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Abstract

The deployment dynamics of a solar sail consisting of four flexible booms and four membrane quadrants are studied. First, previous
work on modelling only one membrane quadrant attached to two axially moving beams using time-varying quasi-modal expansion is
extended to be applicable to the complete four-quadrant system. This is achieved via ‘‘lifting” the quadrant-level matrices into
system-level forms by mapping the former’s constituent blocks to the correct partitions in the latter. After the quadrant-to-system con-
version of the matrices, the equations of motion from the authors’ previous work readily apply to the complete system. Modal analysis is
performed on a constant-length sail to validate the model’s basic foundations against the results obtained by finite element methods in
the past literature. Deployment simulation results are presented, numerical parameter studies that show possibility of instability are per-
formed using the system’s eigenvalues, and the stability results are discussed.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Translating continua of constant or time-varying length
find applications in many areas of engineering, such as
magnetic tapes, elevator cables, robotic arms, the paper
industry, and spacecraft antennas. Surveys of some of the
early works in such areas were presented in Mote (1972),
Wickert and Mote (1988), and more recent efforts were
reviewed in Zhu (2000). In the context of spacecraft,
deployment was examined in Hedgepeth (1970), Cloutier
(1968), Cherchas (1971), Hughes (1972), among others.
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results.
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More generally, studies on axially translating strings, con-
sidered to be among the simplest of translating continua
that lead to second-order equations, can be traced back
to Carrier (1949), Sack (1954), Miranker (1960). Trans-
verse vibration of axially translating beams, described by
fourth-order systems, was studied in Leech (1970),
Tabarrok et al. (1974), Wang and Wei (1987), Wang and
Wei (1994), Wang et al. (2009), Yang et al. (2016), among
others, in which ‘‘quasi-modal expansion” using the eigen-
functions of a cantilevered beam was used on the deflec-
tions, similarly to Cherchas and Gossain (1974), Hughes
(1976), Janković (1979) for spacecraft applications. In
addition, the out-of-plane dynamics of translating mem-
branes were examined in Niemi and Pramila (1987),
Koivurova and Pramila (1997), Shin et al. (2005).

Focusing on the dynamics of coupled multibody sys-
tems, most relevant past works include Hughes and Garg
(1973), Shaker (1976), Weeks (1986), which also make
use of the quasi-modal approach, but only after expressing
the deflections of solar panels in terms of those of their
il deployment dynamics, Advances in Space Research, https://doi.org/
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support booms. In a similar manner, the out-of-plane
deflections of a single solar sail quadrant was examined
in Vatankhahghadim and Damaren (2019), in which ana-
lytic expressions for the rate of change of vibration energy,
resembling those in Zhu and Ni (2000), Wang et al. (2009)
for deploying beams, were also obtained.

Heavily numerical approaches have been used to study
solar sail deployment dynamics, such as in Shirasawa
et al. (2011), replacing finite elements with masses, springs,
and dampers; and in Zhao et al. (2013), Tian et al. (2015),
using a global coordinate system. Abandoning simple ana-
lytical models, Sakamoto et al. (2011) developed a geomet-
rically nonlinear finite element method (FEM), and
proposed elements with variable properties. Earlier works
on translating beams and membranes that also used
FEM include Stylianou and Tabarrok (1994,) and Niemi
and Pramila (1987), Koivurova and Pramila (1997), respec-
tively. Ground-based deployment experiments have been
performed, for example in Block et al. (2011), Spröwitz
et al. (2018), using coilable carbonfiber-reinforced plastic
booms and Upilex-S� or Mylar� films, which are the struc-
tures of interest in this document. Measurement data are
available in Spröwitz et al. (2018), Wong and Pellegrino
(2006), Pappa et al. (2006) for constant-length cases,
obtained via strain gauges on the booms or using digital
image correlation.

