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Abstract
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2016

With the growing need to reduce green house gas emissions, increasing flight efficiency

has been a primary challenge faced by the aviation industry. Designing lighter and more

efficient aircraft is becoming a goal shared throughout the global air transportation

industry. A light weight acoustic panel is desired to replace heavy and bulky foam

panels inside the fuselage for cabin noise control. Currently, there is no consensus on

the best panel design. Therefore, this thesis will explore using topology optimization

to suggest new panel designs. This thesis contains studies of some acoustic panel

designs as well as methodologies used to optimize the core topology of a sandwich

panel with a maximized band gap while remaining light and stiff. In this thesis, the

sound transmission loss has been related to the existence of band gap, and a band

gap is being maximized as a surrogate for sound transmission loss. The main results

obtained from this thesis show interesting topologies with a band gap around 300 Hz

being maximized under mass and stiffness constraints, and the core topologies have

been found to have resemblance to resonators.
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Chapter 1

Introduction

With increasing concern about global warming, which is believed to be largely a

result of emissions from the burning of fossil fuels, the International Air Transport

Association has set out ambitious industry-wide goals for reducing emissions. Their

goal is to have the aircraft industry reach carbon neutral growth by 2020 and to

reduce by 50% the total carbon footprint of world air transport by 2050 [15]. With

the number of passengers growing every year, it means that a 50% CO2 reduction per

passenger kilometre by 2020 and a 75% reduction by 2050 are required in order to

achieve the goals. As a result, minimizing fuel consumption has become a primary

challenge for the aircraft industry. Maximizing flight range is analogous to minimizing

fuel burn. To address the need to reduce the carbon footprint of aviation, researchers

have studied different possibilities to increase fuel efficiency. Given the range equation:

R =

(
Velocity

Specific Fuel Consumption

)(
Lift

Drag

)
ln

(
Initial Weight

Final Weight

)
, (1.1)

feasible solutions to reduce emissions include maximizing the aircraft lift over drag

ratio, minimizing the weight of the aircraft, and improving engine efficiency. While

other scholars are conducting research to minimize aircraft drag and to increase engine

efficiency, structural and material engineers are searching for lighter materials that

will meet aircraft application requirements.

A design constraint on aircraft structures is that the noise inside the cabin must

be limited. Cabin noise has been identified as a safety issue that can cause headaches,

fretfulness, and fatigue in passengers who suffer a constant exposure to it. Moreover,

studies have shown that exposure to constant noise can increase passengers’ blood

1



CHAPTER 1. INTRODUCTION 2

pressure and heart rate [16]. Thus, safety issues related to cabin noise must be

considered when designing an aircraft. The current approach is to install large foam

panels around the cabin wall to reduce cabin noise. However, they occupy significant

volume and make the aircraft heavier [8]. Sandwich structures with carbon fiber

composite face sheets and a variety of core topologies are attractive because they can

be tailored into high stiffness structures with limited weight penalty. In addition,

these structures can be designed to increase sound transmission losses across specific

frequency ranges of interest [13, 22, 23]. With advances in 3-dimensional printing

technology, fabricating a complex truss topology is feasible. Thus it is of great interest

to investigate the possibility of using a sandwich structure as a light weight acoustic

panel for the aircraft fuselage.

Various studies have been performed to investigate sandwich structures with

assorted core topologies made of carbon fibre composite, foam, or metals, aiming

not only to improve acoustic damping but also to increase stiffness to mass ratio

[3, 13, 20, 23, 27]. Related studies will be discussed in detail in Chapter 2. From

the studies, one can see the potential of porous or truss-like core made of a rapid

prototyped polymer being tailored to a specific topology to achieve desired acoustic

and structural properties for different applications. Thus, this thesis will study the

acoustic performance of sandwich panels with various core topologies in order to

maximize sound transmission loss while maintaining low weight and high strength.

1.1 Thesis Objectives

Designing a light weight acoustic panel for aerospace application is a difficult challenge.

There is no simple solution for finding an optimized design that can achieve good

noise reduction while remaining light and stiff. A substantial amount of effort has

been put into increasing sound transmission loss (STL) through the use of multi-layer

panels. However, there is no consensus on the best solution. Many related studies

are limited to experiments on selected structures. With the infinite possibility of

topologies, such an approach is impractical for finding an optimized design. With

advances in computational power, it is more feasible to construct numerical approaches

to search for the optimal solution. However, the complexity and scale of sandwich

structures makes optimization difficult.

The cores of sandwich structures are frequently periodic, composed of repeating
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unit cells. Corrugated cardboard is a cheap, common example of such a structure.

Making use of the periodicity, one can simplify the acoustic problem by employing

Floquet-Bloch analysis to reduce the model size. This approach to modelling enables

the relatively inexpensive identification of band gaps in the frequency response of a

periodic structure. A band gap is commonly referred to as a stop band, and it is a

frequency range in which no plane wave can propagate in any direction. Phani et al

[2, 27] have found that the sound transmission loss of a structure increases within

its stop band. It is believed that designing a panel that optimizes the frequency gap

around unwanted sound frequencies, such as the coincidence frequency at which the

sound transmission is the most efficient, decreases the sound transmission through the

panel. Thus, being able to maximize the size of the band gap around the targeted

frequencies can be useful for many applications where specific frequencies are important.

This thesis creates a method to maximize the size of band gaps of a periodic sandwich

structure by designing the core using topology optimization. Due to the complexity of

the problem, only 2-dimensional configurations are considered.

A literature review is presented in Chapter2. Chapter 3 outlines the formulation of

validation problems as well as the thesis problem. The validation results are presented

in Chapter 4. Last, the main results for thesis problem are presented in Chapter 5.



Chapter 2

Literature Review

2.1 Aircraft Cabin Noise

Aircraft cabin noise generated from loud engines or high speed flow passing over the

fuselage has been identified as a primary source of passenger discomfort during flight

travel. Pennig et al. [16] have studied the effects of cabin noise on the passenger

experience, and they have found that within the audible range, passengers respond

more to higher sound pressure, feeling more discomfort. Low frequency sound, from 2

Hz to 35 Hz, although inaudible, can lead to headaches, fretfulness and fatigue [32].

Currently, aircraft manufacturers design for cabin acoustic levels ranging from 50 dB

to 110 dB depending on the stage of the flight and type of aircraft [7] [32] and there

is no simple solution to produce a cabin structure that can reduce all sources of sound

across a broad frequency spectrum.

The most common type of aviation cabin wall consists of a thin aluminum skin over

stringers with sound insulating materials between the stringers. New aircraft, such as

the Boeing 787, use an ultra light sound-absorbing and heat-insulating melamine resin

foam produced by Basotect [8]. Although this type of foam can be as light as 6 kg/m3,

its noise reduction is only effective over the medium to high frequency range (600 Hz

to 5000 Hz) [6, 8]. The degree of sound absorbing is only around 10% at 100 Hz for

a foam thickness from 20 mm to 100 mm [6]. Therefore, the low frequency sound

that causes fatigue remains problematic. In addition, the sound-proofing performance

of the foam is highly dependent upon the thickness. A thickness of 50 mm is only

effective over frequency ranges from 800 Hz to 5000 Hz, and if the thickness increased

to 100 mm, the range of affected frequencies changes to 300 Hz to 5000 Hz. In order

4
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to have better sound-proofing very thick foam is required, filling large volumes and

resulting in larger and heavier aircraft.

With the growing application of composite materials to modern aircraft structures,

a composite sandwich structure whose core material can be tailored to reduce acoustic

noise while maintaining high stiffness and strength has become of great interest. A

porous material, honeycomb core, and truss-like cellular solid core have all been shown

to have sound reduction effects, ranging approximately from 5 - 10 dB to 20 - 60

dB as frequency increases from 50 Hz to 5000 Hz [2, 3, 13, 20, 22, 23]. The truss-

like core in particular has shown its potential for being tailored to a given stiffness

and to provide significant sound transmission losses over a targeted frequency range

[13, 22, 23]. Subsection 2.3 will introduce various sandwich panel designs with different

core topologies and describe their acoustic characteristics.

2.2 Important Acoustic Concepts

In the following section, important equations for acoustic transmission will be intro-

duced, together with a discussion of the acoustic mass law.

2.2.1 Sound wave governing equation and its solution

Assuming the sound propagation process is adiabatic and the wave equation is harmonic

time dependent, Newton’s law, continuity, and the ideal gas law together give the

wave equation as follows:

∇2P =
1

c2
0

∂2P

∂t2
=
ω2

c2
0

P = k2P, (2.1)

where P is the pressure, c0 is speed of sound of the air, t is time, ω is the wave

frequency and k is the wave number. A general solution to the plane wave equation

for a two dimensional case is given by:

p(x, y, t) = Ae−ikxxe−ikyyeiwt ; k2 = k2
x + k2

y, (2.2)

where A is a complex amplitude with the real part representing the magnitude and

the imaginary part representing the phase shift, kx and ky are the wave numbers in

the x and y direction, and i is defined as
√
−1.
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2.2.2 Thin plate bending wave equation

A sound wave is transmitted through bending of the plate. The wave pressure excites

the plate from the incident side causing bending on the plate, and the bending of the

plate excites the particles on both sides and generates a reflected wave on the incident

side and a transmitted wave on the other side. For simplicity, the wave propagating

direction is restricted to x direction. Figure 2.1 is a 3-dimensional view of the flexural

bending waves in a plate subjected to plane wave propagating along the x direction,

and Figure 2.2 is a cross-sectional view of the plate.

The equation of motion for the plate subjected to periodic pressure loading P̂ is

given by [41]:

B(1 + iδ)
∂4s

∂x4
+m

∂2s

∂t2
= P (x, t) = P̂ ei(ωt−kx), (2.3)

where s is the transverse plate displacement, m is mass per unit area of the plate, δ

is a mechanical loss factor determined by the amount of internal dissipation which

converts mechanical energy into thermal energy, and B =
Eh3

12(1− ν2)
is the bending

stiffness defined along with plane strain assumption since a thin plate is assumed with

parameters E the Young’s modulus, h the plate thickness, and ν the Poisson ratio. A

general harmonic solution is given as:

s = ŝei(ωt−kx), (2.4)

where ŝ is the magnitude of the transverse plate displacement.

Equation 2.3 can be transformed to become:

(B(1 + iδ)k4 −mω2)ŝ = P̂ , (2.5)

and the above format can be used directly to calculate acoustic impedance introduced

below.

2.2.3 Acoustic Impedance

Impedance is defined as a ratio of pressure P over particle velocity u, i.e Z =
P

u
. This

quantity describes how easily sound can propagate through a medium. Structures with

higher impedance have higher sound transmission loss. For a free plane wave travelling
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Figure 2.1: Transverse bending wave in a plate subjected to wave propagating along
x-direction. Figure is adopted from [17].

Figure 2.2: Sound propagation through a thin plate with fluid medium 1 on the
incident side and fluid medium 2 on the transmission side. Pi is the pressure of
incident wave, Pr is the pressure of the reflected wave, and Pi is the pressure of
transmitted wave. Incident angle is denoted as φ1, and φ2 denotes transmission angle.
Figure is adopted from [41].
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in a medium with density ρ and speed of sound c, using Newton’s law −∂P
∂x

= ρ
∂u

∂t
,

the impedance can be written: Z = ρc. Similarly, for the plate impedance, consider

the plane wave equation without damping, i.e δ = 0. The homogeneous solution gives

the wave number for the plate as kp = (mω2/B)1/4, and the plate impedance Zp can

be expressed as:

Zp =
P

ṡ
=

P̂

iωŝ
= −iωm

(
1− k4

k4
p

)
+ δωm

k4

k4
p

, (2.6)

where P̂ and ŝ are the amplitude of the excitation pressure and transverse plate

displacement.

