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Abstract

Topology optimization (TO) is a structural design method, and its principle is

to distribute material resources throughout a loaded structure to minimize a cost

function subject to performance constraints. Additive manufacturing has a symbiotic

relationship with TO as it can manufacture components with complex geometries,

such as designs from TO. However, additively manufactured components have uncer-

tainties in the material properties, which must be accommodated in structural design.

Experimental and theoretical studies show that these uncertainties are represented

by high dimensional stochastic surrogates. Robust topology optimization (RTO) is

a popular stochastic variant of TO for design under uncertainties. RTO includes

a linear combination of the mean and variance of a quantity of interest (QOI) in

the optimization statement, which are estimated using an uncertainty quantification

(UQ) scheme. In the existing RTO approaches that account for material uncertain-

ties, there is a lack of algorithms that target high dimensional stochastic inputs. The

standard approach for this problem is Monte Carlo-based RTO (MCTO), but it re-

quires high computational cost to produce high quality designs. This thesis develops

two novel UQ schemes targeting high dimensional material uncertainties, which are

incorporated into the RTO framework. Numerical studies show that under moder-

ate to high dimensional stochastic input, both of the proposed RTO algorithms are

more computationally efficient than MCTO, can generate accurate estimations of the

statistics of QOI, and also produce designs with a similar level of optimality as the

designs from MCTO.

ii



Acknowledgements

Just as it takes a village to raise a child, I received a tremendous amount of support

from professors, family, and friends which led to the completion of this project.

First and foremost, I would like to thank my supervisor, Professor Craig Steeves,

for being a fantastic mentor and sharing his wealth of knowledge regarding research

and academic life. His insightful guidance and meticulous suggestions are paramount

to the completion of this thesis. Also, I am very appreciative that he provided a

supportive and encouraging environment, which is critical for my growth as a student.

I would like to sincerely thank Professor Masayuki Yano for the countless fruitful

conversations regarding not only technical details but also career and life advice. His

passion and dedication to work greatly inspire me everyday.

Thank you to my family for their encouragement and unconditional support. They

are the cornerstones of my life, and I cannot thank them enough for everything they

have done for me.

Thank you to the MF gang, Ali, Cathy, Katrina, Mohammad, Satoshi, and Yaz-

dan, for bringing joy during the fun times and providing support through tough

moments. Their companionship is what makes this journey so special and memo-

rable. Also, I would like to thank my friends William and Laster for their support

and chats, which brightened up my day. To my friends, I would like to borrow a

quote from The Office: ”I’m still just thinking about my old pals, only now they’re

the ones I made here. I wish there was a way to know you’re in the good ol’ days

before you’ve left them.”

Thank you to all my lab mates at the AASL for the good times. I would like to

especially thank Dr. Daniel Pepler for his help with setting up the code base for this

thesis work and for providing insightful technical discussions.

The financial support from The Natural Sciences and Engineering Research Coun-

cil of Canada is gratefully acknowledged.

iii



Contents

1 Introduction 1

2 Robust Topology Optimization 3
2.1 Structural Topology Optimization . . . . . . . . . . . . . . . . . . . . 3
2.2 Filtering Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Density Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Heaviside Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Design Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Representation of material uncertainty . . . . . . . . . . . . . . . . . 8
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Chapter 1

Introduction
Multifunctional and lightweight structural designs are integral to efficient engineer-

ing systems. Typical designs following the conventional frameworks lead to classic

structures such as trusses and frames. Predetermining the structural forms severely

restricts the design space, and hence the structures may not be the most efficient in

the application context. With computer aided design and advanced manufacturing

methods such as additive manufacturing, the capability of 3D modeling and compo-

nent fabrication in engineering has increased rapidly. It is worthwhile to exploit these

technologies as means to produce high performance structures.

Topology optimization (TO), is one of the most promising computational meth-

ods for designing lightweight structures in aerospace applications [1]. TO aims to

distribute material efficiently based on an imposed objective coupled with a set of

constraints. Such a systematic optimization-based framework allows for the best

compromise between the material usage and performance of structural designs. TO

allows for the introduction and removal of structural elements in design iterations,

hence enabling more freedom on the structural form. The resulting components tend

to have complex geometries and are tailored for specific performance objectives, such

as maximizing structural stiffness for a limited amount of material. The complex

features means that structures designed with TO are best fabricated using additive

methods. However, additive manufacturing leads to significant uncertainties in ma-

terial properties as demonstrated in Figure 1.1. Unless the material model used for

design accounts for the variability in material properties, the component may not per-

form as predicted. This necessitates the propagation of material uncertainties into

TO algorithms.

Robust topology optimization (RTO), a method for design under uncertainty is

employed in this thesis as the stochastic counterpart to deterministic TO. The uncer-

tain material properties are typically represented as correlated random fields, which

1



CHAPTER 1. INTRODUCTION 2

(a) Micro-CT image showing the
pores in the cross section of a 3D
printed component [6].

(b) Significant inconsistencies in the strain field of
a unidirectionally 3D printed specimen under tensile
loading [2].

Figure 1.1 Examples of varabilities in additively manufactured component leading
to randomness in material properties.

are approximated with statistical surrogates that depend on a finite set of random

variables. For additively manufactured components, the randomness in material prop-

erties is effectively modeled using random fields with short correlation lengths [2],

which result in high stochastic dimensions. RTO is more costly due to the additional

stochastic dimensions and the need to compute statistics of interest every iteration.

Typically, the Monte Carlo-based RTO (MCTO) are used to compute the statistics

and the gradients for optimization. However, MCTO is very inefficient and hence this

thesis aims to develop RTO algorithms that are more efficient than MCTO and also

produce structural designs with similar qualities.

Ultimately, the efficient propagation of material uncertainties that are character-

istic of additively manufactured components into RTO and the design of uncertainty-

aware structures are the main motivations behind this thesis. The layout of the thesis

is as follows, Chapter 2 covers the general framework of TO and RTO, in addition to

filtering schemes, sensitivity analysis, and models for material uncertainty. A sum-

mary of RTO algorithms in literature is also presented. Chapters 3 to 5 are devoted to

discussions of novel RTO algorithms and their associated uncertainty quantification

schemes for computing the statistics of interest. Numerical studies are conducted to

assess the performance of these algorithms. Chapter 6 concludes this dissertation.

As an additional note, a paper [3] was generated during the thesis work, but has

not been included in this manuscript for reasons of space.



Chapter 2

Robust Topology Optimization

2.1 Structural Topology Optimization

Since the seminal work on topology optimization (TO) in 1988 by Bendsøe and

Kikuchi [4], a plethora of TO variants have emerged in literature [1, 5], including

homogenization [4], level set method [6], genetic algorithms [7], the moving mor-

phable components-based method [8], and solid isotropic material with penalization

(SIMP) [9]. These ensure that TO is well-studied in deterministic contexts, where

the boundary conditions and objectives are constants.

For its simplicity in both conception and numerical implementation, the SIMP

method, a density-based approach, is the most popular TO framework [1] and is

employed in this thesis. In the SIMP approach, the design domain is discretized

using the finite element method (FEM) and each element is assigned a density, which

are the optimization variables. In the discrete settings, the densities are either zero,

corresponding to void, or one, corresponding to solid material. Binary densities lead

to a large-scale integer programming problems that are computationally expensive.

In SIMP, the density is relaxed to be continuous between zero and one, enabling the

application of very efficient gradient-based optimizers.

For compliance (c) minimization under a set of boundary conditions and physical

constraints, the mathematical statement of TO is:

min
ρ

c(ρ) = FTu(ρ), (2.1)

s.t. : K(ρ)u(ρ) = F, (2.2)

: 0 < ρmin ≤ ρe ≤ 1 ∀e, (2.3)

: ρTv − V ∗ ≤ 0, (2.4)

3
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where F the applied load, u(ρ) the nodal displacement, ρ = {ρe} the element density

vector, v = {ve} the element volume vector, and V ∗ is the total allowed design volume.

K(ρ) is the symmetric positive definite (SPD) FEM stiffness matrix, constructed from

the summation of element stiffness matrices (Ke(ρe)) as: K(ρ) =
∑

eKe(ρe). The

scalar lower bound for the densities of the elements is ρmin, as this ensures that

K(ρ) is non-singular, leading to the existence of a unique displacement solution. In

practice, ρmin is set to a small value of 0.001.

However, this optimization formulation leads to designs with patches of interme-

diate density regions, which do not have a clear physical meaning. Hence, the SIMP

approach further penalizes the Young’s modulus of each element as a function of the

density:

Ke(ρe) = ρe
pEe D0, (2.5)

where D0 is the unit modulus element stiffness matrix and p is the penalization

parameter, usually 3. The Young’s modulus is constant over each element. This

power law representation discourages elements from having intermediate densities by

reducing their effective moduli. In this thesis, a 4-node plane stress bilinear element

with unit thickness is used.

2.2 Filtering Schemes

2.2.1 Density Filter

Solving the problem in Equations (2.1)–(2.3) and (2.4) using low order elements,

such as bilinear quadrilateral, results in mesh dependent designs and checkerboard-

ing pathology [5]. Both are undesirable behaviors from modeling and physical per-

spectives. The linear density regularization filter [10], a type of design restriction

method, is often used to alleviate these issues. This filter introduces a filter density

set (ρ̄ = {ρ̄e}), which is obtained from a weighted product of the nearby optimization

variables (ρ̃ = {ρ̃e}):

ρ̄i(ρ̃) =

∑
ew(xi, xe)veρ̃e∑
ew(xi, xe)ve

. (2.6)

The cone smoothing kernel w(·, ·) is defined by w(xi, xe) = max(0, rmin − ∥xi − xe∥),
where xi and xe are the centroid locations for elements i and e, and rmin is the filter

radius. This filter also serves as a feature control mechanism, as rmin dictates the

minimum structural size.
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2.2.2 Heaviside Filter

The application of the regularization filter in Equation (2.6) leads to a large number of

transitional elements with intermediate density, a phenomenon known as the bound-

ary diffusion effect [11]. A Heaviside projection filter (HPF) is applied to recover a

strictly solid-void design, which is desirable.

In this thesis, two different HPFs are employed. The first is a non-volume pre-

serving HPF, proposed by Wang et al. [12]:

ρe(ρ̄e) =
tanh(βη) + tanh(β(ρ̄e − η))

tanh(βη) + tanh(β(1− η))
. (2.7)

This function approximates the Heaviside step function and is differentiable. The η

controls the position of the transition from 0 to 1 and is typically set to 0.5. The β

controls the sharpness of this transition. As β tends to 0, Equation (2.7) becomes a

linear function where ρe = ρ̄e, and as β approaches infinity the unit step is recovered.

The characteristic of a non-volume preserving filter is its application leads to a change

in the total volume, meaning
∑

e ρ̄e ̸=
∑

e ρe. Hence, the volume or weight constraints

are applied to the physical densities ρ, not the design variables ρ̃.

The other HPF scheme considered is a volume preserving method, proposed by

Xu et al. [11]:

ρe(ρ̄e) =

η
[
exp (−β (1− ρ̄e/η))− (1− ρ̄e/η)exp(−β)

]
, 0 ≤ ρ̄e ≤ η;

(1− η)
[
1− exp(−β ρ̄e−η

1−η
) + (ρ̄e − η)exp(−β)/(1− η)

]
+ η, η ≤ ρ̄e ≤ 1.

(2.8)

This function also approximates the Heaviside function. The η and β parameters

have the same functionalities here as the non-volume preserving case. A bisection

algorithm is used every iteration to select the η that maintains
∑

e ρ̄e =
∑

e ρe before

and after filtering, hence leading to volume preservation. Volume preserving HPFs

typically have better stability and convergence properties [11]. Since the density

filter in Equation (2.6) is also a volume preserving scheme, a combination of these

two schemes leads to
∑

e ρ̃e =
∑

e ρe.

Having a sufficiently high β in the HPF is necessary to produce a solid-void topol-

ogy. However, imposing an aggressive filter as a baseline tends to trap the optimiza-

tion in local minima. Hence, a continuation scheme is applied where β starts at a

low value and gradually increases. At the initial optimization stages, the HPF has a

weak influence on the intermediate densities and hence the SIMP scheme plays a pre-
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dominant role in penalizing the intermediate densities. As the design iterates closer

to an optimal solution, the HPF begins to play a more important role in removing

the intermediate densities.

With the application of a regularization filter and a HPF, the physical densities

(ρ) are functions of the optimization variables (ρ̃) through the compositional relation:

ρ(ρ̄(ρ̃)).

2.3 Sensitivity Analysis

SIMP-based topology optimization problems are solved by gradient-based methods,

which require the derivatives of the objective and the constraints with respect to the

optimization variables.

With filtering, the physical densities (ρe) are functions of the optimization vari-

ables (ρ̃e) and hence gradients with respect to the physical densities are developed.

The sensitivities of the compliance objective in Equation (2.1) with respect to the

physical density of element e is formulated using the adjoint method [13], leading to:

∂c

∂ρe
= −uT (

∑
e

pρp−1
e ED0)u. (2.9)

The computational advantage of the adjoint method is that the cost of performing the

sensitivity analysis is similar to the cost of solving the linear equilibrium equation,

regardless of the number of design variables. Since the compliance is self-adjoint, the

cost of computing the derivatives are even cheaper. The sensitivities of the volume

constraint in Equation (2.4) are:

∂(ρTv − V ∗)

∂ρe
= ve. (2.10)

To obtain the sensitivities with respect to the optimization variables, the effects

of the filters are accounted through the chain rule:

∂(·)
∂ρ̃e

=
∂(·)
∂ρi

∂ρi
∂ρ̄i

∂ρ̄i
∂ρ̃e

, (2.11)

which requires the gradients of the filters. For the regularization filter in Equa-

tion (2.6), it is
∂ρ̄i
∂ρ̃e

=
w(xi, xe)ve∑
ew(xi, xe)ve

. (2.12)
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The gradient of the non-volume preserving HPF in Equation (2.7) is

∂ρi
∂ρ̄i

=
β(sech(β(ρ̄i − η)))2

tanh(βη) + tanh(β(1− η))
, (2.13)

while the gradient of the volume preserving HPF in Equation (2.8) is

∂ρi
∂ρ̄i

=

 β exp(−β(1− ρ̄e/ν) + exp(−β), 0 ≤ ρ̄e ≤ η;

β exp
(
−β ρ̄e−ν

1−ν

)
+ exp(−β), η ≤ ρ̄e ≤ 1.

(2.14)

The Method of Moving Asymptotes (MMA) [14] is the gradient-based optimizer to

update the design variables in TO problems. Unless specified otherwise, convergence

is defined as when the largest change in the design variables between iterations is less

than 0.01. An even distribution of material is always used to initialize the design

variables.

2.4 Design Under Uncertainty

One of the motivations for this thesis is to account for the variability of material

properties in TO and ensure consistency of the expected performance of the designs

in practical applications where material uncertainties are inevitable.

To address the existence of uncertainties, two stochastic variants of TO have

received considerable attention, namely, robust topology optimization (RTO) and

reliability-based topology optimization (RBTO). Comprehensive reviews of these two

frameworks are available [15, 16]. RTO incorporates uncertainties by changing the

quantity of interest (QOI) in TO to a weighted sum of the mean and the standard

deviation of the QOI [15, 17, 18]. This approach focuses on the central statistical

moments of the QOI and improves the consistency of the performance of the structures

under uncertainties. RBTO is concerned with optimization according to a fail-safe

criterion, which is achieved by constraining the undesired behavior of the QOI to be

less than a specified probability [15, 17, 19]. The RBTO approach focuses on the tail

of the distribution of the QOI and hence controlling the likelihood that the designed

structure exhibits extreme behaviors in the presence of randomness. Comparatively,

the RTO framework is more intuitive to understand and implement for designers as it

avoids analyses related to failure region, which is required in RBTO. Also, computing

the failure criterion leads to an additional (costly) optimization problem [19, 20] and

the result is very sensitive to the probabilistic model of the input uncertainty. In
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practical problems where efficiency is paramount and knowledge of the uncertainty

is typically limited, these are undesirable traits and hence, this thesis focuses on

the RTO framework. Ultimately, both RTO and RBTO require manipulating the

deterministic QOI into a function that involves some statistical measures [15, 18].

In this thesis, the QOI is the structural compliance. Stochastic TO necessitates

the usage of compatible and efficient uncertainty quantification (UQ) schemes to

propagate material uncertainties and estimate the statistics of QOI.

2.5 Representation of material uncertainty

Material properties and their variability are continuous in the design domain. A com-

mon practice is to model the spatial distribution of the stochastic material properties

using a homogeneous random field [21, 22, 23]. A random field is an extension of a

random variable, in the sense that every spatial point is a random variable with a

mean and a variance. A correlation function is employed to describe the interdepen-

dency of pointwise variables at different spatial positions. For a homogeneous random

field, the mean and the variance are further limited to constants across the spatial

domain.

For a concrete example, consider a two dimensional Gaussian random field char-

acterized by a uniform mean (µ), a uniform variance (σ2), and a correlation function

CH(·, ·) [23, 24]. A valid CH(·, ·) needs to be positive definite [24, 25] and in this

thesis, the two-dimensional exponential correlation function is used:

CH(x,x
′) = exp

(
−|x1 − x′

1|
l1

− |x2 − x′
2|

l2

)
, (2.15)

where l1 and l2 are the axial correlation lengths, while x = [x1, x2] and x′ = [x′
1, x

′
2]

are two arbitrary spatial positions. In practice, these parameters are influenced by the

material choice and the manufacturing process, and are determined experimentally [2,

26, 27]. A physical interpretation of these parameters is that having a higher variance

means an increase in the likelihood of having a local defect. When a defect is present,

the longer the correlation lengths, the larger the defect area is likely to be. The

covariance of the random field is defined as CoV = σ
µ
. In the numerical studies, the

random fields are set with µ = 1 and hence the square of CoV is the pointwise

variance.
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2.5.1 Karhunen–Loève Expansion

Due to the continuity of the random field in both the stochastic and spatial do-

mains, it is difficult to employ this model directly in problems. Hence, the truncated

Karhunen–Loève expansion (KLE) is typically applied to discretize the random field

into a mathematically tractable form with finite stochastic dimensions [23, 24]. The

KLE representation of a Gaussian random field, truncated to M terms, is given by a

series sum:

Egau(x, ξ) = µ+ σ2

M∑
m=1

√
λmϕm(x)ξm. (2.16)

The ξm are independent random variables and follow the standard normal distribu-

tion. They are called the stochastic coordinates or randomness dimensions. The λm

are real and positive scalar eigenvalues and the ϕm(x) are orthonormal functional

eigenvectors that depend on the spatial position. These deterministic eigenpairs are

obtained from solving a continuous eigenvalue problem (Fredholm integral equation of

the second kind) using CH(·, ·) as the kernel. For the exponential correlation function

in Equation (2.15), the eigenpairs have closed form equations [23, 24].

The value of M depends on the desired accuracy of the representation of the

random field variance, which is associated with the rate of decay of λm, which in turn

is dictated by the correlation lengths. Weakly correlated random fields have short

correlation lengths and need more truncation terms, while strongly correlated random

fields are the opposite. As an example, the plot of the eigenvalues of a Gaussian

random field over a domain of 100 by 50 units is shown in Figure 2.1(a) for the case

of long correlation lengths, and Figure 2.1(b) for the case of short correlation lengths.

For long correlation lengths, the first 10 modes have considerably higher values than

the rest, while for short correlation lengths, the eigenvalues are significant up to a

few hundred modes.

The desired accuracy of the random field representation, which guides the choice

of M , is typically measured by the variance of the truncation error of the KLE at

spatial points [28, 29]. For a Gaussian random field, let Êgau(x) be the exact random

field (in the limit M →∞). The variance of the difference between the truncated

KLE and the exact random field at each spatial point is described by:

var[Êgau(x)− Egau(x, ξ)] = σ2

(
1−

M∑
m=1

λmϕm(x)
2

)
. (2.17)

Various error measures have been developed using this equation. This thesis employs
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Figure 2.1 KLE eigenvalue decay for 2D Gaussian random fields on a 100 by 50
units spatial domain with various correlation lengths.

a global relative error measure from Sudret and Der Kiureghian [28]:

eKLE =
1∫

Ω
dx

∫
Ω

var[Êgau(x)− Egau(x, ξ)]

var[Êgau(x)]
dx, (2.18)

where Ω is the spatial domain and
∫
Ω
dx is the volume of the domain. To compute

eKLE for the case of a homogeneous random field and a domain discretized with finite

elements, the integrand is approximated as piecewise continuous over each element,

with the value taken at the centroids of the elements (xc), yielding:

eKLE =
1∫

Ω
dx

∫
Ω

(
1−

M∑
m=1

λmϕm(x)
2

)
dx, (2.19)

eKLE ≈
1∑
eΩe

∑
e

((
1−

M∑
m=1

λmϕm(xc)
2

)
Ωe

)
, (2.20)

where Ωe is the volume of an element. From the definition of eKLE, it is bounded

between [0, 1] and hence a percentage value is often applied to threshold eKLE. A

truncated KLE is deemed to be a sufficient approximation of the random field if the

M truncation terms lead to eKLE above the imposed threshold.

For physically admissible systems, the Gaussian random field is not always ap-

plicable. For instance, in the case of stochastic Young’s modulus (E), it must be

strictly positive at all spatial positions. This requires distributions with strictly pos-

itive support, such as the lognormal, gamma, or beta distributions. To obtain these
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distributions from an underlying Gaussian process, additional transformations are

employed. The truncated KLE representation of a lognormal random field is formu-

lated using an exponential transformation [23]:

Elog(x, ξ) = exp

(
µ+ σ2

M∑
m=1

√
λmϕm(x)ξm

)
. (2.21)

To incorporate the truncated KLE into FEM and TO framework, the midpoint

approximation method is employed [23, 30], where the material random field is ap-

proximated as piecewise constant over each element, with the value at the centroid

of the element. Hence, the truncated KLE representation of material properties at

each element only depends on the stochastic variables, ξ. The UQ schemes make use

of the truncated KLE to parametrize the material uncertainties, which enables the

estimation of the statistical quantities pertaining to the QOI.

2.6 Robust Topology Optimization Framework

With the material properties modeled as random fields, the compliance (c) is a scalar

random variable, the nodal displacement vector (u) is a stochastic field, and the

stiffness matrix (K) is a random matrix. RTO augments the QOI in TO into a

weighted sum of the mean (E[·]) and standard deviation (Std[·]) of QOI. For the

compliance minimization problem with a volume constraint, the RTO counterpart is

min
ρ̃

cR(ρ̃) = E[c (ρ̃, ξ)] + κ Std [c(ρ̃, ξ)] ,

s.t. : K(ρ̃, ξ)u(ρ̃, ξ) = F,

: 0 < ρmin ≤ ρe(ρ̃) ≤ 1 ∀e,

: ρ(ρ̃)Tv ≤ V ∗,

(2.22)

where the weight κ dictates the trade-off between optimized average performance

and expected variations due to uncertainty. The objective function, cR, is the robust

compliance, and the ξ = {ξm}m≤M is a vector containing theM stochastic coordinates

from KLE. The stochastic equilibrium equation in the second line is satisfied almost-

surely, meaning that the equality constraint holds for all realizations of ξ.

An alternative RTO formulation is the minimum volume design with a robust
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compliance constraint:

min
ρ̃

ρ(ρ̃)Tv,

s.t. : K(ρ̃, ξ)u(ρ̃, ξ) = F,

: 0 < ρmin ≤ ρe(ρ̃) ≤ 1 ∀e,

: E[c (ρ̃, ξ)] + κ Std [c(ρ̃, ξ)] ≤ cmax.

(2.23)

The total volume, or equivalently, the volume fraction, is used as the objective func-

tion, while cmax is the maximum allowable robust compliance.

For SIMP-based RTO frameworks, estimations of the robust complance and its

gradient with respect to density are required. Hence, the UQ schemes employed

need to be compatible with gradient-based optimizers. The general expression of the

sensitivities of cR with respect to ρ̃:

∂cR
∂ρ̃e

=
∂E[c]
∂ρ̃e

+ κ
∂Std[c]

∂ρ̃e
. (2.24)

The detailed formulae for the statistical measures and their gradients vary depending

on the applied UQ schemes.

2.7 Robust Topology Optimization Algorithms

This section discusses existing gradient-based RTO algorithms that target material or

geometric uncertainties. The algorithms are classified based on their characteristics.

The practical motivation of this thesis is to incorporate uncertainties from additive

manufacturing, which can be modeled using random fields with very short correlation

lengths according to experimental observations [2, 27]. The truncated KLE represen-

tations of these random fields have high stochastic dimensions and hence this section

also discusses the applicability of existing RTO algorithms for high input dimensions.

The two key ingredients in a gradient-based RTO algorithm for solving the prob-

lems defined in Equations (2.22) and (2.23) are an uncertainty quantification (UQ)

scheme for computing the statistics of the QOI (cR), as well as a design update

scheme for computing the gradients of statistics (Equation (2.24)) and updating the

design variables. Two popular types of approaches address these ingredients. One

type focuses on efficient and high-quality design updates by employing the stochastic

gradient descent (SGD) algorithm [31, 32, 33, 34, 35]. A sampling-based UQ scheme,

such as Monte Carlo, is used to compute the statistics of QOI and sample-wise gra-
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dients. These approaches require the sample sets at each iteration to have a small

size for cost reduction and a sufficient level of independence from sample sets of other

iterations. This leads to a coarse estimation of the statistics and noisy gradients,

but the application of the SGD optimizer (also known as the Robbins-Monro algo-

rithm [36]) or its variants ensures sufficient optimality of the design. The other type

focuses on efficient and reliable UQ schemes. For estimating the statistics, these ap-

proaches require the UQ scheme to use either the same sample set every iteration or

an analytical formula. Hence, the stochastic optimization becomes a deterministic

problem at each iteration and any gradient-based optimizers can be employed. The

procedure for computing the gradients varies depending on the UQ scheme and hav-

ing an accurate estimation of statistics leads to good quality of gradients. In this

thesis, the second type of approaches are of particular interest, since they are more

versatile and stable [37].

Amongst the second type of approaches, the most popular class of approaches em-

ploy sampling-based UQ schemes [22, 25, 38]. These RTO approaches require a set of

compliance samples per iteration, and the statistics of the compliance as well as their

gradients are computed using a weighted aggregation of the sample-wise results. The

most well-developed is Monte Carlo-based RTO (MCTO) [25, 38]. The advantage of

Monte Carlo (MC) is that the random sampling process employed is independent of

the complexity of the uncertainties and therefore tractable in high stochastic dimen-

sions and for uncertainties that are difficult to parameterize. However, the accuracy

of Monte Carlo converges slowly with the number of samples. Hence, the downside

of MCTO is the significant computational cost incurred due to solving a large num-

ber of FE problems associated with a large number of samples. MCTO is generally

considered as the benchmarking algorithm, while other approaches try to improve

efficiency while maintaining sufficient accuracy. To this end, the stochastic colloca-

tion (SC)-based RTO approach [22, 39] is another popular sampling-based scheme.

