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Among the light bending structures currently available, truss core panels are one of the

most efficient when properly designed. The proper selection of the truss core lattice

allows the incorporation of additional functionality. But the structural complexity of

the lattice makes prediction of the behavior of the panel more difficult, particularly in

circumstances where the panel has been damaged. To exploit the advantages of truss

core sandwich structures, it is therefore crucial to understand how the materials behave,

degrade and survive in challenging environments. In this research, the strengths of truss

core panels have been predicted based on their geometry and parent materials. Numerical

calculations and experiments were carried out to validate the predicted strengths. The

effects of damage and damage propagation on the overall strength of the panel were

also addressed. In the numerical calculations, damage was inflicted on the panel by first

loading an undamaged panel until a strut member fails in either yielding or buckling.

The collapsed strut member is then removed (mimicking damage) and the macroscopic

strength of the resulting panel is calculated. The strength and failure surfaces of arrays

of partially damaged truss core unit cells are calculated under shear and axial loading.

The results highlight the modes and trends of damage propagation in truss core panel,

and the estimated strength of the panel in the damaged state. The predicted damaged

strength of the panel were then compared with the strength measured in the damaged

state experiments.
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Chapter 1

Introduction

Structures including solid sheet or plate members are commonly seen in various engineer-

ing applications, being found in automobiles, buildings, aircraft, industrial equipment,

and a host of other applications. Sheet and plate materials are quite strong and relatively

inexpensive. Disadvantageously they tend to have a relatively low stiffness to weight ra-

tio, notably in bending. Sandwich structures are frequently used in applications and

implementations where it is desirable for structures to have a relatively high stiffness

to weight ratio and/or where weight reduction is a significant factor. Such application

is widely seen in structural material used in the aerospace industry. The most com-

monly used sandwich structure, typically referred to as honeycomb structure, includes

thin face sheet laminates and a honeycomb core. Honeycomb sandwich structures have

significantly higher stiffness to weight ratio than solid sheet or plate materials [1]. Dis-

advantageously, honeycomb structures tend to be limited to relatively thin face sheets.

Further, honeycomb structures tend to be more expensive and difficult to manufacture

when compared to truss core panels manufactured by laser welding because their man-

ufacturing process typically involve complicated bonding procedures for attaching the

honeycomb core to the face sheets. There are also difficulties with forming them into

complex non-planar shapes due to induced anticlastic curvature [2].

Another sandwich structure, referred to as truss core sandwich panel, includes a

corrugated sheet or a truss core disposed between two face sheets as shown in Figure 1.1

1



2 Chapter 1. Introduction

Figure 1.1: Model of an extruded/electrodischarge-machined pyramidal lattice sandwich

structure.

Truss core sandwich panels also have significantly higher stiffness to weight than solid

sheet or plate materials, although generally not as high as that of honeycomb structures

[3]. But truss core sandwich panels tend to be advantageous for some applications as their

open core architecture can be exploited for multi-functional applications. For instance,

the open truss core could simultaneously be used as a structure and a heat transfer device.

Also, the closed nature of the porosity of honeycomb structures can trap moisture leading

to corrosion, while their skins are more susceptible to interfacial debonding. Open cell

cores based upon truss core concepts allow fluids to pass through which makes them less

susceptible to internal corrosion and depressurization induced delamination. When used

as sandwich cores, they are more amenable to shaping into complex shapes. Moreover,

the open core architecture can be exploited for providing attributes like impact energy

absorption, thermal management, electromagnetic wave shielding, catalyst support, fluid

filtering, or biological tissue in-growth [4, 5, 6, 7]. As such, lattice truss structures have

been explored as more functional alternative cellular core topology [8, 9, 10]. Improved

methods of manufacturing such sandwich panels have been developed for reducing the

difficulties associated therewith and for producing robust, relatively inexpensive panels

[11, 12]. Among the types of truss available are pyramidal, tetrahedral, octet-truss and

Kagome. For the purpose of this study, a pyramidal lattice truss structure has been

adopted. Pyramidal lattice truss structures are usually fabricated from high-ductility

alloys by folding a perforated metal sheet along node rows. Recent work [13, 14] has

shown that the pyramidal truss structure can be fabricated from an expanded-metal net.

This method has a great advantage over the other methods since it requires the least

material loss and uses a well-established process for expanded metals.
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Conventional joining methods such as brazing or laser welding are then used to bond

the core to solid face sheets to form a sandwich structure, efficiently eliminating the

possible effects of poor joint design and ensuring adequate node-face sheet interfacial

bonding [15]. The lattice topology, core relative density and parent alloy mechanical

properties determine the mode of truss deformation and therefore the out-of-plane and

in-plane mechanical properties of these structures. When sandwich panels are subjected

to shear or bending loads, the nodes transfer forces from the face sheets to the core

members (assuming adequate node bond strength and ductility exists) and the topology

for a given core relative density dictates the load carrying capacity. Models for the

stiffness and strength of pyramidal lattice truss cores, comprising elastic-plastic struts

with perfect nodes, have been developed [16]. These models assumed that the trusses

are pin-connected to rigid face sheets so that bending effects make no contribution to the

stiffness and strength [17]. These models also assume the node strength to be the same

as the strength of the parent metal alloy.

To utilize the advantages of truss core sandwich structures, current research on core

structures focuses on optimizing the geometry and the materials to achieve better me-

chanical properties. Other factors such as corrosion, fatigue, blast resistance, and damage

tolerance also contribute to their performance and possible failure during use. There is

significant interest in exploring the various applications of truss core sandwich panels,

especially in the design of military vehicles such as ships and aircraft. Owing to their

complex damage behaviour, further research is crucial to understanding details of how

the materials behave, degrade and survive in challenging environments. The scope of

this research study involves analytical predictions of the strength and stiffness of the

pyramidal truss core, analyzing the different modes of failure, and the failure criteria.

A second key goal is the prediction of damage evolution during service. The research

results highlight the numerical estimations of truss core panel damaged state strength in

a normalized stress space, the trend of damage propagation and experimental validations

of the predicted damaged strength.



Chapter 2

Analytical Predictions and

Numerical Calculations

2.1 Derivation of Analytical Expressions

2.1.1 Basic Assumptions

The collapse response of stretching-dominated unit cells under transverse shear and nor-

mal loading has been explored. The unit cells are pyramidal trusses with squared face

sheets, as shown in Figure 2.1, comprising elastic-plastic, circular cylindrical struts of

length l and radius a, making an angle ω with the face sheet. The struts are pin-jointed

at the nodes. The unit cells are stretching-dominated [17] because the structural loads

are carried by elements of the unit cells only through axial forces, without bending, and

the structure collapses by axial yielding or buckling of the struts. The effective moduli

and failure strength of the trusses are calculated by assuming that the aspect ratio (a/l)

for strut is small. It is assumed that the pin-jointed struts are made of elastic-ideally

plastic solid, which is made of the same material as the face sheets.

4



2.1. Derivation of Analytical Expressions 5

Figure 2.1: Unit cell pyramidal truss sandwich made of circular cylindrical struts. Figure

courtesy of John Hwang.

2.1.2 Representative Model and Modes of Loading

In pure shear or pure normal loading, the stresses in each of the struts in any unit cell

are assumed to be equal in magnitude; the struts are subjected to loading in tension or

compression. Because the function of the truss core sandwich panel is to carry normal

and shear loads, the focus is on the normal stresses in the X3-direction (out-of-plane

axis) and the transverse shear stresses in X1 or X2 direction which, by symmetry, are

equivalent. Since the pyramidal geometry is regular with equal sides and angles, and

the truss members are of the same thickness, it can be concluded that there is sufficient

symmetry for the transverse shear modulus of the core to be independent of the orien-

tation within the X1-X2 plane. Two independent elastic moduli are denoted by E33 for

the Young’s modulus and G13 for the shear modulus. The modulus G13 = G23, as the

in-plane properties do not depend on the direction of loading. The possible failure modes

and corresponding failure surfaces are detailed in the subsequent sections.

As shown in Figure 2.2, the normal loading in the X3-direction is represented by

applying a point force F3 to the apex node A of the single-unit pyramidal truss. The

force F3 exerts a tensile (or compressive) stress σ33 on the pyramidal unit cell, with the

force scaled to the area of the load-bearing section of the unit cell. This area of the

load-bearing section is calculated by finding the area of the pyramidal base, denoted by

Abase. From Figure 2.3, the horizontal component of the length of the strut is calculated

to be l cosω, and the length of each side of the squared pyramidal base can be calculated
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as
√
2l cosω, resulting in a base area of 2l2 cos2 ω.

Figure 2.2: (a) Pyramidal unit cell showing the front view of the pyramidal core geometry

with the circular struts (AB,AC,AD,AE) subjected to loading by the nodal forces applied

at the node A. (b) The unit cell rotated 45◦.

√2lcosω

√2lcosω

lsin ω
l

t

b

ω

Figure 2.3: Unit cell core geometry and parameters of a strut with rectangular cross-

sections

The normal modulus E33 can be found by calculating the normal displacements of



2.1. Derivation of Analytical Expressions 7

the two face sheets due to direct compression. Loading in the direction of X1 or X2

by the forces F1 and F2 as shown in Figure 2.4 result in stresses denoted σ13 and σ23

respectively, which are related to the transverse shear moduli G13 and G23.