2.2.4 Sound transmission power and transmission loss

Assuming the fluid on both sides is the same, the incident and transmission angles are

the same: φ1 = φ2 = φ. The sound transmission power is defined as:

τπ =

∣∣∣∣PtPi
∣∣∣∣2 =

∣∣∣∣ 2Z

2Z + Zp cosφ

∣∣∣∣2 =
(2ρc/ cosφ)2[

ωm(1− (
kx
kp

)4)

]2

+

[
ωmδ(

kx
kp

)4 + 2ρc/ cosφ

]2 ,

(2.7)

where Pi is the pressure of the incident wave, and Pt is the pressure of the transmitted

wave. Transmission loss is defined as TL = 10 log(τ−1
π ). The coincidence frequency

occurs when there is a spatial resonance, i.e kx = kp. As a result, the bending wave

and the sound wave become in phase to each other, and the sound transmission is the

most efficient and the highest around this frequency. It is given as ωco =
√

m
B

(
c

sinφ

)2

.

The smallest coincidence frequency is also called the critical frequency ωc =
√

m
B
c2. It

is desirable to increase the critical frequency to avoid resonance of the plate in the

lower frequency range which is difficult to attenuate. This can be done by decreasing

the stiffness of the structure. By examining Equation 2.7 for limiting values of ω,

the general relationship between frequency and impedance can be described. When

the excitation frequency is very low, i.e ω � ωco, the mechanical damping term is

much less than the mass term. Assuming ω is very small so that (ωm cosφ)� ρc, the
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transmission loss for plane waves travelling through a thin plate is given as:

ω � ωco → TL = 20 log

(
ωm cosφ

2ρc

)
. (2.8)

Similarly, transmission loss at higher frequency ranges are given below:

ω ≈ ωco → TL = 20 log

(
1 +

δωcom cosφ

2ρc

)
(2.9)

ω � ωco → TL = 20 log

(
1 +

Bk4 sinφ4 cosφ

2ρcω

)
. (2.10)

From Equation 2.8 - Equation 2.10, it can be concluded that at very low frequency,

the TL is very small, and one way to increase the TL is by increasing the mass of

the plate. This is why the transmission loss function is often referred to as the mass

law. Alternatively, one can increase the coincidence frequency by decreasing the plate

stiffness, which is often undesirable for applications that require strength and stiffness

to resist various forces acting on the panel. At higher frequency, the plate stiffness

dominates the TL, and when ω approaches ωco, the mechanical loss factor dominates

the TL. Since higher frequency sound can be damped by increasing plate stiffness, it

is not a major concern. The main challenge is to resolve the conflict between having a

light and stiff panel and a low frequency sound barrier. Section 2.3 will present the

potential solution to this conflict.

2.3 Acoustic Damping Through Multi-Layer Pan-

els

Because a simple, single plate configuration does not provide sufficient acoustic

damping over a wide range of sound frequencies, researchers have been studying

multi-layer structures with different core topologies for their acoustic damping effect.

As discussed in section 2.2, higher mass and lower stiffness are desired for increasing

transmission loss at low sound frequencies. However in aircraft applications, low

stiffness panels are typically not acceptable. Stiff structures, in addition to having

low STL at low frequencies, radiate structure-borne sound more efficiently, making

their acoustic properties even less desirable [20]. In 1959, Kurtze and Watters [20]
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studied sandwich panels to resolve the conflict between having a stiffer structure and

achieving higher sound attenuation. They suggested that using a compliant core with

stiff face sheets can achieve both higher sound transmission loss and higher stiffness.

The following section will discuss research that is related to acoustic damping of

multi-layer panels.

2.3.1 Transmission Damping Effect of Porous Media

For acoustic transmission, the internal loss and dissipation on the boundary of the

structure is the most significant form of damping. Although the transverse vibration

of the plate can be slightly damped when it radiates sound into the air, the combined

effect of structural and air damping is not significant. However, when a sound absorbent

media is placed next to the plate, a resistive near field is created, which results in

significant transmission power loss [33].

Allard [3] studied the sound propagation through porous media by considering

the porous layer as an equivalent fluid. He derived acoustic impedance equations for

different pore shapes. The acoustic impedance of a porous media depends on the bulk

modulus, flow resistivity, porosity, tortuosity, flow density, and the anisotropy factor

of the porous material. From Equation 2.7, higher plate impedance results in higher

sound transmission loss, so by tailoring the geometry of the porous core in a sandwich

panel, it is expected to be able to achieve good sound damping for certain frequency

ranges.

2.3.2 Honeycomb Core

Apart from porous media, an anisotropic core, in particular honeycomb core, structure

has been shown to provide high STL over a frequency range from around 50 Hz to 5000

Hz. Figure 2.3 is a schematic for a sandwich panel with honeycomb core. Thamburaj

and Sun [42] focused on selecting core materials and geometry to transform bending

vibration in the top face to shear deformation so that the deformation on the bottom

face is minimized. They use a numerical Lagrange-Newton method to optimize the

sound transmission loss function subject to stiffness, weight, and thickness constraints.

Their results show that anisotropy leads to higher STL. Similar results are obtained

by Barton, Mixson, and others [5, 14].
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Figure 2.3: Example of a sandwich panel with an anisotropic honeycomb core structure.
Figure is adopted from [12].

2.3.3 Truss-like Cellular Solid Core

Recently, there has been a growing interest in sandwich structures with truss-like

cellular cores for their amenability to being tailored for specific properties, such as high

stiffness, low mass, and good acoustic damping. Ruzzene [22, 34] studied 2-dimensional

sandwich beams with the four cellular core topologies shown in Figure 2.4. Each of

the four core configurations consisted of a parametrized unit cell; see Figure 2.5. He

developed numerical models to calculate the STL for different core structures, and he

found that different cellular solid core structures will give significant sound attenuation

near some specific frequencies.

Apart from studying the dynamic response of different sandwich panels to obtain

desired sound transmission properties, some scholars have approached the problem

differently. Because of the periodicity of the cellular truss core, it is possible to

consider the structure as similar to a periodic crystal structure, in which case solid

state physics can be applied to simplify the analysis of the whole sandwich panel to

one repeating unit cell. In 2006, Phani implemented the Floquet-Bloch theorem to

analyse plane wave propagation through 2-dimensional periodic structure [2]. Using

the Floquet-Bloch theorem, periodic boundary conditions can be applied to the unit

cell, and dispersion curves can be obtained by analysing the dynamic response of

the unit cell along the edge of the irreducible Brillouin zone. Wave dispersion occurs

when plane waves with different frequencies have different propagation speed, and

dispersion curves relate the wave number of the travelling wave to its frequency as
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(a) Truss core - square type

(b) Chiral core

(c) Hexagonal-honeycomb type

(d) Hexagonal-re-entrant type

Figure 2.4: Cellular solid core topology types being considered by Ruzzene et al
[22, 23]. Each structure is constructed by patterning a unit cell over the core region
and bound by two face sheets. The unit cells for the four structures are shown in
Figure 2.5. Figures are adopted from [22, 23].

shown in Figure 2.6. Details on the Floquet-Bloch theorem and Brillouin zone will

be introduced separately in subsection 2.4.1, and details in Phani’s approach will be

presented in subsection 2.4.2. The main idea is that from the dispersion curves, a band

gap indicating the frequency regime through which plane waves cannot propagate can

be found. A band-gap is a desirable acoustic property for acoustic damping purposes,

since one can control wave propagation through the structure by designing the band

gap.

In 2015, Moosavimehr [27] extended Phani’s study to a 3-dimensional truss core

sandwich panel. He constructed sandwich panels with different truss lattice cores,

used ABAQUS to generate the stiffness and mass matrices, applied Phani’s approach,

and obtained dispersion curves for the sandwich panels. Figure 2.7 shows the different

lattice structures with their dispersion curves. For those sandwich panels, there only

exist partial band gaps. In Figure 2.7, the dispersion curves for different core topologies

have different partial band gap structures near different frequency ranges. For instance,
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(a) Square unit cell with length and
width indicated as Lx and Ly.

(b) Chiral unit cell with design parameters indicated in the
figure.

(c) Hexagonal honeycomb unit cell (d) Hexagonal re-entrant unit cell

Figure 2.5: Unit cell for the four structure in Figure 2.4. Each unit cell is parameterized
with the design parameters indicated in the graph. Figures are adopted from [22, 23].

the partial band gap near 5 kHz indicated by the grey bar in Figure 2.7b for the

tetrahedral lattice core is bigger than the other two structures. As a result,the sound

transmission loss of the tetrahedral lattice around 5 kHz is much greater than the

other structures as indicated in Figure 2.8. The kagome and pyramidal structures on

the other hand has bigger band gap around 2 kHz to 3kHz, and correspondingly, their

sound transmission loss near that frequency range is much higher than the tetrahedral

structure.

Since directly calculating the STL of an entire sandwich panel has very high

computational complexity, it is impractical to design the entire panel. Thus, relating
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Figure 2.6: Exapmle of dispersion curves for a triangular honeycomb, with the wave
space restricted to the edges of the irreducible Brillouin zone, which is the area
inclosed by O-A-B-O path. The grey bar indicates the band gap at which no wave can
propagate [2]. The wave vector space includes all wave numbers of the plane waves.
The Brillouin zone is a reduced wave vector space. Figure is adopted from A.Phani et
al. [2].

the existence of band gap to acoustic damping offers a great opportunity for simplifying

the design of a whole sandwich panel to the design of a unit cell, making topology

optimization of the unit cells of a periodic sandwich panel attractive.

Therefore, this thesis will make use of the periodicity of sandwich panels to optimize

STL around specific frequencies by optimizing the band gap around those targeted

frequencies. More related literature for proceeding along this path will be introduced

in later sections.
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(a) Sandwich panel with tetrahedual lattice Core. (b) Dispersion curves of tetrahedral lattice core
with grey bars indicating some partial band gaps.

(c) Sandwich panel with kagome lattice core. (d) Dispersion curves of kagome lattice core with
the grey bar indicating one of the partial band
gap around 3 kHz.

(e) Sandwich panel with pyramidal lattice core (f) Dispersion curves of pyramidal lattice core
with the grey bar indicating one of the partial
band gap around 2 kHz.

Figure 2.7: Sandwich panel with different truss lattice core configurations are shown
on the left with their corresponding dispersion curves calculated on the right. Figures
are adopted from [27].
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Figure 2.8: Sound transmission loss for various truss lattice core configurations. The
x axis indicates the excitation frequency and the y axis is the corresponding STL. The
peak STL circled for the three structures correspond to a partial band gap around
those frequencies in their band structures shown in Figure 2.7. Figure is adopted from
E. Moosavimehr [27].
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2.4 Band Gap Calculation for a Periodic Structure

Many periodic structures or materials have been found to exhibit phenomena known

as band gaps, which essentially are gaps between two consecutive dispersion curves as

shown in Figure 2.6. A positive band gap indicates a frequency regime in which no

wave motion can occur. Making use of the band gap characteristic, many scholars

performed studies on the dispersion properties of periodic structures or materials to

attain a desired band gap for applications in the design of frequency filters, wave

guides, beam splitters, etc. [29]. Many of the studies would have encountered great

computational complexity without the Floquet-Bloch theorem which allows one to

simplify the analysis of a large periodic structure to a representative unit cell. The

theorem is of great usefulness for this thesis in order to investigate an optimal band

gap of a sandwich structure near desired frequencies. Therefore, this section will

introduce the application of the Floquet-Bloch theorem.

