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Numerous structures that are used in the aerospace and automobile industries, micro-

electronics, and civil engineering are subject to large variations of temperature. The

deformations caused by temperature can be dangerous because they lead to thermal

stresses and failure if materials with mismatched thermal expansion are joined. On the

other hand, thermal extensions can be used to achieve desirable displacements in struc-

tures. In this work, we use bimaterial lattices made of two materials and empty space

that combine low weight with high stiffness and structural robustness. The lattices can

serve as adapters that eliminate or mitigate dangerous thermal stresses, as elements

for fine tuning, or as thermal actuators. To perform these functions, the lattices must

be anisotropic, which can be achieved if the lattice consists of non-identical anisotropic

cells. Each cell is composed of an irregular triangle made of one material surrounded

by a skewed hexagon made of another material. The overall performance of the lattice

is defined by six hexagon skew angles and the ratio of the two coefficients of thermal

expansion (CTEs) of the lattice materials. The cells are connected to adjoining cells at

three points; changes in the distances between these points as a function of temperature

can be tailored.

The primary goal of the research is to elaborate general principles and algorithms to

design lattices, select material, and improve structural efficiency. Several adaptive lat-

tices are designed including a polygonal ring connector to prevent distortion in cylindrical

optical components, a lattice preventing shaft and collar sticking, and lattices controlling

the total deflection of two substrates. Lattices providing predetermined displacements in

ii



desirable directions have been studied, and it was demonstrated that different tempera-

ture supplied to different cells of a polygonal ring connector can be used for fine tuning of

optical lenses. Finally, thermal actuators - a switch, tweezers, and a valve - are designed.

In terms of overall performance, the actuators are slow but do not exhibit hysteresis:

their thermal expansion depends on temperature but not on preceding thermal history.

The forces and deflections they achieve compare favorably with piezoelectrics and shape

memory alloys.
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Chapter 1

Introduction

1.1 Motivation

Bimaterial lattices are made of two materials and empty space. The low weight and high

performance of bimaterial lattices as structural elements motivate their wide use in a

variety of aerospace and automotive applications, microelectronics, and civil engineering.

Lattices can be designed to have several unique desirable properties and to serve as

multifunctional solutions to engineering problems. This thesis explores new concepts for

lattices with tailored anisotropic thermal expansion properties. Such lattices can be used

as stress-free adapters to mitigate thermal expansion mismatch, as adapters between

substrates with complex geometric shapes, and, finally, as thermally driven actuators.

This thesis demonstrates that it is possible to combine precise thermal deformations

with high stiffness while eliminating thermal mismatch stresses. This combination of

properties is unobtainable through other concepts.

The most common lattice structures have tetrahedral, pyramidal, kagome, and hon-

eycomb cell configurations. Various authors (Fan et al., 2008, 2009; Vigliotti and Pasini,

2012; Zhang et al., 2008) studied their mechanical properties: effective elastic moduli,

yield strength, local and general buckling, and failure mechanisms. As it was indicated

in Gibson and Ashby (1997), lattice structures can provide good energy absorption char-

acteristics and good thermal and acoustic insulation properties. In other works (Abad

et al., 2012; Elsayed and Pasini, 2009, 2010; Liu and Lu, 2004; Vigliotti and Pasini, 2015;

Wicks and Hutchinson, 2001), design optimization of multifunctional lattice structures

was performed for specific applications. Nonlinear constitutive models for lattice ma-

terials were created in Vigliotti et al. (2014). The possibility of tailoring acoustic and

thermal properties of lattice materials was studied in Chopra and Phani (2011); Phani

(2011a,b); Phani and Fleck (2007, 2008); Phani et al. (2006). The idea to use lattice
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Chapter 1. Introduction 2

structures for actuation was expressed and realized in Hutchinson et al. (2003); Leung

et al. (2004); Li et al. (2011); Mikulas et al. (1993); Miura (1984a,b); Wicks and Guest

(2004).

In this work, we consider a specific class of lattice structures - nonperiodic anisotropic

bimaterial lattices composed of nonidentical anisotropic cells. They combine low weight

with high stiffness and structural robustness. The key property of these lattices is their

ability to attain desirable thermal expansion in different directions. These lattices are de-

signed to be used in ambient conditions with large variations in temperature. Exploited

in such conditions, the lattices can mitigate or eliminate stresses due to thermal defor-

mation mismatch in structures made of materials with different coefficients of thermal

expansion (CTEs). Alternately, they can be tailored to provide significant deflections

of their specific vertices when temperature changes. This can be used for fine tuning

of structures or thermal actuation. As thermal actuators they do not need compliant

mechanisms and also they do not exhibit aging or hysteresis; that is, their thermal defor-

mation does not depend on thermal history but only on the current temperature. They

have a slow response and can create deformations larger than piezoelectics but smaller

than shape memory alloy actuators. For all of these applications, they do not experience

thermal mismatch stresses when the joints are pinned.

1.2 Isotropic bimaterial lattices with predetermined

CTE

Bimaterial lattices made of two materials and empty space and having predetermined

negative, zero, or positive CTEs were considered in Jefferson et al. (2009); Lakes (1996,

2007); Sigmund and Torquato (1996, 1997); and Steeves et al. (2007). In these works,

it was demonstrated that a lattice with a desirable isotropic CTE can be constructed

from cells incorporating two materials with widely differing individual CTEs and empty

space. For example, a cellular structure consisting of bi-layered ribs and empty space

is proposed in Lakes (1996) (fig. 1.1). The layers have different thickness and are made

of materials with different CTEs. As it was indicated by Timoshenko (1925), the ribs

flex when temperature changes releasing thermal strain in open space. The formulae for

their curvature and length after flexing are obtained by Lakes (1996). The overall CTE

of the lattice (fig. 1.1) is exactly equal to the CTE of an individual rib. The slenderer

ribs are, the higher lattice CTE is. Also, the lattice CTE increases if the ribs have initial

curvature. If the constituent with the higher CTE is on its concave side, an increase in
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temperature will cause the rib to straighten, giving rise to a positive CTE for the lattice.

Conversely, if the constituent with the higher CTE is on its convex side, an increase

in temperature will cause the rib to curve more and become shorter, giving rise to a

negative CTE for the lattice. Both lattices in fig. 1.1 have isotropic CTEs; however, the

right lattice has anisotropic elastic properties. Later in Lakes (2007), an effective Young’s

modulus of the lattice was determined and its relation to thermal expansion was found.

In Lehman and Lakes (2013), optimality conditions for rib cross section were considered.

Three lattices designed using a topology optimization procedure developed by Sigmund

Figure 1.1: Lattices with isotropic CTE consisting of bi-material ribs presented Lakes
(1996). The lattice on the right with curved ribs has larger CTE compared to the lattice
with straight ribs on the left.

and Torquato (1996, 1997) are presented in fig. 1.2. Tight bounds on the effective thermal

Figure 1.2: Isotropic lattices designed by Sigmund and Torquato (1996); Sigmund and
Torquato (1997) using topology optimization. Red is a material with high CTE, black is
a material with low CTE, and white is for empty space.

expansion coefficients of isotropic planar three-phase system were obtained in Gibiansky
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and Torquato (1997). These bounds can be applied to a bimaterial lattice with the first

and the second phases representing lattice materials and the third phase for void space.

A lattice cell based on an equilateral triangle and consisting of a skewed triangle of

low CTE material surrounding a triangle of high CTE material combines high stiffness,

simple shape, and the ability to attain a desirable CTE (Steeves et al., 2007) (Fig 1.3).

Steeves et al. (2007) and Berger et al. (2011) showed that a pin-jointed lattice consisting

of these cells is nearly optimally stiff: the mechanical response of this type of lattice is

dominated by stretching rather than bending. Such lattices are structurally robust and

can be relatively easily manufactured.

members with 
lower CTE 

members with 
higher CTE 

base triangle

Figure 1.3: Llattice with isotropic CTE designed by Steeves et al. (2007). Each cell is
based on equilateral triangle. The members with higher CTE are red, while the members
with lower CTE are blue.

Thermally stable bimaterial lattices consisting of the cells suggested by Steeves et al.

(2007) were designed, fabricated and tested in Gdoutos et al. (2013). These structures

were tuned by varying the CTE of the constituent materials and the unit cell geometry.

The micro-scale unit cells were composed of aluminum and titanium and were assembled

over a large area to create thin low-CTE foils. A continuous honeycomb-like structure

with cell inserts made of material with larger CTE than the cell contours (Jefferson et al.,

2009) is shown in fig. 1.4.

In this work, anisotropic lattices consisting of anisotropic cells are designed. Each

cell can have three different CTEs in different directions, and the values of the CTEs are

determined from the kinematic conditions imposed on the lattice vertices (Toropova and

Steeves, 2013a,b, 2014a,b,c, 2015c).
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Figure 1.4: Lattice by Jefferson et al. (2009)

1.3 Thermal adapters

Often structures that are used in aerospace, civil engineering and microelectronics ex-

perience large cyclic temperature changes. For example, lightweight space systems such

as precision satellite structures are exposed to thermal cycling as they pass between di-

rect sunlight and the Earth’s shadow (Jassemi-Zargani and Simard, 1999). If connected

components of such structures are made of materials with different coefficients of ther-

mal expansion (CTE), they experience mechanical stresses due to thermal expansion

mismatch. To mitigate or eliminate thermal stresses, the parts of the structure with dif-

fering CTEs, herein referred to as the substrates, can be connected to each other through

special transition elements or adapters with anisotropic CTE.

Using composite structures with graded CTEs for joining purposes is not a new con-

cept. For example, Yousefiani et al. (2009a,b) applied it to design a layered injector-

chamber attachment component in rocket engines (fig. 1.5). The authors suggested join-

ing approaches such as welding, brazing, or solid state bonding to produce a graded-CTE

composite with contoured profile layers (coloured parts in fig. 1.5(a)). In addition, Youse-

fiani et al. (2009b) used build-up (bottom-up) fabrication approaches such as metal depo-

sition or powder metallurgy to produce a graded-CTE layered composite preform, which

was consolidated and heat treated to create the graded-CTE integrated composite billet

of near net shape. In Dang (2006), the composite adapters with graded CTE were com-

ponents of a precision optical assembly to prevent lens misalignment. The adapters are

depicted in fig. 1.6 as red rings. The adapter material comprised multiple thin composite

material layers, each possessing a CTE slightly different from its two adjacent layers,

bonded to form an adapter with CTE gradually varying in the direction perpendicular to

the bonding interfaces. Such adapters will bend when subjected to temperature changes,
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(a) (b) - Alloy 42
- 75% Alloy 42+25% Kovar 
- 50% Alloy 42+50% Kovar 
- 25% Alloy 42+75% Kovar 
-  Kovar 

(c)

Figure 1.5: Composite adapters (Yousefiani et al., 2009a,b). (a) Composite plate with
contoured profile layers having graded CTE. (b) Section view of the layered composite
transition ring with graded CTE. (c) Assembled rocket engine structure with transition
ring (red).

and deformations of the system must be permitted or thermal stresses will arise if the

bending is suppressed. Also, their mechanical properties can be markedly anisotropic

leading to the reduction of overall stiffness and strength. An alternative to graded sys-

tems is a compliant system, where differential thermal expansion is accommodated by

connectors with low stiffness. This has the disadvantage of reducing the overall stiffness

of the structure.

Figure 1.6: Composite adapters by Dang (2006) with graded CTE (red rings) to prevent
lens misalignment in precision optical assembly.

In the present work, we suggest a method for connecting dissimilar parts of a structure

using planar composite lattices with anisotropic CTE: one edge of the lattice has CTE
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that matches the material of the first substrate and the opposite edge of the lattice has

a CTE matching the second substrate. The lattice concept created by Steeves et al.

(2007) is used to design a lattice adapter with anisotropic CTE. To be anisotropically

tunable, each cell can have six different skew angles that provide anisotropic thermal

expansion. Also, the cells in the lattice are not identical. As a result, the whole lattice

has anisotropic and graded net CTE. The anisotropic thermal expansion of the lattice is

analyzed and the equations connecting the cell skew angles with CTE in three directions

are derived (Toropova and Steeves, 2013a,b, 2014a,b,c, 2015c). These equations are used

to find desirable skew angles for the design of each cell. Then, the design of the whole

lattice is performed: three CTEs in each cell are expressed as functions of the CTEs

of the substrates. A system for choosing the lattice materials that can provide such

CTEs is discussed. Design examples then show how the choice of materials influences

the skewness of the cells. This anisotropic lattice concept eliminates both of the problems

with other adapter concepts: the lattice remains stiff at all times and, if pin-connected,

differential thermal deformations of the substrates are accommodated without generating

any thermal stresses either in the lattice or the substrates. Moreover, the anisotropic

lattices presented here are scale independent and can be extended to three-dimensional

geometries.

1.4 Actuation and shape control

Actuators or intelligent structure technology are widespread in the aerospace, construc-

tion, automotive, and machine tool industries (Crawley, 1994). In the review by Irschik

(2002), different effects that can be used for actuation are indicated: thermal expansion

strains, plastic misfit strains, piezoelectric and piezothermoelectric effects, electrostrictive

and electrorheological effects, the effect of pre-stress in structures, and shape memory

alloys. A later review by Tzou (1998) describes how active materials including piezo-

electrics, electro- and magnetostrictive materials, shape memory alloys, electro- and mag-

netorheological fluids, polyelectrolyte gels, superconductors, pyroelectrics, photostrictive

materials, photoferroelectrics, and magnetooptical materials are used in transducers (sen-

sors/actuators), precision mechatronic systems, and structronic systems. Applications

of piezothermoelasticity to smart composite structures are presented in Tauchert et al.

(2000). Electro-thermo-mechanical coupling in actuation and shape control systems is

studied in Krommer (2000); Krommer and Irschik (2000). In Lee (1990); Lee and Moon

(1990), shaped piezoelectric layers are developed and experimentally implemented to

excite a specific structural vibrational mode. Piezoceramic composites are considered
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for shape control of an antenna reflector by Herold-Schmidt et al. (1996). In Korkmaz

(2011), it is indicated that active control is very efficient in tensegrity structures because

of their high structural efficiency, i.e. strength-to-weight ratio and high precision con-

trol. The possibility of active control of tensegrity systems was originally considered by

Djouadi et al. (1998); Oppenheim and Williams (1997); Skelton and de Olivera (2009)

and later developed by Skelton et al. (2000) and Liedl et al. (2010). Shape morphing

truss-like structures such as tensegrity masts and booms are considered and analyzed by

Puig et al. (2010). An active element in a truss structure for use in precision control of

large space structures such as orbiting interferometers and segmented mirror telescopes is

described by Anderson et al. (1990). It includes an eddy current displacement sensor and

an actuator that exploits either piezoelectricity or electrostriction to provide strain due

to an electrical input. A compliant cellular truss with tendons used as active elements

was suggested by Ramrkahyani et al. (2005) for aircraft structural morphing.

The works cited above describe the range of problems related to actuation and shape

control: actuator design, a choice of compliant mechanism, material selection, structural

efficiency, and coupling of different effects involved in actuation. These problems can

be solved using thermal actuation and tuning that are based on conversion of thermal

energy into mechanical movement due to thermal expansion. The solutions to thermally

driven actuators are simple, do not need compliant mechanisms, and their industrial im-

plementation is relatively inexpensive. The most common example of thermal actuation

is presented by layered composite materials consisting of two and more components with

different CTEs (Timoshenko, 1925). A bimetallic strip is a classical example of such a

structure (fig. 1.7). This idea was exploited by Haftka and Adelman (1985) where heat-

initial shape

deformed shape 
due to heat

higher CTE

lower CTE

Figure 1.7: Bimetallic strip actuated by temperature.

ing was applied through control elements which had much higher CTE than the main

structure. The thermal expansions in control elements caused desirable displacements in

flexible space antennas. Generalization of the results was made by Irschik and Pichler

(2001) for three-dimensional dynamic shape control problem.
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With time, thermal actuators have become more complicated with asymmetric lam-

ination, embedded heat sources (Sehr et al., 2001; Shen and Chen, 2013), carbon fiber

reinforced plastics (CFRP) as materials with low CTE (Asanuma et al., 2002) (fig. 1.8),

functionally graded materials (Sepiani et al., 2009), etc. The main problem with these

Figure 1.8: Active composite laminate and its actuation (Asanuma et al. (2002)). The
upper metal layer of the laminate has CTE αmetal, while the lower layer made of uni-
directional carbon fiber reinforced plastics (CFRP) has CTE αCFRP . In fiber direction
αmetal is much higher than αCFRP , but in the transverse direction αmetal and αCFRP are
close to each other. Heating through the electrode that is between the metal and the
CFRP layers actuates the laminate in fiber direction.

actuators is their small deformations. To amplify them, thermal buckling (Lisec et al.,

1996; McCarthy et al., 2007; Wittwer et al., 2006) and shape memory alloys can be used.

There is a comparatively large number of publications devoted to thermal micro-

actuators. For example, some electrothermal and thermomechanical actuators are de-

signed, studied, and optimized by Chen and Culpepper (2006); Geisberger et al. (2003);

Huang and Lee (1999); Jungen et al. (2006); Lee and Wu (2005); Michael et al. (2008);

Que et al. (2001); Shimamura et al. (2006). The possibility of developing MEMS thermal

actuators that can be activated with an external heat source was studied by Varona et al.

(2007). The design and fabrication of a novel micromirror actuation system consisting of

two paralleled bimorph actuators that bend in opposite directions for rotational control

of the micromirror, was reported by Kim et al. (2010). An electrothermal microgripper

was designed and simulated by Kaur et al. (2013). Thermal actuation with electrical

heating applied to deformable mirrors was reported by Vdovin and Loktev (2002) and
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later by Huang et al. (2015) where thermoelectric coolers provided upward and downward

surface control. An incandescent lamp was used for heating a thermally driven adaptive

mirror by Michel et al. (2004). The silicone elastomer material Sylgard 184 with large

CTE of 310 ppm/◦C was used by Reinert and Luthy (2005) for thermo-optical actuation

of adaptive mirrors.

In the work presented here, we perform shape control and thermal actuation using

anisotropic bimaterial lattices. Their structure allows us to design them with desirable

CTEs not only along the sides of the base triangle but in any direction. For example, fine

tuning of optical lenses can be achieved through a bimaterial lattice forming a polygonal

ring connector with cells extending along their heights. The idea of using large negative

and positive lattice CTEs along the cell heights was applied to the design of thermal

actuators (Toropova and Steeves, 2015a,b). For this, two types of cells with negative

and positive CTEs along their heights were used. If the material of the internal triangle

has a CTE larger than the CTE of an external hexagon, such a cell has negative CTE

along its height. If the material of the internal triangle has a CTE less than the CTE

of an external hexagon, the cell behaves conversely. By combining cells in different con-

figurations, we design several actuators - a switch, tweezers, and a valve. Amplification

of displacements was achieved by the use of lattice materials with a large ratio of their

CTEs and nonequilateral base triangles for cells. In terms of overall performance, the

actuators are slow but do not depend on their thermal history, i.e. they do not exhibit

hysteresis. The forces and deflections they achieve compare favorably with piezoelectrics

and SMAs.