Figure 2.4: Top view of the pyramidal core geometry with the struts subjected to loading

under the shear forces applied at the node A.

2.1.3 Analytical Predictions of Strength

The relative density, ρ̄, of the sandwich panel core is an important property of truss-cored

sandwich panels. The relative density of the pyramidal truss core (defined by the density

of the core divided by the density of the solid from which the core is made) is

ρ̄ =
ρc
ρs
,

where ρc is the average density of the core region and ρs is the density of the parent solid

material. Taking the volume of the core as Vc and that of the struts as Vs, the relative

density for a core with circular cylindrical struts becomes

ρ̄ =
2π

cos2 ω sinω

(a

l

)2

,

(2.1)
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with the height of the core given by l sinω, which is the vertical component of the

strut length. Considering a single strut member under the application of normal force

component F3 (corresponding to the applied stress σ33), the force in the single strut

member is Fstrut,

Fstrut =
σ33Abase

4 sinω
.

The collapse of the unit cell may occur by strut yielding in tension or compression,

or by strut buckling. The failure of the strut will occur when the stresses induced in

the unit cell struts, σs, due to applied stresses σ33, σ13 and σ23 exceed the material yield

strength, σy, or the critical strength, σcr, in the case of buckling. As a result, yielding

will occur when
∣
∣
∣
∣

Fstrut

Astrut

∣
∣
∣
∣
= |σs| = σy,

(2.2)

where Astrut is the cross-sectional area of the strut (πa2 for circular struts). For clarity,

σs is the stress resulting from the axial forces induced in the strut members as a result

of the external applied stresses (σ33 in compression and σ13–σ23 in shear). In the case of

pure normal loading for a truss core made of circular struts, yielding follows as below:

σyπa
2 =

σ33Abase

4 sinω
,

σ33 = σy sin
2 ωρ̄.

(2.3)

For the case of buckling, failure will occur when

σs = −σcr ≡ − Fcr

Astrut

,

where Fcr is given as

Fcr =
k2π2EsI

l2
, I = (1/4)a4π.

As a result,

σs = −σcr ≡ −k
2π2Esa

2

4l2
, (2.4)

where Es is the Young’s modulus of the constituent material from which the struts are

made. The strength in buckling, σcr, is derived from the Euler buckling equation, and

by taking k = 1 for pin-jointed elements.
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For transverse shear under the application of shear force component F1 and F2 as

shown in Figure 2.4, the transverse shear strength shall be specified in terms of the

magnitude of shear stress τ and its direction ψ with respect to X1 axis. Thus,

σ13 = τcosψ , σ23 = τsinψ.

Equilibrium dictates the relationship between forces F1, F2 on the node A and macro-

scopic shear stress τ , such that

F1 = Abaseσ13, F2 = Abaseσ23.

Consequently, for the case of pure shear under loading in X1 direction, where ψ = 0;

Fstrut =
τAbase

4 cosω cos 45◦
.

For yielding to occur;

Fstrut

Astrut

= σs = σy,

σyπa
2 =

σ13Abase

4 cosω cos 45◦
,

σ13 =
1

2
√
2
σy sin 2ωρ̄.

(2.5)

Depending on the directions of the applied stresses to which a strut is subjected to, the

stresses induced in the strut, σs, due to applied σ13, σ23 and σ33, is:

σs =

(

σ33
sin2 ω

+
2
√
2σ13

sin 2ω
+

2
√
2σ23

sin 2ω

)

1

ρ̄
.

(2.6)

A differential applied force dF (related to stresses dσ) in the direction of a required

displacement induces a change in the core height, dh:

dh = dσ
2l3 cos2 ω

4 sin3 ωπa2Es

,

where h is the height of the unit cell, given by l sinω. Using the above equation, the

change in strain, dε, becomes;

dε = dσ
2l2 cos2 ω

4 sin3 ωπa2Es

,
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E =
4 sin3 ωπa2Es

2l2 cos2 ω
,

where E is the resulting normal modulus of the truss core. With respect to the normal

direction X3 axis, modulus E33 becomes

E33

Es

= ρ̄ sin4 ω.

Having established that the shear modulus G13=G23, the shear modulus can be deduced

by applying the point load F1 or F2, and by determining the corresponding displacement.

In an approach similar to the solution of (E33/Es),

G13

Es

=
ρ̄

8
sin2 2ω.

(2.7)

2.2 Failure Modes and Failure Surfaces

This section describes the different failure modes of the pyramidal truss core sandwich

panel and the associated failure surfaces. A failure surface is a representation of an infinite

number of failure points represented in a two or three-dimensional space of stresses. The

failure point is defined as the stress at which the material begins to deform plastically.

In this section, the failure surface is represented in a two-dimensional stress-space. The

two axes are the normal stresses on the vertical axis and shear stresses on the horizontal

axis for combined loading in σ33–σ13 space, and shear stresses on both axes for loading

in σ13–σ23 space. The axes are normalized such that the vertices on the yielding surface

are at ±1. The surfaces in the normalized stress space consist of points for each possible

collapse under any applied ratio of the stresses on the axes. The surface must be convex

and the state of stress inside the surface is elastic. The relationship between the applied

stresses and the induced stresses is a linear function of the geometric parameter (a/l)2,

while additional trigonometric and constant terms are necessary to account for the angles

of the struts.

As shown in Figure 2.5, the arrows on the struts in the depicted modes of failure

denote stresses in either compression or tension. Compression is shown with the two

arrows pointing toward each other, while struts in tension are represented with the arrows

pointing away from each other. Struts failing by compression could either yield or buckle.
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To understand the behavior of truss core structures with respect to different loading

mechanisms, it is necessary to account for all the possible failure modes, and to generate

corresponding failure surfaces. Mode [A] represents collapse in pure compression or

tension. In this failure mode, all four struts are equally loaded and simultaneously yield

(in tension or compression) or simultaneously buckle in compression. If σcr < σy, then

buckling modes of failure are operative; the failure surface lies upon the dashed lines in

Figure 2.6. Otherwise, the failure surface lies only upon the solid lines. In Mode [B],

two struts yield in tension and their opposing struts yield in compression. This failure

mode will occur only in pure shear. In Mode [C], two adjacent struts buckle in either

pure shear or combined loading while the other two struts remain loaded but undamaged.

Mode [D] denotes failure by simultaneous tensile yield of two struts and buckling of the

two opposing struts under combined loading. The fifth mode of failure denoted as Mode

[E] encompasses all the yielding failures in the combined loading (σ13,σ33). This mode

involves the yielding of two adjacent struts in tension. In all failure modes, the unfailed

strut members may be in tension or compression.
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Figure 2.5: Mode [A] represents simultaneous collapse of all the struts under normal

loading. Mode [B] represents the case of one strut yielding in tension while its opposing

strut yields in compression. Mode [C] represents the case of two adjacent struts buckling.

Mode [D] denotes simultaneous tensile yield of two struts and buckling of the two opposing

struts under combined loading. Mode [E] represents the case of two adjacent struts

yielding.



2.2. Failure Modes and Failure Surfaces 13

The yield and buckling failure surfaces represented in Figure 2.6 show the combined

loading in (σ13,σ33) normalized stress space, while Figure 2.7 represents transverse shear

in (σ13,σ23) normalized stress space. In the failure surfaces, the loading direction, γ,

dictates the ratio of the vertical normalized stress to the horizontal component. When the

loading point in the stress space is within the failure surface, the unit cell is undamaged.

Damage corresponds with the lines on the failure surfaces, while the panel remain at its

initial strength only within the enclosed failure surfaces. The loading point can never

move outside the failure surface.

Figure 2.6: Yield and buckling failure surfaces in combined loading (σ13,σ33) space. The

failure modes have only been partially labelled, the unlabelled collapse planes follow from

symmetry.
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Figure 2.7: Yield and buckling failure surfaces in transverse shear. The failure modes

have only been partially labeled, the unlabeled collapse planes follow from symmetry

Also, based on the geometry of the truss core sandwich panel, a non-dimensional

strength of the panel can be expressed in terms of the ratio (σ33/σy) for normal stresses

in the vertical axis and for the non-dimensional shear strength in the horizontal axis by

the ratio (σ13/σy).

2.3 Numerical Calculation and Stiffness Matrix Ap-

proach

Owing to the need to study the behavior of the truss core sandwiches beyond just a

single unit cell, as the real structure exists as large arrays of multiple unit cells, it

is necessary to devise a method for analyzing the strength of such large array panel.

Moreover, of major importance is the effect of the interactions between the unit cells on
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the macroscopic strength of the panel. Using the stiffness method of matrix analysis, a

MATLAB program was written for analyzing the strength and mechanical behavior of

any multiple-cell truss core sandwich panel. With reference to the single truss member

shown in Figures 2.8, a x,y,z global coordinate system was established. The two nodal

ends of the strut are identified as the near end, N , and the far end, F .