2.4.1 The Floquet-Bloch theorem

The governing equations for elastic wave propagation in a three-dimensional homoge-

neous, isotropic, and elastic medium are presented in Equation 2.11 to Equation 2.13

[29].

ρ
∂2u

∂t2
=

∂

∂x
(λ∇ · u) +∇ ·

(
µ

(
∇u+

∂u

∂x

))
, (2.11)

ρ
∂2v

∂t2
=

∂

∂y
(λ∇ · u) +∇ ·

(
µ

(
∇v +

∂u

∂y

))
, (2.12)

ρ
∂2w

∂t2
=

∂

∂z
(λ∇ · u) +∇ ·

(
µ

(
∇w +

∂u

∂z

))
, (2.13)

where u = {u v w} is the displacement vector, λ and µ are Lame’s coefficients, and ρ

is the density of the material.

The Floquet-Bloch theorem states that when elastic waves propagate through a

periodic structure without attenuation, the complex wave amplitude in a repeating

unit cell does not depend on the location of the cell in the whole structure [2]. In

another words, it is adequate to study the wave motion within a unit cell in order to

capture the wave behaviour of the whole structure. Elastic waves that are attenuated

cannot propagate at all. A mathematical expression for the Floquet-Bloch theorem is



CHAPTER 2. LITERATURE REVIEW 18

given as the solution to Equation 2.11 through Equation 2.13 possessing the following

periodicity:

u (r, t) = uk (r, t) e(k·r−iwt), (2.14)

where uk is the displacement field of the unit cell, r is the location vector of the unit

cell, k is the wave vector, and w is the angular frequency. Inserting Equation 2.14

into the governing equations and solving the partial differential equations using the

finite element method to be introduced in section 2.5, the general form of the problem

can be obtained (
K (k)− w2M

)
u = f, (2.15)

where K and M are the global stiffness and mass matrices respectively, and f is the

force vector.

2.4.2 Floquet Bloch Applications in Calculating the Disper-

sion Curves

A more explicit form of Equation 2.15 is introduced by Phani [2]. By constructing the

stiffness and mass matrix of the unit cell directly without considering the Floquet-

Bloch periodic boundary conditions, one arrives at the assembled form of the governing

equations Equation 2.11 to Equation 2.13.

(
K− w2M

)
u = f, (2.16)

where K and M are the stiffness and mass matrices, u is the displacement vector, and

f is the force vector.

By virtue of the Floquet-Bloch theorem, the displacement, u, and force, f, possess

the following properties:
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ui = ui

ur = ekxul

ut = ekyub

urb = ekxulb

ult = ekyulb

urt = ekx+kyulb

fr = −ekxfl

ft = −ekyfb

frt + ekxflt + ekyfrb + ekx+kyflb = 0

, (2.17)

where the subscripts l, r, t, b indicate left, right, top, and bottom, i indicates internal

nodes, and the double subscript indicates the corner elements. See Figure 2.9 for an

illustration. The key consequence of this is that the displacements of locations on the

boundary of the unit cell have specific relations to one another.

Figure 2.9: Node labelling of a 2-dimensional square repeating unit cell with edges
connected to neighbouring unit cells.

A transformation matrix constructed by applying the above relations is used to

convert the displacement from the Bloch reduced coordinate to the complete coordinate,

such that u = Tũ, where

ũ =
[
ul ub ulb ui

]T
, (2.18)
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is the Bloch reduced coordinate and

T =



I 0 0 0

Iekx 0 0 0

0 I 0 0

0 Ieky 0 0

0 0 I 0

0 0 Iekx 0

0 0 Ieky 0

0 0 Ieky+kx 0

0 0 0 I



, (2.19)

is the transformation matrix.

By substituting u = Tũ into Equation 2.16 and pre-multiplying the equation with

the Hermitian transpose TH, the governing equation in the Bloch reduced coordinate

system is obtained:

TH
(
K− w2M

)
Tũ = THf̃. (2.20)

The solution to the above eigenvalue problem depends on the wave propagating

frequency w and wave number vector (kx, ky), where the wave numbers are complex

values with the real part representing sound attenuation and the imaginary part

representing the phase angle. The eigenfrequency is a function of the wave vector.

For each pair of kx and ky, a set of eigenvalues and eigenvectors are generated, with

the eigenvalues indicating the natural frequencies of the structure under the wave

motion with wave numbers kx and ky along the x and y direction, and with the

eigenvectors representing the mode shapes of the structure at those frequencies. For

all wave vectors, the eigenfrequencies of the eigenproblem form solution surfaces, also

known as dispersion surfaces. If two consecutive surfaces do not have any frequency

values crossing each other, then there exists a band gap between the two surfaces,

see Figure 2.6 for illustration. Inside the band gap, no wave mothon can occur.

The concepts of reciprocal unit in wave vector space is widely used in solid state

physics to transform a problem from time space to frequency space through a Fourier

transformation. With the transformation, the problem become easier to solve in the
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wave vector space. For convenience, the basis vectors for the direct and reciprocal

cells are set to satisfy the following relation [2]:

ei · e∗
j = δij, (2.21)

where ei are the basis vectors for the direct cell and e∗
j are the basis vectors for the

reciprocal cell. For a square unit cell, the basis vectors for the direct and reciprocal

cell align with each other, and for more complex lattices, the details can be found in

[2]. To solve the problem, at least two of the unknowns must be provided. These are

chosen to be the two components of the wave vector propagating along the direction

of the basis vectors of the reciprocal unit. The wave vector space still has infinite

possible combinations. It has not yet been directed. The space can be reduced to

discrete space thanks to the periodicity of the structure [19]. The reduced space is

the Brillouin zone and is also a Wigner-Seitz unit cell of the reciprocal lattices, which

can be constructed by selecting one lattice point, connecting it to all neighbouring

points, and constructing the perpendicular bisects of those lines to form a closed

region, as shown in Figure 2.10. It is computationally expensive to search the entire

Figure 2.10: Construction of Brillouin zone of the reciprocal unit cell with all the dots
indicating lattice points. Region enclosed by red lines is the Brillouin zone.

Brillouin zone to construct complete dispersion curves. If the lattice has symmetry,

the Brillouin zone can be reduced to a unique region which is a subset of the cell and

is referred to as the irreducible Brillouin zone, see Figure 2.11 for example. To reduce

the computational complexity, the wave vectors are often restricted to the edges of

the irreducible part of the first Brillouin zone, indicated as the Γ - X - M - Γ path

in Figure 2.11, to explore band gaps since the band extrema, at which the change of

eigenfrequencies with respect to the change of wave vector is zero and thus the group
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velocity of plane waves is zero, almost always occur on the boundaries of the Brillouin

zone according to Kittel [19].

Figure 2.11: Figure on the left is a unit cell with square symmetry. The blue section
in the figure on the right indicates the irreducible part of the Brillouin zone for the
unit cell. The three pivots are labeled as Γ, X, and M [11].

For a square unit cell with square symmetry, if waves are propagating without

attenuation and the wave vector is purely imaginary, the wave constants kx and ky at

the three pivots, denoted as Γ, X, and M, of the irreducible Brillouin zone are given

as:

Γ (0, 0)

X
(
i
π

a
, 0
)

M
(
i
π

a
, i
π

a

)
,

where i indicates complex number, and a is the base length of the unit cell.

To sum up, the dispersion curves are calculated by solving the eigenproblem of

Equation 2.20 along the edges of the irreducible Brillouin zone, and the band gap is

found between two consecutive dispersion surfaces that do not have any frequency

value crossing each other.

2.5 Finite Element Analysis

The band-gap analysis for a structure with arbitrary topology will not be possible

to achieve in a practical manner without a finite discretization. This is because the
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governing Equations 2.11 to 2.13 are partial differential equations without known

solutions. The main steps in the finite element analysis involve discretizing the design

domain into small elements, representing the elements with shape functions, and

constructing the global stiffness and mass matrices of the whole structure. Since the

finite element strategies are very well-known, details are presented in Appendix A.

2.6 Topology Optimization

Topology optimization is an effective way to search for an efficient material layout

within a design domain for desired physical performance, such as high stiffness, high

acoustic damping and high natural frequency. It is done by distributing allowable

material throughout the design domain to achieve an optimal value of an objective

function. In practise, topology optimization is commonly used to generate early stage

conceptual designs that have the most desirable properties and meet specified design

constraints. The optimal topology obtained from the method is then improved further

for better performance and manufacturability often by using shape optimization, which

is a structural optimization method that optimizes the shape of the structure [1]. The

difference between topology and shape optimization is that the former optimizes the

topology as well as the shape of a structure, for instance creating holes, while the

later optimizes the shape or the holes without changing the topology. For industrial

applications, manufacturing constraints are often required to achieve structures that

meet specific manufacturing requirements [10]. For the scope of this thesis, only an

early stage model will be developed with a limited number of constraints.

Topology optimization relies on iterative analysis and design update steps, and

gradient based analysis is often used for guiding the searching direction. There exist

many topology optimization methods, and a review is given by Sigmund and Maute

[30]. The topology optimization method that is implemented in this thesis is the

“density method”, which divides the design domain into many elements and optimizes

the topology by determining the density of each element. By assigning a density value

of 0 or 1 to each element, the allowable material is distributed to favour an optimal

objective function. However, the discrete nature of the problem imposes difficulty for

sensitivity analysis, making it impractical to solve topology optimization problems

that often consist of large sets of design variables. Continuous density variables are

more favourable since gradient-based optimization can be used to search for an optimal
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solution more efficiently. However, non-physical intermediate density elements are

impermissible. In order to prevent intermediate density and encourage 0-1 solutions,

the Simplified Isotropic Material with Penalization (SIMP) approach was introduced

by Bendsoe in 1989 [28]. The approach suggested penalization to intermediate density

by modifying the material property in the following way:

E (ρe) = ρpeE0, (2.22)

where ρe is the density of element e, p is the penalty value usually set to 3, and E0

is the Young’s modulus of solid material. The penalization scheme is only effective

when volume constraints are imposed, since under volume constraint, a 0-1 solution

will be more effective compared to an intermediate solution. In this thesis, the density

method will be used in conjunction with the SIMP approach to solve the optimization

problem considered here. The optimization scheme used to solve the density-based

topology problem is introduced in the following section.

2.6.1 Optimization Scheme

Density based topology optimization is often done by dividing the structure into many

discrete elements and optimizing the density of each element to achieve the desired

structure. These types of optimization problem are often non-linear, implicit, and have

a large sets of design variables and constraints. Traditional optimization methods,

such as steepest descent method, are usually too slow to be practical for performing

such an optimization.

In 1987, Svanberg proposed a generalized version of the convex linearisation

(CONLIN) method to solve structural optimization problems, named the method of

moving asymptotes method (MMA). MMA is based on a conservative convex separable

approximation (CCSA) which is widely used in many other optimization algorithms,

such as sequential quadratic programming. The method constructs a sub-problem

that is convex and separable to replace the primary implicit and non-linear problem.

