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a b s t r a c t

A bang–bang hybrid controller is presented that globally practically stabilizes the origin of a double-
integrator affected by anunknownboundeduncertainty at the input side. The proposed controller has two
key features: it guarantees a uniformly bounded number of switches over any compact time interval, and
it is robust against boundedmeasurement errors. When disturbances are absent, through a proper choice
of the control parameters it reduces to the time-optimal bang–bang controller for the double-integrator.
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1. Introduction

In this paper we investigate the global practical stabilization of
the perturbed double-integrator

ẋ1 = x2
ẋ2 = f (x, t) + u, (1)

where u ∈ U := {−ū, 0, +ū}, with ū > 0, and f (x, t) is a map
in the class F of functions R2

× R → R that are locally Lipschitz
with respect to x, measurable with respect to t , and bounded by a
constant f̄ > 0, i.e., sup |f | ≤ f̄ . We denote x = [x1 x2]⊤ ∈ R2. We
consider the following problem.

Stabilization by Constant Controls Problem (SCCP). Design a
piecewise-constant feedback controllerwith values inU for system
(1) such that the following properties hold:

(i) For all f ∈ F , the point x = 0 is globally practically stable for
the closed-loop system: For all r > 0 there exist controller
parameters such that a compact set Q ⊂ Br(0) with 0 ∈ int Q
is globally asymptotically stable.
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(ii) The number of controller switches is uniformly bounded over
compact time intervals: For any T > 0, there existsN ∈ N such
that for any x0 ∈ R2 and for any f ∈ F the controller switches
value at most N times over any time interval of length T .

The control of double-integrators plays an important role in
control theory and applications. In particular, our formulation of
SCCP was inspired by applications in the field of aerospace en-
gineering. It is common to approximate the rotational dynamics
of a rigid spacecraft in a neighborhood of its target configura-
tion by a collection of decoupled double-integrators, Agrawal and
Bang (1995), Burdick, Lin, and Wong (1984) and Hughes (1986).
Moreover, in Serpelloni, Maggiore, and Damaren (2014b) we have
shown that the relative translational dynamics of two spacecraft
flying in formation in a general multi-body gravitational field can
be modeled as a collection of three perturbed double-integrators
of the form (1). The requirement, in SCCP, that the controller be
piecewise-constant is motivated by the fact that spacecraft motion
control is usually performed by means of cold-gas jet thrusters,
able to provide only on–off thrust forces. These actuators are
commonly used to perform both attitude and position control on
modern spacecraft (Agrawal & Bang, 1995; Bilimoria & Wie, 1993;
Burdick et al., 1984; Krishnan, Reyhanoglu, & McClamroch, 1994;
Serpelloni et al., 2014b). Finally, the requirement that the number
of control switches be uniformly bounded over compact time inter-
vals arises from the fact that, in practice, actuators can only switch
valuewith bounded frequency. A solution toSCCP, therefore, is key
in enabling a new generation of position and attitude controllers
for spacecraft formations.

Despite its apparent simplicity, SCCP is a largely open problem.
The majority of research on bang–bang stabilization of the origin
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of the perturbed system (1) relies on sliding mode control. In Rao
and Bernstein (2001), it is shown that the time-optimal bang–bang
controller for the double-integrator (e.g., Bryson & Ho, 1975)
preserves its finite-time stabilization property under a restrictive
class of disturbances f , but in the presence of such disturbances it
induces a sliding mode. In Rubagotti and Ferrara (2010), a sliding
mode controller is presented that achieves the same result for any
measurable bounded perturbation while satisfying constraints on
the state of the system. Sliding mode controllers, however, violate
control specification (ii) of SCCP. Several methods have been
proposed to alleviate the unbounded switching frequency typical
of sliding mode controllers, for instance the state-dependent
gain method in Lee and Utkin (2007). Such methods, however,
often result in control laws that are not piecewise-constant.
Alternatively, hysteresis bands around switching boundaries have
been used to avoid unbounded switching frequency (Lee & Utkin,
2007; Marti, Velasco, Camacho, Martin, & Fuertes, 2011), but
they introduce a problematic coupling between the switching
frequency and the asymptotic bound on the state.

To the best of our knowledge, the only attempts at solving SCCP
are found in the context of second-order slidingmode control (Bar-
tolini, Ferrara, & Usai, 1997, 1998; Tanelli & Ferrara, 2013). These
control algorithms guarantee global finite-time attractivity of the
origin (see, for example Proposition 4.1 in Tanelli & Ferrara, 2013)
but in all cases the controller’s switching frequency is unbounded
at the origin. One could introduce a hysteresis mechanism at the
origin to guarantee bounded switching frequency, making the ori-
gin globally practically attractive. The stability of the origin and the
robustness of the proposed controllers against measurement error
are not investigated in the above papers. Levant in Levant (1993,
2007) presents dynamic feedbacks producing piecewise-constant
controls resulting in global finite-time stability of the origin. The
controllers in Levant (2007) have infinite switching frequency at
the origin but, once again, one could introduce an hysteresismech-
anism eliminating this problem, and turning these controllers into
global practical stabilizers. With this modification, the controllers
presented in Levant (2007) solve SCCP. Levant also shows that his
controllers enjoy robustness againstmeasurement error (see Theo-
rem 3 in Levant, 2007). However, it is unclear whether the switch-
ing frequency remains bounded in the presence of measurement
error.

Inspired by the fact, shown in Mayhew, Sanfelice, and Teel
(2009), Mayhew and Teel (2010), Sanfelice, Teel, and Goebel
(2008) and Goebel, Sanfelice, and Teel (2009), that hybrid
feedback is advantageous over discontinuous feedback for its
potential robustness against measurement error, in this pa-
per we solve SCCP by means of a hybrid piecewise-constant
feedback controller. Necessary and sufficient stability conditions
are provided2 in terms of the control magnitude ū. Further, we
show that the proposed controller is robust against bounded mea-
surement error, in the following sense. If the bound on the mea-
surement error is sufficiently small, then the stability properties of
the controller under exact state feedback and noisy state feedback
are identical, and the switching frequency remains bounded.

In developing a solution to SCCP, we begin with the time-
optimal bang–bang controller for the unperturbed double-
integrator. We add another switching boundary, the set {x2 =

0}, and define an automaton that selectively enables and disables
switching boundaries in such a way that the resulting sequence of
switching points contracts to the origin. The switching frequency
remains bounded owing to this selective enabling of switching sets
and to an hysteresis mechanism at the origin. If the hysteresis is
removed, the origin becomes globally finite-time stable, but the
switching frequency becomes infinite when solutions reach the

2 A preliminary version of these results has been presented in Serpelloni et al.
(2014b) and Serpelloni, Maggiore, and Damaren (2014a).
origin, just as in Levant (2007). When the perturbation is absent,
i.e., f ≡ 0, with a suitable choice of the control parameters our hy-
brid controller reduces to the time-optimal bang–bang stabilizer
for the double-integrator.

