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Abstract
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University of Toronto

2016

In this thesis, the longitudinal flexural wave propagation behaviour through symmetric and non-symmetric

tetrahedral and pyramidal lattice structures is analyzed. Finite element analysis employing Floquet-

Bloch theory is used to generate and plot dispersion curves. The design variables of the lattice structures

are modified to analyze their impact on the dispersion curves. In symmetric lattice structures, changes in

stiffness and density provide the effect of scaling the dispersion curves, whereas in non-symmetric lattice

structures, based on the location of the inhomogeneities applied, asymmetric dispersion relations are ob-

tained. For systems in which only certain directions of wave propagation are considered, non-symmetric

lattice structures and the resulting asymmetric dispersion relations demonstrate great strength in terms

of their flexibility when tailoring dispersion curves, as a large number of directionally different dispersion

curves can be obtained, providing more options to design and optimize the lattice structure. Critically,

band gaps can be designed at desirable frequencies and directions.
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Chapter 1

Introduction

1.1 Motivation: Design for Sustainable Aviation

Air transport has experienced rapid expansion as the global economy has grown and the technology

of air transport has developed to its present state. However, with the expected increase in global air

travel over the next 30 years, the reliability and environmental impact of aviation are becoming critical

issues for the future of flight. Without significant action, large economic and environmental impacts are

expected. Sustainable aviation is the initiative to prevent or reduce the expected economic and envi-

ronmental impacts of aviation. The goal of designing for sustainable aviation is to develop technologies

that will allow a tripling of capacity yet at the same time with a reduction in environmental impact.

The following are the main areas where work is focused to achieve sustainable aviation:

1. Source noise reduction;

2. Source emissions reduction;

3. Materials and manufacturing processes;

4. Airport operations;

5. Aircraft operations;

6. Alternative fuels;

7. Product lifecycle management.

Recently, light weight structures that can be used in various engineering applications have been a focus

of research and development. Metallic foams, a cellular structure consisting of a solid metal filled with

gas bubbles with 75% to 95% of the volume void space, have been one of the competing ultralight ma-

terials. However, Hutchinson and Fleck[13] state that because the cell walls deform by local bending,

the mechanical properties of metallic foam are poor. This led to a search for stretch-dominant open-cell

microstructures, such as periodic lattices, which give much higher stiffness and strength per unit mass

than foams. For example, when an octet-truss lattice structure is compared with metallic foam, the stiff-

ness and strength of the lattice material exceeds the corresponding values for metal foams by a factor

of between 3 and 10 [8]. Indeed, due to a high strength-to-weight ratio, relative ease of manufacture,

and potential for multifunctional applications, lattice structures are an attractive alternative to metallic

foams.

1
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Figure 1.1: Illustration of a bending-dominant structure versus a stretch-dominant structure from Desh-
pande et al. [8].

When force is applied at the top and bottom corner of a bending-dominant structure, the struts can

rotate around each pin-joint, potentially leading to the structure to collapse. However, when force is

applied at the same location for a stretch-dominant structure, an additional strut placed in the centre

can support the applied forces through tension and compression in the other struts, keeping the structure

intact[6].

Previously at the University of Toronto Institute for Aerospace and Studies (UTIAS), Arya and Steeves[1]

developed a numerical model of wave propagation behaviour in three-dimensional(3D) lattice structures.

The goal of this thesis is to explore this numerical model and to construct new algorithms for a deeper

analysis and comparison of various 3D lattice structures that have a tailorable structural stiffness and

strength, together with capability to preventing vibrations at undesirable frequency ranges.

The first goal of the research therefore is to improve the performance of light-weight 3D lattice struc-

tures in terms of their tailorable structural strength, stiffness, and band gaps. Achieving this goal will

contribute to sustainable aviation by improving fuel efficiency, which will be enhanced by reducing the

overall weight of the plane through the use of such lightweight structures. The second goal of the research

is to investigate how the band gaps can be engineered to appear in the desirable frequency range, such

that there will be no vibration within the band gaps. Preventing the vibration by introducing the band

gaps in a certain frequency range is another potential contribution towards sustainable aviation as this

knowledge could be used in developing frequency filters in noise filters or in vibration protection materi-

als or devices aimed at reducing aircraft noises due to sound or vibration. The final goal of the research

is to apply inhomogeneities into the lattice structures, changing the lattice structures from symmetric to

non-symmetric lattice structures, with the purpose of analyzing the differences in the wave propagation

behaviour and the resulting dispersion curves between symmetric and non-symmetric lattice structures.

This will assist exploring the advanced approaches that will allow easier and flexible tailoring of the

lattice structures and band gaps.
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1.2 Literature Review

1.2.1 Nanocrystalline Metals

Gleiter [11] presented a comprehensive overview of nanocrystalline materials. Nanocrystalline mate-

rials have characteristic length scales of nanometres, which endows them with unique microstructure-

dependent properties. Most properties of solids depend on their microstructural features, such as their

chemical composition, arrangement of the atoms, and grain size. Two solids composed of exactly the

same atoms may show differences in their solid properties if there are differences in their microstruc-

tures. One example of this, for instance, is the difference in the solid properties between diamond and

graphite. Diamond contains carbon atoms arranged tetrahedrally in three dimensions, while graphite

contains carbon atoms arranged hexagonally in two dimensions, a planar layered structure. Due to this

difference in atomic arrangement, diamond has a higher strength, hardness, and density than graphite.

Nanocrystalline materials can also attain new properties through a controlled manipulation of their

microstructural parameters at the grain size level. This enables new nanocrystalline materials to gain

better material properties and performances, such as ultra-high yields and fracture strengths, decreased

elongation and toughness, and superior wear resistance according to Kumar et al. [14]. For example,

the Hall-Petch effect [19] states that plastic deformation occurs more rapidly with larger grain sizes, and

the yield strength rises as the grain size decreases, which implies that nanocrystalline materials can have

an ultra-high yield strength.

1.2.2 Electrodeposition Processing

Kumar et al. [14] presented four methods of laboratory-scale processing applicable to metals or alloys

in different grain size ranges: 1) mechanical alloying and compaction, 2) severe plastic deformation, 3)

gas-phase condensation of the particulates, followed by consolidation and 4) electrodeposition. While the

first two methods are applied to yield ultrafine but not nanocrystalline materials, the last two methods

yield nanocrystalline materials. Electrodeposition, which is capable of producing material with a mean

grain size in the tens of nanometres, has so far been used for two major purposes: to produce sheets

of nanocrystalline metals (such as Ni, Co, Cu) and to produce binary alloys (such as Ni-Fe and Ni-W),

in which the grain size can be controlled to produce nanocrystalline metal coatings on complex shapes.

Electrodeposition is well-suited to depositing nanocrystalline metals with high accuracy onto complex

lattice preforms of various solid materials, such as metal alloys or polymers at the micrometre length

scale [28, 27].

1.2.3 Lattice Structure

Lattice structures are obtained by tessellating a unit cell along independent periodic vectors. The ad-

vantage of the lattice structures comes from their tailorability to manipulate their mechanical properties

as desired for specific applications. The unit cell can be, among many other possible geometries, trian-

gular, square, or hexagonal honeycomb, in two dimensions, and octahedral, pyramidal, or tetrahedral in

three-dimensions.
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Figure 1.2: Illustration of a 2D triangular unit cell (left) and a ”2 by 2” triangular lattice structure
(right).

For example, a two-dimensional (2D) triangular unit cell was constructed with three struts, angled by

60 degrees at each corner. This unit cell contained two direct basis vectors, e1 and e2. The unit cell was

tessellated along the directions of the basis vectors, creating a periodic 2D triangular lattice.

Lattice structures can be tailored to endow them with the enhanced ability to prevent vibrations at

particular frequency ranges. These adjustable design variables in the lattice structure provide high

flexibility when optimizing the design of the lattice structure.

1.3 Wave Propagation in Two-dimensional Periodic Lattices

There has been extensive research on wave propagation through various 2D periodic lattices. O. Sig-

mund and J. S. Jensen illustrated two waves propagating at different frequencies in separate 2D square

domains, and reported the changes in wave propagation behaviours and the band gap phenomenon when

2D periodic circular inclusions were applied to each domain [26]. For example, Figure 1.3(a) illustrates

a wave propagating at low frequency in 2D square domain, while the Figure 1.3(b) shows another wave

propagating at a high frequency in a separate 2D square domain. When circular periodic inclusions

are introduced to each square domain, changes in wave propagation behaviour occur, as is presented in

the following figures. As illustrated in Figure 1.3(c), for a wave propagating at a lower frequency, wave

propagation is still present, but is distorted due to reflections and refraction from the periodic inclusions.

However, as illustrated in Figure 1.3(d), for a wave propagating at higher frequency, there is no wave

propagation, thus showing the band gap phenomenon.
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Figure 1.3: Illustration of wave propagation at different frequencies through 2D square domains, adopted
from O. Sigmund and J. S. Jensen [26].

Wave propagation behaviour was further studied by A. Phani et al. [23] using various geometries of

lattice structures. In their research, not only did they change the shape of the unit cell of the lattice

structures, but they also changed the slenderness ratio of each strut constructing the unit cells of the

lattice structures, with an aim to show the impact of each change on the wave propagation behaviour

and its resulting dispersion curve.

Figure 1.4: Illustration of wave propagation in a 2D triangular honeycomb lattice, from A. Phani et al.
[23].
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In Figure 1.4, the left figure illustrates a triangular honeycomb lattice structure and its unit cell, while

the middle figure illustrates the dispersion curve obtained when the radius to length ratio is 0.1, and the

right figure illustrates the dispersion curve obtained when the radius to length ratio is 0.02. As can be

easily noted, the overall dispersion curve as well as band gap location is changed as the radius to length

ratio of the strut is changed from 0.1 to 0.02.

Figure 1.5: Illustration of wave propagation in a 2D square honeycomb lattice, from A. Phani et al. [23].

In Figure 1.5, the left figure illustrates a square honeycomb lattice structure and its unit cell, while the

middle figure depicts the dispersion curve obtained when the radius to length ratio is 0.1 and the right

figure shows the dispersion curve obtained when the radius to length ratio is 0.02. Compared to the

two dispersion curves obtained from triangular honeycomb lattices, the dispersion curves obtained from

square honeycomb lattices show entirely different dispersion curves, with no sign of a band gap for both

radius to length ratios.

1.4 Project Scope

There already exist a numerical model of wave propagation behaviour in 3D lattice structures devel-

oped by Arya and Steeves [1]. This previous model is, therefore, used as a reference for this Master’s

thesis. The present thesis deeper analyzes the relationships between the shape, design variables, and

the materials of the lattice structures and how these affect the resulting dispersion curves. Also, this

thesis provides a comparison of symmetric and non-symmetric lattice structures. A symmetric lattice

is a lattice structure where all the comprising struts share the same design variables and geometries;

whereas a non-symmetric lattice comprises one or more struts that have different design variables to the

other remaining struts. This study aimed to discover whether having non-symmetric lattices, achieved

herein by introducing one or more modifications to the design variables, would allow a wider selection

of options when tailoring the lattice structures for the maximum band gap at a desired frequency range.
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1.5 Outline of the Thesis Structure

This thesis is be divided into five chapters as follows. In Chapter 2, a detailed review and analysis

of lattice structures is covered. Also, this chapter will explain how tetrahedral and pyramidal lattice

structures, the two lattice structures chosen for analysis in this thesis, are constructed. In Chapter 3,

a numerical model for wave propagation in the lattice structures will be reviewed. Also, based on the

numerical model, the results will be verified employing the finite element method and Floquet-Bloch

analysis through comparison with the results from A. Phani et al. [23]. In Chapter 4, a detailed review

and analysis of wave propagation in tetrahedral and pyramidal lattice structures will be performed,

including what information can be obtained from the dispersion curves and how the wave propagation and

dispersion curves change when the lattice structures are symmetric versus non-symmetric. In Chapter

5, the conclusions that can be gained from the research are present and future recommendations for

further studies on 3D lattice structures are discussed.



Chapter 2

Periodic Lattice Structures

The main objective of this thesis is to construct 3D periodic lattice structures and then to analyze wave

propagation behaviours in the corresponding periodic lattice structures. In this paper, the analysis of the

wave propagations will be focused on tetrahedral and pyramidal 3D lattice structures. Also, a triangular

2D lattice structure is used to validate the numerical model for the analysis, through comparing the

results with those from the past research performed by A. Phani et al. [23].

In this chapter, background on the lattice structures will be reviewed, such as generating the physical

lattice structures and converting the physical lattices into the structure in wave-space, i.e. a reciprocal

lattice structure. Afterwards, the special properties of the periodic lattice structures and the advantages

of analyzing periodic lattice structures will be discussed.

2.1 Generating Physical Lattice Structures

In order to construct a periodic lattice structure, a primitive unit cell must be defined. The unit cell

is constructed with multiple nodes and struts, arranged in specific angles to form a desired shape. The

struts are originally in a local coordinate system, placed horizontally along the abscissa (the x-axis).

Each of the struts in a local coordinate system are then transformed into a global coordinate system

through Euler angle rotations, α, β, and γ, where α is the angle rotated about the y-axis, β is the angle

rotated about the z-axis, and γ is the angle rotated about a struts central axis.

While the Euler angle rotations define the orientation of the struts of the lattice unit cell, nodes are

required to be assigned at each end of the struts to define the nodal connectivity. For instance, one

strut may have node A on the left end of the strut and node B on the right end, while another strut will

have node C on its left end and node A on its right end. When connecting these two struts, the struts

should be placed in such a way that the nodes of the same type, e.g. node A, from each strut should

coincide. Following the above design mechanism, 2D triangular unit lattice cell, and 3D tetrahedral and

pyramidal unit lattice cells can be generated.

8
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x

y

z

A B

A

B

z

x

y

Figure 2.1: Illustration of a strut placed in a local coordinate system.

Tetrahedral Global Euler Angle Nodal Positions

Unit Cell Coordinate Rotation (radians) Cartesian Coord.

Beams Node A Node B α β γ Nodes x y z

Strut A 0 1 0 π
4 0 Basis 0 0 0

Strut B 0 2 π
2

π
4 0 Node 1 L√

2
L√
2

0

Strut C 3 0 - 3π4 0 0 Node 2 0 L√
2

L√
2

Strut D 1 2 3π
4 0 0 Node 3 L√

2
0 L√

2

Strut E 2 3 0 -π4 0

Strut F 1 3 π
2 -π4 0

Table 2.1: Table of the struts and nodes involved in the tetrahedral unit cell.

Figure 2.2: Illustration of the tetrahedral unit cell.
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Pyramidal Global Euler Angle Nodal Positions

Unit Cell Coordinate Rotation (radians) Cartesian Coord.

Beams Node A Node B α β γ Nodes x y z

Strut A 0 1 π
2 0 0 Basis 0 0 0

Strut B 0 2 0 0 0 Node 1 0 0 L

Strut C 0 3 π
4

π
4 0 Node 2 L 0 0

Strut D 1 3 -π4
π
4 0 Node 3 L

2
L
√
2

2
L
2

Strut E 4 3 - 3π4
π
4 0 Node 4 L 0 L

Strut F 2 3 3π
4

π
4 0

Table 2.2: Table of the struts and nodes involved in the pyramidal unit cell.

Node 1

Node 2

Node 3

S
tr
u
t 
D

Stru
t A

Strut F

S
tru

t E
 

Strut B

S
tr

u
t 

C

Node 0

Node 4

Figure 2.3: Illustration of the pyramidal unit cell.

The direct unit lattice contains n direct basis vectors, in which n is equal to the dimension of the lattice

structure. The 2D triangular unit lattice, therefore, has two basis vectors, and the 3D tetrahedral and

pyramidal unit lattice contains three basis vectors each. The direct basis vectors are defined such that

the entire lattice structure can be formed by tessellating the direct lattice along the basis vectors ei such

as e1, e2, and e3

Figure 2.4: Illustration of the tetrahedral lattice structure with the basis vectors.
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Figure 2.5: Illustration of the pyramidal lattice structure with the basis vectors.

2.2 Direct Lattice Structures in the Wave Space: Reciprocal

Lattices

The reciprocal lattice is a non-physical lattice consisting of reciprocal basis vectors, which are derived

from the direct lattice and its basis vectors. The reciprocal lattice is in k -space (momentum space),

which is the set of all wave vectors k, while the wave vectors are a frequency analog of the position

vector r. The reciprocal lattice is used through finite element analysis to obtain the wave propagation

behaviour in the lattice structure. The set of reciprocal basis vectors, e∗i , are defined by the following

equations:

For three-dimensional lattice structure: 
e∗1 = 2π (e2×e3)

e1·(e2×e3)

e∗2 = 2π (e3×e1)
e1·(e2×e3)

e∗3 = 2π (e1×e2)
e1·(e2×e3)

(2.1)

while ei = direct lattice basis vectors

e∗i = reciprocal lattice basis vectors

Following the governing relationship between direct basis vectors and reciprocal basis vectors, the re-

ciprocal basis vectors for 3D tetrahedral and pyramidal lattice structures are obtained. Each of the

tetrahedral and pyramidal lattice unit cells has three direct basis vectors and three reciprocal basis vec-

tors. In Figure 2.6, the three diagrams depict how each reciprocal basis vector of the tetrahedral unit

cell is defined based on the direct basis vectors of the unit cell. In the diagram, the red lines represent

the direct basis vectors of the tetrahedral unit cell, namely e1, e2, and e3, while the green lines represent

the reciprocal basis vectors of the same unit cell, namely e∗1, e∗2, and e∗3. The left diagram of Figure 2.6

illustrates how the reciprocal basis vector e∗1 is orthogonal to both the direct basis vectors e2 and e3,

while the middle diagram shows that the reciprocal basis vector e∗2 is orthogonal to both the direct basis

vectors e1 and e3, and the right diagram illustrates how the reciprocal basis vector e∗3 is orthogonal to

both the direct basis vectors e1 and e2, with all of the reciprocal basis vectors having an absolute value

of 2π
unit cell length . The collection of the direct basis vectors of the tetrahedral unit cell is illustrated in

the left diagram of Figure 2.7, while the collection of the reciprocal basis vectors of the tetrahedral unit

cell is illustrated in the right diagram of Figure 2.7.
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Figure 2.6: Illustration of the relationship between the direct basis vectors and the reciprocal basis
vectors.

Figure 2.7: Illustration of the direct basis vectors and reciprocal basis vectors of the tetrahedral unit
cell.

Similarly, the governing relationship described above is applied to construct direct and reciprocal basis

vectors of the 3D pyramidal unit cell, which is illustrated in Figure 2.8. The left diagram of Figure 2.8

depicts the three direct basis vectors of the pyramidal unit cell, while the right diagram of Figure 2.8

depicts the three reciprocal basis vectors of the pyramidal unit cell.

