Brief paper

Bang–bang hybrid stabilization of perturbed double-integrators

Edoardo Serpellonia,1, Manfredi Maggiorea, Christopher Damarenb

a Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
b University of Toronto Institute for Aerospace Studies, Toronto, Canada

1. Introduction

In this paper we investigate the global practical stabilization of the perturbed double-integrator
\begin{equation}
\dot{x}_1 = x_2, \\
\dot{x}_2 = f(x, t) + u,
\end{equation}
where $u \in U := \{-\bar{u}, 0, +\bar{u}\}$, with $\bar{u} > 0$, and $f(x, t)$ is a map in the class \mathcal{F} of functions $\mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ that are locally Lipschitz with respect to x, measurable with respect to t, and bounded by a constant $f > 0$, i.e., $\sup |f| \leq f$. We denote $x = [x_1, x_2]^T \in \mathbb{R}^2$. We consider the following problem.

Stabilization by Constant Controls Problem (SCCP). Design a piecewise-constant feedback controller with values in U for system (1) such that the following properties hold:

(i) For all $f \in \mathcal{F}$, the point $x = 0$ is globally practically stable for the closed-loop system: For all $r > 0$ there exist controller parameters such that a compact set $\mathcal{Q} \subset B_r(0)$ with $0 \in \operatorname{int} \mathcal{Q}$ is globally asymptotically stable.

(ii) The number of controller switches is uniformly bounded over compact time intervals: For any $T > 0$, there exists $N \in \mathbb{N}$ such that for any $x_0 \in \mathbb{R}^2$ and for any $f \in \mathcal{F}$ the controller switches value at most N times over any time interval of length T.

The control of double-integrators plays an important role in control theory and applications. In particular, our formulation of SCCP was inspired by applications in the field of aerospace engineering. It is common to approximate the rotational dynamics of a rigid spacecraft in a neighborhood of its target configuration by a collection of decoupled double-integrators. Agrawal and Bang (1995), Burdick, Lin, and Wong (1984) and Hughes (1986) have shown that the relative translational dynamics of two spacecraft flying in formation in a general multi-body gravitational field can be modeled as a collection of three perturbed double-integrators of the form (1). The requirement, in SCCP, that the controller be piecewise-constant is motivated by the fact that spacecraft motion control is usually performed by means of cold–gas jet thrusters, able to provide only on–off thrust forces. These actuators are commonly used to perform both attitude and position control on modern spacecraft (Agrawal & Bang, 1995; Bilimoria & Wie, 1993; Burdick et al., 1984; Krishnan, Reyhanoglu, & McClamroch, 1994; Serpelloni et al., 2014b). Finally, the requirement that the number of control switches be uniformly bounded over compact time intervals arises from the fact that, in practice, actuators can only switch value with bounded frequency. A solution to SCCP, therefore, is key in enabling a new generation of position and attitude controllers for spacecraft formations.

Despite its apparent simplicity, SCCP is a largely open problem. The majority of research on bang–bang stabilization of the origin...
of the perturbed system (1) relies on sliding mode control. In Rao and Bernstein (2001), it is shown that the time-optimal bang–bang controller for the double-integrator (e.g., Bryson & Ho, 1975) preserves its finite-time stabilization property under a restrictive class of disturbances \(f \), but in the presence of such disturbances it induces a sliding mode. In Rubagotti and Ferrara (2010), a sliding mode controller is presented that achieves the same result for any measurable bounded perturbation while satisfying constraints on the state of the system. Sliding mode controllers, however, violate control specification (ii) of SCCP. Several methods have been proposed to alleviate the unbounded switching frequency typical of sliding mode controllers, for instance the state-dependent gain method in Lee and Utkin (2007). Such methods, however, often result in control laws that are not piecewise-constant. Alternatively, hysteresis bands around switching boundaries have been used to avoid unbounded switching frequency (Lee & Utkin, 2007; Marti, Velasco, Camacho, Martin, & Fuertes, 2011), but they introduce a problematic coupling between the switching frequency and the asymptotic bound on the state.

To the best of our knowledge, the only attempts at solving SCCP are found in the context of second-order sliding mode control (Bartolini, Ferrara, & Usai, 1997, 1998; Tanelli & Ferrara, 2013). These control algorithms guarantee global finite-time attractiveness of the origin (see, for example Proposition 4.1 in Tanelli & Ferrara, 2013) but in all cases the controller’s switching frequency is unbounded at the origin. One could introduce a hysteresis mechanism at the origin to guarantee bounded switching frequency, making the origin globally practically attractive. The stability of the origin and the robustness of the proposed controllers against measurement error are not investigated in the above papers. Levant in Levant (1993, 2007) presents dynamic feedbacks producing piecewise-constant controls resulting in global finite-time stability of the origin. The controllers in Levant (2007) have infinite switching frequency at the origin but, once again, one could introduce an hysteresis mechanism eliminating this problem, and turning these controllers into practical stabilizers with finite switching frequency.

In developing a solution to SCCP, we begin with the time-optimal bang–bang controller for the unperturbed double-integrator. We add another switching boundary, the set \(\{x_2 = 0\} \), and define an automaton that selectivly enables and disables switching boundaries in such a way that the resulting sequence of switching points contracts to the origin. The switching frequency remains bounded owing to this selective enabling of switching sets and to an hysteresis mechanism at the origin. If the hysteresis is removed, the origin becomes globally finite-time stable, but the switching frequency becomes infinite when solutions reach the origin, just as in Levant (2007). When the perturbation is absent, i.e., \(f \equiv 0 \), with a suitable choice of the control parameters our hybrid controller reduces to the time-optimal bang–bang stabilizer for the double-integrator.

The paper is organized as follows. In Section 2 we present the solution of SCCP and state the main results, Theorems 1 and 3. In preparation for the proofs of these theorems, in Section 3 we review a basic result from Maggiore, Rawn, and Lehn (2012) characterizing the boundary of attainable sets of planar nonlinear systems, and use it to characterize the attainable sets of the perturbed double-integrator (1) with constant controls. The proof of Theorem 1 is presented in Section 4. The proof of Theorem 3, characterizing the robustness of the proposed controller against measurement error, is presented in Section 5.

Notation. We denote \(S_\varepsilon(0) = \{x \in \mathbb{R}^2 : (x^T x)^{1/2} < \varepsilon\} \) and \(\overline{S}_\varepsilon(0) = \{x \in \mathbb{R}^2 : (x^T x)^{1/2} \leq \varepsilon\} \). These definitions imply that the set \(S_\varepsilon(0) \) is empty, while \(\overline{S}_\varepsilon(0) = \{0\} \). The boundary of a set \(A \) is defined as \(\partial A = \overline{A} \setminus A \). The set \(A \) is closed if \(\overline{A} = \{x \in \mathbb{R}^2 : x = x\} \), it is open if \(\overline{A} = \{x \in \mathbb{R}^2 : x < x\} \) and it is compact if \(\overline{A} = \{x \in \mathbb{R}^2 : x \leq x\} \).