Convex approximation ensures the sub-problem to be solved has a unique solution

equivalent to the primary solution. Approximating separability makes the procedure

more efficient when solving for the Lagrange multipliers. Due to the characteristics of

the approximation, MMA can handle problems with a large number of design variables

and constraints.
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2.6.1.1 Method of Moving Asymptotes

Consider the general structural optimization problem having the following form

Problem : minimize f0 (x) (x ∈ Rn)

Subject to : fi (x) ≤ f̂i for i = 1, ...,m

and xmin ≤ xj ≤ xmax for j = 1, ..., n

, (2.23)

where f0 is the objective function, fi (x) ≤ f̂i are behavioural constraints such as

stresses and displacements, and xmin and xmax are the bounds on the design variables

xj.

The MMA solves the optimization problem by generating and solving an explicit

sub-problem in an iterative manner. The iteration steps are listed below.

1. Given an initial guess x0 at iteration k = 0.

2. At each iteration k, calculate the objective function f0

(
xk
)
, the constraint

function fi
(
xk
)

and their derivatives ∇f0

(
xk
)

and ∇fi
(
xk
)
.

3. Construct the sub-problem P (k) by replacing the implicit functions fi with the

approximating explicit function g
(k)
i based on calculations obtained from the

previous step.

4. Solve for the optimal solution to the sub-problem and use it to adjust the

approximation function and to perform another internal iteration l within the

outer iteration k, until g
(k,l)
i

(
x(k,l)

)
≥ f

(k)
i

(
x(k)
)
. Let the solution

(
x(k,l)

)
be the

next iteration point x(k+1). Continue the iterations until convergence criteria

are met or when the user is satisfied with the solution.

The approach for constructing the approximating explicit function g
(k,l)
i and the

sub-problem P (k) are detailed in [39] [40]. The method will be introduced without

detailed explanations here.

For each iteration k, the design variable xj are bounded by a lower limit Lj and a

upper limit Uj, which are also refered to as the moving asymptotes:

L
(k)
j ≤ x

(k)
j ≤ U

(k)
j . (2.24)
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The approximation functions g
(k,l)
i are defined such that they are both convex and

separable, given as:

g
(k,l)
i (x) = r

(k,l)
i +

n∑
j=1

(
p

(k,l)
ij

U
(k)
j − xj

+
q

(k,l)
ij

xj − L(k)
j

)
, (2.25)

where

p
(k,l)
ij =


(
U

(k)
j − x

(k)
j

)2 ∂fi
∂xj

+
ρ

(k,l)
i σ

(k)
j

4
if

∂fi
∂xj

> 0

0 if
∂fi
∂xj
≤ 0

, (2.26)

q
(k,l)
ij =


0 if

∂fi
∂xj
≥ 0

−
(
x

(k)
j − L

(k)
j

)2 ∂fi
∂xj

+
ρ

(k,l)
i σ

(k)
j

4
if

∂fi
∂xj

< 0

, (2.27)

and

r
(k,l)
i = fi

(
x(k)
)
−

n∑
j=1

(
p

(k,l)
ij

U
(k)
j − x

(k)
j

+
q

(k,l)
ij

x
(k)
j − L

(k)
j

)
. (2.28)

For the above equations, all derivatives are evaluated at x = x(k), and the moving

asymptotes have the following relations to the design variable:

L
(k)
j = x

(k)
j − σ

(k)
j and U

(k)
j = x

(k)
j + σ

(k)
j , (2.29)

where σ(k) is given as: σ(k) = asyinit
(
xmax
j − xmin

j

)
for k < 3

σ(k) = γ
(k)
j σ

(k−1)
j for k ≥ 3

, (2.30)

where asyinit is used to tune the move limit in the first two iterations and is usually

assigned with value 0.5, and γ is given as:

γ =


asydecr if

(
x

(k)
j − x

(k−1)
j

)(
x

(k−1)
j − x(k−2)

j

)
< 0

asyincr if
(
x

(k)
j − x

(k−1)
j

)(
x

(k−1)
j − x(k−2)

j

)
> 0

1 if
(
x

(k)
j − x

(k−1)
j

)(
x

(k−1)
j − x(k−2)

j

)
= 0

, (2.31)
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where asyincr and asydecr are called the asymptote increase and asymptote decrease

values that can be adjusted by the user for specific problems to increase the rate of

convergence. The suggested values are 1.2 and 0.7.

The updating of the parameter ρ is

ρ
(1,0)
i = 1

ρ
(k+1,0)
i = max

{
0.1ρ

(k,l̃(k))
i , ρmin

i

}
ρ

(k,l+1)
i = min

{
10ρ

(k,l)
i , 1.1ρ

(k,l)
i + δ

(k,l)
i

}
if δ

(k,l)
i > 0

ρ
(k,l+1)
i = ρ

(k,l)
i if δ

(k,l)
i ≤ 0

, (2.32)

where l̃ (k) is the total number of inner loops in the k iteration, and δi is given as:

δ
(k,l)
i =

fi
(
x(k)
)
− gi

(
x(k,l)

)
1

2

n∑
j=1

((
x(k)
)
−
(
x(k,l)

))2

σ2
j − ((x(k))− (x(k,l)))

2

. (2.33)

With the above approximation to the functions fi at each iteration, the sub-problem

is guaranteed to be convex and separable, and thus a dual method can be used to

solve the sub-problem. Details on the dual method can be found in reference [40] .

Applying the dual method, the sub-problem is constructed as:

Sub-problem: min
x
g

(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 0.5diy
2
i )

Subject to : g
(k)
i (x)− aiz − yi ≤ 0, i = 1, ...,m

minx ≤ xj ≤ maxx, j = 1, ..., n

y ≥ 0, z ≥ 0

, (2.34)

where y is the vector of Lagrange multipliers also called the dual variable, and z is an

artificial variable that is introduced to prevent bad initial points that often lead to

infeasible solutions. The coefficients ai, ci, and di can be adjusted to solve different

optimization problems.
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2.7 Sensitivity Analysis

Gradient based optimization relies on the derivatives of the objective and constraint

functions with respect to all design variables in order to search in the right direction.

Since the aim of this thesis is to optimize the gaps in the frequency band structure

of a sandwich panel, the objective function will contain eigenvalues generated from

the eigenproblem introduced in previous section. Lacking explicit differentiability,

sensitivity analysis for eigenvalues is often done by using a mathematical perturbation

technique. The following section will introduce the detailed methodology along with

the sensitivity analysis for compliance.

2.7.1 Derivatives of Eigenvalues

Eigenvalues represent the natural frequencies of the system. In most cases, each

eigenvalue corresponds to an eigenvector, which represents the mode shape of the

eigensystem. Calculating sensitivities for these cases is relatively straightforward.

However, for complex structures that have many design parameters and many degrees

of freedom, for instance stiffener-reinforced thin-walled plate and shell structures, a

dense spectrum of eigenvalues is often expected, and thus eigenvalues with multiplicity

are often found in those structures [4]. In addition, symmetry of the structure can

generate linearly independent buckling modes and vibration modes having eigenvalues

with multiplicity [4]. Here, the multiplicity is considered when the numerical differences

between eigenfrequencies are within a small tolerance. The structures considered in

this thesis share those charateristics that exist when multiple eigenvalues are expected,

thus the multiplicity of eigenvalues must be addressed. Seyranian [4] introduced

techniques to calculate both simple and multiple eigenvalues based on mathematical

perturbation analysis of the eigenvalues and their corresponding eigenvectors. The

following will outline the methodology.

The sensitivity calculation for a simple eigenvalue is:

dλi
dxj

= ΦT
i

(
∂K

∂xj
− λi

∂M

∂xj

)
Φi, (2.35)

where λi is the ith eigenvalue, Φi is the corresponding eigenvector, xj is the jth design

variable, and K and M are the global stiffness and mass matrices generated by the
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finite element method. The eigenvectors are normalized by:

ΦT
i MΦi = I, (2.36)

where I is the identity matrix.

When there exist eigenvalues with N multiplicity, the sensitivity analysis is not

straightforward since the eigenvectors for the multiple eigenvalues are not unique. Any

linear combination of the eigenvectors will be a solution to the original eigenproblem,

and the sensitivity analysis of the multiple eigenvalues has to be treated differently

to take into account the non-unique eigenvectors. To do so, Seyranian [4] suggested

constructing a generalized gradient vector fsk such that

fsk =

(
ΦT
s

[
∂K

∂x1

− λ̃∂M

∂x1

]
Φk, ...,Φ

T
s

[
∂K

∂xn
− λ̃∂M

∂xn

]
Φk

)
for s = 1, ..., N ; k = 1, ..., N

, (2.37)

where n is the number of design variables, N is the multiplicity of the eigenvalue, and

λ̃ is the repeating eigenvalue. The sensitivity is obtained by solving the following

problem:

det
[
fTske− µδsk

]
= 0, s, k = 1, ..., N, (2.38)

where e is the direction vector for the design variables, µ is the sensitivity, and

δsk is the Kronecker delta. The problem in Equation 2.38 is not as simple to solve

as it first appears since the direction vector e is undetermined for the problem.

Pedersen interpreted Seyranian’s work in a more useful form [31]. Considering a

double eigenvalue case only, we have eigenvalue λ2 and its corresponding eigenvectors

{Φ1} and {Φ2} . Any linear combination of the two eigenvectors will be an eigenvector

with the same eigenvalue.

{
Φ̄
}

= c1 {Φ1}+ c2 {Φ2} (2.39)

c2
1 + c2

2 = 1⇒
{

Φ̄
}T

M
{

Φ̄
}

= 1. (2.40)
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By inserting Equation 2.39 into Equation 2.35 gives

dλ

dx
= c2

1g11 + c2
2g22 + 2c1c2g12 (2.41)

gnm = {Φ}Tn
(
∂K

∂xj
− λi

∂M

∂xj

)
{Φ}m . (2.42)

To find the extreme values of Equation 2.41, differentiate Equation 2.41 with respect

to c1 and c2 and get  g11 g12

g21 g22

 c1

c2

 =

 0

0

 (2.43)

Solving the eigenproblem for the matrix in Equation 2.43 gives the eigenvectors ca

and cb with their corresponding eigenvalues ga and gb. As quoted from Pedersen “For

multiple eigenvalues, the sensitivity is given for two specific directions in the space of

eigenvectors and these eigenvectors will vary for different design parameters,” which

means that the two sensitivities, ga and gb, are not always the sensitivities to the

design variables since the direction of the design space can vary. A more sophisticated

way to arrive at the sensitivity is by iteration implemented by Du and Olhoff [18], but

that is computationally expensive.

The proposed approach by the author is introduced here. By an educated guess,

we want be to able to interpolate the sensitivity between the two extreme values.

By making use of the coefficients ca and cb, we can construct an eigenvector as in

Equation 2.39, use this new eigenvector along with ca and cb to construct the sensitivity

of the same form in Equation 2.41:

{
dλ

dx

}
a

=

 ga11 ga12

ga21 ga22

 ca1

ca2

 , (2.44)

with

ganm =
{

Φ̄
}T
n

(
∂K

∂xj
− λi

∂M

∂xj

){
Φ̄
}
m

(2.45){
Φ̄
}

= ca1 {Φ1}+ ca2 {Φ2} . (2.46)

The above

{
dλ

dx

}
a

will be the sensitivity for the relatively lower eigenvalue, and
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similarly using cb to calculate

{
dλ

dx

}
b

for the relatively higher eigenvalue. Although

not found in any literature, the above method has been shown to have good agreement

with finite difference approximations in practise. However, since topology optimization

is always trying to optimize the density of the unit cell, it has been noticed that there

is a minimum density limit to this approach for it to perform well, and that has been

tested to be around ρ = 0.001. The proposed method has been tested on topology

optimization problems only, and for other problems, the accuracy is not guaranteed.