Figure 2.8: Illustration of the direct basis vectors and reciprocal basis vectors of the pyramidal unit cell.
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2.3 Properties and Behaviour of Wave Propagation in an Infi-

nite Lattice Structure

2.3.1 Brillouin Zone in a Reciprocal Lattice

The direct basis vectors define a direct lattice in physical space, while the reciprocal basis vectors define

a reciprocal lattice in reciprocal space. The primitive unit cell of the direct lattice in the physical space

is defined in such way that every lattice vector of the lattice is obtained as an integral linear combination

of the direct basis vectors. On the other hand, the primitive unit cell of the reciprocal lattice in the

reciprocal space is the Brillouin zone. The importance of constructing the first Brillouin zone comes from

the information it holds. Arya and Steeves [1] state that, for any possible wave vector, a corresponding

wave vector can be found in the first Brillouin zone with the same frequencies of propagation. This

implies that the entire frequency response of the lattice is characterized by its frequency response to the

wave vectors in the first Brillouin zone. Due to the periodicity of the frequency, any basic unit cell with

the reciprocal basis vectors can be used to construct the first Brillouin zone. The simplest choice of the

first Brillouin zone is a parallelepiped figure, whose sides are defined as reciprocal basis vectors.

Figure 2.9: Illustration of the reciprocal basis vectors and the first Brillouin zone of a tetrahedral unit
cell.

Figure 2.10: Illustration of the reciprocal basis vectors and the first Brillouin zone of a pyramidal unit
cell.
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2.3.2 Floquet and Bloch Theorem

Floquet’s principal for one-dimensional (1D) lattice structures and Bloch’s theorem in higher dimensional

lattice structures are special cases of the wave equation in a periodic structure [23]. They are applied

to impose periodic boundary conditions and to turn problems in infinite lattice structures into finite

models, which enforce a plane wave solution in an infinite lattice. In 3D periodic structures with three

basis vectors, according to Bloch’s theorem, the classical equation to describe plane wave motion in the

3D periodic structure in terms of the relation between ~r1 (the position vector) and ~rj (the j th lattice

point in the reference cell) is stated below.

q(~r) = q(~rj)e
n1k1+n2k2+n3k3 (2.2)

while ~rj = lattice points in reference cell

~r = vector of lattice points in cell corresponding to

j th point in reference cell

q(~rj) = displacement of a lattice point in reference cell

ki = δi + iεi = Wave vectors of plane wave

δi = Attenuation constants along basis vector ei

εi = Phase constants

(n1, n2, n3) = integer tuple that defines specific cell in the lattice,

which the cell is located at n1 distance along e1 direction,

n2 distance along e2 direction, and n3 distance along e3 direction

in relation to the reference cell

The wave vectors of a plane wave, k, are complex, containing a real part and an imaginary part, where

the real part is the attenuation constant and the imaginary part is the phase constant [23]. Attenuation

describes the gradual loss of intensity of a planar wave through a lattice structure. For waves propagating

without attenuation in any lattice structure, the real part of the wave vector k is equal to zero, and the

change in amplitude of the complex wave across the lattice structure does not depend on the location

of the unit cell in the structure. Therefore, Bloch’s theorem implies that one can study and understand

wave propagation through the entire lattice structure by considering wave motion within a single unit

cell, saving a large amount of time in the analysis of wave propagation in a lattice structure.

2.3.3 Coated Polymer Lattice Structure: An Ultralight Structure

At the beginning of the thesis, it was mentioned that periodic lattice structures can contribute to

sustainable aviation as an application of ultralight materials. The following are two examples of periodic

lattice structures with a radius to length ratio of 1 to 10, specifically with the radius being 1 mm and the

length 10 mm. For the analysis of the wave propagation behaviour in 3D lattice structures throughout

this thesis, the structures are considered to be coated with a nanometal. The radius and the length as

well as the coating thickness of the struts are potential design variables, which can be modified to give

different resulting dispersion curves and band gap phenomena in each lattice structure. For the coated

prototype model shown below, the coating thickness for both samples was set at 25 microns. It should

be noted that there is a thin layer of copper beneath the nickel layer, with the reason for this being so

that there is a metal surface for the electrodeposition process of nickel. Otherwise, if the nickel layer
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were put directly onto the polymer instead, it would become an electroless process, which would not

produce as thick a coating as that from the electrodeposition process.

Figure 2.11: Illustration of the coated lattice structures.

The dimensions of the bounding box, the smallest rectangular prism box that envelops the lattice

structure, for each lattice structure were measured. The volume of the bounding box represents the

volume of the solid plate. Based on the volume of the bounding box and the volume of the lattice

structure for each model, the relative density, which defines the volume fraction of the space filled with

material as a percentage of the total volume of the lattice was measured. The tetrahedral lattice structure

had 20.19% of material of relative density, while the pyramidal lattice structure had 20.62% of material

of relative density.

relative density =
volume of the lattice structure

volume of the solid plate (of the same bounding box dimensions)
(2.3)

Lattice Geometry

Properties Tetrahedral Lattice Pyramidal Lattice

Bounding Box 6.2 × 5.97 × 5.098 cm 6.2 × 6.2 × 4.44 cm

Volume of Bounding Box 188.6974 cm3 170.6736 cm3

Volume of Lattice Struc. 38.098 cm3 35.1929 cm3

Relative Density 20.19 % 20.62 %

Table 2.3: Table of the relative densities of tetrahedral and pyramidal lattice structures.



Chapter 3

Finite Element Analysis

In this chapter, finite element analysis on the wave propagation behaviour through a 3D lattice structure

is discussed. The periodic lattice structures created from Chapter 2 will be used as the basic structure for

the numerical analysis. This chapter will discuss various design variables of the coated lattice structures,

and will then construct an eigenvalue problem through finite element analysis. By selecting the desired

wave numbers, the eigenvalue problem will be solved to find eigenfrequencies and mode shapes of the

wave propagating through the corresponding lattice structures.

3.1 Defining the Input Parameters

The coated lattice structure, constructed in the previous chapter, for the analysis of wave propagation

contains five design variables: length of each strut of the lattice structure, radius of the polymer struts,

thickness of each layer of coating, Young’s modulus and the density of the polymer strut and of each layer

of coating. As for the coating layers of the lattice structure, copper and nickel were used. First, based

on the Young’s modulus and the radius of the polymer substrate, as well as the Young’s modulus and

the thickness of the copper and nickel coating layers, the flexural rigidity of the overall coated structure

was calculated.

Figure 3.1: Illustration of a strut placed in a local coordinate system.

16
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EoverallIoverall = EpolymerIpolymer + EcopperIcopper + EnickelInickel (3.1)

where E is the Young’s modulus and I is the second moment of area of each section of the strut. The

second moment of area for the solid polymer strut (cylindrical shape) and the second moment of area

for the coating layers (hollowed cylindrical shape, annulus) are expressed as

Icylinder =
πr4

4
(3.2)

Iannulus =
π(r4outer − r4inner)

4
(3.3)

For the prototype tetrahedral and pyramidal lattice structures, the input parameters were set as follows.

Design Variables

Epolymer 2.115 Gpa

ρpolymer 1170 kg/m3

Ecopper 58.6 Gpa

ρcopper 8900 kg/m3

Enickel 157.6 Gpa

ρnickel 8900 kg/m3

Radius of polymer strut 1 mm

Thickness of copper coating layer 0.0125 mm

Thickness of nickel coating layer 0.0125 mm

Length of each strut 10.25 mm

Table 3.1: Table of the design variables involved in the lattice structures.

Substituting the initial input values of the design variables into the equation above, the Young’s modulus

of the overall strut element was calculated to be 14.085 GPa. Also, the overall density could be calculated

based on the volume and the density of the substrate and coating materials.

ρoverallVoverall = ρsubstrateVsubstrate + ρcoatingVcoating (3.4)

where, the volume of the polymer strut is

Vpolymer = πr2polymer × Lpolymer (3.5)

and the volume of the coating layers is

VInner Coating = (π(tInner Coating + rpolymer)
2 × Lpolymer)− Vpolymer (3.6)

VOuter Coating = (π(tOuter Coating+tInner Coating+rpolymer)
2×Lpolymer)−VInner Coating−Vpolymer (3.7)

Substituting known values of the density and the volume, the density of the overall lattice structure was

calculated to be 1542.5 kg/m3 .
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3.2 Defining the Mesh Size and Meshed Elements

Once the strut’s design variables are defined, and the struts of the lattice structure are rotated and

coordinated as discussed in Chapter 2, the mesh size of the lattice structure is chosen. The mesh size

defines the number of elements that each strut is divided into. The correct mesh size is critical as it

impacts on the results of the analysis. Increasing the mesh size has positive impact on the computational

result by increasing the accuracy and quality of the analysis, but, on the other hand, it also causes a

negative impact by increasing the computational time. Therefore, an optimum mesh size that satisfies

the requirements both for the accuracy of the result and a reasonable computational time must be ap-

plied. Selection of the optimum mesh size for the wave propagation analysis in this thesis is discussed

in Chapter 4.

When a mesh size of n is applied to the lattice structure, every strut of the lattice is divided into

n numbers of meshed elements and n + 1 number of nodes between each meshed elements. For con-

vention, original struts prior to meshing are referred as the parent struts, while the meshed elements of

the corresponding struts are referred to as child elements. As discussed in the previous chapter, parent

struts contain Euler rotation angles, and a positive node and negative node at each end. Negative nodes

refer to nodes at x = 0, while positive nodes refer to nodes at x = L, when the parent strut is placed

in local coordinate system. When meshed elements are created, each child element inherits the same

Euler rotation angle from its corresponding parent struts as well as the direction where the positive and

negative nodes are located. The nodes at each end of the child elements are shared and bounded by the

adjacent child elements.

Figure 3.2: Illustration of the negative and positive nodes of the parent struts and meshed elements.

3.3 Defining the Nodes of the Structure

For an infinite lattice structure, Bloch’s theorem relates the displacements at certain nodes in the unit

cell to the displacements at the basis node[1]. Therefore, once the unit lattice structure is constructed,

and the structure is meshed into the desired number of elements, the nodes must be defined into different

categories: basis, internal, and boundary. Typically, a node located at the origin of the coordinate system

is defined as the basis node, qb, and is used as a base reference node to describe the boundary nodes. The
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boundary nodes, qbnd, are the nodes that can be reached by traversing the basis node along the direction

of the direct basis vectors e1, e2, e3. The boundary nodes are shared by other neighbouring unit cells

in the lattice structures. Therefore, typically the nodes at the end of each parent strut in the direction

of the direct basis vectors are defined as the boundary nodes. Lastly, nodes created between each of the

meshed element are defined as internal nodes, qi, which are not shared by the other neighbouring unit

cells.

Tetrahedral Negative Node Positive Node

Strut A Basis Boundary e1

Strut B Basis Boundary e2

Strut C Boundary e3 Basis

Strut D Boundary e1 Boundary e2

Strut E Boundary e2 Boundary e3

Strut F Boundary e1 Boundary e3

Table 3.2: Table of the internal, basis, and boundary nodes involved in the tetrahedral unit cell.

Boundary Node

Strut D

Stru
t A

S
tru

t F

Strut E 

S
tru

t B

Strut C

Boundary Node

Boundary Node

Basis Node

Figure 3.3: Illustration of the tetrahedral unit cell with the negative and the positive nodes of each strut
defined in Table 3.2.

Pyramidal Negative Node Positive Node

Strut A Basis Boundary e1

Strut B Boundary e2 Basis

Strut C Basis Boundary e3

Strut D Boundary e1 Boundary e3

Strut E Boundary e12 Boundary e3

Strut F Boundary e2 Boundary e3

Table 3.3: Table of the internal, basis, and boundary nodes involved in the pyramidal unit cell.
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Figure 3.4: Illustration of the pyramidal unit cell with the negative and the positive nodes of each strut
defined in Table 3.3.

3.4 Defining Direct Basis Vectors and Reciprocal Basis Vectors

After all the meshed elements and nodes are defined, three direct basis vectors, namely e1, e2, and e3

are constructed, which are based on Cartesian coordinates as follows.

[
e1 e2 e3

]
=

 e1x e2x e3x

e1y e2y e3y

e1z e2z e3z

 (3.8)

Based on the direct basis vectors, ei, in the Cartesian form described above, the reciprocal basis vectors,

e∗i, can be obtained. While the geometrical relationship between the direct basis vectors and reciprocal

basis vectors are defined in Chapter 2, the numerical relationship between the direct and the reciprocal

basis vectors can be expressed as follows.

2π
[
e1 e2 e3

]−1
=
[
e∗1 e∗2 e∗3

]T
(3.9)

Therefore, it can be seen that the reciprocal basis vectors are the inverse transpose of the direct basis

vectors. [
2π[ e1 e2 e3 ]−1

]T
=
[
e∗1 e∗2 e∗3

]
(3.10)
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3.5 Defining the Brillouin Zone

The Brillouin zone is defined by constructing a parallelepiped figure based on the reciprocal basis vectors.

The Brillouin zone is turned into a 3D grid system (e∗1, e∗2, e∗3), where each coordinate of the grid

represents a wave vector, k = (k1, k2, k3). The grid size of the Brillouin zone affects the total number

of wave vectors that can be obtained from the Brillouin zone. When the Brillouin zone is turned into

an n×n×n grid system, there are a total of (n+ 3)3 numbers of wave vectors. The increase in the grid

size gives a greater number of (finer) wave vectors to analyze, thus increasing the accuracy and quality

of the results.

3.6 Defining Eigenvalue Problems

3.6.1 Timoshenko Beams and Nodal Displacements

The constructed lattice structures and meshed elements are considered as Timoshenko beams. Timo-

shenko beams are preferred and selected over Euler-Bernoulli beams, as the dispersion relation of the

Euler-Bernoulli beam theory predicts that waves of short wavelength travel with unlimited speed, which

is unrealistic. This unrealistic prediction arises due to two assumptions of the Euler-Bernoulli beam

theory, namely that rotational effects are neglected and that the beam element remains rectangular

during motion. However, in reality, waves of short wavelength will cause rotation and deformation of the

beam element, hence leading to unrealistic predictions on the dispersion relation for short wavelengths.

Contrary to Euler-Bernoulli beam theory, the Timoshenko beam theory takes account of the rotation

and shear deformation of the beam element for waves of short wavelength, thus making it suitable for

describing the dispersion relations of lattice structures.

Each 3D Timoshenko element has two nodes with six displacements for each node: υ, ν, ω, φ, ψ,

θ. The υ, ν, and ω are the translational displacements along the x-axis, y-axis, and z-axis, in corre-

sponding order, and the other three, φ, ψ, and θ, are rotational displacements about the x-axis, y-axis,

and z-axis in corresponding order. Hence, the displacement of a single element qele with node A and

node B can be described as[
qele

]
=
[
qA qB

]T
=
[
υA νA ωA φA ψA θA υB νB ωB φB ψB θB

]T
(3.11)

Therefore, displacements in a single strut qstrut meshed into three elements, with its containing nodes

categorized into different types as discussed in the previous section, can be described as

[
qstrut

]
=
[
qint1 qint2 qbasis qboundary

]T
(3.12)
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x

y

z

A B

Figure 3.5: Illustration of the nodal displacements involved in each 3D strut.

3.7 Setting up the Shape Functions

According to the standard finite element procedure, the elastic deformation of an arbitrary point x of

the 3D two-node meshed element, at time t can be expressed as[3][
d
]

=
[
N
]

.
[
qele

]
(3.13)

where [d] represents the elastic deformation vector of the meshed element, [N ] represents the matrix of

shape functions, and qele represents the nodal displacement vector.

υ(x, t) = ai(x)qele(t) (3.14a)

ν(x, t) = bi(x)qele(t) (3.14b)

ω(x, t) = ci(x)qele(t) (3.14c)

φ(x, t) = di(x)qele(t) (3.14d)

ψ(x, t) = ei(x)qele(t) (3.14e)

θ(x, t) = fi(x)qele(t) (3.14f)

where, [
qele

]
=
[
υA νA ωA φA ψA θA υB νB ωB φB ψB θB

]T
(3.15)

ai

bi

ci

di

ei

fi



T

=



a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12



T

(3.16)
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

ai

bi

ci

di

ei

fi



T

=



a1 0 0 0 0 0 a7 0 0 0 0 0

0 b2 0 0 0 b6 0 b8 0 0 0 b12

0 0 c3 0 c5 0 0 0 c9 0 c11 0

0 0 0 d4 0 0 0 0 0 d10 0 0

0 0 e3 0 e5 0 0 0 e9 0 e11 0

0 f2 0 0 0 f6 0 f8 0 0 0 f12



T

(3.17)

The shape functions of a 3D Timoshenko beam element are defined as follows [1, 3]:

a1 = 1− ξ (3.18a)

a7 = ξ (3.18b)

b2 = µz
[
1− 3ξ2 + 2ξ3 + ηz(1− ξ)

]
(3.18c)

b6 = Lµz

[
ξ − 2ξ2 + ξ3 +

ηz
2

(ξ − ξ2)
]

(3.18d)

b8 = µz
[
3ξ2 − 2ξ3 + ηzξ

]
(3.18e)

b12 = Lµz

[
−ξ2 + ξ3 +

ηz
2

(−ξ + ξ2)
]

(3.18f)

c3 = µy
[
1− 3ξ2 + 2ξ3 + ηy(1− ξ)

]
(3.18g)

c5 = −Lµy
[
ξ − 2ξ2 + ξ3 +

ηy
2

(ξ − ξ2)
]

(3.18h)

c9 = µy
[
3ξ2 − 2ξ3 + ηyξ

]
(3.18i)

c11 = −Lµy
[
−ξ2 + ξ3 +

ηy
2

(−ξ + ξ2)
]

(3.18j)

d4 = 1− ξ (3.18k)

d10 = ξ (3.18l)

e3 = −6µy
L

[
−ξ + ξ2

]
(3.18m)

e5 = µy
[
1− 4ξ + 3ξ2 + ηy(1− ξ)

]
(3.18n)

e9 = −6µy
L

[
ξ − ξ2

]
(3.18o)

e11 = µz
[
−2ξ + 3ξ2 + ηyξ

]
(3.18p)

f2 =
6µz
L

[
−ξ + ξ2

]
(3.18q)

f6 = µz
[
1− 4ξ + 3ξ2 + ηz(1− ξ)

]
(3.18r)

f8 =
6µz
L

[
ξ − ξ2

]
(3.18s)

f12 = µz
[
−2ξ + 3ξ2 + ηzξ

]
(3.18t)
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ξ =
x

L
(3.19a)

ηy =
12EIy
κGAL2

(3.19b)

ηz =
12EIz
κGAL2

(3.19c)

µy =
1

1 + ηy
(3.19d)

µz =
1

1 + ηz
(3.19e)

κ = Shear correction factor =
6(1 + ν)

7 + 6ν
(3.19f)

ν = Poisson’s ratio (3.19g)

E = Young’s modulus (3.19h)

Iy,z = Second moment of area (3.19i)

A = Cross section of the strut element (3.19j)

L = Length of the strut element (3.19k)

3.8 Kinetic Energy of a Timoshenko beam: Setting the Local

Mass Matrix

First, the kinetic energy of a Timoshenko element is expressed in terms of the nodal displacements, while

the kinetic energy of a particle i is described as

Ti =
1

2
mivi

2 (3.20)

and the total kinetic energy of the system becomes the sum of the kinetic energies of all particles in the

system:

Tsys =

n∑
i=1

Ti =

n∑
i=1

1

2
mivi

2 (3.21)

For a rigid body, such as a Timoshenko beam element, the equation becomes

Tele =

∫
m

1

2
|~v|2 dm (3.22)

To continue derivation of the kinetic energy equation of the Timoshenko element, the expression for the

displacement field must be obtained. Figure 3.6 illustrates the motion of a particle p at an arbitrary

location in 3D beam, and the location of the particle after displacement, p′.
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Figure 3.6: Illustration of the kinematics of a particle in a 3D strut [16].

