aw
;x̂ ŷ;

Txy ≜
1

L2
~aw
;x̂
~aw⊺

;ŷ (37c)

where C1 ≜ E∕�1 − ν2� and C2 ≜ E∕�1� ν� are constants. Lastly,
upon extracting the time-varying L�t� from the aforementioned
coefficients and using Eq. (36) for each direction along with the
identities in Eq. (34), the following expression is obtained for the
integrand of the derivative of the membrane strain energy in the taut

regions, ∂ÛM;T∕∂x, to be triple integrated in all directions, as in

Eq. (28a), to appear as part of the nonlinear membrane strain term,
~kM;nln, in the EOM in Eq. (33):

∂
∂x

0
@1

2

Xfx;yg
fi;jg

σT;ijϵij

1
A � 1

2

Xfx;yg
fi;jg

8<
:
X2
p�1

X2
q�1

1

Lp�q

h
t̂ij;pŝ

⊺
ij;q � ŝij;pt̂

⊺
ij;q

i
x

�
X2
p�1

1

L2�p
X⊺

h
T̂⊺
row;ijŝ

⊺
ij;p � Ŝ⊺

row;ijt̂
⊺
ij;p

i
x

�
X2
p�1

1

2L2�p

h
t̂ij;pŜ

⊺
col;ij � ŝij;pT̂

⊺
col;ij

i
Xx

� 1

2L4
X⊺

h
T̂⊺
row;ijŜ

⊺
col;ij � Ŝ⊺

row;ijT̂
⊺
col;ij

i
Xx

9=
;

(38)

where
Pfx;yg

fi;jg indicates summation over the subscripted variables

corresponding to the different directions, namely, fxx; yy; xy; yxg,
with the variables of the last two subscripts being identical. In
addition, the hatted coefficients are the L-extracted equivalents of

those in Eq. (37): for example, sxx;p � ŝxx;p∕Lp and Sxx � Ŝxx∕L2.

The required spatial integration now need be performed only once,
before the time integration begins, on the terms enclosed in square
brackets.
Similar manipulations are applicable to the wrinkled regions,

governed by the stresses in Eq. (27). However, owing to the presence
of the time-varying Q�t� and R�t� coefficients in Eq. (8), which in
turn depend on the averaged principal strains in each mesh region,
more coefficients are required to allow for removing the time depend-
ence from the required integrals. The following state-independent
coefficients correspond to the σ forms in Eq. (35a), whereas the t and
T coefficients used for the strains are still applicable, as provided in
Eq. (37):

σW;xx: sxx;1;1 ≜ �1� R� E

4L
�2 ~au

;x̂�; sxx;1;2 ≜ �1� R�−Ez
4L2

�2 ~aw
;x̂ x̂�; Sxx;1 ≜ �1� R� E

4L2
�2 ~aw

;x̂
~aw⊺

;x̂ �

sxx;2;1 ≜ Q
E

4L
� ~au

;ŷ � ~av
;x̂�; sxx;2;2 ≜ Q

−Ez
4L2

�2 ~aw
;x̂ ŷ�; Sxx;2 ≜ Q

E

4L2
�2 ~aw

;x̂
~aw⊺

;ŷ � (39a)

σW;yy: syy;1;1 ≜ �1 − R� E

4L
�2 ~av

;ŷ�; syy;1;2 ≜ �1 − R�−Ez
4L2

�2 ~aw
;ŷ ŷ�; Syy;1 ≜ �1 − R� E

4L2
�2 ~aw

;ŷ
~aw⊺

;ŷ �

syy;2;1 ≜ Q
E

4L
� ~au

;ŷ � ~av
;x̂�; syy;2;2 ≜ Q

−Ez
4L2

�2 ~aw
;x̂ ŷ�; Syy;2 ≜ Q

E

4L2
�2 ~aw

;x̂
~aw⊺

;ŷ � (39b)

