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Fibre reinforced composites are widely used as structural components in the aerospace

industry. The fabrication of highly tailored fibre composite structures is enabled by ad-

vanced composite manufacturing methods, such as Automated Fibre Placement (AFP).

AFP enables fibre tows to be placed at arbitrary fibre orientations, either straight or

curved, and the local tailoring of composite properties significantly improves the me-

chanical performance. The conventional finite element approaches assume that the curved

fibres are locally straight, and many small elements are needed to model the curved fi-

bres accurately. This increases the computational expense of gradient-based fibre angle

optimization as it requires repeated evaluations of the finite element model of the com-

posite. Therefore, the goal of this research is to establish an accurate finite element (FE)

model with good computational efficiency for composite structures with complex fibre

configurations to be used for gradient-based optimization.

In this work, a novel finite element approach that enables the use of larger elements

with the desired level of accuracy is formulated for a single-layer thin composite lamina

with curved fibres. Fewer elements make the FE analysis more efficient as the dimen-

sion of the global stiffness matrices is reduced. The element model represents the real

physical system more accurately, as the Gauss quadrature process is modified to capture

the stiffness change caused by the fibre curvature in the calculation of element stiffness

matrices. As a function of the orientation of fibres in adjacent elements, fibre curvature

is calculated by minimizing the fibre discontinuity between adjacent elements given their

average fibre orientation. This is a least square minimization problem and solved through
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its normal equation. Finally, stiffness maximization for the single-layer thin composite

lamina is performed using a gradient descent algorithm integrated with the finite ele-

ment formulation with explicit fibre curvature. The fibre curvature is an intermediate

variable to the objective function, and the total derivative of the objective function with

respect to fibre orientation is calculated analytically using the adjoint method. The op-

timal solutions show that this new method gives the same results as optimization using

conventional finite elements, but has much faster convergence.
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Chapter 1

Introduction

1.1 Motivation

Fibre reinforced polymer composites are widely used as structural components in the aerospace

industry. They have outstanding stiffness- and strength-to-weight ratios, as well as excellent

thermal properties and are highly resistant to corrosion [1]. Compared to conventional

materials such as aluminum, steel or titanium, the primary benefits of composite components

include reduced weight and improved design flexibility. Taking advantage of these properties,

it is possible to manufacture lighter, stronger and stiffer aerospace structures.

In order to exploit the advantages of fibre composites fully, one needs to use complicated

composite fibre arrangements, which allow for much greater capacity than conventional

composite structures with straight fibres to tailor the structural properties both overall and

locally. Complicated fibre arrangements make it possible to control the local mechanical

properties of the structure and design the composite to have highly tailored structural

performance such as maximum stiffness or a desirable vibrational frequency.

The major problem with using complicated composite fibre arrangements is that it is

difficult to model accurately, and then use the model for optimization. If the composite model

is used in an optimization scheme, it is generally necessary to evaluate the model repeatedly.

The most reliable existing composite models are computationally very expensive [2–5], and

hence their use for optimization is limited. Therefore, an efficient model that accurately
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depicts the complicated composite fibre arrangements is necessary if such composites are to

be exploited fully. The goal of this research is to establish a high-fidelity finite element model

with good computational efficiency for composite structures with curved fibres, and integrate

it into gradient-based fibre angle optimization.

Advanced composite manufacturing methods, such as Automated Fibre Placement (AFP)

enable the fabrication of highly tailored fibre composite structures by allowing the fibre angle

to vary within a single ply, so that fibres can always be in the orientation that most efficiently

carries the desired loads. To achieve this, the fibres need to be curved. This is not convenient

for conventional finite element approaches to composites, where the fibres are assumed to be

locally straight. Many small elements are necessary to capture the overall configuration of the

fibres for the accurate modeling. This increases the computational expense of gradient-based

optimization as the optimization algorithm typically uses a large number of analysis iterations.

The most economic way to mitigate this issue is to use fewer elements to make the FE analysis

more efficient. Conventional finite elements, employing a model that assumes straight fibres

within each element, experience rapid degradation in accuracy when the elements increase in

size. In order to use larger elements, the element model must more accurately represent the

real physical system. Hence, a finite element that accounts explicitly for the intra-element

fibre curvature will be developed in this thesis.

In this work, a finite element with explicit fibre curvature is formulated for a single-layer

thin composite lamina with curved fibres, which enables the use of larger elements with

the desired level of accuracy. In the calculation of element stiffness matrices, the Gauss

quadrature process is modified to collect information about fibre curvature rather than

assigning a uniform orientation within an element. Because fibre curvature is a function of

the orientation of fibres in adjacent elements, the curvature itself is not a design variable, but

instead is calculated by minimizing the fibre discontinuity between adjacent elements given

their average fibre orientation. This is considered as a least square minimization problem and

solved through its normal equation. Finally, stiffness maximization for the single-layer thin

composite lamina is performed using a gradient descent algorithm integrated with the finite

element formulation with explicit fibre curvature. The sensitivity analysis is conducted using

the adjoint method, so that the gradient of the objective with respect to fibre orientation is
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derived analytically considering the influence of curvature. To accelerate the convergence, a

good initial configuration is chosen: the initial fibre configuration in each element is orientated

with the maximum principal stress for the relevant geometry with an isotropic material. The

optimal solution is verified and compared to the results from gradient descent optimization

using conventional finite elements.

1.2 Finite Element Formulation for Composite

Laminates with Curved Fibres

1.2.1 Finite Element Formulation

Most fibre-reinforced composite materials have uniformly oriented fibres, which are placed in

with a prescribed orientation angle [6]. The orientation angle is defined as an angle between the

principal material axes and some reference coordinate axes, as shown in Fig. 1.1. Conventional

finite element approaches are appropriate because they assume a uniform fibre orientation

angle in each element. This is true for conventional composite fabrication approaches. As

advanced composite manufacturing methods increase in popularity for the fabrication of

complex composite structures, it becomes feasible to configure fibre tows in more desirable

paths to improve the mechanical properties of the composite. An example of such technology

is AFP. AFP is an automated composite manufacturing process that uses a robotic arm to

place fibre tows and build a structure one ply at a time [7]. In the fibre-placement process,

the fibre tows are impregnated with epoxy resin, fed to a heater and compaction roller on the

fibre-placement head and placed onto a work surface as a single fibre band. This technology

provides precise control of fibre orientations and makes laminates with curved fibres possible.

The primary advantages of AFP include improved mechanical properties, repeatability of

results, a seamless transition between design and manufacturing, and higher accuracy than

manual layup. This technology enables highly tailored fibre composite structures for better

performance, but inherently implies fibre curvature. Fibre curvature changes the local stiffness

of the composite structure and reduces the accuracy of structural analysis using uniform

orientation finite elements, unless many small elements are employed.
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Figure 1.1: Definition of fibre orientation angle. (a) The fibres in an element are aligned parallel to the x-
axis; (b) The global x − y coordinate system rotates with an angle θ to a local x′ − y′ coordinate system.
The angle θ is the fibre orientation; (c) The x′-axis of the local x′ − y′ coordinate system is the tangent line
of the curved fibre. The radius of curvature is ρ and the fibre curvature κ = 1/ρ.

Employing composite configurations with curved fibres can improve the mechanical

properties of the composite, such as strength, stiffness and vibrational properties. The use of

curved fibres in composite laminates result in the increase of the buckling load. Hyer and

Charette [8] used a curvilinear fibre path near a hole in a composite laminate to study how

such a design can increase the buckling capabilities. The tensile and compressive buckling

loads were studied through the finite element method. Results show that the curvilinear

designs improve the performance in tension. Abdalla et al. [9] also studied the effect of

thermal residual stresses on the performance of laminate with curved fibres. They found that

the use of curved fibres can increase the maximum buckling load, and the residual thermal

stress of the curved fibre plate helps to reduce the stress resultant distribution near the centre

of the plate. The buckling and first-ply failure responses were also analyzed on this same

structure using Abaqus [10]. The manufacturing limits of tow-placement machines on the

curved fibre panels were considered as well. It was found that tailoring the in-plane stiffness

around the hole can reduce the stress concentrations, and the buckling and first-ply failure

responses of the fibre-steered laminate were insensitive to the existence of a central hole.

The variation of fibre orientation in composite laminates also causes the change of natural

frequencies and mode shapes. Honda and Narita [11] developed an analytical solution for

the natural frequencies and vibration modes of composite laminates with curvilinear fibres.
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They found that plates with curvilinear fibres give specific mode shapes that differ from

the unidirectional laminates with straight fibres. Akhavan and Ribeiro [12] investigated the

effects of using curvilinear fibres in laminated composite plates on the mode shapes and

natural frequencies of vibration. They found that using curved fibres can change the mode

shapes of vibration and may lead to a significant change in the natural frequencies.

Research also shows that composite laminates with curved fibres have higher resistance

to damage than laminates with straight fibres. Lopes et al. [13] used Abaqus simulations to

compare the buckling and first-ply failure responses of straight and curvilinear fibre composite

plates subjected to compressive longitudinal load. The curved fibre and straight-fibre

composite panels were analyzed in Abaqus, with a set of first-ply failure criteria implemented

in the FE subroutine. The results showed that the composite panels with curved fibres have

better resistance to the onset of damage than straight fibres under compressive loads. Lopes

et al. [14] studied the postbuckling progressive damage behavior and final structural failure

for composite panels with curved fibres, and found that composite panels with curved fibres

have higher strength than straight-fibre laminates and the damage initiation is postponed.

The above work indicates that using curved fibres can improve the structural performance

of a composite, such as increasing the critical buckling load or fundamental natural frequency,

and bringing a greater degree of flexibility in designing the structure. The most common

way to analyze composite laminates with curved fibres is by using finite element methods,

because the complicated geometries and loading of the curved fibres and the orthotropic

material properties of composites make analytical solutions difficult to obtain. However,

using finite element methods with curved fibres requires a fine mesh to achieve sufficient

accuracy. This increases the computational cost. When a finite element-based optimization

is performed, the computational expense will be additionally increased by the use of a fine

mesh since the finite element system has to be solved in each iteration. To overcome this

issue, one can use large elements to reduce the dimension of the global stiffness matrix, which

reduces the computational time for solving the finite element system. Meanwhile, sufficient

accuracy needs to be maintained when using larger elements. Therefore, a finite element

formulation that enables the use of larger element size to improve computational efficiency

while maintaining sufficient accuracy is very attractive.
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1.2.2 Mesh Convergence for Composite Laminates with Curved

Fibres

When applying the conventional finite element method on composite laminates with curved

fibres, the continuous curved fibres are divided into finite elements with straight fibres. For

the conventional finite element approach, the assumption is that the fibres in each element are

approximately straight. As the fibre curvature increases, the elements need to become smaller

for this approximation to be sufficiently accurate. As the number of elements increases, the

finite element solution approaches a single solution; this is mesh convergence. The number of

elements necessary to achieve convergence depends upon the magnitude of the curvature of

the fibres: higher curvature requires more elements.

Generally, the relative error between the FE solution and the exact solution should

decrease monotonically as the mesh becomes finer. However, the presence of curved fibres in

a composite laminate causes the convergence behavior of a finite element solution often not to

behave in this manner. In a conventional FE process, the curved fires are discretized into small

elements with straight fibres and the angle in the centre is assigned as the orientation. The

FE solution strongly depends on the meshing of the curved fibres as the assigned orientation

angles together determine the overall structural stiffness. However, modeling curved fibres as

straight is inaccurate for some mesh arrangements, because the implied orientation angles

result in particularly inaccurate calculations of stiffness. This leads to an incorrect calculation

for the element stiffness matrices, resulting in oscillation of the mesh convergence.

Fig. 1.2 shows a composite laminate consisting of curved fibres. The waviness follows a

sine function θ(x) = sin(4πx), which is used to calculate the orientation angle at any location.

The plate is fixed on the left edge and loaded with a uniform distributed load, F=20000, as

shown in Fig. 1.2(a). The displacement on the right edge of the plate is calculated using

the conventional finite element method. This plate is discretized into different number of

small square elements with locally straight fibres as shown in Fig. 1.2(b), and each element is

assigned with an average fibre orientation angle. The short lines represent the fibre orientation

in each element, which is the fibre angle between the tangent line at the centre point and the

x-axis.
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(a) A 1×1 single composite lamina with curved
fibres. The wavy curves represent curved fi-
bres. The waviness follows a sine function θ(x) =
sin(4πx). The plated is fixed on the left edge and
loaded with a uniform distributed load, F =20000.
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(b) The plate is meshed into different numbers
of square elements: (I) 2 elements×2 elements;
(II) 4 elements×4 elements; (III) 6 elements×6
elements; (IV) 10 elements×10 elements. The
short lines represent the fibre orientation in the
elements.

Figure 1.2: A 1×1 single composite lamina with sinusoidal curved fibres. The fibre angle in the element
centre is assigned as the orientation. The orientations vary due to variations both in mesh size and in position.
The conventional finite element method is used to calculate the displacement on the right edge of the plate.
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Figure 1.3: The strain energy of the plate with respect to the number of elements. The strain energy
oscillates first as the number of elements increases, but eventually approaches convergence around 100
elements.
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Fig. 1.3 shows the strain energy of the plate as a function of the number of elements. The

conventional finite element method is used for the analysis. The strain energy is calculated,

U = 1
2DT KD, (1.1)

where D and K are the global displacement vector and stiffness matrix obtained from the

conventional finite element analysis, respectively. The data points denote the strain energy

calculated for different mesh densities. In the typical finite element process, it is known that

as the number of elements is increased, the strain energy of the domain will also increase and

eventually approach an asymptote as mesh convergence is attained. However, for laminates

with curved fibres, there are points of discontinuity whereby sudden increases in strain energy

are seen at intermediate points along the path to mesh convergence. These are inconsistent

with the mesh convergence paths of typical finite element methods that do not model curved

fibre composites. The sudden increases are due to the selection of only uniform angles to

model a curved fibre, resulting in inaccurate approximations. For certain element counts,

this translates into markedly inaccurate calculation of the stiffness of the element. Increasing

the number of elements mitigates this effect, as seen in Fig. 1.3, but increases computational

cost substantially. When modeling composites with curved fibres, it is always possible to

choose, inadvertently, element configurations that result in highly inaccurate modeling of

the mechanics of the system. To avoid this issue, one option is to formulate a higher fidelity

finite element that explicitly models the fibre curvature.

1.3 Parametrization of the Fibre Arrangement

The design of composite structures with curved fibres needs to have a spatial definition of

the fibre arrangement in the representative domain. Generally a mathematical function is

used to describe how the fibre orientation varies spatially throughout the structure. In order

to express the curved shape of fibres, a reference path is defined and the orientation angle is

calculated based on the position. The path is often defined by a polynomial function, and

the coefficients of the polynomial are parameters that can be adjusted to achieve the desired
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paths of the curved fibres.

Such parametrization of the fibre arrangement can reduce the number of design variables

in the optimization for curved fibre composites [2]. Simple functions such as polynomial or

trigonometric functions are often used for determining the curved shape, as they are easy

to implement for calculating integrals and derivatives in the modeling. Gürdal and Olmedo

[15] proposed a linear function to represent the reference path, which varies linearly from the

angle at the plate centre to the angle at the plate edge. They used linear interpolation to

express any angle on the path between the centre and edge. Lopes et al. [13] used this linear

function to run a variable-stiffness simulation to improve the buckling and first-ply failure

strength for composite panels with curved fibres. This linear function was also employed in

the study of natural frequencies and vibrational mode shapes of variable stiffness composite

laminates [12] and the effect of curved fibre paths on the in-plane flexibility and out-of-plane

bending stiffness of morphing wing skin [16]. Blom et al. [17] defined a sinusoidal function

for the fibre path in a laminate to study the influence of tow-drop areas on the stiffness

and strength. The geometry was built based on the starting angle and the fibre angle at

a prescribed distance. Nik and Fayazbakhsh [18] used a similar concept to build a cosine

function as a reference path to optimize the stiffness and buckling load. Akbarzadeh et al. [19]

analyzed the role of shear deformation on the plate responses with the same function, while

Fayazbakhsh et al. [20] applied the same model to find the influence of gaps and overlaps

in variable stiffness laminates. Luersen, Steeves, and Nair [21] optimized the fibre path in

a laminated composite cylindrical shell using a Kriging-based approach. The fibre angle

was assumed to follow a curvilinear path over eight segments of the circumference, then

its variation in the circumferential direction was expressed in terms of the fibre orientation

on the eight segments. Blom et al. [22] ran an optimization for a cylinder to maximize the

buckling load under bending with a strength constraint. The cosine function was used to

define the fibre path on the cylinder.

Another option is to employ higher order functions to describe the fibre reference path,

but this approach requires more coefficients to define the function. Increasing the number of

coefficients will increase the computational expense of the analysis. Parnas et al. [23] defined

cubic Bezier curves and cubic polynomials for curved fibres to minimize the weight of the
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composite laminate under stress constraints. Honda et al. [24] used a cubic polynomial function

involving with both x and y-coordinates to maximize the mechanical properties, including

fundamental frequencies or in-plane strengths, while minimizing the average curvatures of

fibres. The curved shape was determined by the coefficients of the cubic polynomial. Honda

and Narita [11] presented an analytical method for determining natural frequencies and

vibration modes of laminated plates with curved fibres. Spline functions were employed to

represent arbitrarily shaped fibres, while the function was represented as a linear combination

of B-spines.

While basic functions can be easily implemented into the structure analysis and opti-

mization, using higher order functions can give more accurate shapes, but requires more

information for the curvilinear parameterization. Both schemes need proper selection of

function coefficients, which affects the quality of the simulation. In addition, the optimization

of a composite is critically dependent upon the parametrization chosen for the fibres. More

general parameterizations require more parameters and greater computational expense. Using

an insufficiently flexible parametrization results in being unable to represent accurately the

actual optimal configuration. One can build an analytical expression of the fibre configuration

based on its geometry due to the assumption of small fibre curvature. In this work, the

analytical expression for fibre orientation angles at arbitrary locations in a square element is

derived, assuming that the curved fibres are locally circular arcs.

1.4 Optimization of Composite Laminates with

Curved Fibres

As AFP makes composite laminates with curved fibres easier to fabricate, it enables tailoring

of the mechanical properties to improve the structural performance. To take advantage

of this, it is desirable to find optimal fibre configurations that provide better mechanical

performance such as maximum stiffness or vibrational frequency. Structure optimization has

various forms such as topology optimization and fibre angle optimization.
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1.4.1 Topology Optimization

Topology optimization distributes material within a given design space under specified loads

and boundary conditions in order to improve structural performance. The design variable for

topology optimization is usually the local material density, known as density-based topology

optimization. This is described by the density of the material at each location. Typically it is

used to determine the optimal material layout in a structure so that the mechanical properties

of the structure are maximized while a constraint on mass is satisfied [25], but it can also

be applied to wide variety of scenarios such as compliant mechanisms for multifunctional

materials [26] and biomedical design [27].