Vector r, which describes the location of particle p, can be divided into two components: rc and t, where

rc is the vector defining the location of the point c, which is point p projected onto the central axis

(x-axis) and t is the vector from point c, directed to point p.

[
r
]

=

 x

y

z

 (3.23)

[
rc

]
=

 x

0

0

 (3.24)

[
t
]

=

 0

y

z

 (3.25)

r = rc + t (3.26)

t = r − rc (3.27)

Likewise, the vector r′ describing the location of the particle after the displacement, is expressed as

r′ = r′c + t′ (3.28)

Based on Euler-Chasles’ theorem, the rotation of vector t can be described by the rotational matrix R

[16]:

t′ = Rt (3.29)
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where,

R =

 1 −θ ψ

θ 1 −φ
−ψ φ 1

 (3.30)

Therefore,

r′ = r′c +Rt (3.31)

substituting t = r − rc,
r′ = r′c +R(r − rc) (3.32)

Noting that point c′ is the point c after displacement by [υ ν ω]T

r′c = rc +

 υ

ν

ω

 (3.33)

the displacement field is expressed as follows

u =

 ux

uy

uz

 = r′ − r (3.34)

since

r′ = r′c +R(r − rc) (3.35)

u = r′c +R(r − rc)− r (3.36)

substituting (3.33) into the equation gives,

u = rc − r +

 υ

ν

ω

 + R(r − rc) (3.37)

u =

 x

0

0

 -

 x

y

z

 +

 υ

ν

ω

 +

 1 −θ ψ

θ 1 −φ
−ψ φ 1

 .

 0

y

z

 (3.38)

u =

 0

−y
−z

 +

 υ

ν

ω

 +

 0 −yθ zψ

0 y −zφ
0 yφ z

 (3.39)

The resulting displacement field [u] is

u =

 ux

uy

uz

 =

 υ −yθ zψ

ν 0 −zφ
ω yφ 0

 (3.40)
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Revisiting the kinetic energy equation for a Timoshenko element,

Tele =

∫
m

1

2
|~v|2 dm =

∫
m

1

2
(u̇x

2 + u̇y
2 + u̇z

2) dm (3.41)

where

|~v|2= u̇2 = u̇x
2 + u̇y

2 + u̇z
2 (3.42a)

u̇ =

 u̇x

u̇y

u̇z

 =

 υ̇ −yθ̇ zψ̇

ν̇ 0 −zφ̇
ω̇ yφ̇ 0

 (3.42b)

dm = ρdυ = ρdxdA (3.42c)∫
m

dm =

L∫
0

∫
A

ρdAdx (3.42d)

The equation then becomes

Tele =
1

2

L∫
0

∫
A

ρ(u̇x
2 + u̇y

2 + u̇z
2) dAdx (3.43)

Substituting the above equations into the kinetic energy equation, the following expression can be derived

Tele =
1

2

L∫
0

∫
A

[(u̇− yθ̇ + zψ̇)2 + (υ̇ − zφ̇)2 + (ω̇ − yφ̇)2] ρdxdA (3.44)

Further expansion of the above equation gives

Tele =
1

2

L∫
0

∫
A

[u̇2 + y2θ̇2 + z2ψ̇2 + 2yθ̇u̇+ 2zu̇ψ̇ − 2yzθ̇ψ̇ + υ̇2 + z2φ̇2 − 2zυ̇φ̇+ ω̇2 + y2φ̇2 + 2yω̇φ̇] ρdxdA

(3.45)

Afterwards, the equation is further re-ordered and expanded by multiplying
∫
A

ρdA to each term.

Tele =
1

2

L∫
0

[u̇2ρ

∫
A

dA+ θ̇2ρ

∫
A

y2dA+ ψ̇2ρ

∫
A

z2dA+ 2θ̇u̇ρ

∫
A

ydA+ 2u̇ψ̇ρ

∫
A

zdA− 2θ̇ψ̇ρ

∫
A

yzdA

+ υ̇2ρ

∫
A

dA+ φ̇2ρ

∫
A

z2dA− 2υ̇φ̇ρ

∫
A

zdA+ ω̇2ρ

∫
A

dA+ φ̇2ρ

∫
A

y2dA+ 2ω̇φ̇ρ

∫
A

ydA]dx (3.46)
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From the equation above, the following expressions give the beam cross-sectional parameters. When the

cross section of the beam is symmetric, three of the parameters, namely Ay, Az, and J , are zero.

∫
A

dA = A (3.47a)

∫
A

ydA = Ay = 0 (3.47b)

∫
A

zdA = Az = 0 (3.47c)

∫
A

z2dA = Iy (3.47d)

∫
A

y2dA = Iz (3.47e)

∫
A

yzdA = J = 0 (3.47f)

After substituting the cross-sectional parameters, the equation becomes

Tele =
1

2

L∫
0

[
Aρ(u̇2 + υ̇2 + ω̇2) + Iyρψ̇

2 + Izρθ̇
2 + (Iy + Iz)ρφ̇

2
]
dx (3.48)

By applying shape function relations into the above equation, the final form of the equation can be

derived:

Tele =
∑
ij

1

2
q̇iq̇j

L∫
0

[Aρ(aiaj + bibj + cicj) + Iyρeiej + Izρfifj + (Iy + Iz)ρdidj ] dx

=
1

2
q̇iq̇jmij

(3.49)

where mij is the mass matrix of the element.

mij =

L∫
0

[Aρ(aiaj + bibj + cicj) + Iyρeiej + Izρfifj + (Iy + Iz)ρdidj ] dx (3.50)

The equation for the kinetic energy of a Timoshenko element in a local coordinate system is simplified

to

Tele =
1

2
˙qele i ˙qele jmele ij =

1

2
˙qele
Tmele ˙qele (3.51)
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3.9 Setting the Local Stiffness Matrix

After the kinetic energy relation and the mass matrix of the Timoshenko element are found, the strain

potential energy of the Timoshenko element is calculated.

Uele =

∫
V

Û dV (3.52)

where Û is the expression for the strain energy density:

Û =

εij∫
0

σijdεij (3.53)

For the strain energy density of isotropic materials, Hooke’s Law states that

σij = Cijklεkl = λεkkδij + 2Gεij (3.54)

where λ is Lamé’s first parameter and G is Lamé’s second parameter. The strain energy density equation

then becomes

Û =

εij∫
0

Cijklεkldεij =
1

2
Cijklεklεij (3.55)

Substituting the strain energy density equation and Hooke’s law for an isotropic material, the strain

potential energy equation for a Timoshenko element can be expressed as

Uele =

∫
V

1

2
CijklεklεijdV =

1

2

∫
V

(λεkkδij + 2Gεij)εij dV (3.56)

Expanding and re-ordering,

Uele =
1

2

∫
V

(λεijεkkδij + 2Gεijεij) dV (3.57)

where,

εijεkkδij =

[
3∑
k=1

εkk

]2
(3.58)

and

εijεij =

3∑
i=1

3∑
j=1

(ε2ij) (3.59)

[ε] =

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (3.60)
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Revisiting the displacement field obtained above, the 3D stress-strain relations components can be

expressed as follows, where ux, uy, uz are the components of the displacement field.

ε11 =
∂ux
∂x

= u′ − yθ′ + zψ′ (3.61a)

ε22 =
∂uy
∂y

= 0 (3.61b)

ε33 =
∂uz
∂z

= 0 (3.61c)

ε12 = ε21 =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
=

1

2
(υ′ − zφ′ − θ) (3.61d)

ε13 = ε31 =
1

2

(
∂ux
∂z

+
∂uz
∂x

)
=

1

2
(ω′ + yφ′ + ψ) (3.61e)

ε23 = ε32 =
1

2

(
∂uy
∂z

+
∂uz
∂y

)
= 0 (3.61f)

Therefore, the strain potential energy equation becomes,

Uele =
1

2

∫
V

[
λ(ε11)2 + 2G(ε211 + 2ε212 + 2ε213)

]
dV

=
1

2

∫
V

[
λ(ε211) + 2G(ε211) + 4G(ε212) + 4G(ε213)

]
dV

=
1

2

∫
V

[
(λ+ 2G)(ε211) + 4G(ε212) + 4G(ε213)

]
dV (3.62)

Substituting the strain expressions above,

Uele =
1

2

∫
V

[
(λ+ 2G)[(u′ − yθ′ + zψ′)2] + 4G[(

1

2
(υ′ − zφ′ − θ))2] + 4G[(

1

2
(ω′ + yφ′ + ψ))2]

]
dV

=
1

2

∫
V

[
(λ+ 2G)[(u′ − yθ′ + zψ′)2] +G (υ′ − zφ′ − θ)2 +G (ω′ + yφ′ + ψ)

2
]
dV (3.63)

Replacing, ∫
V

dV =

L∫
0

∫
A

dAdx (3.64)

the equation becomes

Uele =
1

2

L∫
0

∫
A

[
(λ+ 2G)[(u′ − yθ′ + zψ′)2] +G (υ′ − zφ′ − θ)2 +G (ω′ + yφ′ + ψ)

2
]
dAdx (3.65)
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Expanding,

Uele =
1

2

L∫
0

∫
A

[(λ+ 2G)(u′2 − 2yu′θ′ + 2zu′ψ′ − 2yzθ′ψ′ + y2θ′2 + z2ψ′2)

+G(υ′2 − 2zυ′φ′ − 2υ′θ + 2zφ′θ + z2φ′2 + θ2)

+G(ω′2 + 2yω′φ′ + 2ω′ψ + 2yφ′ψ + y2φ′2 + ψ2)]dAdx (3.66)

Afterwards, the equation can be further re-ordered and expanded by multiplying
∫
A

dA to each term

Uele =
1

2

L∫
0

[(λ+2G)(u′2
∫
A

dA−2u′θ′
∫
A

ydA+2u′ψ′
∫
A

zdA−2θ′ψ′
∫
A

yzdA+θ′2
∫
A

y2dA+ψ′2
∫
A

z2dA)

+G(υ′2
∫
A

dA− 2υ′φ′
∫
A

zdA− 2υ′θ

∫
A

dA+ 2φ′θ

∫
A

zdA+ φ′2
∫
A

z2dA+ θ2
∫
A

dA)

+G(ω′2
∫
A

dA+ 2ω′φ′
∫
A

ydA+ 2ω′ψ

∫
A

dA+ 2φ′ψ

∫
A

ydA+ φ′2
∫
A

y2dA+ ψ2

∫
A

dA)]dx (3.67)

Afterwards, the expressions for the symmetric beam cross-sectional parameters are substituted into the

equation above to simplify the expression. ∫
A

dA = A (3.68a)

∫
A

ydA = Ay = 0 (3.68b)

∫
A

zdA = Az = 0 (3.68c)

∫
A

z2dA = Iy (3.68d)

∫
A

y2dA = Iz (3.68e)

∫
A

yzdA = J = 0 (3.68f)

A reduced form of the equation can be found:

Uele =
1

2

L∫
0

[λ(Au′2 + Iyψ
′2 + Izθ

′2) + 2G(Au′2 + Iyψ
′2 + Izθ

′2)

+G(Aυ′2 − 2Aυ′θ +Aθ2 + Iyφ
′2) +G(Aω′2 + 2Aω′ψ + Izφ

′2 +Aψ2)]dx (3.69)
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Expanding the above equation and re-ordering,

Uele =
1

2

L∫
0

[λ(Au′2 + Iyψ
′2 + Izθ

′2) + 2G(Au′2 + Iyψ
′2 + Izθ

′2)

+GA(υ′2 − 2υ′θ + θ2) +GA(ω′2 + 2ω′ψ + ψ2) +G(Iyφ
′2 + Izφ

′2)]dx

=
1

2

L∫
0

[λ(Au′2+Iyψ
′2+Izθ

′2)+2G(Au′2+Iyψ
′2+Izθ

′2)+GA((υ′−θ)2+(ω′+ψ)2)+G(Iy+Iz)φ
′2)]dx

(3.70)

By substituting the expressions for the shape functions into the above derivative terms, and incorporating

the shear correction factor κ, the following form is derived.

Uele =
1

2

L∫
0

[λ(A(qia
′
i)

2 + Iy(qie
′
i)

2 + Iz(qif
′
i)

2) + 2κG(A(qia
′
i)

2 + Iy(qie
′
i)

2 + Iz(qif
′
i)

2)

+ κGA((qib
′
i − qifi)2 + (qic

′
i + qiei)

2) + κG(Iy + Iz)(qid
′
i)]dx (3.71)

Uele =
∑
ij

1

2
qiqj

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2κG(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx

=
1

2
qiqjkij

where kij =

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2κG(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx (3.72)

where, kij is the mass matrix of the element.

kij =

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2κG(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx (3.73)

The equation for the strain potential energy of a Timoshenko element in a local coordinate system can

be simplified to

Uele =
1

2
qele iqele jkele ij =

1

2
qTelekeleqele (3.74)

where λ and G are the first and the second Lamé’s parameters of the coated struts of the lattice

structures. First, Lamé’s second parameter, G(shear modulus), is evaluated by the following, knowing

that the shear modulus, G, can be related with shear stress and shear strain:
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G =
Shear Stress

Shear Strain
=
τxy
γxy

=
F/A

4x/l
=

Fl

A4x
(3.75)

where,

F = Shear force

A = Area of cross section

l = Length of the strut element

4x = Transverse displacement

re-ordering the equation, and equating to Shear Force,

F =
GA4x

l
(3.77)

GA4x
l overall

=
GA4x

l polymer
+
GA4x

l copper
+
GA4x

l nickel
(3.78)

Knowing that all the components of the coated strut have the same strut length and transverse displace-

ment, 4x and l can be eliminated from all the terms, resulting in the following equation

GAoverall = GApolymer +GAcopper +GAnickel (3.79)

Once Goverall is calculated, Lamé’s first parameter can be found by using the following equation.

λ =
G(E − 2G)

3G− E
(3.80)

where E is the Young’s modulus of the overall coated strut found at the beginning of this chapter.

3.10 Evaluating the Shape Functions Involved in the Mass and

Stiffness Matrices

In the previous section, expressions for the local element mass and stiffness matrices, mij and kij , were

found based on the kinetic and strain potential energy equations.

mij =

L∫
0

[Aρ(aiaj + bibj + cicj) + Iyρeiej + Izρfifj + (Iy + Iz)ρdidj ] dx (3.81)

kij =

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2κG(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx (3.82)

The alphabetical terms, ai, aj , . . . fi, fj are the basic shape functions that were described in the previous

section, while a′i, a
′
j , . . . f ′i , f

′
j are the derivatives of the corresponding shape functions. Both the element

mass and stiffness matrices in a local coordinate system involve multiplication of the shape functions

and its derivatives, such as aiaj , which must be evaluated with the Gauss quadrature method.
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Consider a term involving multiplication of two shape functions a1 and a2:

I =

b=L∫
a=0

a1a2dx (3.83)

Both shape functions a1 and a2 require five inputs to be computed: ξ, ηy, ηz, µy, and µz. The ηy,z and

µy,z are easily calculated with the information of E, Iy,z, κ, G, A, L, and ν, which were obtained in the

previous steps of the finite element analysis. However, ξ requires the Gauss quadrature method to be

evaluated.

ξi =
1

2
(0 + L) +

1

2
(Pi)(L− 0) (3.84)

where, P is the position of the Gauss points and L is the length of the element. Noting that ξ is expressed

in terms of Pi, which has four different values and its own corresponding weights, Wi, the multiplication

of the two shape functions must be evaluated with all four different Gauss points and weights.

i Gauss points, Pi Weights, Wi

1 -0.8611363116 0.3478548451

2 -0.3399810436 0.6521451549

3 +0.3399810436 0.6521451549

4 +0.8611363116 0.3478548451

Table 3.4: Table of the Gauss quadrature points and corresponding weights.

4∑
i=1

[
L

2
Wi

(
a1(ξi, ηy, ηz, µy, µz) a2(ξi, ηy, ηz, µy, µz)

)]
(3.85)

3.11 Construction of the Local and Global Mass and Stiffness

Matrices

The mass and stiffness matrices of the Timoshenko elements obtained above, mij and kij , are in a local

coordinate system. The two local element mass and stiffness matrices must then represented in the

matrices in a global coordinate system by applying a rotational matrix R.

Rele = 

 ryrzrx

 0 0 0

0

 1 0 0

0 1 0

0 0 1

 0 0

0 0

 ryrzrx

 0

0 0 0

 1 0 0

0 1 0

0 0 1




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ry =

 cosα 0 − sinα

0 1 0

sinα 0 cosα

 rz =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 rx =

 1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 (3.86)

By applying the following relations, the global mass matrix Melement and stiffness matrix Kelement can

be found.

Kele = RelekeleR
T
ele (3.87)

Mele = RelemeleR
T
ele (3.88)

Once all the mass and stiffness matrices for all the elements are converted from a local to a global

coordinate system, all the elements’ mass matrices are collected into one global mass matrix Mij of the

lattice structure based on the nodal connectivities of each of the elements. Similarly, all the elements’

stiffness matrices are collected into one global stiffness matrix Kij of the lattice structure based on the

nodal connectivities of each of the elements. For example, consider a structure involving two elements

(E1, E2) at the element level, each element holds a negative node A and a positive node B. However,

when the elements are connected together, the structure holds three nodes (n1, n2, n3). At the structure

level, the first element E1 has a negative node of n1 and a positive node of n2, and the second element

E2 has a negative node of n2 and a positive node of n3, where the two elements are connected by node

n2.

Nodes in local Nodes in Global

Elements -ve node +ve node -ve node +ve node

E1 A B n1 n2

E2 A B n2 n3

Table 3.5: Table of nodal connectivities in local and global coordinate systems.

The global mass matrix can be divided into four quadrants, where each quadrant relates to the specific

nodes of the element:

[
ME1

]
=

[
+ve node + ve node +ve node − ve node
−ve node + ve node −ve node − ve node

]
=

[
AA AB

BA BB

]
(3.89)

The global matrix of the first element, E1, can be expressed as

[
ME1

]
=

[
AE1AE1 AE1BE1

BE1AE1 BE1BE1

]
in element level

(3.90)

and the global mass matrix of the second element, E2, can be expressed as

[
ME2

]
=

[
AE2AE2 AE2BE2

BE2AE2 BE2BE2

]
in element level

(3.91)

The two element mass matrices are then collected into a single matrix, representing the mass matrix of
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the overall lattice structure:

[
Mstructure

]
=

 n1, n1 n1, n2 n1, n3

n2, n1 n2, n2 n2, n3

n3, n1 n3, n2 n3, n3

 (3.92)

The location, where each quadrant of the element matrices fits into the collected structure matrix, is

defined by how the negative and positive nodes of each element (nodes A and B) are represented as nodes

in the structure level (nodes n1, n2, and n3). For the first element, E1, the location of each quadrant of

the element matrix is defined as

[
ME1

]
collected

=

[
n1, n1 n1, n2

n2, n1 n2, n2

]
location in structure matrix

=

 AE1AE1 AE1BE1 0

BE1AE1 BE1BE1 0

0 0 0


(3.93)

and the location of each quadrant of the second element matrix, E2, is defined as

[
ME2

]
collected

=

[
n2, n2 n2, n3

n3, n2 n3, n3

]
location in structure matrix

=

 0 0 0

0 AE2AE2 AE2BE2

0 BE2AE2 BE2BE2


(3.94)

Finally, by taking the sum of [ME1]collected and [ME2]collected, the collected mass matrix of the structure

in the global coordinate system is expressed as

[
Mstructure

]
=

 AE1AE1 AE1BE1 0

BE1AE1 BE1BE1 +AE2AE2 AE2BE2

0 BE2AE2 BE2BE2

 (3.95)

Similarly, the stiffness matrix, K, of the structure in a global coordinate system can be obtained as well.