2. **Main results.**

In this section we present a hybrid feedback control law that solves SCCP. We begin by assuming that the state \(x(t) \) is available for feedback. Later, we assume that the state measurement is corrupted by a bounded error signal.

We define initialization sets \(\Gamma^+, \Gamma^- \) as

\[
\Gamma^+ = \{(x_1, x_2) : x_1 < 0, x_2 < \sqrt{-2\bar{u}x_1}\} \\
\cup \{(x_1, x_2) : x_1 > 0, x_2 \leq \sqrt{-2\bar{u}x_1}\},
\]

\[
\Gamma^- = -\Gamma^+.
\]

Define **switching sets** \(\Lambda^+, \Lambda^- \) as

\[
\Lambda^+ = \{(x_1, x_2) : x_1 \leq 0, x_2 \leq 0\} \\
\cup \{(x_1, x_2) : x_1 > 0, x_2 \leq \sqrt{-2\bar{u}x_1}\},
\]

\[
\Lambda^- = -\Lambda^+.
\]

Defining the half-parabolas \(S^+ = \{(x_1, -\sqrt{-2\bar{u}x_1}) : x_1 \geq 0\} \) and \(S^- = -S^+ \), we have \(\partial\Lambda^+ = S^+ \cup \{(x_1, 0) : x_1 < 0\} \) and \(\partial\Lambda^- = S^- \cup \{(x_1, 0) : x_1 \geq 0\} \). Next, consider the automaton \(\Lambda \) in (4), and denote by \(Q := \{q_1, q_2, q_3\} \) the set of discrete states of \(\Lambda \).

Finally, the proposed control law \(u^* : Q \rightarrow \mathbb{R} \) is

\[
\begin{align*}
u^*(q_1) &= -\bar{u} \\
u^*(q_2) &= \bar{u} \\
u^*(q_3) &= 0.
\end{align*}
\]
Thus the proposed controller is piecewise-constant with values in the set \(-\bar{u}, 0, \bar{u}\), and has dynamics that are governed by the automaton \(A\) in (4). An initial condition \(x_0\) of the double-integrator induces an initialization of the automaton according to the rules in (5). For example, if \(x_0 \in \Gamma^- \backslash \bar{B}_1(0)\), then \(A\) is initialized at \(q_1\). A state transition from state \(q_j\) to state \(q_k\), with \(j \neq k\), will be denoted as \(q_j \rightarrow q_k\). Each edge of the automaton is associated with a transition condition that determines whether or not the transition occurs. For instance, a transition \(q_1 \rightarrow q_3\) occurs at time \(t\) if and only if \(x(t) \in \bar{B}_1(0)\).

The discrete states \(q_1\) and \(q_2\) in the automaton activate and deactivate the switching sets \(\Lambda^-\) and \(\Lambda^+\), so that a switch in the control action is allowed only when the trajectory enters the switching set which is currently active. This mutually exclusive activation of the switching sets eliminates sliding modes. Moreover, referring to Fig. 1(b), the gap between \(\Lambda^-\) and \(\Lambda^+\) (white region) guarantees that when trajectories are away from the origin, the switching frequency is bounded. Near the origin, the boundedness of the switching frequency is guaranteed by a basic hysteresis mechanism implemented using two nested balls \(B_1(0) \subset B_2(0)\) and the discrete state \(q_1\).

To illustrate the selective activation mechanism described above, suppose that \(x_0 \in \Gamma^- \backslash \bar{B}_1(0)\). Then the discrete state is initialized at \(q_2\) and the control value is \(u^*(q_1) = -\bar{u}\). The only allowable state transition from \(q_2\) occurs either when \(x(t)\) enters \(\bar{B}_1(0)\) (\(q_1 \rightarrow q_2\)), in which case the control value is switched to \(u^*(q_1) = 0\), or when \(x(t)\) enters \(\Lambda^+ \backslash \bar{B}_1(0)\) (\(q_2 \rightarrow q_3\)), in which case \(u^*\) is switched to \(u^*(q_2) = +\bar{u}\). Therefore, the switching set \(\Lambda^-\) is disabled when the discrete state is at \(q_1\). Similarly, in \(q_2\), the control set \(\Lambda^+\) is disabled, and the control value can only switch when the state enters \(\bar{B}_1(0)\) when it enters set \(\Lambda^- \backslash \bar{B}_1(0)\). In \(q_3\), the controller is turned off, and it will be turned on only when the state exits \(\bar{B}_1(0)\). This is the hysteresis mechanism at the origin.

The parameters \(\delta_1\) and \(\delta_2\) in the automaton are chosen according to the following procedure. Let \(r\) be the radius of the ball in part (i) of SCCP. Then pick any number \(\mu \in (0, \mu^*)\), where \(\mu^* = \min\{1, ((\bar{u} - \bar{f})^2/\|\bar{u}\|^2 + 2u((\bar{u} - \bar{f})/\|\bar{f}\|))^{1/2}\}. \) Pick \(\delta_2 > 0\) such that

\[
\delta_2 < \left(\frac{2\sqrt{\bar{u}^2 + \mu^2\bar{f}^2} - \bar{u}^2 - \bar{f}^2}{\bar{u} - \bar{f}}\right)^2, \quad \text{if } h < 0
\]

\[
\delta_2 < \frac{h - \bar{f}}{\bar{u} - \bar{f}}\left(\frac{\bar{u} + \sqrt{\bar{u}^2 + \mu^2\bar{f}^2}}{\bar{u} - \bar{f}}\right), \quad \text{otherwise}
\]

where \(h = (\bar{u} - \bar{f})^2 + \bar{u}^2 - \bar{f}^2 + \sqrt{h^2 + \mu^2\bar{f}^2}\). Finally, pick \(\delta_1 \in (0, \delta_2)\).

The next result shows controller (4)–(5), with \(\delta_1, \delta_2\) chosen as above, solves SCCP.

Theorem 1. Consider system (1) with perturbation \(f \in \mathcal{F}\). Controller (4)–(5) solves SCCP if and only if \(\bar{u} > \bar{f}(1 + \sqrt{5})/2\). In particular, for any \(r > 0\), if \(\delta_1\) and \(\delta_2\) are chosen so as to satisfy the inequalities in (6), then there exists a globally asymptotically stable compact subset of \(B_1(0)\) containing the origin.

Remark 2. When the perturbation is absent, i.e., \(f = 0\), by setting \(\delta_1 = 0\) and \(\delta_2 > 0\) the proposed hybrid feedback reduces to the time-optimal bang–bang controller for the double-integrator.

Moreover, for arbitrary \(f \in \mathcal{F}\), it can be shown that setting \(\delta_1 = 0\) and \(\delta_2 > 0\) makes the origin globally finite-time stable, but the switching frequency becomes infinite when solutions reach the origin.