The choice of design variables is the major difference between the topology optimization

and fibre angle optimization. Topology optimization uses the material density of the elements,

while fibre angle optimization uses the orientation of the principal material direction. Topology

optimization is employed to optimize material layout within a given design space. Blasques

and Stolpe [28] proposed simultaneous optimization of both the topology and laminate

properties for laminated composite beam cross sections. The beam cross section was optimized

using a density-based topology optimization. Minimum compliance multi-material topology

optimization with weight constraints was also formulated simultaneously. The design variables

represented the volume fractions of each of the candidate materials. The SIMP method was

applied to optimize the cross section topology and material properties for square and L-shape

beam sections. They also extended this work with eigenfrequency constraints [29]. Coelho

et al. [30] proposed a multiscale topology optimization model to minimize compliance of

composite laminates. The material model interpolated between two material constituents,

strong fibre, and soft matrix phases. The fibre orientation angle was also introduced to

find the optimal fibre configuration. Several finite elements were grouped as a design sub-

domain. However, this research only focuses on taking advantage of fibre composites and

AFP technology to propose optimal fibre arrangement design with the goal of maximizing

structural performance. Therefore, only fibre orientation angle optimization is considered in

this work.
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1.4.2 Fibre Angle Optimization

1.4.2.1 Conventional Composite Laminates

For conventional composite laminates with single orientations per ply, the design variables

are fibre orientations of individual layers and layer thickness. The typical optimization for

conventional composite laminates is to find the optimal laminate layup or thickness in each

layer given a set of pre-defined values of design variables. When the design space is enlarged,

the computational efficiency will decrease as more design candidates need to be searched and

tested. If the number of candidate orientation angles is limited by restricting the optimization

to specific angles, issues associated with non-gradient-based optimization also arise.

Computational efficiency is a major issue for the optimization of conventional composite

laminates, as it needs to search an optimal combination of design variables. Non-gradient-

based optimizations such as stochastic algorithms are employed as they are capable of finding

the global optimal solution for the optimization, but is less computationally efficient [31].

Walker and Smith [32] minimized the weighted sum of the mass and deflection of composite

structures subjected to Tsai-Wu failure criterion using genetic algorithms with the finite

element method. The design variables were the fibre orientation and the laminate thicknesses.

Bagheri et al. [33] used the genetic algorithm for the optimization of maximum fundamental

frequency and minimum structural weight of a ring-stiffened cylindrical shell subjected to

constraints, including fundamental frequency, structural weight, axial buckling load, and

radial buckling load. The design variables included shell thickness and the number of stiffeners,

the width and height of stiffeners. Erdal and Sonmez [34] studied the maximization of the

buckling load capacity for laminated composites subjected to in-plane static loads using direct

simulated annealing, while later applying this optimization algorithm to the minimization of

laminate thickness [35]. Omkar et al. [36] used the Vector Evaluated Artificial Bee Colony

algorithm to solve the optimization of minimizing weight and the total cost of the composite

component. The number of layers, the orientation of the layers and thickness of each layer

were all design variables. Roque and Martins [37] optimized the stacking sequences for

maximization of the natural frequency of symmetric and asymmetric 8-ply laminates using

differential evolution optimization.
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1.4.2.2 Composite Laminates with Curved Fibres

There is essentially an infinite number of design variables for composite laminates with curved

fibres. Because of the large number of design variables, gradient-based approaches are most

efficient for computational optimization of composite laminates with curved fibres. However,

optimization requires repeated evaluations of the underlying mechanical models, in this case a

finite element model of the composite. The conventional approach to finite element modeling

of composites with curved fibres is the patch method, where the composite is divided into

many small elements, in each of which the fibres are assumed to be effectively straight. As

more curvature is introduced through AFP, the elements need to get smaller and smaller.

More elements means a larger stiffness matrix to solve at each step of optimization, which is

computationally expensive.

The efficiency of fibre angle optimization relies on the sensitivity analysis of the objective

function with respect to the design variables. Lund and Stegmann [38] derived a theoretical

expression for the gradient of stiffness and eigenvalues with respect to fibre angle. They

proposed the discrete material optimization (DMO) approach that expresses the element

stiffness as a weighted sum of a finite number of candidate materials. The design variables

were the weights instead of fibre orientation angle. The effective stiffness matrices were

calculated by driving one weight to 1, while the other weights must be equal to 0. This enables

gradient-based optimization to perform more quickly, because only one candidate is chosen

in each iteration and the effective stiffness is equal to the elastic stiffness of this candidate.

They applied the DMO approach first on single-layer clamped composite plate [38] and then

on a composite cantilever beam [39]. The DMO approach was employed to maximize the

buckling load [40] and the eigenfrequency [41] of composite plates. Lund and his colleagues

also studied the nonlinear fibre angle optimization of laminated composite shell structures

such as square plates [42] and laminated composite U-profile beams [43]. The derivative

of the stiffness matrix with respect to the design variable, fibre angle, was approximated

semi-analytically at the element level by central finite differences. The optimization problems

were solved using the method of moving asymptotes (MMA) [44]. Lund’s work provided a

detailed sensitivity analysis for the maximizing the stiffness and eigenfrequency. Although
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they applied the DMO approach to various studies, they still did not remove the influence of

a fine mesh on the computational efficiency of the optimization, as the FE equation needs to

be solved in each iteration. The work in this thesis is to mitigate this issue by introducing

larger elements with curved fibres.

As it is easy to fall into local minimum using gradient-based optimization, some researchers

proposed different methodologies to apply gradient-based optimization to mitigate this issue.

Güdal and his colleagues presented a generalized reciprocal approximation for maximizing

the fundamental frequency [45] and the buckling load [46] of rectangular composite plates.

The fibre orientation angles at each node were considered as design variables and the

sensitivity analysis was performed using the adjoint method. The reciprocal approximation

was used to update the fibre angles at each finite element node. Due to the difficulty of

analytical sensitivity analysis, some researchers also apply gradient-based optimization using

a commercial optimizer [47–49]. The gradient is the direction along which the objective

function decreases the fastest. To avoid obtaining a local minimum, a stochastic algorithm

is first employed to find a potential optimal point in the design space, which is set as the

initial guess for the gradient-based optimization. Campen et al. [50] maximized the buckling

load of a composite plate with curved fibres considering the constraint of realistic fibre angle

curvature. A genetic algorithm was used to provide starting points for a gradient-based

optimizer to avoid local minima. Montemurro and Catapano [51] proposed a multi-scale two-

level optimization strategy for a composite laminate with curved fibres. This optimization first

maximized the stiffness to obtain the optimal fibre configuration considering manufacturing

constraints (macroscopic scale), and then optimized the fibre path in each layer to meet all the

geometric, technical and mechanical requirements (mesoscopic scale). The genetic algorithm

was first employed to provide a potential sub-optimal point in the design space, then a

built-in MATLAB gradient-based function was used to find the global solution. Similarly, the

present work also tries to find the starting points near the global optimum before performing

gradient-based optimization. This is done by using the direction of maximum principal

stresses as the initial fibre configurations.
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1.5 Thesis Layout

This section summarizes the technical content of each chapter and the detailed structure of

this work. Haystead [52] optimized the fibre orientations throughout a single layer composite

laminate for the maximization of specific eigenfrequencies and eigenfrequency bandgaps. He

used a brute force finite difference method to perform the sensitivity analysis, whereby the

gradient is calculated by perturbing the design variable, the fibre orientation angle, and the

value of the objective function is recalculated. As a result, the computational cost is very

large. Also, the optimized fibre orientation angle remains discontinuous as the conventional

finite element method is used. This thesis work aims to mitigate these two major issues,

computational efficiency and fibre discontinuity.
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Figure 1.4: Flowchart of the gradient-based optimization for stiffness maximization of a thin single-layer
composite lamina with curved fibres. Given an initial fibre configuration, the fibre curvature is generated by
minimizing the discontinuity between elements. The finite element with explicit fibre curvature is formulated
for the structure analysis and sensitivity analysis. Then the gradient of the objective function is calculated.
The fibre orientation angles are updated and the values of objective function are recalculated until the
convergence criterion is satisfied.

To increase the computational efficiency, a novel finite element method with explicit fibre
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curvature is formulated, which allows the use of larger elements while attaining sufficient

accuracy. Using larger elements violates the assumption that fibres are locally straight, so

fibres in each element need to be curved. When calculating element stiffness matrices, the

Gauss quadrature process is modified to capture stiffness changes due to fibre curvature,

while the local stiffness is constant in the conventional finite element process. The results are

verified for different composite structures through comparison with converged conventional

finite element solutions. Both the computation time and accuracy are compared between this

new method and the conventional FE process. In each element the fibre orientation is the

design variable. The fibre curvature is calculated by minimizing the discontinuity between

fibres in adjacent elements. This is done through minimizing the sum of the squares of the

angle difference between adjacent elements, where the angle difference is the difference of

fibre orientations on shared edges of adjacent elements. The normal equation is obtained by

letting the derivative of the sum of square of the angle difference be zero. The curvatures are

obtained by solving the normal equation, and compared to curvatures from the analytical

solutions for different composite structures.

Combining these together, stiffness maximization for the single-layer thin composite lamina

is performed using a gradient descent algorithm. The flowchart of the optimization is shown

in Fig. 1.4. The finite elements with explicit curvature are used for the structural analysis.

The sensitivity analysis is conducted analytically. The gradient of the objective function

and constraints with respect to the fibre angles, considering the influence of curvature, is

derived using the adjoint method. The initial fibre configuration in each element is orientated

with the maximum principal stress for the relevant geometry with an isotropic material. The

maximization of stiffness is performed on different structures using this new optimization

scheme, while the efficiency and accuracy is studied and compared to the gradient descent

optimization using conventional finite elements.

The detailed structure of this thesis is as follows:

• Chapter 1: The literature review gives motivation for this thesis work by introducing

relevant work, explaining the problem origin and highlighting areas of novelty. The review is

divided into three main areas: finite element formulation for composite laminates with curved

fibres; parametrization of the fibre arrangement; and optimization of composite laminates
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with curved fibres.

• Chapter 2: The study of deformation of curved elastic fibres shows that the influence of

interlayer slip between fibres is marginal. The deformation of curved elastic fibres is modeled

as a two-layer curved composite column composed of two elastically-connected sub-beams

with initial curvature subjected to an axial load. The interlayer slip is assumed to obey a

linear constitutive relation. The governing equation is obtained using a variational principle

with a simply supported boundary condition. The results show that the assumption of perfect

bonding between fibre tows is reasonable.

• Chapter 3: A finite element with explicit fibre curvature is developed, which improves

the computational efficiency and maintains good accuracy. This method takes the fibre

curvature into consideration, allowing the use of large element size to reduce the dimension

of the global stiffness matrix. In the process of calculating the element stiffness, the Gauss

quadrature is modified to collect information on stiffness changes caused by fibre curvature.

An 8-node quadrilateral element with reduced integration is used to formulate finite elements

with explicit fibre curvature. Various test cases with different fibre configuration and loading

conditions are tested to verify this finite element. The comparison between the finite element

with explicit fibre curvature and the conventional finite element method shows that the

proposed method can greatly improve the computational efficiency with good accuracy, which

is critical for the analysis of complicated composite structures.

• Chapter 4: While the design variables are the fibre orientations in each element, the

implied curvatures must be determined by some other method. A novel curvature generation

method is presented to reduce fibre discontinuity and enable the modeling of curved fibres

in an element. An expression in terms of curvature is built to give fibre orientation on the

element boundaries based on the geometry of curved fibres. It is assumed that fibres in the

element are circular arcs with constant small curvature. The difference in the angles between

each adjacent element can be obtained. The minimization of the sum of the angle difference

can generate curvature for each element, which is considered as a least square minimization

problem and solved through its normal equation. Several test cases, including square plates

with multiple curved fibres shapes and an L-shaped structure, are presented to verify this

method. The results from the curvature generation method show good agreement with the
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analytical solution, which indicates that it is an efficient way to generate the curvature.

• Chapter 5: The stiffness maximization for a thin single-layer composite lamina is

performed using a new optimization scheme to improve the efficiency. A gradient descent

algorithm and the finite element formulation with explicit fibre curvature are used. With

the curvature considered in the sensitivity analysis, the objective function with respect to

the fibre orientation angles is derived analytically using the adjoint method. The test case

using a square region shows that this new optimization method is efficient for reaching the

exact solution. Finally, the maximum stiffness gradient-based optimization with explicit fibre

curvature is performed on an L- and a T-shaped structure with different loading conditions.

The direction of the maximum principal stress for the relevant geometry with an isotropic

material is set as the initial fibre orientation in each element. The results are compared to

gradient-based optimization using the conventional finite elements.
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Chapter 2

Interlayer Slip between Curved

Fibres

2.1 Introduction

Advanced composite manufacturing methods make curved fibres in composite structures

possible. The local stiffness of the composite varies due to fibre curvature and many small

elements need to be employed in a finite element simulation in order to get good accuracy

of the structural analysis. In addition, curved fibres experience transverse deflections when

subjected to axial loads. As a consequence, a model of composites with curved fibres is

necessary to account for this.

One key issue in the development of such a model is the scale at which the fibres must

be modeled. When modeling composites with straight fibres, it is assumed that the fibres

remain effectively straight and that any slip of adjacent fibres is captured in the homogenized

shear modulus of a lamina. When modeling curved fibres, fibre tows are typically exposed to

tensile or compressive loads that, respectively, tend to straighten or bend the fibres. During

this elongation or contraction, the fibres may slip relative to adjacent fibres because of the

lower shear modulus of the inter fibre matrix material. This is similar to a sheaf of paper

that is easily bent if the individual leaves are allowed to slide, but is very stiff if the leaves

are bonded. The magnitude of this effect determines how the fibre tows must be modeled, or
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if they can be modeled as bundles at all.

This chapter contains a verification study of the effective stiffness of elastic fibres with

initial curvature subjected to an axial load, analyzing the influence of interlayer slip in a

two-layered curved composite beam. The governing equation was derived by Challamel [53]

using a variational principle with a simply supported boundary condition. The interlayer

slip obeys a linear constitutive relation. The Euler elastica theory is employed to account

for large curvature. The shape of the curved beam is assumed to be a circular arc before

and after deformation as only the linear elastic case is considered. The axial displacement of

the curved beams is obtained by solving the governing equation and the effective stiffness is

approximated linearly as the ratio of the load to the displacement.

To verify the analytical solution, the effective stiffness of the composite beam with initial

curvature is also computed using finite element methods. The analytical predictions agree with

the computational results for relevant combinations of material and geometric parameters,

and the effect of interlayer shear slip on the effective stiffness is discussed in detail. The

results indicate that interlayer slip does not have a significant impact on the elastic properties

of a composite, either for individual fibres slipping, or for adjacent fibre tows slipping. This

knowledge is helpful to formulate finite elements with curved fibres modeled explicitly.

2.2 Effective Axial Stiffness of A Two-layered

Curved Beam

2.2.1 Interlayer Slip

The problem of interlayer slip in a two-layered beam has been studied multiple times due to

the widespread applications of composite steel-concrete beams in the field of civil engineering.

The interlayer slip is the relative displacement between two imperfectly bonded beams along

the interface. The bending of the beam causes interlayer slip between the steel and concrete

components. Typically the relationship between the interlayer shear load f and interlayer

slip displacement Δu is non-linear, but frequently approximated as a linear relationship by

using a constant slip modulus k [54]. The slip can affect the mechanical behavior of the
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composite, such as buckling [55] and vibrations [56]. With a typical linear relation for the slip

in the composite beam, the governing equation is derived based on one of a variety of possible

beam theories. Xu and Chen [57] studied the principle of virtual work of partial-interaction

composite beam based on both Timoshenko beam theory and Euler-Bernoulli beam theory.

The principle of minimum potential energy, the variational formulae for the frequency of free

vibration and the critical load of buckling were derived. Approximate solutions for bending,

vibration, and buckling were obtained by using variational principles. Girhammar and Pan

[58] developed the closed-form solutions for the displacement for a composite beam with

partial interaction subjected to a uniform transverse load. A sixth order governing differential

equation in terms of displacement was developed and solved using the Laplace transformation.

Curved fibres are similar to curved beams. The mechanical properties of curved fibres can

be obtained by modeling the behavior of curved beams. For the interlayer slip of a curved

beam expressed in terms of the in-plane rotation of the cross-section θ(s), Challamel [53]

gives an expression for the slip,

u(s) = h1

2 θ1(s) + h2

2 θ2(s), (2.1)

where s, θi(s) and hi are the curvilinear abscissa, the in-plane cross-section rotation and the

depth of each layer, respectively.

Generally, it is convenient to treat interlayer slip as a linear relation between force and

displacement [57, 59–61]. The relation between the interlayer shear force per unit length f(s)

and the slip u(s) is,

f (s) = ku (s) = k

2 (h1θ1 (s) + h2θ2 (s)) , (2.2)

where k is the constant slip modulus. Challamel [53] assumes that each layer in the two-

layered beam has the same geometry and experiences the same deformations, h1 = h2 = h,

θ1 = θ2 = θ, Eq. (2.2) becomes:

f(s) = khθ(s). (2.3)
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2.2.2 Derivation of the Effective Axial Stiffness

To simplify the analysis of the elastic fibres with initial curvature subjected to axial load, the

shape of the curved fibre is assumed to be a circular arc. This has the eventual advantage

of enabling parametrization of the fibre configuration in a region by two variables: average

orientation and curvature. A two-layered curved composite beam composed of two identical

sub-beams is used to study the effective stiffness of the curved beam, as shown in Fig. 2.1.

The two-layered curved beam is pinned at point A and point B is subjected to an axial load,

P . The two points A and B are located on a horizontal line. The solid and dashed line

represent the beam before and after deformation, respectively.

A B

ds

a Ta x

(a) (b)

P
�(s)

�

f

Figure 2.1: An initially curved beam as a circular arc: (a) geometry and coordinate system and (b) an
infinitesimal element. The curved beam is fixed at two horizontal points A and B. Point A is constrained by
a pinned boundary condition and point B is subjected to an axial load, P , while its vertical displacement is
zero. The solid and dashed line represent the beam before and after deformation, respectively. f is the shear
force between two beams. a and aT are tangent angles at point A before and after deformation, respectively.

The elastica theory developed by Euler is applied to the curved beam. Euler and Jakob

Bernoulli developed the theory for elastic lines yielding the solution known as the elastica

curve and employed it to study buckling [62]. This theory allows very large elastic deflections

of structures, which is suitable for solving large deflection problems of beams [63–66]. In the

elastica theory, the shape of an elastic curve is expressed in the exact differential equation,

while the second derivative of deflection is used to approximate the curvature in Euler-

Bernoulli beam theory. The state of the curved beam is specified by the in-plane rotation

of the cross-section θ(s), where s is the curvilinear abscissa. The exact expression of the

curvature, κ, is:

κ = dθ(s)
ds

. (2.4)
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Challamel [53] gives the governing equations of the deformation of a two-layered composite

beam subjected to an axial load with interlayer slip. The governing equation for this system

is,

EI0θ
′′ − kh0

2θ + P sin θ = 0, (2.5)

with the boundary conditions:

[EI0θ
′δθ]L0 = 0, (2.6)

where θ′′ is the second derivative of θ with respect to s, EI0 = EI1+EI2 and h0 = (h1 + h2)/2 .