The equation for kinetic energy and strain potential energy of the lattice structure in a global coordinate

system is simplified to

Tstructure =
1

2
q̇iq̇jMij =

1

2
q̇TMq̇ (3.96)

Ustructure =
1

2
qiqjKij =

1

2
qTKq (3.97)

3.12 Obtaining the Equation of Motion

The equation of motion can be obtained by using Lagrange’s equation:

∂

∂t

∂L

∂q̇i
− ∂L

∂qi
= f (3.98)

where, T = 1
2 q̇iq̇jMij = 1

2 q̇
TMq̇

U = 1
2qiqjKij = 1

2q
TKq

L = Lagrangian = Kinetic energy - potential energy = T − U
f = force
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Lagrange’s equation can be simplified to

Mq̈ +Kq = f (3.99)

where q is the collection of all nodal displacements of all nodes in the lattice unit cell, M is the collected

mass matrix of the lattice unit cell in the global coordinate system, and K is the collected stiffness matrix

of the lattice unit cell in the global coordinate system.

Revisiting Bloch’s theorem and the related equation described in the previous chapter,

qbnd = qbe
n1k1+n2k2+n3k3 (3.100)

Bloch’s theorem expresses that the displacement at the boundary nodes can be defined by the dis-

placement at the corresponding basis node. Hence, in the previous section, all the collection of nodes

in the entire lattice unit cell are categorized into three different types: internal, (qi), basis, (qb), and

boundary, (qbnd = q1,2,3). In order to describe the boundary node in reference to the basis node, the

transformation matrix, [T ], is required:[
qbnd

]
=
[
T
]

.
[
qb

]
(3.101)

For example, the boundary node q1 is the nodal displacement that can be explained by the displacement

at the basis node qb tessellated in the e1 direction, while q12 is the nodal displacement that can be

expressed by the displacement at the basis node tessellated in the e1 and e2 directions. While all the

boundary nodes are defined by the basis node, each internal node can only be defined by itself.

[
q
]

=
[
T
]

.
[
q̃
]

=



qi

qb

q1

q2

q3

q12

q13

q23

q123


=



I 0

0 I

0 T1

0 T2

0 T3

0 T12

0 T13

0 T23

0 T123


.

[
qi

qb

]
(3.102)

For example, the relationship between q12, T12, and qb can be expressed as follows:

[
q12

]
=
[
T12

]
.
[
qb

]
=



u12

v12

w12

φ12

ψ12

θ12


=



ek1+k2 0 0 0 0 0

0 ek1+k2 0 0 0 0

0 0 ek1+k2 0 0 0

0 0 0 ek1+k2 0 0

0 0 0 0 ek1+k2 0

0 0 0 0 0 ek1+k2


.



ub

vb

wb

φb

ψb

θb


(3.103)
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k1, k2, and k3 are the wave numbers in the directions of e1, e2, and e3 basis vectors, in the corresponding

order:
~k = n1~k ~e1 + n2~k ~e2 + n3~k ~e3 = n1k1 + n2k2 + n3k3 (3.104)

where ~k is the wave vector, and ni defines any other neighbouring unit lattice cell obtained by ni

translation along the ei direction. The overall transformation matrix looks as follows: qi

qb

q1

 =

 I 0

0 I

0 T1

 .

[
qi

qb

]
(3.105)



ui

vi

wi

φi

ψi

θi

ub

vb

wb

φb

ψb

θb

u1

v1

w1

φ1

ψ1

θ1



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 ek1 0 0 0 0 0

0 0 0 0 0 0 0 ek1 0 0 0 0

0 0 0 0 0 0 0 0 ek1 0 0 0

0 0 0 0 0 0 0 0 0 ek1 0 0

0 0 0 0 0 0 0 0 0 0 ek1 0

0 0 0 0 0 0 0 0 0 0 0 ek1



.



ui

vi

wi

φi

ψi

θi

ub

vb

wb

φb

ψb

θb



(3.106)

Substituting the above expressions into the collected equations of motion will give the following equation

MT ¨̃q +KTq̃ = f (3.107)

THMT ¨̃q + THKTq̃ = THf (3.108)

where TH is a conjugate transpose of the transformation matrix, and M̃ = TH M and K̃ = TH K.

Noting that

THMT = M̃ (3.109)

THKT = K̃ (3.110)

The equation is further simplified to

M̃ ¨̃q + K̃q̃ = THf (3.111)



Chapter 3. Finite Element Analysis 39

Bloch’s theorem can be extended onto the expression for force. While the expression

fbnd =
[
T
]

. fb (3.112)

defines the force applied at the boundary node with respect to the force applied at the corresponding

basis node, the expression

fb =
[
TH

]
. fbnd (3.113)

represents the force applied at the basis node, with respect to the force applied at the corresponding

boundary node. Therefore, for the tetrahedral and pyramidal unit cell that undergoes a boundary

condition of zero external forces, the right-hand side of the reduced equation of motion, THf , is expressed

as

THf =

[
I 0 0 0 0

0 I TH1 TH2 TH3

]

Fqi

Fqb
Fq1

Fq2

Fq3

 =

[
Fqi 0 0 0 0

0 Fqb TH1 Fq1 TH2 Fq2 TH3 Fq3

]
(3.114)

Since there are no external forces applied, there are no forces applied to the internal nodes.

Fqi = 0 (3.115)

As Fqb defines the force applied to the basis node by all neighbouring boundary nodes,

Fqb = THFqbnd
= −

(
TH1 Fq1 + TH2 Fq2 + TH3 Fq3

)
(3.116)

Therefore,

THf =

[
Fqi 0 0 0 0

0 Fqb TH1 Fq1 TH2 Fq2 TH3 Fq3

]
=

[
0

0

]
(3.117)

Substituting the force term obtained through the application of Bloch’s theorem, the reduced equation

of motion can be simplified as follows:

M̃ ¨̃q + K̃q̃ = 0 (3.118)

where M̃ = Hermitian Mass Matrix

K̃ = Hermitian Stiffness Matrix

q̃ = nodal displacement

¨̃q = nodal acceleration

The reduced equation of motion is converted into an eigenvalue problem by substituting q̃, which is

the classical equation describing plane wave motion through a lattice with a wave vector k, radial fre-

quency ω and amplitude A at a point r and at time t :

q̃ = Aei(
~k·~r−ωt) (3.119)

q̃ = A[cos(~k · ~r − ωt) + isin(~k · ~r − ωt)] (3.120)
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where ~k = Wave vector of plane wave

~r = vector of lattice points in cell corresponding to

jth point in reference cell

ω = radial frequency

t = time

Then, ¨̃q is found by taking the second derivative of the real part of q̃:

q̃ = Acos(~k · ~r − ωt) (3.121)

¨̃q = −ω2Acos(~k · ~r − ωt) (3.122)

Substituting the expressions for q̃ and ¨̃q into the reduced equation of motion, the eigenvalue problem

describing free wave motion in the frequency domain is obtained:

K̃φ = ω2M̃φ (3.123)

where φ = eigenvector

ω2 = λ = eigenvalues

There are two solutions for the eigenvalue problem: eigenvectors and eigenvalues. While the eigenvalues

obtained from the eigenvalue problem can be used to create a dispersion surface, in which the number

of resulting dispersion surfaces is equal to the number of eigenvalues in the problem, the eigenvectors

are used to analyze the mode shapes of the lattice structure undergoing wave propagation.



Chapter 4

Wave propagation analysis

4.1 Plotting Dispersion Curves

Dispersion curves of waves propagating in lattice structures are plotted by taking the eigenfrequencies

and plotting them against the wave numbers, which are the inputs and the solutions of the eigenvalue

problem derived through the finite element analysis. A 2D lattice structure has two reciprocal basis vec-

tors, e∗1 and e∗2. Therefore, to plot a dispersion curve for the 2D lattice structure, a 3D plot is required,

in which the x-axis and y-axis of the graph plot the wave numbers k1 and k2, while the z-axis of the

graph plots the eigenfrequencies. Likewise, a 3D lattice structure has three reciprocal basis vectors: e∗1,

e∗2, and e∗3. Therefore, to plot a dispersion curve for the 3D lattice structure, a four dimensional (4D)

plot is required, where three dimensions are required for the wave numbers along the directions of the

three different reciprocal basis vectors and one dimension is required for the frequencies of the wave

propagation. A generic dispersion curve can be generated by computing the eigenvalue problem and

finding eigenfrequencies solutions for all the wave vectors in the first Brillouin zone, and then plotting

them against each corresponding wave vector. This thesis focuses on the analysis and comparison of

symmetric and non-symmetric lattice structures with an aim to find an improved way to tailor and locate

the band gap at a desired frequency range in the dispersion curve, which is performed by comparing the

dispersion relations of waves propagating along different directions. Hence, this thesis focuses on the

analysis of the wave vectors propagating along the reciprocal basis vectors, e∗1 and e∗2. Therefore, the

dispersion curves of the 3D lattice structures presented in this thesis are in 2D plot of frequency (the

ordinate) against the wave vector (the abscissa).

Prior to moving on to the following section of the thesis, it is important to make clear the under-

standing between symmetric/non-symmetric lattice structures, and symmetric/asymmetric dispersion

relations. The symmetric lattice structure refers to a structure in which all the struts have equal design

variables, while the non-symmetric lattice structure refers to a structure in which one or more but not

all the struts are modified to have different design variables. On the other hand, the dispersion relation

is symmetric when the resulting dispersion curves of a wave propagating in one direction is symmetric

to the dispersion curves of a wave propagating in a different direction; whereas the dispersion relation

is considered asymmetric, when the resulting dispersion curves of a wave propagating in one direction

is different from the dispersion curves of a wave propagating in a different direction.

41
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4.2 Modifying the Design Variables to Tailor the Dispersion

Curve

As described in Chapter 3, the constructed lattice structure contains multiple design variables, which

can be modified to tailor the lattice structure as well as the band gap of the dispersion curve.

Figure 4.1: Illustration of a structural configuration of the struts of a lattice structure.

The design variables and components of the lattice struts that can be modified to tailor the lattice

structure are listed in Table 4.1

Design Variables Components of lattice structure

Young’s modulus, E Polymer substrate, Coating layers

Density, ρ Polymer substrate, Coating layers

radius, r Polymer substrate

Thickness, t Coating layers

Length, L Lattice strut

Table 4.1: Table of the design variables involved in different sections of the lattice struts.

One or more design variables in Table 4.1 can be increased or decreased to tailor the lattice structure,

which would affect the dispersion curve and band gap phenomenon. For application of the lattice struc-

ture in aerospace industries, structures with a high stiffness (Young’s modulus) and low density are

preferred. Therefore, for the analysis of the current thesis, the design variables are modified to provide

an increase or decrease in the Young’s modulus and density.

Table 4.2 lists the material combinations and corresponding design variables set for the structural con-

figuration illustrated in Figure 4.1. Based on the material combinations and the values of each of the

design variables in Table 4.2, the Young’s modulus and the density of the overall lattice structure can be

modified in various ways through modifying the radius of the substrate and the thickness of each coating

layer of the lattice struts. For instance, compared to the design variables listed in Table 4.2, increasing

the radius of the polymer substrate, while maintaining the overall strut radius, causes the thickness of

the coating layers to be slimmer than before, and thereby decreases both the Young’s modulus and the
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density of the overall lattice strut. On the other hand, decreasing the radius of the polymer substrate,

while maintaining the overall strut radius, increases both the Young’s modulus and the density of the

overall lattice strut. When the radius of the polymer substrate is kept the same but the thicknesses of

both coating layers are decreased, both the Young’s modulus and the density of the overall lattice strut

decreases. However, if both thickness of the two coating layers are increased, both the Young’s modulus

and the density of the overall lattice strut increases. As such, various combinations of modification on

the radius of the polymer substrate and the thickness of the coating layers will cause a change in the

Young’s modulus and in the density of the lattice structure.

The importance of the material combinations listed in Table 4.2 is based on the flexibility of how the

Young’s modulus and the density of the lattice structure can be modified. In Table 4.2, it can be also

seen that copper and nickel are used as the coating materials, and that both materials have the same

value of density, but differ in their values of the Young’s modulus. For this reason, referring to Figure

4.1, when the radius of the polymer substrate and the radius of the outer coating remain constant, and

only the radius of the inner coating is modified, the Young’s modulus of the overall lattice strut can be

modified independently without changing the density of the lattice strut. With the material combination

and design variables defined in Table 4.2, the Young’s modulus of overall strut is calculated as 14.085

Gpa, and the density of the overall strut is calculated as 1542.5 kg/m3 . For example, with the design

variables defined in Table 4.2, while maintaining the radius of the polymer substrate at 1 mm, but

reducing the thickness of the copper coating layer by 0.01 mm and increasing the thickness of the nickel

coating layer by 0.01 mm, the Young’s modulus of the overall strut is changed to 17.754 Gpa, while the

density of the overall strut remains constant. This change occurs as the amount of nickel, which has

the highest Young’s modulus, is increased significantly, while the amount of copper, which has a lower

Young’s modulus, is decreased by the same volume. Using such a method, the Young’s modulus and the

density of the overall lattice strut can be modified independently for analysis of the dispersion curves of

various lattice configurations.

Alternatively, the Young’s modulus and the density of the lattice strut can be modified by changing

the material combinations, such as using different coating materials for the lattice structure. To change

the density of the lattice strut, metals of different types with differing densities can be mixed through an

alloying process. For example, nickel with the density of 8900 kg/m3 can be alloyed with another metal

that has a higher or lower density, and the modified density of the strut can be obtained based on a

rule of mixtures approach, which the material is the electrodeposited alloy. Again, the Young’s modulus

of the lattice strut can be modified if a stiffer material is added through an alloying process, which the

material is electrodeposited alloy as well.

The material combinations and the design variables are described in Table 4.2 and were used for the

default lattice configuration for the tetrahedral and the pyramidal lattice structures. The dispersion

curves of this default lattice configuration are analyzed and then used throughout the analysis section

of the thesis, and will also be compared with dispersion curves of various configurations of the lattice

structures.
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Design Variables

Epolymer 2.115 Gpa

ρpolymer 1170 kg/m3

Ecopper 58.6 Gpa

ρcopper 8900 kg/m3

Enickel 157.6 Gpa

ρnickel 8900 kg/m3

Radius of polymer strut 1 mm

Thickness of copper coating layer 0.0125 mm

Thickness of nickel coating layer 0.0125 mm

Length of each strut 10.25 mm

Table 4.2: Table of the design variables involved in the lattice structures.

4.3 Properties of Dispersion Curves

4.3.1 Velocity of Wave Propagation

Dispersion curves tell us how waves are propagating at different velocities at different frequencies. In the

dispersion curves, two types of velocities can be found: phase velocity (νp) and group velocity(νg). The

secant slope, the slope of the straight line connecting the origin to the point of interest, represents the

phase velocity, while the tangent slope, the slope of the tangent line at the point of the dispersion curve,

represents the group velocity [23]. The dispersion curves plot the frequencies against the corresponding

wave numbers. The frequencies, are in units of radians per second (rad/s), while the wave numbers

are in units of radians per unit distance. Since the frequencies are plotted on the y-axis and the wave

numbers are plotted on the x-axis, the slopes of the dispersion curves are measured as follows

Slope of the curve =
frequencies

wave numbers
=

radians
second
radians
meter

=
meter

second
= Velocity (4.1)

4.3.2 Dispersion Branches, Veering Effect and Natural Frequencies

First, the dispersion curves for a tetrahedral 3D lattice structure were plotted as shown in Figure

4.2, with the design variables described in Table 4.2. The dispersion curves for waves propagating

along e∗1 are plotted with blue solid lines, with wave numbers of varying k1 component, but zero k2

and k3 components. When the eigenvalue problems are solved for each input wave number, multiple

eigenfrequencies are obtained as solutions for each wave number. The lowest eigenfrequency solutions of

each wave number are then connected into a line, forming the first dispersion branch of the dispersion

curve, while the second lowest eigenfrequency solutions of each wave number are connected into another

line, forming the second dispersion branch. Through repeating this procedure, dispersion curves were

plotted for the first 14 dispersion branches. The number of dispersion branches appearing in the plot was

manually selected to display the band gap phenomena in the resulting dispersion curves of the lattice

structure.
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Figure 4.2: Illustration of the dispersion curves of the tetrahedral lattice with the design variables in
Table 4.2.

Often, when the dispersion curves are plotted based on frequency (ordinate) against the wave vector

(abscissa), the observed dispersion branches look as if they are crossing each other. However, the

dispersion branches that seem to be crossing each other are in fact just coming close to each other, then

they make a steep change in direction at some point. In reality, the dispersion branches never cross each

other in the dispersion curve. This phenomenon is called veering [22].
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Figure 4.3: Illustration of the four dispersion branches experiencing the veering effect.

Paying attention to 3rd, 4th, 5th, and 6th dispersion branches of the dispersion curves, the four dispersion

branches seem as if they are crossing each other. However, as illustrated in Figure 4.3, when the plot

is magnified to display the four dispersion branches between the normalised wave numbers of 0.28 and

0.38, and the frequency range of 1800 and 2200 rad/s, it can be observed that these are in fact, four

separate dispersion branches that do not cross each other.
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Figure 4.4: Illustration of the dispersion branch representing the natural frequency of the lattice struc-
ture.

Other information that can be obtained from the dispersion curves is the natural frequency of the lattice

structure. The flat dispersion branch in the middle Figure 4.2 represents natural frequency, the frequency

at which the lattice structure tends to vibrate. As illustrated in Figure 4.4, when no other dispersion

branches are present except for the natural frequency, the natural frequency occurs at a frequency of

2424 rad/s, representing 11th dispersion branch.
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Figure 4.5: Illustration of multiple dispersion branches located close to each other.

While it was aforementioned that the dispersion curves illustrated in Figure 4.2 are plotted for 14

dispersion branches, the dispersion curves appear to only contain eight dispersion branches. The reason

for this is that there are multiple dispersion branches that are tightly close to each other near the

dispersion branch representing the natural frequency. Figure 4.5 provides magnified representation of

the multiple dispersion branches that are located close to each other. These dispersion branches never
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cross each other, and among the dispersion branches depicted in Figure 4.5, only one dispersion branch

is flat, with a uniform eigenfrequency, representing the natural frequency.

4.3.3 Band Gap Phenomenon

In the dispersion curve, if there is a gap between the dispersion branches, the gap is referred as a

band gap in solid-state physics, where no wave propagation occurs within the band gap region. In other

words, phononic waves, which are of primary interest in this thesis, will not propagate in any direction at

frequencies associated with band gaps. Figure 4.6 illustrates the band gap phenomenon and its location

in dispersion curves. A band gap appears between the 13th and 14th dispersion branches at the frequency

range of 2424-2957 rad/s, in which there are no waves propagating within this frequency range.

Figure 4.6: Illustration of the band gap in the dispersion curves of the tetrahedral lattice structure with
the design variables in Table 4.2.