σW;xy: sxy;1;1 ≜ Q
E

4L
� ~au

;x̂ � ~av
;ŷ�; sxy;1;2 ≜ Q

−Ez
4L2

� ~aw
;x̂ x̂ � ~aw

;ŷ ŷ�; Sxy;1 ≜ Q
E

4L2
� ~aw

;x̂
~aw⊺

;x̂ � ~aw
;ŷ
~aw⊺

;ŷ �

sxy;2;1 ≜
E

4L
� ~au

;ŷ � ~av
;x̂�; sxy;2;2 ≜

−Ez
4L2

�2 ~aw
;x̂ ŷ�; Sxy;2 ≜

E

4L2
�2 ~aw

;x̂
~aw⊺

;ŷ � (39c)

where Q�t� and R�t� are state dependent and change over time,

because of which the variables they are multiplied with are separated

to form, via addition, s1;1 � s2;1 � s1�x; y; L�, s1;2 � s2;2 �
s2�x; y; z; L2�, and S1 � S2 � S�x; y; L2� of the general form in

Eq. (35a). Upon extracting Q�t�, R�t�, and L�t� from the aforemen-

tioned coefficients and using Eq. (36) for each direction along with

the identities in Eq. (34), the following expression is obtained for

the integrand of the derivative of the membrane strain energy in the

wrinkled regions, ∂ÛM;W∕∂x, to be triple integrated in all directions,
as in Eq. (28a), to appear as part of the nonlinear strain term, ~kM;nln, in

the EOM in Eq. (33):

∂
∂x

0
@1

2

Xfx;yg
fi;jg

σW;ijϵij

1
A

� 1

2

Xfx;yg
fi;jg

8<
:
X2
r�1

X2
p�1

X2
q�1

κij;r
Lp�q

h
t̂ij;pŝ

⊺
ij;r;q � ŝij;r;pt̂

⊺
ij;q

i
x

�
X2
r�1

X2
p�1

κij;r
L2�p

X⊺
h
T̂⊺
row;ijŝ

⊺
ij;r;p � Ŝ⊺

row;ij;rt̂
⊺
ij;p

i
x

�
X2
r�1

X2
p�1

κij;r
2L2�p

h
t̂ij;pŜ

⊺
col;ij;r � ŝij;r;pT̂

⊺
col;ij

i
Xx

�
X2
r�1

κij;r
2L4

XT̂
h
T̂⊺
row;ijŜ

⊺
col;ij;r � Ŝ⊺

row;ij;rT̂
⊺
col;ij

i
Xx



(40)

where the notation is the same as that used in Eq. (38), with the

exception of the new subscript, r, to distinguish between the first and
second rows of the new (wrinkled) coefficients in Eq. (39). Also extra

are the following κij;r coefficients based on Eq. (39):

σW;xx: κxx;1 ≜ 1� R; κxx;2 ≜ Q (41a)

σW;yy: κyy;1 ≜ 1 − R; κyy;2 ≜ Q (41b)

σW;xy: κxy;1 ≜ Q; κxy;2 ≜ 1 (41c)

The required spatial integration now need be performed only once,

before the time integration begins, on the terms of Eq. (40) enclosed

in square brackets.
Lastly, similar operations can be performed on the nonlinear

portion of the strain energy of the booms, ~kB;nln in Eq. (28b), as well
as the boundary work and momentum transfer terms, ~wM and ~mM in

Eq. (32). The details of those operations and their results are omitted,

but can be found in [53].
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IV. Wrinkling Study

The approach for wrinkling predictions involves using a coarse
mesh (shown in Fig. 2) while maintaining the global expansions for
the deflections and continuously adjusting the constitutive relation
based on the wrinkling state in each region. The number of regions is
controlled by setting how many elements, K, each boom is divided
into. The state of each element is determined using the wrinkling
criterion in Eq. (7), and the appropriate local elasticity matrix is
selected based on Eq. (8).
For a static problem, an iterationwould be required: using an initial

guess for each local C based on the previous strain state, obtaining
revised stress estimates and checking their compatibility against the
initial guess, revising C based on the updated strains, and repeating
until convergence [39]. This may not be needed for dynamic prob-
lems, given their nonequilibrium nature and that continuous load and
stress changes alleviate the need for a converged solution, and even
when it was adopted in this work, convergence was achieved within
one or two iterations.
Consider the mesh shown in Fig. 2, with triangular elements of

base length d � L∕K. If an integral over the entire membrane quad-
rant is required and the integrand depends on themesh elements, as is
the case for the nonlinear terms in the previous section that are
computed using the local stress/strain values, the result should be
evaluated by breaking the integral into element-wise subintegrals.
For the light-colored upright elements in Fig. 2, labeled 1 to 6, the
subintegrals are

k � 1:

Z
d

0�

Z
d−x

0�
�⋅� dy dx; k � 2:

Z
2d

d

Z
2d−x

0�
�⋅� dy dx; · · · ;

k � 6:

Z
d

0�

Z
3d−x

2d
�⋅� dy dx (42)

which can all bewritten using the coordinates of corners 1, 2, and 3 of
the elements, also labeled in Fig. 2, as

Element k:

Z
x2;k

x1;k

Z �x3;k�y3;k�−x

y2;k�y1;k

�⋅� dy dx (43)

with the corner coordinates generated by

�x1; y1� � �i; j� × d; �x2; y2� � �i� 1; j� × d;

�x3; y3� � �i; j� 1� × d (44)

using a nested loop with j ∈ f0; : : : ; K − 1g and i ∈
f0; : : : ; �K − 1� − jg, where K is the number of elements on each
boom.Similarly, for the dark-colored upside-downelements inFig. 2,
labeled 7 to 9, the subintegrals are

k � 7:

Z
d

0�

Z
d

d−x
�⋅� dy dx; k � 8:

Z
2d

d

Z
d

2d−x
�⋅� dy dx;

k � 9:

Z
d

0�

Z
2d

2d−x
�⋅� dy dx (45)

which can all be written using the corner coordinates of the elements
as

Element k:

Z
x1;k

x2;k

Z
y2;k�y1;k

�x3;k�y3;k�−x
�⋅� dy dx �

Z
x2;k

x1;k

Z �x3;k�y3;k�−x

y2;k�y1;k

�⋅� dy dx

(46)

with the corner coordinates generated by

�x1; y1� � �i; j� × d; �x2; y2� � �i − 1; j� × d;

�x3; y3� � �i; j − 1� × d (47)

using a nested loop with j ∈ f1; : : : ; K − 1g and i ∈ f1; : : : ; K − jg.
The expression in Eq. (46) is the same as that in Eq. (43), providing a

uniform expression applicable to all mesh elements that lends itself
well to numerical implementation.With this formulation, the updated
strain energy of membrane (ab) in Eq. (14a) becomes

UM;ab �
XK2

k�1

Z
x2;k

x1;k

Z �x3;k�y3;k�−x

y2;k�y1;k

Z
s∕2

−s∕2

1

2
σ⊺ϵ dz dy dx (48)

where the local integration bounds, xi;k and yi;k, denote the coordi-
nates of the corners of the kth mesh element, as labeled in Fig. 2. To
determine σ, the appropriate local elasticity matrix in Eq. (8) is used,
for which averaged strains are obtained using a finite number of
representative points, shown as crosses within the elements in Fig. 2.
Note also the need for integration over the thickness s, because of the
z dependence of the plate strain terms in Eq. (6). Because the mesh
elements are independent, the mesh-dependent spatial integrations
can be performed in parallel, using MATLAB®’s Parallel Computing
toolbox, for example.
The membrane kinetic energy T M;ab remains the same as that in

Eq. (14a), and the expressions for the boom energies remain the same
as those in Eq. (14b). As for the outlet work and momentum transfer
expressions, after applying the mesh and assuming it is coarse enough
that the entire outlet is contained within its first element, k � 1, we
have the same expressions as those in Eq. (32), but using thewrinkling
state and corresponding stresses of the k � 1 mesh element.

V. Results

Numerical simulations are performed by integrating the nonlinear
dynamics EOM in Eq. (33). First, a concise overview of the simu-
lation procedure and parameters used is provided. Then, the con-
vergence of the predicted wrinkling model in response to mesh
refinement is examined using a deploying quadrant. The response
of a quadrant to nonzero initial conditions (ICs) under a constant-rate
deployment profile is subsequently studied using a coarse mesh by
focusing on the major principal stresses, wrinkled regions, and their
evolution over time. The results obtained using the nonlinear model
of this study are also compared against those using the linearmodel of
Vatankhahghadim and Damaren [16] in the same deployment sce-
nario, upon setting the ICs in a way that reproduces the initial stress
distribution assumed by the Airy stress function of the linear model,
but only at the initial time t0 � 0. Lastly, a comparison of the results
against earlier simulations, in turn validated experimentally, using a
constant-size loadedmembrane is alsomade at the end of this section.