Next, we consider the case when the measured state signal is

\[
y(t) = x(t) + e(t)\]

where \(e(t)\) is a bounded error signal satisfying \(\sup \|e(t)\| \leq \sigma\), for some \(\sigma > 0\). Replacing \(x(t)\) by \(y(t)\) in the automaton \(A\) in (4), the question now is whether the stability properties of Theorem 1 persist in the presence of such measurement error. The answer is yes, and is contained in the following result.

Theorem 3. Consider system (1) with controller (4)–(5) in the presence of bounded measurement error \(e(t)\). If \(\bar{u} > \bar{f}(1 + \sqrt{5})/2\), the controller (4)–(5) solves SCCCP in the following sense. For any \(r > 0\), if \(\delta_1\) and \(\delta_2\) are chosen so as to satisfy the inequalities in (6), then there exists \(\sigma^* > 0\) such that for all \(\sigma \in (0, \sigma^*)\), and for all \(x_0 \in \mathbb{R}^2\), the following properties hold:

(i) there exists a globally asymptotically stable compact subset of \(B_1(0)\) containing the origin;

(ii) the number of controller switches is uniformly bounded over compact time intervals.

In essence, the sufficient part of Theorem 1 remains unchanged in the presence of sufficiently small measurement error.

We conclude this section with a remark concerning the switching frequency of the proposed hybrid controller. Although Theorems 1 and 3 state that the number of controller switches is uniformly bounded over compact time intervals, it may happen that the time interval between two subsequent switches is arbitrarily small. To take into account the characteristics of a real actuator, one would have to implement the controller (4)–(5) with a dwell-time. It turns out that the effects of dwell-time on the stability analysis are equivalent to those due to measurement error, so that the proposed controller is robust against sufficiently small dwell-time. More precisely, to take dwell-time into account, one may modify the statement of Theorem 3 by adding after the statement "there exists \(\sigma^* > 0\)...", the statement "there exists a sufficiently small bound on the dwell-time". This fact, a direct consequence of results presented in Section 5, will not be proved here due to space limitations.

3. Boundaries of attainable sets

In preparation for the proofs of Theorems 1 and 3, we review a result in Maggiore et al. (2012) characterizing the boundaries of attainable sets of planar single-input systems. Before presenting the formal definition of attainable set and its relevant properties, we briefly motivate their relevance as a tool to solve SCCP. Consider system (1) with the hybrid feedback (4)–(5). Fix an initial condition \(x_0\) and, for the sake of argument, suppose the automaton state is fixed at either \(q_1\) or \(q_2\), so that \(\bar{u} = \pm \bar{u}\). The attainable set of (1) from \(x_0\) is the set of states that (1) can reach from \(x_0\) as the perturbation \(f\) ranges over the class \(\mathcal{F}\). In order to prove that the closed-loop double-integrator enjoys certain stability properties independent of perturbations \(f \in \mathcal{F}\), our strategy is to prove an analogous property for the relevant attainable sets.

For a fixed automaton state \(q_j, j \in \{1, 2\}\), we may rewrite the closed-loop double-integrator as follows:

\[
\dot{x} = \lambda(x, t)F_1^q(x) + (1 - \lambda(x, t))F_2^q(x),
\]

where \(\lambda : \mathbb{R}^2 \times \mathbb{R} \to [0, 1]\) is defined as \(\lambda(x, t) = \left(f - f(x, t)\right)/(|f|)\), and

\[
F_1^q(x) = \left[-\bar{f} + \left(-1\right)^j\bar{u}\right], \quad F_2^q(x) = \left[-\bar{f} + \left(-1\right)^j\bar{u}\right].
\]
with $j \in \{1, 2\}$. Allowing the perturbation $f(x, t)$ to range over the class \mathcal{F} corresponds to replacing $\lambda(x, t)$ in (8) by a generic measurable signal $\lambda : \mathbb{R} \to [0, 1]$. In light of this observation, consider the planar system

$$\dot{x} = \lambda(t) F_1(x) + (1 - \lambda(t)) F_2(x)$$

where $F_1, F_2 : \mathbb{R}^2 \to \mathbb{R}^2$ are C^1 vector fields and λ is an input signal with values in the interval $[0, 1]$.

Definition 4. The attainable set $\mathcal{A}(x_0, t)$ from x_0 at time t of system (9) is the set

$$\mathcal{A}(x_0, t) = \{x(t) : x(t) \text{ is a solution of } (9) \text{ through } x_0 \text{ for some measurable control signal } \lambda, \lambda : \mathbb{R} \to [0, 1]\}.$$

The attainable set $\mathcal{A}(x_0)$ from x_0 of system (9) is the set $\mathcal{A}(x_0) = \bigcup_{t \geq 0} \mathcal{A}(x_0, t)$.

Define sets \mathcal{R}^- and \mathcal{R}^+ as

$$\mathcal{R}^- = \{x \in \mathbb{R}^2 : \det [F_1(x) F_2(x)] < 0\},$$

$$\mathcal{R}^+ = \{x \in \mathbb{R}^2 : \det [F_1(x) F_2(x)] > 0\}.$$

Definition 5 (Maggiore et al., 2012). The extremal vector fields $F_1(x)$ and $F_2(x)$ are defined as

$$F_1(x) = \begin{cases} F_1(x), & x \in \mathcal{R}^+ \\ F_2(x), & x \in \mathcal{R}^- \end{cases},$$

$$F_2(x) = \begin{cases} F_2(x), & x \in \mathcal{R}^+ \\ F_1(x), & x \in \mathcal{R}^- \end{cases}.$$ (11)

The solutions at time t with initial condition x_0 of the extremal vector fields $F_1(x)$ and $F_2(x)$ are called extremal solutions and are denoted by $\Phi^1(t, x_0)$ and $\Phi^2(t, x_0)$, respectively. The images of extremal solutions on the plane are called extremal arcs. In particular, the **L-arc** (resp. **R-arc**) through x_0, denoted by $\gamma^1_L(x_0)$ (resp. $\gamma^2_L(x_0)$), is the image of the map $t \mapsto \Phi^1(t, x_0)$ (resp. $t \mapsto \Phi^2(t, x_0)$) for t ranging over some interval over which the map is defined.

Extremal arcs of (9) are the phase curves of (9) with minimum and maximum slope. The next lemma states that extremal arcs form the boundary set of attainable sets. Before stating the lemma we recall that system (9) is said to be **small time locally controllable (STLC)** from x_0 if, for all $T > 0$, x_0 lies in the interior of $\mathcal{A}(x_0, [0, T])$.

Lemma 6 (Maggiore et al., 2012). Let $x_0 \in \mathbb{R}^2$ be such that system (9) is not STLC from x_0. Suppose that for some $T > 0$ a solution $x(t)$ of (9) with initial condition x_0 has the property that $x(t) \in \partial \mathcal{A}(x_0, t)$ for all $t \in [0, T]$ and that system (9) is not STLC from $x(t)$, for all $t \in [0, T]$. Then $x(t)$ is a concatenation of extremal solutions.