The paper is organized as follows. In Section 2 we present
the solution of SCCP and state the main results, Theorems 1 and
3. In preparation for the proofs of these theorems, in Section 3
we review a basic result from Maggiore, Rawn, and Lehn (2012)
characterizing the boundary of attainable sets of planar nonlinear
systems, and use it to characterize the attainable sets of the
perturbed double-integrator (1) with constant controls. The proof
of Theorem 1 is presented in Section 4. The proof of Theorem 3,
characterizing the robustness of the proposed controller against
measurement error, is presented in Section 5.

Notation. We denote Bϵ(0) = {x ∈ R2
: (x⊤x)1/2 < ϵ} and

B̄ϵ(0) = {x ∈ R2
: (x⊤x)1/2 ≤ ϵ}. These definitions imply that

the set B0(0) is empty, while B̄0(0) = {0}. The boundary of a set A
is defined as ∂A = Ā\int Awhere Ā is the closure of A and int A is its
interior. We denote by Ac the set Ac

= R2
\A and we denote by −A

the set −A = {x : −x ∈ A}. If A is a closed subset of R2, we define
its enlargement Aσ ⊂ R2, σ > 0, as Aσ = {x ∈ Rn

: d(x, A) ≤ σ },
where d(x, A) denotes the euclidean point-to-set distance.

2. Main results

In this section we present a hybrid feedback control law that
solves SCCP. We begin by assuming that the state x(t) is available
for feedback. Later, we assume that the state measurement is
corrupted by a bounded error signal.

We define initialization sets Γ +, Γ − as

Γ +
= {(x1, x2) : x1 < 0, x2 <


−2ūx1}

∪ {(x1, x2) : x1 > 0, x2 ≤ −


2ūx1},

Γ −
= −Γ +.

(2)

Define switching sets Λ+, Λ− as

Λ+
= {(x1, x2) : x1 ≤ 0, x2 ≤ 0}

∪ {(x1, x2) : x1 > 0, x2 ≤ −


2ūx1},

Λ−
= −Λ+.

(3)

Defining the half-parabolas S+
= {(x1, −

√
2ūx1) : x1 ≥ 0} and

S−
= −S+, we have ∂Λ+

= S+
∪ {(x1, 0) : x1 ≤ 0} and

∂Λ−
= S−

∪ {(x1, 0) : x1 ≥ 0}. Next, consider the automaton
A in (4), and denote by Q := {q1, q2, q3} the set of discrete states
of A.

(4)

Finally, the proposed control law u⋆
: Q → R is

u⋆(q1) = −ū
u⋆(q2) = ū
u⋆(q3) = 0.

(5)
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(a) (b)

Fig. 1. Sets Γ − and Γ + (a) and sets Λ− and Λ+ (b).

Thus the proposed controller is piecewise-constant with values
in the set {−ū, 0, ū}, and has dynamics that are governed by the
automaton A in (4). An initial condition x0 of the double-integrator
induces an initialization of the automaton according to the rules
in (5). For example, if x0 ∈ Γ −

\B̄δ1(0), then A is initialized at
q1. A state transition from state qj to state qk, with k ≠ j, will be
denoted as qj → qk. Each edge of the automaton is associated
with a transition condition that determines whether or not the
transition occurs. For instance, a transition q1 → q3 occurs at time
t if and only if x(t) ∈ B̄δ1(0).

The discrete states q1 and q2 in the automaton activate and de-
activate the switching setsΛ+ andΛ−, so that a switch in the con-
trol value is allowed only when the trajectory enters the switching
set which is currently active. This mutually exclusive activation of
the switching sets eliminates slidingmodes.Moreover, referring to
Fig. 1(b), the gap between Λ+ and Λ− (white region) guarantees
that when trajectories are away from the origin, the switching fre-
quency is bounded. Near the origin, the boundedness of the switch-
ing frequency is guaranteed by a basic hysteresis mechanism
implemented using two nested balls Bδ1(0) ⊂ Bδ2(0) and the dis-
crete state q3.

To illustrate the selective activation mechanism described
above, suppose that x0 ∈ Γ −

\B̄δ1(0). Then the discrete state is
initialized at q1 and the control value is u⋆(q1) = −ū. The only
allowable state transition from q1 occurs either when x(t) enters
B̄δ1(0) (q1 → q3), in which case the control value is switched to
u⋆(q3) = 0, or when x(t) enters Λ+

\B̄δ1(0), (q1 → q2), in which
case u⋆ is switched to u⋆(q2) = +ū. Therefore, the switching set
Λ− is disabled when the discrete state is at q1. Similarly, in q2 the
switching set Λ+ is disabled and the control value can only switch
when the state enters B̄δ1(0) orwhen it enters setΛ−

\B̄δ1(0). In q3,
the controller is turned off, and it will be turned on only when the
state exits Bδ2(0). This is the hysteresis mechanism at the origin.

The parameters δ1 and δ2 in the automaton are chosen
according to the following procedure. Let r be the radius of the ball
in part (i) of SCCP. Then pick any numberµ ∈ (0, µ⋆), whereµ⋆

=

min{1, ((ū − f̄ )2/f̄ 2 + 2ū(ū − f̄ )/(r f̄ ))1/2}. Pick δ2 > 0 such that

δ2 <

2f̄


ū2 + µ2r2 − ū2

− f̄ 2
 1

2
, if h < 0

δ2 <

 −f̄
ū − f̄

 (−ū +


ū2 + µ2r2), otherwise

(6)

where h = (ū− f̄ )2 + ūf̄ − f̄

ū2 + µ2r2. Finally, pick δ1 ∈ (0, δ2).

The next result shows controller (4)–(5), with δ1, δ2 chosen as
above, solves SCCP.

Theorem 1. Consider system (1)with perturbation f ∈ F . Controller
(4)–(5) solves SCCP if and only if ū > f̄ (1+

√
5)/2. In particular, for

any r > 0, if δ1 and δ2 are chosen so as to satisfy the inequalities in (6),
then there exists a globally asymptotically stable compact subset of
Br(0) containing the origin.