The sampling process in the SC UQ is guided by multivariate quadrature algorithms

according to the distribution of the random variables. For a small number of ran-

dom dimensions, SC is more efficient than MC since fewer samples and FE solves

are required to achieve high accuracy. However, for high dimensional problems, the

number of samples required by SC increases drastically (factorial scaling with sparse-

grid [40]), hence making it less efficient than MC. The main computational bottleneck

for sampling-based RTO is the large number of FE solutions required. To alleviate

this issue, one strategy is to replace each FE solution with a cheaper approximation.

For instance, Amir et al. [41] employ the reanalysis technique to accelerate the MC,
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while Keshavarzzadeh et al. [42] use coarse mesh approximation alongside a neural

network mapping to accelerate SC. Another strategy is to use additional samples

from other models that are cheaper but coarser compared to the FEM. The multi-

resolution sampling process, such as multi-level MC [43] and multi-fidelity MC [44],

helps to ensure accuracy while reducing cost.

Another class of RTO approaches employs the perturbation-based UQ scheme.

The principle is to approximate the QOI with a Taylor series in the stochastic space

and hence the statistics of the QOI are only dependent on the joint statistics of

the input random variables. Consequently, the statistics and their gradients admit

closed-form expressions, which are extremely efficient to compute. RTO algorithms

based on perturbation of the compliance [45], the displacement vector [46], and the

FE stiffness matrix [47, 48, 49] have all been investigated in the literature. Note

that the perturbation of the stiffness matrix is equivalent to the approximate matrix

inversion technique for solving a linear system. In general, the cost of perturbation

approaches consists of factorizing and storing one stiffness matrix, which is then used

to solve a set of linear systems. The number of linear systems scales linearly or

quadratically with the stochastic dimension, corresponding to the 1st and 2nd-order

Taylor series, respectively. Hence, perturbation-based approaches scale well for high

dimensional problems. The fundamental limitations of these approaches are that

they are only applicable for low variance in the input variables and they necessitate

storage of a factorized stiffness matrix, which may not be possible for ill-conditioned

or large-scale problems. The other downside of these approaches is that the joint

statistics and gradients for all permutations of input random variables are required.

The complexity and cost for this is significant for high stochastic dimensions. To

alleviate this, finite difference schemes have been investigated to approximate the

joint statistical gradient [50, 51] and random variable decorrelation schemes have

been employed to decrease the number of joint statistics [52, 53].

The class of RTO approaches based on functional decomposition UQ schemes is

also popular. These approaches approximate the QOI with a basis of functions in

the stochastic space. Obtaining the basis coefficients generally requires a projection

procedure and once they are known, the statistics of QOI and their gradients are com-

puted analytically. From a many-query perspective, these approaches are as efficient

as the perturbation-based approaches and can also handle high variances in input

uncertainties. Polynomial chaos (PC)-based RTO [10, 21, 54] belongs to this class,

where the functional basis is composed of orthogonal polynomials. However, the car-

dinality of the basis of PC increases drastically (exponentially or factorial) with the
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stochastic dimension. Consequently, the cost of the projection procedure also rapidly

increases, making it less efficient than MC for high dimensional problems. Hence,

other decomposition UQ schemes have been investigated for RTO applications, such

as the univariate and bivariate dimension reduction [55, 56, 57, 58], and anchored

ANOVA [59]. These UQ schemes employ a basis that has a lower order compared

to the PC basis and hence the cardinality of the basis and the number of FE solves

required for the projection procedure scales polynomially with the stochastic dimen-

sions. These schemes in theory are reliable for high dimensions, provided that the

QOI does not exhibit strong nonlinear behaviors.

Some recent RTO approaches employ statistical transformations to approximate

the distribution or central moments of the compliance using closed form expressions.

Examples are, using the matrix variate distribution scheme [3] or employing the linear

transformation properties of Gaussian variables [60].

Ultimately, for RTO approaches applicable to material uncertainties, given a high

dimensional stochastic space, not many are more efficient than MCTO while being

sufficiently reliable in the estimation of statistics. Also, most of the approaches de-

pend on the existence of a parametric model for the uncertainties, which may not be

available, such as a random field with correlation lengths of zero (white noise). Nu-

merical cases for RTO with high dimensional inputs are very sparse in the literature.

Hence, further investigations in this direction are required.

As the MCTO approach is extensively studied, it is considered as the benchmark

algorithm to provide comparison bases for other, novel, RTO algorithms in this thesis.

Regarding implementation, sampling-based (MC) UQ schemes are task-parallel in the

sample dimension. This is because the sample-wise computations are independent

of each other and no communication is required between these processes. Hence,

parallel computing techniques should be employed whenever possible to achieve higher

computational speed. In MATLAB, a task parallel for loop is implemented using the

parfor command. More advanced optimization of parallel implementation depends

on the computing language used, the available computing resource, and architecture.

Detailed discussions and algorithm designs regarding these aspects are much more

involved and thus are outside the scope of this thesis.



Chapter 3

Neumann Expansion Robust

Topology Optimization

This chapter describes a robust topology optimization (RTO) algorithm based on the

Neumann expansion (NE) uncertainty quantification (UQ) scheme. The objective of

this thesis is to develop RTO algorithms that efficiently handle high dimensional or

multi-source material uncertainties. RTO has an inner UQ module for estimating

the statistic of interest and an outer module for updating design variables using

a gradient-based optimizer. The statistic of interest is the robust compliance, cR,

which is a weighted sum of the mean and standard deviation of the compliance. The

UQ module is required to estimate cR reliably and accurately, which ensures sufficient

quality of the gradients.

The standard UQ approach for handling high dimensional uncertainties is the

Monte Carlo (MC) scheme, which requires many samples of compliance for each

iteration to achieve accurate cR. Since computing each sample corresponds to solving

a finite element (FE) problem, if ns compliance samples are needed, this requires ns

linear solves for each iteration, which is very costly. For design updates, MC-based

RTO (MCTO) requires solving ns adjoint problems. Since a compliance objective

produces a self-adjoint system, computing the gradients for all samples leads to nsne

vector-matrix-vector products between element-wise stiffness matrices and element-

wise displacements, totalling O(nsnen
2
u) computational cost, where ne is the number

of elements and nu is the size of an element displacement vector.

The proposed NE UQ provides an efficient alternative for estimating cR. The

principle is to employ an approximate perturbation model of the FE stiffness matrix

and compute the perturbation coefficients using a sampling procedure, such as MC. In

terms of cost for each iteration, if ns samples are used for computing the coefficients,

16
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then estimating cR requires one linear solve and O(nsnf ) scalar arithmetic, where

nf is the number of free degrees of freedom in the FE. The NE UQ is compatible

with gradient optimization, leading to the NE-based RTO (NETO) algorithm. The

design update of NETO requires computing the gradient of one compliance sample

at a cost of O(nen
2
u), and O(nsnenu) scalar arithmetic operations without the need to

access element-wise operators. Hence, cost reduction compared to MC is achieved. In

addition, the proposed NE UQ does not necessitate parametric models of the input

uncertainties and it can handle multi-source material uncertainty. The computational

complexity also does not have explicit dependency on the input stochastic dimension

and hence it does not suffer from the curse of dimensionality. The main disadvantage

of NE is the decrease in accuracy of the estimation of cR compared to MC. However,

numerical cases show that this inaccuracy is not detrimental to the quality of the

designs, as structures generated from NETO and MCTO achieve similar optimality.

The sections in this chapter are organized as follows: Section 3.1 provides a sum-

mary of NE in stochastic mechanics and the concept of the approximate matrix

inversion, which allow the random compliance to be represented using a series. The

algorithm of NETO is presented in Section 3.2. The ingredients required by NETO

include a UQ procedure for estimating the cR, expressions for computing the design

gradients, and a parameter storage method to enable efficient statistics and gradient

computations for each iteration. The NE UQ scheme is developed in Section 3.3,

where the expression for the cR is provided. A novel dimension reduction approach

is employed, which enables the NE UQ to be efficient under high stochastic dimen-

sions. The equations for the gradient of cR with respect to the design variables are

developed in Section 3.4. The equations of cR and its gradient require statistics of

matrix variables, which are computed using a sampling-based approach. However,

repeating the sampling procedure every iteration is very inefficient and hence a novel

storage method is developed in Section 3.4.1, which decomposes the matrix variables

as products between stochastic components and deterministic scaling from the design

variables. The sample-wise stochastic components are computed and stored before

optimization, and the scaling components are updated with changes in the design

variables. The products of these two components only require scalar arithmetic each

iteration and hence the samples of matrix variables are updated efficiently, which

enables the equations for cR and its gradient to be computed with low cost. In Sec-

tion 3.6, 2D numerical cases are presented to demonstrate the efficacy of the NETO

in comparison with the MCTO. The chapter is concluded by Section 3.7.
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3.1 Background

NE is based on decomposing a stochastic variable into sum of its mean and random

perturbations, then approximating the inverse of this sum with a perturbed series,

enabling the computation of output quantities of interest. NE is well-established in

stochastic finite element analysis [23, 61, 62, 63], where the stiffness matrix K is

random. The stochastic K is K = K̄ + ∆K, where K̄ is the mean stiffness matrix

while ∆K is the stochastic perturbation matrix. Since the output displacement field

and the compliance require the inverse of K, the perturbed representation is inverted

using the approximate matrix inversion method [64, 65], which represents the inverse

stiffness matrix as a binomial series:

K−1 =
(
K̄
(
I− K̄−1∆K

))−1
=

(
∞∑
i=0

(−1)i
(
K̄−1∆K

)i)
K̄−1. (3.1)

A sufficient condition for the convergence of the series in Equation (3.1) is

∥K̄−1∆K∥F < 1, where ∥ · ∥F is the Frobenius matrix norm [30, 61, 66, 67, 68].

A stronger condition is that the spectral radius of K̄−1∆K is less than one. The

series expansion for the stochastic displacement field (u) given a deterministic forcing

(F) is:

u =
(∑∞

i=0 (−1)i
(
K̄−1∆K

)i)
K̄−1F. (3.2)

The expansion of the random compliance is:

c = FT K̄−1F− FT K̄−1∆KK̄−1F+ FT K̄−1∆KK̄−1∆KK̄−1F

− FT K̄−1∆KK̄−1∆KK̄−1∆KK̄−1F+ . . .
(3.3)

For small variance in the randomness of K (for example, the input material random

field has a covariance ratio CoV = σ
µ
< 0.15 [52, 62]), the higher order terms are neg-

ligible. In addition, having many expansion terms leads to computational inefficiency.

Hence, the series representation in Equation (3.3) is typically truncated to the first

few terms. The order of the series is conventionally used to represent the number of

terms retained. Keeping N expansion terms is denoted as the (N − 1)th order NE.

3.2 Neumann Expansion RTO Algorithm

The Neumann expansion-based RTO, denoted as NETO, is presented in Algorithm 1.

The first phase of NETO describes the novel storage scheme developed in Section 3.4.1,
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which stores the sample-wise matrix variables used to computed their statistics re-

quired in every iteration of RTO. These matrix variables are highlighted in red in

Equations (3.4) and (3.20). The second phase of NETO describes the procedure of

RTO, where each iteration requires computing the statistics of the matrix variables

using the stored samples and the updated design variables. These statistics are em-

ployed to estimate the cR and its gradient with respect to the design variables using

the NE UQ scheme, which are developed in Section 3.3 and 3.4. As mentioned in

Section 3.1, the series representation of the random compliance is truncated to qth

order in practice. Henceforth, “NETO qth order” denotes the application of the qth

order NE UQ scheme to RTO.

Algorithm 3: NETO

Phase 1: Sample-wise Variable Extraction and Vectorized Storage

Input: Sample set of {ξm, wm}1≤m≤ns .
for m = 1 : ns do

for (each (i, j) entry of Kij) do
→ ∀k ∈ Nij and ξm, compute Ek(ξm)ak(ξm)

→ ∀k′, k̂ ∈ Nij and ξm, assemble Ek′(ξm)Ek̂(ξm)ak′(ξm)ak̂(ξm) ← (i, j) ←
(ele k′, ele k̂)

end for
end for
→ Assemble E[Ekak]← (i, j)← (ele k)

Phase 2: Gradient Based Robust Topology Optimization

Input: Determine the truncation order for NE, and the E[αq] and E
[
αq ∂α

∂ρe

]
Input: Initialize ρ̃
while ∥ρ̃iter − ρ̃iter−1∥∞ > 0.01 do
→ Filter ρ̃iter to ρiter via Equation (2.6) and (2.7)
→ Compute ρpkE[Ekak] and ρp−1

k E[Ekak]
for m = 1 : ns do
→ Compute the product between Ek′(ξm)Ek̂(ξm)ak′(ξm)ak̂(ξm) and ρpk′ρ

p
k

or pρp−1
k′ ρpk using (i, j)↔ (ele k′, ele k̂) mapping

→ Compute for sample m: α(ξm) and
∂α(ξm)
∂ρe

end for
→ Aggregate sample results, compute all required E[αq] and E

[
αq ∂α

∂ρe

]
→ compute cR and its sensitivities
→ update to ρ̃iter+1 using MMA

end while
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3.3 Uncertainty Quantification Scheme

3.3.1 Parameter Selection

NE is similar to perturbation approaches where the Taylor series is applied to the

stiffness matrix [47, 48, 49]. Hence, many formulations of the perturbation matrix

(∆K) are proposed in literature [61, 68]. The majority construct ∆K from a linear

combination of deterministic matrices scaled by a stochastic function that depends on

one or more random variables from the random field surrogate, such as the variables

(ξ) in the Karhunen–Loève expansion (KLE). However, such approaches suffer from

a significant increase in computational complexity with increasing stochastic dimen-

sions. To circumvent this issue, a new approximation for the perturbation matrix

is:

∆K ≈ αK̄; α =
Tr
(
K̄2
)
− Tr

(
K2
)

2Tr
(
K̄2
) . (3.4)

Note that α is a positive scalar random variable, with Tr(·) the trace operator. The

perturbation matrix is an approximation of the exact ∆K. This approximation is a

dimension reduction approach, where various material uncertainties in the system are

amalgamated. Hence, regardless of the complexity of the underlying uncertainties,

the formulation of the random matrix perturbation is the same, leading to consistent

computational complexity. This approximation is specifically intended for computing

the statistical values of the stochastic compliance.

The main requirement for the applicability of NE is that ∆K satisfies the conver-

gence criterion. For the approximation in Equation (3.4), this corresponds to α < 1.

It is possible to rescale the perturbation component such that for any realizations of

K, convergence is guaranteed [61]. However, such an adjustment is not applied in this

thesis. In practical applications, the material uncertainties are typically modeled us-

ing physically plausible positive-definite distributions (lognormal, beta, and uniform

distributions), and the variations of K are typically not significant enough to violate

the α < 1 condition. With this approximate perturbation, the NE of the compliance

is:

c ≈
(
1− α + α2 − α3 + α4 − . . .

)
FT K̄−1F (3.5)

The sum in the bracket is truncated according to the required accuracy.
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3.3.2 Computation of Statistics

As the random compliance is represented with a truncated series, statistical operators

such as the statistical moments are applied to the expression. Hence, the mean is:

E[c] ≈ E
[
(1− α + α2 − α3 + α4 − . . . )

]
FT K̄−1F. (3.6)

Truncating to first order leads to:

E[c] ≈ (1− E[α])FT K̄−1F. (3.7)

The second order approximation of the mean is:

E[c] ≈
(
1− E[α] + E

[
α2
])

FT K̄−1F. (3.8)

RTO also requires the standard deviation, which necessitates the second statistical

moment of the compliance, where the general expansion is:

E
[
c2
]
≈ E

[
(1− α + α2 − α3 + α4 − . . . )2

]
(FT K̄−1F)2. (3.9)

The first and second order truncated approximation of the second moment are:

E
[
c2
]
≈
(
1 + E

[
α2
]
− 2E[α]

)
(FT K̄−1F)2, (3.10)

and

E
[
c2
]
≈
(
1 + E

[
α4
]
− 2E

[
α3
]
+ 3E

[
α2
]
− 2E[α]

)
(FT K̄−1F)2. (3.11)

As a consequence:

Std[c] =

√
E[c2]− E[c]2. (3.12)

Hence, the values required to calculate the robust compliance are available, although

the exact expression depends on the order of truncation applied.

3.4 Statistical Gradients

The optimization algorithm is gradient-based, requiring the sensitivities of the robust

compliance (cR), which are the gradients of the statistical moments with respect to

the physical densities. Define ρe as the element density for the eth element, ρ as the

vector of element densities, and a nominal compliance and its derivatives with respect
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to the physical density of an element as:

c0 = FT K̄−1F, and
∂c0
∂ρe

= −FT K̄−1∂K̄

∂ρe
K̄−1F. (3.13)

Using the linearity of the expected value and the differentiation operators, the sensi-

tivity of the first statistical moment of compliance with respect to the density of an

element are:

∂E[c]
∂ρe
≈ E[(1− α + α2 − α3 + α4 − . . . )] ∂c0

∂ρe
+ E

[(
− ∂α

∂ρe
+ ∂α2

∂ρe
− ∂α3

∂ρe
+ ∂α4

∂ρe
− . . .

)]
c0. (3.14)

Truncating to first and second order leads to the approximations:

∂E[c]
∂ρe

≈ (1− E[α])
∂c0
∂ρe

+

(
−∂E[α]

∂ρe

)
c0, (3.15)

and

∂E[c]
∂ρe

≈
(
1− E[α] + E

[
α2
]) ∂c0

∂ρe
+

(
−∂E[α]

∂ρe
+ E

[
2α

∂α

∂ρe

])
c0. (3.16)

The sensitivity of the second statistical moment of compliance with respect to the

density of an element are:

∂E[c2]
∂ρe
≈ E[(1− α + α2 − α3 + α4 − . . . )2]2c0

∂c0
∂ρe

+
∂E[(1−α+α2−α3+α4−... )2]

∂ρe
c20. (3.17)

Approximating by truncation to first order leads to:

∂E[c2]
∂ρe

≈
(
1 + E

[
α2
]
− 2E[α]

)
2c0

∂c0
∂ρe

+

(
E
[
2α

∂α

∂ρe

]
− E

[
2
∂α

∂ρe

])
c20, (3.18)

while truncation to second order results in:

∂E[c2]
∂ρe

≈
(
1 + E

[
α4
]
− 2E

[
α3
]
+ 3E

[
α2
]
− 2E[α]

)
2c0

∂c0
∂ρe

+

(
E
[
4α3 ∂α

∂ρe

]
− E

[
6α2 ∂α

∂ρe

]
+ E

[
6α

∂α

∂ρe

]
− E

[
2
∂α

∂ρe

])
c20.

(3.19)

Given α defined in Equation (3.4), its expected value and sensitivity with respect to

the density of an element are:

E[α] =
1

2

(
1− E[Tr (K2)]

Tr
(
K̄2
) ) , and

∂α

∂ρe
= −

Tr
(
K ∂K

∂ρe

)
Tr
(
K̄2
) +

Tr
(
K̄ ∂K̄

∂ρe

)
Tr
(
K2
)

(Tr
(
K̄2
)
)2

. (3.20)
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The sensitivities of the standard deviation of the compliance with respect to the

density of an element are:

∂Std[c]

∂ρe
=

1

2
(E
[
c2
]
− E[c]2)−

1
2

(
∂E[c2]
∂ρe

− 2E[c]
∂E[c]
∂ρe

)
. (3.21)

Computing these for all of the elements in ρ leads to the full set of sensitivities.

3.4.1 Parameter Storage and Update Scheme

In general, the statistical moments and sensitivities of the compliance approximated

by NE necessitates the computation of the expressions E[αq] and E
[
αq ∂α

∂ρe

]
, with q

a positive integer or zero. The definitions of α in Equation (3.4) and ∂α
∂ρe

in Equa-

tion (3.20) indicate that statistics of matrix variables associated with K are required.

These matrix variables are highlighted in red in Equations (3.4) and (3.20), and their

statistics are computed with sampling methods. However, as the element densities

ρ change each iteration, the stiffness matrices require reconstruction and hence the

inefficient repetition of the sampling process every iteration. A new storage scheme

is developed to enable the efficient update of the samples of these matrix variables in

each optimization iteration.

The storage scheme must enable efficient updates for the samples of all matrix

variables required in the expressions of α and ∂α
∂ρe

. For α, Tr
(
K2
)
and Tr

(
K̄2
)
are

the key variables. For ∂α
∂ρe

, Tr
(
K̄ ∂K̄

∂ρe

)
and Tr

(
K ∂K

∂ρe

)
are the additional key variables.

Have sample-wise realizations of these variables enable expected values of their prod-

ucts to be computed, for example, E
[
Tr
(
K2
)
Tr
(
K̄ ∂K̄

∂ρe

)]
. The number of matrix

variables does not depend on the order of the NE.

In RTO based on the Solid Isotropic Material with Penalization (SIMP) scheme,

each entry in K contains contributions from the adjacent elements in the form of

a product between the element stiffness matrix with unit modulus scaled by Eeρe
p.

Consider the assembly of the (i, j)th entry of K, where the contributing elements are

denoted by the set [Nij]. Each element has a contribution of (ρk)
pakEk for k ∈ [Nij],

where ρpk is the element density with SIMP scaling, Ek is the element Young’s modulus,

and ak is a constant scalar from the unit modulus elastic matrix, D0. The expression

for ak depends on the entries to which it corresponds in D0. The assembly of Kij is

given byKij =
∑

k∈[Nij ]
(ρk)

pakEk. With material uncertainties, Ek and possibly ak (if

the Poisson’s ratio is stochastic) are random variables. In this thesis, ρk is considered

deterministic. Hence, the random quantities are independent of the design variables
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and remain unchanged throughout the optimization. The element densities are the

only variables that change through the optimization iterations. To keep track of the

individual element contributions, the stochastic and deterministic components are

stored separately, while their coupling is maintained through a mapping procedure.

Assuming that a set of realizations of the material uncertainties is given, and

samples of Ek and ak are made available through sampling or experimental data.

The sample-wise value of Tr
(
K2
)
is:

Tr
(
K2
)
=

n∑
j=1

n∑
i=1

(Kij)
2 =

n∑
j=1

n∑
i=1

 ∑
k∈[Nij ]

(ρk)
pakEk

2

,

=
n∑

j=1

n∑
i=1

 ∑
k′∈[Nij ]

∑
k̂∈[Nij ]

(ρk′)
p(ρk̂)

p(ak′ak̂)(Ek′Ek̂)

,

(3.22)

where k′ and k̂ are dummy indices. Similarly, the sample-wise Tr
(
K ∂K

∂ρe

)
is:

Tr
(
K ∂K

∂ρe

)
=

n∑
j=1

n∑
i=1

( ∑
k′∈[Nij ]

∑
k̂∈[Nij ]∩e

2p((ρk′)
p(ρk̂)

p−1)(ak′ak̂)(Ek′Ek̂)

)
. (3.23)

Note that k′ ∈ [Nij] ∩ e denotes the intersection between element e and the set [Nij].

The sample-wise formulae for all the other variables are similar to Equations (3.22)

and (3.23). The only adjustment required is changing akEk to E[akEk] when K̄ or
∂K̄
∂ρe

appears in the trace operator.

In practical implementation, storage for the (ak′ak̂)(Ek′Ek̂) values are needed for

each sample realization, as well as the mapping which describes the exhaustive set of

(k′, k̂) tuples for each (i, j) index. This only needs to be obtained once prior to the

optimization stage. Having this mapping available, the samples of any of the matrix

variables can be constructed efficiently by multiplying the densities with samples of

Ek and ak corresponding to element tuple (k′, k̂), and then summing according to

the matrix entry tuple (i, j). The expected values of the matrix variables and their

products are computed by simple aggregation of sample-wise realizations.

With a set of samples of material properties and the aid of the aforementioned

procedure, for each RTO iteration the samples of the matrix variables are dynamically

updated, which enables the sample-wise values of α and ∂α
∂ρe

to be efficiently computed.

Aggregating the sample results enables cR and its sensitivities to be computed with

the application of the chain rule in Equation (2.11).
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3.5 Computational Aspects

The storage scheme of NETO is based on samples of material properties combined

with the vectorized tuple storage scheme. Given ns samples, each sample requires

vector tuple storage of the set of Ek′Ek̂ak′ak̂. All of these are precomputed and

stored before optimization. Each of the vector tuples has lengths of number of non-

zero entries in K, which scales with O(nf ), where nf is the number of free degrees

of freedom. Hence, the memory requirement is O(nsnf ), which is comparable to the

cost of storing ns stiffness matrices.

In NETO, the samples of Ek′(ξm)Ek̂(ξm)ak′(ξm)ak̂(ξm) and the variables E[Ekak]

are scaled by the corresponding penalized density ρpk or ρp−1
k , based on the mapping

(i, j) ↔ (element k′, element k̂). These samples of matrix variables lead to samples

of α and ∂α
∂ρe

. This information is sufficient for computing E[αq] and E
[
αq ∂α

∂ρe

]
of any

order, and also the statistics of compliance and its sensitivities.

In terms of computational cost for each iteration, computing c0 (see Equation (3.13))

requires solving one linear system and computing ∂c0
∂ρe

costs O(nen
2
u). To compute the

E[αq] and E
[
αq ∂α

∂ρe

]
, with the storage scheme, the updated sample-wise matrix vari-

ables are needed. Updating the one sample of the matrix variables requires only

scalar operations and hence if ns samples are used, the complexity is O(nsnenu).

Even though these variables are matrix related quantities, their computation does

not involve traversing through elements, which is very beneficial for memory and

arithmetic.

For the representation of material uncertainties, ∆K and the sampling process

required by NETO are insensitive to the dimensionality and complexity of the un-

derlying uncertainties. For instance, in the case of multiple uncertainty sources (for

example, stochastic Young’s modulus and Poisson’s ratio) or short correlation lengths

in the material random field leading to many expansion terms in the truncated KLE

representation, the associated storage and computational cost of the NETO does not

explicitly scale with the number of stochastic dimensions, which is different from the

majority of the existing methods. Also, the sampling-related computations in Algo-

rithm 1 are task parallel, hence parallel computing can be employed to reduce the

computation cost.

There are potential disadvantages to the NETO algorithm. The accuracy of the

NE UQ varies depending on the underlying levels of uncertainties. For example,

large random field variance leads to inaccuracies and divergence in estimating the

statistics of compliance. In addition, the cost of storage depends on the sampling
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scheme. A large number of samples leads to high storage requirements. For higher

order truncation choices, the number of terms in the full expansion of Equation (3.9)

grows, potentially leading to difficulties in formulating the closed form expressions.