Now we return to system (8) with fixed automaton state q_j, $j \in \{1, 2\}$. If $\bar{u} > \bar{f}$, \dot{x}_2 is bounded away from zero, which implies that system (8) with input λ is not STLC from x_0. We may therefore apply Lemma 6 to system (8). In this context, the sets \mathcal{R}^+, \mathcal{R}^- are given by $\mathcal{R}^+ = \{(x_1, x_2) : x_2 > 0\}$, $\mathcal{R}^- = \{(x_1, x_2) : x_2 < 0\}$. For each fixed $q_j, j \in \{1, 2\}$, the extremal vector fields of (8) are given by

$$F^q_1(x) = \begin{bmatrix} x_2 \\ -\text{sign}(x_2) f_1^q + (-1)^j \bar{u} \end{bmatrix},$$

$$F^q_2(x) = \begin{bmatrix} x_2 \\ \text{sign}(x_2) f_2^q + (-1)^j \bar{u} \end{bmatrix}.$$ (12)

The associated extremal solutions $\phi^q_1(s, x_0)$ and $\phi^q_2(s, x_0)$ through x_0 for $s \geq 0$, can be computed analytically. They are concatenations of arcs of parabolas $X^q_1(x_0)$ and $X^q_2(x_0)$ defined as

$$X^q_1(x_0) = \left[\frac{-\bar{f} + (-1)^j \bar{u}}{2} x_{005} + x_{10} + \frac{-\bar{f} + (-1)^j \bar{u}}{2} x_{020} + x_{10}\right],$$

$$X^q_2(x_0) = \left[\frac{-\bar{f} + (-1)^j \bar{u}}{2} x_{020} + x_{10} + \frac{-\bar{f} + (-1)^j \bar{u}}{2} x_{005} + x_{10}\right],$$

where the concatenation occurs when the solution hits $x_2 = 0$. More precisely, for all $x_0 \in \mathcal{R}^-$, we have

$$\phi^q_1(s, x_0) = \begin{cases} X^q_1(x_0), & \text{if } x_1 \in \mathcal{R}^- \\ X^q_2(x_0) \circ Y^q_1(x_0), & \text{if } x_1 \in \mathcal{R}^+ \end{cases},$$

$$\phi^q_2(s, x_0) = \begin{cases} X^q_1(x_0), & x_1 \in \mathcal{R}^- \\ X^q_1(x_0) \circ Y^q_1(x_0), & x_1 \in \mathcal{R}^+ \end{cases},$$

while for all $x_0 \in \mathcal{R}^+$, we have

$$\phi^q_1(s, x_0) = \begin{cases} X^q_1(x_0), & \text{if } x_1 \in \mathcal{R}^- \\ X^q_2(x_0) \circ Y^q_2(x_0), & \text{if } x_1 \in \mathcal{R}^+ \end{cases},$$

$$\phi^q_2(s, x_0) = \begin{cases} X^q_1(x_0), & x_1 \in \mathcal{R}^- \\ X^q_2(x_0) \circ Y^q_2(x_0), & x_1 \in \mathcal{R}^+ \end{cases},$$

where $s^q_j(x_0) = -x_{020} / \left((-1)^j \bar{u} - \bar{f}\right)$, $s^q_2(x_0) = -x_{005} / \left((-1)^j \bar{u} - \bar{f}\right)$.

The existence of extremal solutions for each $x_0 \in \mathbb{R}^2$ and each fixed $q_j, j \in \{1, 2\}$, is guaranteed by the theory of Filippov (1988) (see Lemma 4.1 in Maggiore et al., 2012). We denote by $y^q_1(x_0)$ and $y^q_2(x_0)$ the extremal arcs generated by $\phi^q_1(s, x_0)$ and $\phi^q_2(s, x_0)$, respectively. Further, we denote by $\mathcal{A}^q(x_0)$ the attainable set from x_0 of system (8) for fixed $q_j, j \in \{1, 2\}$.

In conclusion, assuming that the automaton state is either at q_1 or q_2, by Lemma 6 we have that $\partial \mathcal{A}^q(x_0)$ is the union of extremal arcs y^q_1 and y^q_2. When the automaton state is at q_1, the controller is turned off (i.e., $u = 0$) and there is no need to characterize attainable sets.

4. Proof of Theorem 1

The proof of Theorem 1 unfolds in four steps.

(1) We present necessary and sufficient conditions on the control value \bar{u} so that any solution of the double-integrator (1) with hybrid feedback (4)–(5) gives rise to a well-defined sequence of switching points $[x^i]$, with $i \in I \subset \mathbb{N}$. This result, stated in Lemma 8, allows us to reduce the problem of proving convergence to the origin of state trajectories to the much simpler study of convergence of a sequence of switching points.

(2) We prove in Lemma 10 that for any disturbance $f \in \mathcal{F}$, the sequence of switching points $[x^i]$ induced by controller (4)–(5) contracts to the origin if and only if $\bar{u} > \bar{f} (1 + \sqrt{5})/2$.

(3) We prove in Lemma 11 that for any $r > 0$, if γ_1 and γ_2 are chosen according to condition (6), then there exists a compact positively invariant set $\mathcal{B} \subset B_r(0)$.

\[\text{In this paper, a set } K \subset \mathbb{R}^2 \text{ is said to be positively invariant for system (1) with controller (4)–(5) if for any } (x_0, t_0) \in K \times \mathbb{R} \text{ and for any } f \in \mathcal{F} \text{ bounded by } f, \text{ the closed-loop solution } x(t) \text{ remains in } K \text{ for all } t \geq t_0. \]
Finally, we prove Theorem 1 by showing that for any $x_0 \in \mathbb{R}^2$ the solution enters set Q in finite time. Moreover the set Q is stable. It is also shown that if δ_1 and δ_2 are chosen according to condition (6), then the switching frequency of the controller remains uniformly bounded.

Definition 7. Let $x(t)$ be a solution of system (1) with hybrid feedback (4)–(5). A time instant t_i is called a switching time of $x(t)$, if $x(t_i) \in (S^+ \cup S^- \cup B_i(0))$ and $x(t)$ induces a state transition $q_i \to q_k$, with $j, k \in \{1, 2, 3\}, j \neq k$. The value of the state at a switching time, $x^i = x(t_i)$ is called a switching point of $x(t)$. △

Lemma 8. Let $0 \leq \delta_1 < \delta_2$. If, and only if, $\vec{u} > \vec{f}$, then for any $f \in F$ and any initial condition in $(B_i(0))$, the solution $x(t)$ of (1) with hybrid feedback (4)–(5) induces a switching sequence $\{x_i^i\}$, $i \in \mathbb{N}$ nonempty, with the following property:

$$(x^1, \ldots, x^i) \in (\hat{B}_i(0))^i \implies i + 1 \in I.$$ (15)

In other words, as long as the solution $x(t)$ does not enter $\hat{B}_i(0)$, there will be new switching points. Therefore, $x(t) \to \infty$ if and only if $i = \mathbb{N}$ and $x^i \to \infty$, and $x(t)$ enters $\hat{B}_i(0)$ if and only if x^i enters $\hat{B}_i(0)$.

