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Abstract

Analytical predictions are made for the three-point bending collapse strength of sandwich beams with
composite faces and polymer foam cores. Failure is by the competing modes of face sheet microbuckling,
plastic shear of the core, and face sheet indentation beneath the loading rollers. Particular attention is paid
to the development of an indentation model for elastic faces and an elastic–plastic core. Failure mechanism
maps have been constructed to reveal the operative collapse mode as a function of geometry of sandwich
beam, and minimum weight designs have been obtained as a function of an appropriate structural load index.
It is shown that the optimal designs for composite–polymer foam sandwich beams are of comparable weight
to sandwich beams with metallic faces and a metallic foam core.
? 2004 Elsevier Ltd. All rights reserved.

Keywords: Sandwich materials; Indentation; Analytical solutions; Optimisation; Beam; Bending; Buckling failure; Compo-
site materials

1. Introduction

Sandwich beams are used increasingly in applications requiring high bending sti7ness and strength
combined with low weight. The concept of the structural sandwich beam—the separation of sti7 faces
by a lightweight core—dates back to the 1820s [1], but the systematic use of sandwich beams and
sandwich panels as structural elements only gained acceptance in the middle of the 20th century
for aircraft structures. Plantema [2], Allen [3], and more recently Zenkert [1] have summarised the
literature on sandwich beams, including a systematic design strategy for sti7ness and strength. It has
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long been recognised that sandwich beams fail by a number of competing mechanisms; Gibson and
Ashby [4] generated collapse mechanism maps for beams in bending to show the dependence of
failure mode upon the geometry of beam and the relative strength of the faces and core. Although
their approach was Drst demonstrated for aluminium alloy face sheets and polymeric foam cores,
it has since been extended to other combinations such as metallic face sheets and metallic foam
cores [5–8]. Failure maps for elastic–brittle sandwich beams have been developed by Sutcli7e and
co-workers [9] and by Frostig and co-workers [10]. These are based on the higher-order sandwich
theory of Frostig [11–13]; this approach, although mathematically sound, has been largely superseded
by Dnite element codes which allow for geometric and material non-linearity. The current study
deals with sandwich beams with a non-linear material response of the core and elastic–brittle faces:
the sandwich beams comprise a polymeric foam core and glass Dbre–epoxy face sheets, loaded in
three-point bending. This material combination Dnds widespread application in boat and ship building.

The scope of the paper is as follows. The existing literature on the sti7ness and strength of simply
supported sandwich beams is reviewed. Analytical predictions are derived for the three-point bending
strength due to core shear, face microbuckling, face wrinkling and indentation. New models of in-
dentation failure are introduced as previous models are shown to be deDcient. (Detailed experimental
and numerical results in support of the analytical predictions are also presented in a companion paper
[14].) The paper concludes with the development of a failure mechanism map with contours of mass
and structural load index. Minimum weight designs are determined as a function of an appropriate
structural load index, and are compared with the minimum weight design for sandwich beams with
solid aluminium alloy face sheets and foamed aluminium alloy cores.

2. Review of the sti�ness and strength of sandwich beams in three-point bending

2.1. Sti7ness of sandwich beams

Consider a simply supported sandwich beam loaded in three-point bending as sketched in
Fig. 1. Let L be the beam length between the supports, b the width of the beam, c the core
thickness, and tf the face thickness. The relevant material properties for the core are the Young’s
modulus Ec, shear modulus Gc, compressive strength �c, and shear strength 	c; for the face sheets,
the pertinent properties are the compressive strength �f and Young’s modulus Ef. The transverse
mid-point deIection is 
 due to an applied transverse load P.

P,δ

Gc,                  Ec,  σc,τc       

P/2 P/2L

t  f Ef,σ f

c

Fig. 1. Geometry of sandwich beam.
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Fig. 2. Competing failure modes of sandwich beams subjected to three-point bending.

Allen [3] gives the total deIection 
 at the mid-point of a sandwich beam loaded in three-point
bending as the sum of the deIections due to bending of the face sheets and shear of the core:


=
PL3

48(EI)eq
+

PL
4(AG)eq

; (1)

where (EI)eq is the equivalent Iexural rigidity

(EI)eq =
Efbtfd2

2
+

Efbt3f
6

+
Ecbc3

12
≈ Efbtfd2

2
(2)

and (AG)eq is the equivalent shear rigidity

(AG)eq =
bd2Gc

c
≈ bdGc; (3)

in terms of the geometric parameters deDned above, and the distance between the centroids of the
faces d= c + tf.

2.2. Strength of sandwich beams

Four main modes of collapse have been identiDed for sandwich beams in three- and four-point
bending: face yield, wrinkling of the compressive face sheet, core shear, and indentation beneath
the loading rollers, as shown in Fig. 2. These modes of collapse have been conDrmed by a number
of investigators including Gibson and Ashby [4], TriantaDllou and Gibson [15,16], Lingaiah and
Suryanarayana [17], Theotokoglou [18], Zenkert [1] and Chen et al. [6]. We review each mode in
turn, for the case of a sandwich beam in three-point bending, of geometry sketched in Fig. 1. The
strength formulae given below, although approximate, are useful for the construction of collapse
mechanism maps and for minimum weight design. For any given sandwich beam under three-point
loading, the operative collapse mode is taken to be the weakest mode. For simplicity, interaction
between collapse modes is neglected.