3.6 Numerical Results

In this section, the NETO algorithm is demonstrated for minimum weight designs of

a cantilever beam and a simply supported bridge with a robust compliance constraint

(Equation (2.23)). Having the robust compliance as a constraint rather than as

an objective is a more demanding application for the calculation of statistics. The

domains and boundary conditions of these problems are shown in Figure 3.1. The

domains are discretized by unit square elements. All cases have a unit point load

(F = 1). The uncertainty is a consequence of random Young’s modulus, modeled as

a homogeneous lognormal field. The bridge design additionally considers Poisson’s

ratio as random. For the random fields, the mean Young’s modulus is one, while the

mean Poisson’s ratio is 0.3. The CoV and the correlation lengths in CH(·, ·) for all

random fields are varied to study the robustness and accuracy of NETO.

(b)(a)

y
x

W = 30

L = 100

F

F

y

Figure 3.1 Design domain of (a) a cantilever beam
with downward loading on the center of right edge,
and fixed pin support along the left edge; (b) a sim-
ply supported bridge with downward loading at the
bottom center, roller condition on the right bottom
corner, and pin support on the left bottom corner.
The geometries are in non-dimensional units.

MCTO provides a bench-

mark for comparison of the

NETO algorithm. For both

problems, 1000 samples of the

material random fields are uti-

lized in MCTO. Since the com-

putational procedure is identical

across sample realizations, par-

allel computing techniques are

used with four cores to im-

prove the computational effi-

ciency. Since NETO also re-

lies on sample-wise simulation of

matrix variables to compute the cR and its gradient, for all design problems the same

1000 Monte Carlo random samples are used for this purpose. This procedure re-

moves the influence of sample variance when comparing NETO and MCTO designs.

These cases illuminate two phenomena: the behavior of the NE UQ scheme and the

performance of NETO compared to standard MCTO.

The application of the NE approximation in computing the random compliance
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leads to error. To assess the behavior of this error, the NE UQ scheme of various

orders is used to estimate the statistics of a reference structure, which is the MCTO

design. To form a comparison basis, 10,000 samples of the material random fields are

generated leading to 10,000 samples of the stiffness matrix and compliances. Using

these samples, a MC UQ is employed to compute the robust compliance of the MCTO

design. This MC UQ computation is considered as the ground truth, and the resulting

robust compliance is the verified compliance, cV , of the MCTO design. Subsequently,

the NE UQ is used to approximate the cV of the MCTO design. Different truncation

orders of NE are applied, where the statistics of the expansion variables, αq, are com-

puted using the same 10,000 stiffness matrix samples. Provided the ground truth cV

and the approximation of cV using NE, their relative signed difference is computed

and denoted as the relative robust compliance error. This error shows the conver-

gence and the accuracy of NE schemes of different orders. Also, the 10,000 samples

of compliance computed through MC is used to compute a ground truth empirical

probability density function (PDF) of the compliance through kernel approximation

methods [69, 70]. In NE, the random compliance is approximated by Equation (3.5).

Using the same pool of samples, the sample-wise compliance is estimated using NE

and are aggregated to approximate the PDF of the compliance. The MC generated

ground truth PDF of the compliance is compared with the NE approximated PDF of

the compliance.

To assess optimization, several values are compared for each problem between

MCTO and NETO with various expansion orders. First, the final volume fraction of

the designs is presented, denoted as vf . To verify constraint satisfaction, the ground

truth robust compliance, cV , of each design is computed using the same 10,000 sample

MC procedure as above. Each RTO algorithm provides an estimation of the robust

compliance, denoted cE. The absolute difference between cV and cE is computed as a

relative error with respect to cV . This error helps to compare the level of accuracy of

the NETO and MCTO algorithms. Since the robust designs have different vf and cV ,

in order to provide a more neutral performance comparison of the designs, a robust

stiffness per unit volume metric, SV , is defined. As stiffness is the inverse of the

compliance, SV is computed via SV = 1
vf∗cV

. Also, the CPU time per iteration and

the total number of optimization iterations are reported to compare the efficiency

of different algorithms. For parallel computing, the CPU time includes the total

operation time for all parallel cores.

Several topology optimization parameters remain consistent for all algorithms and

all problems. In the SIMP scheme, p = 3 is imposed as the penalization factor and
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ρmin = 10−3 is set as the minimum density. For the regularization filter radius,

rf = 1.5 is set for all cases, equivalent to 1.5 times the element edge length. The

volume preserving HPF in Equation (2.8) is applied with a continuation scheme on

β, where it starts with a value of 1 and doubles every 50 iterations until a value of 8,

which is maintained until convergence. The maximum β is set to avoid the generation

of discontinuous structural members during optimization, which leads to potential

instability. The asyinit and the move parameter in MMA are kept as the default

values of 0.5. All problems are initialized with an even distribution of material, and

convergence is achieved as when the largest change in the design variables between

iterations is less than 0.01.

3.6.1 Cantilever Beam

The cantilever beam problem in Figure 3.1(a) has a design domain of 100 by 30 units.

For all the cases in this problem, the CoV of the Young’s modulus random field is

15%, while the correlation lengths are varied from long to short. The parameters in

the minimum weight RTO problems are imposed with maximum robust compliance

cmax = 350 and κ = 6, hence having a high emphasis on reducing the variance of the

structural behavior.

The first case uses a long correlation length random field with (lx, ly) = (50, 15),

half the lengths of the domain. To discretize it with the truncated KLE scheme, 2000

expansion terms are used to ensure that the truncation energy error (Equation (2.20))

is below 0.1%. The MCTO design is in Figure 3.2(a). The design has horizontal outer

flanges that are thick near the fixed boundary, and join at the load point. This adds

bending stiffness to the structure. Between the flanges are oblique members that

form crosses, which act as the bracing system to separate the flanges and carry the

transverse shear force.

The ground truth cV and the PDF of compliance of the MCTO design is com-

puted using a MC UQ employing 10,000 random samples of compliance. Using the

MCTO design as a reference structure, the approximation of its cV and PDF of com-

pliance are also computed employing the NE with various orders using the same pool

of samples. Their comparisons are reported in Figure 3.2(b) and Figure 3.2(c). This

analysis is useful to assess the accuracy of the NE scheme. For computing the per-

turbation matrix, the αK̄ approximation is used instead of the exact ∆K. This leads

to error in the output, as the robust compliance computed from the perturbation

series of NE using this approximation is different from cV . The same can be said
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(a) MCTO minimum
volume design.
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(b) Relative error of the NE UQ
estimation of cV for the MCTO
design for various expansion or-
ders.
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(c) PDF of the compliance of
the MCTO design estimated by
the MC and NE UQ schemes.

Figure 3.2 Cantilever beam designed using MCTO with cmax = 350 and κ = 6
for cR. Using a lognormal Young’s modulus random field with CoV = 15% and
(lx, ly) = (50, 15), discretized by KLE with 2000 expansion terms. Based on the
MCTO design layout, the accuracy of NE UQ scheme is assessed.

for samples of compliance. Since the NE scheme is convergent under appropriate

conditions, by observing the convergent behavior with higher NE orders the effect of

the approximation error can be studied. In Figure 3.2(b), the error asymptotically

approaches a maximum with the increase in the order of NE, which is a reflection of

the convergence behavior of the NE UQ scheme. The values of α are not sufficiently

high to violate the convergence criterion (sampled α values are within [−1, 1]), hence
leading to higher order terms having negligible magnitudes. This shows that the NE

approximation of cR converges to a value that is a constant offset and greater than

the ground truth cV . The PDFs of compliance illustrate that the central shapes of

the distributions computed from different schemes are very similar, but the higher

order NE schemes result in a longer tail. This corresponds to the increase in the error

in estimation of cR for higher NE order and shows that the majority of the error is

attributable to the higher order statistics. These graphs show that for random fields

with long correlation lengths, this approximation of the perturbation matrix leads to

lower error in the estimation of robust compliance for lower expansion order. The

advantage of this approach is its computational efficiency, as the randomness of the

system is compressed into α. This efficiency is demonstrated in the optimization

results.

NETO with 1st, 2nd, and 4th order expansions is applied to the same RTO prob-

lem. The resulting designs are shown in Figure 3.3. Qualitatively, the outer flanges of

the NETO designs are similar to that of the MCTO design in Figure 3.2(a). However,
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the number of internal cross braces varies. The quantitative assessments of the four

RTO designs are reported in Table 3.1. The volume of the 1st order NETO design is

the lowest, while those of the MCTO and 4th order NETO designs are the highest.

All of the designs have cV below 350, hence satisfying the performance constraint.

Assessing the structures purely on volume, the 1st order NETO design is the best

as it is the lightest and sufficiently robust in stiffness. However, it is evident that

the higher volume structures have appreciably lower cV . This is partially due to the

inverse relation between volume and structural stiffness. Also, cE is very close to

350 for all four algorithms because of the cmax = 350 constraint. In all designs, this

constraint is activated to minimize the volume. The robust stiffness per unit volume

(SV ) has similar values for all robust structures. Hence, the quality of the four designs

is similar.

(a) NETO 1st order design. (b) NETO 2nd order design. (c) NETO 4th order design.

Figure 3.3 NETO designs for the RTO problem described in Figure 3.2.

Table 3.1 Optimization results of various algorithms for the RTO problem described
in Figure 3.2.

Method vf cV cE SV Relative
cR Error
(%)

CPU
Time Per
Iteration

Iterations

MCTO 0.499 344.05 350.01 5.82e-3 1.73 97.2 234
NETO-1st 0.492 348.88 350.03 5.82e-3 0.331 0.232 181
NETO-2nd 0.493 348.64 350.03 5.82e-3 0.399 0.258 213
NETO-4th 0.499 344.93 349.99 5.80e-3 1.47 0.241 197

The error in cR shown in Table 3.1 is the highest for the MCTO method and the

lowest for the 1st order NETO. In this problem, the number of samples used in MCTO

is insufficient for a highly accurate statistical estimation. However, the accuracy of

MCTO scales with the inverse square root of the number of samples. Hence, reducing

the MCTO error requires significantly more samples. NETO experiences an increase

in the error with higher expansion orders, converging to an asymptote. This trend

is consistent with the behavior observed in Figure 3.2(b). This behavior may change
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depending on the problem configuration, such as changes in the parameters of the

random field. The main advantage of the NETO algorithm is the computational

efficiency, as the CPU time required per iteration is about 500 times greater for

MCTO than NETO. The number of optimization iterations required is similar for all

algorithms, suggesting that NETO does not suffer from ill-convergence issues.

The next case has a Young’s modulus random field with moderate correlation

lengths of (lx, ly) = (20, 5). Again, 2000 expansion terms are used in the trun-

cated KLE representation. The minimum volume design by MCTO is shown in

Figure 3.4(a), while the NETO designs are shown in Figure 3.5. The general struc-

tural shapes of these designs again consist of outer flanges made up of thicker mem-

bers, alongside inner oblique members forming cross braces. The number of the inner

braces is the same for all designs, but the shapes of the braces differ.

(a) MCTO minimum
volume design.
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(b) Relative error of the NE UQ
estimation of cV for the MCTO
design for various expansion or-
ders.

200 220 240 260 280 300 320 340 360

Compliance

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
m

pi
ric

al
 P

D
F

Monte Carlo
NE 1st Order
NE 5th Order

(c) PDF of the compliance of
the MCTO design estimated by
the MC and NE UQ schemes.

Figure 3.4 Cantilever beam designed using MCTO with cmax = 350 and κ = 6
for cR. Using a lognormal Young’s modulus random field with CoV = 15% and
(lx, ly) = (20, 5), discretized by KLE with 2000 expansion terms. Based on the MCTO
design layout, the accuracy of NE UQ scheme is assessed.

(a) NETO 1st order design. (b) NETO 2nd order design. (c) NETO 4th order design.

Figure 3.5 NETO designs for the RTO problem described in Figure 3.4.

The accuracy of the NE UQ scheme is depicted in Figures 3.4(b) and 3.4(c).

Again, this is based on computing the random compliance of the MCTO design in
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Figure 3.4(a). The 1st order NE scheme underestimates cR while the 2nd order NE

scheme overestimates it, and the magnitude of the errors are similar. Higher order NE

schemes result in further overestimation and higher errors. The PDFs of compliance

show that the higher order NE results in a longer tail in the high value region, hence

causing higher estimation error, similar to the previous case. However, the central

bell shapes of the PDFs estimated by 1st order and 5th order NE match with the

PDF estimated by MC. Compared to the case with (lx, ly) = (50, 15), the support

for the PDF of compliance is smaller in range and the position of the maximum is

at a lower compliance. These are expected since having longer correlation lengths

while maintaining the same random field CoV leads to higher mean and variance

in the output compliance. Also, α is again bounded between -1 and 1, leading to

convergence in the NE with the relative error in cR reaching a plateau for higher

orders. This again shows that approximating the ∆K in NE leads to a constant error

when the order of NE is sufficiently high.

The numerical assessments of the four RTO designs are reported in Table 3.2. The

1st order NETO design has the lowest volume fraction, but it also has the highest cV .

In fact, the value violates the constraint, meaning that the behavior of this structure

does not satisfy the required compliance. This is caused by the high estimation error of

the 1st order NETO scheme, as it has ten times more estimation error in cR compared

to the other three methods. The other RTO designs all have similar design volumes,

while satisfying the constraint of cR. Their level of accuracy in the approximation

of cR is also very high, as all three methods result in less than 0.2% relative error.

This suggests that as the correlation lengths decrease, the higher order NE schemes

provide a better approximation. Interestingly, referring to SV , the 1st order NETO,

despite having high error in the cR estimation, is highest. The SV of the MCTO, 2nd

order NETO, and 4th order NETO designs are similar. The compliance estimation

error of the 1st order NE UQ did not cause deterioration of the gradient leading to a

low quality local minimum. Hence, the design still has a similar performance as other

robust designs. Finally, the MCTO algorithm required about 400 times more CPU

time per iteration compared to the NETO methods. The aggregation of these time

savings over hundreds of optimization iterations leads to significant computational

benefits.

The last cantilever design case is for very short correlation lengths of (lx, ly) =

(5, 5) for the Young’s modulus random field. Due to the slow decay of KLE eigen-

values, 10,000 expansion terms are kept during truncation. This case corresponds to

very high stochastic dimensionality. Even if the KLE truncation criterion is relaxed
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Table 3.2 Optimization results of various algorithms for the RTO problem described
in Figure 3.4.

Method vf cV cE SV Relative
cR Error
(%)

CPU
Time Per
Iteration

Iterations

MCTO 0.411 349.34 350.01 6.96e-3 0.193 86.2 203
NETO-1st 0.401 355.93 350.09 7.00e-3 1.64 0.232 191
NETO-2nd 0.408 350.72 350.03 6.98e-3 0.199 0.246 186
NETO-4th 0.409 350.66 349.98 6.97e-3 0.193 0.239 209

to account for 90% of the random field energy, about 2900 expansion terms are re-

quired. The robust design from MCTO is shown in Figure 3.6(a), while the NETO

designs are shown in Figure 3.7. All four geometries are similar. For this case, the

relative robust compliance error in Figure 3.6(b) is convergent and the higher order

NE schemes led to a reduction in the error. In contrast to the case of long corre-

lation lengths, increasing the order of NE is beneficial for accuracy. The offset in

error caused by the perturbation approximation leads to an underestimation of the

robust compliance. In addition, the support ranges of the PDFs of compliance in Fig-

ure 3.6(c) are significantly smaller than the ranges for long correlation lengths, which

reflects the reduction in variation of the structural performance. For short correlation

lengths, the NE approximation of the PDF of compliance is skewed down compared

to the PDF from the MC scheme. Hence, even though the shape of the central bell

curve is well represented by the NE scheme, the peak of the PDF is shifted to a lower

compliance, which is the main source of statistical error.

The quantitative data of the optimization output and performances of the algo-

rithms are in Table 3.3. The final volume fraction of all four robust designs is similar

to within 0.8%, hence the optimality of the structures is comparable. Examining

the volumes of the robust designs as a function of the correlation lengths, it is ob-

served that as the correlation lengths decrease, the amount of material required to

satisfy the constraint on robust compliance decreases. For instance, the case with

(lx, ly) = (50, 15) led to designs with volume fractions close to 0.5, while the designs

from the case with (lx, ly) = (5, 5) have volume fractions close to 0.36. This is an

expected trend that is explained by considering the statistics of compliance. For a set

amount of material and a consistent CoV, as the correlation lengths decrease, the un-

certainty of both the random field and the structural behavior also decreases, leading

to a lower cV . Conversely, for a specified constraint on cR, less material is required in
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(a) MCTO minimum
volume design.
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(b) Relative error of the NE UQ
estimation of cV for the MCTO
design for various expansion or-
ders.
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Figure 3.6 Cantilever beam designed using MCTO with cmax = 350 and κ = 6
for cR. Using a lognormal Young’s modulus random field with CoV = 15% and
(lx, ly) = (5, 5), discretized by KLE with 10,000 expansion terms. Based on the
MCTO design layout, the accuracy of NE UQ scheme is assessed.

(a) NETO 1st order design. (b) NETO 2nd order design. (c) NETO 4th order design.

Figure 3.7 NETO designs for the RTO problem described in Figure 3.6.

the robust designs. MCTO overestimates the ground truth robust compliance, cV , of

its design, while the NETO algorithms slightly underestimate the cV corresponding

to their designs. Hence, the NETO designs all marginally violate the constraint of

cmax = 350, by less than 1%.

For all four algorithms, cE is about 350, meaning that the constraints are active

for all cases. The estimation error of cR is the highest for the MCTO scheme at

over 1%. All of the NETO schemes have an error of less than 1%, with the 2nd

and 4th order having lower errors compared to the 1st order. This trend matches

the error convergence behavior observed in Figure 3.6(b), affirming that for the case

of very short correlation lengths, using a higher expansion order in NE results in

an improvement in the accuracy of the estimation of the cR. This is in contrast

with the case of long correlation lengths. Last, the CPU times per iteration required

by the NETO algorithms are orders of magnitude less than for MCTO, while the

total number of optimization iterations is comparable for all cases. This significant

difference in computational efficiency is a major advantage of NETO.
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Table 3.3 Optimization results of various algorithms for the RTO problem described
in Figure 3.6.

Method vf cV cE SV Relative
cR Error
(%)

CPU
Time Per
Iteration

Iterations

MCTO 0.366 346.39 350.02 7.88e-3 1.05 55.9 216
NETO-1st 0.363 352.85 350.05 7.81e-3 0.793 0.246 264
NETO-2nd 0.364 350.13 350.01 7.85e-3 0.036 0.246 200
NETO-4th 0.364 351.15 349.94 7.83e-3 0.346 0.241 215

3.6.2 Simply Supported Bridge

The second problem is the design of a simply supported bridge on a domain of 80 by

40 units, as shown in Figure 3.1(b). For the RTO problem, cmax = 20 and κ = 4 are

enforced. Multiple sources of uncertainty are considered, as both Young’s modulus

and Poisson’s ratio are modeled as lognormal random fields with correlation lengths

of (lx, ly) = (50, 25). The CoV are 10% and 15%, for the modulus and the Poisson’s

ratio, respectively. The truncated KLE scheme is employed to discretize both random

fields with 1000 expansion variables. Since it is a multivariate random field, the

total number of stochastic dimensions is a sum of the individual expansion variables.

Hence, as with short correlation lengths, the stochastic dimensions are high. The NE

approximation combines the randomness of both properties into various orders of α.

It acts as a dimension reduction technique to mitigate high dimensionality.

The MCTO design and its associated compliance statistics computed using the

NE scheme are shown in Figure 3.8. Qualitatively, the robust design has a thick

outer arch with thinner straight members connecting the arch with the point of load

application. The straight members are distributed at different oblique angles and

are mainly subject to tension, while the thick arch is subject to compression. The

correlation lengths are over half of the domain edge lengths. Hence, the behaviors of

the relative error in cR and the compliance PDFs estimated by NE are consistent with

long correlation lengths considered in other problem. That is, NE generally results in

an overestimation of cV , and the error is higher for higher order NE, but approaches

an asymptotic maximum. The shape of the compliance PDF from NE matches that

from Monte Carlo, but the higher order NE leads to a longer tail.

The RTO designs from first, second, and fourth order NETO are shown in Fig-

ure 3.9. The general layout is similar to the MCTO design, but the number of inner

members varies. The numerical assessments are provided in Table 3.4. All of the
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(a) MCTO minimum
volume design.
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(b) Relative error of the NE UQ
estimation of cV for the MCTO
design for various expansion or-
ders.
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Figure 3.8 Simply supported bridge designed using MCTO with cmax = 20 and κ = 4
for RTO. Lognormal Young’s modulus with CoV = 10% and (lx, ly) = (50, 25) and
lognormal Poisson’s ratio with CoV = 15% and (lx, ly) = (50, 25) are used. Based on
the properties of the MCTO design, the accuracy of NE UQ scheme is assessed.

(a) NETO 1st order design. (b) NETO 2nd order design. (c) NETO 4th order design.

Figure 3.9 NETO designs for the RTO problem described in Figure 3.8.

designs satisfy the cmax = 20 constraint according to cV . The NETO methods all

overestimated cV , leading to slight overdesign of the structures. The MCTO had

the lowest relative error in cR, which allows it to have higher cV and remove more

material. The accuracy of first order NETO is the highest and is similar to MCTO.

This is consistent with the behavior seen in Figure 3.8(b). The stiffness per volume

is very similar for all designs. This again demonstrates that despite the differences

in the algorithmic performance, the quality of the structures is very similar. The

CPU time per iteration shows that the MCTO is over 400 times slower than NETO,

showing that the efficiency of NETO is maintained for multiple sources of stochastic

uncertainty.
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Table 3.4 Optimization results of various algorithms for the RTO problem described
in Figure 3.8.

Method vf cV cE SV Relative
cR Error
(%)

CPU
Time Per
Iteration

Iterations

MCTO 0.331 20.013 19.999 0.151 0.0678 161 175
NETO-1st 0.333 19.972 20.000 0.151 0.143 0.361 185
NETO-2nd 0.335 19.751 20.000 0.151 1.26 0.354 188
NETO-4th 0.339 19.677 19.999 0.150 1.63 0.370 190

3.7 Conclusion

In this chapter, the NETO algorithm is developed, which employs a novel approximate

NE as the UQ module. A dimension reduction approach is applied to the NE scheme

where the randomness in the system is jointed accounted for by the powers of the

random variable α, which does not explicitly depend on the parametrization of the

input uncertainty and hence is efficient under high stochastic dimensions. In RTO,

the cR objective and its gradients have closed form expressions that depend on E[αq]

and E
[
αq ∂α

∂ρe

]
, and hence the computation is very efficient. The E[αq] and E

[
αq ∂α

∂ρe

]
are computed using sampling method. However, they require statistics of variables

that depend on the stiffness matrix, and constructing many samples of the stiffness

matrix each iteration is costly. Hence, a novel storage and update scheme is developed,

which decomposes these variables into stochastic components and deterministic design

variable scaling. Samples of the stochastic components are precomputed and stored,

while the scaling is updated through RTO. The product of these two components

enables rapid computation of the statistics of the matrix variables following design

variable updates since only scalar arithmetic is required rather than matrix assembly.

The NETO algorithm is applied to two numerical cases of volume minimization

under a cR constraint, where material uncertainty with short correlation lengths and

multi-source uncertainties are considered. Compared to the standard MCTO em-

ploying 1000 random samples, the NETO is nearly 400 times faster for all cases. The

relative errors of the approximation of cR using NE are less than 2% and depend on

the characteristics of the random field, which is slightly higher compared to MCTO.

Regardless, the NETO designs demonstrated similar levels of optimality as the MCTO

designs by assessing the stiffness per volume metric. These cases demonstrate the ef-

ficacy of NETO in generating high quality uncertainty aware designs while providing

a substantial reduction in computational cost compared to MCTO.



Chapter 4

Multi-fidelity Monte Carlo for

Robust Optimization

Algorithms for robust topology optimization (RTO) are typically a nested loop [71,

44], where the inner loop consists of an uncertainty quantification (UQ) scheme for

estimating the statistics of the quantity of interest (QOI), while the outer loop is

comprised of sensitivity analysis and design updates. To improve the quality of RTO,

either process could be targeted. In this thesis, the focus is on improving the inner

loop UQ procedure, since having an accurate estimation of the statistics leads to high

quality gradients in optimization. The uncertainty of interest in this thesis is the

material variability introduced by additive manufacturing. These uncertainties are

typically modeled as random fields with short correlation lengths approximated by

the Karhunen-Loève Expansion (KLE). This tends to result in very high stochastic

dimensions and hence, the Monte Carlo (MC) scheme is typically applied in the inner

loop due to its insensitivity to the dimension of the problem [72, 73].

A few definitions are needed. A parameter is a constant scalar value that de-

scribes the statistic of a population, such as the mean or the variance. The values of

parameters are unknown since it is normally impossible to evaluate the entire pop-

ulation. An estimator is a mathematical expression used to estimate the value of a

population parameter, given a set of samples. Estimators are derived with specific

properties, such as being unbiased. For a sample set input, evaluating the estimator

is one realization of its value, and also an approximation of the population parameter.

The estimator is a random variable since it changes according to the input sample

set. For notation, if a population parameter is Q, then the estimator is Q̂.

In the regular MC scheme, estimators are employed to approximate population

parameters such as the mean and the variance. These estimators use samples of QOI

38
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evaluated from a high-fidelity model (HFM). A metric for assessing the quality of

these estimators is the mean squared error (MSE), which is an L2 measure defined as

the average squared deviation of the statistic estimated by the estimator compared

to the true parameter. The MSE provides guidance on the number of samples to

use in computing the MC estimators. For a regular MC scheme, the MSE decreases

with 1√
ns
, with ns being the number of random samples employed. However, this

is a slow convergence rate, and many variance reduction techniques have been con-

sidered in the literature to accelerate MC. One type of approach is to improve the

sampling procedure, leading to schemes such as quasi-MC [74, 75], importance sam-

pling [76, 77], and Latin-Hypercube sampling [78, 79]. Another type of approach

employs low-fidelity models (LFMs) that approximate the HFM and improve the pa-

rameter estimations by combining samples from the LFMs and HFM. The associated

schemes include multilevel Monte Carlo (MLMC) [71, 72, 80, 81, 82], multi-index

Monte Carlo (MIMC) [83], and multi-fidelity Monte Carlo (MFMC) [37, 84, 85, 86,

87].

The MFMC scheme is more flexible than MLMC and MIMC since it does not

necessitate a strict model hierarchy of the LFMs, and only requires that the LFM be

cheap to evaluate and have good correlation with the HFM [84, 87]. Consequently,

MFMC can be employed for a wider variety of LFMs and also in the absence of

LFM error bounds [73]. Hence, MFMC is applied in this work as the UQ scheme for

RTO. To estimate a parameter, MFMC primarily relies on evaluating the LFM, with

occasional recourse to the HFM for accuracy adjustment. Since evaluating the LFM

is much cheaper, the reduced querying of the HFM allows more samples of the LFM

to be computed, leading to a reduction in the MSE while using effectively the same

amount of HFM evaluations compared to the regular MC scheme. In other words,

the accuracy of the estimation is improved while the cost is maintained.