4.4 Validation Through Two-dimensional Triangular Lattices

The numerical model was verified through comparing the dispersion curves generated from the numerical

model with the dispersion curves calculated by A. Phani et al. [23]. In their research, wave propagation

through a 2D triangular lattice structure with a radius to length ratio of 0.1 was performed. As their

report did not define specific values of the Young’s modulus and the density of the struts, the numerical

model in this thesis used arbitrary values of other design variables, but with matching the radius to

length ratio. First, a triangular lattice structure with a radius to length ratio of 0.1 was compared, as

shown in Figure 4.7.
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Figure 4.7: Comparison of the dispersion curves of a 2D triangular lattice with a radius to length ratio
of 0.1 through finite element analysis (left) and the dispersion curves adopted from A. Phani et al. [23]
(right).

The two dispersion curves show close resemblance of their band structures, with a band gap located in

the high frequency range. The first band gap of the dispersion curves occurs between the 5th and 6th

dispersion branches, while the second band gap of the dispersion curves occurs between the 6th and 7th

dispersion branches for both plots.

Next, a triangular lattice structure with a radius to length ratio of 0.02 was then compared, as il-

lustrated in Figure 4.8. The two plots show close resemblance of dispersion surfaces, with a band gap

located in the low frequency range between the 3rd and 4th dispersion surfaces from the bottom.
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Figure 4.8: Comparison of the dispersion curves of a 2D triangular lattice with a radius to length ratio
of 0.02 through finite element analysis (left) and the dispersion curves adopted from A. Phani et al. [23]
(right).
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4.5 Gaining a Physical Understanding of the Lattice Structure

It is of interest to understand what happens in the physical space in a physical lattice structure when a

wave propagates along a strut of the lattice structure. For this purpose, wave vectors propagating along

the direction of the direct basis vector e1 of each tetrahedral and pyramidal lattice structure were used

as inputs for the eigenvalue problem to solve it for the eigenvectors φ.

K̃φ = ω2M̃φ (4.2)

The eigenvector solution of the eigenvalue problem is in the form of a matrix, with the rows of the matrix

representing nodal displacement of all the nodes existing in the lattice structure, and the columns of

the matrix representing the nodal displacements of different mode shapes. The nodal displacements

of the first mode are incorporated with the original location of the nodes of the lattice structures to

demonstrate the first mode of the deformation of the tetrahedral and pyramidal lattice structures. The

struts in light blue colour represent undeformed struts of the tetrahedral or pyramidal lattice structure,

while the struts in orange colour represent the deformed struts of the lattice structures. While the

deformation is demonstrated for the first mode, some struts have frequency of one, while some struts

exhibit a frequency of two. This can be explained by intuitively performing nodal rotations for each

node of the struts in each lattice structure. For this, first, pick a node at the end of one strut of an

undeformed structure. By performing nodal rotation on the selected node, the struts sharing this node

are expected to deform in one mode as the nodes at the other end of the strut are considered fixed.

Afterwards, move on to the remaining nodes of the lattice structure and perform nodal rotation while

trying to maintain the deformation of each strut having one mode only. By repeating this procedure, it

is impossible to keep all the struts having only a single mode. Therefore, it is inevitable that there will

be at least one strut with two modes.

Figure 4.9: Illustration of the first mode deformation of a tetrahedral lattice structure for waves propa-
gating along strut A (along the direct basis vector e1).
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Figure 4.10: Illustration of the first mode deformation of a pyramidal lattice structure for waves propa-
gating along strut A (along the direct basis vector e1).

4.6 Wave Propagation Through a Tetrahedral Lattice Structure

with a Radius to Length Ratio of 0.1

In this section, the wave propagation behaviour of a 3D tetrahedral lattice structure with a radius to

length ratio of 0.1 is analyzed. First, the wave propagation behaviour through the symmetric lattice

structure was examined, in which all the struts of the structure have equal design variables, such as

radius and length of the lattice struts, thickness of the coating layers, and materials used for the struts

and coating layers. Afterwards, wave propagation behaviour through the non-symmetric lattice structure

was analyzed, in which one or more struts of the structure had modified design variables. The dispersion

curves were plotted for the frequencies of wave propagation for the corresponding wave vectors propagat-

ing in the direction of the reciprocal basis vector e∗1 (wave vector with a varying k1 component, while the

k2 and k3 components are zero), and another dispersion curves were plotted for the waves propagating

in the direction of the reciprocal basis vector e∗2 (wave vector with a varying k2 component, while the

k1 and k3 components are zero). Analysis of the non-symmetric lattice was performed to measure the

symmetric and asymmetric dispersion relation behaviours in the non-symmetric lattice structures. Also,

analysis of the different combinations of modified struts were performed to measure the changes in the

resulting dispersion curves. Moreover, analysis of the non-symmetric lattice was performed whereby the

total number of modified struts of the lattice structure were increased gradually, in order to identify the

impact of such changes on the band structures of the dispersion curves. The frequencies of the resulting

dispersion curves were normalized, to make the location and the changes in the band gaps easier to

comprehend.

4.6.1 Initial Symmetric Lattice Structure

Dispersion curves of the initial symmetric tetrahedral lattice structure with a radius to length ratio of

0.1 are illustrated in Figure 4.11. All the struts of the unit cell share the same design variables defined

previously in Table 4.2. Dispersion curves are plotted for waves propagating in two different directions.

The dispersion curves for waves propagating along e∗1 are plotted with blue dotted lines, while the

dispersion curves for waves propagating along e∗2 are plotted with red solid lines. The dispersion curves
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are plotted for first 14 dispersion branches, in which the number of the displayed dispersion branches

are predefined to present the band gap phenomena in the resulting dispersion curves.
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Figure 4.11: Dispersion curve of a symmetric tetrahedral lattice with a r:l ratio of 0.1 for waves propa-
gating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines).

First, as the definition of the dispersion curves illustrates, the plot provides information on how waves

propagate at different frequencies in different phase velocities and group velocities. The phase velocity

of a point can be obtained by connecting a straight line between the origin and the point of interest,

then find the slope of the straight line. On the other hand, the group velocity of the point can be

obtained by forming a line tangent to the point on the curve, and then taking the slope of the tangent

line. For example, for the first dispersion branch, phase velocities and group velocities of each waves

were measured and are plotted below to demonstrate how waves propagate at different speeds as the

wave numbers of wave vectors are gradually increased (or as the wave length of the wave vectors are

gradually reduced).
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Figure 4.12: Phase velocity (left) and group velocity (right) of the first dispersion branch for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines).
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As the plots illustrate, with the increasing wave number of the wave vectors (i.e. decreasing wave length),

the phase velocity of the corresponding wave numbers are gradually decreased from 4.721 km/s to 0.0184

km/s. On the other hand, the group velocity of the first dispersion branch gradually decreases from a

positive 4.721 km/s, reaching zero velocity at a normalised wave number of 0.5. However, beyond this

point, the group velocity goes into the negative region, while the magnitude of the velocity begins to

increase. This change from a positive to a negative region implies a change in the direction of the group

velocity relative to the phase velocity. When the group velocity is in a positive region, the group velocity

is moving in the same direction as the phase velocity. However, when the group velocity is in a negative

region, the group velocity is moving in the opposite direction to the phase velocity.
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Figure 4.13: Phase velocity plot of the first 14 dispersion branches (left), and a close look of the plot at
small wave numbers (right).

The phase velocities for all 14 dispersion branches are plotted in Figure 4.13. The left plot shows the

change in phase velocity over all the ranges of wave numbers, while the right plot shows the change in

phase velocity over the ranges of the normalised wave numbers from 0 to 0.25. Compared to the first

four dispersion branches, in which the waves with small wave numbers propagate in the low frequency

range, the remaining dispersion branches propagate at much higher frequencies for the same correspond-

ing wave numbers. Therefore, the 5th and higher dispersion branches show the phase velocities decaying

exponentially as the wave numbers increase.

The second significant information that the dispersion curves provide is information on the band gap

phenomenon and its location. A band gap appears between the 13th and 14th dispersion branches at

the frequency range of 2424-2957 rad/s, in which contains no waves propagating within this frequency

range. For the initial symmetric tetrahedral lattice structure, the dispersion relations of the waves prop-

agating in the direction of the reciprocal basis vector e∗1 are equal to the dispersion relations of the waves

propagating in the direction of the reciprocal basis vector e∗2, thus demonstrating symmetric behaviours.

Hence, the dispersion curves and the band gaps overlap with each other.
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4.6.2 Impact of Changing the Design Variables E and ρ for All the Struts of

the Lattice Structure

As was well described in Section 4.2, the lattice structure can have a different Young’s modulus or

density when the lattice structure is made of different materials or if the radius of the polymer substrate

or the thickness of the coating layers are changed. In this section, analysis was performed in order to

understand the impact on the resulting dispersion curves when the Young’s modulus or the density is

changed for all the struts of the lattice structure. The dispersion curves of the modified symmetric

tetrahedral lattice structure with the Young’s modulus multiplied by 10 for all the struts are illustrated

in Figure 4.14, using the method described in section 4.2. The dispersion curves for waves propagating

along e∗1 were plotted with blue dotted lines, while the dispersion curves for waves propagating along e∗2

were plotted with red solid lines. The dispersion curves were plotted for the first 14 dispersion branches.
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Figure 4.14: Dispersion curve of a symmetric tetrahedral lattice with a r:l ratio of 0.1 for waves prop-
agating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines), which all the
struts are modified to have their Young’s modulus multiplied by 10.

As the figure illustrates, the dispersion relations of the waves propagating in the direction of the reciprocal

basis vector e∗1 is equal to the dispersion relations of the waves propagating in the direction of the

reciprocal basis vector e∗2, thus demonstrating symmetric behaviours. Compared to the dispersion curves

of the initial symmetric tetrahedral lattice structure illustrated in Figure 4.11, the dispersion curves of

the modified symmetric lattice structure in Figure 4.14 show an exactly equal band structure, but the

waves propagate at much higher frequency ranges. For example, just as the band gap is located in the

initial symmetric lattice structure, the band gap for the modified symmetric lattice structure appears

between the 13th and 14th dispersion branches, but at the frequency range between 7665 and 9350

rad/s, whereby the frequency range is much higher compared to the location of the band gap of the

initial symmetric lattice structure between 2424 and 2957 rad/s. This can be explained by revisiting the
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expression for the mass matrix and stiffness matrix derived in the previous chapter.

mij =

L∫
0

[Aρ(aiaj + bibj + cicj) + Iyρeiej + Izρfifj + (Iy + Iz)ρdidj ] dx (4.3)

kij =

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2G(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx (4.4)

where mij is the mass matrix of an individual strut in a global coordinate system and kij is the stiffness

matrix of an individual strut in a global coordinate system. If the radius and length of the struts remain

constant, the density ρ becomes the only variable in the equation of the mass matrix. Therefore, when

the radius and length of the strut are fixed, the mass matrix of a strut can be re-expressed as

mij = ρ

L∫
0

[A(aiaj + bibj + cicj) + Iyeiej + Izfifj + (Iy + Iz)didj ] dx = ρm′ij (4.5)

where

m′ij =

L∫
0

[A(aiaj + bibj + cicj) + Iyeiej + Izfifj + (Iy + Iz)didj ] dx (4.6)

In the stiffness matrix equation, the design variables λ, G, and E are involved. However, as the shear

modulus and Young’s modulus are related,

G =
E

2(1 + ν)
(4.7)

and since Lamé’s first parameter is related with the shear modulus and Young’s modulus:

λ =
G(E − 2G)

3G− E)
(4.8)

where λ and G can be expressed in terms of E, and the stiffness matrix equation can be re-expressed as

follows:

kij = E

L∫
0

[(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + (Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ ((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + (Iz + Iy)(d′id

′
j)]dx

= Ek′ij (4.9)

The collection of mass and stiffness matrices of the individual struts (A,B,C,D,E, F ) to form the mass

and stiffness matrices of the entire structure in the global coordinate system (Mstruc, Kstruc) can be
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expressed as

Mstruc = (mA +mB +mC +mD +mE +mF ) = ρm′A + ρm′B + ρm′C + ρm′D + ρm′E + ρm′F (4.10)

Kstruc = (kA + kB + kC + kD + kE + kF ) = Ek′A + Ek′B + Ek′C + Ek′D + Ek′E + Ek′F (4.11)

For a symmetric lattice structure, an equal value of the Young’s modulus or the density is applied for

each individual strut. Since the remaining terms of the mass matrix and stiffness matrix equations

remain constant for all the struts, and are independent from the change in ρ and E, the global mass and

stiffness matrices of the entire structure can be expressed as

Mstruc = ρM ′struc (4.12)

where,

M ′struc = m′A +m′B +m′C +m′D +m′E +m′F (4.13)

and

Kstruc = EK ′struc (4.14)

where,

K ′struc = k′A + k′B + k′C + k′D + k′E + k′F (4.15)

This relationship can be extended to the reduced global mass and stiffness matrices.

M̃struc = ρM̃ ′struc (4.16)

K̃struc = EK̃ ′struc (4.17)

Applying the above relations, the eigenvalue problem for the initial symmetric lattice structure can be

expressed as

E1K̃ ′1φ = ω2
1ρ1M̃

′
1φ (4.18)

while, the eigenvalue problem for the modified symmetric lattice structure can be expressed as

E2K̃ ′2φ = ω2
2ρ2M̃

′
2φ (4.19)

Knowing that the mass and stiffness matrices, K̃ ′ and M̃ ′ , for both the initial symmetric lattice structure

and the modified symmetric lattice structure are equal only when the Young’s modulus or the density

is changed for all the struts,

K̃ ′1 = K̃ ′2 = K̃ ′ (4.20)

M̃ ′1 = M̃ ′2 = M̃ ′ (4.21)

then, the relationship between the two eigenvalue problems can be equated as follows:

E1K̃ ′φ = ω2
1ρ1M̃

′φ (4.22)

E2K̃ ′φ = ω2
2ρ2M̃

′φ (4.23)
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Hence, the relationship between the initial and the modified symmetric lattice structures, when the

Young’s modulus and/or the density of all the struts are modified, can be expressed by a scalar factor

of the ratio between the Young’s modulus and the density.√
E

ρ
(4.24)

This relationship can be verified through comparison of the locations of the band gaps between the initial

and modified symmetric lattice structures in the above example, in which the Young’s modulus of the

modified symmetric lattice structure is multiplied by a factor of 10 while the density is unchanged.

ρ2 = ρ1 (4.25)

E2 = 10E1 (4.26)

It is expected that the dispersion curve of the modified symmetric lattice structure will be scaled by a

factor of
√

10, at which eigenfrequencies of all wave numbers of the dispersion curves are multiplied by

the same factor of
√

10, compared to the dispersion curve of the initial symmetric lattice structure. When

the initial lattice structure has a band gap in the frequency range of 2424-2957 rad/s, the frequency range

at which the band gap of the modified symmetric lattice will appear can be calculated by multiplying

by this factor at each the lower bound and upper bound of the frequency range at which the band gap

appeared in the initial lattice structure.

Lower bound in second dispersion curve = 2424×
√

10

1
= 7665

Upper bound in second dispersion curve = 2957×
√

10

1
= 9350

(4.27)

Through the above relation, the frequency range at which the band gap will appear for the modified

symmetric lattice structure is expected to be at 7665-9350 rad/s, which matches with the result from

the finite element analysis. Therefore, in symmetric lattice structures, changing the value of the Young’s

modulus and/or the density simply scales the dispersion curve by factor of
√

E
ρ , This relation can be

applied to any 2D lattice structure as well as to any 3D lattice structure with any design variables as

long as the lattice structures are symmetric and only the Young’s modulus and the density are changed.

The above relation plays an important role when tailoring the band gap location of the dispersion

curves. Based on the expression, increasing the Young’s modulus or reducing the density using the

method described in Section 4.2 provides dispersion curves with the same band structure, but with

waves propagating at a higher frequency range, which the frequency ranges and the band gap location is

multiplied by a factor of
√

E
ρ . On the other hand, reducing Young’s modulus or increasing the density

provides dispersion curves with the same band structure, but with waves propagating at reduced fre-

quency ranges. Therefore, when a band gap is present in the dispersion curves of the lattice structure,

but is desired to be placed at a different frequency range, Young’s modulus can be changed by main-

taining the radius of the polymer substrate and the overall strut radius, while only modifying the ratio

of the thickness of the two coating layers to achieve such a requirement. However, while this relation

may seem strong and an easy method to tailor the band gap location, it holds one factor that may be
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considered a weakness. As this relation simply scales the entire dispersion curve by the factor derived

above, it also scales the frequency range at which the band gap occurs. Therefore, not only does this

relation shift the location of the band gap, but it also increases or decreases the size of the band gap,

which may be an unintentional consequence.

4.6.3 Impact of Changing the Design Variables E and ρ for a Non-Symmetric

Lattice Structure

Strut A Modified

Next, the wave propagation behaviour in non-symmetric lattice structures was studied to analyze the

differences in dispersion relations compared to in the symmetric lattice structures. The non-symmetric

lattice structures were created by modifying the design variables of one or more, but not all the struts of

the unit lattice cell. First, strut A, which was oriented along the direct basis vector e1, was modified to

have its Young’s modulus multiplied by 10, while the other five struts remained unchanged. As Figure

4.15 illustrates, the dispersion curves of the wave propagating along e∗1 (blue dotted lines in the left

plot) and the dispersion curves of the wave propagating along e∗2 (red dotted lines in the right plot) were

plotted and compared with the dispersion curves of the initial symmetric lattice structure (black solid

lines in both plots).
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Figure 4.15: Dispersion curves of the non-symmetric tetrahedral lattice structure for waves propagating
along e∗1 (blue dotted lines in the left plot) and for waves propagating along e∗2 (red dotted lines in the
right plot), with strut A modified to have increased Young’s modulus by 10 times, compared with the
dispersion curves of the initial symmetric lattice structure shown in Figure 4.11 (black solid lines in both
plots)

The dispersion curves for waves propagating along e∗1 were plotted with blue dotted lines, and the disper-

sion curves for waves propagating along e∗2 were plotted in red dotted lines, while the dispersion curves of

the initial symmetric lattice analyzed in Figure 4.11 were plotted with black solid lines. The dispersion

curves are plotted for the first 14 dispersion branches. Starting with the dispersion curves of the waves

propagating along e∗1, it can be seen that as one of the struts was modified to have a higher stiffness, the

waves propagate at much higher frequency ranges. In the initial symmetric lattice structure, the first

14 dispersion branches show waves propagating within the frequency ranges of 39.74-3224 rad/s. How-
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ever, for the non-symmetric lattice structure, the first 14 dispersion branches show waves propagating

up to the frequency range of 4858 rad/s. Also, waves of each individual dispersion branch of the non-

symmetric lattice structure propagate at a higher frequency range compared to the corresponding waves

of each of the dispersion branches of the initial symmetric lattice structure, implying the waves of the

non-symmetric lattice structures propagate at a higher phase velocity than the waves of the initial sym-

metric lattice structures. The dispersion curves of the waves propagating along e∗2 of the non-symmetric

lattice show a similar phenomenon. As the first 14 dispersion branches show waves propagating up

to the frequency range of 4255 rad/s, the waves propagate at much higher frequency than the waves

propagating through the initial symmetric lattice structure. Also, for each dispersion branch, waves in

non-symmetric lattice structure propagate at a higher frequency than the waves in the corresponding

dispersion branches in symmetric lattice structure, showing that the waves in the non-symmetric lattice

structure propagate with a higher phase velocity than the waves in the symmetric lattice structure. In

terms of the band gap phenomenon, there is no complete band gap for waves propagating along e∗1, but

there exists one band gap for waves propagating along e∗2 in the frequency range of 2483-2597 rad/s.