2.2.1. Face microbuckling
Microbuckling of composite face sheets occurs when the axial stress within the compressive face

sheet attains the face sheet microbuckling strength �f. Upon neglecting the contribution of the core
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to the overall bending strength, moment equilibrium across the section of the sandwich beam at the
location of maximum bending moment implies that the collapse force P is

P =
4bdtf�f

L
: (4)

It is emphasised that the use of the material parameter �f should be treated with caution and used
only as a Drst approximation. It is well known that the Dbre microbuckling strength is degraded
in the presence of a multi-axial stress state such as that imposed beneath a loading roller (see for
example Ref. [19]). Studies by Drapier et al. [20], Wisnom and Atkinson [21], and Fleck and Liu
[22] show that the bending strength of composite beams (such as induced by a cylindrical roller)
can far exceed the uniaxial compressive strength. Thus, the neglect of face sheet bending beneath
the loading roller may be an acceptable assumption. The accuracy of Eq. (4) is explored in the
companion paper [14]: experiments support the use of this approximate formula.

2.2.2. Face wrinkling
Face wrinkling is a local elastic instability of the faces involving short wavelength elastic buckling

of the upper face sheet, resisted by the underlying elastic core. It may be viewed as the buckling of
a beam in axial compression (the face sheet) supported by an elastic foundation (the core).

For sandwich beams with corrugated or honeycomb cores, the core does not constitute a continuous
support and the buckling wavelength of the face sheets may scale with the cell size of the core.
This phenomenon is known as intercellular buckling, and is considered no further here as it is not
relevant to the case of foam-cored sandwich beams.

By treating the core as an elastic half-space, with axial modulus Ec and shear modulus Gc, Ho7
and Mautner [23] give a conservative estimate for the face-wrinkling load P as

P =
2btfd

L
3
√

EfEcGc: (5)

This expression includes a knockdown factor of almost 2 associated with assumed geometrical im-
perfections of the face sheet [3].

2.2.3. Core shear
In early studies (see Refs. [2,3]) it was assumed that the core collapses at a uniform shear strength

	c, with negligible additional strength from the face sheets, giving

P = 2bd	c: (6)

In reality, additional strength is provided by the face sheets. Two limiting cases can be considered:
the faces either develop plastic hinges or they continue to bend elastically at collapse of the sandwich
beam. For the case of metallic face sheets, plastic hinges have been observed by Chen et al. [6],
McCormack et al. [7], and Bart-Smith et al. [24]. To model this case, Ashby et al. [5] have performed
an upper bound calculation for rigid, ideally plastic face sheets of yield strength �f and a core of
shear strength 	c. The plastic bending strength of the faces elevates the collapse load of the structure
by a contribution which scales with the plastic bending moment for the face sheets. Whilst this
approach is pertinent to the case of sandwich beams with weak face sheets, it is inappropriate for
the case of strong faces—then, plastic shear of the core is accompanied by elastic bending of the
face sheets. Chiras et al. [8] have considered this case recently by treating the sandwich beam as
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a non-linear Timoshenko beam: for the case of a rigid–ideally plastic core and elastic face sheets,
their analysis gives the same yield load as that stated by Eq. (6), with a post-yield hardening response
with slope controlled by the bending sti7ness of the face sheets. The collapse load in three-point
bending, expressed as a function of the mid-point displacement 
 is

P = 2bd	c + 8Efb
(

tf
L

)3

: (7)

2.2.4. Indentation
In early models of indentation, the face sheets are treated as elastic beams and the core is idealised

as an elastic foundation; see, for example, Refs. [11–13,25,26]. However, for most practical sandwich
structures, the indentation load is set by plastic yield of the core with the face sheets deforming
either elastically or plastically. TriantaDllou and Gibson [15,16] assumed that the indentation load is
dictated by plastic yield of the core but neglected the contribution to indentation strength from the
face sheets. They took the collapse load to equal the uniaxial compressive strength of the core times
the loaded area of the core. Whilst this approximation suOces for the case of thin face sheets, it fails
for practical sandwich beams: the face sheets provide signiDcant strengthening by a beam-bending
action. Limit load expressions for the indentation strength due to the combined plastic collapse of the
face sheets and core have been obtained by Ashby et al. [5]. They treat both the face sheets and the
core as rigid, ideally plastic solids, with the core undergoing compressive yield, and the face sheets
forming plastic hinges. The accuracy of their model was conDrmed by a series of experiments and
detailed numerical simulations on metallic foam cores and aluminium alloy face sheets; see Refs.
[6,7,24].