The objective function of RTO problems focusing on compliance consists of a

linear combination of the mean (µc) and the standard deviation (σc) of compliance,

which is denoted as robust compliance (cR). Hence, the application of MFMC to RTO

requires estimators of these parameters and their associated MSE expressions in order

to control the approximation accuracy. There are many MFMC and MLMC strategies

developed for the optimal estimation of a parameter [37, 72, 73, 80, 84, 85, 87, 88].

These strategies have been deployed in various practical problems, such as structural

analysis [89, 90, 91, 92], engineering simulations [93, 94, 95, 96, 97], and optimization

under uncertainty [43, 44, 98, 99]. However, the majority of existing approaches target

parameters in the form of a single statistical moment, and methodologies focusing on
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more complex statistics are rarely investigated [71, 73]. For application in robust

optimization, the objective is typically a linear combination of functions of statistical

moments of the QOI, for example cR. The existing approaches focus on one moment,

which may not minimize the MSE of the robust objective.

The main contribution of this chapter is to develop appropriate MFMC strategies

addressing the optimal estimation of the parameter of QOI in the form of a robust

objective for optimization procedures. The next section introduces the general frame-

work of MFMC, in addition to providing the detailed ingredients required in MFMC.

4.1 General Framework of Multifidelity Monte Carlo

In this section, the MFMC framework for estimating a statistical parameter is de-

scribed, consisting of three ingredients. The first is the expression of the MFMC

estimator and its associated MSE. Since MFMC combines LFM and HFM samples,

the second ingredient is control variate coefficients that relate these two sets of sam-

ples and minimize the MSE. The third is a sample allocation strategy to specify the

number of HFM and LFM samples, denoted by ns and ms, required to minimize the

MSE.

4.1.1 Control Variate in Monte Carlo

The principle of the MFMC approach is to reduce the MSE of an estimator through

the introduction of a control variate, which is a random variable that can be cheaply

or easily evaluated and has a known population parameter. The estimate of a popu-

lation parameter QΓ for a random variable Γ is the unbiased estimator Q̂Γ, such that

E
[
Q̂Γ

]
= QΓ. The MSE of this estimator is the same as its variance, denoted by the

operator V[·], hence MSE[Q̂Γ] = V[Q̂Γ]. For a control variate random variable γ, if

the same population parameter, Qγ, for the control variate is known and is estimated

with the unbiased estimator Q̂γ, the control variate augmented estimator for QΓ is:

Q̂CV
Γ = Q̂Γ + α(Qγ − Q̂γ).

The control variate coefficient, α, is a constant, and this new estimator maintains

the mean convergence property of E
[
Q̂CV

Γ

]
= QΓ, and hence it is also unbiased. The

MSE of the new estimator is its variance:

MSE[Q̂CV
Γ ] = E

[
(Q̂CV

Γ −QΓ)
2
]
= V[Q̂CV

Γ ] = V[Q̂Γ] + α2V[Q̂γ]− 2α · Cov[Q̂Γ, Q̂γ],
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where Cov[·] is the covariance operator. Setting the constant α = Cov[Q̂Γ,Q̂γ ]

V[Q̂γ ]
minimizes

the MSE. Employing the Pearson correlation coefficient relation [100], the covariance

is re-expressed as Cov[Q̂Γ, Q̂γ] = Corr[Q̂Γ, Q̂γ]
√

V[Q̂Γ]V[Q̂γ]. Hence, the MSE is

rewritten using the correlation and the expression for optimal α as:

MSE[Q̂CV
Γ ] = (1− Corr2[Q̂Γ, Q̂γ])V[Q̂Γ].

If the estimators of the control variate and the variable of interest are strongly pos-

itively correlated, then (1− Corr2[Q̂Γ, Q̂γ]) ∼ 0. Consequently, the Q̂CV
Γ estimator

leads to a significant reduction in MSE in comparison with the original estimator,

which has an MSE of V[Q̂Γ]. Provided the control variate γ is cheap to evaluate, the

additional effort in computing its realizations is negligible compared with the cost of

obtaining samples of Γ. Hence, the reduction in MSE is achieved without any penalty

in cost. For the case of the multi-fidelity Monte Carlo scheme, the estimators of HFM

and LFM are all Monte Carlo estimators.

In practical engineering applications, the Γ is equivalent to the output of interest,

evaluated from the HFM such as a finite element model, while the γ control variate

is the output from the LFM that closely resembles the HFM, such as a reduced basis

model. The parameter Q is a parameter of interest, such as the mean or variance.

Typically, knowing the exact population parameters of the LFM is impractical for

realistic problems. Hence, a common approach in MFMC is that given Q̂Γ and Q̂γ,

which are Monte Carlo estimators computed using ns samples, the parameter Qγ is

approximated with a MC estimator using ms samples, requiring ms > ns [37, 85, 87].

Hence, Qγ is approximated at a much higher accuracy compared to the other terms.

Since the multifidelity estimator involves the same MC estimators evaluated using dif-

ferent sample sizes, for clarity the number of samples required for an estimator will be

denoted in the superscript (for example, Q̂γ

ms

and Q̂γ

ns

). With this approximation,

the MFMC estimator is:

Q̂MF
Γ = Q̂Γ

ns

+ α(Q̂γ

ms − Q̂γ

ns

), ms > ns.

Since the individual estimators are unbiased, the Q̂MF
Γ estimator is also unbiased,

meaning E
[
Q̂MF

Γ

]
= QΓ. Hence, even in the absence of error bounds and error

estimators for the LFM, the MFMC estimator is unbiased and leads to computational

benefits if the correlation between the HFM and the LFM is high. In addition, the ns

samples are a subset of the ms samples [37, 85, 87] and hence the covariance between
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Q̂γ

ms

and Q̂Γ

ns

is non-zero, meaning that these estimators are correlated.

Ultimately, MFMC augments the standard MC scheme by introducing control

variate random variables. The MFMC scheme requires additional variables, including

control variate coefficients and sample numbers for models of different fidelities.

4.1.2 Optimal Control Variate Coefficient and Sample Allo-

cation

The MFMC scheme requires variables α, ns and ms. Typically, these variables are

either selected to minimize the MSE of the estimator of interest given a limited

computational budget [37, 85, 86, 87, 101], or they are selected so that the MSE

is below a desired threshold [71, 72, 80, 81, 82]. In this work, the first scenario is

considered.

Suppose the parameter of interest is QΓ and the MFMC estimator is Q̂MF
Γ . Since

the cost of evaluating the HFM is higher than the LFM, a normalizing factor is defined

as: wc =
Computational Cost of HFM
Computational Cost of LFM

> 1. This ratio allows the budget to be expressed as

the number of HFM evaluations. For a budget Pb, which is equivalent to Pb HFM

solves, the variables are selected through an optimization problem:

min
α,ns,ms

MSE[Q̂MF
Γ ],

s.t. : ns +
ms

wc

≤ Pb;

: ms > ns ≥ n0.

(4.1)

The minimum sample requirement is n0. To solve this optimization problem, a closed

form expression for the MSE as a function of α, ns, and ms is required. In application

to optimization, at each iteration, a small set of solutions sampled from the HFM

and the LFM are computed as the pilot samples, and these are used to evaluate the

MSE [37, 85, 87]. Hence, the expression for MSE must be in a form that is amenable

to evaluation with this pilot sample set. Denote this pilot sample size as nplt. It

is smaller than the final required samples, that is, ms > ns ≥ nplt. With the above

ingredients, Equation (4.1) is solved numerically, which provides the stationary points

for all of the variables. The ms and ns are discrete integers and hence in numerical

optimization, they are relaxed to become continuous variables. After finding their

optima, the values are rounded to the nearest integer.

For estimating the statistical raw moments or central moments, the solution to

Equation (4.1) is well-established [37, 86, 87]. However, there are very limited inves-
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tigations for QΓ in the form of a linear combination of mean and standard deviation

parameters. Hence, the development of novel MFMC strategies targeting optimal

estimation of a robust objective is the goal of this chapter. Several key ingredients

presented in upcoming sections are summarized below.

� A closed form approximation, MSE[ĉR]µσ, and two upper bounds, MSE[ĉR]
ub
p

and MSE[ĉR]
ub
cs , of the MSE of Q̂MF

Γ in the form of a linear combination of mean

and standard deviation estimators are derived in Theorem 1. These expressions

are used as the optimization objectives in Equation (4.1), which corresponds to

the novel MFMC strategies for optimal estimation of a robust objective.

� The MFMC variance estimator employed is from Qian et al. [85]. The closed

form expression for the optimal α that minimizes the MSE of this estimator is

presented in Lemma 2.

� Using the MFMC estimators, approximations of the confidence intervals of the

mean and variance are developed using Lemma 3, Lemma 4, and Corollary 4.1,

which are useful for statistical inference in post-processing.

� Unbiased estimators for various parameters are derived in Lemmata 5, 6, 7,

8, 9, 10, 11, and 12. These estimators enable the closed form expressions of

MSE[ĉR]µσ, MSE[ĉR]
ub
p and MSE[ĉR]

ub
cs to be computed for the MFMC and MC

estimators given nplt pilot samples of HFM and LFM outputs. This is of great

importance for practical optimization settings.

� An analytical approximation for the solution to Equation (4.1) with the MSE[ĉR]
ub
cs

upper bound as the optimization objective is developed in Lemma 13.

4.2 Estimators for the MFMC Scheme

Estimating the robust compliance requires estimators for both the mean and standard

deviation. In this section, the MFMC estimators for the mean, variance, and standard

deviation are described. The closed form expressions of the MSEs of these estimators

are provided, alongside unbiased estimators of high order parameters which enables

these MSEs to be computed with nplt pilot samples of HFM and LFM. Also, the

strategies for determining α, ns, and ms which lead to the optimal estimation of

these parameters are discussed. The approximation of confidence intervals for the

mean and variance are presented.
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For notation, the number of samples required is specified in the superscript of the

estimator. Since models of different fidelity are used, subscripts are used to distinguish

them, with “h” representing the HFM evaluation of compliance and “l” representing

the LFM evaluation of compliance. Also, each MFMC estimator is composed of MC

estimators. The expressions for MC estimators and their MSEs are summarized in

Appendix A.1 as supplementary information.

4.2.1 Mean, Variance and Standard Deviation

The MFMC mean estimator from Ng and Willcox [37] is employed, which is a com-

posite of unbiased MC mean estimators based on the HFM and the LFM outputs (ch

and cl):

µ̂c,MF = µ̂h,MC
ns + αµ(µ̂l,MC

ms − µ̂l,MC
ns),

=
1

ns

ns∑
i=1

ch,i + αµ

(
1

ms

ms∑
j=1

cl,j −
1

ns

ns∑
k=1

cl,k

)
.

(4.2)

Here, αµ is the control variate coefficient for the MFMC mean estimator. Explicitly

evaluating this estimator with the compliance samples leads to one instance of an

approximation of µc, that is, µ̂c,MF (c) ≈ µc. The MFMC variance estimator of Qian

et al. [85] is employed, denoted as σ̂2
c,MF . It is also composed of unbiased MC variance

estimators based on the HFM and LFM outputs:

σ̂2
c,MF = σ̂2

h,MC

ns

+ ασ

(
σ̂2
l,MC

ms

− σ̂2
l,MC

ns
)
,

=
1

ns − 1

ns∑
i=1

(ch,i − µ̂h,MC
ns)2

+ ασ

(
1

ms − 1

ms∑
j=1

(cl,j − µ̂l,MC
ms)2 − 1

ns − 1

ns∑
k=1

(cl,k − µ̂l,MC
ns)2

)
.

(4.3)

The ασ is the control variate coefficient for the variance estimator. The MFMC

estimators for mean and variance are unbiased, meaning that E
[
µ̂c,MF

]
= µh = µc

and E
[
σ̂2
c,MF

]
= σ2

h = σ2
c .

For estimating the standard deviation parameter σc, in general, without a priori

knowledge of the distribution of the compliance, it is difficult to obtain an unbiased

estimator due to the nonlinear square root function. Hence, the square root of the

variance estimator, which is a biased estimator of σc is used:

σ̂c,MF =

√
σ̂2
c,MF . (4.4)
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The bias of this estimator is provided in Lemma 14 in Appendix A.1.2.

4.2.2 Mean Squared Errors

Assuming the values of the variables αµ, ασ, ns, and ms are known, the expressions

for the MSE of the mean, variance, and standard deviation estimators are discussed.

MSE is an L2 assessment of the difference between the true parameter and the ap-

proximation of the estimator. The unbiased estimator µ̂c,MF has a MSE of [37]:

MSE[µ̂c,MF ] =
1

ns

[
σ2
h +

(
1− ns

ms

)(
α2
µσ

2
l − 2αµCov[ch, cl]

)]
, (4.5)

where σ2
h = σ2

c is the variance parameter for the compliance calculated using the

HFM, σ2
l is the variance parameter for the compliance calculated using the LFM, and

Cov[ch, cl] is the covariance parameter of the two compliance calculations.

The MSE of the unbiased variance estimator is [85]:

MSE[σ̂2
c,MF ] =

1

ns

(δh −
ns − 3

ns − 1
σ4
h) + α2

σ

(
1

ns

(δl −
ns − 3

ns − 1
σ4
l )−

1

ms

(δl −
ms − 3

ms − 1
σ4
l )

)
+ 2ασ

[
1

ms

(
Cov[ϑh, ϑl] +

2

ms − 1
Cov[ch, cl]

2

)

− 1

ns

(
Cov[ϑh, ϑl] +

2

ns − 1
Cov[ch, cl]

2

)]
,

(4.6)

where δh and δl are the 4th central moment parameters of the compliance calculated

using the HFM and LFM. The random variable ϑh is ϑh = (ch − µh)
2, with µh = µc

the mean of the compliance calculated from the HFM. Similarly, ϑl = (cl − µl)
2, with

µl the mean of the compliance computed from the LFM (different from µc), and

Cov[ϑh, ϑl] is the covariance of ϑh and ϑl. The means of ϑh and ϑl by definition lead

to the variances σ2
h = σ2

c and σ2
l . The variances of ϑh and ϑl are additionally defined

as τh = V[ϑh] and τl = V[ϑl].

For the MSE of the biased σ̂c,MF estimator , the result from Lemma 14 in Ap-

pendix A.1.2 is directly applicable by replacing MSE
[
σ̂2
c

]
with MSE[σ̂2

c,MF ].

4.2.3 Optimal Strategy for MFMC Mean

For an efficient MFMC scheme, αµ, ns, and ms are chosen to minimize the MSE of

the estimator through the optimization in Equation (4.1). For the case of the mean
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estimator (Q̂MF
Γ = µ̂c,MF ), the expressions of optimal variables are developed in Ng

and Willcox [37] and summarized in Lemma 1. Their approach applies to the mean

of any raw or central statistical moment estimators.

Lemma 1. Given random variable of interest Γ, whose mean (µΓ) is a statistical

moment of ch computed from the HFM, and control variate random variable γ, whose

mean (µγ) is a statistical moment of cl computed from the LFM, the unbiased MFMC

estimator of µΓ is:

µ̂Γ,MF = µ̂Γ,MC
ns + α(µ̂γ,MC

ms − µ̂γ,MC
ns), ms > ns,

where α is the control variate constant, and µ̂Γ,MC
ns is the MC mean estimator of

µΓ using ns HFM samples, µ̂γ,MC
ms is the MC mean estimator of µγ using ms LFM

samples, and similar definitions apply to µ̂γ,MC
ns.

Given a total computational budget Pb = ns +
ms

wc
and defining rm = ms

ns
, the MSE

of this MFMC estimator is:

MSE
[
µ̂MF
Γ

]
=

1

Pb

(1 +
rm
wc

)

[
V[Γ] +

rm − 1

rm
(α2V[γ]− 2αCov[Γ, γ])

]
.

The MSE is minimized, solving Equation 4.1, when:

α =
Cov[Γ, γ]

V[γ]
, and rm =

√
wcCorr[Γ, γ]

2

1− Corr[Γ, γ]2

where Corr[Γ, γ]2 = Cov[Γ,γ]2

(V[Γ]V[γ]) .

Proof of Lemma 1: Refer to Ng and Willcox [37] or Peherstorfer et al. [86].

This lemma applies directly to the MFMC mean estimator in Equation (4.2) by

substituting µ̂Γ,MF = µ̂c,MF , Γ = ch and γ = cl. The MSE minimization leads to:

α∗
µ =

Cov[ch, cl]

σ2
l

, and rm =

√
wcCorr[ch, cl]

2

1− Corr[ch, cl]
2 . (4.7)

4.2.4 Optimal Strategy for MFMC Variance

To determine the optimal variables associated with the MFMC variance estimator

employed in this work (Equation (4.6)), Lemma 1 is not directly applicable. The rea-

son is that the variance (σ2
h) is the second central moment parameter, hence leading
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to Γ = ϑh = (ch − µh)
2, γ = ϑl = (cl − µl)

2, and µ̂Γ,MF = µ̂ϑh,MF in Lemma 1. The

random variables ϑh and ϑl are defined in Equation (4.6). However, µ̂ϑh,MF is not

practically computable, as the parameters µh and µl are not known, and are approx-

imated by estimators µ̂h,MC
ns , µ̂l,MC

ms , and µ̂l,MC
ns . Consequently, the expression

for the MSE and the solution to the optimization problem in Equation 4.1 change.

For this case, the closed form of the optimal ασ is developed in the following lemma.

Lemma 2. For the MFMC variance estimator σ̂2
c,MF in Equation (4.3), the optimal

ασ that minimizes its MSE (see Equation (4.6)) is:

α∗
σ =

1
ns

(
Cov[ϑh, ϑl] +

2
ns−1

Cov[ch, cl]
2
)
− 1

ms

(
Cov[ϑh, ϑl] +

2
ms−1

Cov[ch, cl]
2
)

1
ns
(δl − ns−3

ns−1
σ4
l )− 1

ms
(δl − ms−3

ms−1
σ4
l )

.

(4.8)

Proof of Lemma 2: See Appendix A.2.

The α∗
σ also minimizes the MSE of the standard deviation estimator σ̂c,MF ac-

cording to Lemma 14. Due to the complexity of MSE[σ̂2
c,MF ], numerical methods are

required to find the optimal ns and ms.

4.2.5 Approximation of Confidence Intervals

A useful attribute of MC estimators in statistical inference is that they can be used to

calculated approximate confidence intervals, which provide bounds for the true values

of the parameters. In this section, the CI approximation is extended for the case of

MFMC estimators by employing limiting distribution approximations.

The approximate CI for the MFMC estimator of a generic statistical raw or cen-

tral moment, as defined in Lemma 1, is developed. For notations, convergence in

distribution is
d−→, a normal distribution characterized by mean µ and variance σ2 is

N (µ, σ2)

Lemma 3. Assuming Γ and γ are second order random variables, given the unbi-

ased MFMC estimator µ̂Γ,MF from Lemma 1 for the approximation of the statistical

moment µΓ with an MSE of MSE
[
µ̂Γ,MF

]
and assuming at least one of the following

pairs of random variables are jointly normal:

1. the random variables Γ and γ;

2. the random variables µ̂Γ,MC
ns and µ̂γ,MC

ms − µ̂γ,MC
ns;
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3. the random variables µ̂γ,MC
ms and µ̂Γ,MC

ns − αµ̂γ,MC
ns.

Then, the limiting distribution of the error of the estimator is normal:

lim
ns→∞

lim
ms→∞

(
µ̂Γ,MF − µΓ

) d−→ N (0,MSE
[
µ̂Γ,MF

]
),

and hence, the confidence interval for confidence level PCI is approximately:

Pr
(
µΓ ∈

[
µ̂Γ,MF − zPCI

MSE
[
µ̂Γ,MF

]
, µ̂Γ,MF + zPCI

MSE
[
µ̂Γ,MF

]])
≈ PCI ,

where zPCI
depends on PCI . Note that V

[
µ̂Γ,MF

]
= MSE

[
µ̂Γ,MF

]
due to the unbi-

asedness of the MFMC estimator.

Proof of Lemma 3: See Appendix A.2.2.

The desired probability of the confidence interval is PCI and zPCI
is a parameter

that depends on the value PCI and the distribution. For example, a PCI = 99% in

normal distribution leads to z99% ≈ 2.575, and a PCI = 90% CI in normal distribution

leads to z90% ≈ 1.645. These CIs can also be considered as random variables since

the bounds are based on estimators, which vary from sample set to sample set. What

the CI reflects is that if several sample sets and the corresponding CIs are computed,

approximately PCI% of the CIs contain the true parameter.

The third assumption in Lemma 3 is typically directly applicable to multi-level

Monte Carlo schemes. In MFMC, the ns samples are a subset of the ms samples,

hence necessitating this assumption. In MLMC, the ns and ms samples are indepen-

dent, meaning that µ̂γ,MC
ms and µ̂Γ,MC

ns − αµ̂γ,MC
ns are independent normal random

variables by construction. Hence, the third assumption holds trivially for MLMC.

Lemma 3 is useful for describing the distribution and confidence interval associated

with the µ̂c,MF estimator. However, as the variance estimator µ̂ϑh,MF in Lemma 3

is not practically computable, a separate lemma is required to relate the limiting

distribution of µ̂ϑh,MF with σ̂2
c,MF .

Lemma 4. Assuming ch and cl are second order random variables, and ασ is a

bounded constant, the MFMC variance estimator, σ̂2
c,MF , defined in Equation (4.6),

has a limiting distribution that follows the distribution of µ̂ϑh,MF :

lim
ns→∞

lim
ms→∞

σ̂2
c,MF

d−→ µ̂ϑh,MF ,
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where
d−→ denotes convergence in distribution, and

µ̂ϑh,MF = µ̂ϑh,MC
ns + ασ(µ̂ϑl,MC

ms − µ̂ϑl,MC
ns),

with ϑh = (ch − µh)
2, and ϑl = (cl − µl)

2.

Proof of Lemma 4: See Appendix A.2.3.

With the assistance of Lemma 3 and Lemma 4, the following corollary summarizes

the estimations of confidence intervals for the mean and variance parameters, employ-

ing the MFMC mean (Equation (4.2) and variance (Equation (4.3)) estimators.

Corollary 4.1. Assuming the same premise as Lemma 3, the PCI confidence interval

for µ̂c,MF estimation of µh is approximately:

Pr
(
µh ∈

[
µ̂c,MF − zPCI

MSE[µ̂c,MF ], µ̂c,MF + zPCI
MSE[µ̂c,MF ]

])
≈ PCI ,

and the PCI confidence interval for σ̂2
c,MF estimation of σ2

h is approximately:

Pr
(
σ2
h ∈

[
σ̂2
c,MF − zPCI

MSE[σ̂2
c,MF ], σ̂

2
c,MF + zPCI

MSE[σ̂2
c,MF ]

])
≈ PCI .

Proof of Corollary 4.1: For the CI associated with µh, Lemma 3 can be directly ap-

plied with Γ = ch and γ = cl.

For the case of σ̂2
c,MF , using Lemma 4, the limiting distribution of σ̂2

c,MF is ap-

proximately the same as that of µ̂ϑh,MF . Hence:

lim
ns→∞

lim
ms→∞

(
σ̂2
c,MF − σ2

h

)
= lim

ns→∞
lim

ms→∞

(
(σ̂2

c,MF − µ̂ϑh,MF ) + (µ̂ϑh,MF − σ2
h)
)
,

d−→ lim
ns→∞

lim
ms→∞

(µ̂ϑh,MF − σ2
h),

∼ N (0,MSE
[
µ̂ϑh,MF

]
).

The third line is from the application of Lemma 3 to µ̂ϑh,MF . Approximating MSE
[
µ̂ϑh,MF

]
with MSE[µ̂c,MF ], the CI associated with σ2

h is deduced.

In practical problems, the assumptions required by Lemma 3 do not need to hold

exactly. As long as they are approximately true, the confidence interval provides a

reasonable approximation as long as PCI is not too demanding.
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4.2.6 Practical MSE Computations

Computing the MSE of the MFMC estimators as well as α∗
µ and α∗

σ involves complex

population parameters, including: σ2
h, σ

2
l , δh, δl, σ

4
h, σ

4
l , σ

3
h, Cov[ch, cl], Cov[ch, cl]

2,

and Cov[ϑh, ϑl]. In optimization applications, a pilot sample set consisting of nplt

HFM and LFM samples are available for approximating these quantities. Hence,

unbiased estimators of these parameters that can be computed with a pilot sample

set are required.

For the unbiased estimation of the central moment parameters σ2
h, σ

2
l , δh, and

δl, their estimators are well-established, and are summarized in Corollary 15.1 in

Appendix A.2.5.

For the unbiased estimation of σ4
h and σ4

l , consider the general form of σ4
c . Al-

though σ4
c could be estimated with (σ̂2

c )
2, this is a biased estimation even if σ̂2

c is an

unbiased estimator of σ2
c . In general, the product of unbiased estimators does not

lead to a new unbiased estimator, meaning that E
[
(σ̂2

c )
2
]
̸= σ4

c . Hence, an unbiased

MC estimator of σ4
c is developed in Lemma 5.

Lemma 5. Given ns MC samples as well as the unbiased MC sample variance esti-

mator σ̂2
c,MC and the unbiased MC fourth central moment estimator δ̂c, an unbiased

MC estimator for the square of the population variance, σ4
c , is given as:

σ̂4
c =

ns(ns − 1)

n2
s − 2ns + 3

(σ̂2
c,MC)

2 − ns − 1

n2
s − 2ns + 3

δ̂c. (4.9)

Proof of Lemma 5: See Appendix A.2.4.

Using Lemma 5, the unbiased estimators of σ4
h and σ4

l are provided in Corollary 5.1.

Corollary 5.1. Given nplt pilot samples of ch evaluated from the HFM and cl evalu-

ated from the LFM, the unbiased estimators of σ4
h and σ4

l are:

σ̂4
h =

nplt(nplt − 1)

n2
plt − 2nplt + 3

(
σ̂2
h

)2
− nplt − 1

n2
plt − 2nplt + 3

δ̂h; (4.10)

σ̂4
l =

nplt(nplt − 1)

n2
plt − 2nplt + 3

(
σ̂2
l

)2
− nplt − 1

n2
plt − 2nplt + 3

δ̂l. (4.11)

Proof of Corollary 5.1: The σ̂4
h and σ̂4

l are derived following the result of Lemma 5,

replacing ns with nplt, and the individual estimators with HFM or LFM estimators.
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For σ3
h, it is difficult to derive a general unbiased estimator due to issues associated

with the square root. Given the nplt pilot samples, it is estimated using:

σ3
h ≈ σ̂3

h = σ̂2
h

3/2
,

where σ̂2
h is the MC estimator given by Equation (A.10).

Before deriving the unbiased estimators for the covariance parameters Cov[ch, cl],

Cov[ch, cl]
2, and Cov[ϑh, ϑl], Lemmata 6 and 7 are first presented to simplify the pro-

cess. These two lemmata provide general expressions for the unbiased MC estimators

of a generic product between two or three parameters.