Both layers have the same Young’s modulus, and Ii is the second moment of area of each

layer. The bending stiffness EIi in each layer is identical, therefore, EI1 = EI2. For the

simply supported case, the beam is free to rotate and does not experience any torque at the

boundaries. Therefore, the boundary conditions are,

θ′ (0) = θ′ (L) = 0. (2.7)

The dimensionless form of the equation is,

d2θ

ds̄2 − c̄θ + b̄ sin θ = 0, (2.8)

where the dimensionless parameters are

s̄ = s

L
, b̄ = PL2

EI0
, c̄ = kh0

2L

EI0
, (2.9)

with the boundary conditions

dθ

ds̄
(s̄ = 0) = 0,

dθ

ds̄
(s̄ = 1) = 0. (2.10)

In the governing equation, both θ and b̄ are unknown. Given a small value for P to

determine b̄, there is a corresponding solution for θ. Challamel [53] solved this governing

equation as a non-linear boundary value problem and studied the post-buckling behavior of

the composite beam. To find the displacement at point B as shown in Fig. 2.1, the tangent
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angle aT at point A after the deformation is calculated. Since only the small linear elastic

case is considered, it is convenient to treat the curved beam as a circular arc before and after

the deformation. Therefore, the displacement at the right end is obtained:

Δ = L

a
sin(a) − L

aT

sin(aT ), (2.11)

where a is the initial tangent angle at point A before the deformation.

Given P , there is a corresponding displacement Δ. The relation between P and Δ is

approximated as linear, giving the effective stiffness of the two-layered curved beam, Sk:

Sk = P

Δ . (2.12)

For beams that are initially straight or nearly straight, the elastic stretching of the beam

is also a significant contribution to the beam stiffness. The axial elongation caused by

normal stresses is considered for the extensible case, therefore 1/E is introduced by modifying

Eq. (2.12). The displacement and effective stiffness obtained from Eq. (2.11) and (2.12)

are caused by bending only. Therefore, this solution will be incorrect for the case of small

curvature as the bending has little influence. Then Δ will approach zero causing Sk to be

infinity. Including the term 1/E mitigates this problem since it will dominate compared to

1/Sk for small curvature. Therefore, the linear solution can be modified by introducing 1/E,

Eeff = 1
1
Sk

+ L

EA

, (2.13)

where A is the cross-section area of the beam.

2.3 Analytical Solution and Finite Element

Verification

In order to verify the analytical solution using Challamel’s method [53] to calculate the

effective stiffness of a two-layered curved beam, an FE model of a three-layer curved beam,
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consisting of two beam columns as the fibres or fibre tows and one thin layer as the resin,

was constructed. The commercial finite element software ABAQUS 6.12 was used to conduct

the finite element verification. Fig. 2.2 shows the finite element model. Both slip between

two fibres and slip between two fibre tows is of interest. The model can be used for both

situations by varying the geometric parameters.

X
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C

C

Middle Layer
Layer 1

Layer 2

5 �m 0.1mm

Single Fibres Fibre Tows

5
 �
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1
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.1

 m
m

1
 �

m

Figure 2.2: The finite element model of a three-layer simply supported curved beam. Layer 1 and 2 represent
the single fibres or the fibre tows, and the thin layer between them is the resin. Both the geometric size of
single fibres and fibre tows are tested in this FE model.

The material properties of AS4 carbon fibre tow (3K) produced by Hexcel [67] was used,

of which the Young’s modulus is 231 GPa and Poisson’s ratio is 0.26. For the resin layer, the

Young’s modulus is 3.5 GPa and Poisson’s ratio is 0.35, respectively [68]. All three layers are

perfectly bonded.

The beams were meshed with 4-node bilinear plane stress elements (CPS4). The simply

supported boundary condition was set at the left end, while section C-C was loaded with axial

force, 10 N, as shown in Fig. 2.2. The interlayer slip is modeled as the relative movement

between layers enabled by the high shear compliance of the resin. There is relative slip

between layer 1 and 2 because their shear moduli are different from the middle thin resin

layer. To calculate the effective stiffness from the simulation, a C-C section is defined as the

cross section of the right end. The axial displacement Δ from the finite element model is

obtained by calculating the average value of the horizontal displacements of all nodes on C-C

section. The effective stiffness of the curved beam from the finite element model is calculated

using Eq. (2.12) as well. The slip modulus is calculated according to the definition of shear,

k = G
h

t
, (2.14)

where G and t is the shear modulus and thickness of the middle layer, respectively. The slip
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modulus is determined by the material properties and geometry of the middle layer.

The fibre curvature reduces the effective stiffness of curved beams. The effective stiffness as

a function of the initial curvature determined by the analytical solution and the finite element

method for single fibres and fibre tows are shown in Fig. 2.3(a) and 2.3(b), respectively. It

can be seen that the effective stiffness of the two-layered curved beam system decreases as

the initial curvature increases, and approaches zero quickly.
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(a) Effective stiffness as a function of the initial
curvature for single fibres.
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Figure 2.3: Analytical and FE solution for the stiffness of pairs of fibres or pairs of fibre tows as a function
of the initial curvature. The effective stiffness of the three-layer curved beam system decreases as the initial
curvature increases. The curvature greatly influences the compliance of the beam system.

Fig. 2.4(a) and 2.4(b) present the effective stiffness as a function of interlayer slip

determined by the analytical solution and the FE method for single fibres and fibre tows,

respectively. In the analytical solution, the axial displacement is calculated under the

assumption of linear elasticity, where the stress states do not produce yielding. As the slip

modulus increases, the effective stiffness is unbounded due to the approximation of this

analytical solution, represented by the blue line. The red dashed line is the limit of the

effective stiffness that all layers are treated as a monolithic beam. In the FE solution it can

been seen that the effective stiffness is not sensitive to increase of the slip modulus at higher

values of the slip modulus. When the material properties of the middle layer approach those

of layers 1 and 2, the effect of the interlayer slip will disappear and all layers will behave as a

monolithic beam. The cross markers in Fig. 2.4(a) and 2.4(b) show the actual estimated slip
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modulus of the resin based upon the shear modulus of the matrix material and the geometry

of the matrix layer. The thickness and width of the matrix layer are estimated from their

micrographs [69, 70]. The slip modulus between single fibres and fibre tows are 6.48 GPa

and 1.29 GPa, respectively. They are not identical because the single fibres and fibre tows

have different interlayer spacing. At the value of the actual slip modulus of the resin, the FE

solutions are close to the analytical solutions that assume all layers act as a monolithic beam,

and the effective stiffness is not sensitive to the change of slip modulus at higher values. This

indicates that interlayer slip between either single fibres, or fibre tows, has little effect on

the effective stiffness of the curved beam system. As a result, the mechanical properties of

curved composite fibres are only affected by fibre curvature, and the effect of interlayer slip

between fibres can be neglected in the structural analysis.
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Figure 2.4: Analytical and FE solution for the effective stiffness as a function of the slip modulus. The
interlayer slip between fibre has little influence on the effective stiffness of two-layered curved beam.

2.4 Concluding Remarks

The deformation of bonded, curved elastic fibres with initial curvature subjected to axial

load is studied considering the influence of interlayer slip. The interlayer slip is assumed to

be linear. The Euler elastica theory and variational principle are used to find the analytical

solution of the effective stiffness. FE analysis is also conducted for verifying the single curved

beam, interlayer slip between to single fibres and fibre tows. The analytical solution agrees
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well in the region of large slip modulus, and the actual material properties of the slip layer

are correspond to these values. This indicates that the curvature has a large impact on the

effective stiffness, while the slip effects between either individual fibres or adjacent fibre tows

has little impact on the mechanical properties of curved fibres. As a result, perfect bonding

between fibres is a reasonable assumption in composite structural analysis. This work will

help formulate the curved finite element for solving complicated composite structures.
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Chapter 3

Finite Element with Curved Fibres

3.1 Introduction

For composite structures with curved fibres, using conventional finite element methods

requires discretization of the complex structure into many small elements, assuming the fibres

in each element are straight, and assigning a unique orientation angle to each element. The

conventional method requires fine meshes to attain high accuracy, as fine meshes enable a series

of locally straight fibre to provide a close approximation to the curved fibre path. However,

fine meshes entail a large stiffness matrix. In each iteration of a structural optimization

process, one linear system equation involving the stiffness matrix must be solved. This has

high computational expense, and this drawback increases when optimization is performed

since the finite element system has to be solved in each iteration. Reducing the dimension of

the stiffness matrix can greatly improve computational efficiency. To reduce matrix size and

hence computation time, it is necessary to use larger elements to reduce the dimension of the

global stiffness matrix. However, larger elements violate the approximation that fibres are

locally straight. Retaining relatively large elements may be enabled by modeling the fibre

curvature explicitly in order to capture the changes in stiffness. Such an approach is explored

in this chapter.

In this work, two finite element formulations with curved fibres are proposed. The first

one is the averaged compliance method (ACM) [71]. This method approximates the stiffness
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by calculating the mean of compliance over the element domain. A reference fibre path is

defined for curved fibres and the fibre orientation along the path is expressed as a linear

function with respect to the location of the element. The compliance, determined by the fibre

orientation, can be obtained as a function of the location as well. The mean of compliance is

calculated over the element domain. The effective element stiffness is the reciprocal of the

averaged compliance. The method is used to solve the problem of a rectangular plate with

curved fibres subjected to an uniform distributed axial load. It is found that this method

improves the computational efficiency since it has good accuracy with fewer elements than

the conventional finite element method, but the improvement is marginal.

The other method is the finite element with explicit fibre curvature. This models the

fibre curvature explicitly to capture the changes in stiffness. In an element with curved fibres,

the orientation varies at different locations due to the fibre curvature. As a result, the local

stiffness is not constant. In the finite element with explicit fibre curvature, the orientation

angles at each sample point in the element are picked, and then the corresponding local

stiffness is calculated at each point. During the Gauss quadrature process, the integral of

the element stiffness matrix is approximated as a weighted sum of these local stiffnesses

at specified sample points within the domain of the integral. By considering the stiffness

change due to the fibre curvature, it collects more information from the curved fibre. This is

in contrast with the assumption that the fibres are locally straight as in conventional FE

methods. This method uses varying local stiffness to approximate the integral, while ACM

has a constant stiffness over the element domain obtained by averaging the compliance.

An 8-node quadrilateral element with reduced integration is used to formulate the finite

element with explicit fibre curvature. The approach used here is to assume that both the

fibre orientation angle and the curvature are known for each element. In practice, this will

involve treating the fibre orientation angle as the primary design variable and generating

a set of curvatures that minimizes the overall fibre discontinuity. Various test cases with

different fibre configurations and loading conditions are used to verify this proposed method

to show that it provides higher accuracy and efficiency compared to the conventional FE

approach. In one verification case, the curved finite element uses 96 nodes (0.1s) to have an

average relative error of 0.23%, while the conventional finite element needs 676 nodes (0.42s).
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The comparison between the finite element with explicit fibre curvature and the conventional

FE shows that the proposed method can greatly improve the computational efficiency with

good accuracy, which is critical for the analysis of complicated composite structures.

3.2 Averaged Compliance Method

To formulate the curved fibre finite element, the first requirement is to calculate the stiffness

matrix of an element with curved fibres. When large elements with curved fibres are used in

a simulation, the assumption of straight fibres cannot accurately describe the stiffness of the

elements. Therefore, it is necessary to find the effective stiffness of curved fibres considering

the fibre curvature and the slip betweens fibres. In Chapter 2, it was shown that modeling

many curved beams bonded together approximates the properties of curved fibres. The

solution of effective stiffness for multiple curved beams indicates that the interlayer slip has

little influence on the overall stiffness of the structure. As a result, the influence of fibre slip

can be neglected when modeling a laminate with curved fibres. Fibre curvature is the only

factor that affects the stiffness of the structure. The effective stiffness of the curved fibres

can be calculated by averaging the local stiffness over the element domain.

To calculate the effective stiffness of curved fibres, the fibre orientation angles must be

known as they determine the stiffness. The orientation can be calculated from a predefined

fibre path, which serves as the basis for creating other fibre paths that together form a single

ply [12]. The fibre path is made to vary only along one of the coordinates for the convenience

of calculation. A fibre path with linear variation of the orientation along the x-coordinate

[15][72] is defined by,

θ (x) = θ1 − θ0

a
x, (3.1)

where θ0 and θ1 are the orientation angle at the left and right edge of the square element, as

shown in Fig. 3.1.

With a defined fibre path, one can calculate the average stiffness over the element domain.

For an orthotropic material in the 2-D state of stress, the stress-strain relationship is given

by [73],
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Figure 3.1: A reference fibre path in a square element with curved fibres. The curve is the reference fibre
path, which starts from the left edge and ends at the right edge. θ0 and θ1 are the orientation angle on the
left and right edge, respectively. The orientation angle θ(x) is the angle between the x-axis and the tangent
line to an arbitrary point on the path.
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, (3.2)

where Sij are the material compliances. They are determined by the longitudinal and

transverse modulus of elasticity, E1 and E2, shear modulus, G12, and Poisson’s ratio, v12.

Laminated composite plates are thin and therefore a plane stress condition is assumed. The

strains resulting from a state of plane stress (σ33 = τ23 = τ13 = 0) are,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε11
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γ12
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⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (3.3)

where
S11 = 1

E1
, S22 = 1

E2
, S33 = 1

G12
,

S12 = −v12

E1
= −v21

E2
= S21,

S13 = S23 = S31 = S32 = 0.
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The transformed relation between strain and stress in the global rectangular Cartesian

coordinate system for transversely isotropic materials is,
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where
S̄11 = S11cos4θ + (2S12 + S33) sin2θcos2θ + S22sin4θ,

S̄12 = (S11 + S12 − S33) sin2θcos2θ + S22sin4θ,

S̄13 = (2S11 − 2S12 − S33) sin θcos3θ + (2S12 − 2S22 + S33) sin3θ cos θ,

S̄22 = S11sin4θ + (2S12 + S33) sin2θcos2θ + S22cos4θ,

S̄23 = (2S11 − 2S12 − S33) sin3θ cos θ + (2S12 − 2S22 + S33) sin θcos3θ,

S̄33 = 2 (2S11 + 2S22 − 4S12 − S33) sin2θcos2θ + S33
(
sin4θ + cos4θ

)
.

Since all elements in the compliance matrix are a function of the fibre orientation angle

and the orientation only varies in the x-direction, the averaged compliance matrix [71] can

be obtained:
Sav = 1

a

∫ a
2

− a
2

S̄dx. (3.5)

Since Eq. (3.1) and Eq. (3.4) are explicit, the integration of Eq. (3.5) is straightforward.

The effective elastic matrix De of the curved finite element can be obtained by calculating

the inverse of the averaged compliance matrix,

De = Sav
−1. (3.6)

The element stiffness matrix Ke can be calculated,

Ke =
∫

Ωe
BT DeBdΩ, (3.7)

where B and De are the strain-displacement matrix and elastic matrix, respectively. The

33



strain-displacement matrix is for a 4-node quadrilateral element is,

B = [B1 B2 B3 B4 ],

Bi =

⎡
⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0

0 ∂Ni

∂y

∂Ni

∂y
∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎦ .

(3.8)

In the strain-displacement matrix B, the shape functions Ni are:

N1 (ξ, η) = 1
4 (1 − ξ) (1 − η) , N2 (ξ, η) = 1

4 (1 + ξ) (1 − η) ,

N3 (ξ, η) = 1
4 (1 + ξ) (1 + η) , N4 (ξ, η) = 1

4 (1 − ξ) (1 + η) ,
(3.9)

where ξ and η are parent coordinates. The shape function derivatives used in Eq. (3.8) are

calculated as follows: ⎡
⎢⎣ ∂Ni

∂x

∂Ni

∂y

⎤
⎥⎦ = [J ]−1

⎡
⎢⎣ ∂Ni

∂ξ

∂Ni

∂η

⎤
⎥⎦ , (3.10)

and the Jacobian matrix, J , is

J =

⎡
⎢⎣ ∂x

∂ξ
∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎦ , (3.11)

where the partial derivatives of x and y are calculated by,

∂x
∂ξ

=
4∑

i=1
∂Ni

∂ξ
Xi,

∂x
∂η

=
4∑

i=1
∂Ni

∂η
Xi,

∂y
∂ξ

=
4∑

i=1
∂Ni

∂ξ
Yi,

∂y
∂η

=
4∑

i=1
∂Ni

∂η
Yi,

where Xi and Yi are the coordinates of node i.

3.2.1 Element Verification

To verify the efficiency and accuracy of ACM, regions containing fibres with paths defined

by a linear equation will be used, as shown in Fig. 3.2. The displacement on the right edge

will be calculated using both the finite element incorporating the ACM and the conventional

finite element approach. The conventional FE assumes fibres in each element are locally
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straight. The results of the two methods will be compared.

A rectangular plate containing curved fibres is used. Its length and width is 10 and 4,

respectively. The lamina properties are set as E1 = 127, E2 = 10, G12 = G13 = 4, G23 = 1.8,

ν12 = 0.27, and the thickness is 0.001. To simplify the calculation, the curved fibres are

assumed to be circular arcs and the fibre orientation only varies linearly along the x-axis.

The fibre orientation on the left and right edge are π
10 and − π

10 , respectively. The origin of

the coordinate is in the centre of the plate. Therefore, the fibre path is,

θ(x) = − π

50x, (3.12)

where x is the x-coordinate in each element. The left edge is fixed, and the right edge is

subjected to a uniform distributed load, 50000. Path A-B is defined as the right edge of

the plate. First, the convergence study is done using Abaqus with increasing mesh density.

It is found that the Abaqus solution converges as the number of elements increases. Given

that the finite element method is a convergent method and will eventually converge to the

exact solution, the converged Abaqus solutions are considered to be good representation for

the exact solution. After getting the exact solution, the average compliance method can be

verified to see if it converges to the exact solution with fewer elements than the conventional

finite element method.

Fx

y

o

A

B

Figure 3.2: Geometric model of a curved fibre plate. The left edge of the plate is fixed, and the right edge
is subjected to a uniform tensile distributed load, F=50000. The orientation angles at the left and right
edges are π

10 and − π
10 . Path A-B is the right edge of the plate.

An FE model of the rectangle plate subjected to an uniformly distributed axial load was

constructed. The plate was meshed with 4-node doubly curved thin shell elements (S4R).

The orientations in the elements can be calculated from Eq. (3.12) based on the element
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location. Fig. 3.3 shows the horizontal displacement contour from the Abaqus simulation. The

convergence study of the Abaqus simulation is conducted on path A-B, as shown in Fig. 3.4.

As the number of elements increases, both the horizontal and vertical displacement on path

A-B will approach convergence at the mesh of 2560 (80×32) elements, as the difference

between the results of using 640 and 2560 elements is close to zero. Therefore, the Abaqus

simulation with 2560 elements can be considered as the exact solution.
U, U1

+0.000e+00
+1.607e�04
+3.214e�04
+4.822e�04
+6.429e�04
+8.036e�04
+9.643e�04
+1.125e�03
+1.286e�03
+1.446e�03
+1.607e�03
+1.768e�03
+1.929e�03

X

Y

Z

Figure 3.3: Contour of the horizontal displacement from the Abaqus simulation. The blue and red color
represents the minimum and maximum horizontal displacement on this plate.
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(a) Convergence of the Abaqus simulation for the
horizontal displacement of path A-B.
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(b) Convergence of the Abaqus simulation for the
vertical displacement on path A-B.