Remark 2. When the perturbation is absent, i.e., f ≡ 0, by setting
δ1 = 0 and δ2 > 0 the proposed hybrid feedback reduces to
the time-optimal bang–bang controller for the double-integrator.
Moreover, for arbitrary f ∈ F , it can be shown that setting δ1 = 0
and δ2 > 0 makes the origin globally finite-time stable, but the
switching frequency becomes infinite when solutions reach the
origin.

Next, we consider the case when the measured state signal is

y(t) = x(t) + e(t), (7)

where e(t) is a bounded error signal satisfying sup ∥e(t)∥ ≤ σ ,
for some σ > 0. Replacing x(t) by y(t) in the automaton A in (4),
the question now is whether the stability properties of Theorem 1
persist in the presence of such measurement error. The answer is
yes, and is contained in the following result.

Theorem 3. Consider system (1) with controller (4)–(5) in the
presence of boundedmeasurement error e(t). If ū > f̄ (1+

√
5)/2, the

controller (4)–(5) solves SCCP in the following sense. For any r > 0, if
δ1 and δ2 are chosen so as to satisfy the inequalities in (6), then there
exists σ ⋆ > 0 such that for all σ ∈ [0, σ ⋆), and for all x0 ∈ R2, the
following properties hold:
(i) there exists a globally asymptotically stable compact subset of

Br(0) containing the origin;
(ii) the number of controller switches is uniformly bounded over

compact time intervals.

In essence, the sufficiency part of Theorem 1 remains un-
changed in the presence of sufficiently small measurement error.

We conclude this section with a remark concerning the
switching frequency of the proposed hybrid controller. Although
Theorems 1 and 3 state that the number of controller switches is
uniformly bounded over compact time intervals, it may happen
that the time interval between two subsequent switches is
arbitrarily small. To take into account the characteristics of a real
actuator, one would have to implement the controller (4)–(5) with
a dwell-time. It turns out that the effects of dwell-time on the
stability analysis are equivalent to those due to measurement
error, so that the proposed controller is robust against sufficiently
small dwell-time. More precisely, to take dwell-time into account,
one may modify the statement of Theorem 3 by adding after the
statement ‘‘there exists σ ⋆ > 0. . . ’’ the statement ‘‘there exists
a sufficiently small bound on the dwell-time’’. This fact, a direct
consequence of results presented in Section 5, will not be proved
here due to space limitations.

3. Boundaries of attainable sets

In preparation for the proofs of Theorems 1 and 3, we review
a result in Maggiore et al. (2012) characterizing the boundaries of
attainable sets of planar single-input systems. Before presenting
the formal definition of attainable set and its relevant properties,
we briefly motivate their relevance as a tool to solve SCCP.
Consider system (1) with the hybrid feedback (4)–(5). Fix an initial
condition x0 and, for the sake of argument, suppose the automaton
state is fixed at either q1 or q2, so that u = ±ū. The attainable set
of (1) from x0 is the set of states that (1) can reach from x0 as the
perturbation f ranges over the class F . In order to prove that the
closed-loop double-integrator enjoys certain stability properties
independent of perturbations f ∈ F , our strategy is to prove an
analogous property for the relevant attainable sets.

For a fixed automaton state qj, j ∈ {1, 2}, we may rewrite the
closed-loop double-integrator as follows:

ẋ = λ(x, t)F
qj
1 (x) + (1 − λ(x, t))F

qj
2 (x), (8)

where λ : R2
× R → [0, 1] is defined as λ(x, t) =

f̄ − f (x, t)

/(2f̄ ), and

F
qj
1 (x) =


x2

−f̄ + (−1)jū


, F

qj
2 (x) =


x2

f̄ + (−1)jū


,
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with j ∈ {1, 2}. Allowing the perturbation f (x, t) to range over
the class F corresponds to replacing λ(x, t) in (8) by a generic
measurable signal λ : R → [0, 1]. In light of this observation,
consider the planar system

ẋ = λ(t)F1(x) + (1 − λ(t)) F2(x) (9)

where F1, F2 : R2
→ R2 are C1 vector fields and λ is an input signal

with values in the interval [0, 1].

Definition 4. The attainable set A(x0, t) from x0 at time t of
system (9) is the set

A(x0, t) = {x(t) : x(t) is a solution of (9) through x0 for
some measurable control signal λ,

with λ : R → [0, 1]}.

The attainable set A(x0) from x0 of system (9) is the set A(x0) =
t≥0 A(x0, t). △

Define sets R− and R+ as

R−
= {x ∈ R2

: det [F1(x) F2(x)] < 0},
R+

= {x ∈ R2
: det [F1(x) F2(x)] > 0}.

(10)

Definition 5 (Maggiore et al., 2012). The extremal vector fields
FL(x) and FR(x) are defined as

FL(x) =


F1(x), x ∈ R+

F2(x), x ∈ R−

FR(x) =


F2(x), x ∈ R+

F1(x), x ∈ R−.

(11)

The solutions at time t with initial condition x0 of the extremal
vector fields FL(x) and FR(x) are called extremal solutions and
are denoted by φL(t, x0) and φR(t, x0), respectively. The images
of extremal solutions on the plane are called extremal arcs. In
particular, the L-arc (resp. R-arc) through x0, denoted by γL(x0)
(resp. γR(x0)), is the image of the map t → φL(t, x0) (resp. t →

φR(t, x0)) for t ranging over some interval over which the map is
defined. △

Extremal arcs of (9) are the phase curves of (9) with minimum
and maximum slope. The next lemma states that extremal arcs
form the boundary of attainable sets. Before stating the lemma we
recall that system (9) is said to be small time locally controllable
(STLC) from x0 if, for all T > 0, x0 lies in the interior of
A (x0, [0, T ]).

Lemma 6 (Maggiore et al., 2012). Let x0 ∈ R2 be such that
system (9) is not STLC from x0. Suppose that for some T > 0 a
solution x(t) of (9) with initial conditions x0 has the property that
x(t) ∈ ∂A(x0, t) for all t ∈ [0, T ] and that system (9) is not STLC
from x(t), for all t ∈ [0, T ]. Then x(t) is a concatenation of extremal
solutions.

Now we return to system (8) with fixed automaton state qj,
j ∈ {1, 2}. If ū > f̄ , ẋ2 is bounded away from zero, which implies
that system (8) with input λ is not STLC from x0. Wemay therefore
apply Lemma 6 to system (8). In this context, the sets R+, R− are
given by R+

= {(x1, x2) : x2 > 0}, R−
= {(x1, x2) : x2 < 0}. For

each fixed qj, j ∈ {1, 2}, the extremal vector fields of (8) are given
by

F
qj
L (x) =


x2

−sign(x2)f̄ + (−1)jū


F
qj
R (x) =


x2

sign(x2)f̄ + (−1)jū


.