A. Simulation Procedure and Parameters

Even though the EOM involve system matrices that are time
varying (for deployment with nonzero _L), the coordinate transforma-
tions and the linear algebraic manipulations described in the previous
section render all the required space integrals time invariant. The
simulation procedure starts by constructing all the necessary inte-
grands and evaluating the spatial integrals required for the system
matrices. The results of these integrals can then be stored and reused
in future simulations that use the same sail parameters. Then, numeri-
cal time integration of the EOM is performed, at each time step of
which the system matrices are evaluated via multiplying the precal-
culated spatial integrals by the remaining functions of L�t�, x�t�, and
their rates.
To perform the previously described wrinkling predictions, before

evaluating the systemmatrices thewrinkling state at each time step is
first determined using the wrinkling criterion in Eq. (7). Then,
depending on the state of each mesh element, either the taut or the
wrinkled constitutive relation is used to determine the contribution of
the element to each of the systemmatrices that depend on the stresses
and strains. These column matrices are the nonlinear stiffness terms,
~kB;nln and ~kM;nln, as well as the work on the outlet ~wM.

The simulations use MATLAB’s built-in variable-step-size ode15s()
with relative and absolute error tolerances of ‘RelTol’ � 10−4 and

‘AbsTol’� 10−6, respectively. Table 1 lists the physical and geometric
properties that are assumed for most of the simulations, unless other-
wise stated in each subsection. Other than the variable membrane
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density, μ�x; y�, these values match those used in [43], halved when

needed (for A, I, and ρ) to account for the quadrant nature of the

test cases, which are in turn based on the previously reported results

and experiments, with the membrane properties similar to those of

Kapton®. For the interface through which mass flow occurs, assumed

to have the linear shape in Fig. 3b, a distance of α∕L � 10−4 is

used.

B. Convergence of Wrinkling States with Mesh Refinement

Amesh refinement study is conducted using short simulations of the

dynamics of a quadrant with most of the same parameters as those in

Table 1, but with v � 0.9, to increase the coupling between the in-

plane and out-of-plane dynamics, a choice that will be later made and

justified when comparing the results to those of the linear model as

well. The deployment profile is set to L�t� � 50� 0.1t m, and given

the small duration of the simulation (only 0.01 s) and the nearly fully

deployed nature of the sail, a uniform density of μ�x; y� � μuni �
1.39 × 10−2 kg∕m2 is assumed. The numbers of boomandmembrane
quasi modes used are nB � 2 and nM � 4, and the ICs are all set to
zero except pa�0� � pb�0� � �1 0�⊺∕�5L�0�� and ea�0� � eb�0� �
10−2 × �1 0�⊺∕�5L�0��, which are symmetric andused to also check the
symmetry of the results, resulting in the small initial out-of- and in-
plane deflections of the boom tips of−8 and−0.08 mm, respectively.
Structural dampingwith a coefficient ofD � 1 is added.Note that this
does not imply critical damping, becauseD is not the effective damp-
ing ratio of the structure.
The purpose of this study was to determine whether the wrinkling

states in each sail region are predictedmore or less consistently as the
mesh is refined. Shown in Figs. 4 and 5 are the predicted states at two
instances, halfway and end, respectively, of a 0.01 s simulation. The
number of mesh elements per boom is increased fromK � 2 toK �
5 in each figure. Symmetry is maintained in all cases, as expected. As
for the predicted patterns, all the meshes show complete wrinkling
throughout the sail at t � 0.005 s in Fig. 4. As time progresses, the
K � 2 case in Fig. 5a proves to be too coarse to capture any of the
slack regions; however, the rest of the cases all do capture the overall
taut–slack–wrinkled pattern, although the K � 3 mesh in Fig. 5b
does not have sufficient elements to detect the small wrinkled region
close to the origin. This is to be expected from the limitations of a
coarsermesh, and at the same, too fine of ameshwill conflict with the
global expansion-based approach adopted in this project. Overall, the
results are deemed to bemore or less consistent, and the fact that there
are no surprise changes as a consequence of mesh refinement is
promising in terms of the convergence of the model.
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Fig. 4 Wrinkling states: cross (×) for wrinkled, at t � 0.005 s in the deploying quadrant of SubsectionB, with different numbersK ofmesh elements per
boom.