Figure 2.8: Single strut representation in space. Space truss analysis

Three degrees of freedom at the near end are labeled 1, 2, and 3, while the degrees of

freedom at the far end are labeled 4, 5 and 6. The element stiffness matrix for the single

truss member, k′, defined in reference to its local coordinates x′ is given by [18];

k′ =
AE

l

[

1 −1

−1 1

]

where A denotes the area of the strut, l is the strut length, and E is the Young’s modulus.

The direction cosines λx, λy, λz between the global and local coordinates can be found

using the equations
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λx =
xF − xN

√

(xF − xN)2 + (yF − yN)2 + (zF − zN)2

λy =
yF − yN

√

(xF − xN)2 + (yF − yN)2 + (zF − zN)2

λz =
zF − zN

√

(xF − xN)2 + (yF − yN)2 + (zF − zN)2

The transformation matrix T is given by

T =

[

λx λy λz 0 0 0

0 0 0 λx λy λz

]

The single truss member stiffness matrix expressed in the global coordinates with respect

to the transformation matrix is given by

k =















λx 0

λy 0

λz 0

0 λx

0 λy

0 λz















AE

l

[

1 −1

−1 1

][

λx λy λz 0 0 0

0 0 0 λx λy λz

]

Carrying out the matrix multiplication yields the symmetric matrix;

k =
AE

l















λ2x λxλy λxλz −λ2x −λxλy −λxλz
λyλx λ2y λyλz −λyλx −λ2y −λyλz
λzλx λzλy λ2z −λzλx −λzλy −λ2z
−λ2x −λxλy −λxλz λ2x λxλy λxλz

−λyλx −λ2y −λyλz λyλx λ2y λyλz

−λzλx −λzλy −λ2z λzλx λzλy λ2z















To generate the structural stiffness matrix, K, for any given type of truss structure with

the members’ connectivity, positions and geometry defined, the elements of each member

stiffness matrix are generated and placed directly into their respective positions in K in
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the appropriate rows and columns. After the structural stiffness matrix (K) has been

generated, the nodal displacements (D), external force reactions (Q) and internal member

forces (q) can be determined in the form of equation Q = KD;

[

Qk

Qu

]

=

[

K11 K12

K21 K22

][

Du

Dk

]

where Qk and Dk are known external loads and displacements respectively. Qu and Du

are the unknown loads and displacements, and K is the structure stiffness matrix which

is partitioned to be compatible with the partitioning of Q and D. Most often Dk=0,

since the supports are not displaced. Solving the above equations, for Dk=0, the direct

solution for all the unknown nodal displacements can be obtained:

Du =
[

K11

]
−1 [

Qk

]

and the solution for the unknown support reactions give as below;

Qu =
[

K21

] [

Du

]

The member forces can be determined using the equation

q = k′TD

Expanding this equation yields

[

qN

qF

]

=
AE

l

[

1 −1

−1 1

][

λx λy λz 0 0 0

0 0 0 λx λy λz

]















DNx

DNy

DNz

DFx

DFy

DFz















Since qN = qF for equilibrium, the solution can be written as;
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qF =
AE

l
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If the computed result using the above equation is negative, the members are regarded

to be in compression. This procedure was implemented using a series of MATLAB

scripts [19], which was then used to calculate the strength and the failure surfaces of

a unit pyramidal truss panel. For the purpose of comparing the analytical calculation

of strength with that of the stiffness matrix approach, a unit pyramidal cell was chosen

with strut length l=27.5 mm, radius a of 0.69 mm, angle made by strut with face sheet

ω=55◦, with Young’s modulus E of 69 GPa and yield strength σy of 255 MPa. Figure 2.9

shows the failure surfaces for a unit cell subject to combined loading in the (σ13,σ33)

stress space.
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Figure 2.9: Numerically generated yield and buckling failure surfaces in combined loading

(σ13,σ33) space.

With the specified material properties and geometry, the strength of this unit cell

can be determined in pure shear, pure normal loading and in any combined loading.
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Using Equations 2.3 and 2.5, the ratio of (σ13/σ33), 0.5, is equivalent to the numerical

result shown in the failure surface of Figure 2.9. Also from Equations 2.3 and 2.5, the

strength of the panel in pure tension and pure shear were analytically calculated to be

2.51 MPa and 0.52 MPa respectively, which is consistent with the strength result from

the numerical calculations. The numerical model is the tool for analyzing complex failure

mechanisms involving the interactions between multiple unit cells and the effects of strut

failure in arrays of unit cells in truss core sandwich panels. The advantage of using

the computational solutions is that the strength of arrays of multiple unit cells can be

calculated; the redistribution of loads amongst the strut members is too complex to do in

an analytically tractable manner. This approach also permits damage to be introduced

into the array of unit cells, an advantage that is exploited and detailed in subsequent

chapters.



Chapter 3

Experimental Validation of

Analytical Predictions

3.1 Specimen Design and Fabrication

Truss core sandwich panels are usually fabricated from steel or aluminum alloys based

on two approaches depending on the nature of the parent material used. One fabrication

method was patented by Wallach and Gibson [20]. This involves folding a perforated

metal sheet along node rows. Conventional joining methods such as brazing or laser

welding are used to bond the core to the solid face sheets to form a sandwich structure.

The folding of a perforated or expanded metal sheet provides a simple means to make

lattice trusses. A variety of die stamping, laser or water jet cutting methods can be used

to cut patterns into metal sheets. For example, a tetrahedral lattice truss can be made by

folding a hexagonally perforated sheet in such a way that alternate nodes are displaced

in and out of plane as shown to the right of Figure 3.1. By starting with a diamond

perforation, a similar process can be used to make a pyramidal lattice as shown to the

left of the figure. There is considerable waste material created during the perforation of

the sheets and this contributes significantly to the cost of making cellular materials this

way. These costs can be greatly reduced by the use of either clever folding techniques that

more efficiently utilize the sheet material or methods for creating perforation patterns

that do not result in material waste. Figure 3.1 to the left, also shows an example of

the use of metal expansion techniques, followed by folding, that provides a means for

creating lattice truss topologies with little or no waste. The entire process involved in

making truss core panels by this method is detailed in Figure 3.1. The most widely

20
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Figure 3.1: Figures adapted from Wallach and Gibson [20]. Left: A pyramidal lattice

truss structure made by periodically slitting a metal sheet and then stretching (expand-

ing) it. Alternate bending rows of nodes converts the expanded metal sheet into a

pyramidal lattice truss structure. Right: A perforated metal sheet bent and bonded to

create a tetrahedral lattice truss structure.

known drawback to this approach is the possible poor design of the core-face sheet node

interface, as this ultimately dictates the maximum load that can be transferred from the

face sheets to the core. When the node strength is compromised by poor joint design

or inadequate bonding methods, node bond failure occurs, resulting in premature failure

of the sandwich panel before the failure of the truss core structure [21]. However, the

Wallach and Gibson approach took into consideration the numerous factors that could

determine the robustness of the nodes, such as joint composition, microstructure, degree

of porosity and the contact area. This approach has been proven to be more robust

in fabricating an adequate joint [9]. The Wallach-Gibson approach is more suitable for

sandwich structures made of steel material where laser welding can produce adequate

node strength.
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Another approach was proposed by Queheillalt et al [22], where an extrusion and

electro-discharge machining (EDM) method has been developed to fabricate a pyramidal

lattice core sandwich structure. In the approach as depicted in Figure 3.2, an aluminum

alloy corrugated core sandwich panel is first extruded with integral core and face sheets.

The corrugated core is then penetrated by an alternating pattern of triangular-shaped

EDM electrodes normal to the extrusion direction to form the pyramidal lattice. The

process results in a sandwich panel in which the core-face sheet nodes possess the parent

alloy’s metallurgical and mechanical properties. This method has been proven to be

suitable for truss core sandwich panel made of aluminum alloys, as compared to core

structure made of steel material, due to the difficulties involved in the extrusion of steel

material. Another reason is that aluminum alloys are not good candidates for welding.

The specimens used for the experiments carried out in this research were fabricated

using the Wallach-Gibson approach. Two pyramidal truss core sandwich panels were

fabricated from stainless steel A 316L, one for testing in compression and the second

for testing in shear.1 For both tests, the panels were fabricated such that the geometry

of the truss core are robust enough to undergo yielding before buckling; that is, σcr is

greater than σy. The buckling strength in the inelastic region is sufficient for comparing

the experiment with the analytical prediction as the analytical critical strength (σcr) can

be calculated using the Tangent or Reduced Modulus theory [23]. Table 3.1 details the

parameters of the shear and compression specimens.

Table 3.1: Parameters of Shear and Compression Specimen

Shear Test Specimen Compression Specimen

Face Sheet Thickness (mm) 4.7 2

Strut Length (mm) 22 24.5

Strut Cross-Sectional Area

(mm2)
3.71 5.18

Strut Inclination Angle (deg.) 60.5 56.2

Core Height (mm) 19 20.5

1Specimens were manufactured by Cellular Materials International (CMI), Virginia, USA.
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Figure 3.2: Schematic illustration of the extrusion process used to produce an aluminum

alloy corrugated core followed by the schemes of the regions in the corrugated core that

are removed by electrodischarge machining to create a pyramidal lattice core sandwich

panel. Figures adapted from Queheillalt et al [22].