Proof. See also Serpelli et al. (2014a). The proof here is omitted due to space limitations. □

A byproduct of Lemma 8 is that, when $\vec{u} > \vec{f}$, only three types of switching points are possible. They are classified in the next definition.

Definition 9. Let $x^i \in (S^+ \cup S^-) \cap B_i(0)$ be a switching point of a solution $x(t)$ of (1) with hybrid feedback (4)–(5) and $\vec{u} > \vec{f}$, and consider the next switching point x^{i+1}, whose existence is guaranteed by Lemma 8. x^{i+1} is a 1-switch from x^i if one of the points x^i, x^{i+1} belongs to S^+, and the other one belongs to S^-; x^{i+1} is a 2-switch from x^i if both points x^i, x^{i+1} belong to the same arc of parabola, S^+ or S^-; x^{i+1} is a 0-switch from x^i if $x^{i+1} \notin B_i(0)$.

In Lemma 8 we have shown that hybrid feedback (4)–(5) induces a sequence of switching points $\{x_i^i\}$. We show in the following that this sequence is contracting, i.e., there exists $\alpha \in (0, 1)$ such that $\|x_i^i\| \leq \alpha \|x_{i+1}^i\|$ for all $i \in I$ for sufficiently large control value \vec{u}.

Lemma 10. Consider system (1) with hybrid feedback (4)–(5), and pick δ_1, δ_2 such that $0 \leq \delta_1 < \delta_2$. The following are equivalent:

(i) There exists $\alpha \in (0, 1)$ such that for any $f \in F$ and any initial condition, the sequence $\{x_i^i\}$ of switching points of the solution $x(t)$ of (1) with hybrid feedback (4)–(5) exists as long as $x^i \notin B_i(0)$; $x^i, x^{i+1} \in (B_i(0)) \implies \|x^{i+1}\| \leq \alpha \|x^i\|$;

(ii) $\vec{u} > \vec{f}(1 + \sqrt{5})/2$.

Proof. (ii) \implies (i). Assume that $x^i \in S^+$, so that the automaton A is at q_2 (the argument for the case $x^i \in S^-$ is analogous). If $x^{i+1} \in B_i(0)$, then part (i) trivially holds. Suppose that $x^{i+1} \notin B_i(0)$. Either $x^{i+1} \in S^+$ (i.e., x^{i+1} is a 1-switch from x^i) or $x^{i+1} \in S^+$ (i.e., x^{i+1} is a 2-switch from x^i). Suppose first that $x^{i+1} \in S^+$, from which it follows that $x^{i+1} \in A^p(x^i) \cap S^+$. Let $p = \phi^p_k(x^i) \cap S^+$. Then x^{i+1} lies on the arc of parabola S^+ delimited by 0 and p, implying that $\|x^{i+1}\| \leq \|p\|$. Using the expression for $\phi^p_k(x)$ in (11) one can show that p exists and its first component p_1 is related to the first component x^i_1 of x^i as $p_1 = -\alpha x^i_1$, where $\alpha_1 = (\bar{f}^2 + \bar{f} \bar{u} (2\bar{u} + \bar{u}) + \bar{f}^2)^{1/2}$. Since $\vec{u} > \vec{f}(1 + \sqrt{5})/2$, it holds that $\alpha_1 \in (0, 1)$, and therefore $\|x^{i+1}\| \leq \|p\| \leq \alpha \|x^i\|$, with $\alpha_1 \in (0, 1)$.

Now suppose that $x^{i+1} \in S^+$ is a two-switch from x^i. The switching point x^{i+1} is reached from x^i through the following sequence of events. (A) The solution from x^i with $u^p(q_i) = \vec{u}$ hits the positive x_1 axis at a point z, a state transition $q_i \to q_1$, occurs, and the control value becomes $u^p(q_1) = -\vec{u}$. (B) The solution from z intersects S^+ in x^{i+1}. Consider the point $v = \gamma^q_k(x^i(\{1, 0\}))$ depicted in Fig. 2. The point z defined above lies on the segment of the x^i axis delimited by 0 and v. Therefore, $\|z\| \leq \|v\|$. Using the expression for $\phi^p_k(x)$ from (13) it can be shown that the first component v_1 of v satisfies $v_1 = \alpha_2^p z_1$, with $\alpha_2 = (1 - \bar{u}/(\bar{u} + f))/2 \in (0, 1)$. Therefore, $\|z\| \leq \|v\| \leq \alpha_2 \|z\|$. Now we turn our attention to event (B) above. The point x^{i+1} lies in the segment $S^+ \cap A^p(x^i)$. The extremal solutions from z are arcs of parabolas given by $\phi^p_k(s, z) = Y^q_k(z) \cap x^i(\{1, 0\})$, defined in Section 3. In particular, the first component of both functions is decreasing with s. This implies that the first component x^{i+1} satisfies $x^{i+1}_1 < z_1 \leq \alpha_2^p z_1$, thus $\|x^{i+1}\| < \alpha_2 \|x^i\|$. By setting $\alpha = \max(\alpha_1, \alpha_2)$, and noting that $\alpha \in (0, 1)$, the proof that (ii) \implies (i) is complete.

(i) \implies (ii). Let $\{x^i\}$ be a contracting switching sequence and suppose, by way of contradiction, that $\vec{u} < \vec{f}(1 + \sqrt{5})/2$. Let $x^i \in \hat{B}_i(0)$). Assume $x^i \in S^+$ and let $f \in F$ be defined as $f(x, t) = \vec{f} \text{sign}(x_2(t))$. Then $x(t) = \phi^p_k(t - t_i, x^i)$ for all $t \in [t_i, t_{i+1}]$. Therefore $x^{i+1} = p \in S^+$, as defined in the proof of sufficiency. Recall that $p_1 = -\alpha x^i_1$, with $\alpha_1 = (\bar{f}^2 + \bar{f} \bar{u} (2\bar{u} + \bar{u}) + \bar{f}^2)^{1/2}$. Since $\vec{u} < \vec{f}(1 + \sqrt{5})/2$ we have $\alpha_1 > 1$ which contradicts the hypothesis that the switching sequence is contracting. □

Next we show that for any $r > 0$, there exists a compact positively invariant subset of $B_i(0)$. This will be used to prove practical stability.