2.7.2 Derivatives of Compliance

The sensitivity for compliance can be calculated directly since the compliance is given

as :

c (x) = UTKU =
N∑
e=1

xpeu
T
e keue, (2.47)

where p is the suggested penalty value by SIMP approach, ue is the displacement

vector, and ke is the element stiffness matrix. The sensitivity thus is given as:

∂c

∂xe
= −p (xe)

p−1 uTe keue. (2.48)

2.7.2.1 Mesh Independent Filtering Technique

Due to the fact that checkerboard geometry with elements alternating between 0 and

1, could appear to be a stiff structure numerically but is not a physically meaningful

design, a filtering technique is introduced by Sigmund to prevent these types of

structures [36]. The mesh independent filtering technique is done by modifying the

sensitivities by the following equation:

∂ĉ

∂xe
=

1

xe
∑N

f=1 Ĥf

N∑
f=1

Ĥfxf
∂c

∂xf
, (2.49)

where

Ĥf = rmin − dist(e, f) {f ∈ N | dist(e, f) ≤ rmin} , for e = 1, ..., N. (2.50)
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The operator dist (e, f) indicates the distance between element e and f , making the

convolution operator Ĥf to be zero outside of the filter area. The filter size indicated

as rmin is used to determined which neighbour elements to be filtered. Typical values

of the filter radius are set from 1.1 to 1.5, assuming the size of the unit cell is 1.

However, such a filtering technique often leads to intermediate densities along the

boundaries, which is not desired. Post-processing is often required to further address

those intermediate densities.



Chapter 3

Problem Formulation and Code

Construction

In order to verify the accuracy of the algorithm implemented by the author, three

different problems are constructed to check the performance of the code. The first

problem is to minimize the compliance of an infinite sandwich beam with a volume

constraint. The second problem is to minimize the minimum eigenvalue of a beam

clamped at both ends, whose result will be compared to work done by other scholars.

The third problem is a band gap optimization problem for photonic material considered

by Sigmund, and the result will be compared to the existing one. Finally, the

formulation of the thesis problem, which is to optimize the band gap of a 2-dimensional

periodic sandwich beam, will be presented.

This chapter outlines the problem formulation and code construction of the three

verification problems as well as of the proposed thesis problem. Chapter 4 presents

the verification results for the three problems, and Chapter 5 presents the main results

obtained for this thesis.

3.1 Compliance Optimization Problem

The problem being considered here is an infinite 2-dimensional periodic sandwich

beam subjected to uniform shear loading on the top plate while being constrained at

the bottom plate, and due to the periodicity, only a unit cell is modelled as indicated

in Figure 3.1. The applied loading and boundary conditions are assigned such that

the sandwich beam is subjected to simple shearing, and thus only the shear stiffness is

33
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being optimized in this problem. The unit cell has two face sheets with predetermined

thickness, and the core is to be designed through topology optimization process so

that minimum shear compliance can be achieved.

Figure 3.1: A unit cell for a 2-dimensional periodic sandwich beam with two face
sheets and the core indicated in the figure. The unit cell is constrained at the bottom
face with uniform shear force acting at the top face.

The optimization problem is formulated as:

Problem : min
x
c (x) = UTKU =

∑N
j=1 x

p
ju

T
j kjuj (x ∈ Rn)

Subject to : Volume Fraction (x) =
∑N

j=1 xj ≤ Vmax

KU = F

0.001 ≤ xj ≤ 1 for j = 1, ..., N

,

(3.1)

where p is the penalization factor for the SIMP method, Vmax is the maximum allowable

volume density, and N is the total number of design variables. The number of design

variables corresponds to the total number of elements in the finite element analysis.

The corresponding coefficients to be used for the sub-problem as discussed in section 2.6

are set as a0 = 1, a1 = 0, d1 = 1, and c1 = 1000 [37]. The main structure of the code

is shown in Figure 3.2.

In step 1, the initial guess is provided as a uniformly distributed structure with

the density of each core element equal to the maximum allowable average volume
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Figure 3.2: Flow chart of the iterative optimization process for minimizing compliance.
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Element Type E ρ

Face Sheet 70GPa 3 kg/m3

Core 10GPa 1 kg/m3

Table 3.1: Element material properties

density. In step 4, the compliance and derivatives are calculated using total equations

introduced in subsection 2.7.2. As suggested by Svanberg, it is preferable to scale

the constraints and objective function in a way that 1 ≤ fmaxi ≤ 100, and the design

variable is better to be scaled to let 0.1 ≤ xmax − xmin ≤ 100. Step 5 uses the mesh

independent filtering technique introduced in subsubsection 2.7.2.1. The information

required to perform optimization in step 6 is in the MMA code mmasub.m writen by

Svanberg in 1995 [38]. The optimization code is build on mmasub.m with modification

done by the author according to his new 2002 version [39]. The core is discretized

into nelx by nely elements along the x and y direction indicated in the figure. The

material properties for the plate and core elements are listed in Table 3.1. The

material properties for face sheets and core correspond approximately to aluminum

and polymer.

3.2 Maximizing the Minimum Eigenfrequency

The problem considered here is the same as the one considered by Du and Olhoff [18],

where the minimum eigenfrequency is being maximized for a beam clamped at both

ends, see Figure 3.3.

Since the MMA only minimizes the objective function, it is necessary to use the

Figure 3.3: Beam constrained at both ends. Figure is adopted from Du and Olhoff
[18].
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reciprocal of the eigenvalue to turn the max-min problem into a min-max problem, i.e

minimizing the maximum of the reciprocal of the eigenvalue. A standard formation of

the problem is shown below.

Problem : min max
x

{
1

λi (x)

}
(x ∈ Rn)

Subject to :
n∑
j=1

xj ≤ Vmax

ΦT
i (K− λi (x) M) Φi = 0 for i = 1, ..., J

ΦT
i MΦm = δim for i,m = 1, ..., J

xmin ≤ xj ≤ xmax for j = 1, ..., n

, (3.2)

where J is the number of eigenvalues being considered, n is the number of design

variables, Vmax is set at 0.5, xmin is 0.001, and xmax is 1.

The MMA solves the following problem:

Sub-problem: min
x
g

(k)
0 (x) + a0z +

m∑
i=1

(ciyi + 0.5diy
2
i )

Subject to : g
(k)
i (x)− aiz − yi ≤ 0, i = 1, ...,m

xmin ≤ xj ≤ xmax, j = 1, ..., n

. (3.3)

The min-max problem can be equivalently written as

Sub-problem: min
x

z

Subject to :
1

λi (x)
− aiz ≤ 0, i = 1, ..., J

n∑
j=1

xj ≤ Vmax

ΦT
i (K− λi (x) M) Φi = 0 for i = 1, ..., J

ΦT
i MΦm = δim for i,m = 1, ..., J

xmin ≤ xj ≤ xmax for j = 1, ..., n

, (3.4)

with the corresponding coefficients for the sub-problem being set as a0 = 1, ai = 1

for i = 1, ..., J , ai = 0 for i = J + 1, ...,M , di = 1, and ci = 1000 [37], where M is the
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Figure 3.4: Flow chart of the iterative optimization process for maximizing the
minimum eigenvalue.

total number of constraints. The two approaches give similar results, but the second

form is used to keep the problem formulation consistent with Du and Olhoff.

The main structure of the optimization code is shown in Figure 3.4. At the start,

all available material is uniformly distributed throughout the design space. The

stiffness and mass matrices constructed in step 2 use a different penalty scheme to

avoid spurious or localized modes occurring near low density elements with xj < 0.1.

When the element has low density, the ratio between the stiffness and mass matrix

becomes very small, generating spurious modes. As suggested by Du and Olhoff

[18], the following penalty scheme is used to ensure a C0 or C1 continuity of the

interpolation model.

K =
N∑
j=1

xpjKj, M =


xjMj xj > 0.1

(c0x
6
j)Mj xj ≤ 0.1 with C0 continuity

(c1x
6
j + c2x

7
j)Mj xj ≤ 0.1 with C1 continuity

, (3.5)
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where c0 = 105, c1 = 6 × 105, c2 = −5 × 106, and p is the penalty, set to 3. Since

the beam is clamped at both ends, there is a need to eliminate the inactive degrees

of freedom from the global K and M matrices which is done in step 3. Step 4 is

straightforward; however, the eigenvectors must be normalized. Step 5 is for calculating

the gradient of the constraint functions. Since the problem is formulated in such a

way that no objective function f0 is used, it will be set to 0. The gradient for the

reciprocal of the eigenvalue is calculated using analytical differentiation:

d

{
1

λ

}
dx

= − 1

λ2

dλ

dx
. (3.6)

The sensitivity is filtered using Sigmund’s method introduced in [36]. Note that it

is slightly different from the one introduced in another paper by Sigmund [35].

The program will exit when a convergence criteria is met or when the user is

satisfied with the result. In this thesis, the program will exit when the change over

an iteration is smaller than a threshold. This threshold will vary when different

asymptotes or move limits are used.

3.3 Band Gap Optimization

In 2003, Sigmund and Jenson [29] had studied elastic wave propagation of photonic

band-gap material. The photonic band-gap material consists of two different types

of material that have different material properties. They studied different cases with

multiple material combinations under in-plane and out-of-plane stress, and one of

those cases will be reconstructed here in order to perform validation for the algorithm

developed in this thesis. The properties of the materials to be considered are listed in

Table 3.2.

Material E ρ ν

Type a 20GPa 2 kg/m3 0.34

Type b 4GPa 1 kg/m3 0.34

Table 3.2: Properties of the two materials with high contrast in Young’s modulus.
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The problem is to distribute those two materials throughout the design domain so

that a band gap of maximum size is achieved. As claimed by Sigmund [29], there is

no need to impose a volume constraint for one of the materials since a pure phase

material does not exhibit band gap phenomena. There are no other types of constraint

imposed for this problem.

Consider the band gap equation:

Band Gap = 2
min {λb+1 (k)} −max {λb (k)}
min {λb+1 (k)}+ max {λb (k)}

, (3.7)

where the band gap is calculated between the bth and the (b+ 1)th band, and k

are wave vectors along the boundaries of the irreducible Brillouin zone. Since the

eigenvalues in Equation 3.7 are a function of the wave vector k, it is possible for the

minimum point of the (b+ 1)th band and the maximum point of the bth band to change

wave vector location during the iteration. Therefore, only using the current minimum

and maximum points to represent the objective function is not comprehensive because

the next minimum and maximum points could be at different locations. As suggested

by Meng et al [11], the band gap equation needs to be modified with weight functions.

The assumptions used to determine the weight functions are:

� Any eigenfrequency from (b+ 1)th to the Jth frequency, the maximum fre-

quency being considered, that are less than c2 = 1.1×min
{√

λb+1 (k)
}

has the

possibility of becoming the next minimum point of the (b+ 1)th band.

� Similarly any eigenfrequency from the first to the bth eigenvalue that are greater

than c1 = 0.9×max
{√

λb (k)
}

has the possibility of becoming the next maxi-

mum point of the bth band.