A natural and important question that arises in the con-
text of deployable structures is that of stability. Translating
continua of varying length could be classified as non-
conservative gyroscopic systems (Stylianou and
Tabarrok, 1994). For such systems, static methods such
as those seeking the appearance of non-trivial equilibria
may yield results that are inconsistent with the more reli-
able ones furnished by the kinetic (vibration) methods
(Ziegler, 1977). In the past, the stability of translating
materials has been studied by examining the transverse dis-
placements’ boundedness, such as in Wickert and Mote
(1990), Stylianou and Tabarrok (1994), Lin (1997), Zhu
(2000), as well as from an energy viewpoint, such as in
Miranker (1960), Wickert and Mote (1989), Zhu and Ni
(2000), Zhu (2000). In Vatankhahghadim and Damaren
(2019), it was shown that the transverse vibration energy
of the hybrid beam-membrane system of a solar sail mono-
tonically decreases and increases during deployment and
retraction, respectively. Similarly to the observations in
Zhu and Ni (2000), Wang et al. (2009), however, this
elegant conclusion does not guarantee boundedness of
displacements during extension.

A primary contribution of this document is to build
upon Vatankhahghadim and Damaren (2019) and numer-
ically investigate the possibility of divergence using a
kinetic approach, and study the effects of pretension and
deployment rate on the onset of such phenomena. Whereas
the formulation of Vatankhahghadim and Damaren (2019)
focused on a single sail quadrant, the present document
provides more details on a complete and more realistic
model of a solar sail, namely one with four axially
Please cite this article as: B. Vatankhahghadim and C. J. Damaren, Solar sa
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translating beams, with four thin membrane quadrants
attached in-between. New stability results pertinent to the
complete sail’s behaviour are also presented. Similar to
Vatankhahghadim and Damaren (2019), the coupled
deployment and stability dynamics problem in this paper
is assumed to involve small enough displacements, com-
pared to the system’s large overall size, that a linearized
study is justified. The reader is referred to Behdinan and
Tabarrok (1997), Koivurova and Pramila (1997), Liu
et al. (2014) for nonlinear dynamics of continua and solar
sails, and to Zhang and Zu (1999), Öz et al. (2001), Wu
et al. (2017) for examples of works that involve nonlinear
stability analyses. In addition, similar to
Vatankhahghadim and Damaren (2019) and many other
works on translating continua, only ideal deployment is
treated in this manuscript, assuming complete boom-
membrane attachment (with no imperfections) and equal
deployment rates on all booms. Treating such non-
idealities and their influence on the solar sail system’s
dynamics and stability offer interesting paths for future
work.

Upon validating the constant-length results against those
in Hassanpour and Damaren (2018) via modal analysis,
dynamic simulations are performed using a constant-rate
deployment profile. In contrast to the energy-based
approach of Vatankhahghadim and Damaren (2019) that
yielded analytic expressions for assessing boundedness of
vibration energy (a measure of dynamic stability), the pre-
sent work adopts the kinetic vibration approach that yields
a quadratic eigenvalue problem. Numerical eigenvalue
studies are then performed, and the results seem to suggest
the existence of instability regions in terms of amplitude
growth — an aspect not accounted for by the energy-only
approach of Vatankhahghadim and Damaren (2019) —
for certain combinations of extension rate and sail tension.

The organization of this document is as follows: Sec-
tion 2 describes the model of interest and some simplifying
assumptions to make the problem tractable. The discretiza-
tion approach of and the quadrant equations of motion
from Vatankhahghadim and Damaren (2019) are reviewed
in Section 3 and Appendix A, and more details are pro-
vided on extending these derivations to a complete sail.
Also presented in Section 3 is a reformulation of the prob-
lem to enable numerical stability analyses. Simulation
results pertinent to constant-length and deploying sails
are presented in Section 4, along with those on the sail’s
deployment stability.

2. Model description and assumptions

A square solar sail model as shown in Fig. 1 is consid-
ered. Only out-of-plane deflections of the sail quadrants
and their support booms are considered in the present doc-
ument, and accounting for the in-plane deflections and the
possibility of wrinkling are left as part of future work. Uni-
form thin membranes with no bending stiffness and Euler-
Bernoulli beams with no axial extensibility are used to
il deployment dynamics, Advances in Space Research, https://doi.org/
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Fig. 1. Model of Deploying Solar Sail: Booms (a), (b), (c), and (d); and
Membranes (ab), (bc), (cd), (da) with Straight Free Edges.
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model the sail and the booms, respectively. Consistent with
Vatankhahghadim and Damaren (2019), a sliding-type
deployment is assumed, with the free edge remaining
straight and at 45� to the booms at all times. This assump-
tion is admittedly unrealistic, especially considering the
many folds to which packaged sails are subjected, but it
is a key assumption to render the problem tractable, and
is believed to capture the main behaviour of the system
upon which future higher fidelity studies can build. The
resulting velocity distribution is presented in
Vatankhahghadim and Damaren (2019) and Appendix A.