Table 1 Physical and geometric
parameters assumed, unless otherwise stated,

for the solar sail quadrant

Booms Membranes

E;N∕m2 2.87 × 1010 E;N∕m2 4.00 × 109

A;m2 1.61 × 10−5 ν 0.3

I;m4 8.05 × 10−8 s ;m 1 × 10−5

ρ; kg∕m 2.32 × 10−2 μ ; kg∕m2 Variable
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a) K = 2
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d) K = 5

Fig. 5 Wrinkling states: circle (○) for taut, cross (×) for wrinkled, and plus (�) for slack, at t � 0.01 s in the deploying quadrant of Subsection B, with
different numbers K of mesh elements per boom.
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Fig. 6 Major principal stresses in the deploying quadrant of Subsection C.
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C. Stress and Wrinkling of the Deploying Quadrant

The response of a sail quadrant to nonzero ICs under a constant-rate

deployment profile is studied in this section by offering crude predic-

tions, using a coarse mesh, of the major principal stresses, wrinkled

regions, and their evolution over time. The numbers of boom and

membrane quasi modes are set to nB � 2 and nM � 4, respectively.
The parameters in Table 1 are selected. The density profile in Eq. (2) is

used, with μc � 50μuni � 50�1.39 × 10−2� kg∕m2 and ĉ � 0.01.
The ICs of boom (a) are set to pa�0� � �1 0�⊺∕�5L�0��, resulting in

an out-of-plane tip deflection of−0.02 m in boom (a). The rest of the
state and rate ICs are set to zero. A larger deployment rate than in the

previous subsection is used, with the deployment profile L�t� �
20� 0.5t m. To avoid the numerical issues associated with the rela-

tively small sail and its high deployment rate, large damping is used

withD � 10.
Presented in Fig. 6 are snapshots of the major principal stress

patterns for the simulation case in 2 s intervals from t0 � 0 to

tf � 10 s. The predicted wrinkling patterns at each time are also

provided in Fig. 7. Initially, the stresses increase toward the tip and

create a completely taut sail quadrant, owing to the initial deflection

of boom (a) only. However, as the boom tip bounds upward and the

quadrant extends outward, irregularities in the distribution occur
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Fig. 7 Wrinkling states: circle (○) for taut, cross (×) for wrinkled, and plus (�) for slack, in the deploying quadrant of Subsection C.
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Fig. 8 Initial stress components in the deploying quadrant of Subsection D with symmetric ICs, using both models.
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throughout the sail, with the vicinity of the boom (a) tip continuing to
have generally larger stresses. The reader should be cautioned not to
interpret t � 10 s as the end of an actual deployment process, at
which point one would expect mostly taut regions, because the

system still has a nonzero extension rate of _L � 0.5 m∕s. The
presented results represent a snapshot of the motion, and not a
complete deployment process. Treating full deployment would
require allowing for nonzero accelerations, as well as much longer
and computationally heavier simulations.

D. Comparison of Linear and Nonlinear Models

This section compares the results obtained using the nonlinear
model of this study against those provided by the linear model of
Vatankhahghadim and Damaren [16] to confirm they provide com-
parable results, and to assess the significance of the discrepancies
between outputs of the two models. Several measures are used to
make such a comparison meaningful: the wrinkling provisions in the
nonlinear model are omitted, assuming the taut constitutive relation,
CT in Eq. (8), throughout the membrane and eliminating the need for

a mesh; symmetric ICs are used, selected in a manner that the initial

stress distribution at t � 0 of the nonlinear model matches the

linearly increasing edge stresses assumed in [16] by the linear model;

and a large Poisson’s ratio of ν � 0.9 is assumed by the nonlinear

model, to increase the coupling between the in- and out-of-plane

deflections and help with matching the initial stress distributions of

the two models. This value is not realistic for a membrane, but the

reader is reminded that the nonlinear model would have no problem

with a smaller and more realistic ν, as demonstrated in the deploying

quadrant results of Figs. 6 and 7, and the loaded membrane results of

Fig. 14 presented later, all of which use ν ≈ 0.3. This choice is only
made to allow for ameaningful comparisonwith the linearmodel that

makes much more restrictive assumptions.