The thesis is organized in 6 chapters. In Chapter 2, adaptive anisotropic bimaterial

lattices to eliminate thermal expansion mismatch stresses between two substrates with

different CTEs are designed. Cells of the lattices are based on equilateral triangle. The

influence of a cell material choice on the overall lattice shape is demonstrated by several

examples. A general algorithm of lattices design is elaborated. Adaptive lattices of more

complicated configuration with cells based on nonequilateral triangles are considered in

Chapter 3. Also, a general algorithm of the increase of lattice structural efficiency is

presented in this chapter. Bimaterial lattices as mechanisms for fine tuning or thermal

actuation are considered in Chapter 4. Thermally driven a switch, tweezers, and a

valve are designed. Two different types of cells are used providing desirable negative or

positive deflections of lattice vertices. In Chapter 5, the experimental methodology used

in this research is described, and experimentally measured cell CTEs are compared with

analytically predicted values. In Chapter 6, structural analysis of lattice cells using rod

finite elements for pin-jointed cells and frame finite elements for cells with rigid joints
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accounting for the cross sectional area of cell members is performed. In the last chapter

with Conclusions, the main contributions of the research work are highlighted and the

avenues for the future work are outlined.

To date, the work contained in this thesis has been published in six conference papers

and three peer reviewed journal papers.

Conference papers:

M. M. Toropova and C. A. Steeves. Composite Lattices With Anisotropic Coeffi-

cient of Thermal Expansion, Proceedings of the 60th CASI Aeronautics Conference and

AGM,Toronto, Ontario, April 30-May 2, 2013.

M. M. Toropova and C. A. Steeves. Composite Lattices with Anisotropic Coefficient

of Thermal Expansion, Proceedings of the 4th Canadian Conference on Nonlinear Solid

Mechanics (CanCNSM 2013) McGill University, Montreal, Canada, July 23-26, 2013.

M. M. Toropova and C. A. Steeves. Design of composite bi-material lattice adapters,

Proceedings of the 1st International Conference on Mechanics of Composites , Stony

Brook University, USA, June 8-12, 2014.

M. M. Toropova and C. A. Steeves. Adaptive bi-material lattices to mitigate ther-

mal expansion mismatch in satellite structures, Proceedings of the 65th International

Astronautical Congress, Toronto, Canada, September 29 October 3, 2014.

M. M. Toropova and C. A. Steeves. Controlling thermal deformation through the use

of lattice structures, Proceedings of the 62nd CASI Aeronautics Conference and AGM

3rd CARDN Conference, Montreal, Canada, May 19-21, 2015.

M. M. Toropova and C. A. Steeves. Thermal Actuation Through Bimaterial Lat-

tices, Proceedings of ASME Conference on Smart Materials, Adaptive Structures and

Intelligent Systems SMASIS, Colorado Springs, USA, September 21-23, 2015.

Journal papers:

M. M. Toropova and C. A. Steeves. Bimaterial lattices with anisotropic thermal

expansion, Journal of Mechanics of Materials and Structures, v. 9, N 2, 227-244, 2014.

M. M. Toropova and C. A. Steeves. Adaptive bimaterial lattices to mitigate thermal

expansion mismatch stresses in satellite structures, Acta Astronautica, v. 113, 132-141,

2015.

M. M. Toropova and C. A. Steeves. Bimaterial lattices as thermal adapters and

actuators, Smart Materials and Structures, 2016, accepted for publication.



Chapter 2

One-row adaptive bimaterial lattices

In this chapter, the fundamental concepts and models of anisotropic lattices will be

developed 1 2. These represent a significant conceptual departure from Steeves et al.

(2007), which was restricted to isotropic systems. Anisotropy enables a much wider

range of desirable behaviours which will be elucidated through the course of this thesis.

Because each cell can have six different skew angles (fig. 2.1), tailored anisotropic thermal

expansion is enabled. Also, the cells in the lattice are not identical. As a result, the whole

lattice has varying gradually anisotropic thermal expansion that is tunable as a graded

net. To analyze the anisotropic thermal expansion of the whole lattice, the equations

connecting the cell skew angles with CTE in three directions are derived. These equations

are used to find desirable skew angles for the design of each cell. Then, the design of the

whole lattice is performed: three CTEs in each cell are found as functions of the CTEs

of the substrates. A system for choosing the lattice materials that can provide such

CTEs is discussed. Design examples then show how the choice of materials influences

the skewness of the cells. This anisotropic lattice concept eliminates both of the problems

with other adapter concepts: the lattice remains stiff at all times and, if pin-connected,

differential thermal deformations of the substrates are accommodated without generating

any thermal stresses either in the lattice or the substrates. Moreover, the anisotropic

lattices presented here are scale independent.

1M MToropova and C A Steeves. Composite lattices with anisotropic coefficient of thermal expan-
sion. The 4th Canadian Conference on Nonlinear Solid Mechanics (CanCNSM 2013) McGill University,
Montreal, Canada, July 23-26, 2013.

2M M Toropova and C A Steeves. Bimaterial lattices with anisotropic thermal expansion. Journal
of Mechanics of Materials and Structures, 9(2):227-244, 2014.

12
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2.1 Formulation of the problem

Consider two adjoining planar parts of a structure; name them substrate 1 and substrate

2. Suppose that substrates 1 and 2 are made of materials with different CTEs, A1 and

A2, respectively. We would like to join these plates by a planar interfacial one-row lattice

that has the CTE of the first substrate A1 on the edge connected to the first plate

and the CTE of the second substrate A2 on the edge adjacent to the second plate; this

eliminates thermal stresses in the substrates during thermal excursions. In addition, the

lattice itself should experience no internal thermal stresses during temperature changes.

For this purpose, the lattice with cells described by Steeves et al. (2007) is used; it is

based on a virtual triangle ACE and consists of an irregular hexagon ABCDEF made

of a material with lower CTE α1 and connected with an internal triangle BDF made of

a material with higher CTE α2 (fig. 2.1). The internal triangle BDF is pin-connected

to the hexagon. In such a cell, the members of the hexagon rotate with increasing

temperature and accommodate the overall cell expansion Evans et al. (1998). Adjacent

cells of the lattice, connected at A, C and E, also have pin-joints between each other

and with the substrates (fig. 2.2), such that the whole structure is free of bending and

thermal expansion mismatch stresses.

θ1

θ4

θ2

θ6

θ5

θ3
l6

l1

l7
l8

l2

l3

l5 l4

l9

A

B

D

C

E

F

a b

c

Figure 2.1: One cell of a lattice. The members AB, BC, CD, DE, EF , and AF have
lower CTE, depicted in blue. The members BD, DF , BF have higher CTE, depicted
in red. The equilateral triangle ACE upon which the cell is based is shown as a dashed
line. The skew angles, θ1, θ2, θ3, θ4, θ5, θ6, are the angles by which the unit cell strut
orientation differ from those of an equilateral triangle.

When temperature changes, the lengths of all members l1 = AB, l2 = BC, l3 = CD,

l4 = DE, l5 = EF , and l6 = AF , l7 = FB, l8 = BD, l9 = FD, have an increment dli,
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Substrate 1

Substrate 2

Figure 2.2: A planar anisotropic lattice connecting two substrates with different coeffi-
cients of thermal expansion. The lattice has net anisotropic thermal expansion, and each
individual cell has net anisotropic thermal expansion.

dli = liα1dT , i = (1, 6) and dli = liα2dT , i = (7, 9). As a result, the distances AC = L1,

CE = L2, AE = L3 also change: dL1 = α1L1dT , dL2 = α2L2dT , dL3 = α3L3dT , where

T is temperature and αi, i = 1, 2, 3 are the CTEs of the cell along AC, CE, and AE,

respectively. However, the members of the internal triangle extend with different CTE

compared to the members of the hexagon, which leads to their rotation and a change in

the skew angles dθj, j = (1, 6) (fig. 2.3). Because the skew angles can be independent,

the three CTEs of a cell αi, i = 1, 2, 3 can be different. Thus, the cell can be designed to

have anisotropic thermal expansion.

ΔT

A B

C

A

C

B

(a) (b)

Figure 2.3: Sketch of the kinematics of the thermal expansion of a symmetric bimaterial
lattice cell. This unit cell has isotropic thermal expansion behaviour. The dotted lines
in the right figure show the initial location of the members. As temperature increases,
all the members expand, but because the red members expand more, they push the blue
members outward, causing them to rotate. This rotation accommodates their expansion.

By choosing the angles θi, i = 1, 2, 3, 4, 5, 6, we can influence the change of dL1, dL2,
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dL3 in each cell and provide different changes of distances between vertices of the cells

and hence different CTEs on the bottom and top levels of the lattice (fig. 2.4). To design

such a lattice, relations between CTEs αi, i = 1, 2, 3 and angles θj, j = 1, 2, 3, 4, 5, 6 have

to be obtained.

Substrate 2 with CTE A2

Substrate 1 with CTE A1 

A B

C

D

E 

B'

C'

D'

E'

Figure 2.4: Lattice design: base equilateral triangles of two cells. During thermal expan-
sion, the original points translate from, for example, B to B′. The lattice cells must be
designed to accommodate the changing distances between the points.

2.2 General formulae

The undeformed lengths of the constituent members of a cell (fig. 2.1) are:

l1 = L1f1(θ1, θ2), l2 = L1f2(θ1, θ2), l3 = L2f3(θ3, θ4),

l4 = L2f4(θ3, θ4), l5 = L3f5(θ5, θ6), l6 = L3f6(θ5, θ6), (2.1)

where

f1 =
sin θ2

sin(θ1 + θ2)
, f2 =

sin θ1
sin(θ1 + θ2)

, f3 =
sin θ4

sin(θ3 + θ4)
,

f4 =
sin θ3

sin(θ3 + θ4)
, f5 =

sin θ6
sin(θ5 + θ6)

, f6 =
sin θ5

sin(θ5 + θ6)
.

From (2.1), the differential relations are obtained:

1

L
dl1(1−

α1

α1

) = f
′

1θ1
dθ1 + f

′

1θ2
dθ2,

1

L
dl2(1−

α1

α1

) = f
′

2θ1
dθ1 + f

′

2θ2
dθ2,

1

L
dl3(1−

α2

α1

) = f
′

3θ3
dθ3 + f

′

3θ4
dθ4,

1

L
dl4(1−

α2

α1

) = f
′

4θ3
dθ3 + f

′

4θ4
dθ4, (2.2)

1

L
dl5(1−

α3

α1

) = f
′

5θ5
dθ5 + f

′

5θ6
dθ6,

1

L
dl6(1−

α3

α1

) = f
′

6θ5
dθ5 + f

′

6θ6
dθ6.
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where f
′
iθj

, i, j = 1, 2, 3, 4, 5, 6 is a partial derivative of the function fi with respect to the

angle θj.

The length of three members of the internal triangle can be expressed as:

FB = l7 = (L2
1f

2
1 + L2

3f
2
6 − 2L1L3f1f6 cosA

′
)1/2,

BD = l8 = (L2
1f

2
2 + L2

2f
2
3 − 2L1L2f2f3 cosB

′
)1/2, (2.3)

DF = l9 = (L2
2f

2
4 + L2

3f
2
5 − 2L2L3f4f5 cosC

′
)1/2,

A
′
= θ1 + θ6 + a, B

′
= θ2 + θ3 + b, C

′
= θ4 + θ5 + c

where a, b, c are the angles in the base triangle ACE (fig. 2.1). From (2.3), the following

relations are found

l7dl7 = (l1 − l6 cosA
′
)dl1 + (l6 − l1 cosA

′
)dl6 + l1l6 sin(A

′
(dθ1 + dθ6 + da),

l8dl8 = (l2 − l3 cosB
′
)dl2 + (l3 − l2 cosB

′
)dl3 + l2l3 sin(B

′
(dθ2 + dθ3 + db), (2.4)

l9dl9 = (l4 − l5 cosC
′
)dl4 + (l5 − l4 cosC

′
)dl5 + l4l5 sin(C

′
(dθ4 + dθ5 + dc).

where da, db, and dc are the differentials of the angles in the base triangle that change

when temperature changes (fig. 2.4).

In this chapter, it is assumed that the triangle ACE is equilateral : L1 = L2 = L3 = L

and 6 a = 6 b = 6 c = 60◦ and the skew angles adjacent to the same side of the base triangle

are equal to each other, i.e., θ1 = θ2 = t1, θ3 = θ4 = t2, θ5 = θ6 = t3 (fig. 2.5). So, from

(2.2), we can obtain

dt1 = (α1 − α1) cot t1dT,

dt2 = (α1 − α2) cot t2dT, (2.5)

dt3 = (α1 − α3) cot t3dT.

To obtain da, db, dc, the relations

L2 = L1
sin a

sin(a+ b)
, L3 = L1

sin b

sin(a+ b)

are used, from which the derivatives dL2 and dl3 can be found as

dL2 = dL1
sin a

sin(a+ b)
+ L1

(
cos a

sin(a+ b)
da− sin a cos(a+ b)

sin(a+ b)2
(da+ db)

)
,

dL3 = dL1
sin b

sin(a+ b)
+ L1

(
cos b

sin(a+ b)
db− sin b cos(a+ b)

sin(a+ b)2
(da+ db)

)
.
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Figure 2.5: A cell with three independent skew angles. The original six skew angles are
replaced by θ1 = θ2 = t1, θ3 = θ4 = t2, θ5 = θ6 = t3.

From these equations, da, db, and dc can be expressed through dL1 = L1α1dT , dL2 =

L2α2dT , and dL3 = L3α3dT as:

da =
dT

sin b

(
L3

L1

α3 cos(a+ b) +
L2

L1

α2 − cos b α1

)
,

db =
dT

sin a

(
L2

L1

α2 cos(a+ b) +
L3

L1

α3 − cos a α1

)
, (2.6)

dc = −da− db.

Substituting (2.5) and (2.6) into (2.4) and performing all necessary transformations,

three nonlinear equations linking the three skew angles ti, with the three normalized

thermal expansion coefficients along the lines AC, CE, and AE in the skewed triangle

are obtained:

−α1

α1

(cot t1 + cot b) +
α2

α1

1

sin b
+
α3

α1

(
cos(a+ b)

sin b
− cot t3

)
=

1

sinA′ (
α2

α1

− 1)(
cos t3
cos t1

+
cos t1
cos t3

− 2 cosA
′
)− cot t1 − cot t3,

−α1

α1

(cot t1 + cot a) +
α2

α1

(
cos(a+ b)

sin a
− cot t2

)
+
α3

α1

1

sin a
=

1

sinB′ (
α2

α1

− 1)(
cos t2
cos t1

+
cos t1
cos t2

− 2 cosB
′
)− cot t1 − cot t2, (2.7)

α1

α1

(cot a+ cot b)− α2

α1

(
cot b sin(a+ b)

sin a
+ cot t2

)
− α3

α1

(
cot a sin(a+ b)

sin b
+ cot t3

)
=

1

sinC ′ (
α2

α1

− 1)(
cos t3
cos t2

+
cos t2
cos t3

− 2 cosC
′
)− cot t2 − cot t3,
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The equations (2.7) are scale independent, contain the ratio α2/α1 as a parameter,

and couple three normalized CTEs in a cell α1/α1, α2/α1, and α3/α1. If the skew angles

are known, these three CTEs can be calculated using the following formulae:

α1

α1

=
∆1

∆
,

α2

α1

=
∆2

∆
,

α3

α1

=
∆3

∆

where

∆ = c11c22c33 + c21c32c13 + c12c23c31,

∆1 = F1(c22c33 − c32c23) + F2(c13c32 − c12c33)− F3(c22c13 − c12c23),

∆2 = F2(c11c33 − c13c31) + F3(c13c21 − c11c23 − F1(c21c33 − c31c23), (2.8)

∆3 = F3(c11c22 − c21c12) + F1(c21c32 − c31c22)− F2(c11c32 − c31c12),

c11 = − cot b− cot t1,

c12 =
1

sin b
,

c13 =
cos(a+ b)

sin b
− cot3,

c21 = − cot a− cot t1,

c22 =
cos(a+ b)

sin a
− cot t2, (2.9)

c23 =
1

sin a
,

c31 = cot a+ cot b,

c32 = − cot t2 − cot b
sin(a+ b)

sin a
,

c33 = − cot t3 − cot a
sin(a+ b)

sin b
,

F1 = − 1

sinA′′ (1−
α2

α1

)(
cos t1
cos t3

+
cos t3
cos t1

− 2 cosA
′′
)− cot t1 − cot t3,

F2 = − 1

sinB′′ (1−
α2

α1

)(
cos t1
cos t2

+
cos t2
cos t1

− 2 cosB
′′
)− cot t1 − cot t2, (2.10)

F3 = − 1

sinC ′′ (1−
α2

α1

)(
cos t2
cos t3

+
cos t3
cos t2

− 2 cosC
′′
)− cot t2 − cot t3,

In designing anisotropic lattices, it is necessary to solve the inverse problem of finding
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the skew angles when the values of three CTEs α1, α2, and α3 in each cell are known. If

a cell has only three different skew angles (this case is considered in this chapter), three

equations are enough to solve the inverse problem. In mathematical sense, the solutions

are combined from periodic functions and hence there are an infinite number of them,

but after accounting for the practical restrictions on skew angles the solution can be

considered unique.

From equation (2.7), it is seen that if any ti = 0, i = 1, 2, 3, then αi = α1, and the two

other skew angles do not influence it. If all the skew angles in a cell with an equilateral

base triangle are equal to θ, then the cell is isotropic with a constant coefficient of thermal

expansion in all directions equal to α, and these three equations can be transformed into

the equation for the expansion coefficient obtained by Steeves et al. (2007):

α

α1

=
1− 0.5(α2/α1) sin(2θ)(1/

√
3 + tan θ)

1− 0.5 sin(2θ)(1/
√

3 + tan θ)
. (2.11)

The equation can be rewritten in more compact form

α

α1

= 1 + (1− α2

α1

) tan θ tan(30◦ + θ).

In the isotropic configuration, the maximum of the function α/α1 is reached at θ =

−15◦; at θ > −15◦ the function decreases (see fig. 2.6). To avoid cell overlapping, we

consider skew angles in the range [−15◦, 30◦] though if the skew angle is on the right or

the left edges of the lattice it can be greater than 30◦.