The membrane quadrants are taken to be under linearly
increasing (towards the boom tips) forces per unit length,
namely normal N xx and N yy and shear N xy, provided by
the booms. This results in compressive axial loads, P, on
the latter. The corresponding expressions related to Mem-
brane (ab) and Boom (a), for example, are
Vatankhahghadim and Damaren (2019):

N xx ¼ N yy ¼ �N xy ¼ �rh
L0

xab þ yabð Þ; P a ¼ � �rA
L0

xab ð1Þ

where �r is the initial maximum prestress near the boom
tips, h is the uniform membrane thickness, and A and
L tð Þ are the booms’ uniform cross-sectional area and
time-varying length, respectively, with L0 ¼ L 0ð Þ. As fur-
ther detailed in Vatankhahghadim and Damaren (2019),
the force terms in Eq. (1) affect the strain energy used in
the Lagrangian formulation, hence appearing in the stiff-
ness matrices presented in Eqs. (A.1d) and (A.2d) in
Appendix A. In the absence of wrinkling, future work that
will also account for the in-plane deflections can use a lin-
ear Hookean constitutive relation to obtain the stress from
the strains and deflections.
3. Discretized equations of motion

The quasi-modal approach with time-varying basis
functions used by Cloutier (1968), Weeks (1986), Wang
Please cite this article as: B. Vatankhahghadim and C. J. Damaren, Solar sa
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and Wei (1987), Janković (1979), Wang et al. (2009) is
adopted. Focusing on Quadrant (ab) as an example, the
out-of-plane deflections of the booms and the membrane
— superimposed over the booms’ deflections as in Shaker
(1976), for constant length, and in Weeks (1986), for
deployment — are expanded, using nB and nM modes,
respectively, as Vatankhahghadim and Damaren (2019):

ua xab; tð Þ¼ p|a tð ÞWa xab; tð Þ; ub yab; tð Þ¼ p|b tð ÞWb yab; tð Þ ð2aÞ
wab xab;yab; tð Þ¼ ua xab; tð Þþub yab; tð Þþq|ab tð ÞUab xab;yab; tð Þ

ð2bÞ
where pa 2 RnB ; pb 2 RnB , and qab 2 RnM are the generalized
coordinates of Boom (a), Boom (b) and Membrane (ab),
respectively. The time-varying components of Wa;Wb, and
Uab, which are the eigenfunctions of a cantilevered beam
and an all-edges clamped membrane, depend on x=L tð Þ
and/or y=L tð Þ. It should be noted that one of the sources
of error in the numerical results is the truncation of the ser-
ies in Eq. (2), which are supposed to converge to accurate
values only as n ! 1.

3.1. Quadrant-level equations of motion

Using the expansions in Eq. (2) and the standard
Lagrangian mechanics-based formulation involving the
components’ kinetic and strain potential energy expres-
sions, the following discretized equations of motion (with
the matrices in Appendix A) were obtained in
Vatankhahghadim and Damaren (2019) for a single quad-
rant consisting of Membrane (ab) attached to Booms (a)
and (b):

~MM þ ~MB

� �
€~qþ _~MM þ _~MB

� �
þ ~GM � ~G|

M

� �h
þ ~GB � ~G|

B

� ��
_~qþ _~GM þ _~GB

� �
þ D ~KM þ D ~KB

� �h i
~q ¼ 0

ð3Þ
where ~q , p|a p|b q|ab

� �|
contains all of Quadrant (ab)’s

generalized coordinates, and D ~KM , KM;U � KM;T and

D ~KB , KB;U � KB;T. The quadrant-level matrices denoted
by a tilde are of dimensions ~n� ~n with ~n ¼ 2nB þ nM, and
are constructed via spatial integration of some functions
of W and U, as provided in Appendix A. Note that the
boom-related matrices (with the subscript ‘B’) have zero
partitions corresponding to the membrane’s generalized
coordinates: for example,
~MB , blockdiag MB;MB; 0nM�nMf g, where the inner blocks
(without a tilde) are those in Appendix A.