(12)
The associated extremal solutions φ
qj
L (s, x0) and φ

qj
R (s, x0) through

x0 for s ≥ 0, can be computed analytically. They are concatenations
of arcs of parabolas X

qj
s (x0) and Y

qj
s (x0) defined as

X
qj
s (x0) =


−f̄ + (−1)jū

 s2

2
+ x20s + x10

−f̄ + (−1)jū

s + x20


Y

qj
s (x0) =


f̄ + (−1)jū

 s2

2
+ x20s + x10

f̄ + (−1)jū

s + x20

 ,

where the concatenation occurs when the solution hits {x2 = 0}.
More precisely, for all x0 ∈ R−, we have

φ
qj
L (s, x0) =

Y
qj
s (x0), if Y

qj
s (x0) ∈ R−

X
qj

s−sjY (x0)
◦ Y

qj

sjY (x0)
(x0), if Y

qj
s (x0) ∈ R+

φ
qj
R (s, x0) =

X
qj
s (x0), if X

qj
s (x0) ∈ R−

Y
qj

s−sjX (x0)
◦ X

qj

sjX (x0)
(x0), if X

qj
s (x0) ∈ R+,

(13)

while for all x0 ∈ R+, we have

φ
qj
L (s, x0) =

X
qj
s (x0), if X

qj
s (x0) ∈ R+

Y
qj

s−sjX (x0)
◦ X

qj

sjX (x0)
(x0), if X

qj
s (x0) ∈ R−

φ
qj
R (s, x0) =

Y
qj
s (x0), if Y

qj
s (x0) ∈ R+

X
qj

s−sjY (x0)
◦ Y

qj

sjY (x0)
(x0), if Y

qj
s (x0) ∈ R−

(14)

where sjX (x0) = −x02/((−1)jū − f̄ ), sjY (x0) = −x02((−1)jū + f̄ ).
The existence of extremal solutions for each x0 ∈ R2 and

each fixed qj, j ∈ {1, 2}, is guaranteed by the theory of Filippov
in Filippov (1988) (see Lemma 4.1 in Maggiore et al., 2012). We
denote by γ

qj
L (x0) and γ

qj
R (x0) the extremal arcs generated by

φ
qj
L (s, x0) andφ

qj
R (s, x0), respectively. Further,wedenote byAqj(x0)

the attainable set from x0 of system (8) for fixed qj, j ∈ {1, 2}.
In conclusion, assuming that the automaton state is either at q1

or q2, by Lemma 6 we have that ∂Aqj(x0) is the union of extremal
arcs γ

qj
L and γ

qj
R . When the automaton state is at q3, the controller

is turned off (i.e., u = 0) and there is no need to characterize
attainable sets.

4. Proof of Theorem 1

The proof of Theorem 1 unfolds in four steps.
(1) We present necessary and sufficient conditions on the control

value ū so that any solution of the double-integrator (1) with
hybrid feedback (4)–(5) gives rise to a well-defined sequence
of switching points {xi}, with i ∈ I ⊂ N. This result, stated
in Lemma 8, allows us to reduce the problem of proving
convergence to the origin of state trajectories to the much
simpler study of convergence of a sequence of switching
points.

(2) We prove in Lemma 10 that for any disturbance f ∈ F ,
the sequence of switching points {xi}i∈I induced by controller
(4)–(5) contracts to the origin if and only if ū > f̄ (1 +

√
5)/2.

(3) We prove in Lemma 11 that for any r > 0, if δ1 and δ2 are
chosen according to condition (6), then there exists a compact
positively invariant set3 Q ⊂ Br(0).

3 In this paper, a set K ⊂ R2 is said to be positively invariant for system (1) with
controller (4)–(5) if for any (x0, t0) ∈ K × R and for any f ∈ F bounded by f̄ ,
the closed-loop solution x(t) remains in K for all t ≥ t0 . This notion is sometimes
referred to as strong invariance (Clarke, Ledyaev, Stern, & Wolenski, 2008).
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(4) Finally, we prove Theorem 1 by showing that for any x0 ∈ R2

the solution enters set Q in finite time. Moreover the set Q is
stable. It is also shown that if δ1 and δ2 are chosen according
to condition (6), then the switching frequency of the controller
remains uniformly bounded.

Definition 7. Let x(t) be a solution of system (1) with hybrid
feedback (4)–(5). A time instant ti is called a switching time of x(t),
if x(ti) ∈


S+

∪ S−
∪ B̄δ1(0)


and x(ti) induces a state transition

qj → qk, with j, k ∈ {1, 2, 3}, j ≠ k. The value of the state at a
switching time, xi = x(ti) is called a switching point of x(t). △

Lemma 8. Let 0 ≤ δ1 < δ2. If, and only if, ū > f̄ , then for any f ∈ F
and any initial condition in (B̄δ1(0))

c , the solution x(t) of (1) with
hybrid feedback (4)–(5) induces a switching sequence {xi}, i ∈ I ⊂ N
nonempty, with the following property:

(x1, . . . , xi ∈ (B̄δ1(0))
c) =⇒ i + 1 ∈ I. (15)

In other words, as long as the solution x(t) does not enter B̄δ1(0),
there will be new switching points. Therefore, x(t) → ∞ if and
only if I = N and xi → ∞, and x(t) enters B̄δ1(0) if and only if {xi}
enters B̄δ1(0).

Proof. See also Serpelloni et al. (2014a). The proof here is omitted
due to space limitations. �

A byproduct of Lemma 8 is that, when ū > f̄ , only three types
of switching points are possible. They are classified in the next
definition.

Definition 9. Let xi ∈ (S+
∪ S−)\B̄δ1(0) be a switching point of

a solution x(t) of (1) with hybrid feedback (4)–(5) and ū > f̄ ,
and consider the next switching point xi+1, whose existence is
guaranteed by Lemma 8. xi+1 is a 1-switch from xi if one of the
points {xi, xi+1

} belongs to S+, and the other one belongs to S−; xi+1

is a 2-switch from xi if {xi, xi+1
} belong to the same arc of parabola,

S+ or S−; xi+1 is a 0-switch from xi if xi+1
∈ B̄δ1(0).

In Lemma 8we have shown that hybrid feedback (4)–(5) induces a
sequence of switching points {xi}i∈I . We show in the following that
this sequence is contracting (i.e., there exists α ∈ (0, 1) such that
∥xi+1

∥ ≤ α∥xi∥ for all i ∈ I) for sufficiently large control value ū.