In the companion paper by Steeves and Fleck [14] it is shown experimentally and by Dnite element
analysis that the indentation load is set by elastic deformation of the faces and compressive yield
of the core. This indentation mode has also been observed by Daniel et al. [27]. No theoretical
treatment of this collapse mode exists in the literature, to the authors’ knowledge; accordingly, a set
of indentation models is developed below. The related problem of indentation of an elastic beam
upon a plastic foundation has been addressed by Soden [28]. He found that the indentation depth u
increases monotonically with indentation load P according to

P =
4√
3

(
2
3

)1=4
bt3=4f �3=4

c E1=4
f u1=4: (8)

Shuaeib and Soden [29] extended the Soden model to the case of an elastic beam supported by an
elastic–ideally plastic core using the analysis of Zingone [30]. The load–displacement response is
qualitatively similar but somewhat more compliant than that given by Eq. (8).
The indentation models presented below assume that indentation collapse is a local elastic instabil-

ity of the compressive face sheet, accompanied by local compressive yielding of the core. Although
the overall deformation state within the sandwich beam is much more complex (see Ref. [10] or
[31]) than that of the simpliDed model, the model is expected to be accurate when the peak load is
set by a local instability.

The indentation model assumes a transverse instability of the face sheet and not a shear instability.
The shear stresses within the core have only a small e7ect upon the axial force within the face
sheet, and are neglected in the analysis. Further, the analysis of Deshpande and Fleck [32] shows
that shear straining of the core does not necessarily induce shear stress. They performed triaxial tests
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on Divinycell PVC foams and found that compressive yielding is in accordance with a maximum
principal stress criterion: a vertex exists along the hydrostatic axis of stress space, and shear straining
over a wide range is not suOcient to move the loading point on the yield surface away from this
vertex. Thus, the plastically compressed foam core in the indentation zone may provide only normal
traction to the face sheet despite the fact that the core is undergoing both deviatoric and hydrostatic
straining. The Dnite element study in the companion paper [14] makes use of the Deshpande–Fleck
constitutive model: this constitutive description assumes that PVC foam yields in compression with a
vertex along the hydrostatic line. In contrast, previous studies of sandwich beam indentation neglect
the presence of the vertex on the yield surface [33].

The analysis given below demonstrates that the presence of large in-plane compressive stresses in
the indented face sheet leads to a peak load, as observed experimentally by Daniel et al. [27] and
Steeves and Fleck [14]. In version I of the model the core is taken as rigid–ideally plastic, and in
version II it is taken as elastic–ideally plastic in order to explore the sensitivity of the indentation
response to the elastic compliance of the core, and to justify some of the underlying assumptions of
the rigid–ideally plastic core model.

3. Indentation model for elastic face sheets and a rigid–ideally plastic core

Consider the sandwich beam in three-point bending shown in Fig. 1, with elastic faces and a
rigid–ideally plastic core of crushing strength �c. The transverse load P at mid-span induces a
bending moment M = PL=4 on the sandwich cross-section at mid-span, and it is assumed that this
bending moment is carried by the face sheets. Equilibrium dictates that the upper face sheet is
subjected to a compressive axial force F = M=(c + tf) while the lower face sheet experiences a
tensile force of equal magnitude. It is assumed that the foam core compresses beneath the mid-roller
in a rigid–ideally plastic manner, so that the transverse line load on the sandwich face from the core
is equal to q = �cb, where �c is the crushing strength of the core material and b is the width of
the beam; see Fig. 3. The length of the indentation zone is 2�. It is emphasised that the indentation
model given here makes no assumption about the variation in normal stress through the thickness
c of the core. It simply assumes that the core exerts a normal compressive traction of yield stress
magnitude upon the indented portion of the face sheet.

foam
core

elastic face
sheet

P

F F

q   (x)

x

λ

Fig. 3. Indentation zone beneath loading roller.
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Consider a typical element of the elastic face sheet subjected to a transverse load per unit length q
and to an axial force F ; M is the moment on a typical cross-section and V is the shear force. Take
x as the distance along the elastic beam and u(x) as the transverse deIection. Then, equilibrium
dictates that

q =
dV
dx

(9)

and

F
du
dx

+ V =
dM
dx

: (10)

The face sheet bends in accordance with classical beam theory, such that M is related to the curvature,
d2u=dx2 by

M = −EfIf
d2u
dx2

; (11)

where Ef is the axial modulus of the face sheet and If ≡ bt3f=12 is the second moment of area
about its mid-plane.

The governing equation for the beam-column follows from Eqs. (9)–(11) as

d4u
dx4

+
F

EfIf

d2u
dx2

= − q
EfIf

: (12)

Note that Eq. (12) does not denote an eigenvalue problem, and admits a solution at all values of F
due to the inhomogeneous term on the right-hand side. For the choice q = �cb the general solution
is

u = A1 cos(kx) + A2 sin(kx) + A3x + A4 − �cbx2

2F
; (13)

where A1, A2, A3, and A4 are constants to be determined and the wave number k is

k =

√
F

EfIf
: (14)

Consider the present problem: the indented face sheet of the sandwich beam is an elastic beam
subjected to a uniform line load q = �cb and to a central transverse load P at the origin x = 0, as
sketched in Fig. 3. The magnitude of the axial force F follows from moment equilibrium of the
sandwich beam in three-point bending:

F =
PL
4d

: (15)