The square bracketed terms could be loosely viewed
from left to right as effective mass, gyricity, and stiffness
matrices. If a model of the system’s structural damping is
also available, it can be added to the second set of matrices,
but it is believed that as long as the dissipative effects are
sufficiently small compared to the gyroscopic forces, the
stability results would be conservative and can benefit from
small damping. For example, it was shown in Stylianou
il deployment dynamics, Advances in Space Research, https://doi.org/
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and Tabarrok (1994) that the onset of divergence instabil-
ity of an extruding beam is not affected by physical damp-
ing, while its flutter instability is postponed. Caution must
be taken, however, that there is possibility of destabilizing
effects from damping in some gyroscopic systems (Ziegler,
1956; Nemat-Nasser et al., 1966).

3.2. System-level equations of motion

Recognizing a need for completeness in modelling and
simulation, the present work first provides more details
on how the formulation of Section 3.1 can be extended
to apply to a complete four-quadrant sail. To achieve this
extension, the quadrant-level matrices are ‘‘lifted” into
system-level forms that correspond to the system-level col-
lection of all generalized coordinates,
�q , p|a p|b p|c p|d q|ab q|bc q|cd q|da

� �|
. First, each of the

quadrant-level matrices are partitioned into nine submatri-

ces (for example ~MM;ab;ij with i; j 2 1; 2; 3f g) that corre-
spond to pa; pb, and qab, as follows:

ð4Þ
The system-level mass matrix corresponding to Quadrant
(ab)’s membrane, denoted by �MM;ab and of dimensions
�n� �n with �n ¼ 4nB þ 4nM, can be partitioned into 64

blocks, namely �MM;ab;pq with p; q 2 1; � � � ; 8f g. Of these 64

blocks, nine are replaced by ~MM;ab;ij in Eq. (4), and the rest
are all zero matrices of appropriate dimensions. Summa-
rized in Table 1 is the mapping between the indices of the
quadrant-level and system-level matrices. For example,

the ~MM;ab;23 block of the quadrant-level ~MM;ab replaces

the �MM;ab;25 block of the system-level �MM;ab, because the
generalized coordinates of Boom (b) and Quadrant (ab),
the second and third blocks of ~q, are now in the second
and fifth blocks of �q.

Lastly, after all matrices in Eq. (3) for all quadrants are
lifted into their system-level form using the above proce-
dure and Table 1, the overall system matrices are computed
by addition. For example, the membranes’ total mass

matrix is �MM ¼ �MM;ab þ �MM;bc þ �MM;cd þ �MM;da. The
resulting system matrices, replacing their quadrant-level
counterparts in Eq. (3), along with the system-level coordi-
Table 1
Mapping between Block Indices of the Partitioned Quadrant-Level and
System-Level Matrices.

Quadrant (ab) (bc) (cd) (da)

Quadrant-Level i; jð Þ 1 2 3 1 2 3 1 2 3 1 2 3
System-Level p; qð Þ 1 2 5 2 3 6 3 4 7 4 1 8
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nates in �q and their rates, describe the complete system’s
out-of-plane dynamics:

�MMþ �MB½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�Meq

€�qþ _�MMþ _�MB

� �
þ �GM� �G|

M

� �þ �GB� �G|
B

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Geq

_�q

þ _�GMþ _�GB

� �
þ D �KMþD �KBð Þ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Keq

�q¼0 ð5Þ

where D �KM , �KM;U � �KM;T and D �KB , �KB;U � �KB;T. For

simplicity, new system-level matrices �Meq, �Geq, and �Keq

are defined to denote the ‘‘equivalent” mass, gyricity, and
stiffness matrices. However, they do not possess the same
symmetry and definiteness properties typically associated

with these terms. For example, �Keq is not necessarily
positive-definite.
3.3. Quadratic eigenvalue problem

The kinetic vibration approach (so-termed in Ziegler
(1977)) to stability is adopted in this work. Upon assuming
solutions of exponential form, the system in Eq. (5) leads to
the following quadratic eigenvalue problem:

�Meq
€�qþ �Geq

_�qþ �Keq�q¼ 0 ) det k2 �Meqþk �Geqþ �Keq

� �¼ 0

ð6Þ
which leads to 2�n ¼ 8nB þ 8nM eigenvalues. Problems of
this type were considered in detail in Tisseur and
Meerbergen (2001), and algorithms (claimed to be superior
for certain problems) are available, for example in
Hammarling et al. (2013), that attempt to solve them by
avoiding a reformulation into a first-order form. However,
similar to Niemi and Pramila (1987), Shin et al. (2005), the
following form that allows consistent determination and
sorting of the eigenvalues (via eigenshuffle() in MATLAB) is

used, assuming invertibility of �Meq:

_�x ¼ � �M�1
eq

�Geq � �M�1
eq

�Keq

1 0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�C

�x ) det k1� �C
� � ¼ 0

ð7Þ
where _�x , _�q| �q|� �|

it is worth emphasizing that, despite

having formulated an eigenvalue problem for the system
of interest, the matrices associated with a given deployment
scenario are time-varying and they do not, in general, offer
clear implications about stability. In other words, the
eigenvalues are not ‘‘natural frequencies” of the system
owing to its time-varying nature. In terms of past works
on stability analysis, the parameter variations in
Stylianou and Tabarrok (1994), for example, were inter-
preted in two ways (Stylianou, 1993): keeping the boom
length fixed and varying the rate, treating each simulation
case as an independent deployment scenario; and vice
versa, changing length over time during a given deploy-
il deployment dynamics, Advances in Space Research, https://doi.org/
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ment scenario. It is the former interpretation that is
adopted here, and was also used in Wang et al. (2010) to
study the stability of deploying plates of varying length,
for it is more meaningful, but the resulting critical values
would be the same with both viewpoints (Stylianou, 1993).
4. Results and discussion

Numerical simulations are performed using some of the
solar sail parameters considered in Choi (2015), unless

otherwise stated, including q ¼ 4:64� 10�2 kg=m,

EI ¼ 4:62� 103 N �m2, and A ¼ 3:22� 10�5 m2 for all of

the booms; and l ¼ 1:39� 10�2 kg=m2 (or

l ¼ 1:39� 10�1 kg=m2 for heavier membranes) and

h ¼ 1� 10�5 m for all of the membrane quadrants. The
constant-length and deploying sail simulations of Sections
4.1 and 4.2 are based on Eq. (5), while the stability results
in Section 4.3 are obtained using Eq. (7). All dynamic sim-
ulations use the Newmark-Beta algorithm of Newmark

(1959) with b ¼ 1=2 and a step-size of 10�4 s. The numbers
of modes used for each boom and membrane in the expan-
sions described in Section 3 are set to nB ¼ 4 and nM ¼ 16,
respectively. A plausible explanation of the stability results
is offered in Section 4.4.
4.1. Validation

Before studying deployment, validation of the basics of
the modelling and simulation using past literature is in
order. To this end, the mode shapes and frequencies of
Table 2
Comparison of the First 6 Modal Frequencies (for Fully Deployed Sail) Usin

Modal Frequency x1 x2

Using FEM (rad/s) 0.05180 0.20848
Present Method (rad/s) 0.05328 0.20954

Fig. 2. First 6 Modes of Solar Sail with Boom Length L ¼ 50
ffiffiffi
2

p
m (fo
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the entire sail, after full deployment into a 100 m� 100 m
square shape with a pretension profile given by
�r ¼ 100 kPa, are compared against those obtained in
Hassanpour and Damaren (2018) using a different FEM-
based formulation. The first 6 modal frequencies, obtained
upon neglecting axial tension imposed on the booms in
Eq. (1) — consistent with Hassanpour and Damaren
(2018) — and using the same parameters, in turn based
on those in Choi (2015), are listed in Table 2. They show
less than 3% discrepancy compared to those reported in
Hassanpour and Damaren (2018), and the associated mode
shapes presented in Fig. 2 resemble those in Hassanpour
and Damaren (2018). As expected, the complete sail has
additional symmetric/anti-symmetric modes that would
not appear in the single sail quadrant that was the primary
focus of Vatankhahghadim and Damaren (2019).
4.2. Deployment simulation