Based on the formulae (2.7), fig. 2.6 illustrates the coupling of three normalized CTEs

αi/α1, i = 1, 2, 3 in a cell composed of titanium alloy (Ti-6Al-4V Grade 5) and magnesium

alloy (AZ81A type) at three different sets of values t1 = 30◦, t2 = 20◦; t1 = 15◦, t2 = 20◦;

t1 = −5◦, t2 = 20◦ and the ratio α2/α1 = 3.26, which corresponds to the ratio of the CTEs

of magnesium alloy (28 ppm/◦C) and titanium alloy (8.6 ppm/◦C). These materials are

chosen to maximize the ratio of their CTEs. The curves in figure (2.6) show that coupling

reduces the range of three cell CTEs that can satisfy the equations (2.7) compared to

the isotropic case.

2.3 Lattice design

In this section, planar, one-row lattices are considered. We can design lattices by desig-

nating the points on the substrates to which the lattice will be attached, and following

those points as the temperature changes. This will provide the changes in the lengths of
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Figure 2.6: The influence of two skew angles on ᾱ3/α1. α2/α1 = 3.26, which correspond
to the ratio of the CTEs of magnesium alloy and titanium alloy.

the sides of the equilateral triangles upon which the lattice cells are based, to which the

changing shapes of the lattice cells must be matched. For example, fig. 2.4 shows the

base triangles of two cells. Suppose the point A is fixed. When the temperature changes,

the other points B, C, D, E move to the positions B′, C ′, D′, E ′, respectively. The

new distances AB′, B′D′, C ′E ′ can be expressed in terms of the side length L and three

unknown CTEs of each cell. The following four conditions on the shape of the lattice

after temperature changes are sufficient to find three CTEs for each cell:

1. the distances between vertices connected to substrate 1 must be equal to L(1 +

A1dT );

2. the distances between vertices connected to substrate 2 must be equal to L(1 +

A2dT );

3. the distance between substrates, H, is fixed and independent of temperature; and

4. the lattice has a line of symmetry.
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The third condition is arbitrary; here, constant H is chosen, although ∆H > 0 and

∆H < 0 may alternatively be selected without changing the overall process (Chapter 3

and 4).

Using these conditions and deriving formulae for αi, i = 1, 2, 3, terms with α2
i are

neglected (which is reasonable because αi are small, typically of magnitude 10−6). As a

result, the formulae for α1, α2, α3 in each cell of two-cell, three-cell, and n-cell lattices

as functions of the CTEs of substrates A1 and A2 are obtained.

To work with several cells, denote αi1 = α1, αi2 = α2, αi3 = α3, where i is the number

of the cell in the row (the skeleton of a lattice is depicted in fig. 2.7). For example,

i = 1 for cell ABC and i = 2 for BDE. Along AB and BD j = 1, along BC and DE

j = 2, and along AC and BE j = 3. Consider a lattice consisting of two cells ABC

A B

C

D

E

F G

H H

α11

α12α13

α21

α22α23 αi3

αi1

αi2

line of
symmetry

Figure 2.7: Designation of CTEs in a multi-cell lattice. Note that the lines do not
represent actual cell members; these lines refer to the virtual equilateral triangles upon
which the cells are based, shown in fig. 2.1 as dashed lines. The cell vertices are A to
E, while the mid-points on the lower face of the cell are F and G. H is the height of
the cells. If the lattice has a line of symmetry, it would exist as the dashed line with
additional cells to the left.

and BDE (fig. 2.7). The lattice is pin-connected at A, B, and D to a substrate with

CTE A1 while at points C and E it is pin-connected to a substrate with CTE A2. At

the initial state AB = BC = AC = BD = DE = BE = L. When the temperature

changes, the lengths of these segments become L(1 +αijdT ). The first substrate and the

bottom level of the lattice have the same CTE (condition 1), α11 = α21 = A1. Similarly,

when temperature changes, the distance between points C and E changes according to

the formula L(1 + A2dT ) (condition 2). Denote FB = x. Then, for the first cell:

L2(1 + α12dT )2 − x2 = L2(1 + α13dT )2 − (L(1 + α11dT )− x)2.

Neglecting terms with α2
ij, the following relation is obtained

x = 0.5L(1 + (α11 + 2α12 − 2α13)dT ). (2.12)
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Using this formula, we can find from the second cell

BG = 0.5L(1 + (α21 − 2α22 + 2α23)dT ).

Thus, when the temperature changes, the distance between points C and E changes

according to

CE = L(1 + (α12 − α13 − α22 + α23 + A1)dT ).

Hence,

A2 = α12 − α13 − α22 + α23 + A1.

Also, we would like to design a lattice that does not expand along FC and GE, so

that the lattice cell height H remains constant when temperature changes (condition 3).

Applying the approach used above, for the first cell, for example, it can be written:

(H + dH)2 = L2(1 + α12dT )2 − 0.25L2(1 + (2α12 − 2α13 + α11)dT )2 =

(0.5
√

3L(1 + 2/3(α12 + α13 − 0.5α11)dT ))2.

Thus, the CTE along cells heights FC and GE is αH = 2
3
(α12 + α13 − 0.5α11). In this

case,

α12 + α13 − 0.5α11 = 0.

Finally, for more uniform deformation of the lattice, symmetry can be imposed through

α12 = α23 and α13 = α22 (condition 4).

For a lattice consisting of two symmetric cells, three CTEs in each cell can be found

as functions of the CTEs of the substrates:

α11 = α21 = A1,

α12 = α23 = 0.25A2, (2.13)

α13 = α22 = 0.5A1 − 0.25A2.

For a three-cell lattice similar formulae are obtained:

α11 = α21 = α31 = A1,

α12 = α33 = 0.5A2 − 0.25A1, (2.14)

α13 = α32 = 0.75A1 − 0.5A2,

α22 = α23 = 0.25A1.
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If the lattice contains 2n cells, n = 2, 3, 4... and is symmetrical with respect to the

vertical line passing through one of the bottom vertices (see the line of symmetry in

fig. 2.7) the formulae for cells lying to the right of the symmetry line are:

αi1 = A1,

αi2 = 0.5iA1 − 0.25(2i− 1)A2, (2.15)

αi3 = 0.25(2i− 1)A2 − 0.5(i− 1)A1,

where i = 1, 2, ...n.

If a lattice of more complex shape or just a lattice without the vertical line of symmetry

or consisting, for example, of an odd number of cells is designed, the formulae for the

cells CTEs can be obtained in similar way. If two substrates are connected by a one-row

lattice with three cells or more, they also can be connected by a lattice containing two or

more rows. This may be advantageous if a lattice possessing a particular ratio of width

to height is preferable.

2.4 Cells with weak anisotropy

We consider anisotropy weak if the change of angles in the base triangle (da, db, dc)

weakly influences the values of skew angles for given three cell CTEs and therefore can

be neglected. An example of weak anisotropy will be considered in Problem 1, Section

2.6. All results presented in this section pertain to the case of weak anisotropy. However,

analogous results for the cells with strong anisotropy can be obtained in similar way if

there is additional information about the cell skewness.

For cells with low anisotropy and consequently low coupling, the range Ω which

defines the upper and lower boundaries for cell CTEs can be found from equation (2.11).

In fig. 2.8, it is seen that the interval Ω increases with respect to the ratio α2/α1. Hence,

proper choice of the ratio α2/α1 can provide the existence of the solution t1, t2, t3 of

the equations (2.7) for all CTEs determined from kinematic conditions (2.13) or (2.14)

or (2.15). In other words, to select lattice materials, such a ratio α2/α1 that all CTEs

belong to the range Ω (fig. 2.8) must be chosen.

For a two-cell lattice, all values must belong to the interval Ω, and the CTEs, α1

and α2, of the two materials that comprise the lattice are restricted by the following
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Figure 2.8: Upper and lower boundaries of the normalized CTE, giving the range Ω, as a
function of the ratio α2/α1. The range of CTEs that can be obtained by a lattice made
of materials with known ratio α2/α1 is given by the interval between the red and blue
lines.

inequalities:

α2 + A1 > 2α1,

α2 + 0.25A2 > 2α1,

α2 + 0.5A1 − 0.25A2 > 2α1, (2.16)

α2 + 12.93α1 > 13.93A1,

α2 + 12.93α1 > 3.48A2,

α2 + 12.93α1 > 6.97A1 − 3.48A2.

For a three-cell lattice, the conditions on the CTEs of the materials comprising the
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lattice are:

α2 + 0.25A1 > 2α1,

α2 + 0.5A2 − 0.25A1 > 2α1,

α2 + 0.75A1 − 0.5A2 > 2α1, (2.17)

α2 + 12.93α1 > 13.93A1,

α2 + 12.93α1 > 6.97A2 − 3.48A1,

α2 + 12.93α1 > 10.45A1 − 6.97A2.

For an n-cell lattice, the conditions for the lattice materials are:

α2 + A1 > 2α1,

α2 − 0.25A2 + 0.5A1 + 0.5i(A2 − A1) > 2α1, (2.18)

α2 + 12.93α1 > 13.93A1,

α2 + 12.93α1 + 6.97i(A2 − A1) > 3.48A2.

Two additional analogous conditions define the maximum number of cells that the lattice

made of these materials can contain:

n <
2α2 + 0.5A2 − 4α1

A2 − A1

n <
0.5A2 + 0.14α2 + 1.86α1 − A1

A2 − A1

. (2.19)

These inequalities provide that all CTEs in an n-cell lattice belong to the range Ω.

More precise conditions for the CTEs of two-, three- , and n-cell lattices can be obtained

from strongly anisotropic cells (2.7), but this is only possible if additional information

for the lattice shape is known, i.e., if the skew angles adjacent to two sides of the base

triangle are the same and the skew angles adjacent to the third side of the base triangle

are close to zero (these kind of cells will be used for the design of actuators).

2.5 General algorithm of lattice design

Assembling all the reasoning presented in the previous sections, the following algorithm

is proposed for lattice tailoring:

1. Choose the initial number of cells in the lattice.
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2. Locate all vertices where cells connect to each other or the substrates.

3. Using the formulae (2.13), (2.14), or (2.15), find the CTEs αij in all cells of the

lattice as functions of the substrate CTEs A1 and A2.

4. The relations (2.16), (2.13), (2.18) can be used for the initial choice of lattice

material CTEs and their ratio α2/α1.

5. Check the existence of solutions to equations (2.7) at calculated values of normalized

CTEs of the current cell αi/α1 = αij/α1, i = 1, 2, 3 and the chosen ratio of α2/α1.

6. If the solution exists, find the skew angles of the current cell. Then repeat the

previous step with the next cell of the lattice.

7. If the solution does not exist, there are three options

(a) Choose lattice materials with a higher value of the ratio α2/α1.

(b) Use unequal negative skew angles adjacent to the cell members in order to

provide a wider range of cell CTEs.

(c) Reduce the number of cells in the lattice.

8. After step 6, repeat step 4.

9. The lattice design halts when this procedure is performed for all cells in the lattice.

If the lattice can be successfully designed, it may be possible to increase the number

of units cells and redesign the lattice, beginning at step 1.

The initial number of lattice cells is determined heuristically, accounting for the geometry

of the substrates and the difference between their CTEs. The larger the difference, the

fewer cells the lattice can contain. Problem 6 from the next section will illustrate this.

The final number of cells is determined through item 7(c) in the design algorithm.

2.6 Examples

This section describes the design of several lattices made of different materials and con-

necting substrates with different CTEs. The examples show how the CTEs of the lattice

and the substrate materials, along with the number of cells, influence the lattice shape.

This information is essential for proper selection of lattice and substrate materials in the

design of thermal actuators (Chapter 4).
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The materials and their CTEs that are used in this section are presented below:

Table 2.1: Material CTEs

Materials CTE (ppm/◦C)
Young’s

modulus (GPa)

Poisson’s

ratio

Aluminum 22.2 70 0.33

Austenitic stainless steel (304) 17.3 193 0.29

Brass 18.7 97 0.35

Ferritic stainless steel 9.9 190 0.275

Kovar 5.5 138 0.317

Magnesium alloy (AZ81A type) 28.0 45 0.34

Titanium alloy (Ti-6Al-4V Grade 5) 8.6 116 0.342

Torlon 4203L 30.6 4.0 0.45

Zirconium 5.7 88 0.34

Problem 1: This is an example of connecting titanium and stainless steel substrates

with a two-cell lattice made of titanium and magnesium alloy, such that α2/α1 = 3.26.

From equations (2.13), we find: α11/α1 = α21/α1 = A1/α1 = 1, α12/α1 = α23/α1 =

0.25A2/α1 = 0.5, α13/α1 = α23/α1 = 0.5A1/α1 − 0.25A2 = 0. Now, using formulae

(2.7), the skew angles in the left cell can be calculated as t1 = 0.0◦, t2 = 13◦, t3 = 24.9◦

(fig. 2.9). These values are found from the equations accounting for strong anisotropy. If

the change of the angles in the base triangle were not considered, the skew angles would

be t1 = 0.0◦, t2 = 13◦, t3 = 20.6◦. So, the anisotropy can be treated as weak and the

inequalities (2.16) can be used to define a region of allowable values of α1 and α2; the

region is plotted in fig. 2.10. For this case, the third and the forth inequalities in (2.16)

are the most restrictive. Their intersection provides a minimum of α2 = 16.1 ppm/◦C,

with corresponding α1 = 8.0 ppm/◦C.

The utility of the lattice adapter can be illustrated by this example. For comparison,

a bimetallic strip consisting of titanium and stainless steel layers of the same thickness

welded together and uniformly heated by 100◦C will be bent due to thermal expansion

mismatch (Timoshenko, 1925). The maximum stress during heating of this bimetallic

strip as calculated in Timoshenko (1925) is 50 MPa. The pin-connected lattice adapter

described here experiences no thermal mismatch stress.

Problem 2: The same lattice materials can be used to connect other substrates, which

have CTEs that are more widely different, for example, zirconium and brass. In this

case, α11/α1 = α21/α1 = A1/α1 = 0.66, α12/α1 = α23/α1 = 0.25A2/α1 = 0.54, α13/α1 =

α23/α1 = 0.5A1/α1 − 0.25A2 = −0.21. The skew angles for the left cell are t1 = 8.3◦,
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Stainless steel substrate
CTE = A2 = 17.3 ppm/C

Titanium substrate
CTE = A1 = 8.6 ppm/C
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Figure 2.9: Problem 1: Two-cell magnesium alloy-titanium lattice to connect titanium
and stainless steel substrates.

t2 = 11◦, t3 = 27.5◦ (fig. 2.11). It is seen that skew angles of the lattice cells are greater

than those from Problem 1. While zirconium and brass are unlikely candidates for lattice

construction, their widely differing CTEs make them good example materials.

Problem 3: We can connect the same substrates as Problem 2 using other materials

for the lattice, for example a Kovar (iron-nickel cobalt alloy) and a magnesium alloy

(AZ81A type). Using the equations (2.13), we have α11/α1 = α21/α1 = A1/α1 = 1.03,

α12/α1 = α23/α1 = 0.25A2/α1 = 0.85, α13/α1 = α23/α1 = 0.5A1/α1 − 0.25A2 = −0.33.

From formulae (2.7), the skew angles in the left cell can be calculated as t1 = −0.5◦,

t2 = 2.6◦, t3 = 21.85◦ (fig. 2.12). In this lattice, the ratio α2/α1 is greater than in the

lattices of the previous problems, which is why the lattice cells are less skewed.

In the next problems, bimaterial lattices with high anisotropy are designed based on

an equilateral triangle.

Problem 4: A two-cell aluminum-titanium lattice connecting aluminum and titanium

substrates can be designed if large skew angles are acceptable. So, α2/α1 = 2.58 and

α11/α1 = α21/α1 = A1/α1 = 1, α12/α1 = α23/α1 = 0.25A2/α1 = 0.645, α13/α1 =

α23/α1 = 0.5A1/α1 − 0.25A2 = −0.145. The skew angles for the left cell are t1 = 0◦,

t2 = 11.35◦, t3 = 34.94◦ (fig. 2.13). Here, t3 > 30◦ is allowed because these are the

exterior sides of the lattice and hence there are no adjacent cells to cause interference. It

does however make the addition of further cells impossible.



Chapter 2. One-row adaptive bimaterial lattices 29

α2
+ A1

> 2α1

α2
+ 0.25A2

> 2α1

α2
+ 0.5 A1

- 0.25A2
> 2α1

α
2 + 12.93α

1 > 13.94A
1

α
2 + 12.93α

1 > 3.48A
2

α
2 + 12.93α

1 > 6.97A
1 - 3.48A

2

ALLOWABLE
REGION

A1 = 8.6 ppm/oC (Ti)
A2 = 17.3 ppm/oC (St. Steel) 

-10 0 10 20 30 40

0

50

100

150

α1 (ppm/oC)

α 2
(p

pm
/o C

)

α1 > 0

Figure 2.10: Problem 1: The white region indicates the ranges for the CTEs of the lattice
materials that can be used to design the lattice for Problem 1. The lines defining the
allowable region are the inequalities in equation (2.16). Note the difference in the scales
of the two axes; for small or moderately large values of α1, very large values of α2 are
implied.
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Zirconium substrate
CTE = A1 = 5.7 ppm/oC

Ti

Mg
27

.5
o

Figure 2.11: Problem 2: Two-cell magnesium-titanium lattice to connect zirconium and
brass substrates.
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Figure 2.12: Problem 3: Two-cell magnesium alloy-Kovar lattice to connect zirconium
and brass substrates.
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Aluminum substrate
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Titanium substrate
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Figure 2.13: Problem 4: Two-cell titanium-magnesium alloy lattice to connect titanium
and aluminum substrates.

Problem 5: In this problem, we design a three-cell magnesium-titanium lattice con-

necting aluminum and titanium substrates. Using formulae (2.14), we find: α11/α1 =

α21/α1 = α31/α1 = 1, α12/α1 = α33/α1 = 1.04, α13/α1 = α32/α1 = −0.54, α22/α1 =

α23/α1 = 0.25. The skew angles for the first cell on the left are t1 = 0.0◦, t2 = −1.0◦,

t3 = 36.8◦. The skew angles for the second cell are t1 = 0.0◦, t2 = 19.1◦, t3 = 19.1◦

(fig. 2.14). The skew angles t3 in the first cell on the left and the t2 in last cell on the

right are greater than 30◦. In this case, it is admissible because these skew angles do not

cause overlapping with adjoining lattice cells, but limits to the number of cells in this

lattice to three.