3.2 Experimental Procedure

To validate the predicted properties of the panel, compressive and shear test experiments

were carried out on samples of pyramidal truss core panels. The truss structures were

tested at ambient temperature at a displacement rate of 10−3 mms−1 in accordance with

ASTM C365 and C273 [24, 25] using compression platens and a shear rig respectively.

Loading was applied through the Material Testing Systems (MTS) load frame machine,

model 880, with 100 kN capacity. The shear rig was designed such that the loads applied

through the load frame using the compression platens shear the truss core. A laser



24 Chapter 3. Experimental Validation of Analytical Predictions

extensometer (Electronic Instrument Research, EIR, Model LE-05) was used to measure

the compressive strain by monitoring the displacements of the unconstrained face sheets

while the shear strain was obtained by monitoring the displacements between the platens.

A National Instruments Data Acquisition System was used to collect the incoming analog

data from the laser extensometer. The system includes a SCC-2345 Signal Conditioner,

6251e DAQ PCI Card and a LabVIEW/DAQmx program created for data acquisition.

Figure 3.3 shows the schematic illustration of the experiment equipment setup, with

corresponding procedures of data acquisition and processing of the incoming data.

 MTS Load Frame

     Machine

           

        NI DAQ 

Signal Conditioner

 Multiple Modules

 Output: Plot of

Load vs Displacement

 Laser Extensometer

         EIR LE -05

 TML Strain Gauges  MATLAB Program:

 Volts to kN, mm

Figure 3.3: Schematic illustration of the experimental procedure showing the stages of

data acquition and processing.

3.3 Variation in Strut Cross-Sectional Area

The effects of manufacturing flaws in the fabrication of the truss core panels used for the

experiments were evaluated by the statistical method of Weibull distribution. By visual

observation and measurement, it was evident that the thicknesses of the strut members

vary from one another. As a result, in each experiment, the thickness of the strut to

fail first (that is, the strut with the smallest cross-sectional area) varies. The Weibull

analysis was used to provide accurate failure analysis and failure forecasts with extremely

small samples [26]. The Weibull analysis was more suitable here because the number of
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data samples available from the measurement of the struts’ thicknesses were limited as

only the struts on the outside of the panel could be reached for measurement. Another

advantage of Weibull analysis is that it provides a simple and useful graphical plot of

distribution data. The Weibull data plot is particularly informative as Weibull pointed

out in 1951 [27]. The Weibull distribution usually provides the best fit of life data. This

is due in part to the broad range of distribution shapes that are included in the Weibull

family. Many other distributions are included in the Weibull family either exactly or

approximately, including the normal, the exponential, the Rayleigh, and sometimes the

Poisson and the Binomial. Even bad Weibull plots are usually informative to engineers

trained to use them and the resulting Weibull analyses are still useful enough to provide

valuable results. For extremely small samples of not more than twenty, the Weibull is

the best choice, and therefore, best practice [26]. The requirement is to have most of

the data samples around the fitted Weibull line, which in the case of the data samples

measured from both the shear and compression specimens, more than 80% of the data

samples show a good fit on the Weibull plot. For engineering evidence supporting another

distribution, moderate size samples and large number of data are needed to discriminate

between the Weibull and other distributions. Hence, Weibull analysis has become the

most widely used in meeting engineering objectives in cases of extremely small samples.

Consequently, the Weibull distribution was utilized to describe the thickness distribu-

tion of the struts, in terms of their cross-sectional area. The goodness of fit of the strut

data to a Weibull distribution was assessed by using a Weibull plot. The Weibull plot is

a plot of the empirical cumulative distribution function, F̂ (x), of data on special axes in

a type of Q-Q plot [28]. The axes are ln(− ln(1− F̂ (x))) versus ln(x). The variables for

the axes were chosen such that the cumulative distribution function can be linearized in

the form shown below;

F (x) = 1− e−(x/λ)k

− ln(1− F (x)) = (x/λ)k

ln(− ln(1− F (x)))
︸ ︷︷ ︸

’y’

= k ln x
︸ ︷︷ ︸

’mx’

− k lnλ
︸ ︷︷ ︸

’c’

(3.1)

which can be seen to be in the standard form of a straight line. Therefore, if the data

fit into a Weibull distribution then a straight line is expected on the Weibull plot. The

Weibull parameters are the scale factor, λ, and the shape factor, k. There are a number
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of approaches to obtaining the empirical distribution function [29] and in this case, the

MATLAB Weibull plot function was used. From the linear regression used to numerically

assess the goodness of fit, the two parameters of theWeibull distribution can be estimated.

The gradient informs one directly about the shape parameter k. The scale parameter λ

can be obtained from the y-axis: ln(− ln(1− F̂ (x))) = 63.2% ordinate point. The shape

and scale parameters were calculated with the MATLAB Weibull function. For the case

of the truss core panel, it means that if λ is the characteristic dimension of the struts,

this would be the area at which 63.2% of the struts will fall below the expected area,

with the mean being the expected area of the struts. For the compression specimen, the

thicknesses of 23 struts were measured and their cross-sectional area calculated, while it

was possible to reach and measure the thicknesses of 42 struts from the shear specimen.

The Weibull plot on the distribution of the area was evaluated with Equation 3.1 with

the calculations carried out using MATLAB Weibull plot function. The distributions

show a good fit as shown in Figures 3.4 and 3.5 for the compression and shear specimens

respectively.
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Figure 3.4: Weibull goodness of fit check on the struts of the compression specimen using

the measured cross-sectional area of 23 struts.
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Figure 3.5: Weibull goodness of fit check on the struts of the shear specimen using the

measured cross-sectional area of 42 struts.

The distributions from the compression specimen gave an estimated mean strut cross-

sectional area of 5.18 mm2, a standard deviation of 0.14 mm2, and Weibull shape and scale

parameters of 17.15 and 5.35 mm2 respectively. The struts of the shear specimen have an

estimated mean cross-sectional area of 3.71 mm2, standard deviation of 0.121 mm2, and

Weibull shape and scale parameters of 12.98 and 3.86 mm2 respectively. The distributions

of the probability density are shown in Figures 3.6 and 3.7 for the compression and shear

specimens respectively, and this may also be calculated such that the integral over all

the bounded struts area take the value of unity.

The compressive test sample has a face sheet thickness of 2 mm, strut (mean) cross-

sectional area, Ācp, of 5.18 mm2 from the Weibull analysis, a core height of 20.5 mm,

strut length of 24.5 mm and a strut inclination angle of 56.2◦. While the relative density,

ρ̄cp, of the truss core was calculated as below:

ρ̄cp = 0.067

(3.2)
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Figure 3.6: Weibull probability density against the cross-sectional area distribution in

the 23 struts of the Compression Specimen.
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Figure 3.7: Weibull probability density against the cross-sectional area distribution in

the 42 struts of the Shear Specimen.

The specimen fabricated for the shear experiment was made of thick face sheet but

with rather slender truss elements, to ensure that the shearing of the panel is solely

carried by the struts, while the struts are still sufficiently robust and strong enough to

undergo yielding before buckling. The shear test specimen has a mean cross-sectional

area (Āsh) of 3.71 mm2 from the Weibull analysis, web thickness of 1.9 mm, a core height
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of 19 mm, strut length of 22 mm and a strut inclination angle of 60.5◦. The relative

density, ρ̄sh, of the shear truss core sample was calculated as below:

ρ̄sh = 0.069

(3.3)

3.4 Compression Experiment

Before the compression tests were carried out, tensile coupons of the stainless steel parent

material cut out from the panel face sheet were tested to determine the mechanical

properties of the parent steel material. This test was carried out to determine the material

properties of the fabricated truss core structure, which could have changed from the initial

material properties of the 316L stainless steel used, due to the effects of welding, annealing

and other fabrication processes. Tensile tests were performed according to ASTM E8 at

a displacement rate of 10−3 mms−1 on three samples. The average Young’s modulus, Es,

and 0.2% offset yield strength, were 197.6 GPa and 283 MPa, respectively. Figure 3.8

shows the stress-strain response from one of the tested samples.
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Figure 3.8: Stress–strain curve of the sandwich panel parent material, under simple

tensile test.

The specimens were cut into 2X2 unit cell samples with all the nodes fully intact and
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protected during the cutting and milling operation. The face sheets of the compression

specimens were ground to improve the parallelism between the face sheets, to reduce the

effect of uneven load distribution in the unit cells. The 2X2 unit cell sample was placed

between the compression platens of the load frame such that the entire face sheets were

in full contact with the platens, while the laser extensometer sensor tape was attached

on the edges of the face sheets. The sample was loaded at a nominal displacement

rate of 10−3 mms−1 in accordance with ASTM C365. Two sets of tests with identical

specimens were performed under the same conditions, and the results from both test show

approximately the same value within a difference of 5%. The compressive stress-strain

response of truss core panel is shown in Figure 3.9 while Figure 3.10 shows the pictures

of the panel at different strain levels. Following an initial linear response, plastic yielding

of the truss core occurred and a peak was then observed in the compressive stress that

coincided with initiation of the buckling of the truss members, along with the formation

of plastic hinge near the mid-sections of the members. Continued loading resulted in

core softening, at which point the load increased rapidly as the deformed trusses made

contact with the face sheets. Figure 3.11 shows the compressive stress to strain response

of the compression specimen. The measured compressive strength was compared to the

predicted strength of the panel to assess the accuracy of the prediction.
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Figure 3.9: Measured yielding and inelastic buckling in a full graph of the compressive

stress vs. strain response of a typical truss core panel.