To focus on how deflections propagate from a single
corner on the sail to other areas, the results shown in
Fig. 3 have only their Boom (a) — along the positive and
negative x-axis — initially deflected by �0:2 m via
pa 0ð Þ ¼ 1 0 0 0½ �|=L 0ð Þ and _pa 0ð Þ ¼ 04�1, and the rest of
the initial conditions are set to zero. Both sets of results
use a smaller tension (compared to Section 4.1) of
�r ¼ 2 kPa, now with the booms’ compression in Eq. (1)
also modelled, but they differ from each other in terms of
their membrane mass: the sail in Fig. 3i has a membrane

mass density of l ¼ 1:39� 10�2 kg=m2, but the sail in
Fig. 3ii uses a heavier sail membrane with
g the Present Approach vs. FEM in Hassanpour and Damaren (2018).

x3 x4 x5 x6

0.20848 0.30520 0.36781 0.36781
0.20954 0.31002 0.37091 0.37091

r Comparison against Fig. 6 in Hassanpour and Damaren (2018)).

il deployment dynamics, Advances in Space Research, https://doi.org/
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Fig. 3. Simulated Constant-Rate Sail Deployment with Asymmetric ICs (from L 0ð Þ ¼ 10 m to L tfð Þ ¼ 15 m in 15 s): (i) Light Membrane with
l ¼ 1:39� 10�2 kg=m2, (ii) Heavy Membrane with l ¼ 1:39� 10�1 kg=m2, and (iii) Comparison of Boom (c) Tip Deflection Histories in Both Sails.
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l ¼ 1:39� 10�1 kg=m2. The booms’ length profile is given
by L tð Þ ¼ 10þ 1=3ð Þt. The aim is to assess the relative effect
of membrane quadrants on the booms, and to help facili-
tate this, provided in Fig. 3iii are the tip deflections of
Boom (c), along negative x-axis and at the furthest corner
from the point of initial displacement. The results, showing
larger deflections in Fig. 3ii than in Fig. 3i, suggest the pres-
Please cite this article as: B. Vatankhahghadim and C. J. Damaren, Solar sa
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ence of a heavier membrane entails more pronounced
propagation of deflections throughout the sail.

4.3. Stability results

The effects of each parameter of interest, namely deploy-
ment rate and pretension, are studied as described in Sec-
il deployment dynamics, Advances in Space Research, https://doi.org/
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tion 3.3, upon fixing the boom length and performing a
‘‘frozen” eigenvalue analysis. Given that an eigenvalue
with a positive real part implies instability, the resulting
eigenvalues are sorted in descending order based on their
real parts. Shown in Fig. 4 are the changes in the real
and imaginary parts of the first 3 distinct eigenvalues as
the tip tension, �r, is varied, while the deployment rate is
assumed to be a constant value. Since some modes are
Fig. 4. Light Membrane (l ¼ 1:39� 10�2 kg=m2) - Real (Upper) and Imaginar
First 3 Distinct Modes vs. Pretension Magnitude, Using Various Lengths (D
_L ¼ 0:5 m=s, and (iii) _L ¼ 0:7 m=s. (For interpretation of the references to col
article.)

Please cite this article as: B. Vatankhahghadim and C. J. Damaren, Solar sa
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equivalent because of the system’s symmetry, resulting in
each set of 4 modes having the same eigenvalue, the distinct
ones correspond to the first, fourth, and ninth eigenvalues.
Each of the three parts (i), (ii), and (iii) of Fig. 4 corre-

sponds to a different value of extension rate, _L, namely
0.3, 0.5, and 0.7 m=s, respectively. Owing to the fact that
a frozen study is being conducted using specific values of
boom length, the results are produced using different values
y (Lower) Parts of Pairs (Blue and Black) of Eigenvalues Corresponding to
ifferent Line Patterns) and Various Extension Rates: (i) _L ¼ 0:3 m=s, (ii)
our in this figure legend, the reader is referred to the web version of this
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of L, namely 40, 60, 80, and 100 m (shown with solid,
dashed, dash-dotted, and dotted lines, respectively). The
length corresponding to each pattern is indicated using a
subscript in the relevant legend item: for example, ki;40
and kj;40 for a sail of boom length L ¼ 40 m, where the sub-
scripts i and j further distinguish between each part of the
complex conjugate pairs associated with each eigenvalue.