Figure 3.4: Convergence of the Abaqus simulation for the displacement on path A-B. Three meshes, 160
(20×8), 640 (40×16) and 2560 (80×32) elements are used. The displacement on path A-B approaches
convergence at the mesh of 2560 elements, which can be considered as the exact solution.

Based on the exact solution, the results from the ACM and the conventional FE approach

will be compared. In the conventional FE method, the plate is meshed into 4-node quadrilateral

elements. Each element is assigned with one orientation angle since fibres are assumed to be

straight in these elements. Fig. 3.5 shows the comparison between the average compliance
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method and the conventional FE method. Different symbols represent the Abaqus solution,

average compliance method (ACM) with 40 elements, and the conventional FE method with

40 and 160 elements, respectively. The maximum relative error is defined as,

εm = max
( | di

A − di
F E |

di
A

)
, (3.13)

where dF E is the nodal displacement on path A-B calculated using the finite element method,

and di
A is the displacement at the same nodal position from the exact Abaqus calculation.

The maximum relative error of the horizontal displacement between ACM with 40 elements

and the exact solution is 0.7%, and 1.3% for the conventional FE with same mesh. With

160 elements used in the conventional FE element, the results agree well with the Abaqus

solution with the maximum relative error less 0.1%. The vertical displacement obtained by

ACM and conventional FE method can both agree well with the Abaqus solution with 40

elements, with a maximum error less than 0.2%. This indicates that ACM has good accuracy

with 40 elements, as the relative error is less than 0.7%. Also, ACM is a better approximation

than the conventional FE method for the same mesh. Therefore, the ACM improves the

computational efficiency since it allows the use of fewer elements. However, this improvement

is not large enough because the relative error of conventional FE method is only 0.6% more

than ACM, which is also an acceptable approximation in this simulation.
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(a) Comparison of horizontal displacement on
path A-B. The maximum relative error of the hor-
izontal displacement between ACM (40 elements)
and the exact solution is 0.7%, and 1.3% for the
conventional FE with same mesh. Therefore, the
average compliance method shows better accuracy
than the conventional FE method.
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(b) Comparison of vertical displacement on path
A-B. The vertical displacement obtained by av-
erage compliance method and conventional FE
method can both agree well with the Abaqus so-
lution using 40 elements, with relative error less
than 0.2%.

Figure 3.5: Comparison of displacement on path A-B of the exact solution, ACM (40 elements), conventional
FE (40 and 160 elements).

3.3 Finite Element with Explicit Fibre Curvature

The ACM makes an average of compliance along the reference fibre path, and uses the averaged

value to approximate its stiffness. Therefore, the effective stiffness of any curved shape is

equivalent to the stiffness of a unidirectional laminate with a constant fibre orientation, but

their stress state are not identical. The ACM works well on the verification study because

the shear strain is not dominant in the case of uniform loading. If the average fibre direction

is off-axis from the loading direction, the lamina will develop shear strain as the fibres try

to orient along the loading direction. Therefore, the ACM is not a good method to model

the coupling between the normal stress and shear strain. When it comes to a highly curved

shape or more complicated loading condition, the averaging method will not be a good

approximation of the deformation since it cannot reflect the influence of curvature changes

on the local stiffness exactly.

Therefore, a finite element with explicit curvature is developed to approximate structures

with arbitrary fibre configuration and various loading condition considering the influence
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of fibre curvature on the local stiffness. It is able to model the fibre curvature explicitly to

capture the changes in stiffness for an element with curved fibres.

In the conventional FE process, the element stiffness matrix Ke is given as,

Ke =
∫

Ωe
BT D̄BdΩ, (3.14)

where B and D̄ are the strain-displacement matrix and elastic matrix, respectively. The

elastic matrix D̄ is given as,

D̄11 = D11cos4θ + (2S12 + D33) sin2θcos2θ + D22sin4θ,

D̄12 = (D11 + D12 − D33) sin2θcos2θ + D22sin4θ,

D̄13 = (2D11 − 2D12 − D33) sin θcos3θ + (2D12 − 2D22 + D33) sin3θ cos θ,

D̄22 = D11sin4θ + (2D12 + D33) sin2θcos2θ + D22cos4θ,

D̄23 = (2D11 − 2D12 − D33) sin3θ cos θ + (2D12 − 2D22 + D33) sin θcos3θ,

D̄33 = 2 (2D11 + 2D22 − 4D12 − D33) sin2θcos2θ + D33
(
sin4θ + cos4θ

)
.

where
D11 = E1

1 − ν12ν21
, D22 = E2

1 − ν21ν12
, D33 = G12,

D12 = v12E2

1 − ν12ν21
, D21 = v21E1

1 − ν12ν21
,

D13 = D23 = D31 = D32 = 0.

To handle the complex deformations as a result of curved fibres, 8-node quadrilateral ele-

ments are used because the second-order interpolation polynomials are used for displacements

and rotations, as shown in Fig. 3.6(a). The strain-displacement matrix is,

B = [B1 B2 · · · B8],

Bi =

⎡
⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0

0 ∂Ni

∂y

∂Ni

∂y
∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎦ .

(3.15)
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(b) 8-node quadrilateral element with curved fi-
bres.

Figure 3.6: A typical 8-node quadrilateral element in the natural coordinate system (ξ, η). The vector of
element degrees of freedom is d = (u1, w1, u2, w2, · · · , u8, w8)T . The shape function N1, N2, · · · , N8 for this
element in natural coordinates are given in Eq. (3.16). The red circles in the element are Gauss points.

In the strain-displacement matrix B, the shape functions Ni are:

N1 (ξ, η) = −1
4 (1 − ξ) (1 − η) (1 + ξ + η) , N2 (ξ, η) = 1

2 (1 − ξ) (1 + ξ) (1 − η) ,

N3 (ξ, η) = −1
4 (1 + ξ) (1 − η) (1 − ξ + η) , N4 (ξ, η) = 1

2 (1 + ξ) (1 + η) (1 − η) ,

N5 (ξ, η) = −1
4 (1 + ξ) (1 + η) (1 − ξ − η) , N6 (ξ, η) = 1

2 (1 − ξ) (1 + ξ) (1 + η) ,

N7 (ξ, η) = −1
4 (1 − ξ) (1 + η) (1 + ξ − η) , N8 (ξ, η) = 1

2 (1 − ξ) (1 + η) (1 − η) .

(3.16)

Integration for the stiffness matrix in Eq. (3.7) cannot be performed analytically for general

cases of isoparametric elements. Instead, the stiffness matrix is evaluated numerically using

Gauss quadrature over quadrilateral regions. The Gauss quadrature formula for the integral

in the two-dimensional case is:

Ke = h
n∑

i=1

n∑
j=1

wiwjB(ξi, ηj)T D̄B(ξi, ηj) |J | , (3.17)

where h, n, and w are the thickness of plate, number of integration points, and weights,

respectively.

Gauss quadrature approximates the definite integral as a weighted sum of function values

at prescribed sample points within the domain of integration. A minimal number of Gauss

points is used to achieve a desired level of accuracy and efficiency. For each of these points,
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the matrix product in Eq. (3.17), BT D̄B, is calculated, multiplied by a weight function and

added together to evaluate the integral in Eq. (3.14).

According to Eq. (3.15-3.17), the matrix product BT D̄B in Eq. (3.17) is determined by

the orientation angle θ in each element and the local coordinates. In conventional finite

element theory, the fibre orientation angle in each element is constant as fibres are assumed

to be straight. As the orientation angle determines the matrix D̄ in the product product

BT D̄B, this matrix D̄ is constant at all sample points.

However, in an element containing curved fibres, different orientation angles are present

at different Gauss points due to fibre curvature as shown in Fig. 3.6(b). Hence, the matrix D̄

varies between Gauss points. Instead of using one orientation angle, the local orientation at

each sample point is picked and the local matrix product BT D̄B is calculated for the Gauss

quadrature. Eq. (3.17) should be modified as:

Ke = h
n∑

i=1

n∑
j=1

wiwjB(ξi, ηj)T D(ξi, ηj)B(ξi, ηj) |J(ξi, ηj)| , (3.18)

where the elastic matrix D̄ is a function of the location of the sample points.

Reduced integration is also applied to entail the use of fewer integration points to evaluate

the integral than the full integration. It takes less time to form an element stiffness matrix

due to the reduction in the number of Gauss points. Also, displacement-based finite element

formulations overestimate the element stiffness, and reduced integration balances this by

artificially reducing the element stiffness [74]. Therefore, in some cases the use of reduced

integration can increase the accuracy of the results. Reduced integration can also avoid

shear-locking during bending of a Timoshenko beam [75]. On the other hand, the use of too

few Gauss points cause issues such as instability, spurious singular modes or hourglass modes.

As a result, four Gauss points is recommended for an 8-node quadrilateral element [76].

3.3.1 Element Verification

To verify this finite element, regions containing different curved fibre configurations will be

used. The deformation on a predefined path is calculated using three finite elements: the

eight-node quadrilateral elements with curved fibres described above (S8 CFE), of which the
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value of BT D̄B at each sample point is determined by the local orientation; conventional

8-node finite elements (S8) and conventional 4-node finite elements (S4). Both S8 and S4

assume the fibres in each element to be straight, and assign a single fibre orientation angle.

The results of the three methods will be compared. The S8 CFE should approximate the

analytical solution closely, and be more efficient than the other two conventional FE methods.

A 1×1 square region containing fibres with paths defined by simple trigonometric equations

is used, as shown in Fig. 3.7, 3.8 and 3.9. The orientation of curved fibres is determined by

the coordinates

θ(x) = sin(nπx), (3.19)

where n = 1, 2 and 4, and x is the x-coordinate in the plate. The left edge of the plate

is fixed and the right edge is subjected to a uniform distributed load, F=20000, as shown

in Fig. 3.7(a), 3.8(a) and 3.9(a). The fibre orientation at different sample points and the

element centre can be calculated by Eq. (3.19). The path A-B is the right edge of the region

and the horizontal displacement on it is computed. An Abaqus simulation is performed for

this square region. A mesh convergence is studied to find the mesh size that gives a desired

level of accuracy for the analysis. The result from a converged mesh is considered to be the

exact solution for the displacement on path A-B. The same region is then meshed with 5×5

elements of the three types to be compared, and the simulation is rerun for each element

type.

The horizontal displacement from the Abaqus simulation, S8 CFE, S8 and S4 are marked

with different symbols in Fig. 3.7(b), 3.8(b) and 3.9(b). The maximum relative error of the

horizontal displacement between the three FE methods and the exact solution is calculated

using Eq. (3.20) and listed in Table 3.1.

S8 CFE S8 S4
θ(x) = sin πx 0.4% 1.8% 3.8%
θ(x) = sin 2πx 1.6% 6.8% 6.7%
θ(x) = sin 4πx 0.8% 6.9% 6.8%

Table 3.1: The maximum relative error of the horizontal displacement on path A-B for the square region
containing sinusoidal fibres between the three FE methods and the exact solution

Table 3.1 shows that the relative error of the horizontal displacement on path A-B between
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(a) 1×1 square plate containing fibres with paths
defined by Eq. (3.19) with n = 1. The short lines
represent the fibre orientation in each element.
The left edge is fixed, and the right edge is sub-
jected to a uniform distributed load, F=20000.
Path A-B is the right edge.
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(b) Horizontal displacement of path A-B from the
Abaqus calculation, 8-node curved finite element
(S8 CFE), conventional 8-node finite element (S8)
and conventional 4-node finite element (S4).

Figure 3.7: 1×1 square plate containing fibre with path defined by the sinusoidal curve θ = sin(πx) and
comparison of horizontal displacement from the Abaqus simulation, S8 CFE with 5 elements×5 elements, S8
with 5 elements×5 elements and S4 with 5 elements×5 elements on path A-B. The horizontal displacement
obtained the S8 CFE is closest to the Abaqus calculation since the maximum relative error between the three
finite element methods and Abaqus result are 0.4%, 1.8% and 3.8%, respectively.

F

A

B

(a) 1×1 square plate with sinusoidal curve θ =
sin(2πx). The short lines represent the fibre ori-
entation in each element obtained by Eq. (3.19).
The left edge is fixed, and the right edge is sub-
jected to a uniform distributed load, F=20000.
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(b) Horizontal displacement of path A-B from
the convergent Abaqus solution, 8-node curved
finite element (S8 CFE), conventional 8-node fi-
nite element (S8) and conventional 4-node finite
element (S4).

Figure 3.8: 1×1 square plate with sinusoidal curve θ = sin(2πx) and comparison of horizontal displacement
from the Abaqus simulation, S8 CFE with 5 elements×5 elements, S8 with 5 elements×5 elements and S4
with 5 elements×5 elements on path A-B. The horizontal displacement from S8 CFE is closest to the Abaqus
convergent results since the maximum relative error between the three finite element methods and Abaqus
result are 1.6%, 6.8% and 6.7%, respectively.
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(a) 1×1 square plate with sinusoidal curve θ =
sin(4πx). The short lines represent the fibre ori-
entation in each element obtained by Eq. (3.19).
The left edge is fixed, and the right edge is sub-
jected to a uniform distributed load, F=20000.
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(b) Horizontal displacement of path A-B from
the convergent Abaqus simulation, 8-node curved
finite element (S8 CFE), conventional 8-node fi-
nite element (S8) and conventional 4-node finite
element (S4).

Figure 3.9: 1×1 square plate with sinusoidal curve θ = sin(4πx) and comparison of horizontal displacement
from the Abaqus simulation, S8 CFE with 7 elements×7 elements, S8 with 7 elements×7 elements and S4
with 7 elements×7 elements on path A-B. More elements are used here as the fibre configuration is more
complex. The horizontal displacement from S8 CFE is closest to the Abaqus convergent simulation since the
maximum relative error between the three finite element method and Abaqus result are 0.8%, 6.9% and 6.8%,
respectively.

S8 CFE and the exact solution is less than the other two conventional FE methods for the

same mesh. As a consequence, using S8 CFE enables the use of larger elements on complicated

curved shapes, while the conventional finite element method requires a finer mesh to attain

equally accurate results. A larger element size enables the use of fewer elements, reducing

computation time.

Computational efficiency is an important factor for the finite element method and is the

main reason for developing this new element. Therefore, it is necessary to investigate its

efficiency and compare it with conventional finite element methods. Fig. 3.10, Fig. 3.11 and

Fig. 3.12 shows the running time as a function of the average relative error for three finite

element methods. The line with different symbols represent S8 CFE, S8 and S4, respectively.

The numbers on the markers are the number of nodes. The running time includes the process

of calculating the element stiffness matrix, assembling the global stiffness matrix and solving

44



the FE equations. The average relative error is defined as,

ε =
∑k

i=1
|di

A−di
F E |

di
A

k
. (3.20)

where k is the number of nodes on path A-B.

The comparison in all three cases indicates that the 8-node curved finite element (S8

CFE) is more accurate for the same computation time, and is faster for the same error.

For example, Fig. 3.10(a) shows that S8 CFE only uses 96 nodes (0.1s) to have an average

relative error of 0.23%, while S8 and S4 need 408 nodes (0.34s) and 676 nodes (0.42s). Fewer

nodes means a reduced dimension of the global stiffness matrix, implying less computation

time. Also, the figure shows that S8 CFE has the smallest error for the same running time.

When the computation time is around 0.1s in the simulations using these three methods,

the average relative errors of S8 CFE, S8 and S4 are 0.23%, 0.74% and 0.62%. Therefore,

S8 CFE has better accuracy and efficiency than the other two conventional finite element

methods on the three fibre laminates with sinusoidal curved shape.
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(a) Running time vs. relative error of horizontal
displacement for 1×1 square plate with sinusoidal
curve θ = sin(πx).
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(b) Running time vs. relative error of vertical
displacement for 1×1 square plate with sinusoidal
curve θ = sin(πx).

Figure 3.10: Running time vs. relative error of displacement for 1×1 square plate with sinusoidal curve
θ = sin(πx) for three finite element method: S8 CFE, S8 and S4. The running time is the processing time of
formulating the element stiffness matrix, assembling the global stiffness matrix and solving the FE equations.
The numbers on each data points are the number of nodes used during the finite element process. The average
relative errors are calculated based on Abaqus convergent solution using Eq. (3.20). S8 CFE is more efficient
and accurate than the other two methods.

To assess this new FE method on a different curved shape, consider a 1×1 square region
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(a) Running time vs. relative error of horizontal
displacement for 1×1 square plate with sinusoidal
curve θ = sin(2πx).
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(b) Running time vs. relative error of vertical
displacement for 1×1 square plate with sinusoidal
curve θ = sin(2πx).

Figure 3.11: Running time vs. relative error of displacement of the right edge for 1×1 square plate with
sinusoidal curve θ = sin(2πx).
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(a) Running time vs. relative error of horizontal
displacement for 1×1 square plate with sinusoidal
curve θ = sin(4πx).
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(b) Running time vs. relative error of vertical
displacement for 1×1 square plate with sinusoidal
curve θ = sin(4πx).

Figure 3.12: Running time vs. relative error of displacement of the right edge for 1×1 square plate with
sinusoidal curve θ = sin(4πx).
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containing fibres with paths defined as a set of concentric arcs in the second quadrant, so

that the fibre orientation as a function of location is

θ = arctan | x |
y

, (3.21)

where x and y are the physical coordinates. Fig. 3.13 shows the curved fibre shape and the

comparison of the horizontal displacement on Path A-B. An Abaqus simulation is conducted

first, and the converged result is considered to be the exact solution. The maximum relative

error of the horizontal displacement on path A-B between the three finite element methods

(S8 CFE, S8 and S4) and the exact solution are 0.1%, 0.3% and 10.5%, respectively. This

indicates that the S8 CFE works better than the other conventional finite element methods

on this fibre configuration.

Fig. 3.14 shows the running time as a function of the average relative errors for three

finite element methods. Both Fig. 3.14(a) and 3.14(b) indicate that S8 CFE uses fewer nodes

and less time to run the simulation with same relative error. Also, the figure indicates that

S8 CFE has the smallest error with the same running time. Therefore, S8 CFE has better

accuracy and efficiency than the two conventional finite elements on this curved shape.

The above cases are all a square plate. In order to test a somewhat more practical and

realistic case, an L-shaped plate with a loaded hole shown in Fig. 3.15(a) is used to access

the accuracy and efficiency of the 8-node curved finite element. The hole is square because

only structured meshes are currently considered. The top edge is fixed, and a point load is

applied in the middle of the right side of the hole. The fibre orientations are determined by

Eq. (3.19) with n = 2. The deformation on the right edge, path A-B, is calculated using

three finite elements: S8 CFE, S8 and S4. Their results will be compared.