We emphasise that the wave number k is dependent upon the in-plane load F and thereby the
transverse load P via Eq. (15), and is not to be identiDed with a foundation modulus. The Dve
unknowns A1, A2, A3, A4, and � for the indented face sheet are obtained from the following Dve
boundary conditions:

(i) Symmetry dictates

u′(x = 0) = 0: (16)
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(ii) The shear force on the cross-section of the beam equals P=2 at x = 0, giving

u′′′(0) =
P

2EfIf
: (17)

(iii) At the end of the indentation zone, the core is rigid, giving

u(�) = 0: (18)

(iv) The slope at the end of the indented zone vanishes:

u′(�) = 0: (19)

(v) The moment in the face sheet at the end of the indented zone vanishes since the bending
moment is taken to be continuous:

u′′(�) = 0: (20)

(A jump in bending moment at x = � would lead to the unphysical existence of an inDnite shear
force.) Imposition of boundary conditions (i)–(iii) and (v) leads to the solution

A1 =
2d
Lk

(
1 − cos � − � sin �
sin � − � cos �

)
; (21)

A2 = −2d
Lk

; (22)

A3 =
2d
L

; (23)

A4 =
2d
Lk

(
1 − cos � − � sin �
sin � − � cos �

)
+

d�2

Lk

(
1 + cos �

sin � − � cos �

)
; (24)

where it is convenient to replace � by the normalisation � ≡ k�. The boundary condition (iv), as
expressed by Eq. (19), provides an explicit relation between the load P and �:

P = btf

[
4dEf�2

c

3L

(
sin � − � cos �

1 − cos �

)2]1=3
: (25)

Similarly, the wavelength � ≡ �=k can be expressed in terms of � by elimination of k through
Eqs. (14), (15), and (25) to give

� = tf�
(

dEf

6L�c

(
1 − cos �

sin � − � cos �

))1=3
: (26)

The deIection beneath the loading roller u(0) = A1 + A4 follows from Eqs. (21) and (24) as

u(0) =
4d
Lk

(
1 − cos � − � sin �
sin � − � cos �

)
+

d�2

Lk

(
1 + cos �

sin � − � cos �

)
: (27)
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Thus, the load P, roller displacement u(0) and wavelength � are each given in terms of the inde-
pendent parameter �. Eq. (27) implies that u(0) increases monotonically from zero as � increases
from zero. However, the load P displays a maximum Pmax, given by

Pmax = btf

(
�2dEf�2

c

3L

)1=3
; (28)

when � attains the value �. The corresponding mid-point displacement umax and wavelength �max are

umax = 8tf

(
d
L�

)4=3( Ef

3�c

)1=3
; (29)

and

�max = tf

(
�2dEf

3L�c

)1=3
: (30)

A solution exists when u(0)¿umax, but with a softening response. In subsequent analysis, we make
extensive use of the indentation collapse load Pmax as expressed by Eq. (28).
The assumption that both the slope and the curvature of the face sheet are zero at the position

x = � implies that an equilibrating transverse force V (�) is applied to the beam by the foundation
at x = �. An evaluation of V (�) at the end of the plastic zone gives

V (�) = −EfIfu′′′(�) = −EfIfk3(A1 sin � − A2 cos �); (31)

where A1 and A2 are given by Eqs. (21) and (22), respectively. The ratio of V (�) to the applied
transverse load P is given by

V (�)
P

=
1
2

(
� − sin �

sin � − � cos �

)
(32)

with V (�) acting in the same sense as P. The magnitude |V (�)=P| increases monotonically from
zero as � and u(0) increase from zero; at peak load, � equals �, and Eq. (32) gives

V (�)
P

=
1
2

(
� − sin �

sin � − � cos �

)
=

1
2
: (33)

The above analysis can be re-cast in non-dimensional form. Straightforward manipulations re-
veal that the non-dimensional load QP and indentation wavelength Q� depend upon the single non-
dimensional indentation depth Qu where

QP =
P

btf�c

(
L�c

dEf

)1=3
; (34)

Q� =
�
tf

(
L�c

dEf

)1=3
(35)
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Fig. 4. Indentation response of a sandwich beam with a rigid–ideally plastic core. The curves labelled QP and Q� refer to
the indentation response for a sandwich beam in bending, while the curve labelled ‘Soden, QP’ refers to a transversely
loaded beam on a half-space.

and

Qu =
u(0)
tf

(
L
d

)4=3( �c

Ef

)1=3
: (36)

The dependence of QP and Q� upon Qu is plotted in Fig. 4. The peak load is QPmax=(�2=3)1=3, the corre-
sponding wavelength is Q�max = (�2=3)1=3, and both are attained at an indentation Qumax = 8(1=3�4)1=3.
For comparison, QP is also plotted as a function of Qu for the Soden model; then, the non-dimensional
load QP is an increasing function of Qu, given by

QP =
4√
3

(
2
3

)1=4
Qu 1=4: (37)

Fig. 5 shows the deIected shape of the compressive face of the sandwich beam under increasing
loads, up to the peak value; the axes adopted are Qx = x Q�=� and Qux = u(x) Qu=u(0). The rapid increase
in beam deIection with increasing load demonstrates the buckling character of the indentation event.