Lemma 6. Given two random variables of interest A and B, and ns MC samples. The

unbiased MC estimators of their mean µA = E[A] and µB = E[B] is µ̂A = 1
ns

∑ns

i=1Ai

and µ̂B = 1
ns

∑ns

i=1Bi. The unbiased MC estimators of their product µAB = E[AB]

is µ̂AB = 1
ns

∑ns

i=1AiBi. An unbiased MC estimator for approximating the product

parameter µAµB = E[A]E[B] is given as:

µ̂AµB =
1

ns − 1
(nsµ̂Aµ̂B − µ̂AB) . (4.12)

Proof of Lemma 6: See Appendix A.2.6.

Lemma 7. Given three random variables of interest A, B and C, as well as ns MC

samples, the unbiased MC estimators of their mean µA = E[A], µB = E[B], and µC =

E[C] are µ̂A = 1
ns

∑ns

i=1Ai, µ̂B = 1
ns

∑ns

i=1Bi, and µ̂C = 1
ns

∑ns

i=1 Ci. The unbiased MC

estimators of the pairwise products µABµC = E[AB]E[C], µACµB = E[AC]E[B], and

µBCµA = E[BC]E[A], are provided by Lemma 6 as µ̂ABµC, µ̂ACµB, and µ̂BCµA. The

unbiased MC estimator of the triple product of the random variables µABC = E[ABC]

is µ̂ABC = 1
ns

∑ns

i=1AiBiCi. An unbiased MC estimator for approximating the product

parameter µAµBµC = E[A]E[B]E[C] is given as:

̂µAµBµC =
1

(ns − 1)(ns − 2)

(
n2
sµ̂Aµ̂Bµ̂C − µ̂ABC − (ns − 1)(µ̂ABµC + µ̂ACµB + µ̂BCµA)

)
(4.13)

Proof of Lemma 7: See Appendix A.2.7.

Remark 1. Using the result of Lemma 6 and replacing random variables A and B

appropriately leads to the following unbiased estimators: µ̂h2µh obtained from A = c2h
and B = ch; µ̂l2µl obtained from A = c2l and B = cl; µ̂2

hl obtained from A = B = chcl;

µ̂h2µl2 obtained from A = c2h and B = c2l ; µ̂h2lµl obtained from A = c2hcl and B = cl;
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µ̂hl2µh obtained from A = chc
2
l and B = ch; µ̂l2µh obtained from A = c2l and B = ch;

µ̂hlµl obtained from A = chcl and B = cl; µ̂h2µl obtained from A = c2h and B = cl;

and µ̂hlµh obtained from A = chcl and B = ch.

Using the result of Lemma 7 as well as the pre, replacing A, B and C appropriately

leads to following unbiased estimators: µ̂3
h obtained from A = B = C = ch µ̂3

l obtained

from A = B = C = cl µ̂hlµhµl obtained from A = chcl, B = ch, and C = cl; µ̂h2µ2
l

obtained from A = c2h, B = cl, and C = cl; µ̂l2µ
2
h obtained from A = c2l , B = ch, and

C = ch; µ̂hµlµl obtained from A = ch, B = cl, and C = cl; and µ̂lµhµh obtained from

A = cl, B = ch, and C = ch.

The lemma presented below is for estimating the parameter µ2
hµ

2
l , which leads to

a fourth order estimator, as it is the product of four individual parameters.

Lemma 8. Given nplt pilot samples of ch from evaluation of HFM and cl from evalua-

tion of LFM, as well as unbiased MC estimators µ̂h = 1
nplt

∑nplt

i=1 ch,i, µ̂l =
1

nplt

∑nplt

i=1 cl,i,

µ̂h2l2 =
1

nplt

∑nplt

i=1 c
2
h,ic

2
l,i, an unbiased MC estimator for approximating µ2

hµ
2
l is:

µ̂2
hµ

2
l =

1

(nplt − 2)(nplt − 3)

(
n3
plt

nplt − 1
µ̂h

2µ̂l
2 − 1

nplt − 1
µ̂h2l2 − 2µ̂h2lµl

− 2µ̂hl2µh − 2µ̂2
hl − µ̂h2µl2 − (nplt − 2)µ̂h2µ2

l

− (nplt − 2)µ̂l2µ
2
h − 4(nplt − 2)µ̂hlµhµl

)
,

(4.14)

where the expressions for µ̂h2lµl, µ̂hl2µh, µ̂2
hl, µ̂h2µl2, µ̂h2µ2

l , µ̂l2µ
2
h, and µ̂hlµhµl are

discussed in Remark 1.

Proof of Lemma 8: See Appendix A.2.9.

The unbiased estimator for Cov[ch, cl] is shown in Corollary 8.1 below. This corol-

lary makes use of Lemma 16 in Appendix A.2.8, whose result provides a general

unbiased estimator for a generic Cov[·, ·] parameter.

Corollary 8.1. Given nplt pilot samples of ch evaluated from the HFM and cl eval-

uated from the LFM, as well as unbiased MC estimators µ̂h = 1
nplt

∑nplt

i=1 ch,i, µ̂l =
1

nplt

∑nplt

i=1 cl,i, and µ̂hl =
1

nplt

∑nplt

i=1 ch,icl,i, an unbiased estimator for Cov[ch, cl] is:

̂Cov[ch, cl] =
1

nplt − 1
(npltµ̂hµ̂l − µ̂hl) , (4.15)

Proof of Corollary 8.1: Using the result of Lemma 16, replacing the random variables

A and B with ch and cl leads to the estimator for Cov[ch, cl].
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The unbiased estimators for Cov[ch, cl]
2 and Cov[ϑh, ϑl], which are high order

statistics are derived in the following lemmata.

Lemma 9. Given nplt pilot samples of ch evaluated from the HFM and cl evaluated

from the LFM and using the unbiased estimators discussed in Remark 1 and Lemma 8,

an unbiased estimator for Cov[ch, cl]
2 is:

̂Cov[ch, cl]
2 = µ̂2

hl − 2µ̂hlµhµl + µ̂2
hµ

2
l . (4.16)

Proof of Lemma 9: Expanding based on the definition of Cov[ch, cl]
2:

Cov[ch, cl]
2 = (E[chcl]− E[ch]E[cl])2 = E[chcl]2 − 2E[chcl]E[ch]E[cl] + E[ch]2E[cl]2.

Noting that E[chcl]2 = µ2
hl, E[chcl]E[ch]E[cl] = µhlµhµl, and E[ch]2E[cl]2 = µ2

hµ
2
l , these

parameters are replaced by their unbiased estimators discussed in Remark 1. This

leads to the expression for ̂Cov[ch, cl]
2 in Equation (4.16). This estimator is unbiased

since taking the expected value of the right hand side of Equation (4.16) leads to

Cov[ch, cl]
2, as shown above.

Lemma 10. Given nplt pilot samples of ch evaluated from the HFM and cl evalu-

ated from the LFM, and using the unbiased estimators discussed in Remark 1 and

Lemma 8, an unbiased estimator for Cov[ϑh, ϑl] is:

̂Cov[ϑh, ϑl] = ̂Cov[c2h, c
2
l ]− 2 ̂µlCov[c2h, cl]− 2 ̂µhCov[ch, c2l ] + 4 ̂µhµlCov[ch, cl], (4.17)

where
̂Cov[c2h, c

2
l ] =

nplt

nplt − 1
(µ̂h2l2 − µ̂h2µ̂l2) . (4.18)

̂µlCov[c2h, cl] = µ̂h2lµl − µ̂h2µ2
l , (4.19)

̂µhCov[ch, c2l ] = µ̂hl2µh − µ̂l2µ
2
h, (4.20)

and
̂µhµlCov[ch, cl] = µ̂hlµhµl − µ̂2

hµ
2
l . (4.21)

Proof of Lemma 10: See Appendix A.2.10.
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4.3 Robust Compliance Estimator

In the previous sections, the unbiased estimators and their MSEs for approximating

the mean, variance, and standard deviation are presented for both MC and MFMC

schemes. For robust topology optimization, the quantity of interest is the robust

compliance, which is a linear combination of the mean and standard deviation of

compliance. For MFMC and MLMC schemes, the optimal estimation strategies for

this QOI and approximations for its MSE are not well-established in the literature.

Existing estimates target a single statistical moment, so MFMC and MLMC schemes

focusing on complex QOIs are rarely explored. For example, Menhorn et al. [71]

devised strategies for QOI in robust optimization but for the MLMC scheme, while

Ayoul-Guilmard et al. [73] formulated estimation strategies for conditional-value-at-

risk quantities, again only for MLMC applications.

The goal of this section is to investigate strategies for calculating optimal MFMC

estimators for the robust compliance, which requires approximation of its MSE. This

work focuses on the scenario where the computational budget is fixed, and the MSE

of the estimator is minimized. The robust compliance estimator is a weighted sum of

the mean and standard deviation estimators. For the standard MC scheme, it is:

ĉR,MC = µ̂c,MC + κσ̂c,MC . (4.22)

For the MFMC scheme, it is:

ĉR,MF = µ̂c,MF + κσ̂c,MF . (4.23)

4.3.1 Mean Squared Error of a Robust Compliance Estima-

tor

For a robust compliance estimator (ĉR) formulated as a weighted sum of mean and

standard deviation estimators, this section presents one novel upper bound for the

MSE of ĉR, one novel approximation of the MSE of ĉR, and an alternative upper

bound for the MSE of ĉR that was developed by Menhorn et al. [71] for MLMC.

This work focuses on the MSE of the estimator, unlike other literature on MLMC

and MFMC, which focuses on reducing the variance of the estimators [71, 87]. The

majority of literature considers variance reduction since MFMC and MLMC estima-

tors developed targeting single statistical moments are typically unbiased, hence their

MSEs are equivalent to their variances. However, the standard deviation estimator
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is biased, hence ĉR is also biased, and it is more appropriate to consider MSE, which

is a combination of the bias and variance of the estimator. The MSE estimates for a

generic ĉR estimator are presented in Theorem 1.

Theorem 1. Given an unbiased mean estimator µ̂c and an unbiased variance esti-

mator σ̂2
c , the estimator for the robust compliance (cR) is:

ĉR = µ̂c + κ

√
σ̂2
c . (4.24)

An upper bound for the MSE of ĉR, denoted as MSE[ĉR]
ub
cs , is:

MSE[ĉR] ≤ MSE[ĉR]
ub
cs = (1 + κ

σc

µc

)MSE[µ̂c] +

(
κ2

4σ2
c

+
κµc

4σ3
c

)
MSE

[
σ̂2
c

]
. (4.25)

An alternative upper bound for the MSE of ĉR, denoted as MSE[ĉR]
ub
p , is:

MSE[ĉR] ≤ MSE[ĉR]
ub
p = MSE[µ̂c] +

κ2

4σ2
c

MSE
[
σ̂2
c

]
+

κ

σc

√
MSE[µ̂c]MSE

[
σ̂2
c

]
. (4.26)

An estimation for this MSE, denoted as MSE[ĉR]µσ, is:

MSE[ĉR] ≈ MSE[ĉR]µσ = MSE[µ̂c] +
κ2

4σ2
c

MSE
[
σ̂2
c

]
− κµcσc +

κ

σc

E
[
µ̂cσ̂2

c

]
. (4.27)

Proof of Theorem 1: See Appendix A.3.1.

The MSE[ĉR]
ub
p bound is derived by Menhorn et al. [71] in the context of MLMC.

Their derivation uses the Pearson correlation relation and is based on variance reduc-

tion of ĉR. This thesis is based on the reduction of MSE, as both the MSE[ĉR]
ub
p and

MSE[ĉR]
ub
cs bounds are formulated with the Cauchy-Schwarz inequality. The subscript

cs refers to the application of Cauchy-Schwarz in deriving MSE[ĉR]
ub
cs , the subscript

p refers to the alternative derivation of MSE[ĉR]
ub
p using the Pearson correlation rela-

tion, and the subscript µσ refers to the product of moments required in the expression

of MSE[ĉR]µσ.

The closed form expression of MSE is necessary for quality control of the esti-

mator, and for MFMC it is used as an objective function to select several variables

through the minimization procedure of Equation (4.1). In Theorem 1, MSE[ĉR]µσ

provides a direct estimation of the MSE and when possible it should be used as the

objective function. However, MSE[ĉR]µσ depends on products of raw moments that

may be difficult to compute with high accuracy using a small set of pilot samples. The
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upper bounds MSE[ĉR]
ub
cs and MSE[ĉR]

ub
p only depend on the MSEs of mean and vari-

ance estimators, which have small magnitudes and can be computed with reasonable

accuracy using pilot samples. Hence, they are alternative objective functions for the

selection of MFMC variables. Since the upper bounds are not direct approximations

of the MSE, minimizing the bounds will reduce the MSE, but may not minimize the

MSE. The two upper bounds exploit different correlation structures of the estimators,

and hence their efficacy depends on the details of a particular problem.

4.3.2 Computation of MSE for MC Robust Compliance

To compute the expressions in Theorem 1 for the case of MC robust compliance,

in addition to the MSEs of mean and variance estimators, the parameter E
[
µ̂cσ̂2

c

]
is required. This is an expected value of the product of two estimators, which for

the case of the MC scheme is E
[
µ̂c,MC σ̂2

c,MC

]
. Bootstrapping methods using multiple

sets of samples can be used to compute this value. However, this requires multiple

unique evaluations of each estimator. For optimization problems, typically, only one

set of MC samples is available per iteration, and bootstrapping cannot be employed

to approximate this parameter. To alleviate this, algebraic manipulations are done to

re-express E
[
µ̂c,MC σ̂2

c,MC

]
in terms of statistics that can be estimated using one set

of MC samples. Lemma 11 provides the expended expression of the expected value

of terms with the general form µ̂A,MC
nAσ̂2

B,MC

nB

, which can be applied for the case

of E
[
µ̂c,MC σ̂2

c,MC

]
.

Lemma 11. Given two random variables A and B, as well as the unbiased MC mean

estimator µ̂A,MC
nA for A using nA samples and the unbiased MC variance estimator

σ̂2
B,MC

nB

for B using nB samples. Assuming the individual samples are independent,

then the expected value of µ̂A,MC
nAσ̂2

B,MC

nB

is:

E
[
µ̂A,MC

nAσ̂2
B,MC

nB
]
=

1

q
E
[
AB2

]
+

q − 1

q
E[A]E

[
B2
]

− 2

q
E[AB]E[B]− q − 2

q
E[A]E[B]2,

(4.28)

where q = max(nA, nB).

Proof of Lemma 11: See Appendix A.3.2.

Using Lemma 11, the complete unbiased estimator for E
[
µ̂c,MC σ̂2

c,MC

]
is provided

in Corollary 11.1 below.
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Corollary 11.1. An unbiased estimator for E
[
µ̂c,MC σ̂2

c,MC

]
is:

̂
E
[
µ̂c,MC σ̂2

c,MC

]
=

1

ns

µ̂c3 +
ns − 3

ns

µ̂c2µc −
ns − 2

ns

µ̂3
c . (4.29)

Proof of Corollary 11.1: Using the result of Lemma 11 and substituting nA = nB = ns

and A = B = c leads to

E
[
µ̂c,MC σ̂2

c,MC

]
=

1

ns

µc3 +
ns − 3

ns

µc2µc −
ns − 2

ns

µ3
c .

The unbiased MC estimators µ̂c3 , µ̂c2µc and µ̂3
c are discussed in Remark 2. Substitut-

ing these estimators for their corresponding parameters in the above expression leads

to Equation (4.29).

4.3.3 Computation of MSE for MFMC Robust Compliance

Similarly, to compute the expressions in Theorem 1 for the case of MFMC robust

compliance, E
[
µ̂c,MF σ̂2

c,MF

]
is required. Even though this parameter can be approxi-

mated using a bootstrap approach, for the purpose of optimization which has one set

of samples for each iteration, an alternative formulation is required. The approach is

to expand E
[
µ̂c,MF σ̂2

c,MF

]
to individual parameters that can be approximated using

one set of pilot samples of compliance evaluated from the HFM and LFM. When the

individual parameters are approximated with their estimators, an unbiased estimator

for E
[
µ̂c,MF σ̂2

c,MF

]
is obtained.

Given constants αµ and ασ, expand E
[
µ̂c,MF σ̂2

c,MF

]
as:

E
[
µ̂c,MF σ̂2

c,MF

]
= E

[(
µ̂h,MC

ns+αµ(µ̂l,MC
ms−µ̂l,MC

ns )

)(
σ̂2
h,MC

ns
+ασ(σ̂2

l,MC

ms
−σ̂2

l,MC

ns
)

)]
,

= E
[
µ̂h,MC

nsσ̂2
h,MC

ns
]
+ ασE

[
µ̂h,MC

nsσ̂2
l,MC

ms
]
− ασE

[
µ̂h,MC

nsσ̂2
l,MC

ns
]

+ αµE
[
µ̂l,MC

msσ̂2
h,MC

ns
]
+ αµασE

[
µ̂l,MC

msσ̂2
l,MC

ms
]

− αµασE
[
µ̂l,MC

msσ̂2
l,MC

ns
]
− αµE

[
µ̂l,MC

nsσ̂2
h,MC

ns
]

− αµασE
[
µ̂l,MC

nsσ̂2
l,MC

ms
]
+ αµασE

[
µ̂l,MC

nsσ̂2
l,MC

ns
]
.

(4.30)

The expression above consists of the expected value of terms with the general form

µ̂A,MC
nAσ̂2

B,MC

nB

, and its expanded expression is provided in Lemma 11, where the

random variables A and B correspond to either ch or cl, while nA and nB corresponds



CHAPTER 4. MULTI-FIDELITY MONTE CARLO FOR ROBUST OPTIMIZATION 58

to either the ns or ms independent samples used in the MC scheme. The expanded

expression of µ̂A,MC
nAσ̂2

B,MC

nB

is in Lemma 11, which helps to derive unbiased esti-

mators for variants of the µ̂A,MC
nAσ̂2

B,MC

nB

terms in Equation (4.30), and they are

discussed in Remark 2.

Remark 2. Given nplt pilot samples of ch from evaluation of the HFM and cl from

evaluation of the LFM, combining the result of Lemma 11 and the unbiased estimators

discussed in Remark 1, the unbiased estimators for the parameters:
̂

E
[
µ̂h,MC

nsσ̂2
h,MC

ns
]
,

̂
E
[
µ̂h,MC

nsσ̂2
l,MC

ms
]
,

̂
E
[
µ̂h,MC

nsσ̂2
l,MC

ns
]
,

̂
E
[
µ̂l,MC

msσ̂2
h,MC

ns
]
,

̂
E
[
µ̂l,MC

nsσ̂2
h,MC

ns
]
,

̂
E
[
µ̂l,MC

msσ̂2
l,MC

ms
]
, and

̂
E
[
µ̂l,MC

nsσ̂2
l,MC

ns
]
are obtained. For brevity, the full ex-

pressions are not shown.

All the ingredients for constructing an unbiased estimator for E
[
µ̂c,MF σ̂2

c,MF

]
are

available:

Lemma 12. Given constants αµ and ασ and nplt pilot samples of ch evaluated from

the HFM and cl evaluated from the LFM, an unbiased estimator for E
[
µ̂c,MF σ̂2

c,MF

]
is:

̂
E
[
µ̂c,MF σ̂2

c,MF

]
=

̂
E
[
µ̂h,MC

nsσ̂2
h,MC

ns
]
+ ασ

̂
E
[
µ̂h,MC

nsσ̂2
l,MC

ms
]
− ασ

̂
E
[
µ̂h,MC

nsσ̂2
l,MC

ns
]

+ αµ

̂
E
[
µ̂l,MC

msσ̂2
h,MC

ns
]
+ αµασ

̂
E
[
µ̂l,MC

msσ̂2
l,MC

ms
]

− αµασ

̂
E
[
µ̂l,MC

msσ̂2
l,MC

ns
]
− αµ

̂
E
[
µ̂l,MC

nsσ̂2
h,MC

ns
]

− αµασ

̂
E
[
µ̂l,MC

nsσ̂2
l,MC

ms
]
+ αµασ

̂
E
[
µ̂l,MC

nsσ̂2
l,MC

ns
]
.

(4.31)

Proof of Lemma 12: Using the expanded form of E
[
µ̂c,MF σ̂2

c,MF

]
in Equation (4.30),

and substituting the expected value parameters in the right hand side of the equa-

tion with their respective unbiased estimators discussed in Remark 2, the unbiased

estimator
̂

E
[
µ̂c,MF σ̂2

c,MF

]
is obtained.

Ultimately, given nplt pilot samples, and constants αµ, ασ, ns, and ms, all the

expressions required by the MFMC scheme for computing the robust compliance es-

timator and its MSE approximations are available. The nplt samples used to compute

the unbiased estimators are decided based on required statistical confidence and are

generally set heuristically, typically more than 30.
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4.3.4 Optimal Control Variate Coefficients and Sample Allo-

cation

For the MFMC scheme, the goal is to minimize the MSE of a robust compliance

estimator while respecting a total available computational budget. Hence, the final

ingredients is are the optimal values of αµ, ασ, ns, and ms. This is achieved by solving

the optimization problem in Equation (4.1) using one of the expressions in Theorem 1

as the objective function.

For the cases where the upper bounds MSE[ĉR]
ub,MF
p and MSE[ĉR]

ub,MF
cs are used as

the objective function, the optimal α∗
µ and α∗

σ developed in Equations (4.7) and (4.8)

also minimize these upper bounds, regardless of the values of ns and ms, as long as

ms > ns is satisfied. In terms of sample allocation, an exact analytical expression

for the optimal rm is difficult to derive due to the complexity of the expressions, and

hence numerical optimization methods are used to determine ns and ms.

The MSE[ĉR]
MF
µσ approximates the exact MSE of ĉR,MF . However, its complicated

expression means that α∗
µ and α∗

σ are not guaranteed to be the optimal coefficients. For

this case, the values of αµ, ασ,ns and ms all are determined by numerical optimization

to minimize MSE[ĉR]
MF
µσ .

The costs of evaluating the HFM and LFM depend on the problem, and they are

measured in real time to ensure consistency. In this work, since nplt pilot samples are

used to compute the required estimators, the costs are measured using an average

of the nplt computational times and nplt is a lower bound for the samples, that is,

ms > ns > nplt, since it is a sunk cost.

Analytical Sample Allocation Strategy

An analytical approximation for the optimal sample allocation is developed for the

case where minimizing MSE[ĉR]
ub
cs is the goal of the optimization in Equation (4.1),

based on limiting distribution approximations. Since σ̂2
c,MF and µ̂ϑh,MF are both unbi-

ased estimators, their MSEs are equivalent to their variances. Lemma 4 demonstrates

that their limiting distributions are approximately the same, and consequently, the

MSE of σ̂2
c,MF can be approximated by the MSE of µ̂ϑh,MF . Hence, the allocation

scheme for ns and ms values in Lemma 1 that minimizes the MSE of µ̂ϑh,MF also

approximately minimizes the MSE of σ̂2
c,MF .

The last ingredient required to formulate an approximation of the optimal sam-

ple allocation to minimize MSE[ĉR]
ub
cs is obtained by noting that MSE[ĉR]

ub
cs (Equa-

tion (4.25)) has a general form of MSE[ĉR]
ub
cs = χ1MSE[µ̂c] + χ2MSE

[
σ̂2
c

]
, where
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χ1 > 0 and χ2 > 0 are constants. This is a linear combination of the MSEs of

the MFMC estimators of the first raw and second central statistical moments. The

following lemma extends Lemma 1 for this case.

Lemma 13. Let ch and ϑh be random variables whose means are statistical moment

parameters µh and σ2
h of compliance from the HFM, and let cl and ϑl be control

variate random variables whose means are the statistical moment parameters µl and

σ2
l of compliance from the LFM. Following Lemma 1, the unbiased MFMC estimator

of µh is:

µ̂c,MF = µ̂h,MC
ns + αµ(µ̂l,MC

ms − µ̂h,MC
ns), ms > ns,

and the unbiased MFMC estimator for σ2
h is:

µ̂ϑh,MF = µ̂ϑh,MC
ns + ασ(µ̂ϑl,MC

ms − µ̂ϑl,MC
ns), ms > ns,

where αµ and ασ are the control variate coefficients. Let a linear combination of the

MSEs of estimators be:

χ1MSE
[
µ̂c,MF

]
+ χ2MSE

[
µ̂ϑh,MF

]
,

where χ1 > 0 and χ2 > 0 are constants. Given a computational budget Pb = ns+wcms

and define rm = ms

ns
, this linear combination of MSE is minimized when:

αµ =
Cov[ϑh, ϑl]

V[ϑl]
; ασ =

Cov[ch, cl]

V[cl]
, and

rm = r∗m =

√
wc(χ1Corr[ch, cl]

2σ2
h + χ2Corr[ϑh, ϑl]

2τh)

χ1σ2
h(1− Corr[ch, cl]

2) + χ2τh(1− Corr[ϑh, ϑl]
2)
.

(4.32)

where τh is the variance of ϑh.

Proof of Lemma 13: See Appendix A.3.3.

To summarize, an approximate analytical optimal sample allocation strategy is

developed for minimizing the MSE[ĉR]
ub,MF
cs bound of the MFMC robust compliance

estimator. The optimal control variate coefficients (α∗
µ and α∗

σ) follow Equations (4.7)

and (4.8), while the allocation of HFM and LFM samples follows the expression for

the sample ratio (r∗m) developed in Lemma 13.
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4.4 Conclusion

This chapter develops MFMC strategies for the optimal estimation of a robust ob-

jective during optimization. The robust objective is a weighted sum of the mean

and standard deviation of a QOI, and having an accurate estimation of the robust

objective ensures high quality gradients in optimization.

MFMC employs estimators to approximate the robust objective, and the quality

of the estimator is measured by its MSE. A bifidelity scheme is developed in this

chapter where samples evaluated from a HFM and a LFM are used to construct the

estimators. The estimators require control variate coefficients to relate the outputs

of the two models and sample allocation strategies to specify the number of samples

required from the two models. These variables are selected through an optimization

problem to minimize the MSE of the MFMC estimator.

For very high dimensional uncertainties, only MC is applicable. The MSE of a

MC estimator decreases with 1/
√
ns, which is very inefficient. MFMC is a variance

reduction technique and if the outputs from the HFM and LFM have a good cor-

relation, then under the same computational budget, the MFMC estimator has a

lower MSE than the MC estimator. However, existing MFMC approaches select the

variables based on the optimal estimation of a single statistical moment, which does

not result in the minimal MSE of the estimator of the robust objective. Hence, this

work develops two upper bounds and an approximation for the MSE of the robust ob-

jective, which is used as the optimization objectives to obtain the variables required

in the MFMC scheme. These optimization problems correspond to different novel

MFMC strategies for the optimal estimation of the robust objective under a limited

computational budget and are solved numerically. An analytical approximation of

the solution to one of the strategies is also developed. The variables required by the

MFMC scheme selected through these strategies enable more significant MSE reduc-

tion compared to the standard MC and MFMC schemes targeting a single moment.