3.4. Compression Experiment 31

Figure 3.10: Photographs of the pyramidal truss core sandwich panel deformation at

different strain levels.
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Figure 3.11: Compressive stress vs. strain response of the pyramidal truss core panel,

for the compression specimen provided by CMI. Comparison of experimental measured

strength with the predicted strength.
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3.5 Shear Experiment

For the shear tests, a shear rig was designed such that the panel is loaded in shear by a

force applied through one edge of the face sheet, while the other face sheet is constrained

at the other edge. The direct shear experiment was carried out on arrays of unit cells

as shown in Figure 3.12. The loaded and constrained edges were ground and machine

milled to ensure they sit flat on the surface of the shear rig at the surface of contact.

The specimens were cut into 2.5X2.5 unit cell samples with all the nodes fully intact.

As shown in Figure 3.13, a clamping device was used to support the sample in the shear

rig to resist rotation of the specimen due to the net moment exerted by the test fixture,

while the entire top and bottom surfaces of the shear rig were fully in contact with the

platens.

Figure 3.12: Direct shear test as carried out on the sandwich panel sample.
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Figure 3.13: The shear test specimen showing the clamping of the specimen to resist

rotation caused by the net moment.

Laser sensor tapes were attached on the platens and a laser extensometer recorded

the displacements. The test samples were loaded at a nominal displacement rate of

10−3 mms−1 in accordance with ASTM C273. Two sets of test were first performed

with the samples under the same conditions, for comparisons of the results to ensure

consistency. In the test orientation as shown in Figure 3.14, each unit cell had two truss

members loaded in compression and the other two in tension. The test sample exhibited

the expected characteristics under a shear test (with the struts subjected to loading in

tension and compression), while yielding occurred before buckling. Figure 3.15 shows the

shear stress to strain response of the panel.
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Figure 3.14: Struts of the pyramidal truss core panel in compression and tension under

the applied shear.
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Figure 3.15: Shear stress vs. strain response of the pyramidal truss core panel, for the

shear specimen provided by CMI. Comparison of experimental measured strength with

the predicted strength.
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3.6 Result Comparisons

From the compressive stress-strain response shown in Figure 3.11, an initial high-compliance

region was caused by concavity of the panel face sheets induced during machining. The

expected linear elastic region follows with a stiffness of 3.78 GPa, which is 1.6% less

than the predicted stiffness. The stiffness of the panel was measured at the region of the

steepest slope along the linear elastic region of the stress-strain plot. The failure strength

of the panel was taken to be equivalent to the yield strength observed at obvious yield

point where the stress-strain plot becomes non-linear or at 0.2% offset strain if there is no

clear non-linear region, and this value was directly compared to the predicted strength.

A compressive strength (σ33exp.) of 9.73 MPa was measured at the obvious yield point as

shown in Figure 3.11. The strength at 0.2% offset strain was used for the shear test and

a strength (σ13exp.) of 4.72 MPa was measured.

The predicted compressive strength (σ33pred.) of the specimen calculated from the

Weibull analysis in Equation 3.2 and by substituting that into Equation 2.3 gives:

σ33 = 13.1 MPa. (3.4)

The predicted shear strength (σ13pred.) of the specimen for the shear tests follows by

substituting ρ̄sh (calculated from the Weibull analysis) into Equations 2.5, which results

into;

σ13 = 5.92 MPa. (3.5)

For the geometry of the truss core sandwich panels used in these experiments, the pre-

dicted non-dimensional compressive strength of the panel in terms of the ratio of (σ33/σy)

is 0.046, while the predicted non-dimensional shear strength of the panel is 0.021. Based

on the normalized stress space, the predicted strength is equivalent to the unit factor

of 1 as shown in the normalized axes of Figure 2.6. A normalized compressive strength

of 0.76 was measured, which was 24% less than the predicted compressive strength. In

the same manner, a normalized measured shear strength of 0.80 was calculated from the

experiment, which was 20% less than the predicted strength. One reason for these dis-

crepancies is lack of perfect parallelism of the face sheets; some of the struts were more

highly loaded than others. In addition, because of small irregularities in the manufac-

turing process, the unit cells were not perfectly identical. These factors contributed to
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the differences recorded in the experimental results when compared to the analytical and

numerical predictions.



Chapter 4

Predicting Damage and Residual

Strength

4.1 Mimicking Damage–Numerical Analysis

In the previous chapter, the strength of pyramidal truss core panel was investigated in the

undamaged state and the experimental validation of the predictions discussed. However,

the panel will undergo damage under continuous mechanical loading during use, due to

fatigue, corrosion and impact loading. It is therefore important to understand how the

strength of the panel degrades when damaged and the residual strength of the panel in

the damaged state. For this purpose, numerical calculations of the behavior of a 2X2

unit cell specimen subjected to combined loading along the X2 and X3 axes under a set

of symmetrical minimum boundary conditions were performed. The sets of boundary

conditions were chosen such that the panel is not unnecessarily over-constrained for the

purpose of the numerical calculations. As shown in Figure 4.1, the chosen boundary

conditions also ensure symmetrical load distribution along the X1 and X2 loading direc-

tion, keeping to the symmetry of the panel. With the ratio of applied shear to applied

compression held constant, damage was inflicted on the panel by loading the undamaged

panel until a strut member failed in either yielding or buckling. The failed strut member

was removed and the macroscopic strength of the resulting panel calculated while keep-

ing the same ratio of shear to compression. The next strut that failed was then removed

(simulating the case of a panel with two struts damaged). The strength of the resulting

panel is then calculated, and the subsequent strut to fail is removed, thus representing the

case of a panel with three struts damaged. Figures 4.1 and 4.2 show the trend of damage

37
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propagation for the case of pure shear and pure compression respectively. By following

this procedure of damage analysis, the residual mechanical strength of damaged truss

core panel can be determined through numerical calculations and the resulting failure

surfaces of the damaged panel can be obtained.

Figure 4.1: Damage trend in pure shear. Top view of the 2X2 unit pyramidal truss core

panel. The dashed lines denote the squared lattice of the top layer while the regular

lines represent the squared bottom layer with the four diagonal lines in each unit cell

representing the pyramidal core. The damaged strut is shown in red and the direction of

loading shown by the blue arrows. The boundary conditions are shown by the supports

and all bottom nodes constrained in the X3 direction.
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Figure 4.2: Damage trend in pure compression. Top view of the 2X2 unit pyramidal truss

core panel. The dashed lines denote the squared lattice of the top layer while the regular

lines represent the squared bottom layer with the four diagonal lines in each unit cell

representing the pyramidal core. The damaged strut is shown in red and the compression

load shown by the blue circles. The boundary conditions are shown by the supports and

all bottom nodes constrained in the X3 direction.

4.2 Numerical Calculation of Damaged State Strength

The rate at which the macroscopic strength of the panel degrades is related to the amount

of damage the panel suffers. For the examination of damaged state strength, a 2X2 unit

cell panel was simulated under combined loading with the symmetrical boundary condi-

tions described in Section 4.1. Under each ratio of applied shear to applied compression

considered, damage was inflicted on the panel from the undamaged state up to three

struts damage, and the numerical calculations give the failure surfaces, shown in Fig-
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ure 4.3. The pyramidal core used for the damaged state numerical analysis has strut

length of 27.5 mm, radius of 0.69 mm, angle made by struts with face sheet (ω) of 55◦,

Young’s modulus E of 69 GPa and yield strength σy of 255 MPa, similar to the geometry

of the panel used in Section 2.3, which was a single unit cell. It should be noted that a

pyramidal core with struts having rectangular cross-sections could also be used for this

analysis since the required parameters from the core geometry are the strut area and the

relative density. Table 4.2 shows the percentage degradation of the panel overall strength

owing to damage in pure shear and pure compression. The numerical calculations of the

failure surfaces follow the procedures of mimicking damage as discussed in Section 4.1.

In each damaged state, displacements were applied on the apex nodes of the panel and

the resulting stresses in the strut members calculated to determine the failing struts

in order to compare the predicted strength degradation of the panel in pure shear and

compression with the measured strength.
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Figure 4.3: Failure surfaces showing the strength of the 2X2 unit pyramidal panel in the

damaged state. Damage inflicted up to three struts.