Problem 6: If the substrate materials have CTEs that are relatively similar (A2/A1 is

less than approximately 2), a lattice consisting of four cells and more can be designed.

For example, suppose we would like to connect titanium and stainless steel substrates

with a magnesium-titanium lattice. For such materials, the maximum total number of

cells in the lattice is 4, according to inequalities (2.19). Using formulae (2.15), we have:

α11/α1 = α21/α1 = 1, α12/α1 = 0.5A1/α1−0.25A2/α1 = 0.03, α13/α1 = 0.25A2/α1 = 0.5,

α22/α1 = A1/α1−0.75A2/α1 = −0.5, α23/α1 = 0.75A2/α1−0.5A1/α1 = 1.0. Now, using

the equations (2.7), for cell 1: t1 = 0.0◦, t2 = 24.45◦, t3 = 13◦. For cell 2: t1 = 0.0◦,

t2 = 35.9◦, t3 = 0.0◦ (fig. 2.15). The two other cells are symmetric with respect to the

vertical line passing through the middle of the lattice. If the substrates were titanium

(A1 = 8.6 ppm/◦C) and ferritic stainless steel (A2 = 9.9 ppm/◦C), then the maximum
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Aluminium substrate
CTE = A2 = 22.2 ppm/oC

Titanium substrate
CTE = A1 = 8.6 ppm/oC
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Figure 2.14: Problem 5: Three-cell titanium-magnesium alloy lattice to connect titanium
and aluminum substrates.

number of the cells in the lattice would be 22.

2

Titanium substrate
CTE = A1 = 8.6 ppm/oC

Ti

Mg

Stainless steel substrate
CTE = A2 = 17.3 ppm/oC

1

Figure 2.15: Problem 6: Four-cell magnesium alloy-titanium lattice for stainless steel
and titanium substrates.

2.7 Concluding remarks

The anisotropic planar lattices described in this chapter provide a structural option

for connecting materials with differeng CTEs without generating thermal stresses during

temperature excursions. Combining cells with anisotropic CTEs into a pin-jointed lattice
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provides the capability to achieve desirable, and differing, CTEs on the bottom and top

edges of the lattice. The solutions to the problems considered above show that the more

the substrate CTEs differ, the more the lattice cells are skewed. On the other hand,

the higher the ratio of CTEs of the lattice materials, the less the cells of the lattice are

skewed. Also, different negative skew angles adjacent to the same side of the cell can

provide a wider range of CTEs compared to corresponding skew angles equal to each

other. The larger the difference between substrate CTEs is, the fewer cells a lattice can

contain.



Chapter 3

Advanced adaptive bimaterial

lattices

In this chapter, we consider the design of adaptive lattices with more complicated shapes

than the lattices considered in Chapter 2 1 2 3. Earlier, we derived equations connecting

three CTEs in a cell with three skew angles for an equilateral base triangle. First, we

will generalize these equations for cells based on triangles with arbitrary angles and

six independent skew angles. Second, we will design two-row lattices, an angled lattice

that can be used to mount a cantilever on the main body of a structure, a non-planar

hexagonal lattice connecting two circular disks that can be used for lens alignment, and

two lattices that not only mitigate stresses due to thermal expansion mismatch but also

compensate thermal expansion of substrates along the lattice height: a lattice controlling

total deflection of a structure and a lattice connected a shaft and a collar. Third, we

study the structural efficiency of a lattice cell under uniaxial loading and examine ways

to increase it. It is important because structural efficiency reduces in cells with high

anisotropy. However, three CTEs in each cell can be attained by different combination of

six skew angles, from which we choose that one providing the best structural efficiency.

1M M Toropova and C A Steeves. Design of composite bi-material lattice adapters. 1st International
Conference on Mechanics of Composites , Stony Brook University, USA, June 8-12 , 2014.

2M M Toropova and C A Steeves. Adaptive bi-material lattices to mitigate thermal expansion mis-
match in satellite structures. 65th International Astronautical Congress, Toronto, Canada, September
29 October 3, 2014.

3M M Toropova and C A Steeves. Adaptive bimaterial lattices to mitigate thermal expan- sion
mismatch stresses in satellite structures. Acta Astronautica, 113:132-141, 2015.

34
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3.1 Cell design

A typical cell of the lattice is designed based on a virtual triangle ACE that can have

different angles a, b, and c and side lengths L1, L2, and L3 (fig. 3.1). Physically, the cell

consists of a hexagon ABCDEF made of a material with CTE α1 and pin-connected

to an internal unskewed triangle BDF made of a material with CTE α2 Toropova and

Steeves (2015c). The skew angles of the hexagon are denoted as θ1, θ2, θ3, θ4, θ5, and θ6.

A

B

C

D

E

F

l1 l2

l3

l4l5

l6 θ6

θ1 θ2

θ3

θ4θ5

High CTELow CTE

L1

L2
L3

A C

E

L1

L2L3

l7 l8

l9

a b

c

Figure 3.1: One cell of an anisotropic lattice. The members AB, BC, CD, DE, EF , and
AF have low CTE, depicted in black. The members BD, DF , BF have higher CTE,
depicted in grey. θ1, θ2, θ3, θ4, θ5, θ6, are skew angles of the physical skewed hexagon.
The virtual triangle upon which the cell is based is shown as a dashed line on the left
and as solid line on the right. It is the relative movement of the vertices of the virtual
triangle that defines the effective thermal expansion of the lattice.

When the temperature changes, all members expand according to their CTE: dli =

liα1dT , i = (1, 6) and dli = liα2dT , i = (7, 9). The members of the hexagon rotate, which

accommodates (or amplifies) the effect of their extension. Because the skew angles are

different, the side lengths of the base triangle change with different rate dL1 = α1L1dT ,

dL2 = α2L2dT , dL3 = α3L3dT where α1, α2, α3 are three cell CTEs along the lines AC,

CE, and AE, respectively, and T is temperature (fig. 3.2). It means that the cell has

anisotropic thermal expansion. Also, because the vertices can be moved deterministically,

the cell behaves like a thermal actuator.



Chapter 3. Advanced adaptive bimaterial lattices 36

ΔT

C

A

C

A BB

Figure 3.2: Sketch of the kinematics of the thermal expansion of an anisotropic bimaterial
lattice cell.

Repeating the procedure described in Chapter 2 and accounting for

l27
l1l6 sinA′ (α2 − α1)dT = dθ1 + dθ6 + da,

l28
l2l3 sinB′ (α2 − α1)dT = dθ2 + dθ3 + db,

l29
l4l5 sinC ′ (α2 − α1)dT = dθ4 + dθ5 + dc,

we obtain three nonlinear equations linking the six skew angles θi with three normalized

thermal expansion coefficients along the lines AC, CE, and AE in the skewed triangle

where L1 = AC, L2 = CE, and L3 = AE:
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Equations (3.1) are scale independent and contain the ratio α2/α1 as a parameter.

The coupling of three normalized CTEs in a cell (α1/α1, α2/α1, and α3/α1) is strong.

Also, equations (3.1) define the range for each α1/α1, α2/α1, and α3/α1. The equations

(3.1) are linear with respect to αi/α1, i = 1, 2, 3 , but their dependence on the skew

angles is nonlinear. If the skew angles are known, three CTEs of a cell can be calculated

by a number of different ways, for example, by using Kramer’s method. If any skew angle

ti = 0, they must be solved with ti → 0 to avoid division by zero.

3.2 Design of two-row lattices with cell rotation

In Chapter 2, we designed one-row lattices consisting of two, three, or n cells. However,

as it was shown, the maximum number of cells was limited because the total deflections

that must be accommodated increase with lattice length and with the increase in the

difference between the CTEs of substrate materials. To design a lattice that mitigates

thermal mismatch stresses between substrates with a large difference in CTEs, several

strategies can be employed. First, lattice materials with larger α2/α1 ratios can be chosen.

Negative nonequal skew angles adjacent to the same side of the base triangle also increase

cell CTEs. A third method to connect substrates with large differences in CTEs is to

use two-row lattices, where the lower row is designed as if it connects two substrates

with the same CTE, and the heights of both rows remain independent of temperature:

the number of cells in the upper row is one less than in the lower row. Note that, as

will be shown in Section 3.5, connecting two specific substrates with a two-row lattice

may provide better structural efficiency than a one-row lattice. A fourth, more powerful,

strategy to connect substrates with significant difference in their CTEs is to use two-row

lattices with cell rotation. The restriction that the height of the cells remains constant

is relaxed, enabling individual cells to rotate. This can be used to increase the effective

CTEs that can be generated on the lattice boundaries. To clarify the basic principles

of their design, we analyze cells based on equilateral triangles with skew angles adjacent

to the same side equal to each other. The lattices have a vertical line of symmetry and

connect two substrates with constant separation H. Particular cells in both rows can

change their heights h. Such lattices can be used to connect substrates with a large

difference in CTEs.

1. First, consider a lattice consisting of three cells in the lower row and two cells in

the upper row. Its skeleton is depicted on fig. 3.3. Suppose that the first cell in the lower

row shrinks along the height CF with the CTE −αh, and the second cell extends along

the height EG with the CTE αh. The third cell in the lower row behaves like the first
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because of symmetry. After heating the points A, B, C, D, E, F , M , and N become

A′, B′, C ′, D′, E ′, F ′, M ′, and N ′ respectively. This allows the cells in the upper row

to acquire additional rotation and provide greater extension between the vertices M and

N that connected to the substrate 2. Dashed lines show the positions of the cells after

heating.
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α12
α13
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α22
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α33
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α32

line of
sym m etry

C'

E'
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β13

β23

β22

H β21

OMM' N N'T

A' B' D'
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line of symmetry
O

Figure 3.3: The virtual cells of a two row lattice with five cells showing cell rotation.
The solid lines show the initial position of the virtual lattice, while the dashed lines show
the configuration after thermal changes. Note that the two cells in the top row rotate in
addition to changing shape due to thermal expansion.

To obtain the formulae for the calculation of three CTEs in each cell of the lattice, we

need nomenclature to identify the different CTEs of the lattice cells. Denote by αij the

CTEs in the cells of the lower row: the first index i indicates the number of a cell in the

row and the second index indicates the number of the CTE in the cell. For example, in

the cell ABC, α11 is the CTE along AB, α12 is the CTE along BC, and α13 is the CTE

along AC. To identify the CTEs of the upper row cells, we introduce βij with indices i

and j having the same meaning as for αij (fig. 3.3). In the design of the lattice, suppose

that

β11 = β21 = α11 = α21 = α31 = A1. (3.2)

For the remaining αij, the formulae derived in Toropova and Steeves (2014c) for a three-
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cell one-row lattice where A1 = A2 and αh 6= 0 can be used. Therefore, we have

α12 = α13 = α32 = α33 = 0.25A1 − 0.75αh, (3.3)

α22 = α23 = 0.25A1 + 0.75αh,

In the second row, (M ′O)2 = L2(1 + β12dT )2 − 0.75L2(1 − αhdT )2 = (0.5L(1 + (4β12 +

3αh)dT ))2, where L is the side length of the base triangle of the lattice cells and dT is

the increment of temperature. On the other hand, because the distance between points

M and N extends with the CTE A2, M
′O = 0.5L(1 + A2dT ). Hence, neglecting terms

with dT 2, we have

β12 = β23 = 0.25A2 − 0.75αh, (3.4)

Similarly, (TM ′)2 = L2(1 + β13dT )2− 0.75L2(1 +αhdT )2 = (0.5L(1 + (4β13− 3αh)dT ))2.

Thus, when temperature changes, TO = L(1 + A1dT ) = 0.5L(1 + (4β13 − 3αhdT ) +

0.5L(1 + (4β12 + 3αh)dT ). Therefore,

β13 = β22 = 0.5A1 − 0.25A2 + 0.75αh. (3.5)

If αh ≡ 0, the formulae (3.4-3.5) coincide with the formulae for two-cell one-row lattice

obtained in Toropova and Steeves (2014c).

2. Consider a lattice containing four cells in the lower row and three cells in the upper

row. Its skeleton is shown in fig. 3.4. Suppose that the first and the fourth cells in the

lower row shrink along their heights with the CTE −αh, while the second and the third

cells extend along their heights with the CTE αh. After heating, the lattice cells will

have the position indicated by dashed lines. To find αij, we can use the formulae (2.15)

for 2n-cell one-row lattices at A1 = A2 and αh ≡ 0:

α12 = α13 = α42 = α43 = 0.25A1 − 0.75αh, (3.6)

α22 = α23 = α32 = α33 = 0.25A1 + 0.75αh. (3.7)

Similar to a five-cell lattice, we design a seven-cell lattice with the lower row as if it

connects two substrates with the same CTE, therefore

β11 = β21 = β31 = α11 = α21 = α31 = α41 = A1. (3.8)

Using the results obtained above, we write M ′N + NO = 0.5L(1 + (4β12 + 3αh)dT ) +
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Figure 3.4: The virtual cells of a two row lattice with seven cells, where the solid lines
are the virtual cells before and the dashed lines the cells after thermal expansion. Again,
note that the cells in the upper row rotate because the height h of the cell in the lower
row is permitted to change.

0.5L(1 + A1dT ) = L(1 + A2dT ). From this, we find

β12 = β33 = 0.5A2 − 0.25A1 − 0.75αh. (3.9)

Similarly, TM ′ +M ′N +NO = 0.5L(1 + (4β12 + 3αh)dT ) + 0.5L(1 +A1dT ) + 0.5L(1 +

(4β13 − 3αh)dT ) = 1.5L(1 + A1dT ). From this, we have

β13 = β32 = 0.75A1 − 0.5A2 + 0.75αh. (3.10)

The middle cell in the upper row behaves like the first cell in the lower row, hence

β22 = β23 = 0.25A1 − 0.75αh. (3.11)

In this case, again if αh ≡ 0, the formulae (3.9-3.11) coincide with formulae obtained in

Toropova and Steeves (2014c) for three-cell one-row lattice.

Two materials of the lattice, with CTEs α1 and α2, and the CTE αh of the cell height,

reflecting the degree of the cell rotation, must be chosen to satisfy the equations (3.1).

The larger αh is, the more the left and the right cells in the upper row rotate (fig. 3.3,

fig. 3.4). If αh ≡ 0, there is no rotation; this case was considered in the previous chapter.

To solve equations (3.1), we also need to know the ratio α2/α1. The solution to the

problem of material choice is the same as for a one-row lattice, and it is considered in
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detail in Chapter 2.

The CTEs of the materials used in the examples below are presented in the Table

2.1.

Example 1: The higher values of normalized CTEs can be reached at negative

nonequal skew angles: θ1 6= θ2, θ3 6= θ4, θ5 6= θ6. This case will be illustrated by a

three-cell titanium-magnesium alloy lattice connecting titanium and magnesium alloy

substrates (fig. 3.5). We used negative unequal skew angles to provide a wider range of

α2 in the left cell and α3 in the right cell.

From formulae (2.14), we have α11/α1 = α21/α1 = α31/α1 = 1, α12/α1 = α33/α1 =

1.375, α13/α1 = α32/α1 = −0.875, α22/α1 = α23/α1 = 0.25. To get a large positive

value of α12/α1, we can use negative nonsymmetric skew angles θ3 6= θ4 and for a small

negative value of α13/α1, we can use symmetric angles greater than 30◦; this will not

lead to the overlapping of the cells because these skew angles are adjacent to the external

sides of the lattice. The skew angles for the second cell are the same as in Problem 5

(Chapter 2). The solution for the first cell on the left is not unique, for example, the

skew angles that satisfy equations (2.7) may be θ1 = θ2 = 0.0◦, θ3 = −14.19◦, θ4 = −5.2◦,

θ5 = θ6 = 37.75◦. The sketch of the lattice is in fig. 3.5. Note that this problem has

infinite number of solutions if we use non-equal skew angles adjacent to the same side of

a base triangle.

Titanium substrate CTE = A1 = 8.6 ppm/°C

Magnesium alloy substrate CTE = A2 = 28 ppm/°C

Ti

Mg
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Figure 3.5: A three-cell titanium-magnesium alloy lattice to connect titanium and mag-
nesium substrates. The available range of thermal expansion is expanded by allowing the
six skew angles to be independent. The lattice has large and negative skew angles and is
structurally inefficient.

This problem can be solved by using a two-row five-cell titanium-magnesium alloy

lattice, hence, α2/α1 = 3.26. Suppose αh ≡ 0. Then, from the equations derived in
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this section (3.2-3.5), we obtain: α11/α1 = α21/α1 = α31/α1 = β11/α1 = β21/α1 = 1,

α12/α1 = α13/α1 = α22/α1 = α23/α1 = α32/α1 = α33/α1 = 0.25, β12/α1 = β23/α1 =

0.81, = β13α1 = β22/α1 = −0.31. Now, using formulae (3.1), we find that for the cells in

the lower row θ1 = θ2 = 0.0◦, θ3 = θ4 = θ5 = θ6 = 19.1◦. For the left cell in the upper

row, θ1 = θ2 = 0.0◦, θ3 = θ4 = 4.9◦, θ5 = θ6 = 32.0◦. The right cell is a reflection of the

left cells (fig. 3.6). In this problem, we do not need to use rotation of the cells. However,

 Magnesium alloy substrate CTE = A2 = 28 ppm/°C

Titanium substrate CTE = A1 = 8.6 ppm/°C

Ti

Mg

Figure 3.6: A two-row titanium-magnesium alloy lattice to connect titanium and mag-
nesium alloy substrates. The skewness of the lattice is less than for the one-row system.

if the CTE difference between A1 and A2 is more substantial, we cannot achieve a feasible

lattice design without cell rotation. The following example illustrates this.

Example 2: Suppose, we would like to connect titanium and magnesium alloy

substrates with a titanium-magnesium alloy two-row seven cell lattice. Choose the CTE

αh that reflects the rotation of the left and the right cells in the upper row as αh/α1 = 0.7.

We know that αi1/α1 = A1/α1 = 1, i = 1, 2, 3, 4. From formulae (3.6-3.11), we find:

α12/α1 = α13/α1 = α42/α1 = α43/α1 = −0.275, α22/α1 = α23/α1 = α32/α1 = α33/α1 =

0.775, β12/α1 = β33/α1 = 0.85, β13/α1 = β32/α1 = −0.35 β22/α1 = β23/α1 = −0.275, .