In optimization, only one set of samples is available for each iteration. Hence, to

compute the MSE in the optimization strategy required by the MFMC, many unbiased

estimators are developed with closed form equations, which are evaluated using only

a small sample set of the outputs from the HFM and LFM. These estimators permit

the optimization problem in MFMC to be solved each iteration, which enables the

application of MFMC in optimization. Furthermore, novel approximations for the

confidence intervals of the mean and variance employing the MFMC estimators are

developed, which are useful for statistical inference.



Chapter 5

Multi-fidelity Monte Carlo Robust

Topology Optimization

In this chapter, the multi-fidelity Monte Carlo (MFMC) strategies developed in Chap-

ter 4 are applied to robust topology optimization (RTO) problems. As mentioned in

Section 2.7, this thesis focus the type of RTO framework that relies on having a

reliable and efficient uncertainty quantification (UQ) scheme to ensure the design

gradients are of good quality. For material uncertainty represented by high dimen-

sional stochastic surrogates, MC-based RTO is used to generate accurate estimations

of the statistics of the quantity of interest (QOI). The accuracy of the estimations of

statistics can be appraised using the mean squared error (MSE) metric. For the stan-

dard MC scheme using ns samples, the MSE decreases with 1√
ns
, which is inefficient.

The MFMC scheme improves on the standard MC by combining evaluations of a high

fidelity model (HFM) and low fidelity models (LFM) to achieve reduction in the MSE

of an estimate of a statistic using the same computational budget. Only De et al. [35],

Hamdia et al. [43], and Hyun et al. [44] have investigated the application of MFMC

and multilevel Monte Carlo (MLMC) to RTO. Their LFMs are based on coarsening

the mesh of the finite element (FE) model. For input uncertainty modeled by ran-

dom fields with short correlation lengths and approximated using Karhunen–Loève

expansion (KLE), a coarsened FE mesh could result in aliasing of the KLE surrogate.

Also, the MSE reduction frameworks employed in these works focus on a single statis-

tical moment, rather than the robust objective, a combination of mean and standard

deviation.

Hence, the contribution of this work is twofold. The first is incorporating the

MFMC UQ strategies developed in Chapter 4 into the RTO framework. Since these

strategies focus on the optimal estimation of the robust objective with a limited

62
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computational budget, they produce more accurate estimations than the MC scheme

and other MFMC schemes that target a single moment. The second is developing a

MFMC-based RTO algorithm employing the reduced basis (RB) scheme as the LFM.

The RB model does not interact with the spatial discretization of the problem, and

hence is more appropriate for problems with short correlation lengths.

In this chapter, the full finite element (FE) model corresponds to the HFM, which

employs the bilinear quadrilateral element with a plane stress constitutive model.

The governing equation is the linear elasticity model. With the FE discretization,

this leads to the linear system Ku = F, where K is the FE stiffness matrix, F is the

load vector, and u is the displacement vector. The RB scheme is generated using

an on-the-fly procedure, which is employed in data assimilation problems [94] and to

accelerate deterministic topology optimization (DTO) [102, 103, 104]. One bottle-

neck arising from the application of RB in TO is the lack of accurate a priori error

bounds or a posteriori error estimates for the RB model. Typical applications of

the RB scheme require these error measures to search through the input parameter

space and construct an efficient basis, in addition to ensuring the RB solution does

not significantly deviate from the output of HFM [105, 106, 107, 108, 109, 110]. In

general, the error estimates of RB require an approximation of the inverse of the

coercivity constant of the system [105, 108, 109, 110]. However, with the application

of Solid Isotropic Material with Penalization (SIMP) or other element removal pro-

cedures, the stiffness matrix of a topology-optimized structure is very ill-conditioned,

and hence the coercivity constant tends towards zero. For problems that require an

estimation of the accuracy of the output statistics, the direct RB approach is not

desirable. Conveniently, MFMC does not necessitate error bounds for RB, making

RB a plausible LFM.

5.1 Statistical Gradients

For application of MFMC in RTO, the gradients of the mean and variance estimators

are required. This work uses a bifidelity approach, where the HFM corresponds to the

full FE model, while the LFM corresponds to the RB model. The displacement and

compliance from HFM are u = K−1F and ch = FTu. Denote Φ as the basis from the

RB scheme, the RB coefficient vector is η = (ΦTKΦ)−1(ΦTF), the LFM displace-

ment is ũ = Φη, and the LFM compliance is cl = FT ũ. The sample-wise compliance

derivative vector with respect to the element density vector ρ is ∂ch
∂ρ

= −uT ∂K−1

∂ρ
u for

HFM, and ∂cl
∂ρ

= −ũT ∂K−1

∂ρ
ũ for LFM.
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The gradients for the MFMC mean and variance estimators are:

∂µ̂c,MF

∂ρ
=

∂µ̂h,MC
ns

∂ρ
+ αµ

(
∂µ̂l,MC

ms

∂ρ
− ∂µ̂l,MC

ns

∂ρ

)
,

=
1

ns

ns∑
i=1

∂ch,i
∂ρ

+ αµ

(
1

ms

ms∑
j=1

∂cl,j
∂ρ
− 1

ns

ns∑
k=1

∂cl,k
∂ρ

)
;

and
∂σ̂2

c,MF

∂ρ
=

2

ns − 1

ns∑
i=1

(ch,i − µ̂h,MC
ns)(

∂ch,i
∂ρ
− ∂µ̂h,MC

ns

∂ρ
)

+ ασ

(
2

ms − 1

ms∑
j=1

(cl,j − µ̂l,MC
ms)(

∂cl,j
∂ρ
− ∂µ̂l,MC

ms

∂ρ
)

− 2

ns − 1

ns∑
k=1

(cl,k − µ̂l,MC
ns)(

∂cl,k
∂ρ
− ∂µ̂l,MC

ns

∂ρ
)

)
.

Hence, the gradient for the MFMC robust compliance is:

∂ĉR,MF

∂ρ
=

∂µ̂c,MF

∂ρ
+

κ

2σ̂c,MF

∂σ̂2
c,MF

∂ρ
, (5.1)

where σ̂c,MF =

√
σ̂2
c,MF .

5.2 Robust Topology Optimization Algorithm

There are four free variables in the bi-fidelity MFMC framework, namely the control

variate coefficients αµ and ασ, and sample sizes ns and ms. Four variants of the

MFMC UQ schemes are developed. They differ depending on the choices of the free

variables. The “CSn” scheme denotes when MSE[ĉR]
ub
cs is minimized by using α∗

µ and

α∗
σ, defined in Equation (4.7) and (4.8) in Chapter 4, and ns and ms are numerically

optimized. The “Pn” scheme denotes when MSE[ĉR]
ub
p is minimized by using α∗

µ

and α∗
σ and ns and ms are numerically optimized. The “CSt” scheme denotes when

MSE[ĉR]
ub
cs is minimized by using α∗

µ and α∗
σ and theoretical optimal sample ratio r∗m.

The “EVan” denotes when MSE[ĉR]µσ is minimized by numerically optimizing all four

variables.

For application in RTO, the sensitivities of the approximate robust compliance

calculated by MFMC are derived in Equation (5.1), which are computed once the

four variables are known. The MFMC UQ schemes also require the computational
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costs associated with the HFM and LFM. Since the target application is optimization,

the cost of evaluating the HFM is defined as the CPU time required to build the FE

system, solve the FE problem, compute the sample-wise compliance, and compute the

sample-wise sensitivities. The cost of evaluating the LFM is defined the same way,

except it is based on the RB model instead. These costs are measured in real time

during optimization. Specifically, at the beginning of each iteration, the computation

of nplt pilot samples is timed, and the averaged values determine the costs.

The LFM employed is the RB scheme. The RB is constructed using the on-the-

fly procedure, meaning that it is from solutions along the optimization trajectory.

Specifically, the first RTO iteration uses the full Monte Carlo procedure based on

the Pb cost constraint. The resulting displacement solutions are orthogonalized by

singular value decomposition (SVD) and the first nb left singular vectors are retained,

forming the initial RB basis. The value of nb is the desired RB size, and its value

has an impact on the computational cost of the LFM as well as the statistical corre-

lation between the HFM and LFM solutions, which in turn affects the efficacy of the

MFMC scheme. In the succeeding iterations, the basis is updated at the end of each

optimization iteration using the ns HFM model solutions, and then truncated to nb

columns using SVD.

There are occasions when the LFM is a poor representation of the HFM. This

occurs when their statistical correlation is low, which means that they behave like

independent random variables. In this case, it is undesirable to continue with the

MFMC scheme. Instead, returning to the full MC procedure is beneficial. To provide

a threshold for this condition, a heuristic approach is taken, where from the statis-

tics computed from the nplt pilot samples the resulting model correlation parameters

Corr[ch, cl] and Corr[ϑh, ϑl] are assessed, as well as the optimal values of ns and ms.

If the correlations are low, or if ms is approximately equal to (or lower than) ns, the

optimization iteration reverts to a full MC scheme. In numerical cases considered,

this very rarely occurs.

The general multi-fidelity Monte Carlo robust topology optimization (MFTO)

procedure is Algorithm 2. The Method of Moving Asymptotes (MMA) updates the

design variables. The stopping criteria are when either the maximum change in the

design variables is less than 1%, or the maximum number of optimization iterations

(kmax) is attained. For the naming convention, the specific UQ scheme applied is

added with a dash. For example, the “CSn” MFMC UQ scheme applied to MFTO

leads to “MFTO-CSn.”
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Algorithm 6: MFTO algorithm

Input: Sample set {ξi}, Pb computational budget, nplt pilot size, and nb RB size.
Input: Initialize ρ̃, loop k = 1
while ∥ρ̃k − ρ̃k−1∥∞ > 0.01 and k < kmax do
→ Filter ρ̃k to ρk with Equation (2.6) and (2.7)
if k = 1 then
→ MC iteration, store all u(ξi).

else
for i = 1 : nplt do

→ compute and time HFM samples u(ξi) and
∂ch(ξi)

∂ρ

→ compute and time LFM samples ũ(ξi) and
∂cl(ξi)
∂ρ

end for
→ use the nplt samples to compute unbiased estimators.
→ Find the optimal values of αµ, ασ, ns, and ms.
→ Compute the MSE estimates of optimization statistics.
if Corr[ch, cl] << 1 or Corr[ϑh, ϑl] << 1 or ms ≈ ns then
→ Recourse to MC iteration, store all u(ξi).
→ Compute ĉR and ∂ĉR

∂ρ
using MC estimator.

else
for i = nplt + 1 : ns do

→ compute HFM samples u(ξi) and
∂ch(ξi)

∂ρ
.

end for
for i = nplt + 1 : ms do

→ compute LFM samples ũ(ξi) and
∂cl(ξi)
∂ρ

.
end for
→ Compute ĉR and ∂ĉR

∂ρ
using MFMC estimator.

end if
end if
→ Using the new u, update to Φk+1 via SVD and truncate at nb size.
→ update to ρ̃k+1 using MMA.

end while

5.3 Numerical Results

The MFTO schemes are applied to two two-dimensional robust compliance minimiza-

tion problems with a volume constraint subject to uncertainty in the material prop-

erties. One is an MBB (Messerschmitt-Bölkow-Blohm) beam problem with pointwise

loading as shown in Figure 5.1(a), and the other is a carrier plate problem with dis-

tributed loading as shown in Figure 5.1(b). For both problems, Young’s modulus

is uncertain, and it is modeled using homogeneous lognormal random fields with a

two-dimensional exponential correlation function. The Karhunen–Loève expansion
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(KLE) is employed to represent the random fields and for sufficient accuracy the

KLE is required to capture over 95% of the random field energy. These test problems

specifically focus on very short correlation lengths, as both problems involve correla-

tion lengths of (lx, ly) = (5, 5) units. Satisfying the threshold for the MBB problem

requires to 2500 random variables (ξm), and for the carrier plate problem 3200 ran-

dom variables. Both problems have very high stochastic dimensionality, and only the

Monte Carlo family of methods is applicable. The variability of a homogeneous ran-

dom field is captured through its covariance CoV, which is the ratio of the standard

deviation of the random field to the mean. For both problems, the mean is set to one,

while CoV is set to 35%. Hence, these random fields have short correlation lengths

and high variance, which is representative of typical material uncertainties caused by

additive manufacturing.

y

L = 150

H = 50

x

F 

(a) MBB beam.

y

L = 100

H = 100

x

F

(b) Carrier plate.

Figure 5.1 Design domain of the MBB beam and carrier plate, with applied loading
and boundary conditions.

Several RTO parameters are constant for both problems. The weight factor κ in

cR is set to 4 (κ = 4), while in the SIMP scheme, penalization p = 3 and minimum

density ρmin = 10−3 are imposed. For the regularization filter, rf = 1.5 is set for all

cases, equivalent to 1.5 times the element edge length. The Heaviside projection filter

in Equation (2.7) is applied with a continuation scheme on β, so that β starts with a

value of 1 and doubles every 40 iterations until a maximum of 16, which is maintained

until convergence. In addition, the asyinit and the move parameter in MMA remain

as the default values of 0.5. All calculations are initialized with an even distribution

of material. For the parameters in MFTO, the computational budget is Pb = 500,

meaning that 500 HFM samples are affordable for each optimization iteration. The

nb is 50, and nplt is 50 for computing the initial estimators of statistical parameters.

The MCTO algorithm is a benchmark for comparison for the results of both



CHAPTER 5. MULTI-FIDELITY MONTE CARLO ROBUST TOPOLOGY OPTIMIZATION 68

problems. The number of samples used in MCTO is 500, which is equivalent to Pb in

MFTO. The deterministic TO (DTO) design is computed, where Young’s modulus

is constant with a value of one. The result of DTO represents optimization without

awareness of uncertainty, and it is contrasted with the outputs of RTO algorithms. To

assess the numerical properties and the efficacy of the MFTO and MCTO algorithms,

several strategies are employed, and they are discussed in detail in the following

subsection.

5.3.1 Assessment Methodologies

The robust optimization algorithms follow a nested loop structure, where the inner

loop is responsible for the accurate estimation of statistics, while the outer loop is

tasked with design updates. This work improves the inner loop UQ procedure. Several

assessment methods are described which are used at RTO iterations of interest.

Bootstrap Cross-Validation

Given the KLE surrogate of the random field truncated to M expansion variables,

a pool of np = 20, 000 independent random samples of the expansion variables

ξi = {ξm}i,m = 1, · · · ,M ; i = 1, · · · , np is generated. For a material distribution ρ

from any optimization iteration, np of corresponding HFM compliance realizations

are computed using the ξi samples, leading to ch,i, i = 1, · · · , np. In addition, given

the basis from the RB scheme, Φ, the corresponding np of LFM compliance real-

izations are computed for the MFTO algorithms at the given iteration, leading to

cl,i, i = 1, · · · , np.

With this pool of compliance samples, the population parameters are computed

by employing an MC UQ scheme that uses all np = 20, 000 samples. Parameters

including µh, σ
2
h, µl, and σ2

l are computed with high accuracy using MC estimators

due to the large sample size. These are ground truths of the mean and variance of

compliance evaluated from the HFM and LFM for the given material distribution.

Since the ground truth values of the parameters are available, bootstrapping pro-

vides an alternative approximation of the properties of estimators. Closed form ex-

pressions of the MSEs of various estimators are provided in Chapter 4. The bootstrap

procedure is used as a means to cross-validate these expressions and as a neutral way

to assess the quality of the estimators. For bootstrapping [111, 112], given np compli-

ances calucalted using the HFM and LFM, define a desired multi-fidelity (MF) sample

set consisting of a sample set calculated with the HFM with the size of Nh
B < np,
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and a sample set calculated with the LFM with the size of N l
B < np. Draw with

replacement B sets of these MF sample sets. Each MF sample set is a bootstrap set,

which consists of HFM sample sets ch
k = {ch,i}k; i = 1, · · · , Nh

B; k = 1, · · · ,B, as well
as LFM sample sets with the same structure except with N l

B. For each MF sample

set, quantities related to the estimators are evaluated, which leads to B realizations.

Each of these realizations is called a bootstrap replicate. Given an estimator Q̂ and

B bootstrap replicates, the approximation of its MSE is

MSE
[
Q̂
]Bdef

=
1

B

B∑
k=1

(
Q̂k −Q

)2
,

where Q is the true population parameter, obtained using np samples.

To provide an interpretation of the estimator error in relation to the magnitude of

the parameters in an L2 sense, the ratio of the bootstrap MSE approximations with

the parameter values is reported:
MSE[Q̂]

B

Q2 , which is denoted by ∆Q. When Q is not

available, it is replaced by the L2 norm of the estimator, leading to

∆Q
def
=

MSE
[
Q̂
]B

E
[
Q̂2
] =

E
[
(Q̂−Q)2

]
E
[
Q̂2
] ≈

MSE
[
Q̂
]B

Q2
.

In this work, the difference from the approximation is negligible.

For MC or MFMC estimators, closed form expressions for MSE are in Chapter 4

employing unbiased estimators. Using these expressions and the MF sample sets, B
bootstrap replicates of the MSEs of the estimators are evaluated. The B replicates

are averaged to reduce the statistical noise induced by variation in sample sets. This

is the bootstrap smoothing or bagging procedure. For a generic estimator Q̂, each

bootstrap replicate of the MSE is MSE
[
Q̂
]
k
and hence, this procedure is defined as

EB

[
MSE

[
Q̂
]]
def
=

1

B

B∑
k=1

MSE
[
Q̂
]
k
.

This averaged value, EB

[
MSE

[
Q̂
]]
, is defined as the predicted MSE of the estima-

tor and is compared with the bootstrap estimation of the MSE
[
Q̂
]B

to assess the

accuracy of the closed form expressions for MSE.

In addition, using MSE
[
Q̂
]
k
, the B bootstrap replicates of the MSE, the confi-

dence interval (CI) approximations constructed using mean and variance estimators
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are cross-validated. To approximate the PCI confidence interval bound of Q using Q̂,

the general form is:

Pr
(
Q ∈

[
Q̂− zPCI

MSE
[
Q̂
]
, Q̂+ zPCI

MSE
[
Q̂
]])
≈ PCI .

The estimation of the confidence interval is random, since the value of the bounds

changes depending on the realization of Q̂ and its MSE. Using the B bootstrap repli-

cates, B of these confidence intervals are computed. Since the true parameter, Q is

also known, the cross-validated confidence level of the bounds is given as:

PB
CI
def
=

# of times Q ∈
[
Q̂k − zPCI

MSE
[
Q̂
]
k
, Q̂k + zPCI

MSE
[
Q̂
]
k

]
B

.

For the MC estimators, given ρ for an MCTO iteration, the sample set calculated

using the LFM in each MF bootstrap sample set is null, meaning N l
B = 0, and the

sample set ch evaluated using the HFM has size Nh
B = Pb = 500, which corresponds to

the size of the MC scheme used in optimization. The B bootstrap replicates enable the

computation of the MSE and CI related to the estimators µ̂c,MC and σ̂2
c,MC . For the

robust compliance estimator ĉR,MC , in addition to MSE
[
ĉR,MC

]B
, the EB[·] average

of the upper bounds and MSE estimation from Theorem 1 are computed.

For the MFMC estimators, given ρ for an MFTO iteration, two MF bootstrap

sample sets are defined. The first consists of ch calculated using the HFM with a size

of Nh
B = ns and cl evaluated using the LFM with a size of N l

B = ms. The ns and ms

are the sample allocations from the MFMC strategy at that iteration. The underlying

KLE samples ξ for the ns samples are reused by the first ns of the ms samples, while

the remaining ms− ns samples are independently generated. The MSE
[
Q̂
]B

related

to the mean, variance, and robust compliance estimators are evaluated using these

MF sample sets. The second MF bootstrap sample set is defined with both the

sample sets evaluated using the HFM and LFM having sizes of Nh
B = N l

B = nplt.

This corresponds to the number of pilot samples used in the MFTO algorithms, and

assesses the accuracy of the MSE expressions in a realistic optimization setting. The

EB

[
MSE

[
Q̂
]]

and CI related to µ̂c,MF and σ̂2
c,MF are computed with the bootstrap

procedure. For the ĉR,MF estimator, depending on the variant of the MFTO scheme,

the EB[·] average of the corresponding MSE upper bound or estimation is computed.
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Comparison Between MFMC and Standard MC

To demonstrate the effectiveness of MFMC compared to standard MC, additional

analyses are conducted. Given ρ at an MFTO iteration, using Nh
B = Pb = 500, the

computational budget constraint, the bootstrapping analysis of an equivalent cost

MC scheme is carried out. The MSEs of MC estimators from bootstrap approxima-

tions (e.g. MSE
[
ĉR,MC

]B
) are reported and compared with the results of MFMC.

The difference between MSE
[
ĉR,MC

]B
and MSE

[
ĉR,MF

]B
assesses the effectiveness of

estimating cR using the MFMC scheme compared to the standard MC scheme given

the same computational budget.

An equivalent sample analysis is also presented. From the bootstrap computation,

the MSE
[
ĉR,MF

]B
is obtained for the MFMC estimator. The numerical results show

that the MSE[ĉR]µσ is an accurate approximation of the actual MSE[ĉR] using Pb

samples. Hence, employing MSE
[
ĉR,MF

]B
as a threshold and considering MSE[ĉR]µσ

as the expression for the MSE of the MC estimator with the number of MC samples

a free variable, the equivalent samples required by the MC estimator to achieve this

threshold is computed and denoted as neq,B
cR

. This is a root-finding problem solved

numerically. To ensure accurate statistics, for computing the unbiased estimators

required in the expression of MSE[ĉR]µσ for the MC scheme, all np = 20, 000 HFM

samples are used. The value of neq,B
cR

represents the approximate number of MC

samples required to achieve the exact MSE of the MFMC estimator.

Comparison Between MFMC Strategies

In MFMC schemes, the control variate coefficients and sample allocation sizes are

free variables, and there are many strategies for selecting their values to minimize the

MSE of the estimator. The majority of existing MFMC strategies minimize the MSE

of a single raw or central statistical moment. For RTO applications, it is possible to

use an MFMC strategy that targets the optimal estimation of either the mean or the

variance. However, the robust compliance objective is more complex as it is a linear

combination of the mean and standard deviation. The strategies targeting a single

parameter are not optimal for robust compliance. Since the strategies developed

in this work are specifically intended for robust compliance, comparisons between

MFMC schemes in this work and the MFMC schemes that target a single statistical

moment, which is what is available in the literature, are reported.

First, the estimators and the MFMC strategies focusing on optimal estimation

of mean or variance are defined. Denote the MFMC strategy focusing on optimal
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estimation of mean as the MF-µ∗ scheme, and the MFMC strategy targeting variance

as the MF-σ∗ scheme. For both cases, the expressions of the mean estimator, variance

estimator, and robust compliance follow Equations (4.2), (4.3), and (4.23). Also,

both cases employ the optimal control variate coefficients defined in Equations (4.7)

and (4.8). For finding the sample allocation, the MF-µ∗ scheme follows the strategy

in Lemma 1, while the MF-σ∗ scheme employs a numerical optimization.

To this end, given ρ at an MFTO iteration and nplt pilot samples of HFM and

LFM, the control variate coefficients and sample allocation for the MF-µ∗ and MF-σ∗

strategies are computed, giving rise to the estimators associated with these two

schemes. Denote the robust compliance estimator for the MF-µ∗ scheme as ĉR,µ∗

and for the MF-σ∗ scheme as ĉR,σ∗ . The same bootstrap computations described

previously are applied to these two estimators, and their approximated MSEs are de-

noted as MSE
[
ĉR,µ∗

]B
and MSE

[
ĉR,σ∗

]B
. These MSEs are compared with the value

of MSE
[
ĉR,MF

]B
, which is the MSE of the estimator of robust compliance determined

using MFMC.

5.3.2 MBB Beam

The spatial domain of the MBB beam problem is in Figure 5.1(a). It is 150 units wide

and 50 units high. The applied force is a point load, F = 1, on the top left corner of

the domain in the negative y direction, while the displacement boundary conditions

are zero horizontal displacement on the left edge, and zero vertical displacement on

the bottom right corner. The volume constraint is 50% of the design domain, which

is equivalent to 3750 units squared. For a constant unit value Young’s modulus, the

DTO design is shown in Figure 5.2(a). The statistics of the DTO design, shown

in brackets in the subcaption, are computed using 20,000 samples of the Young’s

modulus. Since the resulting beam is subject to bending load, the design has thick

horizontal members at the bottom and top edges of the domain. In the middle of

the domain, two thick oblique members connect the top member with the bottom

member.

To demonstrate the characteristics of a random field with short correlation lengths,

these samples are aggregated to compute the mean and variance of the modulus at

the centroid of each element, and the result is illustrated in Figure 5.3. Both of these

statistics exhibit changes with small length scales across the domain. This leads to

regions of relatively high or low modulus that have small areas.
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(a) DTO:
(206.5, 9.932, 246.2)

(b) MCTO:∼ −1.13%,
(204.8, 9.651, 243.4)

(c) MFTO-Pn:∼ −1.96%,
(203.5, 9.484, 241.4)

(d) MFTO-CSt:∼ −2.12%,
(203.1, 9.479, 241.0)

(e) MFTO-CSn:∼ −2.10%,
(203.2, 9.470, 241.1)

(f) MFTO-EVan:∼ −2.13%,
(203.1, 9.479, 241.0)

Figure 5.2 Structural designs for the MBB problem produced by DTO and different
RTO algorithms with κ = 4. The subcaption details their ground truth statistics
in brackets: (µc, σc, cR). For the RTO algorithms, the difference in cR between the
RTO design and DTO design is also reported as a percentage. Note that a negative
difference means a reduction in cR.

(a) Mean of the sampled modulus. (b) Variance of the sampled modulus.

Figure 5.3 Mean and variance of the Young’s modulus at the centroid of elements
over the domain of the MBB beam, computed using the 20,000 random samples.

MBB RTO Designs

In Figure 5.2, the designs produced by different RTO algorithms for the MBB beam

problem are shown, with their statistical parameters. In general, they have varying

topologies due to differences in the oblique members in the middle of the domain. The

cR of the RTO designs are all similar to within 1%, hence showing that for problems

with short correlation lengths, various local minima of similar quality exist. The posi-
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tion of the thicker members on the top and bottom edges as well as the left side of the

domain in the RTO designs are generally the same because this feature is paramount

in reducing the cR of the designs. The presence of small changes in modulus shown in

Figure 5.3 does not have a significant influence on this. More importantly, these RTO

designs all have lower cR than the DTO design, by at least 1%. This demonstrates the

effectiveness of these uncertainty-aware algorithms. The MFTO algorithms produce

designs that have a lower cR than MCTO, with the MFTO-EVan design having the

lowest value. Hence, in terms of robust optimization, the MFTO algorithms using

on-the-fly RB perform better than the benchmark MCTO using equivalent computa-

tional cost.