Lemma 11. Consider system (1) with the hybrid feedback (4)–(5). If $\vec{u} > \vec{f}(1 + \sqrt{5})/2$ then for any $p \in S^+$ there exists a compact set Q_p and parameters $0 < \delta_1 < \delta_2$ in automaton (4) such that Q_p is positively invariant. Moreover, for any $r > 0$, pick $\delta_1, \delta_2 > 0$ according to conditions (6). Then the point p can be chosen so that $B_i(0) \subset \text{int} Q_p \subset Q_p \subset B_i(0)$.

Proof. Let $p \in S^+$ be arbitrary, let P_p be the compact region depicted in Fig. 3(a), delimited by the extremal arcs $\gamma^q_k(p), \gamma^q_k(p)$, and by $\partial^+ A$. Let $Q_p = P_p \cup \subset \subset P_p$. Clearly $0 \in \text{int} Q_p$. We claim that, if $\delta_1 = \delta_2 = 0$, any solution of (1) with hybrid feedback (4)–(5) originating in P_p can only exit P_p through $\partial^+ A$, and, similarly, that any solution originating in P_p can only exit it through $\partial^{-} A$. Referring to Fig. 3(a), the boundary of P_p is formed by $\partial^+ A$ and two extremal arcs, $\gamma^q_k(p)$ and $\gamma^q_k(p)$. By the definition of extremal arcs, all solutions of (1) with hybrid feedback (4)–(5) cross (or are tangent to) $\gamma^q_k(p)$ from left to right, and $\gamma^q_k(p)$ from right to
transitions $q_1 \to q_2$ followed by $q_2 \to q_1$. Similarly, the time between two consecutive state transitions of the type $q_j \to q_k$ followed by $q_k \to q_j$, with $j, k \in \{1, 2\}$, is bounded from below by a constant $T_2 > 0$. Indeed, the time between two such transitions is lower bounded by the minimum time it takes to close a loop trajectory initialized in $B_2(0)$ to exit the ball $B_2(0)$. We are left with the analysis of transitions of the form $q_j \to q_k$ followed by $q_k \to q_j$ or $q_j \to q_k$ followed by $q_k \to q_j$, with $j \neq k, j, k \in \{1, 2\}$. In this case, there is no lower bound on the time between such transitions. For instance, at the time of a transition $q_1 \to q_2$, the state $x(t)$ may be arbitrarily close to the set $\Lambda^+ \cap \bar{B}_2(0)$, and may enter $B_2(0)$ after arbitrarily small time, triggering a transition $q_2 \to q_1$. However, the next transition must have the form $q_3 \to q_j, j \in \{1, 2\}$ which, as we have proved above, cannot occur before time T_2. A similar reasoning can be repeated for all other sequences of transitions described above. If we let $T^* = \min\{T_1, T_2\}$, over a time interval of length $T \in (0, T^*)$ there can be at most $N = 2$ state transitions (for instance, the ones discussed earlier, $q_1 \to q_2$ followed by $q_2 \to q_1$). For a time interval of length $T \in [0, 2T^*)$, one may have at most $N = 4$ state transitions (the prototypical worst case is the sequence $q_1 \to q_2 \to q_3 \to q_1 \to q_4 \to q_2$; the time it takes for the first pair and second pair of transitions to occur may be arbitrarily small, but there must be at least T^* units of time between the first pair and the second pair of transitions. Thus, over a time interval $T > 0$ there can be at most $N = 2\lceil(T/T^*)\rceil + 2$ state transitions, where $\lceil \cdot \rceil$ denotes the floor function.

5. Proof of Theorem 3

The proof of Theorem 3 unfolds in three steps:

(1) In Lemma 13 we show that if the measurement error is small enough, the number of controller switches is uniformly bounded over compact time intervals.

(2) In Lemma 14 we show that if σ is small enough, there exists a compact positively invariant set $\mathcal{A}^c \subset B_i(0)$ containing the origin, that is also stable.

(3) In Lemma 15 we show that if σ is small enough, the set \mathcal{A}^c is globally attractive, in particular we show that controller (4)-(5) induces a switching sequence $\{x(n)\}$ such that Δ^c for some $N > 0$.

We begin our analysis with the following observation. The identity (7) implies that $x(t) \in B_{2\delta}(y(t))$. In the presence of measurement error, state transitions in the automaton \mathcal{A} may occur each time the ball $B_{2\delta}(x(t))$ intersects a switching boundary. For instance, suppose that $y(t)$ enters $\Lambda^+ \setminus B_1(0)$, triggering a transition to q_1. The location of $x(t)$ is uncertain. We only know that, at the time of the transition to q_1, $x(t)$ lies on a neighborhood of radius δ of the set $\Lambda^+ \setminus B_1(0)$. In order to analyze the effects of measurement error, it is therefore necessary to consider the enlargements of the various switching boundaries (see Section 1 for the notion of enlargement of a set). Accordingly, let $S^+_1, S^+_2, (\partial \Lambda^+)_1, \ldots, (\partial \Lambda^+)_k,\ldots, (\partial \Lambda^-)_k, \ldots, (\partial \Lambda^-)_1$, respectively. Finally, let $S^+_1 = S^+_2 \cup S^+_3$.

Definition 12. Let $x(t)$ be a solution of system (1) with hybrid feedback (4)-(5) in the presence of measurement error. A time instant t_i is called a **switching time of $x(t)$** if $x(t_i) \in (S^+_1 \cup B_1(0))$ and at time $t = t_i$ a state transition $q_i \to q_{k_i}$, with $j, k \in \{1, 2, 3\}, k \neq j$ occurs. The value of the state at a switching time, $x = x(t_i)$ is called a **switching point of $x(t)$**.

Lemma 13. Consider system (1) with controller (4)-(5) in the presence of measurement error $e(t)$ satisfying $\sup \{\lvert e(t) \rvert \} \leq \sigma$. For any $r > 0$, pick $\delta_1, \delta_2 > 0$ according to conditions (6). If $u > f(1 + \sqrt{5})/2$, then there exists $\sigma > 0$ such that property (ii) of SCCP holds.
Proof. The presence of measurement error can induce two kinds of undesirable high-frequency switching. First, $y(t)$ could repeatedly enter A^* and A^+, inducing high-frequency switching between q_1 and q_2. This can only happen when $x(t) \in A^*_p \cap A^+_p$. On the other hand, $x(t) \in A^*_p \cap A^o_p$ only if $y(t) \in A^*_p \cap A^o_p$. Pick σ small enough that

$$A^o_p \cap A^*_p \subset B_{\delta_1}(0).$$

(16)

Then, when $x(t) \in A^*_p \cap A^o_p$ we are guaranteed that $u(t) = 0$, and therefore the controller does not switch value.