The results show interesting effects caused by changes in
the sail’s pretension and deployment rate. In part (ii) of
Fig. 4, the first mode experiences vanishing of oscillation
frequency. A similar effect was observed in Wickert and
Mote (1990), Lin (1997) and Shin et al. (2005), where a crit-
ical value of travel rate was obtained at which the fre-
quency becomes zero. However, unlike those works that
involved fixed-length travelling continua and similar to
Stylianou and Tabarrok (1994) and Wang et al. (2009) that
examined extending continua of varying lengths, the van-
ishing of the imaginary components in Fig. 4 does not
imply divergence instability, since the corresponding real
parts are still negative. Within the confines of the range
of �r considered in this section, namely 100 to 500 Pa, fur-
ther increase in extension rate (as is done in parts (iii) of
Fig. 4) is required to introduce the possibility of the sys-
tem’s divergence instability, which occurs when the maxi-

mum tension drops below �r � 191 Pa with _L ¼ 0:7 m=s.
4.4. Discussion

It is believed that the change in the system’s stability
properties caused by increasing extension rate and tension
can be attributed to the conflicting effects of the change in
the system’s stiffness and the energy transfer mechanisms
involved. Mathematically, the most likely cause of instabil-

ity are the ~G matrices presented in Eqs. (A.1b) and (A.2b)
in Appendix A. These are the terms that carry the effects of
the centrifugal forces within the system, and their contribu-
tion increases until at some point, as mentioned in
Stylianou and Tabarrok (1994), Lee and Mote (1997a)
(for translating beams), they overcome the stabilizing
effects of the flexural restoring forces, while the effect of

the stiffness terms in the ~K matrices in Eqs. (A.1c) and
(A.2c) in Appendix A diminishes.

The question then becomes: why do the results show
instability only for low boundary stresses? As shown in
Wickert and Mote (1989), Lee and Mote (1997a), Lee
and Mote (1997b), Zhu (2002), the energy in translating
strings and tensioned beams is not conserved, and the
change in energy is explained by the energy flux through
the boundaries and the work done by the non-
conservative boundary forces on the system. It was further
explained in Lee and Mote (1997a), Lee and Mote (1997a)
that the tensile forces at a fixed boundary upstream of
translating strings (second-order systems) produce negative
energy flux, so do the Coriolis forces at a free boundary
downstream of translating tensioned beams (fourth-order
systems). Given that the rate of change of energy from a
Please cite this article as: B. Vatankhahghadim and C. J. Damaren, Solar sa
10.1016/j.asr.2020.03.029
control volume viewpoint is directly related to dynamic sta-
bility (Zhu, 2002), it is reasonable to expect that decreasing
tensile forces for a given deployment rate will have destabi-
lizing effects: below a threshold, they no longer provide the
negative flux needed to overcome the aforementioned

destabilizing contribution of the growing ~G terms. One
more observation with regards to Fig. 4 is that not all
vibration modes experience divergence instability at the
same time. This observation is also consistent with what
was pointed out in some past works on axially translating
continua, such as in Wickert and Mote (1988) where
fourth-order beam-like systems’ dispersive nature is recog-
nized to be responsible for different critical speeds of each
vibration mode.
5. Conclusions

Inspired by and building upon an extensive body of lit-
erature on the dynamics of translating continua, this paper
presents dynamics and stability simulation results related
to the deployment of a hybrid system of moving continua,
namely a multibody system of flexible beams (mathemati-
cally second-order) and thin membranes (fourth-order).
The presented formulation extends that of
Vatankhahghadim and Damaren (2019) on a single quad-
rant, and its stability analysis complements the results of
that work and sheds more light on the vibration character-
istics of solar sails during deployment.

Assuming the discretized equations of motion for a sin-
gle quadrant are known and upon providing the expres-
sions for the associated matrices, this document details
a ‘‘lifting” procedure on the matrices to enable their use
in the extended system-level equations of motion. The
resulting system of second-order differential equations is
then recast into first-order form, and the kinetic (vibra-
tion) approach to stability is adopted by conducting an
eigenvalue analysis on the resulting system. Numerical
integration of the equations of motion and computation
of the system’s ‘‘frozen” (at a given length) eigenvalues
are performed. The modelling and simulation results are
validated by comparison against constant-length modal
analysis via FEM from past literature. The stability anal-
ysis results show possibility of divergence if the membrane
pretension is below a threshold, which increases as the
extension rate increases. This phenomenon could be
potentially attributed to the boundary tensile forces’ neg-
ative energy flux.
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Appendix A. Quadrant-level matrices