A set of experiments and non-linear Dnite element simulations support the simple rigid–ideally
plastic core indentation model outlined above. In particular, the load versus indentation response and
peak load are accurately captured by this analytic approach: see the companion paper by Steeves
and Fleck [14].

4. Indentation model for elastic face sheets and an elastic–ideally plastic core

In sandwich beam construction, it is usual for the core to have a much smaller elastic modulus
than the face sheets. Consequently, it is anticipated that indentation of the face sheet by the loading
roller is accompanied by large elastic strains within the core in addition to the local crush zone
immediately below the indenter. In order to assess the signiDcance of elastic compression within the
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Fig. 5. DeIected shape of the compressive face of a sandwich beam with a rigid–ideally plastic core at selected loads up
to the peak value QP = 1:49.

core upon the indentation response, a model is now outlined which treats the core as an elastic–
ideally plastic foundation, with an elastic spring sti7ness

q(x) = su(x); (38)

where q(x) is the normal force per unit length exerted by the core on the underside of the face and
u(x) is the transverse deIection of the face. It remains to stipulate the magnitude of the foundation
sti7ness s; here we neglect the variation of normal stress through the thickness of the core and take

s ≡ Ecb
c

: (39)

The core is treated as elastic–ideally plastic with a collapse strength of q=�cb to be consistent with
the rigid–ideally plastic idealisation of Section 3. Thus, the indentation displacement of the core at
the onset of core yield is given by

uc =
�cc
Ec

: (40)

When the load P applied to the sandwich beam in three-point bending is suOciently small, the
indentation response beneath the central loading roller is elastic. The load P versus indentation
u(0) response in the elastic regime is calculated by considering the idealised problem of an elastic
beam-column for the indented face and an elastic foundation for the core. This problem has been
addressed previously by Hetenyi [25] and makes use of the governing equations (9)–(12) with
q = su(x). The general solution is

u(x) = (B1e"x + B2e−"x) cos(#x) + (B3e"x + B4e−"x) sin(#x); (41)
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where B1, B2, B3, and B4 are constants to be determined, and the parameters # and " depend upon
the axial load F on the beam-column according to

#2 ≡
(

s
4EfIf

)1=2
+

F
4EfIf

(42)

and

"2 ≡
(

s
4EfIf

)1=2
− F

4EfIf
: (43)

Recall that F is related to the applied transverse load P via Eq. (15). Imposition of the following
boundary conditions:

u → 0 as x → ∞; (44)

u′(0) = 0 (45)

and ∫ ∞

0
su(x) dx =

P
2

(46)

provides the solution

u(x) = e−"x

[
P
(
#2 + "2

)
4s

(
cos(#x)

"
+

sin(#x)
#

)]
(47)

with a mid-point displacement

u(0) =
P
(
#2 + "2

)
4s"

: (48)

Note that the displacement u(x) is non-linear in load since the parameters # and " depend upon the
load P through Eqs. (15), (42), and (43). The indentation compliance at zero load is

du(0)
dP

∣∣∣∣
P=0

=
√
2
(

s
EfIf

)3=4
: (49)

Eq. (48) gives the indentation response while the core remains elastic. Yield of the core occurs at
u(0) = uc = �cc=Ec and the associated yield load Pc is given by the implicit equation

Pc =
4�cb"
#2 + "2 : (50)

At loads P above Pc, the core behaves in an elastic–plastic manner, with a central plastic zone
at |x|¡� and an outer elastic zone over |x|¿ �. The complete solution is obtained by combining
the solution for an elastic beam on a rigid–ideally plastic foundation with the solution for an elastic
beam on an elastic foundation. At the elastic–plastic boundary, the deIection of the beam into the
foundation u(�) is exactly that needed to produce yield in the core material: u(�) = �cc=Ec.
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The governing equations for the beam in the plastic zone |x|¡� are given by Eqs. (9)–(12), with
the solution

u(x) = C1 cos(kx) + C2 sin(kx) + C3x + C4 − �cbx2

2F
; (51)

in terms of the unknown constants C1; C2; C3, and C4. Similarly, the governing relations for the
elastic region, |x|¿ � are given by Eqs. (9)–(12) but with q = �cb replaced by q(x) = su(x). The
solution is

u(x) = (D1e"(x−�) + D2e−"(x−�))cos(#(x − �))

+(D3e"(x−�) + D4e−"(x−�))sin(#(x − �)); (52)

where D1; D2; D3, and D4 are unknown constants and the parameters # and " have been deDned in
Eqs. (42) and (43). Nine boundary conditions are required to solve for C1; C2; C3; C4; D1; D2; D3, and
D4, and the length of the plastic zone �. The boundary conditions are

(i) u → 0 as x → ∞, implying that D1 and D3 vanish;
(ii) u = �cc=Ec, with continuous u′(x) and u′′(x) at the elastic/plastic boundary x = �;
(iii) at the origin x = 0, u′ = 0 and u′′′ = P=2EfIf;
(iv) overall force equilibrium dictates that∫ ∞

0
q(x) dx =

P
2
: (53)