An Abaqus simulation is conducted for this L-shaped structure to obtain the exact

displacement on path A-B. Fig. 3.15(b) shows the horizontal displacement from the Abaqus

simulation. The horizontal and vertical displacements on path A-B are studied to show the

convergence of the Abaqus simulation employing meshes of 92, 368, 1472, 5888 and 9200

elements, as shown in Fig. 3.16. It shows that the displacement approaches convergence as

the number of elements increases. The mesh of 9200 elements in the Abaqus simulation will

47



F

A

B

(a) 1×1 square plate with a set of concentric
circular arc. The short lines represent the fibre
orientation in each element obtained by Eq. (3.21).
The left edge is fixed, and the right edge is sub-
jected to a uniform distributed load, F=20000.
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(b) Horizontal displacement of path A-B from the
Abaqus calculation, 8-node curved finite element
(S8 CFE), conventional 8-node finite element (S8)
and conventional 4-node finite element (S4).

Figure 3.13: 1×1 square plate with a set of circular concentric arcs and comparison of horizontal displacement
from the Abaqus simulation, S8 CFE with 5 elements×5 elements, S8 with 5 elements×5 elements and S4
with 5 elements×5 elements on path A-B. The horizontal displacement from S8 CFE is closest to the Abaqus
calculation since the maximum relative error between the three finite element method and Abaqus result are
0.1%, 0.3% and 10.5%, respectively.
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(a) Running time vs. relative error of horizontal
displacement for 1×1 square plate with a set of
concentric arcs.
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(b) Running time vs. relative error of vertical
displacement for 1×1 square plate with a set of
concentric arcs.

Figure 3.14: Running time vs. relative error of displacement for 1×1 square plate with a set of concentric
arcs. The running time is the processing time of formulating the element stiffness matrix, assembling global
stiffness matrix and solving FE equations. The numbers on each data points are the number of nodes used
during the finite element process. The average relative errors are calculated based on Abaqus convergent
solution using Eq. (3.20).
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F

(a) An L-shaped structure with top edge fixed.
The point load, F =10000, is applied in the middle
of the right edge of the square hole. The fibre
layout is determined by Eq. (3.19).
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(b) Abaqus contour of the horizontal displace-
ment of path A-B. The path is on the right edge
from the point A to B.

Figure 3.15: An L-shaped structure with top edge fixed and a point load in the middle of the right of the
square hole. The contour of the horizontal displacement in Abaqus solution is in the right figure.

be considered to provide the exact displacement of path A-B.
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(a) Convergence of the Abaqus simulation for the
horizontal displacement on path A-B.

0 1 2 3 4 5 6
5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

Path A�B

V
er

ti
ca

l 
D

is
p
la

ce
m

en
t 

/1
0�

2

92 elements

368 elements

1472 elements

5888 elements

9200 elements

(b) Convergence of Abaqus simulation for the
vertical displacement on path A-B.

Figure 3.16: Convergence of Abaqus simulation for the displacement on path A-B. The Abaqus simulation
with a mesh of 92, 368, 1472, 5888 and 9200 elements are performed, respectively. As the number of elements
increases, the displacement on path A-B approaches convergence at the mesh of 9200 elements, which can be
considered as the exact solution.

After obtaining the exact solution, the comparison between S8 CFE, S8 and S4 is also

conducted by showing the running time of the FE process as a function of the average relative

error. The running time of the FE process includes calculating the element stiffness matrix,

assembling the global stiffness matrix and solving the FE equations. The average relative

error of the three FE methods and the exact solution is calculated from Eq. (3.20). Fig. 3.17
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shows the running time of the FE process as a function of the average relative error compared

to the Abaqus simulation. It can be seen that using 603 nodes (0.58s) with S8 CFE has

good agreement with the Abaqus solution, for which the average relative error is around

1% for both horizontal and vertical displacement, while using 1584 nodes (1.16s) and the

S4 can result in an average relative error of 3%. Again, the S8 CFE element improves the

computation efficiency and maintains accuracy.
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(a) Running time vs. relative error of horizontal
displacement for the L-shaped structure.
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(b) Running time vs. relative error of vertical
displacement for the L-shaped structure.

Figure 3.17: Running time vs error of displacement for an L-shaped structure with square hole. The
running time is the processing time of formulating the element stiffness matrix, assembling global stiffness
matrix and solving FE equations. The numbers on each data points are the number of nodes used during the
FE process. The average relative errors are calculated based on Abaqus convergent solution using Eq. (3.20).

3.4 Concluding Remarks

Two new methods are studied to formulate the finite element with curved fibres. The averaged

compliance method is first used to formulate curved finite element to solve the problem of

a rectangular plate with curved fibres subjected to an uniform distributed axial load. The

results show that the ACM has acceptable accuracy when using large elements. However,

the improvement is not large enough because the accuracy of the conventional FE method

is also acceptable with the same mesh. The relative error of the horizontal displacement

for conventional FE is only 0.6% more than ACM. The ACM approximates the stiffness of

composite laminates with curved fibres to be equivalent to a unidirectional laminate with a
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constant orientation. This is not effective when it comes to highly curved fibres or complex

loading conditions because it fails to capture the influence of curvature changes on the local

stiffness. Therefore, a better approach is necessary to account for this.

The second method is the finite element with explicit fibre curvature. It is developed

for arbitrary fibre configurations and various loading conditions. The fibre curvature leads

to different orientation angles at different Gauss points in an element containing curved

fibres. As a result, the elastic matrix D̄ in the product, BT D̄B, is not constant. When

using Gauss quadrature to evaluate the integral for the element stiffness, this matrix product

at each Gauss point is calculated based on the local orientation. This method reflects the

influence of curvature changes on local stiffness, as it collects more local information in

the element. As a consequence, this method enables enlargement of the element size and

reduction of the dimension of the global stiffness matrix. The computational efficiency is

improved. The results of finite element calculation using elements with explicit fibre curvature

are compared with the conventional FE analysis. In the cases of a plate with sinusoidal and

circular arc fibres, and an L-shaped structure with a loaded hole, the finite element with

explicit fibre curvature has better agreement with the exact solution and is faster than the

other conventional FE methods. Therefore, using curved finite elements can greatly improve

the computation efficiency while maintaining a desired level of accuracy.
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Chapter 4

Curvature Generation

4.1 Introduction

The finite element method is applied to analyze tailored fibre composite structures with

curved fibres [8, 77, 78, 24]. The finite element method approximates continuous curved

fibres as locally straight, and assigns an orientation angle to each element. Typically, if the

fibre curvature is significant, the finite element mesh must be very fine to achieve sufficient

accuracy.

However, computational time will significantly increase with a large number of elements.

There is a trade-off between computational time and accuracy: increasing the number of

elements to achieve the desired accuracy may require prohibitive calculation time. This is

particularly pressing in an optimization setting, where the underlying analysis has to be

performed repeatedly. To reduce the computational cost, it is necessary to use larger element

size, but accuracy is sacrificed if the fibres are assumed to be locally straight. Difficulty

arises because larger elements are not consistent with the approximation that the fibres are

locally straight within an element: it is necessary to consider the fibre curvature as another

important parameter. With two parameters for each element, curvature and orientation

angle, it is possible to formulate finite elements that explicitly account for curved fibres. This

enables larger element sizes, improving computational efficiency while maintaining accuracy

However, continuous fibre angle optimization employing elements with straight fibres often
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results in fibres on element boundaries that cannot be reconnected smoothly [38, 79, 80, 50].

The approach used here is to treat the fibre orientation angle within an element as the

primary design variable, and to select a curvature for each element that minimizes the fibre

discontinuity at the element boundaries.

In order to use large elements with curved fibres, it is necessary to know both the fibre

orientation and curvature. A novel method to calculate the curvature is presented in this

chapter. The approach is to employ the fibre orientation in each element as the primary

design variable. The curvatures implied by the requirement that fibres are continuous are

then generated for each element. The combination of the orientation angle and the curvature

is then used to calculate element stiffness matrices. In an optimization scenario, the fibre

orientation angles are updated at every optimization step, and the implied curvatures are

then generated. The goal of this method is to enable the use of larger element sizes to reduce

the computational cost of the calculation. Small fibre curvature is assumed in this work,

because the maximum allowed curvature for fibres is 1.57 m−1 [81]. Highly curved fibres are

physically unrealistic, as there will be defects such as local buckling and wrinkles on the fibre

tows [50]. Meanwhile, elements that are significantly larger than conventional finite elements

are used, but these elements are still small so that fibre angles are not varying dramatically.

As a result, it is convenient to assume that fibres in a single element are circular arcs with

constant curvature, which simplifies the modeling.

First the fibre orientation on the element boundaries is expressed with respect to the

unknown curvature based on the geometry of curved fibres. The fibre angles at the middle

of element edges, θt, θb, θl and θr, as shown in Fig. 4.1, are employed to represent the

fibre orientation on the element edges. They are calculated by substituting the midpoint

coordinates of each edge into the fibre angle expression, which is a function of the fibre

orientation and (unknown) curvature for each element. The angle difference between each

adjacent element edge is obtained. Finally the minimization of the sum of the angle differences

generates curvature for each element, which is treated as a least squares minimization problem

and solved through its normal equation. Several test cases, including a square plate with

multiple curved fibres and an L-shaped structure, are presented to verify this method. The

results from the curvature generation method show good agreement with analytical solutions
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for the curvature of different continuous fibres, which indicates that it is an efficient way to

generate distributions of curvature.

4.2 Analytical Expression for Fibre Angles in an

Element

The curvature of a plane curve at any point is the change of angle of an infinitesimal segment

of the curve. A curved fibre in a lamina can be treated as a plane curve. In order to obtain

the curvature of a curved fibre, it is necessary to know the fibre orientations at arbitrary

locations on this fibre. The fibre orientations are calculated by defining a reference path that

approximates the curvilinear shapes of the fibres. The reference path employs basic functions

such as linear functions [13, 16, 12, 21], or trigonometric functions [18, 19, 17, 20, 22]. Other

researchers use higher order functions such as cubic Bezier curves [23], cubic polynomials

[24] and spline functions [11]. Both basic and higher order functions require selection of

function coefficients, but it is difficult to find the appropriate coefficients to model a composite

structure with curved fibres.

Another option to obtain the fibre orientations at arbitrary locations is to specify the

fibre orientation angle at discrete points and then build an analytical expression of the fibre

configuration based on the geometry of curved fibres. This is the approach taken here, where

the fibre orientation angle is specified at the centre of each element in a finite element mesh

and the fibre orientations throughout the remainder of the element are calculated assuming a

single constant curvature throughout the element. The geometric model of a square element

with curved fibres is shown in Fig. 4.1. The element has side length 2a, and the circular arcs

represent fibres. Note that the circular arcs are not concentric. The angle θ0 in the centre is

the fibre orientation of the element, which is the angle between the x-axis and tangent line

passing through the centre point O. The angle at an arbitrary location, M , in this element is

the smallest angle between x-axis and the tangent line of the fibre passing through the point.

In Fig. 4.1, the fibre orientation at point M is θ. The orientation angle is between -90◦ and

90◦ .
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Figure 4.1: A geometric model of an element with curved fibres. The circular arcs represent the curved
fibres and and centres of all the curved fibres are on the line L. Point O is the element centre with coordinate
(0, 0) and M is an arbitrary point with coordinate (x,y). The normal vector n of line L starts at point O.
The angles θ0 and θ are between the x-axis and the tangent line of the fibre passing through the point O and
M respectively. The orientation angle is between -90◦ and 90◦ . The radius of curvature is ρ and d is the
distance from point M to line L.

In this work, each element has finite size, but is larger than the conventional finite element

size. Assuming small fibre curvature, all fibres in one element are treated as a set of circular

arcs with the same curvature, with the centres of all the arcs on a straight line L, as shown in

Fig. 4.1. Point O is the element centre with coordinate (0, 0). M(x, y) is an arbitrary point

above line L and −−→
OM = (x, y). The normal vector n of line L has direction (1/tan θ0, 1).

The normal vector is also the tangent line of the arc passing through the centre point. The

distance d from point M to line L is equal to the length of the orthogonal projection of −−→
OM

on n. The length of this projection is given by:

d =
−−→
OM · n

‖n‖ =
1

tan θ0
x + y√

1/tan2θ + 1
= x cos θ0 + y sin θ0. (4.1)

The distance d can also be obtained using the radius of curvature ρ

d = ρ sin (θ0 − θ) = x cos θ0 + y sin θ0, (4.2)
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which can be transformed to:

sin (θ0 − θ) = κx cos θ0 + κy sin θ0, (4.3)

where κ = ρ−1 is the fibre curvature.

Similarly, for an arbitrary point below line L, the direction of vector n is (−1/tan θ0 ,−1).

The relation corresponding to Eq. (4.3) is

d = ρ sin (θ − θ0) = −x cos θ0 − y sin θ0. (4.4)

This can be simplified to Eq. (4.3). Therefore, Eq. (4.3) can be used to obtain angles

at any location in the element. The signs of κ and θ0 indicate the concavity of fibre curves.

Due to the assumption of small curvature, the angle change, θ0 − θ, from the centre to any

arbitrary point is approximately equal to sin(θ0 − θ). Therefore, the left side of Eq. (4.3) can

be approximated as θ0 − θ with acceptable accuracy. Then the angle at arbitrary position

(x,y) is given by:

θ = θ0 − κx cos θ0 − κy sin θ0. (4.5)

It can be seen that θ is a function of θ0, κ and position within the element. No other

parameters are needed.

4.3 Calculation of Curvatures

With Eq. (4.5) it is possible to calculate the fibre orientation angle at an arbitrary location in

an element. If a continuous fibre passes through a shared boundary of two adjacent elements,

the orientation angles at the two element edges on the shared boundary should be identical.

In a conventional finite element model, the orientation angles of fibres in any two adjacent

elements on the shared boundary are different as the continuous curved fibres are discretized

into locally straight segments. Thus, there is an angle difference at each boundary. Since

every element shares boundaries with others, there is an angle difference on every shared

boundary due to different θ0. In a real composite, the fibres must curve so that there are
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no discontinuities. In this discretized representation of a fibre composite, curvature in each

element can be calculated by minimizing the overall discontinuity.

One option is to calculate angles on element edges and minimize the sum of the angle

difference between each adjacent elements. The orientations also vary along the element edges.

A convenient approach is to pick a value at the mid-point of an edge to represent boundary

angles along that edge because it is an average of all angles on that edge. In Fig. 4.1, let (0,

a), (0, −a), (−a, 0) and (a, 0) be the coordinates of middle point of the top, bottom, left and

right side of the element, where a is the half-length of the element. Then those mid points

fibre orientation angles are given from Eq. (4.5):

θt = θ0 − aκ sin θ0,

θb = θ0 + aκ sin θ0,

θl = θ0 + aκ cos θ0,

θr = θ0 − aκ cos θ0,

(4.6)

where θt, θb, θl and θr are the top, bottom, left and right middle point angles, respectively.

After determining the fibre angles on element edges using Eq. (4.6), the sum of angle

differences can be calculated. The larger the angle difference, the more discontinuous are

the fibres. Therefore, the sum of the angle differences indicates the discontinuity of the fibre

distribution. In order to make fibres as continuous as possible, it is reasonable to minimize

the sum of angle difference between any adjacent elements to reduce the discontinuity. By

selecting values of κ that minimize the sum of the angle differences, the curvatures that entail

the minimum discontinuity can be calculated.

4.3.1 Steepest Descent Method

The goal is minimize the sum of the squares of the angle difference between each pair of

adjacent elements. For a 2 element by 2 element square region, there are 4 shared boundaries

as shown in Fig. 4.2. The sum of the squares of the differences in angles is,

f = (θ1r − θ2l)2 + (θ3r − θ4l)2 + (θ1b − θ3t)2 + (θ2b − θ4t)2, (4.7)
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where the first subscript letter is the element number, and the second subscript is the position

of boundary angle.

Let a be unit length and substitute Eq. (4.6) into the above equation:

f =(θ1 − θ2 − κ1 cos θ1 − κ2 cos θ2)2 + (θ3 − θ4 − κ3 cos θ3 − κ4 cos θ4)2

(θ1 − θ3 + κ1 sin θ1 + κ3 sin θ3)2 + (θ2 − θ4 + κ2 sin θ2 + κ4 sin θ4)2,
(4.8)

where κ1, κ2, κ3 and κ4 are the curvatures that must be selected. The minimization of the

objective function is,

min
κ

: f(κ). (4.9)

The steepest descent method is chosen for its simplicity and ease of implementation.

Minimize the 

discontinuity

�1

� r1 �1�1
�2

�3 �4

� l2

� b1 � b2

� t3 � t4

� r4 � l4

�2�2
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Figure 4.2: Orientation angles and shared boundaries for a square region of 2 element by 2 element. The
curvatures that entail the minimum discontinuity are obtained by the selection of the value of κ that minimize
the angle difference between adjacent elements. It is noticed that this 2 × 2 region is the only case where its
objective function will go to zero because the number of boundaries is same as the number of parameters.

The convergence criterion used determines convergence based on the magnitude of succes-

sive changes in the objective function falling under a user defined limit:

‖∇f (κ)‖ ≤ ε, (4.10)

where ε is the tolerance. If this criterion is satisfied, the optimization process has converged

and the iterative loop will end.

Fig. 4.3 shows the convergence of curvature optimization for a 2 elements × 2 elements

region with orientation angles 30◦, 36◦, 45◦ and 36◦, respectively. It can be seen that the

optimization is convergent after 115 iteration steps with the objective function less than 10−6,
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Figure 4.3: Convergence for the objective function for a 2 element by 2 element region with different
orientation angles. The orientation angles in element I−IV are 30◦, 36◦, 45◦ and 36◦, respectively.

which makes fibres in the elements continuous. The corresponding curvatures in elements

I−IV are -0.5722, 0.4831, 0.7748 and -0.4831, respectively. However, the objective function

will only go to zero for a 2 element by 2 element region since the number of boundaries is

same as the number of parameters. In all other cases, it is likely that the final value of the

objective function will be non-zero, implying some fibre discontinuity.

4.3.2 The Normal Equation

The number of elements will greatly influence the computation efficiency of the steepest

descent method, because the number of design variables is same as the number of elements

for using the steepest descent method to generate the curvature. It is necessary to find a

more efficient way to obtain curvatures.

The objective function is a homogeneous quadratic polynomial in 4 variables in Eq. (4.8),

so it can be written as a sum of squares and expanded to n elements with m shared boundaries,

f =
m∑

i=1

1
2

(
cT κ(i) − y(i)

)2
, (4.11)

where c is a coefficient vector for curvature vector κ, and y is the corresponding constant vector
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in the objective function. This is a least squares minimization problem. The minimization

can be performed explicitly by taking derivatives of Eq. (4.11) with respect to the κi, and

setting them to zero.