Now, using formulae (3.1), the skew angles can be calculated as: cells 1, 4, 6: θ1 = θ2 =

0.0◦, θ3 = θ4 = θ5 = θ6 = 26.0◦; cells 2, 3: θ1 = θ2 = 0.0◦, θ3 = θ4 = θ5 = θ6 = 7.9◦; cell
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5: θ1 = θ2 = 0.0◦, θ3 = θ4 = 4◦, θ5 = θ6 = 32.8◦; cell 7: θ1 = θ2 = 0.0◦, θ3 = θ4 = 32.8◦,

θ5 = θ6 = 4◦ (fig. 3.7). Thus, the coefficient αh 6= 0 can extend the range of αi,

Magnesium alloy substrate CTE = A2 = 28 ppm/°C

Titanium substrate CTE = A1 = 8.6 ppm/°C

Ti

Mg

Figure 3.7: Sketch of a two-row, seven cell titanium-magnesium alloy lattice to connect
titanium and magnesium alloy substrates.

i = 1, 2, 3. However, as will be shown in section 3.5, it leads to the reduction of the

structural efficiency of the lattice.

Example 3: To connect substrates made of materials with an even larger difference

in their CTEs, for example, titanium and Torlon 4203L, we can use lattice materials with

larger difference in their CTEs to increase the ratio α2/α1. Additionally, we can increase

the rotation of the cells. So, α2/α1 = 3.26. Let αh/α1 = 0.8. In this problem, we will

use the same sketch as in Example 2. Therefore αi1/α1 = A1/α1 = 1, i = 1, 2, 3, 4. From

formulae (3.6-3.11), we find: α12/α1 = α13/α1 = α42/α1 = α43/α1 = −0.35, α22/α1 =

α23/α1 = α32/α1 = α33/α1 = 0.85, β12/α1 = β33/α1 = 0.929, β13/α1 = β32/α1 = −0.429

β22/α1 = β23/α1 = −0.35, . The skew angles will be: cells 1, 4, 6: θ1 = θ2 = 0.0◦,

θ3 = θ4 = θ5 = θ6 = 25.1◦; cells 2, 3: θ1 = θ2 = 0.0◦, θ3 = θ4 = θ5 = θ6 = 5◦; cell 5:

θ1 = θ2 = 0.0◦, θ3 = θ4 = 1.72◦, θ5 = θ6 = 31.88◦; cell 7: θ1 = θ2 = 0.0◦, θ3 = θ4 = 31.88◦,

θ5 = θ6 = 1.72◦ As can be seen, the increased cell rotation and lattice materials with

larger difference in their CTEs allow us to design a lattice connecting titanium and Torlon

substrates that has approximately the same skewness as in Example 2.
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3.3 Design of advanced lattices

In this section, we show how to calculate CTEs of the lattices with more complicated

shapes.

Example 4: Here, we design a four-cell titanium-magnesium angled lattice that can

be used for mounting, for example, a cantilever on a satellite surface. Furthermore assume

the first substrate is titanium and the second substrate is aluminum. Consider a skeleton

of the lattice (fig. 3.8) that is symmetric with respect to the line OE. Suppose the

right angle in the titanium substrate at the point O and the distances d and r = d
√

(2)

between substrates remain invariant when temperature changes. From the triangle COE,

it is seen that extended CE is

CE2 = d2 + d2A2
1dT

2.

Neglecting the term with dT 2, we conclude that the right angle at the point C remains

invariant with temperature and the CTE along CE αCE = 0. It is obvious that the CTE

along BC αBC = A1. Now, again neglecting the term with dT 2, the extended distance

BE becomes

BE2 = (
√

2d(1 + 0.5A1dT ))2,

which means that αBE = 0.5A1. From (3.1) applied to the cell with base triangle EBC

with α = β = 45◦, γ = 90◦, L1 = d
√

2, L2 = L3 = d, we find θ1 = θ2 = 28.5◦,

θ3 = θ4 = 0◦, θ5 = θ6 = 20.2◦. Now, we design a cell based on an equilateral triangle

ABD with L1 = L2 = L3 = 2d/
√

3. Using formulae (2.12) and accounting for the

extension along the segments BC and CO, we find α1/α1 = 1, α2/α1 = 0.896, and

α3/α1 = −0.396. From (3.1) applied to the cell based on an equilateral triangle, the

skew angles are θ1 = θ2 = 0◦, θ3 = θ4 = 5.1◦, θ5 = θ6 = 30.6◦. The sketch of the whole

lattice is depicted in fig. 3.9.

Example 5: In this problem, we would like to design a non-planar lattice connecting

two circular disks having the same radius R and distance from each other H. This

configuration may occur in optical devices, such as telescopes. Let the lattice consists of

n cells. It means that the angle AO1B = 2φ = 360◦/n (fig. 3.10). When the temperature

changes, each disk expands axisymmetrically. That is, the CTE along AB αAB = A1, and

the CTEs along AT and BT are equal to each other: αAT = αBT . To find them, first we

need to find the CTE along ST αST . To do this, we introduce a coordinate system O1xyz

as depicted in fig. 3.10. We will denote the coordinates of points and lengths of segments
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Aluminum substrate
CTE=A2=22.2 ppm/C

Titanium substrate
CTE=A1=8.6 ppm/C

r

d

d
A

D

CB

E

O
oC

Figure 3.8: Problem 1. The
skeleton of an angled titanium-
magnesium alloy lattice to con-
nect aluminum and titanium an-
gled substrates.

Aluminum substrate
CTE=A2=22.2 ppm/°C

r

d

d

Titanium substrate
CTE=A2=8.6 ppm/°C

Mg

Ti

Figure 3.9: Problem 1. An angled
titanium-magnesium alloy lattice to
connect an aluminum cantilever to a
titanium base.

at the initial state with subscript o, while after temperature changes, the same objects

will be marked by subscript n: So(R cosφ, 0, 0), To(R, 0, H), Sn(R(1 +A1dT ) cosφ, 0, 0),

Tn(R(1 + A2dT ), 0, H). Hence, neglecting the terms with dT 2, we find that ST 2
o =

4R2 sin4 φ/2 +H2 and

ST 2
n = (4R2 sin4 φ

2
+H2)(1 +

4R2 sin2 φ
2
(A2 − A1 cosφ)

4R2 sin4 φ
2

+H2
dT ).

Thus,

αST =
2R2 sin2 φ

2
(A2 − A1 cosφ)

4R2 sin4 φ
2

+H2
. (3.12)

On the other hand, consider the triangle ABT . Let L1 = AB, L2 = L3 = AT = BT .

From this triangle, neglecting terms with dT 2, we find

ST 2
n = L2

3 − 0.25L2
1 + 2dT (l23αAT − 0.25L2

1A1).
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Noting that ST 2
o = L2

3 − 0.25L2
1 and comparing with (3.12), we find

αAT = αBT =
2R2 sin2 φ

2
(A2 − A1 cosφ)

4R2 sin4 φ
2

+H2
(1− L2

1

4L2
3

) +
L2
1A1

4L2
3

.

x

y

z

A

B
S

O1

T

O2

φ φ

 
Substrate 2 
with CTE A2

Substrate 1 
with CTE A1

H

Figure 3.10: Problem 2. The
base triangle for a cell of the
lattice connecting two circular
disks.

Aluminum substrate 
CTE=A2=22.2 ppm/°C

Titanium substrate 
CTE=A1=8.6 ppm/°C

H

Mg

Ti

Figure 3.11: Problem 2. A non-planar
titanium-magnesium alloy lattice con-
necting titanium and aluminum circular
disks.

Now, suppose the lower circular disk is made of titanium, while the upper disk is made

of aluminum. Suppose R = H = 1, n = 6; then φ = 30◦, L1 = 1, L2 = L3 =
√

3−
√

3.

The lattice materials are titanium and magnesium alloy, so that αAT/α1 = αBT/α1 =

0.38. Solving equations (3.1) with a = b = arccos(0.444), and c = 180◦ − a − b, we find

that θ1 = θ2 = 0◦, θ3 = θ4 = θ5 = θ6 = 18.0◦ (fig. 3.11). If the lattice is made of titanium

and aluminum, the skew angles are θ3 = θ4 = θ5 = θ6 = 22.5◦. The lattice with this

material choice has lower structural efficiency, which will be shown in the section 3.5.
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3.4 Adaptive lattices that compensate the thermal

expansion of the substrates

Here, we design a lattice accounting for substrate thermal expansion in the normal di-

rection and a lattice preventing shaft and collar sticking. Such lattices have negative

CTE along their heights and are intermediate between adaptive lattices with passive

control designed earlier and lattices for fine tuning and thermal actuation with active

control. Similar to adaptive lattices, they eliminate or mitigate thermal stresses between

two substrates with different CTEs; and they have desirable deflections of their vertices

like lattices-actuators.

3.4.1 Lattice controlling total deflection

For previous lattices, the thermal expansion of the substrates in the direction perpendic-

ular to the length of the lattice was assumed to be zero, and hence the lattice CTE along

its height was equal to zero. Here, we design a three-cell lattice provided that the height

of the two substrates and the lattice between them remains independent of temperature.

Suppose the height of the first substrate is d1, the second substrate is d2, and the lattice

itself is H (fig. 3.12).

Aluminum substrate with CTE = A2=22.2ppm/oC 

Titanium substrate with CTE = A1=8.6ppm/oC  d1

d2

H
Mg

Ti

Figure 3.12: A magnesium alloy-titanium lattice connecting titanium and aluminum
substrates (accounting for the vertical thermal extension of substrates).
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Let αij denotes the CTEs in the cell with number i; the second index j = 1 along the

line AC, j = 2 along the line CE, and j = 3 along the line AE (fig. 2.1). We consider

both equilateral and isosceles right-angle base triangles to find out which is more suitable

for the lattice. Following the approach described in Chapter 1 and accounting only for

linear terms with αij, we find for an equilateral base triangle

α11 = α21 = α31 = A1,

α12 = α33 = 0.5A2 − 0.25A1 + 0.75αH , (3.13)

α13 = α32 = 0.75A1 − 0.5A2 + 0.75αH ,

α22 = α23 = 0.25A1 + 0.75αH

and for an isosceles right-angle base triangle

α11 = α21 = α31 = A1,

α12 = α33 = A2 − 0.5A1 + 0.5αH , (3.14)

α13 = α32 = 1.5A1 − 0.5A2 + 0.5αH ,

α22 = α23 = 0.5A1 + 0.5αH

where A1 and A2 are the CTEs of the first and second substrates, respectively, and αH

is the CTE along the height of the lattice (fig. 3.12). The total CTE in vertical direction

of two substrates and the lattice between them is

αt =
HαH + d1A1 + d2A2

H + d1 + d2
. (3.15)

As an example, consider a three-cell titanium-magnesium alloy lattice (α1 = 8.6

ppm/◦C, α2 = 28.0 ppm/◦C) connecting titanium (A1 = 8.6 ppm/◦C) and aluminum

(A2 = 22.2 ppm/◦C) substrates. Suppose d1 = d2 = 10 mm, H = 80 mm and the

total thickness of two substrates and the lattice remains independent of temperature

(αt = 0). From formulae (3.15), we have αH/α1 = −0.4475. Because the first substrate

and the lower CTE lattice material have the same CTE, α11/α1 = α21/α1 = α31/α1 = 1

and t1 = 0◦ in all cells. For equilateral base triangles, from formulae (3.13), we have

α12/α1 = α33/α1 = 0.7, α13/α1 = α32/α1 = −0.87, α22/α1 = α23/α1 = −0.0856. Now,

using the equations (3.1), we find in the left cell: t2 = 6.8◦, t3 = 39.1◦; in the middle cell:

t1 = 0◦, t2 = t3 = 23.8◦. The right cell is symmetric to the left cell with respect to the

vertical line passing through the upper vertex of the middle cell (fig. 3.12).

This approach allows us to account for nonequal temperatures in the first and the
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second substrates. Suppose the second substrate is heated 10% more compared to the

first substrate. This is equivalent to the higher CTE of the second substrate: A2 =

22.2 ∗ 1.1 = 24.42 ppm/◦C. In this case, αH/α1 = −0.48, α11/α1 = α21/α1 = α31/α1 = 1,

α12/α1 = α33/α1 = 0.68, α13/α1 = α32/α1 = −0.9, α22/α1 = α23/α1 = −0.11. It

means that in the left cell: t1 = 0◦, t2 = 7.0◦, t3 = 39.4◦; in the middle cell: t1 = 0◦,

t2 = t3 = 24.2◦.

For isosceles right-angle base triangles, from formulae (3.14), we have α12/α1 =

α33/α1 = 1.86, α13/α1 = α32/α1 = −0.0145, α22/α1 = α23/α1 = 0.28. These CTEs

can be reached if in the left cell t1 = 0◦, t2 = 23.77◦, t3 = −20◦; in the middle cell:

t1 = 0◦, t2 = t3 = 13.6◦. However, as shown in the next section, cells with negative skew

angles have lower structural efficiency compared to the cells with positive skew angles.

Hence, in this problem, cells based on an equilateral triangle are more appropriate.

3.4.2 Lattice between shaft and collar

Consider a structure consisting of a shaft and a collar made of materials with different

CTEs. To prevent sticking when the shaft is heated, we design an adaptive lattice that

has the CTE=0 of the collar on its outer contour and the CTE of the shaft at its inner

contour. The collar is depicted as an external black hexagon and has CTE A1, and

the shaft is shown as a light-grey solid hexagon (fig. 3.13) with CTE A2. The base

triangle ABC has 6 A = 6 B = 30◦. Denote AO = OB = R, then OD = R
√

(3)/2,

OC = R
√

(3)/3, DC =
√

(3)/6. The CTE along the height H = DC must compensate

the CTE of the shaft along the OC, so

R

√
3

3
(1 + A2dT ) = R

√
3

6
(1− αHdT ),

therefore, αH = −2A2. On the other hand, from the triangle ABC

(2H(1 + α2dT )2 − (H(1 + αHdT )2 = (H
√

(3)(1 + A1dT )2

and hence (neglecting nonlinear terms),

α2 = α3 = 0.25(3A1 + αH)

Now, suppose that the shaft is made of aluminum with A2 = 22.2 ppm/◦C and the collar is

not heated which is equivalent to zero CTE A1 = 0 ppm/◦C, then α2 = −11.1 ppm/◦C. As

lattice materials we choose, for example, Kovar (with CTE 5.5 ppm/◦C) for the external
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cell hexagon and magnesium alloy (with CTE 28 ppm/◦C) for the internal triangle. To

avoid stresses due to thermal expansion mismatch, α1 = 0 ppm/◦C. From the equations

(3.1), we find skew angles t1 = −18.3◦, and t2 = t3 = 14.7◦ (fig. 3.13).

Al

CTE=0

Kovar

Mg

A

B

C

O

Figure 3.13: A Kovar-magnesium alloy lattice connecting aluminum shaft with zero ther-
mal extension collar. A typical cell has a base triangle ABC. Point O is a centre of the
shaft.

3.5 Structural efficiency

The lattices described in this thesis are intended to be structural elements that are

subject to mechanical as well as thermal loading. We take a uniaxial load as archetypal

and confine our analysis to that case. When a statically determined pin connected cell

is loaded uniaxially, its members experience exclusively stretching or compressing. The

uniaxial stiffness Su links applied force N with resulting avarage strain ε as N = Suε. The

structural efficiency is defined as stiffness per mass M ; here we consider dimensionless

structural efficiency P = Suρ/ME where ρ and E are the density and Young’s modulus

of a cell member, respectively, as was done in Steeves et al. (2007). Our goal is to
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understand how the structural efficiency can be increased without a change of member

materials or cross sectional area. The typical problem of designing a lattice to mitigate

thermal expansion mismatch stresses has an infinite number of solutions: there are six

angles to choose to achieve desirable effective CTEs along three lines. In this section, we

are interested in choosing the six angles that provide the highest structural efficiency.

Consider an arbitrary cell with pin-jointed members under a uniaxial load as shown

in fig. 3.14. The force N is applied to the top vertex of the cell, and Fi are the internal

forces in members with lengths li, i = 1, 9.

If the cell is in equilibrium, the forces in the members are

F1 = −N
2

cos(α + θ6)

sin(α + θ1 + θ6)
, F2 = −N

2

cos(β + θ3)

sin(β + θ2 + θ3)
,

F3 =
N

2

cos(θ2)

sin(β + θ2 + θ3)
, F4 = N

cos(α− θ5)
sin(γ + θ4 + θ5)

,

F5 = N
cos(β − θ4)

sin(γ + θ4 + θ5)
, F6 =

N

2

cos(θ1)

sin(α + θ1 + θ6)
, (3.16)

F7 = −F1 sin(µ2 + θ1) + F2 sin(µ2 − θ2)
sin(µ1 + µ2)

,

F8 = −F1 sin(µ1 − θ1)− F2 sin(µ1 + θ2)

sin(µ1 + µ2)
,

F9 = −F5 sin(ν2 + θ5) + F6 sin(ν2 − θ6)
sin(ν1 + ν2)

where angles µ1, µ2, ν1, ν2 are indicated in the fig. 3.14.

Suppose that the members with the lengths li, i = 1, 6 have cross sectional area Λ1 and

are made from material with density ρ1 and Young’s modulus E1, while the members

with lengths li, i = 7, 9 have cross section area Λ2 and are made from material with

density ρ2 and Young’s modulus E2. Using the principle of virtual work, we can write

−Nδ +
1

Λ1E1

6∑
i=1

F 2
i li +

1

Λ2E2

9∑
i=7

F 2
i li = 0

where δ is the vertical deflection of the cell at the point of the force N application. Then,

the resulting average strain of the cell ε will be

ε =
δ

h
=

1

Λ2E2Nh
(Q

6∑
i=1

F 2
i li +

9∑
i=7

F 2
i li),

where h is the height of the cell and Q = E2Λ2/E1Λ1. The structural stiffness Su in



Chapter 3. Advanced adaptive bimaterial lattices 52

li1 li2

li3

li4li5

li6 θi6

θi1 θi2

θi3

θi4
θi5

Fi1 Fi2

Fi3

Fi5

Fi6
Fi7

Fi8

Fi9

N

δ

μ1 μ2

νi1

νi2

li7

li8

li9

a b

c
Fi4

h

Figure 3.14: Arbitrary cell with applied force in uniaxial loading. The cell is supported
by a pin at its left side and a roller at the right, head is applied vertically at the apex
node.

uniaxial loading can be found as

Su =
N

L1ε
=

N2Λ2E2h

Q
∑6

i=1 F
2
i li +

∑9
i=7 F

2
i li
.

The mass of a cell per unit area of the lattice is given by

M =
ρ1A1

∑6
i=1 li + ρ2A2

∑9
i=7 li

L1h
.

Then, the structural efficiency P can be calculated as

P =
Suρ1
ME1

= N2 Qh2

(Q
∑6

i=1 F
2
i li +

∑9
i=7 F

2
i li)(

∑6
i=1 li + ρ2E1

ρ1E2
Q
∑9

i=7 li)
. (3.17)

The maximum theoretical structural efficiency by this measure is P = 1
3

(Steeves et al.,

2007), for a perfectly triangulated lattice consisting of unskewed equilateral triangles and

no high CTE members (that is, no internal triangles).