The first significant difference between the dispersion relations of the waves propagating in the above

non-symmetric lattice structure and the initial symmetric lattice structure comes from the difference in

the band structure. In the previous section, when the initial symmetric lattice structure was modified

so that all the struts of the lattice structures would have an increased Young’s modulus, it was observed

that the band structures remained the same and the dispersion curves were simply scaled by a certain

factor. However, when only one strut was modified to have an increased Young’s modulus, the scalar

relation did not apply, thereby leading to different band structures in the dispersion curves. This can

be explained by re-visiting the energy equations involving the mass and stiffness matrices. While a

symmetric lattice structure defines that the change in design variables are applied to all the struts in

the lattice structure, a non-symmetric lattice structure implies that only one or a few struts (but not

all) of the lattice structure have their design variables changed. Thus at first, when Young’s modulus or

the density is changed in a symmetric lattice structure, a change in the design variable is also applied

to every strut of the lattice structure.

M1 = (m1A+m1B +m1C +m1D+m1E +m1F ) = ρm′1A+ρm′1B +ρm′1C +ρm′1D+ρm′1E +ρm′1F (4.28)

K1 = (k1A + k1B + k1C + k1D + k1E + k1F ) = Ek′1A + Ek′1B + Ek′1C + Ek′1D + Ek′1E + Ek′1F (4.29)

As the terms involving the shape functions, m′ and k′, remain constant for all the struts, and as the

terms are independent from the change in ρ, the global mass matrix of the symmetric structure can be

expressed as

M1 = ρM ′1 (4.30)

K1 = EK ′1 (4.31)

where,

M ′1 = m′1A +m′1B +m′1C +m′1D +m′1E +m′1F (4.32)

K ′1 = k′1A + k′1B + k′1C + k′1D + k′1E + k′1F (4.33)
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However, when a change in the Young’s modulus or the density is only applied to a single strut, strut

A, this turns the lattice into a non-symmetric lattice structure,

M2 = (m2A+m2B+m2C+m2D+m2E+m2F ) = 10ρm′2A+ρm′2B+ρm′2C+ρm′2D+ρm′2E+ρm′2F (4.34)

K2 = (k2A + k2B + k2C + k2D + k2E + k2F ) = 10Ek′2A +Ek′2B +Ek′2C +Ek′2D +Ek′2E +Ek′2F (4.35)

reducing the equation, it becomes

M2 = ρM ′2 = ρ(10m′2A +m′2B +m′2C +m′2D +m′2E +m′2F ) (4.36)

K2 = EK ′2 = E(10k′2A + k′2B + k′2C + k′2D + k′2E + k′2F ) (4.37)

where,

M ′2 = (10m′2A +m′2B +m′2C +m′2D +m′2E +m′2F ) (4.38)

K ′2 = (10k′2A + k′2B + k′2C + k′2D + k′2E + k′2F ) (4.39)

Hence, M ′1 and K ′1 are not equal to M ′2 and K ′2, and these mass and stiffness matrices of the two dif-

ferent lattice structures cannot be expressed by a scalar (multiplicative by the factor of ratio of
√

E
ρ )

relationship anymore. Therefore, when applying different values of design variables, such as Young’s

modulus or density on the non-symmetric lattice structure, a different band structure is expected in the

resulting dispersion curves compared to the band structure of the symmetric lattice structure.

The second significant observation is the difference in the dispersion relations between waves propa-

gating in different directions. As Figure 4.16 illustrates, the dispersion curves of waves propagating

along e∗1 and the dispersion curves of waves propagating along e∗2 are different, and show asymmetric

dispersion relations. The dispersion curves for waves propagating along e∗1 were plotted with blue dotted

lines, and the dispersion curves for waves propagating along e∗2 were plotted with red solid lines.
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Figure 4.16: Collapsed dispersion curves of a non-symmetric tetrahedral lattice structure for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines), with strut
A modified to have increased Young’s modulus by 10 times.
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As described in the previous chapter, Bloch theorem can be applied to describe displacements of all the

nodes of the unit lattice cell, to be expressed by the displacements of the internal and the basis nodes.

To achieve this, a transformation matrix was created. The transformation matrix is in the form of

T =

[
I

τ

]
(4.40)

The top part of the transformation matrix is related to the internal and the basis nodes, and is simply

an n×n identity matrix, where n is the total number of internal and basis nodes. On the other hand, the

bottom part of the transformation matrix (τ) is related to the boundary nodes, which is in the following

form:

τ =



0 0 0 · · · 0 0 0 ek1 0 0 0 0 0

0 0 0 · · · 0 0 0 0 ek1 0 0 0 0

0 0 0 · · · 0 0 0 0 0 ek1 0 0 0

0 0 0 · · · 0 0 0 0 0 0 ek1 0 0

0 0 0 · · · 0 0 0 0 0 0 0 ek1 0

0 0 0 · · · 0 0 0 0 0 0 0 0 ek1

0 0 0 · · · 0 0 0 ek2 0 0 0 0 0

0 0 0 · · · 0 0 0 0 ek2 0 0 0 0

0 0 0 · · · 0 0 0 0 0 ek2 0 0 0

0 0 0 · · · 0 0 0 0 0 0 ek2 0 0

0 0 0 · · · 0 0 0 0 0 0 0 ek2 0

0 0 0 · · · 0 0 0 0 0 0 0 0 ek2

0 0 0 · · · 0 0 0 ek3 0 0 0 0 0

0 0 0 · · · 0 0 0 0 ek3 0 0 0 0

0 0 0 · · · 0 0 0 0 0 ek3 0 0 0

0 0 0 · · · 0 0 0 0 0 0 ek3 0 0

0 0 0 · · · 0 0 0 0 0 0 0 ek3 0

0 0 0 · · · 0 0 0 0 0 0 0 0 ek3



(4.41)

From the above matrix, k1, k2, and k3 are three components (wave numbers) of a wave vector. For

waves propagating along e∗1, k1 varies, while k2 and k3 are fixed as zero; whereas, for waves propagating

along e∗2, k2 varies, while k1 and k3 are fixed as zero. Therefore, the transformation matrix for waves

propagating in the e∗1 direction and e∗2 direction are different. Then the transformation matrices are

multiplied to the global mass and stiffness matrices to create reduced global mass and stiffness matrices,

where TH is the conjugate transpose of the transformation matrix,

THMT = M̃ (4.42)

THKT = K̃ (4.43)

since the transformation matrices for waves propagating along e∗1 are different to those from e∗2, there

exists two different sets of reduced mass and stiffness matrices. However, as illustrated in Figures 4.11

and 4.14, when the eigenvalue problems are solved for the symmetric lattice structures with the different

sets of reduced mass and stiffness matrices, symmetric eigen solutions can be obtained for waves propa-

gating in the e∗1 and e∗2 directions. On the other hand, as illustrated in Figure 4.16, when the eigenvalue
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problems are solved for a non-symmetric lattice structure with strut A modified to have higher stiffness,

asymmetric solutions are obtained for waves propagating in the e∗1 and e∗2 directions. This difference in

symmetric/asymmetric dispersion curves is related to the geometrical symmetry of the lattice structure

and how the modification of the design variables impacts on the symmetry with respect to each direction

of wave propagation. First, recall the orientation of the tetrahedral unit lattice cell in Cartesian coor-

dinates illustrated in Figure 4.17 (left); with a certain rotation of the unit cell, as illustrated in Figure

4.17 (right), the tetrahedral unit cell can be viewed as symmetric with respect to the plane created by

the y-axis and direct basis vector e3 (the red line in Figure 4.15 b), in which the right region involving

e∗1 is symmetric to the left region involving e∗2.

Figure 4.17: Illustration of the symmetric view on a tetrahedral unit cell with respect to e∗1 and e∗2.

Next, consider two waves, with one wave propagating along e∗1, and another wave propagating along

e∗2. For symmetric lattice structures, in which all the struts of the lattice structure are modified equally

and are geometrically symmetric, the dispersion relation of the wave propagating along e∗1 is symmetric

to the dispersion relation of the wave propagating along e∗2. On the other hand, for a non-symmetric

lattice structure, in which only strut A is modified, due to the modification on one strut, the lattice unit

cell is no longer geometrically symmetric with respect to each direction of wave propagation. Therefore,

the dispersion relation of the wave propagating along e∗1 is asymmetric to the dispersion relation of the

wave propagating along e∗2, also with different dispersion curves and band structures. As emphasized

at the beginning of this chapter, it is important to make clear understanding of the differences between

symmetric/non-symmetric lattice structures and symmetric/asymmetric dispersion relations. A sym-

metric lattice structure refers to a structure, in which all the struts have equal design variables, while

a non-symmetric lattice structure refers to a structure, in which one or more but not all of struts are

modified to have different design variables. On the other hand, the dispersion relation is symmetric when

the resulting dispersion curves of the wave propagating in one direction are identical to the dispersion

curves of a wave propagating in a different direction, and the dispersion relation is asymmetric when the

resulting dispersion curves of a wave propagating in one direction is different from the dispersion curves

of a wave propagating in a different direction. To carry out deeper analysis and better characterization

of the asymmetric dispersion relations of non-symmetric lattice structures, three cases are considered
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here: a) a non-symmetric lattice structure, where modifications applied with respect to the e∗1 direction,

are applied on the struts located geometrically symmetric with respect to the e∗2 direction instead; b) a

non-symmetric lattice structure where modifications to the lattice structure are applied on struts located

geometrically symmetric with respect to both directions of the wave propagation; c) a non-symmetric

lattice structure where modifications of the design variables are concentrated on one side of the lattice

structure, and the location of the modifications applied are geometrically non-symmetric with respect

to each direction of the wave propagation.

Non-Symmetric Lattice Structure, Where the Modifications Applied with respect to the

e∗1 Direction, is Applied Equally with respect to the e∗2 Direction Instead

The first case involved observation of the impact of modifying different struts, where the previous

modification was applied with respect to the e∗1 direction of the wave propagation, but is now applied

at the strut placed at the geometrically symmetric location with respect to the e∗2 direction of the wave

propagation. In other words, in the previous case, strut A was modified and the waves were propagating

along e∗1 and e∗2. In the current section, the focus was made to analyze and compare the dispersion curve

when strut B was modified instead, and to measure the dispersion relations of the waves propagating

along e∗1 and e∗2 directions, as illustrated in Figure 4.18.

Figure 4.18: Illustration of strut A of tetrahedral unit cell modified (left) and strut B of tetrahedral unit
cell modified (right). The modified strut is in orange colour.

The dispersion curves of the non-symmetric lattice structure, in which strut B was modified are plotted

in Figure 4.19 below. As discussed in the previous section, since the modification applied to the lattice

structure is geometrically non-symmetric with respect to each direction of the wave propagation, the

dispersion relations between the waves propagating along e∗1 and e∗2 are asymmetric. The dispersion

curves for waves propagating along e∗1 was plotted with blue dotted lines, while the dispersion curves for

waves propagating along e∗2 was plotted with red solid lines.
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Figure 4.19: Collapsed dispersion curves of a non-symmetric tetrahedral lattice structure for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines), with strut
A modified to have increased Young’s modulus by 10 times.

When the above dispersion curves are compared with the dispersion curves of waves propagating through

the non-symmetric lattice structure when strut A is modified, as illustrated in Figure 4.16, it can be

seen that the band structures of the dispersion curves are identical. However, as Figure 4.20 illustrates,

the dispersion curves of waves propagating along e∗2 of the non-symmetric lattice structure with strut

B modified, are symmetric with the dispersion curves of the waves propagating along e∗1 of the non-

symmetric lattice structure with strut A modified. Likewise, the dispersion curves of waves propagating

along e∗1 of the non-symmetric lattice structure with strut B modified, are symmetric with the dispersion

curves of the waves propagating along e∗2 of the non-symmetric lattice structure with strut A modified.

The dispersion curves from Figure 4.16 are plotted with blue dotted lines, and the current dispersion

curves are plotted with red solid lines.
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Figure 4.20: Comparisons of the dispersion curves for waves propagating along e∗1 when strut A is
modified (blue dotted lines on the left) and for waves propagating along e∗2 when strut B is modified
(red solid lines on the left) and the dispersion curves for waves propagating along e∗2 when strut A is
modified (blue dotted lines on the right) and for waves propagating along e∗1 when strut B is modified
(red solid lines on the right).
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Therefore, when a new modification is applied at the geometrically symmetrical location compared to

the location of the previous modification with respect to each direction of wave propagation, the previous

dispersion curves for waves propagating along e∗1 are symmetric to the new dispersion curves for waves

propagating along e∗2. Similarly, the previous dispersion curves for waves propagating along e∗2 are

symmetric to the new dispersion curves for waves propagating along e∗1. This relation is applied to a

non-symmetric lattice structure when different modifications are applied. For instance, dispersion curves

of waves propagating along e∗1 of the lattice structure with strut F modified are equivalent to dispersion

curves of the waves propagating along e∗2 of the lattice structure with strut E modified. Hence, this

relation allows swapping of the dispersion curves between waves propagating in different directions.

Non-Symmetric Lattice Structure, where Modifications on the Lattice Structure are Geo-

metrically Symmetric with respect to Both Directions of Wave Propagation

The second case involved analyzing the impact of applying modifications on struts in which the changes

were geometrically symmetric with respect to both waves propagating along the e∗1 and e∗2 directions

equally at the same time. Hence, this section focuses on the analysis and comparisons of the dispersion

curve when both strut A and strut B are modified to have an increased value of Young’s modulus, as

illustrated in Figure 4.21.

Figure 4.21: Illustration of strut A and strut B of tetrahedral unit cell modified. Modified struts are in
orange color.

The dispersion curves of the non-symmetric lattice structure in which struts A and B are both modified,

are plotted in Figure 4.22 below. The dispersion curves for waves propagating along e∗1 were plotted

with blue dotted lines, while the dispersion curves for waves propagating along e∗2 were plotted with red

solid lines. The dispersion curves are plotted for the first 14 dispersion branches.
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Figure 4.22: Collapsed dispersion curves of a non-symmetric tetrahedral lattice structure for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines), with struts
A and B modified to have increased Young’s modulus by 10 times.

One distinct change compared to the previous experiment is the symmetric dispersion relations between

waves propagating in the e∗1 and e∗2 directions. In the previous experiment case, in which only either strut

A or strut B was modified, the dispersion curves of the waves propagating in two different directions were

asymmetric. The asymmetric solutions were a result of the modifications made on the lattice structure

not being geometrically symmetric with respect to each direction of wave propagation. However, when

both strut A and B were modified, the modification applied on the lattice structure was symmetric with

respect to both directions of wave propagation, resulting in the symmetric dispersion relations between

waves propagating along e∗1 and e∗2. This relationship could be extended to other non-symmetric lattice

structures with different modifications, in which the modifications applied are geometrically symmetric

with respect to waves propagating in different directions. For instance, modifying struts A, B, and C all

together would result in symmetric dispersion relations as the modifications applied are geometrically

symmetric with respect to both directions of the wave propagation. It is important to note that when

struts are modified, the same changes in the design variables are applied for the modified struts.

4.6.4 Impact of Modifying Different Combinations of Struts of the Lattice

Structure

In the previous experiments on non-symmetric lattice structures, the relationship between the location

of the modifications and the symmetric/asymmetric dispersion relations were discussed. In this section,

in order to explore how various different asymmetric relations can be obtained, and to further analyze

the significance of having asymmetric dispersion relations for waves propagating in different directions,

the thesis focuses on modifications skewed to one location, in which case the modifications applied on

the struts would impact one side of the unit lattice structure, while affecting the other side of the unit

lattice structure as little as possible. In this section and onward, the modifications are applied to impact

node 1, the boundary node located at the end of strut A, (along the direct basis vector e1) as much as

possible, while affecting node 2, the boundary node located at the end of strut B, (along the direct basis
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vector e2) as little as possible. This skewed modification was applied to ensure that the dispersion rela-

tions for waves propagating along the e∗1 and e∗2 directions are asymmetric. In this section, the impact of

applying a modification on different combinations of struts are tested, and the resultant changes in the

dispersion curves are analyzed. First, two struts, strut A and strut D, of the tetrahedral unit cell were

modified to have Young’s modulus increased by 10 times. Two dispersion curves for waves propagating

along e∗1 and e∗2, are illustrated in Figure 4.23.
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Figure 4.23: Collapsed dispersion curves of the non-symmetric tetrahedral lattice structure for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines), with the
struts A and D modified to have increased Young’s modulus by 10 times.

The dispersion curves for waves propagating along e∗1 were plotted with blue dotted lines, while the

dispersion curves for waves propagating along e∗2 were plotted with red solid lines. The dispersion

curves were plotted for the first 14 dispersion branches. As discussed in previous sections, as the mod-

ifications applied on the struts are not geometrically symmetric with respect to each direction of wave

propagation, the resulting dispersion relations for each directions are asymmetric. Also, compared to

the dispersion curves of the initial symmetric lattice structure in Figure 4.11, the waves of the first

14 dispersion branches propagate at a higher frequency ranges. When the dispersion curves of waves

propagating along e∗1 and e∗2 are compared, it can be seen that the dispersion branches of waves propa-

gating along e∗1 are propagating at a higher frequency range than the corresponding dispersion branches

of waves propagating along e∗2. This implies that waves along e∗1 are propagating with higher phase

velocity, when comparing each dispersion branches. Figure 4.24 illustrates the change in phase velocity

of each dispersion branch, as the wave number is increased. The plot focuses on the region of small wave

numbers for easier comprehension of the differences in phase velocity between each of the dispersion

curves. The phase velocity of the dispersion branches of the waves propagating along e∗1 was plotted

with blue dotted lines, while the phase velocity of dispersion branches of the waves propagating along

e∗2 was plotted with red solid lines. As illustrated in Figure 4.23, it can be observed that the significant

differences in the frequency ranges in which the waves propagate occur at the dispersion branches of 1

to 4 and 11 to 13, and for those dispersion branches, Figure 4.24 illustrates that the phase velocity of

the waves propagating along e∗1 are higher than the phase velocity of the waves propagating along e∗2.
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Figure 4.24: Phase velocity plot of the first 14 dispersion branches, focused on the small wave numbers.

Next, the dispersion curves were analyzed for different combinations of modified struts, while maintain-

ing the total number of modified struts to be unchanged. Here, two struts, strut A and strut F, of the

tetrahedral unit cell were modified to have Young’s modulus increased by 10 times. As the purpose of the

current section of the thesis is to observe the changes in dispersion curves when different combinations of

struts are modified, the dispersion curves for waves propagating along e∗1 of the current non-symmetric

lattice structure, in which strut A and F are modified, were compared with the dispersion curves for

waves propagating along e∗1 of the previous non-symmetric lattice structure, in which strut A and D

were modified (Figure 4.25). The dispersion curves of the current lattice structure were plotted with

blue dotted lines, while the dispersion curves of the previous lattice structure were plotted with red solid

lines.
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Figure 4.25: Comparisons of the dispersion curves for waves propagating along e∗1 when the struts A
and D were modified (blue dotted lines) and for waves propagating along e∗1 when the struts A and F
were modified (red solid lines).
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Similarly, the dispersion curves for waves propagating along e∗2 of the current non-symmetric lattice

structure, in which struts A and F were modified, was compared with the dispersion curves for waves

propagating along e∗2 of the previous non-symmetric lattice structure, in which struts A and D were

modified (Figure 4.26). The dispersion curves of the current lattice structure were plotted with blue

dotted lines, while the dispersion curves of the previous lattice structure were plotted with red solid

lines.
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Figure 4.26: Comparisons of the dispersion curves for waves propagating along e∗2 when the struts A
and D were modified (blue dotted lines) and for waves propagating along e∗2 when the struts A and F
were modified (red solid lines).