Lemma 10. Consider system (1) with hybrid feedback (4)–(5), and
pick δ1, δ2 such that 0 ≤ δ1 < δ2. The following are equivalent:

(i) There exists α ∈ (0, 1) such that for any f ∈ F and any initial
condition, the sequence {xi}i∈I of switching points of the solution
x(t) of (1) with hybrid feedback (4)–(5) is contracting as long as
xi ∉ B̄δ1(0): x

i, xi+1
∈ (B̄δ1(0))

c
=⇒ ∥xi+1

∥ ≤ α∥xi∥;

(ii) ū > f̄

1 +

√
5


/2.

Proof. (ii)⇒ (i). Assume that xi ∈ S+, so that the automatonA is at
q2 (the argument for the case xi ∈ S− is analogous). If xi+1

∈ B̄δ1(0),
then part (i) trivially holds. Suppose that xi+1

∉ B̄δ1(0). Either
xi+1

∈ S− (i.e., xi+1 is a 1-switch from xi) or xi+1
∈ S+ (i.e.,

xi+1 is a 2-switch from xi). Suppose first that xi+1
∈ S−, from

which it follows that xi+1
∈ Aq2(xi) ∩ S−. Let p = γ

q2
R (xi) ∩ S−.

Then xi+1 lies on the arc of parabola S− delimited by 0 and p,
implying that ∥xi+1

∥ ≤ ∥p∥. Using the expression for φ
q2
R (s, xi)

in (13) one can show that p exists and its first component p1 is
related to the first component xi1 of xi as p1 = −α2

1x
i
1, where

α1 =

(f̄ 2 + f̄ ū)/(2ū2

− ūf̄ − f̄ 2)
1/2

. Since ū > f̄

1 +

√
5


/2,

it holds that α1 ∈ (0, 1), and therefore ∥xi+1
∥ ≤ ∥p∥ ≤ α1∥xi∥,

with α1 ∈ (0, 1).
Fig. 2. Attainable switching set from xi .

Now suppose that xi+1
∈ S+ is a two-switch from xi. The

switching point xi+1 is reached from xi through the following
sequence of events. (A) The solution from xi with u⋆(q2) = ū hits
the positive x1 axis at a point z, a state transition q2 → q1 occurs,
and the control value becomes u⋆(q1) = −ū. (B) The solution from
z intersects S+ in xi+1. Consider the point v = γ

q2
L (xi) ∩ {(x1, 0) :

x1 ≥ 0} depicted in Fig. 2. The point z defined above must lie
on the segment of the x1 axis delimited by 0 and v. Therefore,
∥z∥ ≤ ∥v∥. Using the expression for φ

q2
L (xi) from (13) it can be

shown that the first component v1 of v satisfies v1 = α2
2x

i
1, with

α2 =

1 − ū/(ū + f̄ )

1/2
∈ (0, 1). Therefore, ∥z∥ ≤ ∥v∥ ≤ α2

2x
i
1.

Now we turn our attention to event (B) above. The point xi+1 lies
in the segment S+

∩Aq1(z). The extremal solutions from z are arcs
of parabolas given by φ

q1
L (s, z) = Y q1

s (z) and φ
q1
R (s, z) = Xq1

s (z),
defined in Section 3. In particular, the first component of both
functions is decreasingwith s. This implies that the first component
xi+1
1 of xi+1 satisfies xi+1

1 < z1 ≤ α2
2x

i
1. Thus ∥xi+1

∥ ≤ α2∥xi∥. By
setting α = max{α1, α2}, and noting that α ∈ (0, 1), the proof that
(ii) ⇒ (i) is complete.

(i) ⇒ (ii). Let {xi} be a contracting switching sequence and
suppose, by way of contradiction, that ū ≤ f̄


1 +

√
5


/2. Let

xi, xi+1
∈ (B̄δ1(0))

c . Assume xi ∈ S+ and let f ∈ F be de-
fined as f (x, t) = f̄ sign(x2(t)). Then x(t) = φ

q2
R (t − ti, xi)

for all t ∈ [ti, ti+1]. Therefore xi+1
= p ∈ S−, as defined in

the proof of sufficiency. Recall that p1 = −α2
1x

i
1, with α1 =

(f̄ 2 + f̄ ū)/(2ū2
− ūf̄ − f̄ 2)

1/2
. Since ū ≤ f̄ (1 +

√
5)/2 we have

α1 ≥ 1 which contradicts the hypothesis that the switching se-
quence is contracting. �

Next we show that for any r > 0, there exists a compact
positively invariant subset of Br(0). This will be used to prove
practical stability.

Lemma 11. Consider system (1) with the hybrid feedback (4)–(5). If
ū > f̄ (1 +

√
5)/2 then for any p ∈ S+ there exists a compact set

Qp and parameters 0 < δ1 < δ2 in automaton (4) such that Qp
is positively invariant. Moreover, for any r > 0, pick δ1, δ2 > 0
according to conditions (6). Then the point p can be chosen so that
B̄δ2(0) ⊂ int Qp ⊂ Qp ⊂ Br(0).

Proof. Let p ∈ S+ be arbitrary, let Pp be the compact region
depicted in Fig. 3(a), delimited by the extremal arcs γ

q2
R (p), γ q2

L (p),
and by ∂Λ−. LetQp = Px̄∪−Px̄. Clearly, 0 ∈ intQp.We claim that,
if δ1 = δ2 = 0, any solution of (1) with hybrid feedback (4)–(5)
originating in Pp can only exit Pp through ∂Λ− and, similarly,
that any solution originating in −Pp can only exit it through ∂Λ+.
Referring to Fig. 3(a), the boundary of Pp is formed by ∂Λ− and
two extremal arcs, γ q2

R (p) and γ
q2
R (p). By the definition of extremal

arcs, all solutions of (1) with hybrid feedback (4)–(5) cross (or
are tangent to) γ

q2
R (p) from left to right, and γ

q2
L (p) from right to
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(a) (b)

Fig. 3. Pictorial representation of sets Pp , (a), and P σ
p , (b).

left. Therefore solutions in Pp can only exit it through ∂Λ−. The
analogous statement for −Pp can be proved in the same way, and
the claim is proved.

In light of the claim above, since Pp ∩ ∂Λ−
⊂ −Pp and −Pp ∩

∂Λ+
⊂ Pp, the set Qp is positively invariant when δ1 = δ2 = 0.