The MSE estimates of ĉR are used to assess the quality of the inner loop UQ

procedure and to minimize the MSE for the case of MFMC estimators. To shed light

on the performance of the MFMC and MC estimators through the optimization, the

bootstrapping investigation is done at the 5th, 40th, and 200th iterations of the RTO

processes. These iterations are selected because they are representative of various

stages of the optimization. The material distributions from the MFTO-Pn algorithm

corresponding to these iterations are shown in Figure 5.4. The 5th iteration is early

in the optimization, where only a vague outline of structural members is established

and the majority of the domain is grey, indicating intermediate densities. The 40th

iteration represents the intermediate stage of optimization, where a topology is visible

before large β, including small members with intermediate densities that are removed

in subsequent iterations. The 200th iteration shown in Figure 5.4(c) corresponds to

the final stage of optimization, where β = 16 is a maximum, leading to sharp contrast

between the solid and void regions with fewer oblique members. The ρ at the 200th

iteration is very similar to the final MFTO-Pn design, apart from minor adjustments.

(a) MFTO-Pn 5th iteration. (b) MFTO-Pn 40th iteration. (c) MFTO-Pn 200th itera-
tion.

Figure 5.4 MFTO-Pn material distribution (ρ) at intermediate iterations for MBB
problem.
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Analyses of MC Estimators

The results from bootstrap analyses of the MC estimators are shown in Table 5.1. The

of ∆µ show that the relative ratio of the L2 error of the mean estimator compared to

the squared value of the mean is consistently of order 10−6 throughout optimization.

For variance, ∆σ2 is consistently of order 10−3. This is because accurate approxima-

tions of higher order statistics are much more difficult, even if their magnitudes are no

higher than lower order statistics. On the other hand, the ratio associated with ĉR,MC

in the ∆cR column is of order 10−5 throughout, which is lower than that of ∆σ2 , but

higher than ∆µ. Focusing on the MSE of mean would lead to a very optimistic error

expectation, while the MSE of variance is overly pessimistic. Hence, it is important

to focus on the MSE of the objective of interest.

Table 5.1 Bootstrap analysis results of the MC estimators using ρ at different opti-
mization iterations of MCTO.

MCTO MSE
[
ĉR,MC

]B EB

[
MSE[ĉR]

ub,MC
p

]
EB

[
MSE[ĉR]

ub,MC
cs

]
EB

[
MSE[ĉR]

MC
µσ

] ∆µ ∆σ2 ∆cR

Iter 5 4.51 7.38 28.3 4.53 3.59e-6 3.72e-3 2.34e-5
Iter 40 2.09 3.33 11.7 2.05 4.67e-6 4.14e-3 2.95e-5
Iter 200 1.65 2.72 9.57 1.67 4.76e-6 3.64e-3 2.78e-5

Since the estimation of the MSE and the confidence interval associated with

the MC mean and variance estimators are well-established, the focus is on the ro-

bust compliance estimator. Observing the data in the MSE
[
ĉR,MC

]B
column, the

MSE of ĉR,MC decreases as optimization proceeds. Since ∆cR exhibits little vari-

ation, this is caused by a decrease in the robust compliance. Two upper bounds

and an approximation of the MSE of ĉR,MC are developed in Theorem 1. The boot-

strap averages of their approximations are shown in the columns EB

[
MSE[ĉR]

ub,MC
p

]
,

EB

[
MSE[ĉR]

ub,MC
cs

]
, and EB

[
MSE[ĉR]

MC
µσ

]
. For the MC scheme, the upper bounds

MSE[ĉR]
ub
cs and MSE[ĉR]

ub
p are higher than the bootstrap computation MSE

[
ĉR,MC

]B
.

For this problem, MSE[ĉR]
ub
p is a tighter bound than MSE[ĉR]

ub
cs . The MSE[ĉR]µσ ap-

proximation leads to very similar values to MSE
[
ĉR,MC

]B
for the three iterations

examined. This demonstrates the ability of MSE[ĉR]µσ to approximate the exact

MSE of the cR estimator for the MC scheme. These results add confidence to the

prediction in Theorem 1. The MSEs for estimators of cR decrease as the optimization

progresses, which is a desirable behavior.
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Behaviors of MFMC Variables

To investigate the MFTO algorithms, the behaviors of several parameters are pre-

sented. The graphs are based on the optimization results from MFTO-Pn, which is

representative of other MFTO variants for this analysis.

The enabler of the MFMC scheme is the control variate random variable that

statistically resembles the random variable of interest. In this work, the control

variate is the on-the-fly RB (the LFM) output, and the random variable of interest is

the FE model (the HFM) output. The estimated correlation coefficients for the first

order and second order statistics between these two models through optimization are

shown in Figure 5.5(a). The ch and cl are associated with the µh and µl estimations,

while ϑh and ϑl are associated with σ2
h and σ2

l estimations. The graphs show that

apart from the first few iterations, the statistical correlation between HFM and LFM

is close to one. Such a strong positive correlation means that despite the lack of exact

error computation associated with the RB output, the response of the RB follows

that of the FE very well. This shows that the on-the-fly RB surrogate is an effective

control variate in approximating the behavior of the FE solution in RTO problems,

adding confidence to the practical applicability of the MFTO algorithms.
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(a) The correlation of first and second order
outputs from the HFM and LFM.
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(b) Model cost ratio wc and optimized sam-
ple allocation ratio rm.

Figure 5.5 Behavior of various parameters from the MFTO-Pn algorithm over the
first 250 MFTO-Pn iterations for the MBB beam problem.

The second requirement to make MFTO a feasible approach is the low computa-

tional cost associated with the LFM. In Figure 5.5(b), the ratio of the cost of FEM

to RB, shown in red, is plotted for the first 250 iterations. The value of wc starts

at around 2, exhibits a plateau at about 3.5, before increasing to about 5.5. In the
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initial phase of the optimization, the densities of selected elements are reduced to

approach a local minimum, which changes the initial even distribution of material

into a feasible structure with void regions. The wide range in element densities leads

to ill-conditioning of the FE stiffness matrix (K), increasing the cost of solving the

FE model. This causes the initial rise in wc. The increase in wc at around iteration

40 is caused by the increase in β, which further drives the density to either 0 or 1.

Consequently, K becomes nearly positive semi-definite, and solving the FE problem

increases significantly in cost. In contrast, the vectors in the basis matrix (Φ) of the

RB scheme are orthonormal. The reduced order stiffness matrix, ΦTKΦ, does not

suffer from ill-conditioning and the associated cost does not increase despite changes

in the element densities. Overall, this shows that the RB model is appreciably cheaper

than the FE model, especially for distributions of density that have high solid-void

contrast as are expected in topology optimization.

The optimized sample allocation ratio for MFTO-Pn shown in Figure 5.5(b) in

black follows the trend of wc. Figure 5.5(a) shows a strong correlation between the

HFM and LFM at all iterations, and hence the other strong influence on sample

allocation is the contrast in computational cost. The high value of wc means that the

MFMC relies mainly on the LFM, with occasional recourse to the HFM. Alongside

the strong correlation of the LFM with the HFM, these are desired behaviors for

MFMC and hence encourage its use in RTO problems.

Since bootstrapping requires computing np HFM and LFM compliances using ρ

from iterations of interest, the kernel density approximation method is applied to

estimate their probability density functions (PDF) using these compliance samples.

These are shown in Figure 5.6(a). The progression of the shape of the PDFs through

optimization provides a visual interpretation of the RTO procedure. The PDF at

the 5th iteration has a large mean and variance. As optimization progresses to the

40th and 200th iterations, the variance decreases leading to a sharper peak of the

PDF, and the mean also decreases. These behaviors correspond to the reduction in

the robust compliance. In general, the mean and variance of the LFM PDFs are

slightly lower than those of the HFM PDFs. The shapes of these PDFs resemble

bell curves, so Gaussian distributions approximate them. Hence, the assumption in

Lemma 3 is satisfied, allowing confidence interval approximations of the mean and

variance estimators to be computed.
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(a) Case of MFTO-Pn for the MBB beam.
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(b) Case of MFTO-CSt for the carrier plate.

Figure 5.6 Approximated probability density function of the HFM and LFM com-
pliances at intermediate iterations of MFMC algorithms using np samples.

Analyses of MFMC Mean and Variance Estimators

The results of bootstrap analyses of the MFMC mean and variance estimators for

MFTO-Pn are in Tables 5.2 and 5.3.

Table 5.2 Bootstrap analysis results of the MFMC mean estimator using ρ at dif-
ferent optimization iterations of MFTO-Pn.

MFTO-Pn MSE
[
µ̂c,MF

]B EB

[
MSE[µ̂c,MF ]

]
PB
90% PB

99% ∆µ

Iter 5 0.325 0.346 90.2% 99.4% 2.13e-6
Iter 40 0.0858 0.0872 88.8% 99.2% 1.55e-6
Iter 200 0.0571 0.0596 89.8% 99.0% 1.37e-6

Table 5.3 Bootstrap analysis results of the MFMC variance estimator using ρ at
different optimization iterations of MFTO-Pn.

MFTO-Pn MSE
[
σ̂2
c,MF

]B
EB

[
MSE[σ̂2

c,MF ]
]

PB
90% PB

99% ∆σ2

Iter 5 255. 256. 91.6% 99.2% 3.40e-3
Iter 40 31.4 32.2 90.4% 98.4% 2.08e-3
Iter 200 16.2 15.7 89.0% 99.2% 1.94e-3

Comparing the bootstrap computations of the MSE of the estimators, MSE
[
µ̂c,MF

]B
and MSE

[
σ̂2
c,MF

]B
, with the average of their approximations, EB

[
MSE[µ̂c,MF ]

]
and

EB

[
MSE[σ̂2

c,MF ]
]
, the values are very similar for all cases. This indicates that the
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closed form expressions for estimating the MSE of µ̂c,MF and σ̂2
c,MF employing var-

ious unbiased estimators approximate their values accurately. Figure 5.6(a) shows

that the HFM and LFM outputs have PDFs with Gaussian shape. Hence, the as-

sumption of Lemma 3 is satisfied, and the confidence interval bounds for µc and σ2
c

are approximated with the MFMC estimators for the 90% and 99% confidence levels.

The verification of this is in columns PB
90% and PB

99% for the mean and variance. The

data confirm that among the B replicates of confidence intervals, the percentage of

intervals that contain the actual value of the parameter is appropriate for the imposed

confidence level. Hence, the result adds confidence to Corollary 4.1. The magnitude

of the MSEs decreases through optimization, and so does their ratio with the square

of the parameter value, shown in columns ∆µ and ∆σ2 . The ∆σ2 is three orders of

magnitude greater than ∆µ.

Analyses of MFMC Robust Compliance Estimator

This section examines the bootstrap analyses of the MFMC robust compliance esti-

mators (ĉR,MF ) from the four MFTO variants. The goal is to minimize the MSE of

ĉR,MF . The MFTO variants differ by the strategies used to determine the variables:

αµ, ασ, ns, and ms. To assess the efficacy of these strategies, comparisons with the

MC estimator as well as MFMC estimators that target only the optimal estimation

of either the mean (MF-µ∗) or the variance (MF-σ∗) are reported.

For the MFTO-Pn variant, the results are in Table 5.4. For this algorithm, the

strategy is to select the MFMC variables by minimizing MSE[ĉR]
ub
p , an upper bound

of the MSE. The average of the B replicates of this upper bound estimation is in the

EB

[
MSE[ĉR]

ub,MF
p

]
column. It exceeds the bootstrap estimation in MSE

[
ĉR,MF

]B
,

and it decreases during optimization. Hence, MSE[ĉR]
ub,MF
p computed using unbiased

estimators is a feasible bound and a good indicator of the behavior of the expected

L2 error of the MFMC robust compliance estimator. The ∆cR values, although not

shown, are for these three iterations, 2.08×10−5, 1.48×10−5, and 1.41×10−5. Hence,

∆cR is between ∆µ and ∆σ2 , shown in Tables 5.2 and 5.3. This is similar to MCTO,

again showing that the focus must be on the error of the actual objective.

The MSE
[
ĉR,MF

]B
is less than MSE

[
ĉR,MC

]B
at all iterations, by between 20%

and 60%. This confirms the capability of MFMC to obtain lower errors in the es-

timation of the objective while using the same computational budget compared to

standard MC. This effect is more apparent as the optimization progresses. The neq,B
cR

is the number of samples required for the standard MC estimator to achieve the

MSE
[
ĉR,MF

]B
threshold. The values of neq,B

cR
exhibit an increasing trend, and they
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Table 5.4 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-Pn.

MFTO-Pn MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
p

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 4.33 6.30 5.47 593 5.85 4.28
Iter 40 1.15 1.70 2.40 1010 1.62 1.13
Iter 200 0.828 1.13 1.73 1052 1.01 0.827

suggest that about double the computational cost is required to achieve the same

MSE if the regular MC scheme is used instead.

To compare the MFTO-Pn strategy with the MF-µ∗ and MF-σ∗ strategies with

the same computational budgets, the MSE of their robust compliance estimators,

ĉR,µ∗ and ĉR,σ∗ , are presented in the MSE
[
ĉR,µ∗

]B
and MSE

[
ĉR,σ∗

]B
columns. For all

iterations, MSE
[
ĉR,MF

]B
is lower than MSE

[
ĉR,µ∗

]B
, and approximately the same as

MSE
[
ĉR,σ∗

]B
. Hence, for the MBB beam problem, the MFMC strategy focusing on

the optimal estimation of mean leads to a poor robust compliance estimator. For this

problem, controlling the MSE of the variance is more demanding and is paramount to

the accuracy of robust compliance. The MFMC-Pn strategy here performed similar

to the MF-σ∗ strategy.

The bootstrap computations associated with the MFTO-CSt scheme are in Ta-

ble 5.5. For the CSt scheme, the sample allocation and control variate coefficients

are selected to minimize the MSE[ĉR]
ub
cs upper bound. The EB

[
MSE[ĉR]

ub,MF
cs

]
corre-

sponds to the average of MSE[ĉR]
ub,MF
cs from B bootstrap replicates. Comparatively,

EB

[
MSE[ĉR]

ub,MF
cs

]
is higher than MSE

[
ĉR,MF

]B
, which is the bootstrap estimation of

the exact MSE of ĉR,MF . Compared to MSE[ĉR]
ub
p in the MFTO-Pn case, MSE[ĉR]

ub
cs

is a looser upper bound in this problem, but MSE[ĉR]
ub
cs has similar behavior as the

exact MSE of the estimator.

Table 5.5 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-CSt.

MFTO-CSt MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
cs

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 3.66 22.8 5.23 741 4.65 3.68
Iter 40 0.949 5.98 2.53 1282 1.28 0.955
Iter 200 0.807 4.11 1.92 1196 1.06 0.818

Comparison of MSE
[
ĉR,MF

]B
with MSE

[
ĉR,MC

]B
demonstrates that the ĉR,MF

leads to significantly lower MSE than the regular MC estimator. The same conclusion
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is also reached at by looking at the equivalent MC sample metric neq,B
cR

. The improve-

ment shown for the MFTO-CSt case is greater than for the MFTO-Pn case. The MSE

of MF-µ∗ and MF-σ∗ formulated by optimal mean or variance estimation strategies

are reported in MSE
[
ĉR,µ∗

]B
and MSE

[
ĉR,σ∗

]B
. Compared to MSE

[
ĉR,MF

]B
, both of

these estimators have a higher L2 error, with the ĉR,µ∗ estimator from MF-µ∗ strategy

being the worst. This demonstrates that minimizing the MSE[ĉR]
ub
cs upper bound is

an effective approach to selecting MFMC variables that lead to optimal estimation of

cR. The MFMC-CSt strategy accounts for the error from the estimation of mean and

standard deviation estimation, in addition to considering their interactions. Hence,

the resultant ĉR,MF is more accurate than if only one of the statistical moments is

considered.

The MFTO-CSn variant also selects the MFMC variables by minimizing the

MSE[ĉR]
ub
cs upper bound. The previous CSt scheme employs the approximate op-

timal r∗m from Lemma 13 based on limiting distribution approximations, whereas the

CSn scheme numerically optimizes the sample allocation variables. To compare these

two approaches, through the course of MFTO-CSn optimization, the approximate r∗m

at each iteration is computed. Both rm are graphed in Figure 5.7(a), and they are

shown to be similar for all iterations, even when significant fluctuation occurs, such as

around iteration 160. This consistent similarity suggests that the analytical sample

allocation in Lemma 13 is practically effective.
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(a) Case of MBB beam.
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(b) Case of carrier plate.

Figure 5.7 Comparison between numerically optimized sample allocation ratio and
approximated analytical optimal r∗m from Lemma 13 over the first 250 MFTO-CSn
iterations for the MBB beam and carrier plate.

The bootstrap analysis of the ĉR,MF estimator at three MFTO-CSn optimization

iterations is presented in Table 5.6. The general trend is similar to the previous
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observations from the MFTO-CSt case. The key point is that the robust compliance

estimator formulated from the CSn strategy leads to lower MSE compared to the

regular MC, as well as the MF-µ∗ and MF-σ∗ schemes. Hence, selecting the optimal

α and rm by minimizing MSE[ĉR]
ub,MF
cs is a feasible strategy for obtaining a robust

compliance estimator with minimal MSE.

Table 5.6 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-CSn.

MFTO-CSn MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
cs

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 3.42 22.1 4.78 732 4.69 3.42
Iter 40 1.13 6.62 2.26 1067 1.67 1.14
Iter 200 0.882 4.95 1.76 948 1.17 0.893

The last MFTO variant, denoted as the EVan scheme, selects all the MFMC

variables (αµ, ασ, and rm) by numerically minimizing the MSE[ĉR]
MF
µσ , which is an

approximation of the exact MSE of the robust compliance estimator. The boot-

strapping computations for MFTO-EVan are reported in Table 5.7. In Table 5.1,

MSE[ĉR]µσ closely resembles the MSE computed from bootstrapping, affirming the

result of Theorem 1. However, in the case of the MFMC estimator, a comparison of

MSE
[
ĉR,MF

]B
and EB

[
MSE[ĉR]

MF
µσ

]
shows that MSE[ĉR]µσ leads to inaccuracies rang-

ing from 10% to 40%, especially for later iterations. Recall that nplt = 50 samples are

used to compute the various unbiased estimators required in MSE
[
ĉR,MF

]B
. In this

case, this sample size is insufficient to achieve high accuracy. If nplt is increased to 500,

which is Pb, and EB

[
MSE[ĉR]

MF
µσ

]
is recomputed using the bootstrap procedure, then

this leads to 4.04 at 5th iteration, 1.26 at 40th iteration, and 0.923 at 200th iteration.

These values are closer to MSE
[
ĉR,MF

]B
. To demonstrate this further, the MSE[ĉR]µσ

of the MFMC estimator is recomputed using nplt = np = 20, 000 samples, and the

results are MSE[ĉR]
MF,np
µσ . The values of MSE[ĉR]

MF,np
µσ are very close to the bootstrap

estimations in MSE
[
ĉR,MF

]B
. Hence, this indicates the feasibility of MSE[ĉR]µσ from

Theorem 1, as well as the
̂

E
[
µ̂c,MF σ̂2

c,MF

]
expression in Lemma 12. Additionally,

this result shows that caution about the general application of the MFMC schemes is

required. For a high degree of statistical accuracy, a sizeable number of pilot samples

may be required.

Despite the inaccuracies in the estimation of MSE[ĉR]µσ, comparing MSE
[
ĉR,MF

]B
to MSE

[
ĉR,MC

]B
demonstrates that the MFMC-EVan scheme provides significant

MSE reductions compared to the regular MC for the same computational cost. Com-
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Table 5.7 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-EVan.

MFTO-EVan MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

MF
µσ

]
MSE

[
ĉR,MC

]B
MSE

[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
MSE[ĉR]

MF,np
µσ

Iter 5 3.88 3.44 5.81 4.26 3.75 3.85
Iter 40 1.23 0.851 2.60 1.54 1.21 1.24
Iter 200 0.890 0.516 1.75 1.06 0.892 0.874

pared to MSE
[
ĉR,µ∗

]B
and MSE

[
ĉR,σ∗

]B
, the EVan strategy is more effective than the

strategy that focuses only on the mean and is as effective as the strategy that focuses

only on the variance. Hence, even when MSE[ĉR]µσ is not approximated accurately,

the numerically optimized MFMC parameters result in a low MSE. One explanation

for this phenomenon is that the sources of the difference between the true MSE and

its approximation MSE[ĉR]µσ are mainly statistical, and thus only weakly related to

the MFMC variables. The estimation error of the statistics is greatly reduced when

sufficient accuracy is ensured, as in the case of MSE[ĉR]
MF,np
µσ . The optimal variables

for minimizing MSE[ĉR]
MF
µσ also approximately minimize MSE

[
ĉR,MF

]B
.

The difference between the EVan approach and other MFMC strategies is that

in minimizing the MSE, EVan selects αµ and ασ through numerical optimization,

whereas other approaches employ analytical expressions for α∗
µ and α∗

σ. The dif-

ferences in their values are illustrated in Figure 5.8 through the iterations of the

MFTO-EVan algorithm. The values of ασ are similar, but the values of αµ are no-

ticeably different. The expression of α∗
µ only depends on statistical parameters, but

the MSE[ĉR]
MF
µσ expression is influenced by the sample numbers ns and ms. Hence,

compared to α∗
µ, more fluctuations are expected in the numerically optimized αµ,

which is influenced by changes in rm. The expression of α∗
σ depends on the model

distribution, it is sensitive to adjustments in rm and hence, it is similar to numerically

optimized ασ.

5.3.3 Carrier Plate

The spatial domain of the carrier plate problem is shown in Figure 5.1(b). It is a

square with side lengths of 100 units. The distributed load is 0.01 per unit length in

the negative y direction on the top-most edge, leading to a total load of one. The

boundary condition is zero vertical and horizontal displacements on the bottom edge.

The volume constraint in the RTO is 50% of the design domain, which is equivalent

to 5000 units squared.
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Figure 5.8 Comparison between the values of α∗
µ and α∗

σ with numerically optimized
αµ and ασ that minimizes MSE[ĉR]

MF
µσ over the first 250 MFTO-EVan iterations for

the MBB problem.

The DTO design is shown in Figure 5.10(a). The design is symmetric about

the horizontal center of the domain. The main load-bearing component is an arch

structure in the center of the domain, and due to the distributed load applied, the

design has many small members near the top surface where the force is applied.

For computing the ground truth parameters, an MC scheme employs 20,000 ran-

dom samples of the Young’s modulus random field. The mean and variance of the

Young’s modulus at the centroid of each element are evaluated using these random

samples and illustrated in Figure 5.9. Due to the short correlation lengths of the

random field, the length scale of variability in these plots is on the order of a few

elements.

Carrier Plate RTO Designs

The RTO designs are shown in Figure 5.10. Compared to the DTO design, the

robust designs have asymmetrical features. This is caused by the RTO designs hav-

ing many small branches. The statistics of the sampled Young’s modulus fields in

Figure 5.9 show that modulus exhibit significant variations in a small length scale.

Hence, these small regions of variability influenced the positioning of the members

in the RTO designs. The phenomenon of short correlation lengths leading to gener-

ation of small members for structural reinforcement is observed in other studies [52,

53]. The robust compliances of the RTO designs are all smaller than for DTO. This

shows the effectiveness of MFTO and MCTO in accounting for material uncertainties.
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(a) Mean of the sampled modulus. (b) Variance of the sampled modulus.

Figure 5.9 Mean and variance of the Young’s modulus at the centroid of elements
over the domain of carrier plate, computed using the 20,000 random samples.

Comparatively, the MFTO-EVan obtained the smallest cR, while MFTO-Pn had the

largest amongst the RTO algorithms. This test case again encourages confidence in

the MFTO algorithms and demonstrates their effectiveness in reaching high quality

minima.

Identical to the MBB beam problem, the bootstrap analyses for the carrier plate

problem use the 5th, 40th, and 200th material distributions, which are representative

intermediate iterations.

Analyses of MC Estimators

The bootstrap computation of the MC robust compliance estimator is shown in

Table 5.8. The observations for the carrier plate problem are very similar to the

MBB beam. The relative L2 error (∆cR) of the objective has an order of magnitude

in between that of the individual statistical moments (∆µ and ∆σ2). Comparing

the quantities derived in Theorem 1 with the bootstrap estimated MSE
[
ĉR,MC

]B
,

the values of EB

[
MSE[ĉR]

ub,MC
p

]
and EB

[
MSE[ĉR]

ub,MC
cs

]
are both higher, suggest-

ing that both MSE[ĉR]
ub
cs and MSE[ĉR]

ub
p are acceptable upper bounds. The values

of EB

[
MSE[ĉR]

MC
µσ

]
are very similar to MSE

[
ĉR,MC

]B
, showing that MSE[ĉR]µσ is a

good approximation of the exact MSE of the MC robust compliance estimator.

Analyses of MFMC Mean and Variance Estimators

For analyses on the MFMC mean and variance estimators, the results based on

MFTO-CSt iterations are presented. The kernel density approximated PDFs of HFM
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(a) DTO:
(2.464, 0.1013, 2.869)

(b) MCTO:
(2.361, 0.0866, 2.707,−5.63%)

(c) MFTO-Pn:
(2.446, 0.0927, 2.816,−1.82%)

(d) MFTO-CSt:
(2.341, 0.0883, 2.694,−6.09%)

(e) MFTO-CSn:
(2.389, 0.0915, 2.755,−3.98%)

(f) MFTO-EVan:
(2.322, 0.0885, 2.676,−6.71%)

Figure 5.10 Structural designs for the carrier plate problem produced by DTO and
different RTO algorithms with κ = 4. The subcaption details their ground truth
statistics in brackets: (µc, σc, cR). For the RTO algorithms, the difference in cR
between the RTO design and DTO design is also reported as a percentage. Note that
a negative difference means a reduction in cR.

Table 5.8 Bootstrap analysis results of the MC estimators using ρ at different opti-
mization iterations of MCTO.

MCTO MSE
[
ĉR,MC

]B EB

[
MSE[ĉR]

ub,MC
p

]
EB

[
MSE[ĉR]

ub,MC
cs

]
EB

[
MSE[ĉR]

MC
µσ

] ∆µ ∆σ2 ∆cR

Iter 5 1.27e-3 2.18e-3 1.05e-2 1.34e-3 2.04e-6 3.80e-3 1.41e-5
Iter 40 1.91e-4 3.07e-4 1.32e-3 1.89e-4 2.82e-6 3.81e-3 1.91e-5
Iter 200 1.36e-4 2.19e-4 9.49e-4 1.34e-4 2.52e-6 3.76e-3 1.86e-5

and LFM compliances at intermediate iterations are depicted in Figure 5.6(b). These

PDFs again exhibit Gaussian shapes similar to the MBB problem and hence the

approximate confidence interval from Corollary 4.1 is applicable.

The bootstrap data associated with the µ̂c,MF and σ̂2
c,MF estimators are reported in

Tables 5.9 and 5.10. The similarity between the MSE
[
µ̂c,MF

]B
and EB

[
MSE[µ̂c,MF ]

]
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shows that the MSE of the MFMC mean estimator is accurately estimated by the

MSE[µ̂c,MF ] expression with nplt pilot samples. The same is said for the σ̂2
c,MF es-

timator. The data related to PCI demonstrate the applicability of Corollary 4.1 in

estimating the confidence intervals for the mean and variance using the MFMC esti-

mators.