When comparing Figures 4.25 and 4.26, it can be seen that the frequency range, at which the waves

propagate, are unaffected, as for both cases waves propagate between 39.81 and 4859 rad/s. From Fig-

ure 4.23, it can be seen that the dispersion curves of waves propagating along e∗1 of the current lattice

structure have different band structure than the dispersion curves of waves propagating along e∗1 of the

previous lattice structure, but they show close resemblance to each other. There are, however, minor-

but-noticeable differences occurring at the dispersion branches of 1, 10, and 12, in which waves propagate

at different frequency ranges. Also, there exists no complete band gap for waves propagating along e∗1 for

both combinations of strut modifications. From Figure 4.24, the dispersion curves of waves propagating

along e∗2 of the current lattice structure have different band structure than the dispersion curves of waves

propagating along e∗2 of the previous lattice structure, but they show much significant differences in their

band structure. Due to the significant changes in the dispersion curves, when modifications are applied

on the different strut combinations, a complete band gap appears at the frequency range between 3751

and 4859 rad/s. The difference in magnitude of the change in band structure is related to the number

of nodes affected by the strut modifications that are connected to each boundary node of the lattice

structure, and how the changes in the nodes affect the global and reduced mass and stiffness matrices.

When the direction of the wave propagation is considered and the dispersion curves are plotted for

waves propagating along e∗1, the part of the global mass and stiffness matrices corresponding to the
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internal nodes connected to the boundary node e1 (node 1 of the tetrahedral lattice structure, which is

located at the end of strut A along the direction of the direct basis vector e1) and the boundary node

e1 itself are multiplied by a factor of ek1 , while the part of the matrices corresponding to the internal

nodes connected to the other boundary nodes and the other boundary nodes themselves are multiplied

by a factor of 1, since k2 and k3 are fixed at zero. As the wave number k1 increases, the values at

the part of the reduced mass and stiffness matrices corresponding to the internal nodes connected to

boundary node e1 and the boundary node e1 itself, would be changed as well, while the values at the

parts corresponding to the other internal nodes connected to other boundary nodes remain constant as

they are multiplied by 1. Therefore, for wave vectors propagating along the e∗1 direction, changes in the

values at the part of the global mass and stiffness matrices corresponding to the internal nodes that are

connected to the boundary node e1 would cause significant differences on the resulting eigen solution

for the same corresponding wave vectors. Knowing that the total number of internal nodes connected

to each boundary node are fixed for the same geometry of unit cell, the only factor that would cause

changes to the values at the parts of the global mass and stiffness matrices corresponding to the internal

nodes connected to the boundary node e1 is the changes in the design variables due to the modifications.

Therefore, when different combinations of modifications are considered for waves propagating along e∗1,

if the total number of internal nodes affected by the modifications, which are connected to the boundary

node e1, changes, then the differences in the dispersion curves and the band structures are likely to be

significant as there will be significant differences in the reduced mass and stiffness matrices. On the

other hand, considering that there are no changes in the number of internal nodes affected by modi-

fications and which are connected to the boundary node e1, the changes in the values at the parts of

the global mass and stiffness matrices corresponding to other internal nodes that are connected to the

other boundary nodes (the boundary nodes e2 and e3) would cause minor differences in the resulting

eigen solution for the same corresponding wave vectors, in which the minor differences occur from the

differences in the global mass and stiffness matrices.

Similarly, when the direction of the wave propagation is considered and the dispersion curves are mea-

sured for waves propagating along e∗2, the parts in the global mass and stiffness matrices corresponding

to the internal nodes connected to the boundary node e2 (node 2 of the tetrahedral lattice structure,

which is located at the end of strut B along the direction of direct basis vector e2) and the boundary node

e2 itself are multiplied by the factor of ek2 , while the parts of the matrices corresponding to the internal

nodes connected to the other boundary nodes and the other boundary nodes themselves are multiplied

by a factor of 1 (since k1 and k3 are fixed at zero). As the wave number k2 increases, the values at

the parts of the reduced mass and stiffness matrices corresponding to the internal nodes connected to

the boundary node e2 and the boundary node e2 itself would be changed as well, while the values at

the parts of the matrices corresponding to the other internal nodes connected to the other boundary

nodes remain constant as they are multiplied by 1. Therefore, for the wave vectors propagating along

the e∗2 direction, changes in the values at the parts of global mass and stiffness matrices corresponding

to the internal nodes that are connected to the boundary node e2 would cause significant differences in

the resulting eigen solution for the same corresponding wave vectors. Knowing that the total number

of internal nodes connected to each boundary node are fixed for the same geometry of unit cell, the

only factor that could cause changes in the values at the parts of the global mass and stiffness matrices

corresponding to the internal nodes connected to the boundary node e2, is the changes in the design
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variables due to the modification. Therefore, when different combinations of strut modifications are

considered for waves propagating along e∗2, if the total number of modified internal nodes connected

to the boundary node e2 changes, the differences in the dispersion curves and the band structures are

significant as there are significant differences in the reduced mass and stiffness matrices. On the other

hand, considering that there are no changes in the number of modified internal nodes connected to the

boundary node e2, changes in the values at the parts of the global mass and stiffness matrices corre-

sponding to the other internal nodes that are connected to the other boundary nodes (boundary nodes

e1 and e3) would cause minor differences on the resulting eigen solution for the same corresponding wave

vectors, in which the minor differences occur from the differences in the global mass and stiffness matrices.

In the above, when the modified struts were changed from struts A and D to struts A and F, the

total number of modified internal nodes connected to the boundary node e1 remained the same, while

the total number of modified internal nodes connected to the boundary node e2 changed. When the

dispersion curves of the waves propagating along e∗1 for each combination were compared, minor dif-

ferences could be seen in the band structure, although the band structures showed a close resemblance

to each other. On the other hand, when the dispersion curves of waves propagating along e∗2 for each

combination were compared, there were significant differences in the resulting band structures. The

above relation can be applied to other combinations of modifications, providing the same number of

struts are modified. Also, for different combinations of modifications, when the same number of struts

are modified, the frequency ranges at which the waves propagate in the dispersion curves do not change.

For all the different combinations of modifications, as long as only two struts are modified, the maximum

frequency range at which the waves propagate, at least for the first 14 dispersion branches, occurs at

4859 rad/s.

4.6.5 Impact of Increasing the Number of Struts Being Modified

In this section, the impact of increasing the number of struts being modified is analyzed. The modifica-

tions were applied to impact node 1, the boundary node located at the end of strut A, (along the direct

basis vector e1) as much as possible, while affecting node 2, the boundary node located at the end of strut

B, (along the direct basis vector e2) as little as possible. This skewed modification was applied to ensure

that the dispersion relations for the waves propagating along e∗1 and e∗2 were asymmetric. First, three

struts, namely strut A, C, and F, of the tetrahedral unit cell were modified to have Young’s modulus

increased by 10 times. As the purpose of the current section of the thesis is to observe the changes in the

dispersion curves when the number of modified struts are increased, the dispersion curves for the waves

propagating along the e∗1 directions of the current (three struts, A, C, and F, modified) non-symmetric

lattice structure are compared with the dispersion curves for the waves propagating along the e∗1 direc-

tions of the previous (two struts, A and F, modified) non-symmetric lattice structure. The dispersion

curves of the current lattice structure were plotted with blue dotted lines, while the dispersion curves of

the previous lattice structure (red solid line from Figure 4.25) were plotted with red solid lines.
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Figure 4.27: Comparisons of the dispersion curves for waves propagating along e∗1 when three struts,
namely A, C, and F, are modified (blue dotted lines) and for waves propagating along e∗1 when two
struts, namely A and F, are modified (red solid lines).

From Figure 4.27, the first significant difference is the frequency range at which the waves propagate

when the number of modified struts are increased. When two struts are modified, the waves propagate

between 39.81 and 4859 rad/s. However, when three struts are modified, the waves propagate at a

higher frequency range, with the maximum frequency of propagation occurring at 5719 rad/s. The

second significant difference is the change in dispersion curves and the band structure. There exists

no complete band gap for waves propagating along e∗1 for both cases of modification. Similarly, the

dispersion curves for waves propagating along the e∗2 directions of the current (three struts, namely

A, C, and F, modified) non-symmetric lattice structure were compared with the dispersion curves for

waves propagating along the e∗2 directions of the previous (two struts, namely A and F, modified) non-

symmetric lattice structure. The dispersion curves of the current lattice structure were plotted with

blue dotted lines, while the dispersion curves of the previous lattice structure (red solid line from Figure

4.26) were plotted with red solid lines.
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Figure 4.28: Comparisons of the dispersion curves for the waves propagating along e∗2 when three struts,
namely A, C, and F, are modified (blue dotted lines) and for waves propagating along e∗2 when two
struts, namely A and F, are modified (red solid lines).

Similar to the phenomenon that occurs for the dispersion curves of waves propagating along e∗1, from

Figure 4.28, the first significant difference is the frequency range at which the waves propagate when the

number of modified struts are increased. When two struts are modified, the waves propagate between

39.81 and 4859 rad/s. However, when three struts are modified, the waves propagate at a higher

frequency range, with the maximum frequency of propagation occurring at 5715 rad/s. The second

significant difference is the change in dispersion curves and the band structure. There exist a complete

band gap at the frequency range of 3751-4859 rad/s, when two struts are modified; however, when three

struts are modified, a complete band gap occurs at the frequency range of 3279-4859 rad/s. The changes

in the dispersion curves and the ranges at which waves propagate occurs due to the change in the global

stiffness matrix. When an additional strut is modified to have Young’s modulus multiplied by 10, the

values of the parts of the global stiffness matrix corresponding to the nodes related to the modified struts

are all increased by a factor of 10 times too. Increasing the number of modified struts, increases the

parts of the global stiffness matrix at which the values are increased due to the modification. The same

phenomenon occurs when the number of modified struts are increased to four struts, such as struts A,

C, D, and F. Figure 4.29 illustrates the changes in the dispersion curves when the number of modified

struts are increased from three struts to four struts. The top figure compares the dispersion curves

for waves propagating along the e∗1 direction, while the bottom figure compares the dispersion curves

for waves propagating along the e∗2 direction. The dispersion curves of the lattice structure with four

modified struts are plotted with blue dotted lines, while the dispersion curves of the previous lattice

structure with three modified struts are plotted with red straight lines in this figure. Similar to the

phenomenon that occurs when the number of modified struts are increased from two to three, a different
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band structure of the dispersion curves are obtained, together with increased frequency ranges at which

the waves propagate. For waves propagating along e∗1, when three struts are modified, the maximum

frequency at which waves propagate occurs at 5719 rad/s. However, when four struts are modified, the

maximum frequency at which the waves propagate occurs at 6708 rad/s. Similarly, for waves propagating

along e∗2, when three struts are modified, the maximum frequency at which the waves propagate occurs

at 5715 rad/s. However, when four struts are modified, the maximum frequency at which the waves

propagate occurs at 6487 rad/s. There exists no complete band gap for waves propagating along e∗1 for

both cases of modification. For waves propagating along e∗2, there exists a complete band gap at the

frequency range of 3279 - 4859 rad/s, when three struts are modified. However, when four struts are

modified, there exists no band gap.
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Figure 4.29: Comparisons of the dispersion curves for waves propagating along e∗1 when four, namely
struts A, C, D, and F, were modified (blue dotted lines, top) and for waves propagating along e∗1 when
three struts, namely A, C, and F, were modified (red solid lines, top), and another comparison of the
dispersion curves for waves propagating along e∗2 when four struts, namely A, C, D, and F, were modified
(blue dotted lines, bottom) and for waves propagating along e∗2 when three struts, namely A, C, and F,
were modified (red solid lines, bottom).
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A Further increase in the number of struts modified leads to the same phenomenon in the dispersion

curves. A different band structure is obtained, where the waves of each dispersion branch are propagating

at higher frequency ranges. When the number of modified struts is gradually increased, starting from

one strut being modified, the frequency range at which the waves propagate gradually increase toward

the frequency range at which waves propagate in a symmetric lattice structure (i.e. when all the struts

are modified). As the band structure changes as the number of modified struts increases, a new band

gap may be introduced in the new dispersion curves, or no band gap may exist for the new dispersion

curves. Combining these two behaviours, all band gaps, which are present for non-symmetric lattice

structures, always occur within the frequency ranges of the initial symmetric lattice structure (Figure

4.11) and the frequency ranges of the modified symmetric lattice structure (Figure 4.14).

4.6.6 Intuitive and Physical Understanding of the Dispersion Relations of a

Non-Symmetric Lattice Structure

In this chapter, the dispersion relations of symmetric and non-symmetric lattice structures have been

analyzed. In previous sections of this chapter, analyses of the dispersion curves of the symmetric and

non-symmetric lattice structures were performed primarily based on a mathematical perspective. In

this section, it is of interest to gain a physical understanding on the dispersion relations of the lattice

structures with various structural configurations.

Dispersion Relations of Symmetric Lattice Structure

First, in Section 4.6.2, the dispersion curves of the symmetric lattice structure, with all struts modified,

were analyzed. It was found that for symmetric lattice structures, an increase in the Young’s modulus

or a decrease in the density resulted in an increased frequency range at which the dispersion curves

occur. On the other hand, it was also found that a decrease in the Young’s modulus or a increase in

the density resulted in a decreased frequency range at which the dispersion curves occur. A physical

understanding of these results can be obtained by studying how waves propagate in different mediums.

Wave propagation through a medium, in another perspective, is the transfer of energy from one point of

the medium to another. If the medium is modified to have an increased Young’s modulus, the medium

becomes much stiffer and the atoms of the medium are then held more tightly to each other. As the

atoms are tightly held together, the waves propagate through the medium at a much faster speed, leading

the waves to propagate at a higher frequency. However, if the medium has a decreased Young’s modulus,

and therefore is less stiff, the atoms of the medium are held more widely apart from each other, which

causes the waves to propagate at a slower speed, leading them to propagate at a lower frequency range.

On the other hand, if the density of the medium is increased, the size and mass of the atoms of the

medium are increased. In order for waves to propagate through the heavier medium, more energy is

required. Hence, when the density of the medium is increased, the waves propagate at a lower frequency.

However, if the density of the medium is decreased, the size and mass of the atoms are decreased, thus

allowing the waves to be able to propagate much easier than before, and allowing the waves to propagate

at a higher frequency range.
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Dispersion Relations of Non-Symmetric Lattice Structure: Impact of Modifying Different

Combinations of Struts of the Lattice Structure

A second major analysis on the dispersion relations was made on the impact of applying modifications

on different combinations of struts of the non-symmetric lattice structure, which was covered in Section

4.6.4. In that section, it was analyzed that as long as the total number of struts being modified are

fixed, the dispersion curves of each of the different combinations of strut modification occur at the same

frequency ranges with each other, even though the band structures are different from each other. A

physical understanding of this dispersion relation can be obtained based on the analysis made above. If

struts A and B are modified to have differing Young’s modulus, in the context of the overall unit lattice

cell, the overall structure is as stiff as when other combinations of two struts are modified to have the

same differing Young’s modulus values. Hence, waves would propagate at a similar frequency through

the non-symmetric lattice structure, as long as same number of struts are modified to have increased

Young’s modulus values with the same modifications. Likewise, the frequency ranges at which the waves

propagate for the dispersion curves are similar for various non-symmetric lattice structures with any

combination of three struts being modified, while each of the dispersion curves would have a different

band structure.

Dispersion Relations of Non-Symmetric Lattice Structure: Impact of Increasing the Num-

ber of Struts Being Modified

In Section 4.6.5, the impact of increasing the number of modified struts was analyzed. Throughout

the analysis, it was found that gradually increasing the number of struts being modified, increases

the frequency range at which the dispersion curves occur. For instance, the frequency range at which

waves propagate when three struts are modified to have a higher Young’s modulus, occurs at a higher

frequency range than when only two struts are modified to have an increased Young’s modulus. Likewise,

the frequency range at which waves propagate when four struts are modified to have a higher Young’s

modulus, occurs at a higher frequency range than when three struts are modified to have an increased

Young’s modulus. As such, as more struts are modified for a non-symmetric lattice structure to gain an

increased Young’s modulus, the frequency range at which the waves propagate tends to occur at higher

frequency. The physical reasoning behind this phenomena is also related to the reasoning made above.

In the context of a unit lattice cell, if a greater number of struts are modified to have an increased

Young’s modulus, the overall lattice cell becomes stiffer. Hence, when waves are propagating through

the lattice unit cell, as the atoms of the unit cell are more stiff and held more tightly close to each

other, the waves will tend to propagate at a higher frequency. On the other hand, if more struts are

modified to have a reduced Young’s modulus, in the context of the overall unit cell, the unit cell is less

stiff and the atoms are spread further apart from each other. As a result, when more struts are modified

to have a decreased Young’s modulus, the waves would propagate at a lower frequency. Similarly, as the

number of struts being modified is increased, causing the structure to have an increased density for each

strut, in the context of the overall unit cell, it would require more energy for the waves to propagate

through, thereby causing waves to propagate at a lower frequency. Likewise, if the number of struts

being modified is gradually increased to have a lower density, the overall unit cell would have a lower

density, allowing the waves to propagate at a higher frequency.
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4.6.7 Significance of the Asymmetric Dispersion Relations

The strength of non-symmetric lattice structures with asymmetric dispersion relations comes from the

high flexibility they offer when designing and tailoring lattice structures and dispersion curves. First,

consider a structure with waves propagating in multiple directions. For applications of the lattice struc-

ture as a noise absorber, in which the waves are propagating in all directions within the system, the

symmetric lattice structure is required to satisfy the need for a band gap to be present at the desired

frequency range, with a common band gap required for all waves propagating in all directions.

However, consider a system where waves are known to propagate in certain directions only, or a system

where only the waves propagating in certain directions are of interest, such as a system with guided

waves where waves are propagating in specific directions. A cylindrical water pipe is an example of a

system with guided waves. Within the cylindrical pipeline, the acoustic wave propagates in a direction

along the centerline of the pipe. If lattice structures are to be used for the applications with cylindrical

pipeline, symmetric lattice structures give symmetric dispersion relations that give only one type of

dispersion curve, which is applicable for waves propagating in all directions. However, by breaking the

symmetry and giving asymmetric dispersion relations, many numbers of different dispersion curves with

varying band structures can be generated, while it is only required to satisfy waves propagating in a

specific direction, which is along the centerline of the cylindrical pipe. By increasing the number of

struts being modified, more different choices of dispersion curves are generated. Furthermore, by chang-

ing the different combinations of struts to be modified, the possible dispersion curves to explore can be

further increased. Therefore, while in symmetric dispersion relations, only single dispersion curves is

provided to tailor around, the asymmetric relations provide much more choices of dispersion curves to

tailor around, therefore providing more ways to design and optimize the lattice structure and its band

gap. Also, asymmetric dispersion relations are easier to tailor as the dispersion relations of the waves

propagating along unnecessary directions can be ignored.