The derivative of the objective function is,

∇κf = AT Aκ + AT b, (4.12)

where κ = [κ1 κ2 ... κn]T is the vector of curvatures for each element, A is a symmetric matrix

and b is a column vector involving θi. For example, the corresponding A and b for a 2 element

by 2 element region is,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos θ1 cos θ2 sin θ1 sin θ3 0

cos θ1 cos θ2 1 0 sin θ2 sin θ4

sin θ1 sin θ3 0 1 cos θ3 cos θ4

0 sin θ2 sin θ4 cos θ3 cos θ4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (θ1 − θ2) cos θ1 + (θ1 − θ3) sin θ1

− (θ1 − θ2) cos θ2 + (θ2 − θ4) sin θ2

− (θ3 − θ4) cos θ3 + (θ1 − θ3) sin θ3

− (θ3 − θ4) cos θ4 + (θ2 − θ4) sin θ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

First order optimality requires that the gradient be zero to find a local minimum of a

function. Similarly, we can set the gradient to zero, and obtain its normal equation [82],

AT Aκ + AT b = 0. (4.13)

Then the curvature that minimizes the discontinuity can also be obtained by solving the

linear system. Thus, the value of κ that minimizes f is given by,

κ = −(AT A)−1AT b. (4.14)

If matrix A is of full rank, then AT A is symmetric positive definite. This linear system
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has a solution. It is difficult to determine whether matrix A is of full rank from the objective

function. If A is close to singular, the vector κ that solves the system may not exist, or

if one does exist, it may not be unique. In addition, the condition number of the normal

equation is the square of the condition number of A, and the solution will deteriorate if A

is ill-conditioned [83]. However, one can calculate its pseudoinverse instead of inverse to

get more stable solution. The pseudoinverse constructs the solution of minimum Euclidean

norm ‖Aκ + b‖2 among all solutions [84]. When A is non-singular, it gives the actual inverse

of A. Matlab, the C++ package LAPACK and the Python package NumPy all provide a

pseudoinverse calculation. In addition, it is necessary to specify a value for the singular value

tolerance [85], because the calculation of pseudoinverse treats singular values of A that are

smaller than the tolerance as zero. How to choose this value will be discussed in detail.

4.3.3 Physical Interpretation of The Tolerance in The

Pseudoinverse Calculation

The selection of tolerance in the pseudoinverse calculation influences the value of generated

curvatures. If A does not have full rank, the least squares problem still has a solution, but

it is no longer unique. The optimal solution is the vector κ that minimizes ‖Aκ + b‖. This

solution is κ+ and the matrix that produces κ+ from b is the pseudoinverse of A, called A+,

κ+ = A+b. (4.15)

The pseudoinverse A+ is obtained from a singular-value decomposition (SVD) [86]. The SVD

of matrix A is,

A = UΣV ∗, (4.16)

where U is an n×n unitary matrix whose columns form an orthonormal basis, Σ is a diagonal

n × n matrix with the singular values of A, σ1, σ2,..., σr, (r is the number of singular values)

on the diagonal, and V ∗ is the conjugate transpose of the n × n unitary matrix V . The
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pseudoinverse matrix can be represented as,

A+ = V T Σ+UT , (4.17)

where Σ+ is an n × n diagonal matrix with the reciprocals of the singular values, 1
σ1

, 1
σ2

, ...,
1

σr
, on the diagonal. Substituting this equation into Eq. (4.15), the solution that minimizes

‖Ax + b‖ is:

κ+ = V T Σ+UT b. (4.18)

When some singular values of A are close to zero, the values on the diagonal entries of Σ+

approach infinity. This solution will have components of entries x+ that are extremely large.

To avoid that, a tolerance is selected to treat singular values smaller than the tolerance as

zero. Then entries in Σ+ at the same location as these singular values in A are also zero. For

example, if the Σ is truncated at the third singular value of A, r = 3, then all singular values

of A less than or equal to σ3 will be treated as zero. Eq. (4.18) becomes,

κ+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 . . . v2n

... ... . . . ...

vn1 vn2 · · · vnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/σ1

1/σ2

0
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 · · · u1n

u21 u22 . . . u2n

... ... . . . ...

un1 un2 · · · unn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.19)

The matrix product result is:

κ+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v11(u11b1+u12b2+...+u1nbn)
σ1

+ v12(u21b1+u22b2+...+u2nbn)
σ2

v21(u11b1+u12b2+...+u1nbn)
σ1

+ v22(u21b1+u22b2+...+u2nbn)
σ2

...
vn1(u11b1+u12b2+...+u1nbn)

σ1
+ vn2(u21b1+u22b2+...+u2nbn)

σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.20)

The entries of U and V are all less than one because they are unitary matrices, and the upper

62



bound for the solution is:

κ+
i ≤ ( 1

σ1
+ 1

σ2
)

n∑
i=1

bi ≤ ( 2
σ2

)
n∑

i=1
bi. (4.21)

Similarly, the upper bound of the solution at any truncated point r = k is:

κ+
i ≤

(
1
σ1

+ 1
σ2

+ · · · + 1
σk−1

)
n∑

j=1
bj ≤

(
k − 1
σk−1

)
n∑

j=1
bj, (4.22)

where σk is the largest singular value less than the tolerance, and all singular values less than

or equal to the tolerance will be treated as zero. The upper bound of the curvature, κu, based

on selected tolerance is:

κu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, tol ≥ σ1(
k − 1
σk−1

)
n∑

j=1
bj, tol = σk (1 < k ≤ n) .

(4.23)

The upper bound of the generated curvature depends on the reciprocals of the singular values.

Singular values that are close to zero can result in the curvature approaching infinity, which

is physically unrealistic. Thus, it is necessary to truncate these singular values to avoid highly

curved fibres. A physically reasonable value for the tolerance will be discussed later.

4.4 Verification of The Calculation of Curvature

To verify this approach, regions discretized into finite elements containing fibres with paths

defined by simple trigonometric or polynomial equations will be used. The goal is to show that

the calculation of curvatures using the normal equation and the pseudoinverse approaches the

analytical values of curvature for fields of curved fibres with known fibre paths. The curvature

in every element can be calculated in two ways: analytically based on the equation for the

fibre paths or numerically through the application of the normal equation. The results of the

two methods will be compared. The numerical approach should very closely approximate the

analysis if the normal equation is to provide a satisfactory distribution of fibre curvatures.

First the curvature distribution obtained by the normal equation is compared to the
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steepest descent method. A square region containing fibres with path defined as a set of

concentric arcs is used, as shown in Fig. 4.4. The circular arcs are in the second quadrant

and the circular arc centre is at the origin, then the fibre orientation θ in each element can

be obtained by,

θ(x) = arctan | x |
y

, (4.24)

where x and y are the x and y-coordinate of the centre point in each element.

Fig. 4.4 compares the distribution of generated curvatures obtained by the steepest descent

method and the normal equation in a 10 × 10 square region. This region contains fibres with

paths defined as a set of concentric arcs. The square is meshed into 10 elements × 10 elements

and the curved fibres are discretized into straight segments. The short lines represent the

fibre orientations. The steepest descent method and the normal equation are both applied

to compute the curvatures. The curvature distributions obtained from these two methods

are identical. The normal equation is much faster than the steepest descent method since

the gradient-based method will usually approach the optimal solution asymptotically. The

following analytical curvature distribution will be only compared to the numerical solution

found through the application of the normal equation, and the steepest descent method will

be no longer considered.

Two additional cases are presented to verify this method for the calculation of curvature

through the application of the normal equation. They are a square region containing fibres

with paths defined by simple trigonometric or polynomial equations. The trigonometric

equation that determines the fibre path is:

t(x) = sin 2x

π
, (4.25)

where x is the x-coordinate. The curvature is:

κ(x) =
∣∣∣∣∣ t′′(x)
(1 + t′(x))3/2

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
4 sin 2x

π

π2
(

1 + 4 cos2 2x
π

π2

)1.5

∣∣∣∣∣∣∣∣∣
. (4.26)

The curvature obtained numerically through the application of the normal equation is
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Figure 4.4: Contours of the curvature distribution obtained by the steepest descent method and the normal
equation for a 10 × 10 square region. This region contains fibre with path defined as a set of concentric
arcs. The square is meshed into 10 elements × 10 elements with straight fibres. The fibre orientations are
represented as short lines.

compared to the analytical result for curvature in this square region calculated using Eq. (4.26)

in Fig. 4.5. The 10 × 10 square region contains fibres with paths defined by the trigonometric

function. The region is meshed into 80 elements × 80 elements. Fig. 4.5(a) is the analytical

solution of the curvature distribution obtained by Eq. (4.26). The continuous sinusoidal

curves represent curved fibres. The numerical solution of curvature through the application

of the normal equation is shown in Fig. 4.5(b). At the centre of each element, the fibre

orientation is calculated using Eq. (4.25). This distribution of fibre orientations is then used

with the normal equation to calculate the implied curvature in each element.

Since the sinusoidal curves describe a smooth repetitive oscillation, the corresponding

curvature also varies with location as shown in Fig. 4.5(a). After applying the normal

equation to calculate curvature, Fig. 4.5(b) shows that the numerical solution gives close

approximation to the analytical curvature distribution. The average relative error between

the numerical and analytical solution is defined as:

e =

n∑
i=1

κi
n−κi

a

κi
a

n
, (4.27)
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(a) Analytical contour of curvature for a square
containing fibres with paths defined by Eq. (4.25).
One sinusoidal curve is created based on Eq. (4.25)
first, then it is shifted to generate a set of parallel
curves in the square region.
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(b) Numerical contour of curvature obtained by
using the normal equation. The square region
is meshed into 80 elements × 80 elements with
straight fibres. The short lines represent the fibre
orientation.

Figure 4.5: Contours of curvature distribution from the analytical solution based on the trigonometric
equation for the fibre paths and the numerical solution through the application of the normal equation. The
square region contains fibres with paths defined by a sinusoidal function.

where κi
n and κi

a are the numerical and analytical curvature in ith element. The average

relative error between the numerical and analytical solution for this sinusoidal curved shape

is 1.05%. The difference between the numerical and analytical curvature is primarily near

the top and bottom boundaries, but this area is small. Thus, the normal equation provides

an accurate distribution of fibre curvatures.

The sinusoidal equation that defines the fibre paths may be also replaced with a quadratic

equation:

t(x) = x2

2π
+ 2x. (4.28)

The analytical curvature can be calculated as:

κ(x) =
∣∣∣∣∣ t′′(x)
(1 + t′(x)2)3/2

∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

π(1 +
(
2 + x

π

)2
)1.5

∣∣∣∣∣∣∣ . (4.29)

Fig. 4.6 shows the distribution of curvatures from the analytical solution based on the

quadratic equation for the fibre paths and the numerical solution through the application of the

normal equation. The 10 × 10 square region contains fibres with paths defined the quadratic
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function. The region is discretized into 80 elements × 80 elements. Fig. 4.6(a) is the analytical

solution of the curvature distribution obtained by Eq. (4.29). The continuous quadratic

curves are curved fibres. The numerical solution of curvature through the application of

the normal equation is shown in Fig. 4.6(b). The curved fibres are discretized into straight

segments. The fibre orientations are represented as short lines in Fig. 4.6(b). The average

relative error between the numerical and analytical solution for this sinusoidal curved shape

is 0.97%.
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(a) Analytical contour of curvature for a square
containing fibres with paths defined by Eq. (4.28).
One sinusoidal curve is created based on Eq. (4.28)
first, then it is shifted to generate a set of parallel
curves.
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(b) Numerical contour of curvature obtained by
using the normal equation. The square region is
discretized into 80 elements × 80 elements with
straight fibres. The short lines represent the fibre
orientation.

Figure 4.6: Contours of curvature distribution from analytical solution based on the quadratic equation for
the fibre paths and the numerical solution through the application of the normal equation. The square region
contains fibres with paths defined by a quadratic function.

The comparisons of different curved shapes show that this method for curvature generation

agrees well with the analytical solutions for various fibre configuration, but both cases involve

a square region containing fibres with paths defined by simple functions. It is necessary to

verify this application of the normal equation on a region with discretized fibre orientation as

well.

Fig. 4.7 presents contours of curvatures calculated using the normal equation for a

discretized 24 × 8 plate section meshed into 192 (24×8) elements. The short lines represent

the direction of the discrete fibre orientation that originated from an optimization [52]. The

contour of the distribution of generated curvatures shows greater changes at areas with large
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discontinuity.
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Figure 4.7: Contour of curvature for a discretized 24 × 8 plate section meshed into 192(24 × 8) elements.
The short lines represent the fibre orientation from an optimization of eigenfrequency.

To verify this method for the calculation of curvature in a more realistic case, an L-shaped

single layer thin composite lamina with a loaded hole is used. It is fixed on the top edge and

subjected to a point load, F=10000, at the middle of the right side of the square hole as

shown Fig. 4.8(a). The fibre configuration in each element is orientated with the maximum

principal stress for the relevant geometry with an isotropic material. The orientation of

maximum principal stress is determined by an Abaqus simulation, represented as arrows in

each element in Fig. 4.8(b).

The curvature is calculated numerically through the application of the normal equation.

Fig. 4.9(a) shows the contours of curvature by setting the orientation of maximum principal

stress as the fibre orientation angle in each element. The contour shows areas with large

discontinuity, resulting a great change of curvature. As an aside, it is worth noting that this

result indicates that, at least for this case, simply selecting the fibre angles as the orientations

of the largest principal stress for the isotropic case will result in fibre discontinuities that

make the composite effectively unmanufacturable.

Fig. 4.9(b) shows curved fibre orientations based on solutions for curvatures obtained

from the normal equation. As the fibres are assumed to be circular arcs, their centres are

determined by the fibre orientation angle and the concavity. Circles are plotted based on this

centre and the radius of curvature. The more highly curved fibre shapes indicates areas with

larger curvature.
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(a) Geometric model of an L-shaped structure
with a square hole. The top edge is fixed and a
point load, F=10000, is applied in the middle of
the right side of the square hole.

(b) Maximum principal stress direction for the
same L-shaped structure with an isotropic mate-
rial, represented as lines with arrow. The length
of lines indicates the magnitude of the maximum
principal stress.

Figure 4.8: Geometric model of the L-shaped single-layer composite lamina. The fibre orientation in each
element is same as the maximum principal stress for the relevant geometry with an isotropic material.
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posite lamina. The fibre configuration in each
element is oriented with the maximum principal
stress for an isotropic material with the same
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when calculating the pseudoinverse to generate
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Figure 4.9: Contour of curvature and curved fibre orientations for the L-shaped structure.
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When calculating the curvature, selecting the value of tolerance during the computation

of the pseudoinverse is critical to the magnitude of the curvature, thereby influencing the

curved fibre orientations. This is because the pseudoinverse is computed through SVD. The

entries of the diagonal matrix from SVD are known as the singular values of the matrix

A. During the computation of the pseudoinverse, the inverse of this diagonal matrix is

needed. If the singular values of A contain numbers close to zero, their reciprocal will be

several orders of magnitude larger than the reciprocal of other singular values, sometimes

approaching infinity. Those reciprocals form the inverse of the diagonal matrix, which causes

a pseudoinverse matrix with entries that can be close to infinity. This will lead to large values

of curvature as well, resulting in highly curved fibres. The large curvature are physically

unrealistic. Therefore, it is necessary to eliminate the singular values that are close to zero to

prevent large values of the reciprocals. This can be avoided by choosing a value of tolerance

so that the computation treats singular values of the matrix A that are smaller than the

tolerance as zero.

The value of tolerance will influence the curved fibre orientation. If the tolerance is too

large, singular values that are much larger than zero are also treated as zero. The resulting

curvatures are close to zero, so that the fibres will be nearly straight as shown in Fig. 4.10(a),

and the simulation will be equivalent to the conventional finite element with straight fibres.

On the other hand, small values of tolerance will lead to extremely large curvature in some

elements as shown in the highlighted areas in Fig. 4.10(b), making the laminates impossible

to manufacture. The selection of tolerance depends on manufacturing constraints as the

magnitude of curvatures are limited [50].

With the generated curvatures, it is possible to plot an intuitive image of how curved

fibres are spatially varying in the laminate domain. Fig. 4.11 shows the spatially varying

fibres in each element for the L-shaped structure. They are created by shifting the curved

fibre equidistantly in each element domain. Different tolerances are selected to show the

influence of tolerance on the curved fibre orientation. It can be seen that in Fig. 4.11(a)

there are full circles in the highlighted areas with tolerance of 0.5, and the highly curved

fibres are physically unrealistic. As small curvature is assumed in this work, the resulting

fibres should be slightly curved. Fig. 4.11(b) shows a good example of fibres that are not

70



0 2 4 6 8 10 12
0

2

4

6

8

10

12

x

y

(a) Curved fibre orientations based on solution
for curvatures obtained from the normal equation
in the L-shaped domain. The tolerance is 0.9
when calculating the pseudoinverse to generate
the curvature. Fibres are close to straight.
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(b) Curved fibre orientations based on solution
for curvatures obtained from the normal equation
in the L-shaped domain. The tolerance is 0.1
when calculating the pseudoinverse to generate
the curvature. Highlighted area are unrealistic
fibre layout.

Figure 4.10: Curved fibre orientations in the L-shaped domain using different tolerance.

over curved or straight with tolerance of 0.7. However, there is still fibre discontinuity among

some elements. Further work will be penalizing the continuity to get more continuous fibres,

or even an explicit mathematical model of discontinuity.
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(a) Plot of spatially varying curved fibres in each
element, and the tolerance is 0.5 when calculating
the pseudoinverse to generate curvatures. High-
lighted area shows unrealistic fibre layout.
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(b) Plot of spatially varying curved fibres in each
element, and the tolerance is 0.7 when calculating
the pseudoinverse to generate curvatures.

Figure 4.11: Plots of spatially varying curved fibres for the L-shaped structure.
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Selecting tolerance controls the magnitude of the calculated curvatures. Eq. (4.23) gives

the theoretical upper bound of the minimum norm solution of Eq. (4.13) using the normal

equation. It shows that the upper bound of the minimum norm solution is a reciprocal

function with respect to the tolerance. As the tolerance increases, the values of entries in the

pseudoinverse of matrix A should decrease as more singular values of A are treated as zero.

Fig. 4.12 shows a semi-log plot of the theoretical upper bound of curvatures using Eq. (4.23)

and the actual maximum curvatures calculated using different tolerance for the L-shaped

structure. It can be seen that the actual curvatures are far below the theoretical upper bound.

Therefore, the tolerance prevents the generated curvature from being extremely large.
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Figure 4.12: The theoretical upper bound of curvatures generated and the actual maximum curvatures
(semi-log scale) as a function of the tolerance for the L-shaped structure.