It is again helpful to make the substitution � = k� and to solve for u(x) and for the load P in
parametric form as functions of the independent variable �. The solution for the outer elastic zone
is

D2 =
�cc
Ec

(54)

and

D4 =
#2 + "2

#
c
Ec

(
P
2b

− �c�
)

− �cc"
Ec#

; (55)

while the solution for the inner plastic zone is

C1 =
�

� sin �

(
�cc
Ec

" − D4# − 12�c�3

Eft3f�2
+

2d
L
(1 − cos �)

)
; (56)

C2 = −2d�
L�

; (57)

C3 =
2d
L

(58)

and

C4 =
12�c�4

Eft3f�2
− C1 cos � +

2d�
L�

sin � − 2d�
L

+
�cc
Ec

: (59)
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Continuity of curvature u′′(x) at x= � provides an implicit expression for the plastic zone size � in
terms of �:

� tan �
�

[
2D4#" − �cc

Ec

(
"2 − #2

)− 2d� sin �
�L

− 12�c�2

Eft3f�2

]

+D4# − �cc
Ec

" +
12�c�3

Eft3f�2
+

2d
L
(cos � − 1) = 0; (60)

since # and " can each be expressed in terms of � and �. The applied transverse load P is given
in terms of � and �(�) by making use of Eqs. (14) and (15) and the relation k = �=�:

P =
4dEfIf

L

(�
�

)2
: (61)

In contrast to the solution for the rigid–ideally plastic core, no explicit algebraic expression can be
obtained for the peak load.

Again, it is possible to recast these relations in non-dimensional form. The groups QP, Qu, and Q�, as
deDned in Eqs. (34)–(36), are each a function of the non-dimensional independent variable �, but
now an additional independent non-dimensional group is involved:

Q' =
�c

Ec

(
Ec

Ef

)1=4( c
tf

)3=4(L
d

)
: (62)

The group Q' scales with the yield strain of the core �c=Ec, and typical values of Q' range from 0.1
to 1 for composite face sheets and polymeric foam cores. In the limit Q' → 0, the core becomes
rigid–ideally plastic and the indentation model given in Section 3 for the rigid–ideally plastic core
is recovered. The other limit, Q' → ∞, recovers the Hetenyi elastic core model. The sensitivity to
Q' of the collapse response QP versus Qu, and plastic zone size Q� versus Qu, is shown in Figs. 6 and 7,
respectively. The presence of elastic compliance in the core leads to a small drop in the load carrying
capacity of the sandwich beam, and to a decrease in the size Q� of the plastic zone at any given
value of Qu relative to the rigid–ideally plastic core.

The e7ect of the core compliance Q' upon the peak non-dimensional load QPmax is shown in
Fig. 8. When Q' = 0, the rigid–ideally plastic model is recovered, and QPmax = (�2=3)1=3. As Q'
increases to the value of about 15, QPmax drops to the asymptotic limit given by the Hetenyi model.
In the Hetenyi model, yielding of the core is neglected and, as the indentation displacement u
increases, the load P asymptotes to the limiting value PL

PL =
4dbtf

L

(
EcEftf
3c

)1=2
; (63)

which can be re-expressed as

QPL Q'2=3 =
4√
3
: (64)

Typically, for sandwich beams with composite face sheets and polymeric foam cores, Q' lies in the
range 0.1–1 and QPmax is adequately approximated by the asymptote QPmax = (�2=3)1=3 for the rigid–
ideally plastic core. Yielding of the core dominates, and the elastic compliance of the core can be
neglected. Within this practical regime of interest, the peak indentation load lies much below the
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Fig. 6. The e7ect of core compliance, as parameterised by Q', upon the non-dimensional load versus displacement response
for a sandwich beam with an elastic–ideally plastic core; indentation collapse mode.
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Fig. 7. The e7ect of core compliance, as parameterised by Q', upon the size of the indentation zone for a sandwich beam
with an elastic–ideally plastic core; indentation collapse mode.

Hetenyi result given by Eq. (63) and that of related elastic indentation models, such as Thomsen
[26] and Frostig et al. [11].

The e7ect of core elastic compliance upon the deIected shape of the indented compressive face
sheet is shown in Fig. 9, for the choice Q' = 0:5. The deIected shape has been plotted using the
scaled axes Qux=u(x) Qu=u(0) and Qx=x Q�=�, for selected values of QP up to the peak value QPmax=1:375.
A comparison of Figs. 9 and 5 shows that the presence of a Dnite core compliance causes the
compressive face to deIect as a damped oscillation in the outer elastic zone. Numerical checks
verify that the magnitude of the oscillation is not, in general, suOcient to cause tensile yield of the
core within the elastic zone.
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Fig. 8. Dependence of the non-dimensional peak load QPmax upon the compliance Q' for the indentation collapse mode.
The dotted line refers to the Hetenyi model.
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Fig. 9. DeIected shape of the compressive face of a sandwich beam with an elastic–ideally plastic core at selected loads
up to the peak load; indentation collapse mode.