See Figure 3.5 for illustration. The optimization problem is then formulated:



CHAPTER 3. PROBLEM FORMULATION AND CODE CONSTRUCTION 41

Figure 3.5: The current maximum and minimum points are indicated in the figure
at their corresponding wave vector positions. Any frequency on the b+ 1 th band or
above that is below the top green line has the potential to become the next minimum
point. Any frequency on the (b)th band and lower that is above the bottom green line
has the potential to become the next maximum point. Figure is adopted from [11].
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Sub-problem: min
x

1

Band Gap
=

∑Q
l=1

∑J
i=b+1wliλi (kl) +

∑Q
l=1

∑b
i=1 ŵliλi (kl)∑Q

l=1

∑J
i=b+1wliλi (kl)−

∑Q
l=1

∑b
i=1 ŵliλi (kl)

Subject to : ΦT
i TH (K− λi (x) M) TΦi = 0 for i = 1, ..., J

ΦT
i THMTΦm = δim for i,m = 1, ..., J

0.001 ≤ xj ≤ 1 for j = 1, ..., N

,

(3.8)

where Q is the length of the irreducible Brillouin zone, J is the highest eigenvalue to

be calculated, T is the transformation matrix constructed using the Floquet-Bloch

theorem, and wli or ŵli are the weighted coefficients suggested by Meng et al[11] given

below:

wli =
Ali∑Q

l=1

∑J
i=b+1Ali

ŵli =
Âli∑Q

l=1

∑b
i=1 Âli

, (3.9)

with

Ali =

 c2 −
√
λi (kl) when

√
λi (kl) < c2

0 otherwise
l = 1, ..., Q; i = b+ 1, ..., J

Âli =


√
λi (kl)− c1 when

√
λi (kl) > c1

0 otherwise
l = 1, ..., Q; i = 1, ..., b

.

(3.10)

The optimization procedure for the problem is given in Figure 3.6. In step 1,

the initial design is given in Figure 3.7, and the unit is discretized into a 30x30 grid.

For step 5, the sensitivities for the eigenvalues are calculated individually using the

method outlined in subsection 2.7.1, and those are used to calculate the gradient of

the objective function following differentiation rules. Again, the problem will exit

when the change in the design parameter drops below a threshold set by the user.
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Figure 3.6: Iterative optimization procedure for optimizing the band gap of a photonic
material.
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(a) A unit cell of the initial design with black elements
indicating material type a and white elements repre-
senting material type b.

(b) View for a 3x3 Array of the repeating unit
cell.

Figure 3.7: Initial design with two different types of material, denoted as the black
and the white elements, distributed over the design space. The unit cell has a base
length of 0.02 m. Figures are adopted from Sigmund and Jenson [29]
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3.4 Formulation of the Thesis Problem

The problem of interest for this thesis is maximizing the frequency range of a band

gap in an infinite periodic sandwich beam near targeted eigenfrequencies to achieve

noise filtering. At the same time, the structure must maintain adequate stiffness, and

it is preferable to have as low mass as possible. The sandwich beam has two face

sheets with predetermined thickness and a core to be designed through density-based

topology optimization. Since material for the face sheets is often chosen to be of high

stiffness value, the bending stiffness of the sandwich beam is of less concern because

the stiff face sheets can sustain the bending. Shear stiffness relies on the geometry

of a core made of compliant material, and thus the shear stiffness of the structure

must be maintained during the design. The analysis of the sandwich beam can be

reduced to the analysis of a unit cell because of the periodicity. The unit cell has

the same geometry as the one presented in Figure 3.1. The uniform shear loading

acting on the top plate along with the constrained boundary condition imposed on the

bottom plate shown in the figure are for calculating the compliance constraint. For

the Floquet-Bloch analysis of the unit cell, no external force or constrained boundary

condition is imposed, and only the periodic boundary condition is required. A volume

constraint is also imposed to restrict the maximum allowable mass to be added to the

sandwich structure during the optimization process. The overall optimization problem

can be represented as:

Problem: min
x

1

Band Gap
=

∑Q
l=1

∑J
i=b+1 wliλi (kl) +

∑Q
l=1

∑b
i=1 ŵliλi (kl)∑Q

l=1

∑J
i=b+1wliλi (kl)−

∑Q
l=1

∑b
i=1 ŵliλi (kl)

Subject to : c (x) = UTKU =
∑N

j=1 x
p
ju

T
j kjuj < cmax

n∑
j=1

xj ≤ 0.3

ΦT
i TH (K− λi (x) M) TΦi = 0 for i = 1, ..., J

ΦT
i THMTΦm = δim for i,m = 1, ..., J

0.001 ≤ xj ≤ 1 for j = 1, ..., n

,

(3.11)

where cmax is set as the optimized result obtained from compliance optimization

problem, and its corresponding design will be provided as an initial point for the
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optimization. Inspired by Kurtze and Watters [20], the top and bottom elements

representing the face sheets will use stiff material, and the core will be filled with

compliant material. Material properties are given in Table 3.3. To prevent large

numbers that cannot be handled properly by MATLAB, the material properties are

scaled by a factor of 10−11 in the calculation.

Material E ρ ν

Stiff face 70Gpa 3 kg/m3 0.3

Soft core 10Gpa 1 kg/m3 0.3

Table 3.3: Material properties for the face sheet and the core.

The main optimization process remains similar to the previous problems with

minor changes as given in Figure 3.8. The optimization problem aims to distribute

the compliant material with constant mass throughout the core to generate a stiff

enough structure with an optimal band gap. In order to prevent intermediate densities,

the SIMP method introduced in section 3.2 is used in step 3. In step 4 and 5,

the Floquet-Bloch problem and the constraint problem are treated separately since

one has Floquet-Bloch boundary conditions and the other has restricted motion at

the bottom nodes. Since only a 2-dimensional beam is considered, the periodicity

exists along one direction only, and thus the wave vectors are searched from 0 to i
π

a
,

where a is the distance between neighbouring cells. In step 6, the filtering technique

follows Sigmund’s mesh independent method [36] introduced in subsubsection 2.7.2.1.

Optimization is performed using the same MMA algorithm, and the program exists

when design variables x cease to have changes greater than 0.0005.



CHAPTER 3. PROBLEM FORMULATION AND CODE CONSTRUCTION 47

Figure 3.8: Optimization procedure for band gap problem.



Chapter 4

Code Validation Results

4.1 Compliance optimization using both MMA and

OC

Compliance optimization is the first problem to be considered for testing the optimiza-

tion algorithm. Optimized results obtained by using a MMA solver are compared to

results obtained by optimality criteria (OC) method in Figure 4.1 to Figure 4.3. The

OC method solves the optimality conditions directly when closed-form solutions exist

for the problem. Optimality conditions such as Kuhn-Tucker optimality conditions are

often used. Because the optimality criteria method is limited to problems that possess

a closed-form solution, it is not suitable for the main work of this thesis [21]. The OC

algorithm used here is written by Sigmund [35]. From Figure 4.1 to Figure 4.3, it is

evident that the topologies obtained using either method have very similar structures

and their optimized values agree closely. This indicates that the algorithm written

by the author is performing well for this problem. In addition, the resulting truss

structure is commonly seen in practice which is another good indication that the

algorithm is performing as expected.

MMA relies on asymptotes and move limits to solve the alternative convex sub-

problem, therefore it is critical to assign the right asymptotes and move limits to the

solver each time when running an optimization problem. From observation, it has

been noticed that for different problems there are certain combinations of parameters

that will result in better performance such as faster convergence. In some cases, if the

parameters are not set properly, the problem will either end up searching endlessly in

48
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an infeasible region where the constraints are violated or oscillate without convergence.

Thus, for large problems, it appears to be a good idea to run a parameter sweep on a

smaller representative problem to get a satisfactory set of parameters to provide fast

and reliable convergence.

(a) MMA 22x20 Optimized Result:
4.9x105

(b) OC 22x20 Optimized Result: 4.6x105

Figure 4.1: Optimized compliance results with volume constraint of 15% and with a
mesh size of 22x20
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(a) MMA 32x30 Optimized Result:
7.0x105

(b) OC 32x30 Optimized Result: 6.8x105

Figure 4.2: Optimized compliance results with volume constraint of 15% and with a
mesh size of 32x30

(a) MMA 42x40 Optimized Result:
1.0x106

(b) OC 42x40 Optimized Result: 1.0x106

Figure 4.3: Optimized compliance results with volume constraint of 15% and with a
mesh size of 42x40
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4.2 Maximizing the minimum eigenvalue of a 2-

dimensional beam

This section presents the result for the minimum eigenvalue maximization problem.

The optimal structure obtained by the author is shown in Figure 4.4 with the maximized

first eigenfrequency 457.6 rad/s, which is compared to the result obtained by Du and

Olhoff [18] with maximized first eigenfrequency 456.4 rad/s. It is noticeable that the

two optimized results are not exactly the same. However since Du and Olhoff have not

specified the values used for the MMA solver, it is hard for the author to obtain their

exact topology. Thus a slightly differing result is expected since the objective function

has multi-modality and could have multiple local minima. However, the fact that

the optimized eigenvalues agree closely to each other indicates that the optimization

algorithm developed by the author is reliable.

Figure 4.4: Optimized structure with the minimum eigenvalue maximized. ω1max =
457.6 rad/s with a 40 x 320 grid size, without post-processing.

Figure 4.5: Optimized structure with the minimum eigenvalue maximized from
literature with ω1max = 456.4 rad/s, and the grid size is not mentioned [18].
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4.3 Band Gap Optimization Validation with Sig-

mund’s Work

The results presented in this section are for the same band gap optimization for

photonic material considered by Sigmund and Jenson in 2003 [29]. The optimized

photonic material obtained by the author is shown in Figure 4.6 and the design

obtained by Sigmund and Jenson is shown in Figure 4.7. The difference between

the two optimized topologies is a result of the difference in symmetry constraint.

While Sigmund and Jenson have imposed square symmetry to the design space, the

author has not. The grey elements in the optimal design in Figure 4.6 are caused

by applying the SIMP approach, and they can be reduced by turning off the density

filter when the design is close to convergence. However, during the iteration, it is

hard to determine if a design has entered a shallow region or is close to convergence,

and thus the filter has not been adjusted accordingly, causing the final design to

have grey elements presented on the corners. The corresponding dispersion curves

for both designs are shown in Figure 4.8. The band gap size is calculated as
M f

f0

,

with f0 being the maximum frequency of the lower band. The band gap size is 0.257

for the optimal design obtained by the author and is 0.21 for the one obtained by

Sigmund and Jenson. With larger degrees of freedom as a result of not imposing

square symmetry, the maximized band gap size obtained by the author is higher than

the one obtained by Sigmund and Jenson, which is expected. Since the computational

code is performing the expected band gap maximization, it is believed that the code

is performing well, thus no further adjustment is made to arrive at the exact solution.

Lastly, the dispersion curves for the original design shown in 4.9(a) are calculated by

the author to compare with the dispersion curves obtained by Sigmund and Jenson in

4.9(b) to confirm that the Floquet-Bloch analysis is accurate.
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Figure 4.6: Optimized Design by the author without imposing square symmetry has a
band gap size of 0.257.

Figure 4.7: Optimized Design by Sigmund and Jenson with imposed square symmetry
has a band gap size of 0.21, adopted from [29].
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(a) Dispersion curves for the optimized design obtained by the author.

(b) Dispersion curves for the optimal design obtained by Sigmund and
Jenson with band gap size = 0.21, adopted from [29].

Figure 4.8: Dispersion curves of the optimized design
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(a) Dispersion curves of the initial design obtained by the author with
a band gap size of 0.14.