4.5 Concluding Remarks

By varying the fibre orientations across a composite lamina it is possible to tailor the

composite structure spatially to have optimal mechanical properties. One of the issues with

optimizing composites modeled in this way is that the computational efficiency is greatly

affected by using the conventional finite element method with a fine mesh. Therefore, it is

necessary to use large element sizes to improve efficiency, but assuming fibres are locally

straight is not sufficiently accurate in a finite element simulation with larger elements. Since

larger elements violate the approximation that the fibres are locally straight, the fibre model

must explicitly account for curvature. By modeling the curvature explicitly, it is possible to
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formulate finite elements with curved fibres, which allows using larger elements to improve

the computational efficiency and maintain the accuracy. As a result, fibre curvature has to be

calculated. Also, adjusting the value of fibre curvature in each element can reduce the degree

of spatial discontinuity of the fibre orientations achieved in the optimization. The calculation

of curvature was done first by deriving a concise analytical expression of fibre angles at

arbitrary locations in the elements based on the geometry of curved fibres, and then using it

to get boundary angles of each element. The sum of the square of the angle difference between

shared element boundaries is calculated and minimized in order to calculate the curvature

that entails the minimum discontinuity. This is considered as a least square minimization

problem. It was found that using the steepest descent method is slower than solving the

normal equation. The normal equation uses pseudoinverse to find the minimum Euclidean

norm solution to a system of linear equations with multiple solutions, as the matrix A is not

always positive definite. The selection of tolerance during the computation of pseudoinverse

influences the magnitude of curvature. Small tolerance will results highly curved fibres that

are physically unrealistic, while large tolerance will lead to nearly straight fibres, making the

use of larger element size impossible. The calculation of curvature is verified on several test

cases, including a square plate containing curved fibres and an L-shaped thin single-layer

composite lamina. The results of the calculation of curvature from the application of the

normal equation show good agreement with analytical solutions. With the curvatures, it is

possible to show an intuitive image of the spatially varying curved fibres in each element

domain. More importantly, it enables the formulation of larger size finite element with curved

fibres, while still accurately modeling the physics of the composite.
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Chapter 5

Stiffness Optimization

5.1 Introduction

The use of advanced composite manufacturing methods enables tailoring of the mechanical

properties of composite structures to improve their structural performance. To take advantage

of such methods, it is desirable to find optimal fibre configurations that provide better

mechanical performance. The optimization problem consists of an objective function, which

may, as examples, be maximum stiffness or lowest eigenfrequency, combined with any necessary

constraints. The optimization procedure for composite laminates includes discretizing the

whole structure into a number of small elements, then assigning a fibre orientation angle

in each element. The derivative of the objective function and the constraints with respect

to the design variable, orientation angle, will be calculated. The fibre orientations and the

value of objective function are recalculated and updated in each iteration until the maximum

structural performance is achieved. This chapter will develop a method to optimize the fibre

orientations throughout thin composite lamina structures for maximum structural stiffness.

Because it is necessary to evaluate the objective function at each optimization step, an

efficient method for doing so is necessary. This motivates the creation and application of a

finite element that models fibre curvature explicitly, as developed in Chapter 3, and a method

for calculating curvature, as explained in Chapter 4. Both of these will be applied in the

optimization procedure described here.
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Highly tailored fibre composite structures contain curved fibres, which change the local

stiffness of the composite. The conventional strategy for modeling curved fibres with finite

elements in fibre angle optimization is to employ many small elements, within each of which

the fibres are assumed to be effectively straight. The disadvantage of this approach is that

the fine mesh affects the computational efficiency since the finite element equation must be

solved in each iteration. To overcome this efficiency issue, the finite element formulation with

explicit fibre curvature developed in Chapter 3 is employed in the stiffness maximization for

a single-layer composite lamina, which is performed using a gradient descent algorithm. This

finite element method allows the use of larger elements with curved fibres. Fewer elements

results in a smaller global stiffness matrix, and require less time to solve the finite element

equation in each iteration. Fibre curvature becomes an intermediate variable to the objective

function. The total derivatives of the objective function with respect to fibre orientation are

augmented by adding a continuity constraint in terms of curvature, and calculated analytically

using the adjoint method. In the optimization, the curvature for each element is calculated

by minimizing the fibre discontinuity between adjacent elements given their average fibre

orientation, and the finite element with explicit fibre curvature is used for the analysis in

each iteration.

Three composites structures are used to verify the gradient-based fibre angle optimization

integrated with finite element with explicit fibre curvature, including a square thin composite

plate with randomly generated fibre configuration, and L- and T-shaped thin composite plates

with a point load and square holes on them. In each case, two gradient-based fibre angle

optimizations for maximum stiffness using different finite element approaches are performed.

One uses the conventional finite element method for the structural analysis, assuming fibres

are locally straight in each element. The objective function, minimizing strain energy, is

subjected to an equilibrium constraint. The other approach applies the finite element with

explicit fibre curvature for the analysis, using larger element with curved fibres. The objective

function, minimizing strain energy, is subjected to equilibrium and continuity constraints.

The square plate case is first used to verify the two gradient-based fibre angle optimization

methods because its theoretical solution is known to have all fibres aligned. Then the two

gradient-based fibre angle optimizations are performed on the L- and T-shaped thin composite
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lamina for maximum stiffness. The initial fibre configuration in each element is orientated

with the maximum principal stress for the relevant geometry with an isotropic material. The

results show that gradient-based fibre angle optimization with explicit fibre curvature is more

efficient than the conventional gradient-based optimization, and that it reduces the fibre

discontinuity for the composite structure.

5.2 Maximum Stiffness Design

The optimization problem in this chapter is the maximization of the stiffness in thin composite

plates with curved fibres. The design variable is the fibre orientation angle. By adjusting the

fibre orientations, it is possible to maximize the stiffness of a composite structure. Maximizing

the stiffness of a composite structure is equivalent to the minimization of the compliance.

The minimum compliance design problem can be treated as minimizing the total elastic

strain energy U with equilibrium constraint R1 : KD − F = 0 [38],

min
θi

: U(D),

s.t. : KD − F = 0,

(5.1)

where K, D and F are the global stiffness matrix, vector of global displacements and vector

of applied loads. The total elastic strain energy for a discretized system can be computed as

[38],

U = 1
2DT KD =

n∑
i=1

1
2di

T Ki
edi, (5.2)

where the global stiffness matrix is assembled by the n element stiffness Ke. The element

displacement vector is di.

The method of Lagrange multipliers is applied [87], and the augmented objective function

can be written as,

L (θ, λ1) = U + λ1R1, (5.3)

where λ1 is a Lagrange multiplier. This λ1 can have any value because the equilibrium

constraint is an equality.

In order to perform gradient-based optimization, it is necessary to analyze the sensitivity
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of the objective function to the design variables by evaluating the gradient. The derivative of

the augmented objective function, Eq. (5.3), to the design variable θi is:

∂L

∂θi

= ∂U

∂θi

+ λ1
∂R1

∂θi

. (5.4)

The first-order sensitivity of the total elastic strain energy and constraint to the design

variables can be obtained by differentiating the strain energy and the equilibrium equation

with respect to the fibre orientation θi,

∂U

∂θi

= 1
2DT ∂K

∂θi

D + 1
2

∂DT

∂θi

KD + 1
2DT K

∂D

∂θi

. (5.5)

Since the global stiffness matrix K is symmetric, the last two terms in Eq. (5.5) are equal.

Hence Eq. (5.5) can be rewritten as

∂U

∂θi

= 1
2DT ∂K

∂θi

D + DT K
∂D

∂θi

. (5.6)

The partial derivative of the constraint with respect to the design variable θi is

∂R1

∂θi

= ∂K

∂θi

D + K
∂D

∂θi

= 0. (5.7)

The vector of applied loads is independent of the design variable.

Substituting the derivative of the strain energy Eq. (5.6) and constraint Eq. (5.7) into

Eq. (5.4) and collecting terms,

∂L

∂θi

=1
2DT ∂K

∂θi

D + DT K
∂D

∂θi

+ λ1

(
∂K

∂θi

D + K
∂D

∂θi

)

=
(1

2DT + λ1

)
∂K

∂θi

D +
(
DT + λ1

) ∂D

∂θi

.

(5.8)

The derivative of the displacement with respect to the fibre orientation, ∂D
∂θi

, is difficult to

compute, because the displacement with respect to the fibre orientation is implicit. As the

constraint R1 is zero everywhere, the Lagrange multiplier λ1 can be chosen freely. In order
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to eliminate ∂D
∂θi

, let DT + λ1 = 0, hence λ1 = −DT and substitute back:

∂L

∂θi

= −1
2DT ∂K

∂θi

D. (5.9)

This is the analytical derivative of the strain energy, which is applied in the conventional

gradient-based fibre angle optimization of composite structures.

During the optimization process, the finite element equation must be solved at each

iteration to calculate the objective function and its derivative. The disadvantage of the

conventional finite element method is the need for a fine mesh to reach a desired level

of accuracy. This causes the global stiffness matrix to have a large dimension, and the

computational efficiency of the optimization will be greatly degraded.

Using larger elements is an economic way to circumvent this efficiency issue. Larger

elements means a smaller dimension of the global stiffness matrix, requiring less computation

time when solving the finite element equation in each iteration. The finite element formulation

with explicit fibre curvature developed in Chapter 3 is developed for this. Using larger elements

involves explicitly modeling the fibre curvature. Because fibre curvature is a function of the

fibre orientations, the curvature itself is not a design variable, but instead is an intermediate

variable to the objective function. To find the total derivative of the objective function with

respect to fibre orientation, it is also necessary to calculate the derivative of objective function

with respect to curvature and the derivative of curvature with respect to fibre orientations.

The curvatures themselves are included by adding a second constraint, R2 : Aκ + b = 0, to

the optimization problem:
min

θi

: U(D)

s.t. : KD − F = 0

: Aκ + b = 0,

(5.10)

where κ is an n × 1 curvature vector. In this formulation, A is an n × n matrix and b is

an n × 1 vector from the normal equation. They are formed based on the average fibre

orientations of each element. This constraint is explained in Chapter 4, and arises due to

the calculation of the curvature through the application of the normal equation. The fibre

discontinuity among adjacent elements is minimized by setting the gradient of the sum of the
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square of the angle difference, Aκ + b, to be zero.

The augmented objective function with equilibrium and continuity constraints becomes,

L(θ, κ, λ1, λ2) = U + λ1R1 + λ2R2, (5.11)

where λ2 is the Lagrange multiplier for the continuity constraint. The total derivative of this

objective function with respect fibre orientation θi is:

dL

dθi

= dU

dθi

+ λ1
dR1

dθi

+ λ2
dR2

dθi

. (5.12)

The total derivative of the strain energy U with respect to θi is:

dU

dθi

= ∂U

∂κ

∂κ

∂θi

+ ∂U

∂θi

=
(

1
2DT ∂K

∂κ
D + DT K

∂D

∂κ

)
∂κ

∂θi

+ 1
2DT ∂K

∂θi

D + DT K
∂D

∂θi

, (5.13)

and the total derivatives of constraints R1 and R2 with respect to θi are:

dR1

dθi

= ∂R1

∂κ

∂κ

∂θi

+ ∂R1

∂θi

=
(

∂K

∂κ
D + K

∂D

∂κ

)
∂κ

∂θi

+ ∂K

∂θi

D + K
∂D

∂θi

, (5.14)

dR2

dθi

= ∂R2

∂κ

∂κ

∂θi

+ ∂R2

∂θi

= A
∂κ

∂θi

+ ∂A

∂θi

κ + A
∂κ

∂θi

+ ∂b

∂θi

. (5.15)

Substituting Eq. (5.13), (5.14) and (5.15) back into Eq. (5.12) and collecting terms gives:

dL

dθi

=
(

1
2DT ∂K

∂κ
D + DT K

∂D

∂κ
+ λ1

(
∂K

∂κ
D + K

∂D

∂κ

)
+ 2λ2A

)
∂κ

∂θi

+
(

1
2DT ∂K

∂θi

D + DT K
∂D

∂θi

+ λ1

(
∂K

∂θi

D + K
∂D

∂θi

))

+ λ2

(
∂A

∂θi

κ + ∂b

∂θi

)
.

(5.16)

The derivative of the displacement D with respect to θi is difficult to calculate. Therefore one

can use λ1 and λ2, the adjoint variables, to eliminate it. Let DT + λ1 = 0, hence λ1 = −DT

and substitute back:

dL

dθi

= −1
2DT ∂K

∂θi

D +
(

−1
2DT ∂K

∂κ
D + 2λ2A

)
∂κ

∂θi

+ λ2

(
∂A

∂θi

κ + ∂b

∂θi

)
. (5.17)
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A second term, ∂κ
∂θi

, is also difficult to express explicitly. For a given element, the derivative

of curvature with respect to θi is influenced not only by the orientation angle in that element,

but also by the orientation angles in nearby elements. Therefore, the coefficient of the

second term needs be set to zero to avoid calculating the derivative of curvature. This avoids

evaluating the derivative, ∂κ
∂θi

, numerically with high computation expense. Finally, the total

derivative is simplified as

dL

dθi

= −1
2DT ∂K

∂θi

D + λ2

(
∂A

∂θi

κ + ∂b

∂θi

)
, (5.18)

where λ2 is found from:

λ2A = 1
4DT ∂K

∂κ
D. (5.19)

The value of λ2 can be found by solving this linear system, since ∂K
∂κ

is easy to evaluate

analytically. Fig. 5.1 shows the flowchart of the optimization process. Given an initial fibre

configuration, the fibre curvature is calculated using the method developed in Chapter 4.

The finite element with explicit fibre curvature is applied to calculate the strain energy and

the gradient of the strain energy. The fibre orientation angles are updated and the values of

objective function are recalculated until the convergence criterion is satisfied.
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Figure 5.1: Flowchart of the fibre angle optimization for stiffness maximization of a thin single-layer
composite lamina with curved fibres.

5.3 Results

Gradient-based minimization of compliance will be demonstrated on a square region. The

fibre orientation angle is the design variable. By adjusting the fibre orientation in each

element, the stiffness of the composite laminate will be maximized. Two gradient-based fibre

angle optimizations for maximum stiffness of the square region using different finite element

approach are performed, labeled as optimization A and B.

Optimization A is a conventional gradient-based fibre angle optimization, which uses the

conventional finite element, where the fibres are assumed to be straight in each element for

the structural analysis in each iteration. The gradient of the objective function is calculated
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from Eq. (5.9). Optimization B applies the finite element with explicit fibre curvature for

the analysis, using larger elements with curved fibres. The curvature in each element will be

calculated through the application of the normal equation to minimize the fibre discontinuity.

The curved fibres in each element are assumed to be circular arcs and the fibre orientation

angle at an arbitrary location can be obtained based on that geometry. The finite element

with explicit curvature uses the fibre angle at each Gauss integration point to form stiffness

matrix. The finite element equation is then solved. The derivative of the objective function

is calculated by Eq. (5.18).

A square composite lamina discretized into elements with arbitrary fibre configuration is

used. The lamina properties are set as E1 = 127, E2 = 10, G12 = G13 = 4, G23 = 1.8, ν12 =

0.27, and the thickness is 0.001. The initial fibre orientation in each element is randomly

generated, ranging from −30◦ to 30◦. The plate is fixed on the left edge and subjected

to a uniformly distributed axial load on the right edge, as shown in Fig. 5.2(a). With

this loading condition, the theoretical solution for this maximum stiffness optimization is

known to be uniform horizontal fibre orientation. Fig. 5.2(b) shows the contour of the axial

displacement for the square plate with horizontal fibre orientations from an Abaqus simulation.

A convergence study shows that the strain energy of the square plate with horizontally aligned

fibres is 0.1575. Therefore, it is convenient to verify the two gradient-based optimizations

using this square composite laminate to see if they approach the known theoretical solution.

Also, their efficiency is compared. The gradient-based fibre angle optimization using the finite

element with explicit curvature is hypothesized to be faster than the conventional approach

as larger elements are used.

It has been shown in Chapter 3 that using finite elements with explicit fibre curvature is

more efficient than the conventional finite element formulation, which assumes fibres in each

element are straight. According to the result from Chapter 3, applying 7×7 finite elements

with explicit fibre curvature achieves the same accuracy as using 25×25 conventional finite

elements.
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(a) A square composite laminate with random
fibre configuration. The structure is fixed on the
left edge and subjected an uniformly distributed
axial load on the right edge, F =20000. The fibre
orientations are generated randomly ranging from
−30◦ to 30◦.

F

(b) Axial displacement contour for a square plate
with uniform horizontal fibre orientation under
the same boundary and loading condition as (a).
The strain energy of the square plate with hori-
zontally aligned fibres is 0.1575.

Figure 5.2: A square composite laminate with arbitrary fibre configuration. The Abaqus results on the
right provide the solution of the maximum stiffness design problem for a square plate under an axial load.

After getting the theoretical solution for the maximum stiffness design problem for the

square plate, the two gradient-based fibre angle optimizations, A and B, are performed. Both

optimizations are set with the same convergence criteria, which determines convergence based

on the magnitude of successive changes in the objective function, f(θi), falling under a user

defined limit.

||f(θi+1) − f(θi)|| < εa, (5.20)

where εa is the absolute tolerance on the change in objective function value, which is set to

10−9.
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(a) Optimization A: convergence of the strain en-
ergy for a 25 elements ×25 elements conventional
finite elements. The converged strain energy is
0.1575 and the elapsed time is 788.9 s.
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(b) Optimization B: convergence of the strain en-
ergy for a 7 elements ×7 elements finite elements
with explicit fibre curvature. The converged strain
energy is 0.1575 and the elapsed time is 36.7 s.

Figure 5.3: The convergence comparison between two optimizations. Optimization B reduces the computa-
tion time by 95.3%.

The optimal fibre configuration of the square plate should approach horizontal fibre

orientations. It can be seen that optimization A, Fig. 5.3(a), takes more than 1600 iterations

reach convergence, while 62 iterations are necessary for optimization B, Fig. 5.3(b). The

norms of the gradient of optimization A and B reduce by 9 and 5 orders of the magnitude,

respectively. Both optimizations reach the strain energy of 0.1575, which is same as the

theoretical solution. The reduction in computation time R is evaluated as,

R = Ts − Tc

Ts

× 100%, (5.21)

where Ts and Tc are the computation time of optimizations using conventional finite

elements and finite elements with curved fibres, respectively. Optimization B reduces the

computation time by 95.3%. For the square plate example, optimization B, the gradient-based

optimization with explicit fibre curvature, is more efficient than optimization A, the one

without conventional finite element method. It is noticed that using fewer elements requires

fewer iterations to converge. Fewer iterations, less grid generation plus curved finite element

tends to converge more quickly than the conventional finite element, which is an advantage

of using the new optimization method.
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The L-shaped structure has been discussed in Chapter 3 and 4. Since the stress distribution

in this structure is more complicated than in a square plate, it is difficult to know the fibre

orientation for the maximum stiffness. Pedersen [88] found the collinearity between principal

stress, strain and material directions. The extreme energy solutions are obtained with parallel

principal directions for material, stresses and strains. This collinearity can help design for

the fibre path by aligning fibres with the principal stress directions at each point of the

structure to increase stiffness [89]. The collinearity between principal stress, strain and

material directions can also be applied in the structural optimization. Hyer and Charette [8]

optimized the strength of a plate with a hole uniformly loaded at its two ends. The fibres

were initially aligned with the principal stress directions for an isotropic plate. Because of the

anisotropy of composites, the principal directions of the stresses in a composite are not the

same as the principal directions of the stresses for an isotropic material. Hence the principal

directions of the stresses are modified at each optimization step. The fibres were realigned

with the new principal stress directions in each iteration. The optimized laminate showed an

improved tensile strength.

For the L-shaped composite structure, the optimal fibre distribution for maximum stiffness

has the fibres oriented with the maximum principal stress. One can perform gradient-based

fibre angle optimization to obtain the optimal fibre distribution, but it is easy to fall into a

local minimum, because steepest descent method takes steps proportional to the negative of

the gradient to reach the minimum of the objective function in the neighborhood. Avoiding a

local minimum requires a good initial guess for the fibre orientations. A convenient method to

generate a good initial guess is to calculate the directions of maximum principal stress for the

same geometry with an isotropic material, which will be close to the directions of maximum

principal stress for the composite structure. Then the initial fibre distribution is assigned

as the directions of maximum principal stress for the L-shaped structure with an isotropic

material. This gives a good initial guess, increasing the likelihood that the gradient-based

optimization will reach a global minimum of strain energy for the L-shaped composite plate.