4.3. Damaged State Experimental Comparison 41

Table 4.1: Damage Degradation of Strength, Minimum BC

Shear

Strength,

MPa

% Shear

Strength

Compressive

Strength,

MPa

% Compres-

sive Strength

Undamaged 0.51 1.05

One-Strut

Damaged
0.36 72 0.86 82

Two-Strut

Damaged
0.31 61 0.65 62

Three-Strut

Damaged
0.22 43 0.53 50.5

4.3 Damaged State Experimental Comparison

4.3.1 Damaged State Compression Experiment

Compression tests were carried out on damaged samples of pyramidal truss core to com-

pare the predicted damaged strength to experiments. This provides more insight into

the actual behavior of the panel and demonstrates if the numerical approach is accurate.

The test preparation and setup are identical to the procedures detailed in Section 3.4.

The test specimens have the same geometry and material properties as the specimens

in Section 3.4. One of the goals of the damaged state experiment is to capture the me-

chanical response of a few selected struts during the test. The aim was to compare the

strains in the struts measured during the experiments to the predicted strains of same

struts calculated numerically. The strains in the struts were captured by the same data

acquisition system described in Section 3.2, with strain gauges attached on the selected

struts. Strain gauges used were of 1 mm gauge length with a gauge factor of 2.14 and

gauge resistance of 120 ohms. The strains in the struts were calculated from the measured

strain as below;

Vǫ =
V ′

O − VO
VEX

,

(4.1)
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where V ′

O is the measured output voltage when strained, and VO is the initial, unstrained

output voltage. VEX is the excitation voltage. Also, the designation (+ǫ) and (ǫ) indicates

active strain gauges mounted in tension and compression, respectively. For the quarter

bridge connection as used in the experiments, the strain in the struts is calculated as a

function of the Vǫ as shown below:

ǫ =
±4Vǫ

GF (1 + 2Vǫ)
(1 +

RL

RG

),

(4.2)

where RL is the lead resistance, RG is the gauge resistance, and GF the guage factor of

the strain gauge.

Before damage was inflicted on the panel, an undamaged sample was tested to identify

which strut to damage first. In the numerical calculation for the undamaged state, the

struts are equally stressed as the geometry is perfectly modeled and there is even load

distribution in the unit cells which are connected by truss elements representing the face

sheets. But this will not be the actual behavior of the specimen owing to the presence

of manufacturing imperfections and the interactions between the unit cells in the way

they are joined to the face sheets. For these reasons, three sets of struts were identified

based on the expected mechanism governing the response of the struts under normal

loading. Figure 4.4 shows the representation of the three sets of struts. It was expected

that the struts in each set would have approximately the same mechanical response to

normal loading. Set I represents the innermost struts in the 2X2 unit cell panel, Set II

represents the struts lying in-between the innermost the outermost struts, while Set III

represents the outermost struts.
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Figure 4.4: Undamaged 2X2 unit pyramidal panel showing the three sets of struts to

which three strain gauges were attached. A strain gauge was attached on a strut from

each set.

Two tests were carried out and in each test, a strain gauge was attached on a strut

each from the sets I, II, and III. For the two tests, different struts were chosen from

each of the sets I, II, and III. Figure 4.5 shows the layout of one of the undamaged state

test carried out, while the macroscopic load-displacement response of the panel is shown

in Figure 4.6. For the macroscopic strength, the displacements between the face sheets

were captured by the laser extensometer as detailed in Section 3.2. The failure strength

of the panel was taken at the region where a clear yield point (non-linear region) is seen

in the plotted load-displacement graph. For cases where the yield region was not obvious,

the stress at 0.2% offset strain was chosen. The stiffness of the panel was measured at the

region of the steepest slope along the linear elastic region of the load-displacement plot.

Although there is a long plateau in strength which corresponds to the peak strength of

the panel prior to buckling, the clear yield point or the 0.2% offset strength were chosen

as they are more accurate measure of the core strength at plastic yield. This was the

value directly compared to the numerical strength predictions. Figures 4.7 and 4.8 show

the corresponding applied load to strain response of the struts. The strains measured in

the struts are non-linear due to bending and buckling of the strut, which result in the
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Figure 4.5: Undamaged 2X2 panel loaded in compression. The Roman numerics denote

the three struts of interest. The failing strut is shown in red while the blue circles denote

the loading in compression.

tension of the convex side. From the results of these two tests, the experimental results

indicate that the struts in set II experience higher strain than the struts in set I and

III. However, there was no consistency in the strain response from the struts of same

set between the two tests. Therefore, the results from these two tests are not conclusive.

The differences can be attributed to the manufacturing flaws in the specimens, having

shown in Section 3.3 the varying thicknesses of the struts, which is close to about 12% for

the compression specimens. Another factor is that imperfect struts bend in compression.

During one of the tests, two strain gauges were attached on the opposite sides of a strut

to determine if the strut bends. It was found that the strut experiences bending during

the test.

Owing to the results from the two tests carried out, one of the struts from set II was

damaged. From the macroscopic load-displacement response of the 2X2 unit panel in the

undamaged state, the measured failure load was 16.4 kN, which gave a strength difference

of 16% when compared to the predicted load of 19.5 kN. The measured stiffness of the

panel was 3.79 GPa, which gave a difference of 1.3% when compared to the predicted

stiffness of 3.84 GPa.
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Figure 4.6: Load vs. Displacement graph of undamaged 2X2 pyramidal truss core

panel, specimen loaded in compression. Comparison of measured strength with predicted

strength.
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Figure 4.7: Experiment-Numerical comparison of the strains in the selected struts of the

undamaged 2X2 pyramidal truss core panel. Graph of applied load against the strain in

the members. Specimen loaded in compression.
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Figure 4.8: Experiment-Numerical comparison of the strains in the selected struts of the

undamaged 2X2 pyramidal truss core panel. Graph of applied compressive load against

the strain in the members, magnified plot for clarity in comparisons.

For the one-strut damaged test, the damaged strut from Set II of the undamaged

state is shown missing in Figure 4.9 and the selected three struts of interest are marked

in the order of stresses in them with struts I and III expected to be experiencing the

maximum load at failure followed by strut II. Figure 4.9 test configuration was meant to

compare the numerical predictions of the behavior of struts I and III which are expected

to be having approximately the same magnitude of stresses at failure, and are predicted

to be more than the stress level in strut II. An important result from this test is the

comparison between the measured macroscopic strength of the damaged panel and the

numerical prediction. Figure 4.10 shows the load-displacements plot corresponding to

this. The measured failure load was 12.41 kN, which gave a strength difference of 19.5%

when compared to the predicted failure load of 15.6 kN. The measured stiffness of the

panel was 3.64 GPa, which gave a difference of 8.7% when compared to the predicted

stiffness of 3.97 GPa. Figures 4.11 and 4.12 shows the corresponding applied load to

strain response of the selected struts of interest. The strains are consistent with the

numerical prediction according to the rank order of the stresses (or strains) in the struts.
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As mentioned earlier, the strains in the struts are not equal in magnitude owing to the

effect of bending in the compressed strut. The varying thicknesses of the struts is another

factor contributing to this. However, the rank oder of the strain level measured in the

struts is consistent with prediction and this validates the predicted trend of damage

propagation because it follows a similar pattern as the numerical analysis. The next

damaged state experiment was performed with strut III damaged.

Figure 4.9: One-strut damaged 2X2 panel loaded in compression. Damaged strut shown

as the missing strut in the bottom-left cell and the Roman numerics denote the three

struts of interest. The predicted failing struts are shown in red while the blue circles

denote the loading in compression. Struts I and III were predicted to have same stresses

at failure.
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Figure 4.10: Load vs. Displacement graph of one-strut damaged 2X2 pyramidal truss

core panel, specimen loaded in compression. Comparison of measured strength with

predicted strength.
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Figure 4.11: Experiment-Numerical comparison of the strains in the selected struts of

the one-strut damaged 2X2 pyramidal truss core panel. Graph of applied load against

the strain in the members. Specimen loaded in compression.
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Figure 4.12: Experiment-Numerical comparison of the strains in the selected struts of

the one-strut damaged 2X2 pyramidal truss core panel. Graph of applied compressive

load against the strain in the members, magnified plot for clarity in comparisons.

4.3.2 Two-Strut and Three-Strut Damaged State Compression

Experiments

For the two-strut damaged test, the damaged strut is shown in Figure 4.13 and the

selected struts of interest are marked such that strut I experiences maximum load at

failure followed by strut II and then strut III as labeled in the figure. Similarly, this

rank was based on the numerical predictions of the panel’s behavior when those two struts

are damaged. The plot of the measured macroscopic strength of the damaged panel with

the numerical prediction is shown in Figure 4.14. The macroscopic load-displacement plot

shows a measured failure load of 10.78 kN, which gave a strength difference of 16% when

compared to the predicted failure load of 12.8 kN. The measured stiffness of the panel

was 2.6 GPa, which gave a difference of 8% when compared to the predicted stiffness of

2.8 GPa. The load-strain relationship in the struts shows consistency with the numerical

prediction according to the rank order of the stresses (or strains) in the struts in the

region of applied load of 9.8 kN and beyond, with strut I experiencing maximum strain
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as expected. The main reason for the inconsistency in the preceding load region can be

attributed to the profound effect of bending now seen in the compressed struts. The

strut II (in red) was expected to be the second rank and supposed to be experiencing

higher strain than strut III but it was undergoing bending as shown in the graphs of

Figures 4.15 and 4.16. It can be seen that the effect of bending in the struts is becoming

significant as further damage is introduced into the panel. This limits the validity and

usefulness of the comparisons between the measured strains and the predicted strains. It

also raises concern on the reliability of using the results of the measured strains under such

evident bending to validate the trend of damage propagation in the panel, simply because

the strain gauge on the strut should not have recorded any significant tension unless the

strut was bending. For this reason, subsequent tests performed for the damaged state

under compression were primarily focused on the overall macroscopic strength of the

damaged panel. The damage propagation in the three-strut damaged state was based on

the preceding failing struts from the two-strut damaged test and the third strut damaged

to examine the effect of having three struts damaged in the same unit cell of the panel.