Moreover, if one chooses 0 < δ1 < δ2 such that B̄δ2(0) ⊂ intQp,
Qp remains positively invariant.

It can be shown that there exists c > 0 such that for any p ∈ S+,
Qp ⊂ Bc∥p∥(0). Then, if we pick p such that c∥p∥ < r , we have
Qp ⊂ Br(0). We have thus established that for any r > 0, there
exist p ∈ S+ and δ2 > 0 such that Qp is positively invariant,
B̄δ2(0) ⊂ intQp, and Qp ⊂ Br(0). As a matter of fact, one such δ2
is given in (6), and is motivated by the following considerations.
The positive scalar µ > 0 in (6) guarantees that, setting p =

∂Bµr(0) ∩ S+, we have Qp ⊂ Br(0). The scalar δ2 in (6) guarantees
that B̄δ2(0) ⊂ IntQp. �

We are ready to prove the main result of this paper.

Proof of Theorem 1. (⇒) Similar to the proof of necessity of
Lemma 10.
(⇐) We prove first global practical stability. For any r > 0, by
Lemma 11 there exists p ∈ S+ and 0 < δ1 < δ2 such that the com-
pact set Qp is positively invariant and B̄δ2(0) ⊂ intQp ⊂ Qp ⊂

Br(0). We claim thatQp is stable. To this end, we need to show that
for any neighborhood V ofQp, there exists a neighborhood U ofQp
such that all solutions of the closed-loop systems originating in U
remain in V for all positive time. For each p in S+, the boundary of
the set Qp of Lemma 11 is formed by arcs of trajectories of a dif-
ferential equation that depend continuously on initial conditions.
Therefore, for any V as above, one can find q ∈ S+ with ∥q∥ > ∥p∥
such that Qp ⊂ intQq ⊂ Qq ⊂ V . Setting U = intQq one obtains
the desired stability property.

We now show that set Qp is globally attractive. By Lemma 8,
for any initial condition in (B̄δ1(0))

c and any f ∈ F , the solu-
tion x(t) gives rise to a well-defined switching sequence {xi}i∈I . By
Lemma 10, this sequence is contracting as long as xi ∉ B̄δ1(0). Since
B̄δ1(0) ⊂ B̄δ2(0) ⊂ Qp, xi ∈ Qp for sufficiently large i. By Lemma11,
x(t) ∈ Qp ⊂ Br(0) for all t ≥ ti. This proves that Qp is globally
asymptotically stable.

We are left to show that property (ii) ofSCCP holds: for any T >
0, there exists N ∈ N such that for all x0 ∈ R2 and for any f ∈ F ,
the controller switches value at most N times over any time inter-
val of length T . In other words, the automaton A in (4) performs at
mostN discrete state transitions qj → qk over an interval of length
T . To begin, consider state transitions not involving the state q3.
Suppose that at time t1 a state transition q2 → q1 occurs, and that
a subsequent state transition q1 → q2 occurs at time t2 > t1. Thus,
x(t1) ∈ Λ−

\ B̄δ1(0) and x(t2) ∈ Λ+
\ B̄δ1(0). In order to reach

Λ+
\B̄δ1(0) fromΛ−

\B̄δ1(0), x2(t)must cover aminimumdistance
which is bounded away from zero. Since |ẋ2| ≤ ū+ f̄ , it follows that
t2−t1 is lower bounded by a constant T1 > 0, independent of x(t1).
Therefore the minimum time between the two consecutive state
transitions above is T1 > 0. By symmetry, the same holds for state
transitions q1 → q2 followed by q2 → q1. Similarly, the time be-
tween two consecutive state transitions of the type qj → q3 fol-
lowed by q3 → qk, with j, k ∈ {1, 2}, is bounded from below by a
positive constant, T2 > 0. Indeed, the time between two such tran-
sitions is lower bounded by the minimum time it takes a closed-
loop trajectory initialized in B̄δ1(0) to exit the ball B̄δ2(0). We are
left with the analysis of transitions of the form qj → qk followed by
qk → q3 or q3 → qj followed by qj → qk, with j ≠ k, j, k ∈ {1, 2}.
In this case, there is no lower boundon the timebetween such tran-
sitions. For instance, at the time of a transition q1 → q2, the state
x(t) may be arbitrarily close to the set Λ+

∩ B̄δ1(0), and may enter
B̄δ1(0) after arbitrarily small time, triggering a transition q2 → q3.
However, the next transition must have the form q3 → qj, j ∈

{1, 2} which, as we have proved above, cannot occur before time
T2. A similar reasoning can be repeated for all other sequences of
transitions described above. If we let T ⋆

= min{T1, T2}, over a time
interval of length T ∈ (0, T ⋆) there can be atmostN = 2 state tran-
sitions (for instance, the ones discussed earlier, q1 → q2 followed
by q2 → q3). For a time interval of length T ∈ [0, 2T ⋆), one may
have at most N = 4 state transitions (the prototypical worst case
is the sequence q1 → q2, q2 → q3, q3 → q1, q1 → q2; the time it
takes for the first pair and second pair of transitions to occur may
be arbitrarily small, but there must be at least T ⋆ units of time be-
tween the first pair and the second pair of transitions). Thus, over a
time interval T > 0 there can be at most N = 2⌊(T/T ⋆)⌋ + 2 state
transitions, where ⌊·⌋ denotes the floor function. �

5. Proof of Theorem 3

The proof of Theorem 3 unfolds in three steps:

(1) In Lemma 13 we show that if the measurement error is
small enough, the number of controller switches is uniformly
bounded over compact time intervals.

(2) In Lemma 14 we show that if σ is small enough, then there ex-
ists a compact positively invariant set Qσ

⊂ Br(0) containing
the origin, that is also stable.

(3) In Lemma 15 we show that if σ is small enough, the set Qσ

is globally attractive, in particular we show that controller
(4)–(5) induces a switching sequence {xi}i∈I such that xN ∈ Qσ

for some N > 0.

We begin our analysis with the following observation. The
identity (7) implies that x(t) ∈ B̄σ (y(t)). In the presence of
measurement error, state transitions in the automaton A may
occur each time the ball Bσ (x(t)) intersects a switching boundary.
For instance, suppose that y(t) enters Λ−

\ B̄δ1(0), triggering a
transition to q1. The location of x(t) is uncertain. We only know
that, at the time of the transition to q1, x(t) lies on a neighborhood
of radius σ of the set Λ−

\ B̄δ1(0). In order to analyze the effects
of measurement error, it is therefore necessary to consider the
enlargements of the various switching boundaries (see Section 1
for the notion of enlargement of a set). Accordingly, let S+

σ , S−
σ ,

(∂Λ+)σ , and (∂Λ−)σ denote the enlargements of sets S+, S−, ∂Λ+,
and ∂Λ−, respectively. Finally, let Sσ = S+

σ ∪ S−
σ .