Second, consider a system with waves propagating in multiple directions, in which the different band

gaps are required for each of the waves propagating in each of the different directions. Achieving such

a goal with a symmetric lattice structure is difficult as the symmetric lattice structure results in one

symmetric dispersion curves. Hence, that one symmetric dispersion curve must have multiple band

gaps, each appearing at the different desired frequency ranges that satisfy the requirement for each wave

propagating in each of the different direction. However, if the dispersion relations are asymmetric, as

the dispersion relations are different for different directions of wave propagation, and as there are many

more different variations of asymmetric dispersion curves that can be studied, the asymmetric dispersion

relations provide higher flexibility for achieving that goal.

4.6.8 Impact of Changing the Other Design Variables

Changing the Young’s Modulus and the Density

In the previous sections, the thesis focused on the modification with the Young’s modulus value of the

struts being multiplied by 10. In this section, the impact of applying different modifications are dis-

cussed, such as applying different values of the Young’s modulus or changed values of the density.
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For a symmetric lattice structure, in which all the struts are modified with the same changes in the

design variables, a change in the design variables of Young’s modulus or the density simply applies a

scaling effect to the dispersion curves while maintaining the same band structures. As discussed in Sec-

tion 4.6.2, when the Young’s modulus or the density of all the struts are modified, the dispersion curves

of the modified symmetric lattice structure is simply scaled by the factor of
√

E
ρ . Hence, increasing

the Young’s modulus or decreasing the density of all the struts simply increases the scale of the disper-

sion curves, whereby the waves of the modified symmetric lattice structure propagate at an increased

frequency range. On the other hand, decreasing the Young’s modulus or increasing the density of all

struts decreases the scale of the dispersion curves, whereby the waves of the modified symmetric lattice

structure propagate at a reduced frequency range.

For non-symmetric lattice structures, in which only one or more, but not all of the struts are modi-

fied, a change in the Young’s modulus or density no longer applies a scaling effect. As discussed in

Section 4.6.3, when only part of the unit lattice cell is modified, the expressions for the mass and stiff-

ness matrices are no longer related as a scalar factor. Hence, when Young’s modulus or the density

is changed as modifications for non-symmetric lattice structures, different dispersion curves and band

structures are obtained. For waves propagating in different directions of the non-symmetric lattice struc-

tures, the symmetric/asymmetric relations on the resulting dispersion curves are related to the location

at which the modifications are applied on the structure. Similar to the discussions in Section 4.6.3,

when the density of the struts are changed as a modification, if the modifications applied on the lattice

structure are geometrically symmetric with respect to each direction of wave propagation, symmetric

dispersion relations between waves propagating along each direction are obtained; whereas if the modifi-

cation applied on the lattice structure are not geometrically symmetric with respect to each direction of

wave propagation, asymmetric dispersion relations are present. Likewise, as illustrated in Section 4.6.4,

when different combinations of struts are modified to have changed values in density, different dispersion

curves are generated.

The differences in dispersion relations when different design variables are modified can be observed

when gradually increasing the number of struts modified. In Section 4.6.5, for the modifications with

an increased Young’s modulus, it was discussed that when the number of modified struts was gradually

increased, starting from one strut being modified, the frequency range at which the waves propagate

gradually increased toward the frequency range at which waves propagate in a symmetric lattice struc-

ture, i.e. a structure in which all the struts are modified. Based on the same relation, if Young’s modulus

of the modified struts is reduced instead, when the number of modified struts are gradually increased,

starting from one strut being modified, the frequency range at which the waves propagate gradually

decreases toward the frequency range at which waves propagate in a symmetric lattice structure. On

the other hand, increasing the density of the modified struts for a symmetric lattice structure causes the

dispersion curves to be scaled down by a factor of
√

E
ρ . Therefore, if the density is increased for the

modified struts of non-symmetric lattice structures, when the number of modified struts are gradually

increased, starting from one strut being modified, the frequency range at which the waves propagate will

gradually decrease. Likewise, if the density is decreased for the modified struts of non-symmetric lattice

structures, when the number of modified struts are gradually increased, starting from one strut being

modified, the frequency range at which the waves propagate will gradually increase. Another difference
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occurs when the dispersion curves are compared between the case when the Young’s modulus is changed

as a modification and when the density is changed as a modification. As discussed previously, the change

in the Young’s modulus or density in non-symmetric lattices no longer provides a scaling effect of the

dispersion curve. Also, as a change in the Young’s modulus changes the global stiffness matrix while a

change in density changes the global mass matrix, the dispersion curves of the two types of modifications

are different.

Changing the Radius to Length Ratio of the Lattice Structure

In this section, analyses were performed to understand the impact on the resulting dispersion curves

when the radius to length ratio of the lattice strut is changed for all the struts of the lattice structure.

The radius to length ratio of the lattice structure was modified to be 0.02, by increasing the length of

the struts of the lattice structure. The dispersion curves of the modified symmetric tetrahedral lattice

structure with a radius to length ratio of 0.02 are illustrated in Figure 4.30. The dispersion curves for

waves propagating along e∗1 were plotted with blue dotted lines, while the dispersion curves for waves

propagating along e∗2 were plotted with red solid lines. The dispersion curves were plotted for the first

14 dispersion branches.
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Figure 4.30: Dispersion curves of a symmetric tetrahedral lattice with r:l ratio of 0.02 for waves propa-
gating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines).

As the figure illustrates, the band structure of the current dispersion curve is completely different from

the band structure of the initial symmetric tetrahedral lattice structure with a radius to length ratio of

0.1. For the dispersion curves of the lattice structure with the radius to length ratio of 0.02, waves are

propagating at much lower frequency ranges, with the maximum frequency of propagation occurring at

249.1 rad/s, compared to the waves propagating in the dispersion curves of the lattice structure with a

radius to length ratio of 0.1, which implies that the waves of each dispersion branch of Figure 4.30 are

propagating at reduced phase velocity compared to the corresponding waves of the dispersion branches

in Figure 4.11. This significant change in the dispersion curves and the band structures can be explained



Chapter 4. Wave propagation analysis 79

by re-visiting the energy equations involving the mass matrix and the stiffness matrix.

mij =

L∫
0

[Aρ(aiaj + bibj + cicj) + Iyρeiej + Izρfifj + (Iy + Iz)ρdidj ] dx (4.44)

kij =

L∫
0

[λ(Aa′ia
′
j + Iye

′
ie
′
j + Izf

′
if
′
j) + 2G(Aa′ia

′
j + Iye

′
ie
′
j + Izf

′
if
′
j)

+ κGA((b′i − fi)(b′j − fj) + (c′i + ei)(c
′
j + ej)) + κG(Iz + Iy)(d′id

′
j)]dx (4.45)

When a different radius to length ratio is applied, the changed radius and length of the struts both

impact on multiple variables involved in the mass and stiffness matrices of the struts. Change in the

variables, such as the area of the cross section of the strut element, the second moment of the area, and

the length of the strut element causes significant differences in the resulting mass and stiffness matrices

compared to the initial matrices. Also, as the changed matrices are not in a scalar relation with the

initial matrices, a different band structure is generated.

Wave Propagation Through Pyramidal Lattice Structures

In this section, analyses were performed to understand the impact on the resulting dispersion curves

when waves are propagating through different unit cell geometries. The pyramidal lattice structure was

experimented on, where the dispersion curves were measured for waves propagating along e∗1 and e∗2.

The resulting dispersion curves are plotted in Figure 4.31. The dispersion curves for waves propagating

along e∗1 were plotted with blue dotted lines, while the dispersion curves for waves propagating along e∗2

were plotted with red solid lines. The dispersion curves were plotted for the first 14 dispersion branches.

First, the dispersion curves for the initial symmetric pyramidal lattice structure with a radius to length

ratio of 0.1 were plotted. The band gap appears in the frequency range between 2424 and 2957 rad/s.
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Figure 4.31: Dispersion curves of a symmetric pyramidal lattice with a r:l ratio of 0.1 for waves propa-
gating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines).
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Next, the dispersion curves for a symmetric pyramidal lattice structure with a radius to length ratio of

0.02 were plotted for waves propagating along e∗1 and e∗2. The dispersion curves for waves propagating

along e∗1 were plotted with blue dotted lines, while the dispersion curves for waves propagating along e∗2

were plotted with red solid lines. The dispersion curves were plotted for the first 14 dispersion branches,

and it could be seen that there exists no complete band gap within the first 14 dispersion branches

(Figure 4.32).
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Figure 4.32: Dispersion curves of a symmetric pyramidal lattice with a r:l ratio of 0.02 for waves
propagating along e∗1 (blue dotted lines) and for waves propagating along e∗2 (red solid lines).

When the wave propagation behaviour of the waves along e∗1 and e∗2 were analyzed, the resulting disper-

sion curves of the pyramidal lattice structures can be seen to be very similar to the dispersion curves

of the tetrahedral lattice structures. While the band structures illustrate minor insignificant differences

in small regions of the dispersion curves, the same behaviours, which were analyzed and discussed in

the previous sections for wave propagation in the tetrahedral lattice structures, were also observed for

the waves propagating in the pyramidal lattice structures. Hence, the analysis and discussions outlined

above for symmetric and non-symmetric tetrahedral lattice structures can also be applied for lattice

structures with different unit cell geometries.



Chapter 5

Conclusion and Future

Recommendations

5.1 Conclusion

Through the application of the finite element analysis, wave propagation behaviour through symmetric

and non-symmetric 3D lattice structures were analyzed. The analysis was performed on the lattice struc-

tures of two different geometries: tetrahedral and pyramidal lattice structures. The symmetric lattice

structure refers to a structure in which all struts of the lattice have the same design variables, while the

non-symmetric lattice structure refers to a structure in which the struts have modified design variables.

The eigenfrequencies to plot the dispersions curves were obtained by solving the eigenvalue problem,

with the input wave vectors limited to the waves propagating along the e∗1 and e∗2 directions, in order to

compare the dispersion relations of waves propagating along the e∗1 and e∗2 directions through symmetric

and non-symmetric lattice structures.

First, two symmetric lattice structures with a tetrahedral lattice structure were studied: initial sym-

metric lattice structure and a modified symmetric structure. When the Young’s modulus or density of

all the struts was changed, while the other design variables were fixed to stay the same, the resulting

dispersion curves were simply the scaled dispersion curves of the initial symmetric lattice structure by

a factor of
√

E
ρ . This was explained by analyzing how the design variables impact on the mass matrix

and the stiffness matrix of the eigenvalue problem. When only the Young’s modulus and/or density was

changed, the mass and stiffness matrices of the initial and modified symmetric lattice structures remained

constant, and were simply scaled based on the ratio of the changed values of the Young’s modulus and

density. Therefore, when the dispersion curve of the initial symmetric lattice structure were obtained,

the dispersion curves after the change in the Young’s modulus and/or density could be fully predicted.

However, this scalar relationship did not apply when other design variables, such as the radius or length

of the overall struts, were changed. The change in the other design variables impacted the mass matrix

and the stiffness matrix heavily. As the change in the other design variables led to entirely different mass

and stiffness matrices, the resulting dispersion curves were expected to provide different band structures.

Second, the non-symmetric lattice structures were studied. The effect of the change in design variables

81
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were analyzed when only one or more struts was modified rather than modifying the design variables for

all the struts. Unlike the behaviours in symmetric lattice structures, a change in the Young’s modulus

or density for non-symmetric lattice structures no longer performed as a tool for scaling the dispersion

curves, since the stiffness and mass matrices of the non-symmetric lattice structure could no longer be

expressed as the scalar factor of the initial symmetric lattice structure. Therefore, for non-symmetric

lattice structures, when any design variable is changed, new band structures of the dispersion curves can

be expected.

The analysis of the non-symmetric lattice structure with waves propagating along e∗1 and e∗2, showed

three distinct relations. First, when the modifications applied on the struts with respect to the waves

propagating along e∗1 direction, was applied on the struts at geometrically symmetric location with re-

spect to the waves propagating along e∗2 directions instead, the resulting dispersion relations between the

waves propagating along e∗1 and e∗2 were symmetric, in which the dispersion curves of waves propagating

along e∗1 and e∗2 of the same non-symmetric lattice structure were the same. On the other hand, if the

modifications applied on the struts are not geometrically symmetric with respect to each direction of

the wave propagation, the resulting dispersion relations between the waves propagating in each direc-

tion were asymmetric, in which the dispersion curves of waves propagating along e∗1 and e∗2 of the same

non-symmetric lattice structure were different. Second, when different combinations of modifications

were applied, the resulting dispersion curves showed a different band structure. When the total number

of struts being modified was kept constant, and only different combinations of struts were modified,

the frequency ranges at which waves propagated along e∗1 and e∗2 of the non-symmetric lattice structure

remained relatively close to each other. Third, starting from a non-symmetric lattice structure with only

one modified strut, when the number of modified struts was gradually increased, the resulting dispersion

curves showed a gradual change in the frequency ranges at which the waves propagated. When the

modification increased the Young’s modulus or decreased the density of the struts, as the number of

modified struts was gradually increased, the resulting dispersion curves showed a gradual increase in

the frequency ranges at which the waves propagated, in fact toward the frequency ranges at which the

waves would propagate through a symmetric lattice structure with all the struts modified. When the

modification decreased the Young’s modulus or increased the density of the struts, as the number of

modified struts was gradually increased, the resulting dispersion curves showed a gradual decrease in the

frequency ranges at which the waves propagated, in fact toward the frequency ranges at which waves

would propagate through a symmetric lattice structure with all the struts modified. Moreover, as the

band structure changes as the number of modified struts increases, a new band gap may be introduced

in the new dispersion curves, or no band gap may exist for the new dispersion curves. Combining these

two behaviours, all the band gaps present for non-symmetric lattice structures, always occur within the

frequency ranges of the initial (not-modified) symmetric lattice structure and in the frequency ranges of

modified symmetric lattice structures.

Concluding the analysis, for symmetric lattice structures, a change in the Young’s modulus or den-

sity performs as a powerful tool for scaling the dispersion curves and its band gap, whereby both the

location of the band gap and the resulting band structure of the dispersion curves are predictable. While

this scaling effect in symmetric lattice structures seem powerful for optimizing the size and location of

the band gap, limitations in the changes in the design variables could be expected due to the require-
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ments of the structural properties of the lattice structure. For example, in the application of the lattice

structure in aerospace industries, a structure with a high stiffness and low density would be preferred.

To achieve these ideal structural properties, the amount that the Young’s modulus or density that could

be modified is likely to be limited. For instance, when a structure has a band gap at a high frequency

range, and the band gap is required to be at a lower frequency range, the change in band gap location

can be performed by reducing the Young’s modulus or by increasing the density in a symmetric lattice

structure, but at the risk of turning the structural properties to be less than ideal. Another weakness

of the symmetric lattice structure comes from the total number of dispersion curves available per each

design of the lattice structure. The symmetric lattice structures yield one dispersion curve, which is

symmetric for waves propagating in different directions. Therefore, the number of dispersion curves

to tailor is highly limited for the symmetric lattice structures. On the other hand, the non-symmetric

lattice structures with asymmetric dispersion relations show strength in terms of its high flexibility when

designing and tailoring the lattice structures and the dispersion curves. The asymmetric dispersion re-

lations provide large numbers of different dispersion curves with varying band structures, in which each

dispersion curve is unique for each different direction of wave propagation. By increasing the number of

struts being modified, more unique choices of dispersion curves are generated. Furthermore, by applying

different combinations of struts to be modified, the possible dispersion curves to explore are further

increased. Therefore, the asymmetric relations provide a large number of dispersion curves to tailor

around, providing more options to design and optimize the lattice structure and its band gap. Also,

asymmetric dispersion relations demonstrate great strength in terms of their flexibility when tailoring

the dispersion curves, as the dispersion relations of the waves propagating along unnecessary directions

can be ignored.

5.2 Future Recommendations

5.2.1 Multi-Tetrahedral/Pyramidal Non-Symmetric Unit Cell

The present thesis has focused on the analysis of the lattice structure, in which the unit lattice cell was

limited to a single tetrahedral or pyramidal structure. However, clusters of tetrahedral or pyramidal

structures can be defined as the single unit cell by making the structure non-symmetric. Figure 5.1

illustrates a 3 × 3 × 3 pyramidal lattice structure as a single unit cell, where the unit cell is defined as

non-symmetric by having one of the pyramidal at the centre (in red), making it different to the other

remaining pyramidal structures. Differences between the two types of pyramidal structures can be made

by applying different design variables for each type of pyramidal structure, or by applying differences in

the structure geometry by adding additional supporting struts in the pyramidal structure, as illustrated

in Figure 5.2.
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Figure 5.1: Illustration of a non-symmetric unit cell with multiple pyramidal structures.

Regular Pyramidal Unit Cell Pyramidal Unit Cell 

with Extra Struts Added

Figure 5.2: Illustration of a normal pyramidal structure and a modified pyramidal structure with extra
supporting struts.

More than one pyramidal structure can be modified, and also, the location of the modified pyramidal

structures can vary. The analysis of the multi-pyramidal lattice structure can further be extended by

studying the difference in wave propagation behaviour, when the modified pyramidal structures are

skewed to one side of the unit lattice cell, as illustrated in Figure 5.3.

Figure 5.3: Illustration of a skewed modification of a multi-pyramidal unit cell.
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5.2.2 Shape Shifting Lattice Structure

The introduction of the multi-tetrahedral or multi-pyramidal unit cell opens up the route to other

potential studies on the lattice structure, in which the lattice structure could handle two different band

gaps. First, a multi-tetrahedral lattice unit cell with four tetrahedral structures, in which the struts of

the tetrahedral structures have a radius to length ratio of 0.1, can be considered, as illustrated in Figure

5.4. The multi-tetrahedral unit cell can be turned into non-symmetric by applying a different material

for some struts. For example, in Figure 5.4, struts in orange colour are made out of polymer, while the

rest of the struts in light blue are made out of wax. If the structure goes through a procedure that could

melt and eliminate the struts made of wax completely without deforming or damaging the struts made

of polymer, the multi-tetrahedral unit cell becomes a unit cell with single tetrahedral structure with a

radius to length ratio of 0.05.

Figure 5.4: Illustration of a non-symmetric multi-tetrahedral unit cell (left), a non-symmetric multi-
tetrahedral unit cell with two different materials (middle), and after the struts in one type of material
are eliminated (right).

Therefore, if there exists such a procedure that could eliminate struts made out of one type of material,

while not deforming the geometries or damaging the material properties of the strut made of the other

material, the unit cell of the lattice structure could change its shape through the procedure. Assuming

that a multi-tetrahedral unit cell would provide dispersion curves with unique band structure and band

gap phenomena, and that a tetrahedral unit cell with a radius to length ratio of 0.05 would provide a

different dispersion curves and band gap, the lattice structure could accommodate two different band

gaps in changing environment conditions.
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5.2.3 Lattice Structure as the Core of Sandwich Panel

The last potential future recommendation is the application of a lattice structure as the core of a sandwich

panel. In this thesis, the analysis was focused on the wave propagation behaviour through the lattice

structures. However, when lattice structures are applied as the core of a sandwich panel, the resulting

structure may provide different wave propagation behaviour due to the introduction of top and bottom

panels.

Figure 5.5: Illustration of a pyramidal lattice structure as the core of a sandwich panel.
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