Analyzing formulae (3.16) and (3.17) and recalling that θi, i = 1, 6 determine the

three CTEs in the cell, we conclude that increasing the skew angles θ3 and θ6 (making

the cell more “stout”) increases the structural efficiency. For this purpose, introduce
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coefficients of stoutness kj, j = 1, 2, 3: θ2 = k1θ1, θ3 = k2θ4, θ6 = k3θ5. Note that the

solutions to the problems considered previously were obtained for k1 = k2 = k3 = 1.

When kj, j = 1, 2, 3 increase, the neighbouring cells can overlap each other or the

lengths of the members l3 and l6 can become substantially smaller than l4 and l5, which

can lead to prohibitive manufacturing difficulties for the cell. To avoid this, introduce

length ratios r1 = l1/l2, r2 = l4/l3, r3 = l5/l6 to limit the increase of skew angles θ3 and

θ6 even though they do not cause overlapping.

Finally, in this work, lattices with cells having approximately the same structural

efficiency are designed. It means that a cell with rather small θ3, θ6 and length ratios

needs not be further optimized if other cells in the lattice are already optimized and have

lower structural efficiency. The structural efficiency of the whole lattice is taken equal to

the minimum structural efficiency among all cells. Now, a general algorithm for design

of a lattice structure with increased structural efficiency can be formulated:

1. Design the lattice for k1 = k2 = k3 = 1 described previously in Chapter 2 (Section

2.3); calculate the skew angles of all cells of the lattice and its structural efficiency.

2. Choose the increments ∆kj j = 1, 2, 3 for the coefficients of stoutness. If the

skew angles adjacent to a side of base triangle are equal to zero, the coefficient of

stoutness related to this side is 1.

3. Find the solution to the problem at kj + ∆kj, calculate the skew angles of all cells

and the structural efficiency of each cell.

4. If cells do not overlap each other and length ratios rj in all cells do not exceed

limits stipulated by the manufacturing process, increase kj = kj + ∆kj and go to

the previous step.

5. If there is at least one pair of cells overlapping each other or the length ratios of at

least one cell exceeds the set limit, decrease the increment ∆kj for these cells and

go to step 3.

6. The process halts if structural efficiency of cells designed for smaller ∆kj exceeds

the structurally efficiency of already optimized cells or the new structural efficiency

is not significantly better than the structural efficiency from the previous step.

While this algorithm does not generate rigorously optimal geometries, the term “optimal”

is used loosely to describe the results. In the examples below, we consider titanium-

magnesium alloy lattices with cells based on equilateral triangles, areas Λ1 = Λ2, E1 =

116.3 GPa (titanium), E1 = 45.0 GPa (magnesium alloy), and hence Q = 0.387.
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Example 6: Titanium and magnesium alloy substrates can be connected by the tita-

nium and magnesium alloy one-row lattice depicted in fig. 3.5. The structural efficiency

of the lattice is P = 0.0899, which is very low. Another solution of the same problem

involving a two-row lattice has the structural efficiency of the cells in the lower row of

the lattice (fig. 3.6) is P = 0.1382, and of the cells in the upper row is P = 0.1346. The

structural efficiency improvement of the two-row lattice with k1 = 1 and k2 = k3 = 2 for

all cells results with P = 0.1562 for the cells in the lower row (θ1 = θ2 = 0◦, θ3 = 24.8◦,

θ4 = 12.4◦, θ5 = 12.4◦, θ6 = 24.8◦) and P = 0.1496 for the cells in the upper row

(θ1 = θ2 = 0◦, θ3 = 6.5◦, θ4 = 3.25◦, θ5 = 20.2◦, θ6 = 40.4◦ for the left cell). So, the

lattice’s improved structural efficiency is P = 0.1496. (fig. 3.15). In this solution, the

 Magnesium alloy substrate CTE = A2 = 28 ppm/°C

Titanium substrate CTE = A1 = 8.6 ppm/°C

Mg

Ti

Figure 3.15: Improved structural efficiency of two-row titanium-magnesium alloy lattice
connecting titanium and magnesium alloy substrates.

structural efficiency is improved by 66% compared to the one-row solution.

Example 7: Using the formula (3.17), calculate the structural efficiency of the non-

planar lattice presented in Problem 2 section 3.3 (fig. 3.11) can be calculated; it is

P=0.191. After improvement, the structural efficiency increases to P=0.211. The lattice

with increased structural efficiency is depicted in fig. 3.16. Its skew angles are θ1 = θ2 =

0◦, θ3 = 23.2◦, θ4 = 11.6◦, θ5 = 11.6◦, θ6 = 23.2◦. If titanium and aluminum are chosen

as lattice materials, the initial structural efficiency is P=0.143, and after improvement it

becomes P=0.161, which is significantly lower than in the titanium-magnesium lattice.
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Aluminum substrate 
CTE=A2=22.2 ppm/°C

Titanium substrate 
CTE=A1=8.6 ppm/°C

H

Mg

Ti

Figure 3.16: Optimized non-planar titanium-aluminum lattice connecting titanium and
aluminum circular disks.

Example 5: The cells of the lattice presented in Example 2 of this Chapter (fig. 3.7)

have the following structural efficiency: for cells 1, 4, and 6, P = 0.077; for cells 2 and 3,

P = 0.255; for cells 5 and 7, P = 0.133. Hence, to improve the structural efficiency of the

whole lattice, the structural efficiency of the cells 1, 4, and 6 must be increased: if k1 = 1,

k2 = k3 = 5, θ1 = θ2 = 0◦, θ3 = θ6 = 48.34◦, θ4 = θ5 = 9.67◦, then P = 0.0995 (fig. 3.17).

As it is seen, the structural efficiency increased substantially but remains much lower than

in previous examples, which is a consequence of cell rotation. Note that the results of

all of these calculations show that the lattice designs generating unusual multifunctional

thermal properties retain significant proportions of the theoretically possible structural

efficiency while remaining stress-free. This is in strong contrast to other anisotropic

tailorable systems which are either compliant (Jefferson et al., 2009) or generate thermal

stresses (Harris, 2003; Zhang et al., 2013).

3.6 Concluding remarks

In this chapter, lattices of more complicated configuration than the lattices considered

in Chapter 2: a right-angled cantilever joint and a cylindrical adapter for optical lenses
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Ti

Mg

Titanium substrate CTE = A1 = 8.6 ppm/°C

Magnesium alloy substrate CTE = A2 = 28 ppm/°C

Figure 3.17: Optimized seven-cell titanium-aluminum lattice connecting titanium and
Torlon substrates.

were designed. Also, a method to connect substrates with a greater differences between

their CTEs by using two-row lattices with cell rotation was elaborated. To design such

lattices, we allowed non-zero changes in the cell heights. This approach opened new

opportunities for controlling the total deflection of two substrates and a lattice between

them (the substrates can be parallel to each other or represent a joint such as a shaft

a collar). The design of these lattices made it clear that anisotropic bimaterial lattices

can be used not only for accommodation of thermal expansion but also for imposing

geometric changes. In other words, the issues considered in this chapter enabled us to

attain insight and experience that are necessary for the design of lattices as mechanisms

for thermal actuation and fine tuning, which will be considered in the next chapter.



Chapter 4

Actuation through bimaterial

lattices

In this chapter, we examine the theoretical capability of bimaterial lattices as active

systems for fine tuning and thermal actuation 1 2 3. It is possible to design a lattice con-

necting two substrates without thermal expansion mismatch stresses and with desirable

deflections at some of its vertices. Actuation, where defined displacements are imposed

between specific locations, is a natural extension to this. However, the deflections caused

by thermal expansions are small. Hence, we need to identify methods to amplify these

displacements to enable useful actuation. In the previous chapters, we considered lattices

with cells in which the inner triangle material has a higher CTE than the outer hexagon

(α2 > α1). Now, to increase the lattice capabilities, a cell where the outer hexagon ma-

terial has a higher CTE than the inner triangle (α2 < α1) is also used. In addition, it is

supposed that skew angles θ1 = θ2 = t1, θ3 = θ4 = t2, θ5 = θ6 = t3, because the different

skew angles adjacent to the same side of the based triangle may be beneficial in the

structural efficiency problem which is not considered in this chapter. Also, it is supposed

that t2 = t3 (fig. 4.1) because in actuators designed in this chapter the substrates have

the same CTEs (similar case was considered for the cells in the lower row of two-row

lattices).

Fig. 4.2 shows the range α2/α1 = α3/α1 of titanium-magnesium alloy cells based on

1M M Toropova and C A Steeves. Controlling thermal deformation through the use of lattice struc-
tures. 62nd CASI Aeronautics Conference and AGM 3rd CARDN Conference, Montreal, Canada, May
19-21, 2015.

2M M Toropova and C A Steeves. Thermal actuation through bimaterial lattices. ASME Conference
on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS, Colorado Springs, USA,
September 21-23, 2015.

3M M Toropova and C A Steeves. Bimaterial lattices as thermal adapters and actuators. Smart
Materials and Structures (accepted), 2016.
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t1t1
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t2t3
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(a) (b)
members with 
lower CTE 

members with 
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Figure 4.1: (a) Bimaterial cell with α2 > α1. (b) Bimaterial cell with α2 < α1. The skew
angles adjacent to the same side of the base triangle are equal to each other.

an equilateral triangle when the internal triangle is made of magnesium alloy and the

surrounding hexagon is made of titanium (dotted line). We consider here a titanium alloy

(Ti-6Al-4V Grade 5) with CTE 8.6 ppm/◦C and a magnesium alloy (of type AZ81A) with

CTE 28.0 ppm/◦C. The solid line is for the cell with a titanium triangle and a magnesium

alloy hexagon. The skew angle t1 was assumed equal to zero with α1/α1 = 1 and also

t2 = t3. Such cells will be used in actuator design. The range of α2/α1 = α3/α1 for

other cell materials with different ratios α2/α1 is shown in fig. 4.3 as a colored region.

The black boundary of the region corresponds to t2 = t3 = −15◦, and the grey boundary

corresponds to t2 = t3 = 35◦.

Similar curves for cells based on an isosceles right-angle triangle are shown in fig. 4.4.

The range of α2/α1 = α3/α1 in cells based on isosceles right angle triangles for different

ratios α2/α1 of other cell materials is shown in fig. 4.5 as a colored region. The black

boundary of the region corresponds to t2 = t3 = −22.5◦, and the grey boundary cor-

responds to t2 = t3 = 35◦. The range of CTE in cells based on a right-angle triangle

is wider than the analogous range for cells based on an equilateral triangle. In general,

if α2 > α1, the increase of skew angles leads to the decrease of CTE with transition to

negative zone. If α2 < α1, the relation between the CTE and skew angles is inverse.

4.1 Fine tuning of an optical system connector

A non-planar lattice connecting two circular disks and eliminating displacements due to

thermal expansion was designed in Chapter 3 (fig. 3.11). Here, we show how the lattice

of this shape can be used for fine tuning of optical lenses represented by circular disks.

To provide the widest possible tuning range, the cells in the lattice must have maximal

thermal expansion along their heights. To enable such a tuning system, it is necessary to
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Figure 4.2: Ranges α2/α1 = α3/α1 of titanium-magnesium alloy cells based on an equi-
lateral triangle with t1 = 0◦. The solid line corresponds to the cell with a titanium inner
triangle and a magnesium alloy outer hexagon, while the dotted line corresponds to the
magnesium alloy inner triangle and titanium outer hexagon.
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Figure 4.3: Range of α2/α1 = α3/α1 in a cell based on an equilateral triangle with t1 = 0◦

as a function of the ratio of lattice material CTEs α2/α1.
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Figure 4.4: Ranges α2/α1 = α3/α1 of titanium-magnesium alloy cells based on an isosce-
les right-angle triangle with t1 = 0◦. The solid line corresponds to a cell with a titanium
inner triangle and a magnesium alloy outer hexagon, while the dotted line corresponds
to the magnesium alloy inner triangle and titanium outer hexagon.
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Figure 4.5: Range of α2/α1 = α3/α1 in a cell based on an isosceles right-angle triangle
with t1 = 0◦ as a function of the ratio of lattice material CTEs α2/α1.
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induce different temperatures in the cells of the lattice. The lattice is axisymmetric and

L1 = 2R sin
φ

2
, L2 = L3 =

√
4R2 sin2 φ

2
+H2, a = b = arccos

0.5L1

L2

where φ = 2π/n. The cells are designed based on isosceles triangles with αi2 = αi3 in all

cells where i = 1, n is a cell number and n is the total number of lattice cells .

If both substrates have the same CTE, the maximal deflection can be larger, so

let A1 = A2. Suppose R = 10 cm, H = 1 cm, and n = 6, then the angles in a

cell base triangle are a = b = 18.49◦. Suppose the substrate material is magnesium

alloy (A1 = A2 = 28 ppm/◦C). As lattice materials we choose Kovar (iron-nickel-cobalt

alloy with α2 = 5.5 ppm/◦C) for the internal triangles and magnesium alloy (α1 = 28

ppm/◦C) for the outer hexagons - this will provide us with αi1/α1 = 1 while the values of

αi2/α1 and αi3/α1 will be higher than in a cell with an internal magnesium alloy triangle

and an outer titanium hexagon (examples of the analogous situation are illustrated by

fig. 4.2 and fig. 4.4). Because αH depends linearly on αi2 and αi3, the value of αH will

also be higher. The maximum values of αi2 and αi3 can be reached if the skew angles

t2 = t3 → a = b = 18.5◦. For example, if t2 = t3 = 15◦, then αi2 = αi3 = 82.9 ppm/◦C.

From the formula αH = (αi2−A1 cos2 a)/ sin2 a, we obtain αH = 574 ppm/◦C. For H = 1

cm and ∆T = 100◦C, ∆H = HαH∆T = 0.574 mm. Thus, if we supply the temperature

∆T = 100◦ to the cells with number 1 and 6, the temperature ∆T = 50◦ to the cells

with number 2 and 5, and the temperature ∆T = 0◦ to the cells with number 3 and

4, the upper disk will tilt (fig. 4.6) with angle 0.164◦. Smaller skew angles or supplied

temperature can provide even finer tuning.

4.2 Thermal actuators

Broadly, the lattices described here and in previous chapters exhibit the ability to change

shape in a precise and controlled manner during temperature changes. Consequently, they

can be used as thermal actuators as well as adapters. However, the thermal deflections

are small and demand significant amplification. In Chapter 3, it was shown that lattice

materials with a higher ratio α2/α1 and two-row lattices with cell rotation can connect

substrates with larger differences in the CTEs of their materials. These techniques can

be used in the design of actuators, but our goal is to provide even higher amplification.

This problem was solved in several ways: choosing isosceles right angle base triangles

that provide a wider range of CTEs compared to equilateral base triangles (fig. 4.4),

removing intermediate connections to the first substrate between lattice cells, selecting
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Figure 4.6: Non-planar Kovar-magnesium alloy lattice for fine tuning of optical lenses.
Lattice materials are chosen to provide positive CTE along the height of each cell. Skew
angles are chosen to maximize the CTE. The upper disk tilts when different temperatures
are supplied to different cells causing their different vertical extensions.

materials with the same CTEs for both substrates, and choosing in some cells lattice

materials with α2/α1 > 1 (type I cells) providing negative deflection and in other cells

α2/α1 < 1 (type II cells) providing positive deflection. All lattice-based actuators are

designed based on isosceles right-angled triangles with a = b = π/4 and c = π/2 because

such cells have higher absolute values of CTEs compared to, for example, cells based on

equilateral triangles (fig. 4.3, fig. 4.5). We shall next consider the design of a switch,

tweezers, and a valve.

4.2.1 Thermal switch

A thermally actuated switch consists of two cells connected to a pair of substrates. One

substrate (substrate 1) is stationary, while substrate 2 can rotate. The concept is that

the rotating substrate can be used to make or break contact in an electrical circuit. For

example, such a switch may be used to control a cooling system that operates when a

trigger temperature is reached. The left cell is of type I, while the right cell is of type II

(fig. 4.2, fig. 4.4). The skew angles in both cells are chosen so that the CTE along the

height in the left cell has a negative value and the CTE in the right cell has a positive

value. As a result, when temperature increases the height of the left cell decreases while

the height of the right cell increases, and the second substrate rotates raising the right

end and lowering the left end. The new position of the second substrate is depicted in
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fig. 4.7 with a dashed contour. The lattice is pin-connected to the first substrate only at

the left vertex of the left cell and the right vertex of the right cell (fig. 4.7). This allows

us to connect the lattice to substrates with the CTEs higher than the lattice made of

type I cells and lower than the lattice made of type II cells. If the materials of both

substrates have the same CTEs, the CTEs along the lateral sides of base triangles are

equal to each other.

MgTiMg
Ti

Stainless steel substrate with CTE=A1=17.3 ppm/oC

H
H1

H2

 CTE=A2=17.3 ppm/oC

Figure 4.7: A two-cell titanium-magnesium alloy lattice having connections with sub-
strates free of thermal stress and behaving like a thermally driven switch.

Thus, applying the technique developed in Chapters 2 and 3 for a two-cell lattice with

isosceles right-angled base triangles and using the same notation for lattice CTEs as in

section 2.3, we obtain

α11 + α21 = 2A1 = 2A2,

α12 = α13, α22 = α23, (4.1)

αH1 = 2α12 − α11,

αH2 = 2α22 − α21

where αH1 and αH2 are the CTEs along the heights of the left and the right cells, re-

spectively (fig. 4.7). Note that the first equation of (4.1) presents a restriction on the

materials of substrates and cells in terms of their CTEs. We have to choose the skew

angles that provide αH1 < 0 in the left cell and αH2 > 0 in the right cell.

As an example, consider a lattice made from titanium and a magnesium alloy. The

internal triangle of its left cell is made of magnesium alloy and the external members

are made of titanium, so that α2/α1 = 3.256. From the equations (4.1) it is seen that
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αH1 < 0 is smaller when α12 = α13 are smaller. So, we select skew angles t1 = 0◦, and

t2 = t3 = 35◦, (fig. 4.4) and then from the equations (3.1), we get α11/α1 = 1, α12/α1 =

α13/α1 = −4.27, and from the third equation (4.1), αH1/α1 = −9.54 implying αH1 =

−82.0 ppm/◦C. This is a very large negative CTE. In the right cell, the internal triangle is

made from titanium and the hexagon members from a magnesium alloy (α2/α1 = 0.307),

hence to get larger αH2 > 0, we can choose skew angles as t1 = −11◦, t2 = t3 = 35◦.