Other than ν � 0.9, the rest of the parameters are set according to

Table 1. The extension profile is set to L�t� � 50� 0.1t m, and a

uniform membrane density of μ�x; y� � μuni � 1.39 × 10−2 kg∕m2

is assumed for simplicity and without affecting the intended com-

parison (especially given the nearly fully deployed nature of the test

cases). Both models use nB � 3 and nM � 9 quasi modes for their

a) Linear model

b) Nonlinear model with no wrinkling

Fig. 9 Out-of-plane membrane deflections in the deploying quadrant of Subsection D, using both models.
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booms andmembrane. The ICs of the booms are symmetrically set to
pa�0� � pb�0� � �1 0 0�⊺∕�5L�0�� and ea�0� � eb�0� � �1 0 0�⊺∕
�5L�0�� × 10−2 with all the other ICs set to zero, resulting in small
out-of- and in-plane boom tip deflections of −8 and −0.08 mm,
respectively. To match the resulting stresses at t � 0, the assumed
tip stress for the linear model is set to �σ � 500 Pa. No damping
is used.
Shown in Fig. 8 are all three initial stress components for both

models. Those in Fig. 8a are set by the selected �σ and the analytical
distribution obtained in [16], whereas those in Fig. 8b are the taut
stress components calculated using the strains, in turn dictated by the
judicious choice of ICs. Other than the curved regions around the free
edge, theymatch quitewell, but only at time t � 0.Whereas the stress
components of the linearmodelmaintain the samepatterns as those in
Fig. 8a, only increasing in magnitude during extension, the distribu-
tions obtained by the nonlinear model change quite significantly
during the deployment, as shown later in Fig. 12. This highlights
one of the advantages of the nonlinear model: the ability to more
accurately predict the stress distribution.
The out-of-plane deflections throughout the membrane, obtained

using both models, are shown in Fig. 9 and the online animations
available as SupplementaryVideos 1 and 2, corresponding to Figs. 9a
and 9b, respectively. In addition, the out-of-plane tip deflections at
the boom tips and the midpoint of the free edge of the membrane are
plotted over time in Fig. 10. Comparing the membrane shapes
predicted by both models, they show close match until about
t � 6 s, after which they start to show obvious differences. However,
the deflection profiles in Fig. 10 are promising: very close match is
evident in Fig. 10a for the boom tips throughout the 15 s deployment,
and although the values of the deflections in Fig. 10b at the repre-
sentative point on the membrane do differ after t � 6 s, both models
capture its increasing–decreasing pattern. Also noteworthy as a
sanity check is the symmetry maintained by both models in response
to the symmetric ICs. The same observation holds for the identical in-
plane deflection patterns of the nonlinear model along both x and y
directions, shown in Fig. 11. Also notable are the relative sizes of the
out-of-plane and in-plane deflections, with the latter being two to

three orders of magnitude smaller, as expected and as also reported in

[33] for a moving membrane problem.

E. Validation Using Corner-Loaded Membrane Under Gravity

As another partial validation, the simulation results are compared

against the experimental and numerical ones in [47,54], using a

constant-size corner-loaded square membrane with no booms, illus-

trated in Fig. 13. To this end, the simplified EOM in Eq. (33) are

modified to exclude the boom terms, drop the deployment terms,

include the contributions from the external forces, and exploit the

symmetrywith equal loads on opposite corners. The reader is referred

to [53] for the details of these modifications.
The physical parameters of the membrane are set to match those

in [47,54]: μ � 3.75 × 10−2 kg∕m2, E � 3.5 × 109 N∕m2, s �
2.5 × 10−5 m, and ν � 0.31. Considering the interest in the steady-

state response only, large mass-proportional damping is used with

D � 10. The numbers of modes and mesh elements per half-diagonal

are nM � 4 andK � 4 (resulting in 16 elements per quadrant), and the

membrane ICs are all set to zero: qab�0� � fab�0� � gab�0� � 04×1
with zero rates. To avoid the numerical issues associated with the small

membrane size of side length 0.5 m used in [47,54], a rescaled model

with a side length of 10 m is used instead. As a consequence of this

rescaling, the corner loads are set to vary between 100 and 400 N,

namely, 20 times larger than the 5–20 N loads used in [47,54]. For

numerical stability, the loads are applied gradually, using the profile in

[43]: the corner loads are increased from0 to1%of the smaller intended

load until t � 0.2 s, followed by the gravitational load applied from 0

to μg (per unit area, where g is the acceleration due to gravity) between

t � 0.2 s to t � 0.7 s, followed by the remainder of the corner loads

applied between t � 0.7 s to t � 1.2 s. The simulations then continue

up to at least t � 1.3 s to allow the results to settle.
Shown in Fig. 14 are the predicted major principal stresses at the