Some comment on the assumptions underlying the above indentation models is necessary. It is
assumed implicitly that the length of the plastic indentation zone is much smaller than that of the
beam. This ensures, Drst, that the assumption of constant axial force F within the indentation zone is
acceptable, and second, that the beam is suOciently long for localised indentation to occur. For very
short beams, failure by overall core crushing is possible, as sketched in Fig. 10. A straightforward
estimate of the core-crushing collapse load is

Pcc = �cbL: (65)

It has also been assumed that the relation between the axial force F and the applied load P; F =
PL=4d, is speciDed by the undeformed conDguration. In reality, as indentation proceeds, the net
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Fig. 10. Core crush of a short sandwich beam.
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Fig. 11. E7ect of net section loss upon the indentation response of a sandwich beam with an elastic–ideally plastic core,
Q' = 0:36.

section reduces from d to d−u; this loss in section progressively magniDes F and thereby destabilises
the beam. The signiDcance of this complication is explored in Fig. 11 for the choice Q'=0:36. The
calculation involving a progressive loss of section was conducted using an incremental, non-iterative
scheme: as � was incremented, the value of d employed to calculate P and u was taken as d − u
where u is the current value. It is found that the loss of section with increasing indentation has only
a minor e7ect upon the collapse response.

5. Minimum weight design and failure mechanism maps

Sandwich beams can be optimised by minimising an objective function such as weight or cost,
against a set of constraints such as structural sti7ness or strength. Here, we design the geometry
of a sandwich beam in three-point bending to achieve minimum mass, against the constraint of
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a prescribed structural load index: this is a common optimisation task for sandwich beams. We
begin by introducing the structural load index P̂:

P̂ =
P

bL�f
(66)

as an appropriate non-dimensional measure of the sandwich beam strength in three-point bending.
The mass M of the sandwich beam is given by

M = 2bLtf(f + bLc(c (67)

and is non-dimensionalised to a mass index M̂ where

M̂ =
M

bL2(f
: (68)

It remains to select the geometry of sandwich beam which minimises the mass M̂ for a given struc-
tural load index, P̂. The Drst step is to re-express the collapse load for each competing failure mode
in terms of P̂, making use of the following non-dimensional geometrical and material parameters:

Qt = tf=c; (69)

Qc = c=L; (70)

Q� = �c=�f; (71)

Q	= 	c=�f; (72)

QE = Ef=�f (73)

and

Q(= (c=(f; (74)

where (c is the density of the core material and (f is the density of the face material. Then, the
load index for face microbuckling follows from Eq. (4) as

P̂M = 4Qt(Qt + 1) Qc2: (75)

In similar fashion, Eq. (6) for core shear and Eq. (28) for indentation failure can be re-expressed
as

P̂CS = 2Q	(Qt + 1) Qc (76)

and

P̂I =
(

�2 Q�2 QE
3

)1=3
Qt(Qt + 1)1=3 Qc4=3; (77)

respectively. Substitution of Eq. (67) into Eq. (68) for the mass index M̂ gives

M̂ = (2Qt + Q() Qc: (78)

In order to deduce the geometrical parameters Qt = tf=c and Qc= c=L which minimise M̂ for a given
P̂ it is helpful to construct a failure mechanism map with axes Qt and Qc.
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Table 1
Mechanical properties of PVC foams and woven glass–epoxy composite

Material Compressive strength �c Shear strength 	c Density (c

(MPa) (MPa) (kg m−3)

H30 foam 0.29 0.33 36
H100 foam 1.45 1.60 100
H200 foam 3.85 3.30 200

Compressive strength �f Young’s modulus Ef Density(f

(MPa) (GPa) (kg m−3)

GFRP 350 30 1770

Fig. 12. Failure mechanism map of high-density H200 foam core with contours of mass index M̂ and structural load
index P̂, and trajectory of minimum weight design. The solid bold lines denote the boundaries between collapse regimes
and the arrows follow the minimum weight trajectory.

This study focusses on sandwich beams with composite faces and polymer foam cores; we there-
fore take the material properties of three PVC foam cores and a woven glass–epoxy face sheet given
in Table 1 as exemplary. (These compositions are addressed experimentally in the companion paper
[14].) The failure mechanism maps shown below are unique for each combination of non-dimensional
groups Q�2 QE and Q	. A typical map is plotted in Fig. 12 for the choice Q�2 QE = 0:0104 and Q	= 0:0094,
which are representative of sandwich beams with glass Dbre–epoxy face sheets and the high density
Divinycell PVC foam core H200, as detailed in Table 1. Contours of M̂ and P̂ have been added to
the collapse mechanism map for Q(=0:113. The trajectory of minimum weight design is determined
by locating the point ( Qc; Qt) along each contour of P̂ at which M̂ is a minimum. The minimum
weight trajectory is the locus of all such minima. This procedure is straightforward and is performed
analytically: algebraic expressions exist for P̂( Qc; Qt) and M̂ ( Qc; Qt). The details of these calculations are
omitted for the sake of brevity. With increasing load index P̂, the trajectory of minimum-weight
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Fig. 13. Failure mechanism map for medium density H100 foam core with contours of mass index M̂ and structural load
index P̂. The solid bold line denotes the boundary between the indentation and core shear regimes, and the arrows follow
the minimum weight trajectory.

design passes through the microbuckling region, along the boundary between the microbuckling and
indentation regimes indicating simultaneous failure by microbuckling and indentation, through the
indentation region, and Dnally along the boundary between the indentation and core shear regimes.