Definition 12. Let x(t) be a solution of system (1) with hybrid
feedback (4)–(5) in the presence of measurement error. A
time instant ti is called a switching time of x(t) if x(ti) ∈
Sσ ∪ B̄δ1+σ (0)


and at time t = ti a state transition qj → qk, with

j, k ∈ {1, 2, 3}, k ≠ j occurs. The value of the state at a switching
time, xi = x(ti) is called a switching point of x(t). △

Lemma 13. Consider system (1) with controller (4)–(5) in the pres-
ence of measurement error e(t) satisfying sup ∥e(t)∥ ≤ σ . For any
r > 0, pick δ1, δ2 > 0 according to conditions (6). If ū > f̄ (1 +
√
5)/2, then there existsσ > 0 such that property (ii) of SCCP holds.
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Proof. The presence ofmeasurement error can induce twokinds of
undesirable high-frequency switching. First, y(t) could repeatedly
enter Λ+ and Λ−, inducing high-frequency switching between q1
and q2. This can only happen when x(t) ∈ Λ+

σ ∩ Λ−
σ . On the other

hand, x(t) ∈ Λ+
σ ∩ Λ−

σ only if y(t) ∈ Λ+

2σ ∩ Λ−

2σ . Pick σ small
enough that

Λ+

2σ ∩ Λ−

2σ ⊂ B̄δ1(0). (16)

Then, when x(t) ∈ Λ+
σ ∩ Λ−

σ we are guaranteed that u(t) = 0, and
therefore the controller does not switch value.

The second kind of high-frequency switching is induced when
the ball B̄σ (x(t)) intersects both B̄δ1(0) (possibly inducing a qj →

q3 transition) and (Bδ2(0))
c (possibly inducing a q3 → qk

transition). This cannot occur if the following condition is satisfied

δ2 − δ1 > 2σ . (17)

If σ > 0 is small enough that conditions (16) and (17) hold,
then the analysis of the number of switches over compact time
intervals reduces to that in the proof of Theorem 1. This concludes
the proof. �

Lemma 14. Consider system (1) with controller (4)–(5) in the
presence of measurement error e(t) satisfying sup ∥e(t)∥ ≤ σ . Let
ū > f̄ (1 +

√
5)/2 and fix r > 0. Let δ1, δ2 > 0 be chosen according

to conditions (6). Then there exists σ > 0, a point p ∈ S+, and
a compact positively invariant set Qσ

p which is stable and such that
B̄δ2+σ (0) ⊂ Qσ

p ⊂ Br(0).

Proof. Let r > 0 be arbitrary, and choose δ1, δ2 according to
conditions (6). By Lemma 11, there exists p ∈ S+ and a set Qp ⊂

Br(0) which is positively invariant in the absence of measurement
error. We will now construct a larger set Qσ

p which is positively
invariant in the presence of measurement error. Let Lσ

p = γ
q1
R (p)∩

S+
σ . Lσ

p is the segment of extremal arc γ
q1
R (p) through p, contained

in S+
σ , as shown in Fig. 3(b). Let P σ

p be the compact region defined
as P σ

p = Aq2(Lσ
p ) ∩ (Λ−\(∂Λ−)σ )c (P σ

p is the shaded region in
Fig. 3(b)). Let Qσ

p = P σ
p ∪ −P σ

p . Note that P 0
p and Q0

p coincide
with the setsPp andQp defined in the proof of Lemma11.We claim
that there exists sufficiently small σ > 0 such that the following
properties hold:

(a) Qσ
p ⊂ Br(0).

(b) P σ
p ∩ (∂Λ−)σ ⊂ intQσ

p and −P σ
p ∩ (∂Λ+)σ ⊂ intQσ

p .
(c) B̄δ2+σ (0) ⊂ intQσ

p .

Indeed, the above set inclusions hold when σ = 0. Since the
boundaries of P σ

p and Qσ
p are formed by arcs of trajectories of dif-

ferential equations that depends continuously on initial conditions,
the same inclusions continue to hold for sufficiently small σ .

Consider a discrete state transition qk → q2 at time t̄ , with
k ∈ {1, 3} and with x̄ = x(t̄) ∈ P σ

p . Let τ > t̄ be the time
of the next state transition. We claim that x(τ ) ∈ P σ

p . First, by
property (c), if the solution exits P σ

p before time τ , then the so-
lution cannot be in B̄δ2+σ (0), and hence the state transition must
be q2 → q1. Moreover, in the time interval (t̄, τ ), the solution
cannot exit P σ

p through Lσ
p or through the two extremal arcs in

Fig. 3(b). It can only exit P σ
p through the portion of the boundary

of (∂Λ−)σ which is contained in P σ
p (the thick line in Fig. 3(b)). At

the same time, a state transition q2 → q1 must occur before the
state can exit (∂Λ−)σ . Therefore, before any solutions can exit P σ

p
there must be a state transition. We have thus shown, as claimed,
that x̄ ∈ P σ

p =⇒ x(τ ) ∈ P σ
p . Similarly, x̄ ∈ (−P σ

p ) =⇒ x(τ ) ∈

(−P σ
p ). These two implications and property (b) give the implica-

tion x̄ ∈ Qσ
p =⇒ x(τ ) ∈ Qσ

p . At time τ , the discrete state switches
to q1 and the reasoning above reveals that the next state transition
must still occur in Qσ
p . Since the switching times are a subset of

the automaton transition times, the above gives the following im-
plication: xi ∈ Qσ

p =⇒ xi+1
∈ Qσ

p . Since solutions cannot exit Qσ
p

between state transitions, we conclude thatQσ
p is positively invari-

ant. By properties (a) and (c), B̄δ2+σ (0) ⊂ Qσ
p ⊂ Br(0), as required.

We are left with proving that Qσ
p is stable. The argument is the

same as in the proof of Theorem1. Namely, for every neighborhood
V ofQσ

p there exists q ∈ S+ such thatQσ
q is positively invariant and

Qσ
p ⊂ intQσ

q ⊂ Qσ
q ⊂ V . Therefore all solutions of the closed-loop

system originating in intQσ
q remain in V for all positive time. �

Lemma 15. Consider system (1) with controller (4)–(5) under the
hypotheses of Lemma 14. For any r > 0, let σ > 0 and Qσ

p be
as in Lemma 14. Then, by possibly making σ smaller, for any initial
condition the resulting solution x(t) induces a switching sequence
{xi}i∈I , such that xN ∈ Qσ

p for some N > 0.