Then, using the equations (3.1), we have α21/α1 = 0.929, α22/α1 = α23/α1 = 2.5892

and αH2/α1 = 4.292 or αH2 = 119 ppm/◦C. Similarly, this is a very large positive

CTE. If we set t1 = 0◦ in the right cell, the CTE of substrate material must be (4.1)

A1 = A2 = 0.5(8.6 + 28.0) = 18.3 ppm/◦C. However, there is no conventional material

with such a CTE. Hence, we need to correct slightly the skew angle t1 to increase either

α11 or α21 to get the substrate CTE, for example, A1 = A2 = 17.3 ppm/◦C which

corresponds to the CTE of austenitic stainless steel (304). This is easier to do with

the right cell because all its normalized CTEs are greater than 1. Thus, the chosen

skew angles provide lattice connection to the stainless steel substrates without thermal

expansion mismatch stresses. Different skew angles t1 in both cells would allow us to

connect the switch without thermal expansion mismatch stresses to substrates with other

values of their CTEs. The displacement of the right end of the second substrate is

∆H = L tanφ− |∆H1| = 2L1
|∆H1|+ ∆H2

L1

− |∆H1| =

|∆H1|+ 2∆H2 = H∆T (|αH1|+ 2αH2)

where |∆H1|, ∆H2 are deflections of the left and right cell apexes, L = 2L1 is a switch

length, and φ is a rotation angle of the second substrate (fig. 4.8). If ∆T = 100◦C,

∆H/H100% = 3.2%. We can see that the lattice behaves like a thermally-driven actua-

tor.

Now, we calculate the blocking force associated with the lattice. The blocking force

is the force that completely restricts motion of the actuator and qualifies the overall

actuation capability of the system. In case of the switch, the blocking force is applied

to the right end of the second substrate that keeps it at zero deflection. This force P

creates loads P1 = P and P2 = −2P on the vertices of the left and the right cells of the

switch, respectively (fig. 4.9). Denote as Fij the internal forces in members with lengths

lij, with i = 1, 2 the cell number and j = 1, 9 the member number.

In the left cell, i = 1 and in the right cell i = 2. The second index j indicates a

number of a member in each cell that has the length lij. Fig. 4.10 shows the cell with

number i. Let Fij = NGij where N = P if i = 1 and N = −2P if i = 2. In this problem,
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ΔH2 |ΔH1|+ΔH2
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Figure 4.8: Sketch of switch kinematics. |∆H1|, ∆H2 are deflections of the left and right
cell apexes, while ∆H is a deflection of the second substrate right end.
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Figure 4.9: Sketch of configuration of forces associated with the blocking force P applied
to a thermal switch.
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Figure 4.10: Nomenclature of forces, lengths and angles for an arbitrary cell subject to
applied force N in uniaxial loading.

denote θi1 = θi2 = τi1 and θi3 = θi4 = θi5 = θi6 = τi2 where θik is a skew angle with

number k in the cell with number i, m = 1, 6. Then, similarly to what was found in

Section 3.5, equation (3.16),

Gi1 = Gi2 = −1

2

cos(π/4 + τi2)

sin(π/4 + τi1 + τi2)
,

Gi3 = Gi6 =
1

2

cos(τi1)

sin(π/4 + τi1 + τi2)
,

Gi4 = Gi5 =
cos(π/4− τi2)

cos(2τi2)
, (4.2)

Gi7 = Gi8 = −Gi1
cos(τi1)

cos(µi)
,

Gi9 = −Gi5 sin(νi2 + τi2) + sin(νi2 − τi2)
sin(νi1 + νi2)

,
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where the angles µi, νi1, νi2 indicated in fig. 4.10 are given by

µi = π − arcsin

(
li1
li7

sin(π/4 + τi1 + τi2)

)
− π/4− τi2,

νi1 = τ12 + arcsin

(
li4
li9

cos(2τ2)

)
,

νi2 = − arcsin

(
li1
li7

sin(π/4 + τi1 + τi2)

)
+ τi2.

The members with lengths lik, k = 1, 6 have cross section area Λi1 and are made from

material with Young’s modulus Ei1, while the members with lengths lim, m = 7, 9 have

cross section area Λi2 and Young’s modulus Ei2. Using the principle of virtual work, we

can write

−Nδi +
1

Λi1Ei1

6∑
j=1

F 2
ijlij +

1

Λ2E2

9∑
m=7

F 2
imlim = 0, (4.3)

where δi is the deflection of the cell with number i at the point of the force N application.

From (4.3), we can present in nondimensional form

δ1 = PS1 δ2 = −2PS2, (4.4)

where δi = δi/L1, P = P L2
1/(EI), E and I are Young’s modulus and the second moment

of area of the substrates, respectively, and

S1 = Q11

6∑
j=1

l̄1jG
2
1j +Q12

9∑
m=7

l̄1mG
2
1m,

S2 = Q21

6∑
j=1

l̄2jG
2
2j +Q22

9∑
m=7

l̄2mG
2
2m. (4.5)

Here, l̄ij = lij/L1, i = 1, 2, j = 1, 9 and

Q11 =
EI

Λ2
11L

2
1E11

, Q12 =
EI

Λ2
12L

2
1E12

,

Q21 =
EI

Λ2
21L

2
1E21

, Q22 =
EI

Λ2
22L

2
1E22

.

Now, suppose that the moving substrate can be modeled as an Euler-Bernoulli beam

free of load but with nonzero deflections at the cell vertices where the beam is supported

and a free right end. The beam behavior can be described by the equation Gere and
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Timoshenko (1997)

EIwIV = 0, (4.6)

where w is the beam center-line deflection. Introduce dimensionless quantities: x̄ = c/L1,

w̄ = w/L1. The total nondimensional deflection of the cell vertices will be the sum of

the deflection due to applied force and thermal deflection due to change of temperature,

i.e.,

w̄i∗ = δ̄i +Hi/L1αHidT, i = 1, 2 (4.7)

We can present a general solution of the equation (4.6) in nondimensional form as

w̄1 = c0 + c1x̄+ c2x̄
2 + c3x̄

3, x̄ ∈ [0, 1],

w̄2 = c4 + c5x̄+ c6x̄
2 + c7x̄

3, x̄ ∈ [1, 2] (4.8)

with boundary conditions:

w̄1(0) = w̄1∗, w̄
′′

1 (0) = 0,

w̄
′′

2 (2) = 0, w̄
′′′

2 (2) = P̄ ,

w̄1(1) = w̄2(1) = w̄2∗, (4.9)

w̄
′

1(1) = w̄
′

2(1), w̄
′′

1 (1) = w̄
′′

2 (1).

Substituting (4.8) into (4.9) and solving, we can find c4, c5, c6, c7 and w̄2(2):

w̄2(2) = 2w̄2∗ − w̄1∗ − 2/3P̄ .

Finally, accounting for (4.4) and (4.7), we obtain

P̄ =
2αH2 − αH1

2 + 12S2 + 3S1

3H

L1

dT.

Using formulae (4.2),(4.5) and the values of αH1, αH2 obtained earlier for the switch,

we calculate the blocking force versus the ratio of the second substrate thickness to its

length b/L (fig. 4.11) provided that the second substrate has a square cross section,

L = 2L1 and ∆T = 100◦C.
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Figure 4.11: Blocking force of a stainless switch thermally driven by a titanium-
magnesium alloy lattice.

4.2.2 Tweezers

Thermal tweezers use changes in temperature to induce relative rotation in a mechanical

system, leading to the ability to grip objects between two parts of the system. Here,

we design a two-cell lattice that can be used as a mechanism for the thermal actuation

of tweezers . Our interest is in tweezer kinematics. The gripping force depends on the

tweezer materials and the cross sectional area of tweezers members. Because tweezers are

determined by a designer to achieve specific functional goals in a particular application,

we do not consider gripping force here.

In this subsection, to design thermal tweezers, we will use the same base triangles,

lattice materials, and skew angles as we used for the thermal switch considered previously.

The actuation mechanism consists of two cells with different heights: H1 = 2 cm in the

left cell and H2 = 1.5 cm in the right cell (fig. 4.12). The left cell is of type II, and the

right cell type I. When temperature ∆T = 100◦C is applied, using the rounded results

obtained for the switch, the left cell extends along the height with ∆H1 = 2 · 119 µm

= 238 µm, and the right cell shrinks with ∆H2 = −1.5 · 82 µm= −123 µm (fig. 4.13)

causing a rotation of the second substrate and lowering its right end. The grey circles

and the dashed line depict hinges and a new position of tweezers tips, respectively.
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H1 H2

L 3L

h

Figure 4.12: Two-cell titanium-magnesium alloy lattice as a part of tweezer.

Denote the distance between the heights of the cells as L. If the distance from H1 to

the two hinges on substrates is 3L, the distance between the two hinges is h = AB =

3H2 − 2H1 = 5 mm (fig. 4.14) . It can be shown that when temperature increases, the

distance between the two hinges is hn = A1B1 = 3H2 +3∆H2−2H1−2∆H1 = 0.5−0.85

mm. Then, sin 6 EO1C1 = 0.5 · hn/A1O1 = 0.42 or 6 EO1C1 = 24.5◦. The tweezers are

designed with equilateral triangle ABO. At heating it distorts, the hinges at the points

A, B and O move to the new positions A1, B1 and O1 so that A1O1 = B1O1 = AO(1 +

αst.st∆T ) where αst.st. = 17.3 ppm/◦C is the CTE of the stainless steel substrates. If

OC = 5AO, CD = 3.5AO, and 6 OCD = 120◦ remains independent of temperature, then

O1D1=

√
54.75hn, sin 6 D1O1C1 = 1.75

√
3/54.75, and 6 D1O1C1 = 24.2◦. The original

distance from the point D to the line OE was 3.75 mm. When temperature increases,

the point D moves to the position D1, and the distance from D1 to the line OE is

D1E =
√

54.75hn sin(24.5 − 24.2) = 0.174 mm, i.e. each tweezer tip moves 3.57 mm

toward the closed position.

H1 H2

ΔH1

ΔH2

hhn
L

3L

Figure 4.13: Kinematics of tweezer handles. When temperature is applied, the left cell
extends along H1, and the right cell shrinks along H2.
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Figure 4.14: Kinematics of tweezer jaws. The polygonal line O1C1D1 shows a new
position of the upper jaw when temperature is applied.

4.2.3 Thermal valve

A thermal valve consists of three-cell lattice connected on its bottom and top surfaces

to two substrates parallel to each other. When temperature changes, the height of the

left and the right cells increases, while the height of the cell in the middle decreases.

This leads to the deflection of the upper substrate, which schematically resembles a valve

(fig. 4.15). Here, we are interested in the design of such a structure and do not consider

bending deformation in the upper substrate. The three-cell lattice consists of two type II

cells on its left and right edges and one type I cell between them as shown in fig. 4.15. The

left and right cells of the lattice have the same configuration. The lattice is joined to the

first substrate only at its left and right ends. A plug controlling a valve is connected at

point A. To be connected to the substrates without thermal expansion mismatch stresses,

the following relation must be fulfilled in a three-cell lattice

α11 + α21 + α31 = 3A1 = 3A2,

α12 = α13, α22 = α23, α32 = α33 (4.10)

As an example, we consider a titanium-magnesium alloy lattice. For its left and right

cells (Type II), choose t1 = 3.8◦, t2 = t3 = 35◦, that correspond to normalized CTEs

α11/α1 = 1.035, α12/α1 = α13/α1 = 2.6326 or α11 = 29 ppm/◦C, α12 = α13 = 73.7

ppm/◦C. For the cell in the middle, let t1 = 0◦, t2 = t3 = 35◦, that correspond to
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α21/α1 = 1, α22/α1 = α23/α1 = −4.2688 or α21 = 8.6 ppm/◦C, α22 = α23 = −36.7

ppm/◦C. Using the last two formulae (4.1), we have αH1 = 118.45 ppm/◦C and αH2 =

−82.0 ppm/◦C. From the first formula (4.10), it is seen that these skew angles provide

a substrate CTE A1 = A2 = (29 + 8.6 + 29)/3 = 22.2 ppm/◦C, which correspond to the

CTE of aluminum. Hence, the valve can be connected to aluminum substrates without

thermal expansion mismatch. As in the previous example, other skew angles θ1 and θ2

in all three cells would let us connect the valve without thermal expansion mismatch

stresses to a substrate with a different CTE. When temperature changes, the difference

between the position of the middle point of the second substrate and its left or right

ends is ∆H = |∆H1| + |∆H2| = ∆TH(αH1 − αH2) = 2 · 10−4∆TH m (fig. 4.15). If

∆T = 100◦C, ∆H/H100% = 2%. When the temperature changes, the position of the

second substrate is depicted with dash-line contour.

MgTiMg Ti

ΔH

H
H2 H1

Mg
Ti

H1

Aluminum substrate with CTE=A1=22.2 ppm/oC

.A

Figure 4.15: A three-cell lattice working as a thermal valve designed using based isosceles
triangles with right angles.

4.3 Concluding remarks

The approach demonstrated in this chapter shows that a combination of cells that extend

and cells that shrink when temperature is applied can amplify desirable deflections in

substrates. Moreover, extension and shrinking can be designed in different directions,

and this can be used for more complicated shape control of structures. For proper evalu-

ation of actuator performance we need to compare it with the performance of actuators

having identical or similar configuration and dimensions. This is very difficult to do be-

cause a typical piezoelectric actuator is a cylindrical stack or a wire while the actuators

comprising bimaterial lattices have a unique configuration. The comparison of attainable

strain is insufficient because we have to account also for the deformation per actuator

mass or per applied force. However, we can broadly position the strain attainable by the
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actuators designed here and equal to 3.2% for the thermal switch and of 2% for the valve

between piezoceramic (0.2 %) and NiTi SMA (10 %) actuators made of pure materials

and reported in Jani et al. (2014).



Chapter 5

Experimental results

The goal of this chapter is to validate the results presented in Chapter 2 and Chapter 3

that were obtained analytically using equations (2.7) and (3.1). To reach this goal, two

bimaterial cells of different geometry and combination of materials were heated and their

CTEs were measured.

5.1 Experimental configuration

In this chapter, the methodology for measuring CTEs in isotropic bimaterial lattices

(Steeves et al., 2009) is applied to anisotropic bimaterial cells. The experiment is per-

formed on a hotplate with 30 cm x 60 cm heating surface (fig. 5.1). The hotplate was

placed on a resin rug to damp external vibrations; its surface was carefully leveled to be

horizontal. An additional polished copper plate with 15 cm x 14 cm side lengths was put

on the middle part of the heating surface to create a homogeneous temperature field. The

position of the plate was chosen to be equidistant from the hotplate heating elements.

The copper plate was painted black to have better contrast for the camera images. A

high resolution camera with a TAMRON SP macro lens leveled normal to the hotplate

surface was mounted over the copper plate. The exposed part of the hotplate was cov-

ered with 25 mm thick insulating material to prevent image distortion due to convection

currents. The area over the copper plate was covered with a heat resistant glass plate.

A dial indicator was mounted on the boundary of the glass and the insulation to touch

the copper plate and measure the normal thermal expansion of the hotplate. The effect

of this displacement was removed from the calculation of CTEs. The boundaries of the

glass plate were additionally covered with a second layer of thermal insulation. A fan

was set near the hotplate to provide air currents; this helped to avoid heat shimmer and

minimize camera image distortion. To damp vibrations from the fan, it was mounted on
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a foam rubber pad (fig. 5.1).

To obtain high quality images, the camera aperture was set at its maximum, and the

exposure time was minimized. The camera was connected to a computer with Vic-2D

Correlated Solutions System (2009). Two cells with different skew angles and different

combinations of materials were tested separately. The cell CTEs were measured by

comparing images taken at room temperature and images taken at elevated temperature.

The distances between the pin heads in the cell vertices coinciding with the vertices of

the base triangle were compared. To increase the accuracy of the images, the camera was

positioned as close as possible to the cell on the hotplate, so only two pins corresponding

to the base triangle vertices were in focus. The cell pin heads were covered with high-

temperature white paint and cured in an electric oven at 70◦C for 5-6 hours. This resulted

in sharp contours of black speckles added to the white background. Every test day, the

speckle patterns were renewed because after few hours of heating, the white paint became

yellowish, and the quality of the images deteriorated because of reduced contrast. The

pin stems and the lower surface of pin heads were cleaned of paint. Restriction in the

relative rotation of the lattice members would bias the results. For lower friction at

rotation of pins in the holes of cell members, the pin stems, the holes, and the part of

member horizontal surfaces where the pin heads touched the cell members were covered

with liquid silicone. The internal triangle of the cells was painted in black for better

contrast. The lighting of pins heads was extremely important since the two pins between

which the displacements were measured must be lighted uniformly, and the shadows from

the insulating plates must be eliminated.

Two thermocouple wires were attached to the copper plate surface; their other ends

were connected to the computer measuring temperature and to the hotplate controller,

respectively. Two other thermocouple wires were connected to cell members for additional

control of temperature, but later they were removed to reduce interference with the cell

expansion. The two remaining wires were positioned in a way not to interfere with the

thermal insulation.

5.2 Materials and fabrication

The members of two bimaterial cells were manufactured and assembled. The first cell

was made based on an equilateral triangle with side lengths of 45 mm. The thickness of

the hexagon members was 6 mm and the width was 8 mm. The internal triangle material

was an aluminum alloy AA 2124-T851 with CTE=22.9 ppm/◦C. The external hexagon

member material was a titanium alloy Ti-6Al-4V (Grade 5) with CTE=8.6 ppm/◦C. The
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Figure 5.1: Experimental setup: 1 - bimaterial cell; 2 - hotplate; 3 - camera lens; 4 -
camera; 5 - copper plate; 6 - thermocouple wires; 7 - dial indicator; 8 - insulation; 9 -
fan.
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skew angles were θ1 = θ2 = t1 = 0◦, θ3 = θ4 = t2 = 12.92◦, and θ5 = θ6 = t3 = 27.11◦

(fig. 5.2).

The second cell was made based on an isosceles right-angle triangle with base side

lengths 45 mm. The thickness of hexagon members was 6 mm and the width was 7

mm. The internal triangle material was titanium alloy with CTE=8.6 ppm/◦C while the

external hexagon member material was aluminum alloy with CTE=22.9 ppm/◦C. The

skew angles were θ1 = θ2 = t1 = −5.6◦, θ3 = θ4 = t2 = θ5 = θ6 = 20.0◦ (fig. 5.3).

Figure 5.2: An aluminum-titanium cell based on an equilateral triangle used in the
experiment.