Fig. 13 is a failure mechanism map for a medium density foam core, designated H100 in Table 1,
and woven glass–epoxy face sheets, with Q�2 QE=0:0015; Q	=0:0046, and Q(=0:0565. A comparison with
Fig. 12 reveals that, as the density of the foam core decreases, the microbuckling region disappears
and minimum mass designs lie predominantly within the indentation regime. The failure mechanism
map for the low density H30 foam core is similar to Fig. 13 for the medium density core, and the
minimum weight design trajectory is exclusively within the indentation regime.

The relationship between the minimum mass index M̂min and the load index P̂ can be stated
explicitly for each failure regime. Explicit expressions for the trajectory ( Qc; Qt) as a function of P̂ can
also be obtained. In the microbuckling region, we have

M̂min = ( Q((2 − Q()P̂)1=2 (79)

with the optimal value of Qt given by

Qt =
Q(

2(1 − Q()
: (80)

Similarly, within the indentation region, the minimum mass index M̂min is

M̂min = 4
(

Q((2 − Q()3

9�2 Q�2 QE

)1=4
P̂3=4 (81)

with Qt given by

Qt =
3 Q(

2 (1 − 2 Q()
: (82)
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Fig. 14. Dependence of the minimum mass M̂min upon the structural load index P̂, for composite face sheets and three
densities of PVC foam core (H30, H100, and H200), and for an aluminium alloy face sheet and an aluminium alloy foam
core. Mass indices for the aluminium sandwich beams are normalised by the density of GFRP.

Along the boundary between the indentation and microbuckling regimes, the minimum mass index
M̂min is stated as

M̂min =
� Q( Q�
8

( QE
3

)1=2
+

2(2 − Q()
� Q�

(
3
QE

)1=2
P̂; (83)

while along the boundary between the indentation and core shear regimes, M̂min is

M̂min =
(

6 Q	
�2 Q�2 QE

)1=3
(2 − Q() P̂2=3 +

Q(P̂
2 Q	

: (84)

The relationship between M̂min and P̂ is plotted in Fig. 14 for woven glass–epoxy face sheets and
the three densities H30, H100, and H200 of Divinycell PVC foam core, using the properties listed in
Table 1. The dependence of the operative failure mode upon P̂ is included in the Dgure: indentation
is the controlling collapse mode for the practical range of values of P̂ for the low foam density, with
microbuckling also occurring for the high-density foam. For the practical range of foam densities
considered, M̂min decreases with increasing density of foam core; additional weight reduction may be
achieved by the development of higher density foam cores but this is beyond the scope of the present
study. It is instructive to compare these minimum weight designs with that obtained previously by
Chen et al. [6] for a sandwich beam with an aluminium alloy face sheet and an aluminium alloy
foam core ( Q(=0:10, and Q	= Q�=0:0057). For sandwich beams with ductile faces such as aluminium
alloys, the collapse mode of microbuckling is replaced by face yield. The aluminium alloy is assumed
to have the same yield strength �f as that of the woven composite face sheet. However, aluminium
alloys have a density (Al = 2700 kg m−3, which is 50% greater than that of woven composite,
(comp = 1770 kg m−3. To allow for a fair comparison between the metallic and composite sandwich
beams, M̂min is deDned by M̂min =M=bL2(comp for all sandwich constructions. The minimum weight
designs for the aluminium faces and aluminium foam core are included in Fig. 14. It is clear that
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the metallic sandwich beam is of similar weight to the composite beam with an H100 PVC foam
core; however, the composite beam with an H200 PVC foam core is lighter by a factor of about 2.

6. Concluding remarks

This study has been motivated by a consideration of the collapse strength of sandwich beams with
composite face sheets and polymer foam cores; however, the analytical strength formulae developed
herein have broader application to the general case of elastic–brittle faces and ductile cores. For
example, ceramic faces remain elastic until they crush in axial compression instead of microbuckling,
and metallic foam cores collapse plastically.

There are signiDcant di7erences between the models introduced above and existing models for
the indentation strength of sandwich beams. Models which consider an elastic core response, such
as the Hetenyi model [25], predict much higher sandwich beam strengths. Alternatively, models
which account for core plasticity but do not include axial compression of the face sheet, such as
the Soden model [28], also predict higher strengths than the models given here. The indentation
models introduced above consider a rigid–ideally plastic core and an elastic–ideally plastic core.
The assumption of a rigid–ideally plastic core gives too sti7 an initial response but does provide an
analytical expression for the peak load in contrast to the model with an elastic–ideally plastic core.
It is instructive to construct failure mechanism maps for the competing modes of collapse and to
deduce thereby the minimum weight sandwich conDguration as a function of structural load index.
The comparisons outlined above demonstrate that composite–polymer foam sandwich construction
and metallic sandwich construction lead to comparable structural weights for a wide range of loads.
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