Figure 4.13: Two-strut damaged 2X2 panel loaded in compression. Damaged struts

shown as the missing struts in the bottom-left cell and the Roman numerics denote the

three struts of interest. The predicted failing strut is shown in red while the blue circles

denote the loading in compression.
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Figure 4.14: Load vs. Displacement graph of two-strut damaged 2X2 pyramidal truss

core panel, specimen loaded in compression. Comparison of measured strength with

predicted strength.
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Figure 4.15: Experiment-Numerical comparison of the strains in the selected struts of

the two-strut damaged 2X2 pyramidal truss core panel. Graph of applied load against

the strain in the members. Specimen loaded in compression.
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Figure 4.16: Experiment-Numerical comparison of the strains in the selected struts of

the two-strut damaged 2X2 pyramidal truss core panel. Graph of applied compressive

load against the strain in the members, magnified plot for clarity in comparisons.

In the three-strut damaged test, the damaged struts are shown in Figure 4.17. The

load-displacement plot of the three-strut damaged state experiment along with the nu-

merical prediction for the macroscopic strength of the panel are shown in Figure 4.18.

The measured failure load was 10.9 kN, which gave a strength difference of 17.4% when

compared to the predicted failure load of 13.2 kN. The measured stiffness was 3.5 GPa,

which gave a difference of 2.5% when compared to the predicted stiffness of 3.6 GPa.
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Figure 4.17: Three-strut damaged 2X2 panel loaded in compression. Damaged struts

shown as the missing struts in the bottom-left cell.
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Figure 4.18: Load vs. Displacement graph of three-strut damaged 2X2 pyramidal truss

core panel, specimen loaded in compression. Comparison of measured strength with

predicted strength.
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4.3.3 Shear Experiment

Shear tests were performed on damaged samples of 2.5X2.5 unit cell pyramidal truss

core panels for the purpose of comparing the predicted damaged state strength to the

measured strength from experiments. The test preparation and setup are identical to

the procedures detailed in Section 3.5 and the first set of shear tests were carried out

on an undamaged specimen, having the same geometry and mechanical properties as

the specimen used in Section 3.5. The loading of the specimens in the experiments was

performed by applying displacements to shear the panel through the apex nodes. In

both experiment and numerical analysis, one end of the panel face sheet was constrained

while displacements were applied through the other end. Because of the experience

from the experiments of Subsection 4.3.1 in relation to the bending effect of compressed

struts, the focus of the damaged state experiments in shear was on the struts in tension.

The exception to this is that the magnitude of the stresses in each strut will not be

the same once damage is inflicted on the panel. This way, reliable comparisons can be

made between the measured strains of the struts and the numerical predictions. To

begin, an experiment with an undamaged sample was carried out to determine which

strut collapses first. Three struts in tension were chosen from three different unit cells

as denoted with Roman numerals in Figure 4.19. Although it was predicted that the

strains in the set of selected struts would have the same response to shear loading, it

was necessary to measure the response of the selected struts to identify which strut to

damage first. For the macroscopic strength of the panel, the measured failure load and

the predicted failure load are plotted in Figure 4.20. The measured failure load was

6.7 kN, which gave a strength difference of 22.5% when compared to the predicted load

of 8.7 kN. The measured stiffness of the panel was 1.20 GPa, which gave a difference of

13% when compared to the predicted stiffness of 1.38 GPa. The measured strains in the

struts and the predicted strains are shown in Figures 4.21 and 4.22.
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Figure 4.19: Undamaged 2.5X2.5 panel loaded in shear. The Roman numerics denote

the three struts of interest. The failing strut is shown in red while the blue arrows denote

the direction of loading. Top layer struts are represented with dashed lines
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Figure 4.20: Load vs. Displacement graph of undamaged 2.5X2.5 pyramidal truss core

panel, specimen loaded in shear. Comparison of measured strength with predicted

strength.
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Figure 4.21: Experiment-Numerical comparison of the strains in the selected struts of

the undamaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against the

strain in the members. Specimen loaded in shear.
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Figure 4.22: Experiment-Numerical comparison of the strains in the selected struts of

the undamaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against the

strain in the members, magnified plot for clarity in comparisons.

The collapsed strut from the undamaged panel is shown in red, and this was the strut

damaged to have the one-strut damaged panel as shown in Figure 4.23. Figure 4.24 shows

the measured failure load and the predicted failure load. The measured failure load was

4.9 kN, which gave a strength difference of 18.3% when compared to the predicted load

of 6 kN. The measured stiffness of the panel was 1.12 GPa, which gave a difference of

12.5% when compared to the predicted stiffness of 1.28 GPa. The measured strains and

predicted strains are plotted in Figures 4.25 and 4.26. From the one-strut damaged test,

the results show that the behavior of the struts is consistent with the predicted order

of failure because the struts follow the same rank order as the numerical calculations.

The predicted collapsed strut is consistent with the strut experiencing maximum strain

as measured from the experiment. The order of the measured strain follows the same

pattern as the numerical analysis.
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Figure 4.23: One-strut damaged 2.5X2.5 panel loaded in shear. The Roman numerics

denote the three struts of interest. The failing strut is shown in red while the blue arrows

denote the direction of loading. Top layer struts are represented with dashed lines
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Figure 4.24: Load vs. Displacement graph of one-strut damaged 2.5X2.5 pyramidal truss

core panel, specimen loaded in shear. Comparison of measured strength with predicted

strength.
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Figure 4.25: Experiment-Numerical comparison of the strains in the selected struts of the

one-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members. Specimen loaded in shear.
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Figure 4.26: Experiment-Numerical comparison of the strains in the selected struts of the

one-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members, magnified plot for clarity in comparisons.

For the two-strut damaged test, the damaged struts from the results of the preceding

damaged states are shown in Figure 4.27. The plot of the measured failure load and the

predicted failure load is shown in Figure 4.28. The measured failure load was 4.6 kN,

which gave a strength difference of 19.3% when compared to the predicted failure load

of 5.7 kN. The measured stiffness of the panel was 0.83 GPa, which gave a difference

of 9.8% when compared to the predicted stiffness of 0.92 GPa. The results from the

measured strain in the struts show inconsistency with the predicted rank order of failure.

The reason for the inconsistency can be attributed to the earlier mentioned effects of

bending in the struts. Figures 4.29 and 4.30 show the comparisons in the strains.
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Figure 4.27: Two-strut damaged 2.5X2.5 panel loaded in shear. The Roman numerics

denote the three struts of interest. The failing strut is shown in red while the blue arrows

denote the direction of loading. Top layer struts are represented with dashed lines
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Figure 4.28: Load vs. Displacement graph of two-strut damaged 2.5X2.5 pyramidal truss

core panel, specimen loaded in shear. Comparison of measured strength with predicted

strength.
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Figure 4.29: Experiment-Numerical comparison of the strains in the selected struts of the

two-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members. Specimen loaded in shear.
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Figure 4.30: Experiment-Numerical comparison of the strains in the selected struts of the

two-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members, magnified plot for clarity in comparisons.

The three-strut damaged state is shown in Figure 4.31 following the collapsed struts

in the preceding experiments of one-strut and two-strut damaged states. Figure 4.32

shows the measured failure load to the predicted failure load. The measured failure load

was 3.8 kN, which gave a strength difference of 19% when compared to the predicted

load of 4.7 kN. The measured stiffness was 0.78 GPa, which gave a difference of 9.3%

when compared to the predicted stiffness of 0.86 GPa. The comparisons between the

measured strains and predicted strains are shown in Figures 4.33 and 4.34. The results

show consistency with the predicted trend of damage propagation, with the selected

struts following the predicted order of failure as the numerical analysis.
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Figure 4.31: Three-strut damaged 2.5X2.5 panel loaded in shear. The Roman numerics

denote the three struts of interest. The failing strut is shown in red while the blue arrows

denote the direction of loading. Top layer struts are represented with dashed lines

0 0.5 1 1.5 2
0

1

2

3

4

5

6

Displacement (mm)

F
or

ce
 (

kN
)

 

 

Experiment
Predicted

0.2% Offset
Strength

Figure 4.32: Load vs. Displacement graph of three-strut damaged 2.5X2.5 pyramidal

truss core panel, specimen loaded in shear. Comparison of measured strength with pre-

dicted strength.
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Figure 4.33: Experiment-Numerical comparison of the strains in the selected struts of the

three-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members. Specimen loaded in shear.
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Figure 4.34: Experiment-Numerical comparison of the strains in the selected struts of the

three-strut damaged 2.5X2.5 pyramidal truss core panel. Graph of applied load against

the strain in the members, magnified plot for clarity in comparisons.