The pins were made of a titanium alloy with CTE=8.6 ppm/◦C. The diameter of the

pin heads was 7 mm and the diameter of the pin stems was 2.5 mm to fit the diameter

of the holes in the members for pin connections. The pins were tightly inserted in the

holes but had freedom to rotate.

5.3 Experimental measurements

Before starting the experiments, a preliminary test of two material samples made of

titanium alloy (8.6 ppm/◦C) and aluminum alloy (22.9 ppm/◦C) was performed. The

samples had a shape copied from the hexagon cell members with 53 mm length and 8
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Figure 5.3: An aluminum-titanium cell based on an isosceles right-angle triangle used in
the experiment.

mm in width and thickness. They were heated to 78◦C, 96◦C, and 110◦C. The room

temperature varied from 22◦C to 23◦C. Their CTEs were calculated, and it was found

that the difference between experimentally found and known CTEs of their materials

did not exceed 4.7%. Subsequently, the experiment with cells was initiated. On every

experimental day, only one cell CTE was measured. Because the hotplate controller was

not able to provide an exact temperature, the temperature was chosen approximately

but measured exactly. To heat the cells, the temperature was kept constant for at least

10 minutes. Five images were taken at each temperature. The value of the CTE was

calculated as the mean of the five CTEs calculated from the data of these five images.

First, a cell based on an equilateral triangle was heated, and its CTEs were measured

(fig. 5.4). The standard deviation σi of each CTE αi, i = 1, 2, 3 among five images made

at the same temperature did not exceed 0.3 ppm/◦C.

Second, a cell based on a isosceles right angle triangle was heated, and its CTEs were

measured (fig. 5.5). In this case the standard deviation σi of each CTE αi, i = 1, 2, 3

among five images made at the same temperature did not exceed 0.7 ppm/◦C.

As it is seen from fig. 5.4 and fig. 5.5, the experimental data are in good agreement

with theoretical predictions. Experimental values of the cell CTEs obtained for the cell

based on an equilateral triangle are higher than analytically predicted values because this

cell tends to shrink when temperature rises, and friction between hexagon members and

the copper plate and between pins and cell members partially inhibit this shrinkage. In

fig. 5.5, the experimental data obtained for the sides with 20◦ skew angles lie below the

analytically predicted values because this cell tends to extend along the lateral sides of

the base triangle, and the friction partially inhibits this. Along the side with the skew
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Figure 5.5: Correspondence of the experimental data to theoretical results in a cell based
on an isosceles right-angle triangle.
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angle −5.6◦, the opposite is true. At higher temperature, for both cells, as was earlier

observed by Steeves et al. (2009), the experimental results are closer to the analytically

predicted values because the imperfections at the pin joints become less important. Also,

for the cells with higher anisotropy the experiment is more challenging because a cell

CTE depends nonlinearly on all external interventions such as external vibrations, non-

uniform light, etc. and on internal imperfections; with greater anisotropy the nonlinearity

increases. That is why the experimental data in fig. 5.5 differ from analytically predicted

values more than in fig. 5.4. In general, the experimental results confirmed the analytical

results.



Chapter 6

Stiffness analysis

In the previous chapter, the analytical results obtained earlier were confirmed experimen-

tally. Additionally, they can be confirmed numerically using, for example, finite element

method (Ross, 1991). First, we will model a bimaterial cell as a pin-jointed truss and

calculate its CTEs numerically using discrete rod elements for the pin-jointed trusses. As

was shown in the Chapter 5, imperfections in pin joints distort the values of cell CTEs.

Bimaterial cells and lattices with rigid joints can be fabricated more accurately with cut-

ting by electric discharge machining and subsequent press fit (Berger et al., 2011; Steeves

et al., 2009), spot laser welding (Gdoutos et al., 2013) or printing on a multimaterial 3-D

printer. Such cells would not be pin-connected but, rather, would be rigidly connected.

Hence, a model for such cells is needed and will be developed in this chapter. Using the

same approach as for pin-jointed cells, we will simulate a bimaterial cell as a frame with

rigid joints and find its CTEs accounting for member bending stiffness.

6.1 Stiffness analysis of bimaterial lattices

Consider an arbitrary cell as an assembly of nine members - elements with six nodes

(fig. 6.1). In this figure, element numbers are indicated by a circle and node coordinates

(xi, yi), i = 1, 6 are in parentheses.

In this chapter we consider cells with equal skew angles adjacent to the same side of

a base triangle: θ1 = θ2 = t1, θ3 = θ4 = t2, θ5 = θ6 = t3. The nodal coordinates in the

81
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Figure 6.1: Bimaterial cell with members -discrete elements

coordinate system depicted in fig. 6.1 are

x1 = −0.5L1, y1 = 0,

x2 = 0, y2 = −0.5L1 tan t1,

x3 = 0.5L1, y3 = 0,

x4 = 0.5L1 − l3 cos(b+ t2), y4 = l3 sin(b+ t2),

x5 = 0, y5 = 0.5L1 tan b,

x6 = −0.5L1 − l6 cos(a+ t3), y6 = l6 sin(a+ t3).

An element stiffness matrix is denoted as ki and force vector as fi where i is a number

of the element. Their expressions will be presented later. Assembly produces a global

stiffness matrix Kg and a global force vector Fg that are linked to each other through

the displacement vector Ug with components u1, v1, u2, v2, . . . , u6, v6

KgUg = Fg. (6.1)

To exclude rigid body motion, set the boundary conditions as

u1 = v1 = v3 = 0. (6.2)
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After introduction of the boundary conditions (6.2) into the matrix equation (6.1), the

displacement vector U can be found as its solution Ug = K−1g Fg where K−1g is the matrix

inverse to Kg. The new coordinates of the cell nodes due to thermal expansion can be

calculated as x1n = x1 + u1, y1n = y1 + v1, and so on.

Suppose all cell members have a square cross section with side length w, area Λ = w2,

and second moment of area I = Λ2/12. First, we are going to employ a rod element for

trusses with pin joints and compare numerical results with the analytical results obtained

in the previous sections. Then we will use a beam element for plane frames with rigid

joints (Ross, 1991) and compare the results obtained with the rod analysis.

6.2 Rod elements

In the global coordinate system (fig. 6.1), a rod discrete element (with two nodes at the

ends of the rod with number i and j) has two displacement degrees of freedom in the

x and y directions at each node {ui, vi, uj, vj}. The element stiffness matrix in global

coordinates is (Ross, 1991)

ki =
ΛEi
li


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs

−cs −s2 cs s2


where c = (xj − xk)/li, s = (yj − yk)/li, li is the length of member i, Ei is Young’s

modulus of the material of member i. The thermal expansion of the member can be

included by modifying the element force vector as

fi = EiαiTΛ


−c
−s
c

s


where αi is the element CTE and T is temperature increase.

Stiffness analysis with rod elements was used to obtain solutions to the problems

considered in Chapters 2-4. The analytical equations derived earlier and the stiffness

technique described here have completely coincident results.

The problems also can be solved using an analytical geometry approach. Introduce a

Cartesian coordinate system with the origin of coordinate coinciding with the vertex F
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(fig. 6.2) where the cell is fixed and the x-axis passes along the line FD. The y-axis is
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Figure 6.2: Sketch of a lattice cell in Cartesian coordinate system.

directed upward perpendicular to the x-axis through the point F . We need to express the

coordinates of three cell vertices A, C, and E as functions of nine cell member lengths

li, i = 1, 9 before and after heating. As it was indicated in Chapter 2, li = L1/2 cos t1,

i = 1, 2, li = L2/2 cos t2, i = 3, 4, li = L3/2 cos t3, i = 5, 6, l7 =
√
l21 + l26 − 2l1l6 cosA′ ,

l8 =
√
l22 + l23 − 2l2l3 cosB′ , l9 =

√
l24 + l25 − 2l4l5 cosC ′ , A

′
= t1 + t3 + a, B

′
= t1 +

t2 + b, C
′

= t2 + t3 + c. When the temperature has an increment ∆T , the lengths

become lin = li(1 + αj∆T ) where αj = α1 for i = 1, 6 and αj = α2 for i = 7, 9. Let

vertices A, B, C, D, E, F have numbers 1, 2, 3, 4, 5, 6, correspondingly. The

vertex coordinates before heating can be presented as xi = fi(l1, l2, l3, l4, l5, l6, l7, l8, l9)
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and yi = gi(l1, l2, l3, l4, l5, l6, l7, l8, l9) where

f1(l1, . . . , l9) =
−c1c2 −

√
l26(1 + c22)− c21

1 + c22
,

g1(l1, . . . , l9) = c1 + c2
−c1c2 −

√
l26(1 + c22)− c21

1 + c22
,

f2(l1, . . . , l9) =
l27 + l29 − l28

2l9
,

g2(l1, . . . , l9) = −

√
l27 −

(
l27 + l29 − l28

2l9

)2

,

f3(l1, . . . , l9) =
l9 − c3c4 +

√
l23(1 + c24)− c23 − c24l29 − 2l9c3c4

1 + c24
, (6.3)

g3(l1, . . . , l9) = c3 + c4
l9 − c3c4 +

√
l23(1 + c24)− c23 − c23l29 − 2l9c3c4

1 + c24
f4(l1, . . . , l9) = l9,

g4(l1, . . . , l9) = 0,

f5(l1, . . . , l9) =
l25 + l29 − l23

2l9
,

g5(l1, . . . , l9) =

√
l25 −

(
l25 + l29 − l23

2l9

)2

and

c1 =
l26 + l27 − l21

2y2
, c2 = −x2

y2
, c3 =

l23 + l27 − l22 − l29
2(y2 − y4)

, c4 = −x2 − x4
y2 − y4

.

When the temperature changes, the new coordinates of vertices A, C, and E will be

xin = fi(l1n, l2n, ...l9n), yin = gi(l1n, l2n, ...l9n), i = 1, 3, 5

Now, the three cell CTEs can be found by formulae

α1 =

√
(x1n − x3n)2 + (y1n − y3n)2 − L1

L1∆T
,

α2 =

√
(x3n − x5n)2 + (y3n − y5n)2 − L2

L2∆T
, (6.4)

α3 =

√
(x1n − x5n)2 + (y1n − y5n)2 − L3

L3∆T
.

The analytical geometry approach and the stiffness analysis with rod elements lead to
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identical results.

6.3 Frame elements with rigid joints

In a global coordinate system (fig. 6.1), a frame element with rigid joints has six degrees

of freedom at two nodes that are at the two ends of the element {uj, vj, φj, uk, vk, φk}
where j and k are the numbers of the nodes on the cell member, uj, uk are displacements

in x direction, vj, vk are displacements in y direction, φj and φk are counterclockwise

rotations of the nodes with numbers j and k, respectively. An element stiffness matrix in

global coordinates ki can be presented as a sum of the stiffness matrix of a rod element

kri and the stiffness matrix of a beam element kbi (Ross, 1991)

ki = kbi + kri (6.5)

where

kbi = EI



12
l3i
s2

−12
l3i
cs 12

l3i
c2

6
l2i
s − 6

l2i
c 4

li

−12
l3i
s2 12

l3i
cs − 6

l2i
s 12

l3i
s2

12
l3i
cs −12

l3i
c2 6

l2i
c −12

l3i
cs 12

l3i
c2

6
l2i
s − 6

l2i
c 2

li
− 6
l2i
s 6

l2i
c 4

li


and

kri =
ΛE

li



c2 cs 0 −c2 −cs 0

cs s2 0 −cs −s2 0

0 0 0 0 0 0

−c2 −cs 0 c2 cs 0

−cs −s2 0 cs s2 0

0 0 0 0 0 0


The force vector in a global coordinate system reflects thermal expansion of each
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member as

fi = EαnTΛ



−c
−s
0

c

s

0


In the Example 1, Section 3.2, a two-row titanium-magnesium alloy lattice with

pin joints connecting titanium and magnesium alloy substrates has been designed. The

skew angles of the left cell in the upper row t1 = 0◦, t2 = 4.9◦, t1 = 32◦ provided three

normalized cell CTEs as α1/α1 = 1, α2/α1 = 0.81, α3/α1 = −0.31. The CTEs of the cell

with the same skew angles but with rigid joints can be found using plane frame elements.

The normalized CTEs have been calculated for four values of lattice member thickness

w = 0.01L2
1, w = 0.003L2

1, w = 0.001L2
1, and w = 0.0005L2

1 (Table 6.1). It is seen that

as member thickness goes to zero, the pin-connected solution is recovered.

Table 6.1: Three normalized CTEs in a cell with rigid joints for varying member thickness
w

i ti w = 0.1L1 w = 0.055L1 w = 0.032L1 w = 0.022L2
1 w=0

1 0◦ 1.0508 1.0169 1.0058 1.0029 1

2 4.9◦ 0.89415 0.83991 0.82218 0.81749 0.81

3 32◦ -0.03228 -0.21854 -0.27993 -0.29594 -0.31

Normalized CTEs in the titanium-magnesium alloy cell based on an equilateral trian-

gle with t1 = 0 and different values of skew angles t2 = t3, a square cross-section with area

w × w for different slenderness ratios r = w/L1 are presented in fig. 6.3. The analogous

plot for the titanium-magnesium alloy cell based on an isosceles right-angle triangle is

depicted in fig. 6.4. On both plots, dotted curves correspond to the case α2 < α1, and

solid curves correspond to the case α2 > α1. The figures show that as the skew angles

become large the rigid-joint solutions diverge from the pin-joint solutions, and rigid joints

obstruct thermal expansion of cell members, which is more significant for larger values

of r and in the cells where α2 < α1.

Note that the normalized CTE was calculated along the sides with the length L2 = L3.

However, in the equilateral triangle L2 = L3 = L1 but in the isosceles right-angle triangle

L2 = L3 = L1/
√

2.
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Figure 6.3: Ranges α2/α1 = α3/α1 of titanium-magnesium alloy cells with rigid joints
based on an equilateral triangle with t1 = 0◦ for different slenderness ratios r = w/L1;
r = 0 corresponds to a cell with pin joints. The dotted lines correspond to a cell with
a titanium inner triangle and a magnesium alloy outer hexagon, while the solid lines
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Conclusions

This work is devoted to bimaterial anisotropic planar lattices. The lattices consist of

nonidentical cells, and each cell is composed of internal and external triangles made

of materials with different CTEs and pin-connected at three locations. The internal

triangle is regular, whereas the external triangle is deformed into a hexagon with varying

skew angles. As a consequence of the variation in skew angles in a single cell, the cells

have anisotropic CTEs. Combining cells with anisotropic CTEs into a pin-jointed lattice

provides the capability to achieve desirable, and differing if necessary, CTEs on the

bottom and top edges of the lattice.

The lattice structures designed in this thesis can be used in several applications. First,

they can serve as transition elements between two parts of a structure with different

CTEs. As a result, the whole structure will be free of thermal mismatch stresses. The

design strategy elaborated herein provides a systematic process for choosing the geometric

configuration of a single-row lattice that connects substrates of known materials. In

particular, guidance on the choice of the materials that would be appropriate to connect

the substrates is given, based upon the CTEs of the substrate materials. The design

process for single rows of lattice can be extended to multiple rows if that provides a

preferable aspect ratio for the adapter. A key limitation to this lattice system is that

there are stringent limits on the maximum number of cells that can be used. As the

difference between the substrate CTEs increases, the maximum number of lattice cells is

reduced because the total deflections that must be accommodated increase with lattice

length. An option for mitigating this limitation is to choose lattice materials with larger

ratio of their CTEs or use multi-row lattices, and permit rotation of the lattice cells. Two-

row lattices enable the connection of substrates with greater CTE mismatch compared to

one-row lattices; allowing rotation of the lattice cells extends the concept further. Such

topics are the subject of ongoing research. In addition, other configurations, such as a
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right-angled cantilever joint and a cylindrical geometry, are also amenable to the same

design approach.

Moreover, these lattices are relatively stiff; the isotropic variants are nearly optimally

stiff for a structure of this nature Steeves et al. (2007). Alternative options for adapters

for thermal mismatch mitigation either induce thermal stresses and curvatures, or are

very compliant. Because for anisotropic lattices there are more design variables than

design requirements, it is possible to select combinations of lattice skew angles that also

achieve additional goals; structural efficiency is an obvious choice. It was shown that the

more “stout” a cell is, the higher is its structural efficiency.

Hence it can be seen that these lattices may serve as elements that mitigate thermal

mismatch stresses, but they can be considered in a broader sense as well. The lattices

have been used here as systems to accommodate geometric changes, but they can also

be used to impose geometric changes: these lattices are effectively thermally-activated

actuators. This opens additional possibilities for the analysis and use of these lattice

systems.

It is possible to impose kinematic conditions on the lattice vertices to enable the

solution of three related problems: (i) connecting two materials with differing CTEs

without inducing thermal mismatch stresses; (ii) imposing precise known displacements

in a system through temperature changes; and (iii) providing thermally-driven actuation

for devices such as switches, tweezers, or valves. In (ii) and (iii), the main challenge is

to maximize the deflections of the vertices. The amplification of total thermal motion

is accomplished through the geometric arrangement and proper material choice of the

lattice constituents. In a mathematical sense, (ii) and (iii) are inverse problems to (i): in

(i), substrate CTEs are given, lattice materials must be chosen based on them, and skew

angles are found as functions of lattice material CTE ratio. In (ii) and (iii), only the

lattice materials and skew angles that provide maximal deflections of cells are used, and

substrate materials are found to eliminate or mitigate thermal stresses on the substrate

boundaries.

Thus, the bimaterial lattices presented in this work have application for systems

requiring zero or small isotropic thermal expansion, small but graded thermal expan-

sion, and large predetermined thermal deformation, all while maintaining relatively large

stiffness, and hence they represent an exceptionally adaptable (perhaps “smart”) multi-

functional structure.
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7.1 Contributions

The main contributions of the research are

• A mathematical model of anisotropic bimaterial lattice thermal deformation;

• A new algorithm for the design of bimaterial lattices with anisotropic thermal

expansion;

• Equations linking six skew angles with three coefficients of thermal expansion of a

lattice cell that account for shape change of the cell base triangle;

• Design concepts for various one-row, two-row, angled, non-planar cylindrical, and

planar axisymmetric adaptive lattices;

• A method to increase structural efficiency of designed lattices;

• Experimental confirmation of analytical results;

• A computer code for cell structural analysis;

• Concepts for thermal actuators based on the anisotropic bimaterial lattices: a

thermal switch, tweezers, and a valve.

7.2 Future research directions

Numerous directions of research remain open for further exploration and study. A few

are listed here as follows:

• Model the lattice designs using three-dimensional finite elements;

• Manufacture thermal actuators and experimentally investigate their performance;

• Design actuators of more complicated shape.
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