The proof of Lemma 15 makes use of the following fact. The
proof is a matter of rote computation and is omitted due to space
limitations.

Fact 16. Consider system (1)with controller (4)–(5) in the absence of
measurement error. Let ū > f̄ (1+

√
5)/2. Suppose the switching sets

Λ+, Λ− in (3) are replaced by

Λ+
= {(x1, x2) : x1 ≤ 0, x2 ≤ 0}

∪ {(x1, x2) : x1 ≥ 0, x2 ≤ −

2u+x1},

Λ−
= {(x1, x2) : x1 ≥ 0, x2 ≥ 0}

∪ {(x1, x2) : x1 ≤ 0, x2 ≥


−2u−x1},

where u+, u− are two positive parameters. Redefine S+
= {(x1, x2) :

x1 ≥ 0, x2 = −
√
2u+x1}. If x(t) is any solution inducing a switching

sequence {xk}, the following holds.

(i) If xi+1 is a 1-switch from xi ∈ S+, then |xi+1
1 | ≤ α1(u+, u−)|xi1|,

where

α1(u+, u−) =
f̄ + ū

−f̄ + ū


f̄ − ū + u−

f̄ + ū + u+


.

(ii) If xi+1 is a 2-switch from xi ∈ S+, then the arc of trajectory
between xi and xi+1 intersects the positive x1 axis at a point
(p1, 0) such that |p1| ≤ α2(u+)|xi1|, where α2(u+) =
f̄ + ū − u+


/

ū + f̄


.

Since the functions α1(u+, u−) and α2(u+) are continuous, and
since α1(ū, ū) < 1, α2(ū) < 1, it follows that there exists
∆ > 0 such that, letting V = [ū − ∆, ū + ∆], we have
ᾱ1 := max{α1(u+, u−) : (u+, u−) ∈ V × V } < 1, and ᾱ2 :=

max{α2(u+) : u+ ∈ V } < 1. The interpretation of this result is
that the contraction property of switching sequences is preserved
under small perturbations of the concavity of parabolas defining
the switching boundaries. This is the key idea behind robustness
against measurement noise (and against dwell-time, as discussed
at the end of Section 2).

Proof of Lemma 15. Suppose xi ∉ Qσ
p . Then xi ∈ Sσ . Without

loss of generality, we assume throughout the proof that xi ∈

S+
σ . Suppose first xi+1 is a 1-switch from xi. Then xi ∈ Sσ . Let

Θ be defined as follows (see the shaded set in Fig. 4): Θ =

{(x, −sign(x)
√
2u|x|) : x ∈ R, u ∈ V }. By part (i) of Fact 16, if

xi, xi+1
∈ Θ then |xi+1

1 | ≤ ᾱ1|xi1|, with ᾱ1 ∈ (0, 1). There exists
ρ > 0 so that Sσ ∩{(x1, x2) : |x1| ≥ ρ} ⊂ Θ holds (see Fig. 4). Then
the uniform contraction property |xi+1

1 | ≤ ᾱ1|xi1| holds as long as
|xi1|, |x

i+1
1 | ≥ ρ. Moreover, ρ → 0 as σ → 0.

Suppose now that xi+1 is a 2-switch from xi. As in the proof of
Lemma 10, we have events (A) and (B) depicted in Fig. 5. (A) The
solution from xi remains to the left of the extremal arc γ

q2
L (xi) until
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Fig. 4. Illustration of the sets used in the proof of Lemma 15.

Fig. 5. Worst-case scenario for a 2-switch in the presence of measurement error.

the state transition q2 → q1 occurs. In theworst-case scenario, due
to measurement error this transition occurs at the point p in the
figure. Let w = (w1, 0) be the point of intersection of γ

q2
L (xi) and

the positive x1 axis, as shown in Fig. 5. (B) After the state transition,
the solution remains to the left of γ

q1
R (p). Let z = (z1, 0) be the

point of intersection of γ q1
R (p) and the positive x1 axis, as shown in

the figure. Then, κ := z1 − w1 is constant independent of xi, and
κ → 0 as σ → 0. Suppose that |xi1| ≥ ρ. Then xi ∈ Θ , and by part
(ii) of Fact 16 we have w1 ≤ ᾱ2|xi1|, with ᾱ2 ∈ (0, 1). Moreover,
|xi+1

1 | ≤ z1. Since z1 = w1 +κ and |w1| ≤ ᾱ2|xi1|, we conclude that
|xi+1

1 | ≤ ᾱ2|xi1| + κ .
Now we put everything together. Let ᾱ = max{ᾱ1, ᾱ2}. If

xi ∉ Qσ
p and |xi1|, |x

i+1
1 | ≥ ρ, then |xi+1

1 | ≤ ᾱ|xi1| + κ . Either this
sequence of upper bounds converges to κ/(1 − ᾱ), or there exists
M > 0 such that |xM1 | < ρ. Since ρ and κ tend to zero as σ → 0,
there exists σ > 0 such that the sets {(x1, x2) ∈ Sσ : |x1| < ρ} and
{(x1, x2) ∈ Sσ : |x1| < κ/(1 − ᾱ)} are contained in intQσ

p . Thus,
the sequence {xi} enters Qσ

p . �

Proof of Theorem 3. By Lemma 13, property (ii) of SCCP holds. By
Lemma 14, for any r > 0 for the chosen values of δ1, δ2 > 0, there
exists σ > 0 and a compact set Qσ

p ⊂ Br(0) which is stable and
positively invariant. By Lemma 15, by possibly making σ smaller,
all solutions of the closed-loop system enter Qσ

p in finite time, and
by positive invariance they remain there. Therefore, Qσ

p is globally
attractive, and hence globally asymptotically stable. �

6. Conclusions

We presented a hybrid bang–bang controller that globally
practically stabilizes the origin of a double-integrator affected by
unknown bounded an uncertainty at the input side. The controller
was proved to be robust against boundedmeasurement errors, and
has a guaranteed uniform bound on the number of switches over
compact time intervals. Our controller is a hybrid enhancement
of the classical time-optimal stabilizer for the double-integrator.
Instead of parabolas, we could have used different switching
boundaries obtaining the same results. An avenue for future
research is to adapt the technique presented in this paper to derive
a class of hybrid bang–bang controllerswith the stability properties
stated in Theorems 1, 3.
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