4.3.4 Summary of the Damaged State Comparisons

The damage propagation in the three-strut damaged state of compression was based on

the preceding failing struts from the two-strut damaged test and the third strut inten-

tionally damaged to examine the effect of having three struts damaged entirely in the

same unit cell of the panel. The damaged experiments in shear follow the same damage

pattern as the prediction. From the results of the damaged state comparisons, it is possi-

ble to represent the degradation of the panel strength in non-dimensional axes expressed

in terms of (σ33/σy) for normal stresses and (σ13/σy) shear strength. The differences be-

tween the predicted damaged state strength in comparison to the measured strength are

represented in the two-dimensional normalized stress space shown in Figure 4.35. The

corresponding comparisons and the percentage difference between the predicted (numer-

ical) strength of the panel to the measured strength are detailed in Table 4.2. The table

shows a complete overview of the numerical-experimental strength degradation compar-

isons.
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Figure 4.35: Compression and shear comparisons of experiments to numerical failure

surfaces. The comparison for compression was shown up to two-strut damaged state. The

third strut damaged in compression for the three-strut damaged state was to examine

the effect of having three struts damaged entirely in the same unit cell, it was not from

the numerical damage trend.
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Table 4.2: Numerical-Experimental: Strength Comparison in Pure Shear & Compression

Shear

(Numer.),

MPa

Shear

(Exp.),

MPa

% of Exp.

from Pre-

diction,

Shear

Compres.

(Numer.),

MPa

Compres.

(Exp.),

MPa

% of Exp.

Predic-

tion,

Compres.

Undamaged 5.92 4.6 77.5 13.09 11.04 84

One-Strut

Damaged
4.25 3.4 80 10.5 8.4 80

Two-Strut

Damaged
3.87 3.12 80.6 8.62 7.3 84.5

Three-

Strut

Damaged

3.23 2.6 80.5 8.9 7.4 83



Chapter 5

Conclusions

5.1 Fabrication Flaws

From the studies carried out in Section 3.3, it was clear that fabrication flaws contributed

to the varying cross-sectional area in the struts of the specimens. This variation is one of

the reasons why the measured strength from the experiments is less than the predicted

strength, by approximately 20% in both compression and shear. The predicted strengths

are calculated from numerical models having identical struts with their cross-sectional

area taken to be the value of the strut area at 63.2% in accordance with Weibull analysis.

But owing to the deviations calculated in Section 3.3, the struts of the experimental

samples vary from the strut area used for the numerical calculations. This deviation

contributed to the differences recorded in the macroscopic strength of the panel when

compared to the prediction. Another reason for these discrepancies is the lack of perfect

parallelism of the face sheets; some of the struts were more highly loaded than others.

The primary goal of the damaged state experiments was to compare the residual strength

of the panel in the damaged state to the predicted strength, and as well investigate the

trend of damage propagation by comparing the predicted failing struts to the struts

failing during the experiments. It can be seen from Subsection 4.3.3 that if the effects

of bending in the struts are adequately avoided by focusing on the struts in tension,

fabrication flaws do not affect the predicted behavior of the panel in terms of the trend of

damage propagation. The effects of fabrication flaws do, however, affect the comparisons

between the measured strains of struts of interest and the predicted strains.

69
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5.2 Validation of Predicted Strength

In Chapter 2, the analytical strength of truss core sandwiches has been predicted and

the numerical approach discussed. The failure surfaces were generated, and a program

for calculating the strength of damaged truss core panels was developed. The measured

compressive and shear strength from the experimental tests show agreement with the

analytical and numerical predictions for the pyramidal truss core investigated. The com-

parisons of the predicted strength to the measured strength are shown in Section 3.6

for the undamaged panel and results show both shear and compressive strength to be

consistently 20% less than the predicted for all damages. One of the factors for these

discrepancies can be attributed to the lack of perfect parallelism between the face sheets

of the tested sample, resulting in some struts to be more highly loaded than others.

Another factor as discussed in Section 5.1 are the flaws in the manufacturing process,

which makes the unit cells not perfectly identical. These factors are some of the reasons

for the differences recorded in the experimental results when compared to the analytical

and numerical predictions. However, the experiments provided the basis for using the

numerical calculations for the strength of the panel in the damaged state. The above

factors are some of the major limitations of using this numerical approach to calculate

the strength degradation of the panel.

5.3 Numerical Strength Degradation

The numerical calculations of the panel strength in the damaged state were shown in

Section 4.2 and results show the degradation of the panel overall strength under different

levels of damage. For the damage analysis in compression, results show approximately

18% degradation in strength from the undamaged state to the one-strut damaged state,

followed by 38% degradation in strength after two-strut damage, and about 50% degra-

dation as the third strut was damaged. This pattern of strength degradation can be

attributed to the effects of the missing struts associated with the unit cells where dam-

age occurred. The damaged struts result in further load redistribution in the remaining

struts of the panel, making the struts left after damage more heavily loaded and thus

resulting in macroscopic degradation of the panel strength. Based on static analysis, the

panel would be expected to experience a strength degradation of between 6%–25% under

one strut damage, the 6% considering that damage of one of the sixteen struts in the
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2X2 unit cell panel could result in strength reduction by a factor of one-sixteenth. The

25% was meant to consider that the damage of one strut from one unit cell, in the worst

scenario, could render the entire unit cell damaged, thus reducing the strength of the

panel by one-quarter.

The same consideration follow for the strength degradation of the panel in the case

of two-strut damage, which would be expected to be 13% in the minimum estimate

considering that damage of two of the sixteen struts in the 2X2 unit cell panel could

result in strength reduction by a factor of two-sixteenth. A 50% strength degradation

would be expected in the worst scenario if it was expected that damage of two struts from

two unit cells could reduce the strength of the panel by half. For three-strut damage, the

strength degradation would be expected to be 19% in the minimum estimate considering

that damage of three of the sixteen struts in the 2X2 unit cell panel could result in

strength reduction by a factor of three-sixteenth. A 75% strength degradation would

be expected in the worst scenario if it was expected that damage of three struts from

three different unit cells could reduce the strength of the panel by three-quarter. The

results show that the numerical program calculates the damaged strength of the panel

approximately within a region half way between range of strength degradation. For the

damaged state in shear, the rate of strength degradation resulting from the damage was

calculated and the residual strength of the panel after three struts damaged was about

43% of the initial strength of the undamaged panel. The panel had a strength degradation

of about 27% from the undamaged state to one-strut damage state, and followed by 39%

degradation in strength after two-strut damage. Also, the numerical calculations show

that minimum symmetrical boundary conditions can be exploited to estimate the residual

strength of large arrays of truss core sandwich panels, which allow more damage.

5.4 Experimental Strength Degradation

To measure the residual mechanical strength of damaged truss core panels, experiments

were performed on panels subject to different levels of damage in both compression and

shear. From the measured strains of the selected struts, as detailed in Section 4.3, the

results show consistency in the trend of damage propagation when the effects of bending

in the struts is avoided by focusing on struts in tension. For both shear and compression

tests, the measured macroscopic strength in the damaged state is approximately 20% less

than predicted, which is consistent with the difference recorded in the undamaged state.
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The results show a consistent pattern of strength overprediction for each level of damage,

as shown in Table 4.2. The results from the experiments show that the strength of the

panel in the damaged state closely replicates the predicted strength. The experiments

provide validation for using the numerical program for analyzing complex failure mech-

anisms involving the interactions between multiple unit cells and the residual effects of

strut failure in larger arrays of truss core sandwich panels. With such a computational

solution, the strength of arrays of multiple unit cells can be calculated and the damaged

panel strength can be attained. One way to limit the differences in the results would be

to fabricate the panel such that it has fewer fabrication flaws as investigated by Queheil-

lalt et al [22], where an extrusion and electro-discharge machining (EDM) method was

used to manufacture a panel more close to the analytical model.

5.5 Recommendations for Future Research

For future work on research involving damage and damage propagation in truss core

sandwiches, it might be interesting to consider the following:

(i) Having shown the possibilities and limitations of using the numerical program

to calculate the residual strength of truss core sandwiches under mechanical loading, it

might be interesting to expand the numerical program to consider larger arrays of unit

cells, automating damage in the panel based on the method of eliminating the failing

strut at each iteration, while following the yielding-buckling failure criterion.

(ii) Experimentation on truss core sandwiches under fatigue, rather than just static

loading. This would better represent the failure behavior and damage propagation of the

panel under mechanical loading in a manner more representative of actual use.

(iii) A broader consideration of how other factors such as corrosion, impact loading or

blast contribute to damage in truss core sandwiches, and how these factors inter-relate

with the failure behavior or damage propagation under mechanical loading when in use.

This would be a more robust approach to considering all the factors which the panel is

exposed to in service, and which all have the possibilities of contributing to its strength

degradation.
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