(b) Dispersion curves of the initial design obtained by Sigmund and
Jenson with a band gap size of 0.14. Figure is adopted from [29].

Figure 4.9: Dispersion curves for the initial design



Chapter 5

Results and Discussions for

Acoustic Sandwich Panels

The main results for a 2-dimensional periodic sandwich beam with a maximized band

gap between the third and the fourth band are summarized in this chapter. Two

different grid sizes, 22x20 and 32x30, are considered, and their results are presented

separately in section 5.1 and section 5.2, respectively. A summary of both results is

presented in section 5.3.

5.1 Band Gap Maximization of a Sandwich Beam

with 22x20 Grid Size

The initial and optimal designs of a sandwich beam with a grid size of 22x20 are

given in Figure 5.1 and 5.2, along with their band structures. The band gap has been

maximized from -42.73 Hz to 63.2 Hz, and the structure has undergone dramatic

changes to arrive at the optimal design. In order to understand the nature of the

optimal design, the mode shapes at the maximum point in the third band (the third

mode) and the minimum point in the fourth band (the fourth mode) are shown in

Figure 5.3. To maximize the band gap, it is desired to decrease the peak frequency of

the third mode and increase the lowest frequency of the fourth mode. Therefore, it

is desired to have lower stiffness and higher mass for the moving degrees of freedom

in the third mode, and the opposite for the fourth mode. Using this rule-of-thumb,

some observations may be made in regard to the design of the optimal structure. This
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analysis is not straightforward however an explanation for all the topological features

cannot be reasoned entirely from these mode shapes alone, and this is due to the

additional constraints placed on the structure as well as the fact that changing the

structure changes the dispersion curves such that the modes of interest may vary at

the same time. However some notable observations will be made.

First, from the mode-shape plots in Figure 5.3, it can be seen that the third

and the fourth modes have similar moving elements circled in red. The moving

elements are rotating substantially in the third mode however there is little rotation

of these elements in the forth mode, instead it is evident that the elements are

under axial tension or compression through their connection to the plate in the forth

mode. Evidently these elements are connected to the main structure via a very thin

structure effectively acting as a pin connection (connected through a single node)

which gives little stiffness to the rotation seen in the third mode while high stiffness

to the elongation seen in the forth mode. Additionally it is evident that the elements

circled in blue are structural members that are necessary for meeting the compliance

constraint.
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(a) Unit cell of the initial design with a 22x20 grid
size.
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(b) Dispersion Curves for the initial design, showing a negative band gap of -42.73 Hz.

Figure 5.1: Unit cell of the initial design with its dispersion curves shown at the
bottom.
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(a) Unit cell of the optimized design with a 22x20
grid size.
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(b) Dispersion Curves for the optimal design, showing a band gap of 63.2 Hz

Figure 5.2: Unit cell of the optimized design with its dispersion curves shown at the
bottom.
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(a) Patterned structure of the optimal design.

(b) Mode shape corresponding to the peak frequency of the third frequency band.

(c) Mode shape corresponding to the lowest frequency of the fourth frequency band.

Figure 5.3: Mode shapes of the structure at the two points that band gap is optimized
about. Note that all nodal displacements have been amplified to make the nodal
movement visible. Meshes for some elements with low density are highly distorted as
a result of the adjustment, no physical overlapping between the nodal points actually
occurs.
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5.2 Band Gap Optimization of a Sandwich Beam

with 32x30 Grid Size

The initial and optimal designs for a 32x30 sandwich beam are presented along with

their dispersion curves in Figure 5.4 and 5.5. The band gap has been increased from

-13.58 Hz to 59.21 Hz. A periodic patterning and related mode shapes for the sandwich

beam are shown in Figure 5.6. Here it is evident that in the third mode, the circled

area, which is similar looking to a knee, is made flexible in the middle for the mass on

the top to rotate more freely, decreasing the stiffness in the motion of the third mode

shape forcing its frequency to decrease. Conversely, the forth mode shape does not

incorporate any bending at this position therefore this compliance does not affect the

frequency of the forth mode.

Additionally, it may be noted that the movement of the third mode is primarily at

the top half of the structure while the motion in the fourth mode is primarily at the

bottom half. Observing the structure holistically, the mass of the structure is biased

towards the top as seen in 5.6(d) which aligns with the goals of the optimization by

adding inertia to the moving degrees of freedom of the third mode while decreasing

the inertia of the motion in the fourth mode, thus increasing the band gap.

Lastly, it is evident that the optimized design has similar diagonal members to the

original design, which are used to maintain the shear stiffness in order to meet the

compliance constraint.
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(a) Unit cell of the initial design with a 32x30 grid
size.
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(b) Dispersion Curves for the initial design, showing a negative band gap of -13.58 Hz.

Figure 5.4: Unit cell of the initial design with its dispersion curves shown at the
bottom.
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(a) Unit cell of the optimized design with a 32x30
grid size.
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(b) Dispersion Curves for the optimized design, showing a band gap of 59.21 Hz.

Figure 5.5: Unit cell of the optimized design with its dispersion curves shown at the
bottom.
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(a) Optimal design in repeating pattern.

(b) Mode shape corresponding to the maximum point of the third frequency band.

(c) Mode shape corresponding to the minimum point of the fourth frequency band. Note that all
nodal displacements have been adjusted by a factor to make the nodal movement noticeable. Meshes
for some elements with low density are highly distorted as a result of the adjustment, no physical
overlapping between the nodal point actually occurs.

(d) Row-wise mass distribution of the core.

Figure 5.6: Mode shapes of the structure at the two points that band gap is calculated
at.
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5.3 Summary

The natures of the optimized designs are not intuitive. With the mode shapes plotted

for the related modes, one can see how elements behave in each mode. Making use of

the fact that the optimizer will aim to maximize the minimum frequency of the fourth

band and minimize the maximum frequency of the third band, structures in the major

moving parts in each mode can be explained. Moreover, it is noticed that lumped

masses appear in both optimal structures and resemble resonators. Resonant elements

are often placed inside panels to increase sound transmission loss over a narrow

frequency range [9]. An example for this type of structure is shown in Figure 5.7. In

the figure, the resonating structures composed of lump masses connected with pins are

very similar to the optimal designs, especially to the one with a mesh size of 32x30.

This is an important finding for demonstrating that the optimal topologies generated

have physical meaning. Furthermore, optimizing the structure’s band gap around a

frequency range is believed to be equivalent to improving the STL over that frequency

range, and the same purpose can be achieved by placing resonant elements inside

the structure. This resemblance to existing lumped-mass resonator designs strongly

suggests that the topology optimization is performing as expected.

Figure 5.7: Sandwich panel with internal resonating structures which can improve
damping performance with minimum weight penalties. (Figure is obtained from the
website of the Integrated Multi-field Metamaterial Damping research group in the
department of Mechanical and Process Engineering group from Swiss Federal Institute
of Technology in Zurich.)

Finally, the optimized topologies with different mesh size are quite distinct. This
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can be caused by the following reasons:

1. The optimizer aims to maximize the band gap between the third and the fourth

band without a reference point. This can lead to shifting of the whole band

structure, meaning that the optimized designs generated from different mesh

sizes have band gaps around different frequencies. From the dispersion curves

of the two optimal designs shown in Figure 5.2 and Figure 5.5, it can be seen

that the first design has a band gap between 300 Hz and 363 Hz and the second

design has a band gap between 270 Hz and 330 Hz.

2. The initial design is very different between a 22x20 grid size and a 32x30 grid

size. As one can see from Figure 5.1 and Figure 5.4 that the dispersion curves

for the two initial designs are rather different even though the major structures

are similar.

3. The multi-modality of the problem can trap the optimizer within a local minimum

solution. It is believed that the obtained optimum is either a local minimum or

a local shallow point. The global optimum is difficult to achieve with the current

optimization technique. This is also a reason why different initial conditions can

lead to different solutions [29].

To summarize, the results obtained by this thesis have shown interesting topologies

with resemblance to resonators, while having a local optimal band gap between the

third and the fourth bands and meeting mass and shear stiffness constraints.
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Conclusion

The need for decreasing green house gas emissions in aviation has motivated the

search for advanced material for aircraft applications. Light weight acoustic panels for

noise attenuation are desirable structural elements. This thesis pursues methods for

optimizing a structure for minimal acoustic transmission while remaining light and

stiff.

A phenomenon, referred to as a band gap, where no elastic waves can propagate

through the structure, has been introduced and studied. By maximizing the band gap

around an undesired frequency, sound attenuation can be improved [2, 27]. The author

has made use of the band gap analysis in conjunction with topology optimization

to improve the acoustic performance of a 2-dimensional sandwich panel within a

certain frequency regime. This is a novel contribution. Interesting sandwich structures

have been obtained with a band gap maximized between the third and the fourth

bands. However, the study is restricted to a 2-dimensional sandwich beam with the

optimal band gap located between two predetermined frequency bands. Additionally,

multi-modality of the problem is not addressed in this thesis, and there is no guarantee

that a global optimum has been found as opposed to a local extremum. Moving

this work forward, the study can be brought to a 3-dimensional case with the stop

band centered around unwanted frequencies, such as coincidence frequencies, for more

practical acoustic applications. In conclusion, the objectives of the thesis has been

fulfilled, and there are several suggestions for future work which will be documented

below.
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6.1 Future Work

1. It is highly recommended to extend the study to a 3-dimensional one in order

to construct the sandwich panel and test the sound transmission loss through

the panel in laboratory to validate the result.

2. There are many improved versions of MMA that will speed up the convergence

[24, 25]. It will be more efficient to implement those versions once the design

space has been increased to a 3-dimensional one.

3. Gradient-based search methods usually encounter local optimality, especially

with multi-modal problems, and that has eliminated the possibility of exploring

the global optimum. Multi-Start strategies are proposed to prevent the solution

to be trapped in a local region [26]. It is highly recommended to implement the

strategy to overcome the local optimality situation.
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A Finite Element Approach

To transform the governing equations into the analytical form in Equation 2.15, one

has to obtain the weak form from the strong form by the following strategy. Take

Equation 2.11 for example, by only considering wave propagation in the x-y plane

and assuming any material properties only vary along the x-y plane, i.e ρ = ρ (x, y),

λ = λ (x, y), and µ = µ (x, y), the form in Equation 2.11 can be reduced to:

Strong Form : ρ
∂2u

∂t2
=

∂

∂x

(
(2µ+ λ)

∂u

∂x
+ λ

∂v

∂y

)
+
∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
(1)

A test function ν of the following properties will be added to both side of the

equation.

ν (0) = 0 (2)

Assuming no external force acting on the system, the following boundary conditions

can be obtained.
∂u

∂x

∣∣∣∣
∂Ω

= 0,
∂v

∂y

∣∣∣∣
∂Ω

= 0 (3)

The weak form is constructed by integrating Equation 1 with the test function

multiplied on both sides.∮
νρ
∂2u

∂t2
dΩ =

∮
ν
∂

∂x

(
(2µ+ λ)

∂u

∂x
+ λ

∂v

∂y

)
dΩ+

∮
ν
∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
dΩ (4)

Equation 4 can be further reduced by applying integration by parts on the right

hand size. In the end, the following weak form is obtained:∮
νρ
∂2u

∂t2
= −

∮
∂ν

∂x

(
(2µ+ λ)

∂u

∂x
+ λ

∂v

∂y

)
−
∮
∂ν

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
(5)

Apply similar approach for the governing equation along the y direction and get∮
νρ
∂2v

∂t2
= −

∮
∂ν

∂x

(
µ

(
∂v

∂x
+
∂u

∂y

))
−
∮
∂ν

∂y

(
(2µ+ λ)

∂v

∂y
+ λ

∂u

∂x

)
(6)

Assume the solution and test function are of the following form

u =
m∑
i=1

aiNie
iwt v =

m∑
i=1

aiNie
iwt and ν =

m∑
i=1

aiNi (7)
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where ai are undetermined coefficients and Ni are the shape functions. For plate

elements, the following Isoparametric Quadrilateral Shape functions are being used.