It also accelerates the process dramatically.
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(a) An L-shaped structure with top edge fixed.
The point load, F =10000, is applied in the middle
of the right edge of the square hole.

(b) Maximum principal stress direction in each
element of the isotropic structure from Abaqus
simulation.

Figure 5.4: Geometric model of the L-shaped structure. The Abaqus model uses a isotropic material and
applies the same load and boundary conditions on the L-shaped structure. The maximum principal stress
directions are exported and assigned as the initial fibre configuration.

Two gradient-based fibre angle optimizations for maximum stiffness of the L-shaped

structure using different analytical sensitivity analysis and finite element approach are

performed, labeled as optimization C and D. Optimization C is the conventional gradient-

based fibre angle optimization using the conventional finite element. Fibres are assumed

to be straight in each element. The gradient of the objective function is calculated from

Eq. (5.9). Optimization D applies the finite element with explicit fibre curvature for the

analysis. Larger elements with curved fibres are used. The fibre curvature in each element

is calculated by minimizing the fibre discontinuity between adjacent elements given their

average fibre orientation. With the assumption that the curved fibres are circular arcs, the

fibre orientation angle at each Gauss point is obtained based on that geometry. The stiffness

matrix is formed using the fibre angle at each Gauss integration point. The finite element

equation is solved and the derivative of the objective function is calculated by Eq. (5.18).

Both optimizations will use the maximum principal stress directions of the L-shaped structure

with isotropic material as the initial fibre distribution.

Fig. 5.4(a) shows the geometry of this L-shaped thin plate. The top edge is fixed, and
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a point load, 10000, is applied on the middle of the right edge of the square hole. The

L-shaped structure with isotropic material is modeled in Abaqus with the same boundary

and loading conditions. Shell elements (S8R5) were employed to mesh the plate part. The

Abaqus simulation is conducted to get the shear, horizontal and transverse stresses, τxy, σx

and σy, respectively. They are interpolated to the element centres. The principal directions

θp are calculated from

tan 2θp = 2τxy

σx − σy

. (5.22)

Then the principal stress directions are assigned to each element as the initial fibre orientation

for the maximum stiffness optimization.

Fig. 5.5(a) shows the convergence for stiffness maximization for the L-shaped thin plate

using optimization C. It takes 1680 iterations to reach convergence, while 210 iterations

are required using optimization D, as shown in Fig. 5.5(b). Optimization D has reduces

the computation time by 64.5%. The maximum curvature is 0.47. The converged strain

energy for optimization C and D, calculated using Eq. (5.2), is 2.6326 and 2.7354, respectively.

The norms of the gradient of the objective function with respect to the design variables for

optimization C and D reduce by 3 and 2 orders of magnitude, respectively. The final norms

of the gradient of the objective function for optimization C and D are 3.6103×10−7 and

1.6116×10−6, respectively. The result from optimization D is higher than that of optimization

C, because optimization D uses finite element with curved fibres. Fibre curvature causes

the structure to have more compliance. As opposed to optimization A and B, there is no

theoretical solution for the optimization of this complicated structure. This is a standard

problem in the computation of optima for complicated systems, but it is possible to show

that the optimization with finite elements with explicit curvature provides better results then

the conventional approach, and is also more efficient. However, the fibres in the elements

are straight in optimization C and curved in D. To make a fair comparison between the

two optimization results, one can calculate the implied curvatures based on the optimized

fibre orientations in the conventional optimization C, and run an analysis using the finite

element with explicit curvature on the same mesh. This gives a new compliance, 2.7431,

which is greater than the result of optimization D. This shows that optimization D, using
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finite element with explicit fibre curvature, generated a better fibre angle configuration than

optimization C, and greatly reduced computation time.

Fig. 5.6 shows the fibre layout of the L-shaped structure before and after optimization D.

It can be seen that the strain energy of this optimized structure decreases by 3.9%. Fig. 5.6(b)

also plots the curved fibre orientation in each element with the curvatures obtained from

the optimization. Compared to optimization C, the maximum stiffness optimization with

explicit fibre curvature not only improves the efficiency, but also illustrates how fibres are

spatially varying in the laminate domain and reduces the fibre discontinuity between adjacent

elements after optimization. However, there is still fibre discontinuity in the optimized fibre

layout, and further work might include penalizing the discontinuity to get more continuous

fibres, or even use an explicit physical model of discontinuity [90].
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(a) Optimization C: convergence for maximizing
the stiffness of the L-shaped structure using the
conventional finite element method. The con-
verged strain energy is 2.6326.
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(b) Optimization D: convergence for maximizing
the stiffness of the L-shaped structure using the
finite element with explicit fibre curvature. The
converged strain energy is 2.7354.

Figure 5.5: Convergence for the stiffness maximization for the L-shaped structure using optimizations C
and D. Optimization D reduces the computation time by 64.5%.
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(a) The initial fibre configuration of the L-shaped
structure. It is orientated with the maximum
principal stress for the relevant geometry with
an isotropic material. The corresponding initial
strain energy is 2.8461.
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(b) The optimal curved fibre orientation after
optimization D. The curves in each element rep-
resent how fibres are spatially varying in the ele-
ment domain. The corresponding strain energy
is 2.7354, which is 3.9% less than the initial one.

Figure 5.6: Fibre orientations before and after the stiffness maximization for the L-shaped composite thin
plate using optimization D. The stiffness of this structure is improved by 3.9% after the optimization.

Another practical and realistic example is a T-shaped structure with five square holes

on it, which is similar to a structure with bolt holes. The square holes are used since only

structured meshes are considered in this work. The edges of the left four square holes are

fixed, and the middle of the bottom edge of the right hole is subjected to a vertical point

load, as shown in Fig. 5.7(a).

Two gradient-based fibre angle optimizations for stiffness maximization of the T-shaped

structure using different analytical sensitivity analysis and finite element approach are

performed, labeled as optimization E and F. Optimization E uses the conventional gradient-

based fibre angle optimization process with straight fibres in each element. The objective

function is a function of the fibre orientation and its derivative is calculated using Eq. (5.9).

Optimization F applies finite elements with curved fibres. The total derivative of the objective

function with respect to fibre orientation is calculated by Eq. (5.18). Both optimizations use

the maximum principal stress directions for the T-shaped structure with isotropic material

as the initial fibre configuration. An Abaqus simulation is conducted for the same T-shaped

structure with isotropic material, as shown in . The shear, horizontal and transverse stresses

are exported from the simulation results. The principal directions θp are calculated from
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Eq. (5.22).
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(a) A T shaped structure with edges of left four
square holes fixed. The point load, F=10000, is
applied in the middle of the bottom edge of the
right square hole.

(b) Maximum principal stress direction in each
element of the isotropic structure from an Abaqus
simulation.

Figure 5.7: Geometric model of the T-shaped structure. The Abaqus model uses an isotropic material and
apply the same load and boundary conditions on the T-shaped structure. Then the maximum principal stress
direction are exported and assigned as the initial fibre orientation.

Fig. 5.8(b) shows the convergence of the maximum stiffness optimization with explicit

fibre curvature. It only takes 74 iterations to converge, and 1950 iterations for optimization

using the conventional finite element process, as shown in Fig. 5.8(a). Optimization D reduces

the computation time by 69.6%. The maximum curvature is 0.73. The converged strain

energy for optimization E and F are 1.5816 and 1.7515, respectively. The norms of the

gradient of both optimizations reduce by 2 orders of the magnitude. The final norms of the

gradient of the objective function with respect to the design variables for optimization E and

F are 3.6188×10−7 and 1.2325×10−6, respectively. Similar to the L-shaped structure, the

conventional optimization E has lower compliance than that of optimization F, as the fibre

curvature in the finite element with curved fibres reduce the structural stiffness. To show that

the new optimization using larger elements with curved fibres is better than the conventional

approach with straight fibres, the curvatures are calculated based on the optimized fibre

orientations from optimization E, and a simulation employing the finite element with explicit

curvature is conducted on the same mesh. The new compliance, 1.8064, is greater than
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the result of the conventional optimization and greater than the result for optimization

F. Table. 5.1 gives the summary of the optimization results for the L- and T-shaped thin

composite plates. It shows that the new optimization gives lower compliance than that of

the conventional optimization.

L-shaped structure C C* D
Optimal compliance 2.6326 2.7431 2.7354
T-shaped structure E E* F
Optimal compliance 1.5816 1.8064 1.7515

Table 5.1: Summary of the optimization results for the L- and T-shaped structures. The star sign denotes
the compliance obtained by calculating the curvatures based on the optimized fibre orientations in the
conventional optimization, and running the finite element with explicit curvature on the same mesh.
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(a) Optimization E: convergence for the maximiz-
ing the stiffness of the T-shaped structure using
the conventional finite element. The converged
strain energy is 1.5816.
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(b) Optimization F: convergence for the maximiz-
ing the stiffness of the T-shaped structure using
the finite element with explicit fibre curvature.
The converged strain energy is 1.7515.

Figure 5.8: Convergence for the stiffness maximization for the T-shaped structure using optimization E
and F. Optimization F reduces the computation time by 69.6%.

Stiffness optimization using elements with explicit fibre curvature is performed on this

structure. Fig. 5.9(a) shows the initial fibre arrangement that is aligned with the direction

of the maximum principal stresses in each element as calculated for an isotropic material,

and Fig. 5.9(b) shows the curved fibres in each element after the stiffness optimization with

explicit fibre curvature. The strain energy of this optimized structure decreases by 5.6%.
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(a) The initial fibre angles of the L-shaped struc-
ture are the same as its maximum principal
stresses direction. The corresponding initial strain
energy is 1.8555.
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(b) The optimal curved fibre orientation after op-
timization F. The curves in each element denote
the configuration of curved fibres. The corre-
sponding strain energy is 1.7515, which is 5.6%
less than the initial one.

Figure 5.9: Fibre orientations before and after the stiffness maximization for the T-shaped structure using
optimization F. The stiffness of this structure is improved by 5.6% after the optimization.

5.4 Concluding Remarks

The stiffness maximization for the single-layer thin composite lamina is performed using a

gradient descent algorithm integrated with the finite element formulation with explicit fibre

curvature. The finite element formulation with explicit fibre curvature allows the use of

larger elements while maintaining accuracy. Using larger elements reduce the computational

expense, but involves fibre curvature. The curvature is a function of the fibre orientation

and an intermediate variable to the objective function. Therefore, the total derivative of

the objective function includes the derivative of objective function with respect to curvature

and the derivative of curvature with respect to fibre orientation, while the optimization

using conventional finite element is only a function of the fibre orientation. The derivative

involving curvature was included by introducing a continuity constraint. The sensitivity

analysis is performed analytically using the adjoint method. Two gradient-based fibre angle

optimizations for stiffness maximization using different finite element approach are performed

on a square, on L- and T-shaped thin composite lamina. One uses the conventional finite

element method for the structural analysis, and the other one applies the finite element
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with explicit fibre curvature. As the theoretical solution for maximizing the stiffness of a

square plate with uniformly distributed load is that all fibres are aligned horizontally, it

is convenient to verify the two optimizations using this square plate. Results show that

this new optimization with explicit fibre curvature reaches the exact solution and is more

efficient than the conventional approach. The gradient-based fibre angle optimizations for

maximum stiffness are performed on L- and T-shaped structures. Both test cases show that

the optimization with explicit fibre curvature converges faster than the optimization using

conventional finite elements. Also, it can provide the curvature information in each element,

which illustrates spatially varying fibres in the domain and reduces the fibre discontinuity for

the whole structure. Therefore, it is shown that the proposed optimization method improves

the computational efficiency for optimizing composite structures.

93



Chapter 6

Conclusions

This work develops an accurate, efficient finite element model for composite structures with

complex fibre configurations, which can be used for optimizing the local fibre orientations

in composite plates to maximize stiffness. In contrast to the conventional FE approach

that requires fine meshes to attain high accuracy, the technique retains relatively large

elements by modeling the fibre curvature explicitly to capture the changes in stiffness, and

incorporate the elements into the gradient-based fibre angle optimization problem to improve

the computational efficiency.

The behavior of interlayer slip between single fibres and fibre tows is studied by investi-

gating the deformation of bonded curved elastic beams with initial curvature subjected to

axial load. The results shows that the fibre curvature has a strong influence on the effective

stiffness of a composite, while the slip effects between either individual fibres, or adjacent

fibre tows, has little impact on the mechanical properties of such composites. As a result,

perfect bonding between fibres is a reasonable assumption in composite structural analysis.

With the assumption of perfect bonding, a finite element with explicit fibre curvature is

formulated for a single-layer thin composite lamina with curved fibres. The new FE method

allows the use of larger elements with the desired level of accuracy. Fewer elements means

smaller global stiffness matrices, reducing computation time. In the element with curved

fibres, the fibre curvature changes the local stiffness. When performing the quadratures for

determining the element stiffness matrices, the local fibre orientations at each Gauss point
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are used. This gives a stiffness matrix that explicitly accounts for the varying orientations of

the fibres within the element, while the conventional FE has a constant stiffness over the

element domain. The comparison between the finite element with explicit fibre curvature and

the conventional FE shows that the proposed method can greatly improve the computational

efficiency with good accuracy.

The fibre curvature is calculated by minimizing the fibre discontinuity between adjacent

elements given their average fibre orientation. This is a least square minimization problem

and is solved through its normal equation. The curvatures obtained from this new method

show good agreement with analytical solutions for the curvature of different continuous fibres,

which indicates that it is an efficient way to generate the curvature.

Finally, a fibre angle optimization for the maximum stiffness of the single-layer thin

composite lamina is performed using a gradient descent algorithm employing the new finite

element method. The design variable is fibre orientation. The curvature itself is not a

design variable, but instead is an intermediate variable in the objective function. As a

consequence, in addition to the equilibrium constraint that is used in the conventional fibre

angle optimization for maximum stiffness, a curvature constraint is added. It is necessary

to calculate the derivative of the objective function with respect to the curvature and the

derivative of curvature with respect to fibre orientation. The sensitivity analysis is conducted

using the adjoint method, so that the gradient of the objective with respect to fibre orientation

is derived analytically considering the influence of curvature. To accelerate the convergence,

the initial fibre configuration in each element is chosen as the maximum principal stress for

the relevant geometry with an isotropic material. Finally, the optimal solution is verified

and compared to the results from gradient descent optimization using the conventional finite

elements.

The optimization method developed in this work is helpful to improve the performance of

a geometrically constrained composite component, such as maxmizing the stiffness, specific

eigenfrequencies or eigenfrequency bandgaps. It provides an efficient way to find the optimal

fibre configuration in the design of composite structures, and enable full exploitation the

sophisticated manufacturing processes now available for composites. In addition, the finite

element with explicit curvature is useful when confronted with the need for structural analysis
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and optimization on complicated fibre configurations. Moreover, the calculation of curvature

not only enables the optimization using curved fibres, but also provides a method to reconnect

discretized fibres to reduce fibre discontinuity.

6.1 Contributions

The main contributions of the research are:

1. A novel finite element method for composite structures with complicated fibre configu-

rations;

2. A new way of generating the curvature that minimizes the fibre discontinuity;

3. An analytical derivation of sensitivity analysis for gradient-based fibre angle optimization

on thin composite plates;

4. An efficient gradient-based fibre angle optimization approach for thin composite plates;

5. A computer code for the structural analysis and optimization for thin composite plates.

6.2 Future Research Directions

Numerous directions of research remain open for further exploration and study. A few are

listed here:

1. Extend the FE method to unstructured meshes and formulate a 3-D finite element with

curved fibres, so that the FE method can be applied to more practical and realistic

composite structures.

2. Apply the new FE method and optimization approach to multi-ply composite laminates.

This is important because composite laminates nearly always contain more than one

layer. However, it is difficult to extend the method from single layer to multiple layers.

This is because the fibre orientations at one particular point with (x, y) coordinates

are different along the z direction. Firstly, continuity of curvature across adjacent
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elements for one layer may not lead to continuity of curvature for the adjacent layer. In

addition, the Gauss points are difficult to select because each layer has a different fibre

configuration. One way to solve this is to use one element per layer, but this would

lead to a large number of elements and will be computationally expensive.

As a result, it is necessary to find efficient parallel computation algorithms for the

multi-ply composite laminates optimization problems. This work enables the efficient

calculations for the analysis of composites, and they bring the possibility of doing all the

layers individually. Therefore, one option is to use parallel computing to run hundreds

or thousands of cores to solve the optimization of complicated composites.

3. Employing composite configurations with curved fibres can improve the mechanical

properties of the composites, such as strength, stiffness and vibrational properties.

This work only performs fibre angle optimizations for maximum stiffness of composite

structures. It is important to explore the fibre angle optimization of composite laminates

using the finite element with curved fibres to improve other properties. For example, the

objective function can be modified to a generalized eigenproblem to obtain a desirable

vibrational frequency

4. Use more sophisticated optimization schemes instead of the steepest descent method for

the stiffness maximization problem, such as the Quasi-Newton method. The primary

concern in this work is to show that this curved finite element works well and can be

used in the optimization algorithm to save a significant amount of time. It is necessary

to concentrate on the detail of the optimization process and explore more efficient

optimization approaches in the future work.

5. Fibre discontinuity have been reduced, but still exists in the optimization results. It is

difficult to eliminate the fibre discontinuity to 0 in complicated composite structures.

However, it is necessary to keep fibres as continuous as possible to ease manufacture

of the laminates. Further work should be penalizing the discontinuity to get more

smoothly connected fibres, or even finding an explicit physical model of discontinuity.

6. Manufacture composite plates with curved fibres and experimentally validate the
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analytical results. This work develops a novel finite element approach that enables the

use of larger elements with the desired level of accuracy, and a fibre angle optimization

for maximum stiffness based on the finite element method. It is important to validate

the results through experiments. For example, the displacement of the composite plates

with curved fibres can be measured experimentally and compared to the analytical

results. The experimental validation will make the results of the finite element with

curved fibres more convincing.
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[72] Z Gürdal, B F Tatting, and C K Wu. Variable stiffness composite panels: effects of stiffness
variation on the in-plane and buckling response. Composites Part A: Applied Science and
Manufacturing, 39(5):911–922, 2008.

[73] J N Reddy. Mechanics of laminated composite plates and shells: theory and analysis. CRC
press, 2004.

103



[74] R D Cook. Finite element modeling for stress analysis. Wiley, 1995.

[75] T J R Hughes. The Finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[76] O C Zienkiewicz, R L Taylor, and R L Taylor. The finite element method: solid mechanics,
volume 2. Butterworth-heinemann, 2000.

[77] S Nagendra, S Kodiyalam, J Davis, and V N Parthasarathy. Optimization of tow fibre paths
for composite design. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC 36th Structures,
Structural Dynamics and Materials Conference, New Orleans, LA, pages 1031–41, 1995.
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