To significantly improve computational efficiency, the
problem in Vatankhahghadim and Damaren (2019) was
transformed from that of spatially fixed points within
time-varying boundaries, namely xand ythat satisfy
0 < x < L tð Þ and 0 < y < L tð Þ, to that of moving points

within fixed boundaries, namely x̂ , x=L tð Þ and

ŷ , y=L tð Þ that satisfy 0 < x̂ tð Þ < 1 and 0 < ŷ tð Þ < 1 (as
was done in Bergamaschi and Sinopoli (1983), Hughes
(1976), Behdinan and Tabarrok (1997), among others).
With this transformation, the following boom-related
matrices were obtained in Vatankhahghadim and
Damaren (2019):

MB ¼ qL
Z 1

0þ
WaW

|
a dx̂ ðA:1aÞ

GB ¼ q _L
Z 1

0þ
1� x̂ð ÞWaW

|
a;x̂ dx̂ ðA:1bÞ

KB;T ¼ q
_L2

L

Z 1

0þ
1� x̂ð Þ2Wa;x̂W

|
a;x̂ dx̂ ðA:1cÞ

KB;U ¼ � �rA
L0

Z 1

0þ
x̂Wa;x̂W

|
a;x̂ dx̂þ

EI

L3

Z 1

0þ
Wa;x̂x̂W

|
a;x̂x̂ dx̂ ðA:1dÞ

where q and EI are the booms’ mass density per unit
length and bending stiffness, respectively. The commas
in the subscripts denote differentiation with respect to
the variables that follow them. The column matrix
Wa x̂ð Þ stores the beam eigenfunctions in terms of x̂, and
Wa;x̂ x̂ð Þ ¼ LWa;x and Wa;x̂x̂ x̂ð Þ ¼ L2Wa;xx are its spatial
derivatives with respect to x̂. Since all of the integrals of
Eq. (A.1) are only x̂-dependent, numerical integration is
required only once, and not at each time-step. As another
welcome consequence of the coordinate transformation,

the rate matrices _~MB and _~GB are readily obtained by
applying the chain rule to the coefficients outside the inte-
grals. Note that the matrices in Eq. (A.1) are placed in
quadrant-level augmented n� n block-diagonal form
before their use in Eq. (3). For example,
~MB , blockdiag MB;MB; 0nM�nMf g.
Similarly, the following membrane-related matrices were

obtained in Vatankhahghadim and Damaren (2019):

~MM ¼ lL2

Z 1

0þ

Z 1�x̂

0þ
~̂A ~̂A| dŷ dx̂ ðA:2aÞ

~GM ¼ lL _L
Z 1

0þ

Z 1�x̂

0þ
~̂A ~̂B| dŷ dx̂ ðA:2bÞ

~KM;T ¼ l _L2

Z 1

0þ

Z 1�x̂

0þ
~̂B ~̂B| dŷ dx̂ ðA:2cÞ

~KM;U ¼ �rhL
L0

Z 1

0þ

Z 1�x̂

0þ
x̂þ ŷð Þ ~̂C ~̂C| þ ~̂D ~̂D|

�
� ~̂C ~̂D| þ ~̂D ~̂C|
� ��

dŷ dx̂ ðA:2dÞ
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where l is the membrane’s mass density per unit area, and
the following intermediate matrices are used:

~̂A ,
Wa

Wb

U

2
664

3
775; ~̂C ,

Wa;x̂

0

U;x̂

2
664

3
775; ~̂D ,

0

Wb;ŷ

U;ŷ

2
664

3
775;

~̂B , v̂x̂ � x̂ð Þ ~̂C þ v̂ŷ � ŷ
� �

~̂D

where ~̂C and ~̂D contain derivatives of the eigenfunctions
with respect to x̂ and ŷ, necessitating the use of 1=L or

1=L2 factors for first and second derivatives. In addition,

v̂x̂ ¼ vx= _L and v̂ŷ ¼ vy= _L where vx ¼ _L=2 1þ x� yð Þ=½
xþ yð Þ� and vy ¼ _L=2 1� x� yð Þ= xþ yð Þ½ � are the x- and
y-components of deployment velocity at x; yð Þ
(Vatankhahghadim and Damaren, 2019). The same com-
ments as those made about the boom matrices regarding
computational efficiency hold.
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