The second kind of high-frequency switching is induced when the ball $B_{\delta}(x(t))$ intersects both $B_{\delta_1}(0)$ (possibly inducing a $q_1 \rightarrow q_3$ transition) and $(B_{\delta_1}(0))^\complement$ (possibly inducing a $q_3 \rightarrow q_k$ transition). This cannot occur if the following condition is satisfied

$$\delta_2 - \delta_1 > 2\sigma.$$

(17)

If $\sigma > 0$ is small enough that conditions (16) and (17) hold, then the analysis of the number of switches over compact time intervals reduces to that in the proof of Theorem 1. This concludes the proof. □

Lemma 14. Consider system (1) with controller (4)–(5) in the presence of measurement error $e(t)$ satisfying sup $|e(t)| \leq \sigma$. Let $\bar{u} > f(1 + \sqrt{5})/2$ and fix $r > 0$. Then $\delta_1, \delta_2 > 0$ be chosen according to conditions (6). Then there exists $\sigma > 0$, a point $p \in S^+$, and a compact positively invariant set Q_p^σ which is stable and such that $B_{\delta_2}(0) \subset Q_p^\sigma \subset B_{\delta_1}(0)$.

Proof. Let $r > 0$ be arbitrary, and choose δ_1, δ_2 according to conditions (6). By Lemma 11, there exists $p \in S^+$ and a set $Q_p \subset B_{\delta_1}(0)$ which is positively invariant in the absence of measurement error. We will now construct a larger set Q_p^σ which is positively invariant in the presence of measurement error. Let $L_p^\sigma = \gamma_k^p(\rho)(p) \cap S^+_{p}, L_p^\sigma$ is the segment of extremal arc $\gamma_k^p(\rho)$ through p, contained in S^+_{p}, as shown in Fig. 3(b). Let Q_p^σ be the compact region defined as $Q_p^\sigma = A^o_p \cap \left(\Lambda^{-1}((\Lambda^+)^c)\right)^c$. Q_p^σ is the shaded region in Fig. 3(b). Let $Q_p^\sigma = Q_p^0 \cup -Q_p^0$. Note that Q_p^0 and Q_p^0 coincide with the sets Q_p and Q_p defined in the proof of Lemma 14. We claim that there exists sufficiently small $\sigma > 0$ such that the following properties hold:

(a) $Q_p^\sigma \subset B_{\delta_1}(0)$.

(b) $Q_p^\sigma \cap ((\Delta^+)^c) \subset \text{int} Q_p^\sigma$, and $-Q_p^\sigma \cap ((\Delta^+)^c) \subset \text{int} Q_p^\sigma$.

(c) $B_{\delta_2}(0) \subset \text{int} Q_p^\sigma$.

Indeed, the above set inclusions hold when $\sigma = 0$. Since the boundaries of Q_p^0 and Q_p^0 are formed by arcs of trajectories of differential equations that depends continuously on initial conditions, the same inclusions continue to hold for sufficiently small σ.

Consider a discrete state transition $q_k \rightarrow q_t$ at time t, with $k \in [1, 3]$ and with $x = x(t) \in L_p^\sigma$. Let $r > 0$ be the time of the next state transition. We claim that $x(t) \in Q_p^\sigma$. First, by property (c), if the solution exists Q_p^0 before time t, then the solution cannot be in $B_{\delta_2}(0)$, and hence the state transition must be $q_2 \rightarrow q_1$. Moreover, in the time interval (t, r), the solution cannot exit Q_p^0 through L_p^σ or through the two extremal arcs in Fig. 3(b). It can only exit Q_p^0 through the portion of the boundary of $(\Delta^+)^c$, which is contained in Q_p^0 (the thick line in Fig. 3(b)). At the same time, a state transition $q_2 \rightarrow q_1$ must occur before the state can exit $(\Delta^+)^c$. Therefore, before any solutions can exit Q_p^0 there must be a state transition. We have thus shown, as claimed, that $x = x(t) \in Q_p^0 \Rightarrow x(t) \in Q_p^0$. Similarly, $x = (-Q_p^0) \Rightarrow x(t) \in (-Q_p^0)$. These two implications and property (b) give the implication $x = Q_p^0 \Rightarrow x(t) \in Q_p^0$. At time t, the discrete state switches to q_1 and the reasoning above reveals that the next state transition must still occur in Q_p^0. Since the switching times are a subset of the automaton transition times, the above gives the following implication: $x \in Q_p^0 \Rightarrow x \in Q_p^0$. Since solutions cannot exit Q_p^0 between state transitions, we conclude that Q_p^0 is positively invariant. By properties (a) and (c), $B_{\delta_2}(0) \subset Q_p^0 \subset B_{\delta_1}(0)$, as required.

We are left with proving that Q_p^σ is stable. The argument is the same as in the proof of Theorem 1. Namely, for every neighborhood V of Q_p^σ there exists $q \in S^+$ such that Q_p^σ is positively invariant and $Q_p^\sigma \subset \text{int} Q_p^\sigma \subset V$. Therefore all solutions of the closed-loop system originating in $\text{int} Q_p^\sigma$ remain in V for all positive time. □

Lemma 15. Consider system (1) with controller (4)–(5) under the hypotheses of Lemma 14. For any $r > 0$, let $\sigma > 0$ and Q_p^σ be as in Lemma 14. Then, by possibly making α smaller, for any initial condition the resulting solution $x(t)$ induces a switching sequence $\{x_i\}_{i=1}^{\infty}$, such that $x_i \in Q_p^\sigma$ for some $N > 0$.

The proof of Lemma 15 makes use of the following fact. The proof is a matter of rote computation and is omitted due to space limitations.

Fact 16. Consider system (1) with controller (4)–(5) in the absence of measurement error. Let $\bar{u} > f(1 + \sqrt{5})/2$. Suppose the switching sets A^+, A^- in (3) are replaced by

$A^+ = \{(x_1, x_2) : x_1 \leq 0, x_2 \leq 0\}$

and

$A^- = \{(x_1, x_2) : x_1 \geq 0, x_2 \geq 0\}$

where u_+, u_- are two positive parameters. Redefine $S^+ = \{(x_1, x_2) : x_1 \geq 0, x_2 = -\sqrt{2u_-x_1}\}$. If $x(t)$ is any solution inducing a switching sequence $\{x_i\}_{i=1}^{\infty}$, the following holds.

(i) If x^{i+1} is a 1-switch from $x^i \in S^+$, then $|x^i| < \alpha_1(u_+ - u_-)|x_i|$, where

$$\alpha_1(u_+ - u_-) = \frac{\bar{u} + u_-}{\bar{u} + u_+}.$$

(ii) If x^{i+1} is a 2-switch from $x^i \in S^+$, then the arc of trajectory between x^i and x^{i+1} intersects the positive x_1 axis at a point $(p_1, 0)$ such that $|p_1| \leq \alpha_2(u_+)|x_i|$, where $\alpha_2(u_+) = (\bar{u} - u_+)/\bar{u}$.