N1 (ζ, η) = 0.25 (1− ζ) (1− η)

N2 (ζ, η) = 0.25 (1 + ζ) (1− η)

N3 (ζ, η) = 0.25 (1 + ζ) (1 + η)

N4 (ζ, η) = 0.25 (1− ζ) (1 + η)

(8)

The shape function transforms the values from physical coordinate (x, y) into an

Isoparametric coordinate (ζ, η), i.e

x (ζ, η) = Nx = y (ζ, η) = Ny (9)

The derivative of N with respect to the physical coordinate (x, y) has the following

form: 
∂Ni

∂x

∂Ni

∂y

 = J−1


∂Ni

∂ζ

∂Ni

∂η

 (10)

with the Jacobian matrix being:

J =


∂x

∂ζ

∂y

∂ζ

∂x

∂η

∂y

∂η

 (11)

A complete matrix for derivative of N in the physical coordinate (x, y) is denoted
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as H

H =



∂N1

∂x
0

∂N2

∂x
0

∂N3

∂x
0

∂N4

∂x
0

0
∂N1

∂y
0

∂N2

∂y
0

∂N3

∂y
0

∂N4

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

∂N4

∂y

∂N4

∂x


(12)

With the shape function and its derivative being constructed, the weak forms in

Equation 5 and Equation 6 can be assembled into a system of coupled equations:

(
K− w2M

)
a = 0 (13)

where K and M are globally assembled matrices from the element matrix being

calculated as:

Ke =

∮
HTDHdΩ (14)

Me =

∮
ρNTNdΩ (15)

with the flexural rigidity matrix D being

D =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 µ

 (16)

Additionally, because of the conversion from physical to isoparametric coordinates,

the stiffness matrix Ke and the mass matrix Me can be solved using Gauss Quadrature

method. The Gauss Quadrature method is shown as

Ke =

ngp∑
j=1

ngp∑
i=1

WjWiJ (ζi, ηj) H (ζi, ηj)
T DH (ζi, ηj) (17)

Me =

ngp∑
j=1

ngp∑
i=1

ρWjWiJ (ζi, ηj) N (ζi, ηj)
T N (ζi, ηj) (18)
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where Wi and Wj are the weights for the gauss points ζi and ηj.

In summary, this section has introduced a finite element formulation of the

dynamic system of wave propagation in a 2-dimensional plane. By applying the

Floquet-Bloch theorem to the dynamic system as introduced in the previous

subsection 2.4.1 and solving for the dispersion curves along Brillouin zone, the partial

or complete band gap for the periodic structure can be obtained.



References

[1] D. Tidman A. Olason. Methodology for topology and shape optimization in the design

process. Master’s thesis, CHALMERS UNIVERSITY OF TECHNOLOGY, 2010.

[2] J. Woodhouse A. Srikantha Phani and N. A. Fleck. Wave propagation in

two-dimensional periodic lattices. Acoustical Society of America, 2006.

[3] J.F Allard. Propagation of sound in porous media - modelling sound absorbing

materials. New York, Elsevier Applied Science, 1993.

[4] E. Lund A.P. Seyraniant and N. Olhoff. Multiple eigenvalues in structural optimization

problems. Structural Optimization, 8, 207-227 1994.

[5] C. K. Barton and J. S Mixson. Noise transmission and control for light twin-engine

aircraft. J. Aircr.,, 18(7), 570-575.

[6] H. Baumgartl. Lightweight, versatile all-rounder. Kunststoffe international, 4 (2006)

74-78.

[7] W. V Bhat. Flight test measurement of measurement of exterior turbulent boundary

layer pressure fluctuations on boeing model 737 airplane. Journal of Sound and

Vibration, 1971.

[8] Ulla Biernat. Basf foam in the interior insulation of new boeing aircraft. Aircraft

Engineering and Aerospace Technology, 80 (2008) ss:1.

[9] L.A. Lazarev B.M. Efimtsov. Sound transmission loss of panels with resonant elements.

Acoustical Physics, Vol. 47, No. 3, 2001, pp. 291-296.

[10] P. Allinger C.B.W. Pedersen. Industrial implementation and applications of topology

optimization and future needs. IUTAM Symposium on Topological Design Optimization

of Structures, Machines and Materials: Status and Perspectives, 2006, p 229-238.

74



REFERENCES 75

[11] B.H Jia F. Menga, X.D Huang. Bi-directional evolutionary optimization for photonic

band gap structures. Journal of Computational Physics, 302(2015)393-404.

[12] K. A. Finnegan. Carbon fiber composite pyramidal lattice structures. Master’s thesis,

University of Virginia, 2007.

[13] Cunefare K.A Franco F., Ruzzene M. Structural-acoustic optimization of sandwich

panels. Journal of Vibration and Acoustic, (2007) 129, 330-340.

[14] F. W. Grosveld and J. S Mixson. Noise transmission through an acoustically treated

and honeycomb-stiffened aircraft sidewall. J. Aircr.,, 22(5), 434-440.

[15] IATA. Annual review 2013. technical report. International Air Transportation

Association, 2013.

[16] Pennig S. Quehl J. and Rolny V. Effects of aircraft cabin noise on passenger comfort.

Ergonomics, 2012 55(10) 1252-1265.

[17] H.S Jr J.C. Molina, J.Fiorelli. Analysis of the stresses in corrugated sheets under

bending. Materials Research, 2014; 17(2): 338-345.

[18] Niels Olhoff Jianbin Du. Topological design of freely vibrating continuum structures

for maximum values of simple and multiple eigenfrequencies and frequency gaps.

Struct Multidisc Optim, (2007) 34:91-110.

[19] C. Kittel. Elementary Solid State Physics: A Short Course, 1st ed. Wiley, New York,

1962.

[20] G. Kurtze and B. G Watters. New wall design for high transmission loss or high

damping. Journal of the acoustical society of America, (1959) 31(6), 739-748.

[21] W. Yang LZ. Yin. Optimality criteria method for topology optimization under

multiple constraints. Computers and Structures, (2001) 1839-1850.

[22] Ruzzene M. Vibration and sound radiation of sandwich beams with honeycomb truss

core. Journal of sound and vibration, (2004) 277, 741-763.

[23] Ruzzene. M. Structural and acoustic behaviour of chiral truss-core beams. Journal of

sound and vibration, (2006) 128, 616-626.

[24] S. A. Santos M. A. Gomes-Ruggiero, M. Sachine. Globally convergent modifications to

the method of moving asymptotes and the solution of the subproblems using trust

regions: theoretical and numerical results. Revised Version December 3, 2010.



REFERENCES 76

[25] A. Guessab M. Bachar, T. Estebenet. A moving asymptotes algorithm using new local

convex approximation methods with explicit solutions. Electronic Transactions on

Numerical Analysis, Volume 43, pp. 21-44, 2014.

[26] R. Mart. Multi-start methods. University of Valencia. Spain.

[27] E. Moosavimehr. Sound transmission loss characteristics of sandwich panels with a

truss lattice core. Master’s thesis, The University Of British Columbia, 2015.

[28] Bendsoe MP. Optimal shape design as a material distribution problem. Struct Optim,

1989.

[29] J.S Jensen O. Sigmund. Systematic design of phononic band-gap materials and

structures by topology optimization. Phil. Trans. R. Soc. Lond, A (2003) 361,

1001-1019.

[30] K. Maute O. Sigmund. Toplogy optimiaztion approaches. Struct, 2013.

[31] N.L. Pedersen and A.K. Nielsen. Optimization of practical trusses with constraints on

eigenfrequencies, displacements, stresses, and buckling. Struct Multidisc Optim, 25,

436-445 (2003).

[32] Chen Yuan Huang Qibai and Hanmin Shi. An investigation on the physiological and

psychological effects of infrasound on persons. Journal of low frequency noise vibration

and active control 23, (2004) 71-76.

[33] H.J. Rice and R Wilson. Radiation damping in plates, induced by porous media.

Journal of sound and vibration, (1999) 221(1), 143-167.

[34] M Ruzzene. Vibration and sound radiation of sandwich beams with honeycomb truss

core. Journal of sound and vibration, (2004) 277, 741-763.

[35] O. Sigmund. A 99 line topology optimization code written in matlab. Struct Multidisc

Optim, 21, (2001) 120-127.

[36] O. Sigmund. On the design of compliant mechanisms using topology optimization.

MECH. STRUCT. AND MACH, 25(4), 493-524 (1997).

[37] K. Svanberg. Mma and gcmma, versions september 2007. This note describes the

algorithms used in the author’s latest implementations of MMA and GCMMA.

[38] K. Svanberg. A globally convergent version of mma without linesearch,. In the First

World Congress of Structural and Multidisciplinary Optimization, 1995, pp. 916.



REFERENCES 77

[39] K. Svanberg. A class of globally convergent optimization methods based on

conservative convex separable approximations. SIAM J. OPTIM., Vol. 12, No. 2, pp.

555-573.

[40] K. Svanberg. The method of moving asymptotes - a new method for structural

optimization. International Journal for Numerical Methods in Engineering, Vol.24

359-373 (1987).

[41] S Tewes. Active trim panel attachments for control of sound transmission through

aircraft structures. Ph.d thesis, Technischen University Munchen, 2006.

[42] P. Thamburaj and Q Sun. Optimization of anisotropic sandwich beams for higher

sound transmission loss. J. Sound Vib.,, 254(1), 23-36.


	Introduction
	Thesis Objectives

	Literature Review
	Aircraft Cabin Noise
	Important Acoustic Concepts
	Sound wave governing equation and its solution
	Thin plate bending wave equation
	Acoustic Impedance
	Sound transmission power and transmission loss

	Acoustic Damping Through Multi-Layer Panels
	Transmission Damping Effect of Porous Media
	Honeycomb Core
	Truss-like Cellular Solid Core

	Band Gap Calculation for a Periodic Structure
	The Floquet-Bloch theorem
	Floquet Bloch Applications in Calculating the Dispersion Curves

	Finite Element Analysis
	Topology Optimization
	Optimization Scheme
	Method of Moving Asymptotes


	Sensitivity Analysis
	Derivatives of Eigenvalues
	Derivatives of Compliance
	Mesh Independent Filtering Technique



	Problem Formulation and Code Construction
	Compliance Optimization Problem
	Maximizing the Minimum Eigenfrequency
	Band Gap Optimization
	Formulation of the Thesis Problem

	Code Validation Results
	Compliance optimization using both MMA and OC 
	Maximizing the minimum eigenvalue of a 2-dimensional beam
	Band Gap Optimization Validation with Sigmund's Work

	Results and Discussions for Acoustic Sandwich Panels
	Band Gap Maximization of a Sandwich Beam with 22x20 Grid Size
	Band Gap Optimization of a Sandwich Beam with 32x30 Grid Size
	Summary

	Conclusion
	Future Work

	Appendices
	Finite Element Approach