end of each load application scenario (at t � 1.3 s) for four different
simulation cases: increasing T2 on corners 2 and 4 (upper left

and lower right) from 100 to 400 N, whereas T1 remains the same

value of 100 N on corners 1 and 3 in all cases. Comparing the stress
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Fig. 10 Out-of-plane deflections in the deploying quadrant of Subsection D, using both models.
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distributions in Fig. 14 to those in Fig. 19 of [47] (in turn validated
with the experimental results in [54]), many similarities in their
exhibited patterns are observed. For example, the high-stress corner
regions, the low-stress regions near the middle of the side edges, the
stress values of the same order of magnitude, as well as an increase in
the stresses and their gradient as T2 increases are all features shared
by both figures. The predicted wrinkling states corresponding to the
same simulation cases, as well as the cross-sectional profiles for out-
of-plane deflections, the shapes of which are not captured well by the
proposed model even though their orders of magnitude seem reason-
able, can be found in [53].

VI. Conclusions

This paper treats the dynamics of a deploying (at a constant rate)
quadrant of a boom-supported solar sail in a more complete manner
than the previously published works, by also accounting for the in-
plane deflections in addition to the out-of-plane ones, using nonlinear
plate strains that couple the two deflection types and obtaining EOM
that are nonlinear in states. The overall methodology is based on the
quasi-modal expansion of the deflections: using both time- and
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Fig. 12 Normal stress σxx in the deploying quadrant of Subsection D, using the nonlinear model with no wrinkling.

Fig. 13 Corner-loaded square membrane under gravity.
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Fig. 11 In-plane deflections at boom tips andmidpoint of membrane edge in the deploying quadrant of Subsection D, using the nonlinearmodel with no
wrinkling.
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space-dependent basis functions that change with the size of the
quadrant. Coordinate transformations and some algebraic operations
are performed to make the required spatial integrals time invariant,
thereby reducing the computational effort. In addition, an approach
for making approximate wrinkling predictions using the Miller–
Hedgepeth model and a coarse mesh (for wrinkling studies only) is
also adopted in this paper. The presented simulation results assess the
convergence of the wrinkling model in response to mesh refinement,
and provide predictions of stress and wrinkling states in a sample
deployment scenario. A constant-size loaded membrane that under-
goes wrinkling is also considered, and the simulation results corre-
sponding to it are compared against experimentally validated ones in
literature. The predicted stresses match well.
A comparison of the results obtained using an earlier linear model,

with only out-of-plane deflections, against those of the nonlinearmodel
of this study is also performed. The conclusion from this comparison is
that the linear model can help capture some of the essential features
of the deployment dynamics, but only in special cases, in which its
restrictive assumptions are reasonable. For example, to reproduce the
stress distributions assumed by the linear model, symmetric ICs and a
nonrealistically large Poisson’s ratio were needed by the nonlinear
model. It should be emphasized, however, that there is a relatively
close match between the results even though there are significant

discrepancies in the stress distributions of the two models after the
initial time, as shown in Fig. 12. Achieving relatively close predictions
using two models of varying complexity and sets of assumptions is
promising and adds credibility to both models, but the discrepancy
between some results suggests that the nonlinear model would bemore
suitable, if not required, for some applications, especially if the stress
distributions are more important than the deflections.
Despite more or less similar results between the linear and non-

linear models, the nonlinear effects are not too small, and neglecting
them can cause inaccuracies in the predictions. The appeal of the
linear model is in its simplicity of implementation and very low
computational cost: whereas the time integration portion of the
reported comparison simulation took close to 7 h for the nonlinear
model, the linear model handled the same test case in a few minutes
on the same computer. This is because of the much larger number of
generalized coordinates in the nonlinear model, as well as its need for
calculating the nonlinear terms via large matrix multiplications.
Therefore, depending on whether computational speed or accuracy
is prioritized, each model has something extra to offer and both seem
to have merit. However, the additional capabilities of the nonlinear
model should not be overlooked: its assumptions are more permis-
sive, and it can estimate the in-plane deflections and the wrinkling
regions, neither of which is possible to predict using the linear model.
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Fig. 14 Major principal stresses in the 10 m × 10 m membrane of Subsection E, under gravity and corner loads along its diagonals.
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