Since the functions $\alpha_1(u_+ - u_-)$ and $\alpha_2(u_+)$ are continuous, and since $\alpha_1(\bar{u} - u_-) < 1$, $\alpha_2(\bar{u}) < 1$, it follows that there exists $\Delta > 0$ such that, letting $V = \{u - \Delta, u + \Delta\}$, we have $\alpha_1 := \max\{\alpha_1(u_+ - u_-) : (u_+ - u_-) \in V \times V\} < 1$, and $\alpha_2 := \max\{\alpha_2(u_+) : u_+ \in V\} < 1$. The interpretation of this result is that the contraction property of switching sequences is preserved under small perturbations of the concavity of parabolas defining the switching boundaries. This is the key idea behind robustness against measurement noise (and against dwell-time, as discussed at the end of Section 2).

Proof of Lemma 15. Suppose $x^i \notin Q_p^\sigma$. Then $x^i \in S^+$. Without loss of generality, we assume throughout the proof that $x^i \in S^+$. Suppose first x^{i+1} is a 1-switch from x^i. Then $x^i \in S^+$. Let Θ be defined as follows (see the shaded set in Fig. 4): $\Theta = \{(x, -\text{sign}(x)\sqrt{2x} : x \in \mathbb{R}, u \in V)\}$. By part (i) of Fact 16, if $x^{i+1} \in \Theta$ then $|x^{i+1}| \leq \alpha_1|x_i|$, with $\alpha_1 \in (0, 1)$. There exists $\rho > 0$ so that $S^+ \cap \{(x_1, x_2) : |x_1| \geq \rho\} \subset \Theta$ holds (see Fig. 4). Then the uniform contraction property $|x^{i+1}| \leq \alpha_1|x_i|$ holds as long as $|x_i|$, $|x^{i+1}| \geq \rho$. Moreover, $\rho \to 0$ as $\sigma \to 0$.

Suppose now that x^{i+1} is a 2-switch from x^i. As in the proof of Lemma 10, we have events (A) and (B) depicted in Fig. 5. (A) The solution from x^i remains to the left of the extremal arc $\gamma_k^o(x^i)$ until
the state transition $q_0 \to q_1$ occurs. In the worst-case scenario, due to measurement error this transition occurs at the point p in the figure. Let $w = (w_1, 0)$ be the point of intersection of $y_R^2(x^t)$ and the positive x_1 axis, as shown in Fig. 5. After the state transition, the solution remains to the left of $y_R^2(p)$ and the positive x_1 axis, as shown in the figure. Then, $\kappa = z_1 - w_1$ is constant independent of x^t, and $\kappa \to 0$ as $\sigma \to 0$. Suppose that $|x^t_1| \geq \rho$. Then $x^t \in \Theta$, and by part (ii) of Fact 16 we have $w_1 \leq \bar{a}_2|x^t_1|$, with $\bar{a}_2 \in (0, 1)$. Moreover, $|x^t_1| \leq z_1$. Since $z_1 = w_1 + \kappa$ and $|w_1| \leq \bar{a}_2|x^t_1|$, we conclude that $|x^t_1| \leq \bar{a}_2|x^t_1| + \kappa$.

Now we put everything together. Let $\bar{a} = \max{\{\bar{a}_1, \bar{a}_2\}}$. If $x^t \not\in Q^\sigma$ and $|x^t_1|, |x^t_{1+1}| \geq \rho$, then $|x^{t+1}_1| \leq \bar{a}|x^t_1| + \kappa$. Either this sequence of upper bounds converges to $\kappa/(1 - \bar{a})$, or there exists $M > 0$ such that $|x^t_{1+1}| < \rho$. Since ρ and κ tend to zero as $\sigma \to 0$, there exists $\sigma > 0$ such that the sets $\{(x_1, x_2) \in S_0 : |x^t_1| < \rho\}$ and $\{(x_1, x_2) \in S_0 : |x^t_1| < \kappa/(1 - \bar{a})\}$ are contained in int Q^σ. Thus, the sequence $\{x^t\}$ enters Q^σ. □

Proof of Theorem 3. By Lemma 13, property (ii) of SCCP holds. By Lemma 14, for any $r > 0$ for the chosen values of $\delta_1, \delta_2 > 0$, there exists $\sigma > 0$ and a compact set $Q^\sigma \subset B_r(0)$ which is stable and positively invariant. By Lemma 15, by possibly making σ smaller, all solutions of the closed-loop system enter Q^σ in finite time, and by positive invariance they remain there. Therefore, Q^σ is globally attractive, and hence globally asymptotically stable. □

6. Conclusions

We presented a hybrid bang–bang controller that globally practically stabilizes the origin of a double-integrator affected by unknown bounded uncertainty at the input side. The controller was proved to be robust against bounded measurement errors, and has a guaranteed uniform bound on the number of switches over compact time intervals. Our controller is a hybrid enhancement of the classical time-optimal stabilizer for the double-integrator. Instead of parabolas, we could have used different switching boundaries obtaining the same results. An avenue for future research is to adapt the technique presented in this paper to derive a class of hybrid bang–bang controllers with the stability properties stated in Theorems 1, 3.

References

Edoardo Serpelloni was born in Verona, Italy, in 1986. He received his B.A.Sc. and M.A.Sc. degree in Aerospace Engineering from Politecnico di Milano, Italy, in 2008 and 2011, respectively. He is currently a Ph.D. candidate in the Electrical and Computer Engineering Department at University of Toronto, ON, Canada. His research interests include the design of bang–bang control laws for space vehicles.
Manfredi Maggiore was born in Genoa, Italy. He received the “Laurea” degree in Electronic Engineering in 1996 from the University of Genoa and the Ph.D. degree in Electrical Engineering from the Ohio State University, USA, in 2000. Since 2000 he has been with the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada, where he is currently a Professor. He has been a Visiting Professor at the University of Bologna (2007–2008), and the Laboratoire des Signaux et Systèmes, Ecole CentraleSupélec (2015–2016). His research focuses on mathematical nonlinear control, and relies on methods from dynamical systems theory and differential geometry.

Christopher Damaren was born in Toronto, Ontario, Canada in 1962. He received the B.A.Sc. in Engineering Science (Aerospace Option) from the University of Toronto in 1985. He went on to receive the M.A.Sc. and Ph.D. degrees in 1987 and 1990, respectively, both in aerospace engineering from the University of Toronto Institute for Aerospace Studies (UTIAS). From 1990 to 1995 he was an Assistant Professor in the Department of Engineering at Royal Roads Military College in Victoria, British Columbia, Canada. From 1995 to 1999 he was a Senior Lecturer in the Department of Mechanical Engineering at the University of Canterbury in Christchurch, New Zealand. Since 1999 he has been at UTIAS and is currently a Professor. His research interests are in the areas of dynamics and control of space systems. He is a Fellow of the Canadian Aeronautics and Space Institute and an Associate Fellow of the American Institute of Aeronautics and Astronautics.