Table 5.9 Bootstrap analysis results of the MFMC mean estimator using ρ at dif-
ferent optimization iterations of MFTO-CSt.

MFTO-CSt MSE
[
µ̂c,MF

]B EB

[
MSE[µ̂c,MF ]

]
PB
90% PB

99% ∆µ

Iter 5 1.14e-4 1.09e-4 89.2% 99.4% 1.47e-6
Iter 40 1.76e-5 1.77e-5 90.8% 99.0% 1.85e-6
Iter 200 5.81e-6 5.87e-6 91.2% 99.2% 1.05e-6

Table 5.10 Bootstrap analysis results of the MFMC variance estimator using ρ at
different optimization iterations of MFTO-CSt.

MFTO-CSt MSE
[
σ̂2
c,MF

]B
EB

[
MSE[σ̂2

c,MF ]
]

PB
90% PB

99% ∆σ2

Iter 5 2.66e-5 2.62e-5 91.6% 99.2% 3.95e-3
Iter 40 8.16e-7 7.72e-7 89.4% 98.2% 3.91e-3
Iter 200 1.63e-7 1.73e-7 91.0% 99.2% 2.52e-3

Analyses of MFMC Robust Compliance Estimator

The analyses of the four MFMC variants are presented in Tables 5.11, 5.12, 5.13,

and 5.14. These variants differ due to their strategies for selecting the optimal control

variate coefficients and the sample allocation. These variables are selected based

on minimizing either MSE[ĉR]
ub
p , MSE[ĉR]

ub
cs , or MSE[ĉR]µσ. The analyses here are

focused on demonstrating the effectiveness of these strategies for calculating ĉR,MF

with a small MSE.

Table 5.11 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-Pn.

MFTO-Pn MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
p

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 2.40e-3 3.87e-3 2.23e-3 494 2.61e-3 3.53e-3
Iter 40 3.09e-4 4.53e-4 3.48e-4 524 2.36e-4 3.17e-4
Iter 200 1.19e-4 1.79e-4 1.91e-4 706 7.50e-5 1.19e-4
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Table 5.12 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-CSt.

MFTO-CSt MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
cs

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 1.49e-3 1.23e-2 1.53e-3 517 2.24e-3 2.82e-3
Iter 40 2.55e-4 1.81e-3 2.84e-3 547 3.12e-4 3.12e-4
Iter 200 9.05e-5 7.22e-4 1.64e-4 848 1.35e-4 1.60e-4

Table 5.13 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-CSn.

MFTO-CSn MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

ub,MF
cs

]
MSE

[
ĉR,MC

]B
neq,B
cR

MSE
[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
Iter 5 1.71e-3 1.31e-2 2.18e-3 554 1.98e-3 3.90e-3
Iter 40 2.21e-4 1.50e-3 3.36e-4 781 2.47e-4 3.25e-4
Iter 200 6.15e-5 4.43e-4 1.60e-4 1323 6.90e-5 1.21e-4

Table 5.14 Bootstrap analysis results of the robust compliance estimator using ρ at
different optimization iterations of MFTO-EVan.

MFTO-EVan MSE
[
ĉR,MF

]B EB

[
MSE[ĉR]

MF
µσ

]
MSE

[
ĉR,MC

]B
MSE

[
ĉR,µ∗

]B
MSE

[
ĉR,σ∗

]B
MSE[ĉR]

MF,np
µσ

Iter 5 1.67e-3 1.62e-3 1.85e-3 2.57e-3 3.68e-3 1.66e-3
Iter 40 1.87e-4 1.57e-4 2.26e-4 2.71e-4 2.71e-4 1.85e-4
Iter 200 5.84e-5 4.78e-5 1.40e-4 1.03e-4 1.19e-4 5.87e-5

The comparisons between the MFMC estimators with the regular MC estimator

of equal computational cost are carried out by contrasting the MSE
[
ĉR,MF

]B
columns

with the MSE
[
ĉR,MC

]B
columns, and also by the neq,B

cR
metric. The MFMC variants

for all cases lead to a noticeable improvement of MSE for later iterations, and neq,B
cR

shows that it would require about double the computational cost to achieve the same

L2 error using the regular MC robust compliance estimator. The CSn and EVan

variants lead to the largest MSE reduction, while the Pn scheme has the smallest.

Both the MBB beam and the carrier plate problems demonstrate the improvement

of the inner loop UQ procedure using MFMC schemes in place of standard MC.

The existing MFMC strategies in literature mainly target the optimal estimation

of either the mean or variance. These strategies denoted as MF-µ∗ and MF-σ∗, are em-

ployed to construct a robust compliance estimator at MFTO iterations, and the boot-

strap computations of their MSE are reported in the MSE
[
ĉR,µ∗

]B
and MSE

[
ĉR,σ∗

]B
columns. For the carrier plate problem, MSE

[
ĉR,σ∗

]B
generally has a much larger

value than MSE
[
ĉR,µ∗

]B
. This is the reverse of the MBB beam problem and shows
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that it is difficult to know a priori which statistical moment should be prioritized,

and focusing on one statistical moment does not always minimize the MSE of the

robust compliance.

A qualitative explanation of this contrasting behavior is attributed to the topolo-

gies of the designs, shown in Figure 5.2 for MBB beam and Figure 5.10 for carrier

plate. The designs of the MBB beam are all very similar, suggesting the existence of

a primary underlying load path. On the other hand, the designs of carrier plate vary

and have small members, suggesting that multiple load paths with equal prominence

exist. Hence, for the MBB beam, accurate prediction of the mean displacement field

is easier to achieve compared to the variance. Consequently, MFMC scheme targeting

optimal variance estimation performs better. For the carrier plate, accurate predic-

tion of the mean displacement is difficult due to various load paths and hence the

MFMC scheme focusing on optimal mean estimation has better performance.

The MFMC variants in this work, based on minimizing quantities related to the

MSE of robust compliance, offer alternative methods to construct an optimal MFMC

estimator. Observing the MSE
[
ĉR,MF

]B
columns, the CSt, CSn, and EVan variants

all lead to a reduction of MSE compared to the ĉR,µ∗ and ĉR,σ∗ estimators. This is a

consistent observation for both the MBB beam and the carrier plate problems, show-

ing that the MFTO variants are effective for problems with differing behaviors. Also,

this emphasizes the importance of focusing on the proper objective when selecting

the MFMC variables. The MF-µ∗ and MF-σ∗ strategies diminish the effectiveness

of the MFMC robust compliance estimator in reducing the MSE. However, the Pn

strategy leads to MSE values similar to ĉR,σ∗ , but higher than ĉR,µ∗ . In the carrier

plate problem, the Pn strategy is not very effective.

Furthermore, the values of EB

[
MSE[ĉR]

ub,MF
p

]
and EB

[
MSE[ĉR]

ub,MF
cs

]
are greater

than MSE
[
ĉR,MF

]B
. This confirms that both MSE[ĉR]

ub,MF
p and MSE[ĉR]

ub,MF
cs are

acceptable upper bounds of the MSE of ĉR,MF , with MSE[ĉR]
ub,MF
cs being more con-

servative. The EB

[
MSE[ĉR]

MF
µσ

]
differs with MSE

[
ĉR,MF

]B
ranging from 5% to 20%.

This difference is induced by nplt not being large enough to ensure high statistical

accuracy. Despite this inaccuracy, the EVan strategy is still effective in reducing the

MSE of the estimator for cR. Increasing the nplt leads to improvement in accuracy.

Setting nplt = Pb = 500 and recomputing EB

[
MSE[ĉR]

MF
µσ

]
with the bootstrapping

procedure, the approximated MSEs of the cR estimator are: 1.66× 10−3 at 5th iter-

ation, 1.85× 10−4 at 40th iteration, and 5.87× 10−5 at 200th iteration. These values

of EB

[
MSE[ĉR]

MF
µσ

]
computed with nplt = 500 are similar to MSE

[
ĉR,MF

]B
. Further-

more, computing MSE[ĉR]
MF
µσ with np = 20, 000 samples, as reported in MSE[ĉR]

MF,np
µσ ,
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the estimated MSE value is now very similar to bootstrap estimate of MSE
[
ĉR,MF

]B
,

as statistical noise has been removed due to the law of large numbers. Ultimately,

these observations add confidence to the results of Theorem 1 and Lemma 12.

The sample allocation in Lemma 13 is assessed by comparing the optimal sample

allocation ratio from CSn and CSt. The CSn scheme numerically optimizes the rm,

while CSt employs the limiting distribution approximation. Through MFTO-CSn op-

timization, the approximate r∗m are computed according to Lemma 13, and compared

with the numerical optimum in Figure 5.7(b). Just like the MBB beam case, they

are consistently similar, which shows the effectiveness of Lemma 13 in estimating the

optimal rm.

5.4 Conclusion

In this chapter, a MFMC-based RTO algorithm is developed which generates high

quality structural designs under high dimensional material uncertainties and is more

efficient than the MC-based RTO, which is typically used for these problems.

The MFTO algorithm consists of two novel ingredients. The first is the application

of the MFMC scheme developed in Chapter 4 to generate accurate estimations of the

statistic of interest, which is cR. The second is the incorporation of the on-the-fly RB

model as the LFM and the full FE model as the HFM in MFMC. The RB model is

attractive for MFTO since it is much cheaper to evaluate than the FE model, and

its output has a high correlation with that of the FE model. Also, the on-the-fly

approach to RB does not interact with the spatial discretization, which is important

for uncertainties with short correlation lengths.

The variables in the MFMC scheme are selected to minimize the MSE of the es-

timator for cR, which is a linear combination of the mean and standard deviation of

the compliance. This approach leads to four variants, which are CSt and CSn from

minimizing MSE[ĉR]
ub
cs , an upper bound of the MSE; Pn from minimizing MSE[ĉR]

ub
p ,

another upper bound of the MSE; and EVan from minimizing the MSE[ĉR]µσ, which

is an approximation of the MSE. Numerical cases demonstrate that given a fixed com-

putational budget, these MFMC variants provide a better estimation of cR compared

to the standard MC, as well as MFMC schemes that target the optimal estimation of

either the mean or the variance.

Comparing the numerical results of the four MFMC variants, the CSt and CSn

variants are the most effective in reducing the MSE of the estimator of cR given

a computational budget. The EVan variant is also effective, but, the expression
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of MSE[ĉR]µσ requires estimations of the product of raw moments for which high

statistical accuracy is difficult to achieve using only a small set of nplt. The Pn

variant is the least effective in optimal estimation of cR. However, the MSE[ĉR]
ub
p

upper bound is tighter compared to MSE[ĉR]
ub
cs , and since it is only dependent on the

MSEs of mean and variance estimators, it is easier to approximate accurately with

a small set of nplt. For applications where the computational budget constraint is

relaxed and instead a maximum of MSE is considered, if sufficient statistical accuracy

is achievable the EVan strategy should be employed. If sufficient statistical accuracy

cannot be achieved for MSE[ĉR]µσ, then the MSE[ĉR]
ub
p upper bound should be used

as the threshold.



Chapter 6

Conclusion

This thesis develops robust topology optimization (RTO) algorithms that are efficient

and produce uncertainty-aware structures under material variability induced by addi-

tive manufacturing. RTO has a nested loop framework, where the statistic of interest

is computed in the inner loop using an uncertainty quantification (UQ) scheme, while

the design variables are updated in the outer loop using filters and a gradient-based

optimizer. The governing equation in RTO is the static linear elasticity system and

the statistic of interest is the robust compliance (cR), which is a weighted sum of

the mean and standard deviation of the compliance. Having an accurate estimation

of cR leads to high quality designs. The material uncertainties, modeled using the

Karhunen–Loève expansion, are high dimensional and only the Monte Carlo (MC)

method is tractable while other UQ schemes suffer from the curse of dimensionality.

This thesis presents two novel UQ schemes for the efficient and reliable computation

of cR in the presence of high stochastic dimensions, and they are made compatible

with gradient-based optimization to form RTO algorithms.

The first UQ scheme is the Neumann expansion (NE) scheme, presented in Chap-

ter 3, alongside the associated RTO algorithm, denoted as NETO. The NE scheme

represents the compliance as a perturbed series, where each expansion term is ap-

proximated as a product between a power of the random variable α and a constant.

This is a dimension reduction approach since all of the variability of the system is

accounted for by the powers of α. For RTO, the expected values and gradients of the

expansion terms are evaluated using sampling methods each iteration, which are then

employed to compute the cR and its gradient. Since sampling methods are costly

to re-evaluate each iteration, a storage and update algorithm is developed to enable

rapid computation of the quantities following the update of design variables.

The NETO algorithm is efficient in the sense of reduced computational cost com-

pared to the MC-based RTO (MCTO) algorithm. The numerical cases demonstrate

92
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that NETO can produce designs with a similar level of optimality as the MCTO de-

signs generated using 1000 random samples while being a factor of 300 to 400 faster.

Since the NETO approximates the randomness of the system using only the α associ-

ated variables, it leads to an offset error compared to the true cR. For the optimization

cases considered, the relative errors are less than 2% and depend on the character-

istics of the uncertainty. This is the shortcoming of the NETO method and would

require further development. Ultimately, for high dimensional material uncertainties,

NETO can provide a substantial improvement in computational efficiency compared

to MCTO while generating robust designs with similar quality, albeit admitting a

higher estimation error of the robust compliance.

The second UQ scheme is the multi-fidelity Monte Carlo (MFMC) scheme, pre-

sented in Chapter 4. The standard MC approach estimates cR by sampling from a

high fidelity model (HFM), and the quality of the MC estimator is assessed using the

mean-squared error (MSE). The MFMC scheme employs a low fidelity model (LFM)

and estimates cR by combining the samples from both the HFM and LFM. If evalu-

ating the LFM is cheaper and the ouput of the LFM has a good statistical correlation

with the output of the HFM, then the MFMC estimator of the cR has a lower MSE,

leading to a more accurate estimation of cR. The existing MFMC approaches are only

applicable to the optimal estimation of either the mean or the variance, which may

not be optimal for the estimation of cR. This thesis develops strategies for minimizing

the MSE of the estimator for cR. Also, unbiased estimators are developed to enable

the MSE of cR to be computed in optimization setting.

The MFMC-based RTO (MFTO) algorithm is detailed in Chapter 5. The MFTO

algorithm is efficient in the sense of reduced estimation error compared to MCTO

for the same computational cost. The HFM employed is the finite element model

and the LFM corresponds to the on-the-fly reduced basis model. The RB model

is attractive for RTO since it does not interfere with spatial discretization, which is

important for uncertainties with short length scales. The numerical cases demonstrate

that comparing the MFTO and MCTO algorithms with the same computational

budget, the MSEs of the MFMC estimators are about 20% to 60% lower than the

MC estimators. For MCTO to achieve the same accuracy, about two to three times

more computational cost is required. In addition, the MFMC strategies focusing

on the optimal estimation of cR are shown to be more effective than the strategies

from the literature which target either the mean or the variance. The designs from

the MFTO are as optimal as the designs from the MCTO, which demonstrates the

efficacy of the MFTO in producing uncertainty-aware structures.



Appendix A

Supplementary Information for

Chapter 4

A.1 Estimators for the Monte Carlo Scheme

A.1.1 MC Estimators for Mean and Variance

Let ξ = {ξd}, d = 1, · · · , nd be the set of input random variables, with nd being the

dimension of the input variable. Consider ns independent samples of ξ, leading to

ξq = {ξd}q, q = 1, · · · , ns. Evaluating the HFM or LFM using this set of samples

leads to ns independent samples of the output of interest, which is the compliance

in this thesis, denoted as c = {cq}, q = 1, · · · , ns. Define the mean parameter of the

compliance as µc, the unbiased MC estimator for µc is:

µ̂c,MC =
1

ns

ns∑
i=1

ci. (A.1)

The unbiased MC estimator for the variance is:

σ̂2
c,MC =

1

ns − 1

ns∑
i=1

(ci − µ̂c,MC)
2. (A.2)

For the MC mean estimator, the MSE is:

MSE[µ̂c,MC ] = E
[
(µ̂c,MC − µc)

2
]
=

σ2
c

ns

, (A.3)

where σ2
c is the population variance parameter of the compliance. The MSE for the
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MC variance estimator is:

MSE[σ̂2
c,MC ] = E

[
(σ̂c,MC − σ2

c )
2
]
=

1

ns

(δc −
ns − 3

ns − 1
σ4
c ), (A.4)

where δc = E[(c− µc)
4] is the 4th central moment parameter of compliance.

A.1.2 MC Estimator for Standard Deviation

The biased MC standard deviation estimator is:

σ̂c,MC =

√
σ̂2
c,MC . (A.5)

For a general standard deviation estimator, σ̂c, the square root imposes challenges in

obtaining a closed form of its MSE. A Taylor series approximation of the square root

function centered at σ2
c allows the derivation of MSE for a generic σ̂c estimator [113].

The result is described in the following lemma.

Lemma 14. Given the population variance parameter σ2
c and an unbiased sample

variance estimator σ̂2
c , the biased standard deviation estimator σ̂c =

√
σ̂2
c has the

following properties:

Bias: E
[√

σ̂2
c − σc

]
= −1

8σ3
c
MSE[σ̂2

c ] +O(E
[
(σ̂2

c − σ2
c )

3
]
),

Mean Squared Error: E

[(√
σ̂2
c − σc

)2
]
= 1

4σ2
c
MSE[σ̂2

c ] +O(E
[
(σ̂2

c − σ2
c )

3
]
).

Proof of Lemma 14: The Taylor series expansion of the function f(x) =
√
x about

x0 is to 2nd order

√
x =
√
x0 +

1

2
√
x0

(x− x0)−
1

8x
3/2
0

(x− x0)
2 +O((x− x0)

3).

Subtracting
√
x0 from both side of the equation, substitute in x0 = σ2

c and x = σ̂2
c ,

then taking the expected value of both sides, the result is:

E
[√

σ̂2
c − σc

]
=

1

2σc

E
[
σ̂2
c − σ2

c

]
− 1

8σ3
c

E
[
(σ̂2

c − σ2
c )

2
]
+O(E

[
(σ̂2

c − σ2
c )

3
]
).

Since σ̂2
c is an unbiased estimator, the first term vanishes. The second expected value
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term is the definition of MSE[σ̂2
c ], and hence the equation is simplified to

E
[√

σ̂2
c − σc

]
= − 1

8σ3
c

MSE[σ̂2
c ] +O(E

[
(σ̂2

c − σ2
c )

3
]
),

which is the equation for the estimator bias presented in the lemma.

For the MSE of the estimator, first expand:

E
[
(σ̂c − σc)

2
]
= E

[
σ̂2
c − σ2

c

]
+ 2E

[
σ2
c − σ̂cσ

2
c

]
.

The first term vanishes since σ̂2
c is unbiased, and the second term is equivalent to 2σc

multiplied with the negative of the bias of the estimator, and hence

E
[
(σ̂c − σc)

2
]
= 2σc

(
−1
8σ3

c

E
[
(σ̂2

c − σ2
c )

2
]
+O(E

[
(σ̂2

c − σ2
c )

3
]
)

)
=

1

4σ2
c

MSE[σ̂2
c ] +O(E

[
(σ̂2

c − σ2
c )

3
]
).

The expression for the MSE is obtained.

This lemma can be directly applied to the MC standard deviation estimator by

substituting in σ̂c,MC . Since σ̂c,MC is biased, its MSE is not equal to its variance.

A.1.3 Practical MSE Computations

Computing MSE[µ̂c,MC ], MSE[σ̂2
c,MC ], and MSE[σ̂c,MC ] requires parameters including:

σc, µc, δc, etc. Practically, these parameters are unknown and unbiased MC estimators

are employed estimate their values.

The σ2
c is approximated by the standard MC estimator σ̂2

c,MC . The unbiased MC

estimator of δc is provided by Lemma 15.

Lemma 15. Unbiased MC estimator of the fourth central moment δc given ns samples

is:

δ̂c =
−3ns(2ns − 3)

(ns − 1)(ns − 2)(ns − 3)
m̂2

2 +
ns(n

2
s − 2ns + 3)

(ns − 1)(ns − 2)(ns − 3)
m̂4. (A.6)

The m̂2 and m̂4 are the biased second and fourth central moment estimator from MC:

m̂2 =
1

ns

ns∑
i=1

(ci − µ̂c,MC)
2, and m̂4 =

1

ns

ns∑
i=1

(ci − µ̂c,MC)
4. (A.7)

Proof of Lemma 15: See Gerlovina and Hubbard [114].

The unbiased estimator of σ4
c is provided by Lemma 5. For estimating the σ3

c

parameter, it is difficult to develop a general unbiased estimator due to the difficulties
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introduced by the square root operator, just like the case of σc. Hence, σ̂2
c,MC

3/2

is

used as an approximation.

A.2 Proofs, Lemma, and Corollary for Section 4.2

A.2.1 Proof of Lemma 2

Proof of Lemma 2: Since σ̂2
c,MF is unbiased, its MSE is equivalent to its variance

(V[·]) and hence:

MSE[σ̂2
c,MF ] = V

[
µ̂h,MC

ns
]
+ α2

σV
[
(µ̂l,MC

ms − µ̂l,MC
ns)
]
+ 2ασCov

[
µ̂h,MC

ns , (µ̂l,MC
ms − µ̂l,MC

ns)
]
. (A.8)

Using Lemma 3.2 from Qian et al. [85], the terms in the above equation are expanded:

V
[
(µ̂l,MC

ms − µ̂l,MC
ns)
]
= V

[
µ̂l,MC

ms
]
+ V

[
µ̂l,MC

ns
]
− 2Cov

[
µ̂l,MC

ms , µ̂l,MC
ns
]
,

=
1

ns

(δl −
ns − 3

ns − 1
σ4
l )−

1

ms

(δl −
ms − 3

ms − 1
σ4
l ).

Also,

Cov
[
µ̂h,MC

ns , (µ̂l,MC
ms − µ̂l,MC

ns)
]
=

[
− 1

ms

(
Cov[ϑh, ϑl] +

2
ms−1

Cov[ch, cl]
2
)
+ 1

ns

(
Cov[ϑh, ϑl] +

2
ns−1

Cov[ch, cl]
2
)]

.

The MSE expressions in Equation (4.6) and Equation (A.8) are identical. Since the

variance is strictly positive, Equation (4.6) is a convex quadratic in ασ. Applying

Proposition 2 from Gorodetsky et al. [87], the stationary point of
∂MSE[σ̂2

c,MF ]

∂ασ
= 0 is:

α∗
σ =

1
ns
(Cov[ϑh,ϑl]+

2
ns−1

Cov[ch,cl]
2)− 1

ms
(Cov[ϑh,ϑl]+

2
ms−1

Cov[ch,cl]
2)

1
ns

(δl−ns−3
ns−1

σ4
l )−

1
ms

(δl−ms−3
ms−1

σ4
l )

,

which leads to the expression for α∗
σ.

A.2.2 Proof of Lemma 3

Proof of Lemma 3: Recalling the definition of µ̂Γ,MF :

µ̂Γ,MF = µ̂Γ,MC
ns + α(µ̂γ,MC

ms − µ̂γ,MC
ns), ms > ns.
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If the first assumption holds true, then each of the MC estimators are just a sum of Γ or

γ. The MFMC estimator is thus composed of sum of jointly normal random variables,

hence the estimator itself is a normally distributed variable. By extension, µ̂Γ,MF−µΓ

is also a normal random variable, and its variance is the sum of the variances of all

the Γ and γ involved in the MC estimators, in addition to the covariances between

them.

If the second assumption holds, then:

µ̂Γ,MF − µΓ = (µ̂Γ,MC
ns − µΓ) + α(µ̂γ,MC

ms − µ̂γ,MC
ns).

Using CLT, the first term is normally distributed with

µ̂Γ,MC
ns − µΓ ∼ N (0,

V[Γ]
ns

).

For the second term, using “Result 14” from O’Neill [115], it is also a normal random

variable:

µ̂γ,MC
ms − µ̂γ,MC

ns ∼ N (0,
ms − ns

nsms

V[γ]).

Since α and µΓ are constants, µ̂Γ,MF − µΓ is from a sum of jointly normal random

variables, and hence it is also a normal random variable with variance equal to the

sum of the individual variances of the two terms as well as their covariance.

Consider the following rearrangement of µ̂Γ,MF − µΓ:

µ̂Γ,MF − µΓ = µ̂Γ,MC
ns + α(µ̂γ,MC

ms − µ̂γ,MC
ns)− µΓ + αµγ − αµγ,

= α
(
µ̂γ,MC

ms − µγ

)
+
(
(µ̂Γ,MC

ns − αµ̂γ,MC
ns)− (µΓ − αµγ)

)
.

By the application of CLT to MC estimators, both terms are normal random variables:

µ̂γ,MC
ms − µγ ∼ N (0, α2V[γ]

ms

),

and

(µ̂Γ,MC
ns − αµ̂γ,MC

ns)− (µΓ − αµγ) ∼ N (0,
V[Γ− αγ]

ns

).

If the third assumption holds, since µγ and µΓ−αµγ are both constants, µ̂γ,MC
ms − µγ

and (µ̂Γ,MC
ns − αµ̂γ,MC

ns)− (µΓ − αµγ) are jointly normal, and hence µ̂Γ,MF − µΓ is

also normally distributed. The variance of this difference is the variances of the two

terms plus their covariances.

All three assumptions lead to a normally distributed µ̂Γ,MF − µΓ. The µ̂Γ,MF
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estimator is unbiased, hence the mean of the distribution is zero. For the variance,

all cases resulted in some form of the sum of variances and covariances of individual

variables, where these variables are different depending on the arrangement of the

equation. However, in all cases, from the properties of variance and covariance, this

sum is equivalent to V
[
µ̂Γ,MF

]
, and hence also to MSE

[
µ̂Γ,MF

]
. Ultimately, these

assumptions result in (µ̂Γ,MF −µΓ) ∼ N (0,MSE
[
µ̂Γ,MF

]
), and using the standard CI

formulation for a normal distribution, the CI approximation in Lemma 3 is achieved.

A.2.3 Proof of Lemma 4

Proof of Lemma 4: The full expression for µ̂ϑh,MF is shown to clarify its contrast from

σ̂2
c,MF :

µ̂ϑh,MF = µ̂ϑh,MC
ns + ασ(µ̂ϑl,MC

ms − µ̂ϑl,MC
ns) = 1

ns

∑ns

i=1(ch,i − µh)
2 + ασ

(
1
ms

∑ms

i=1(cl,i − µl)
2 − 1

ns

∑ns

i=1(cl,i − µl)
2
)
.

Note that µ̂ϑh,MF is also an unbiased estimator for σ2
h, but unlike σ̂2

c,MF , the Bessel’s

correction (ns − 1) is not required since the parameters µl and µh are used directly.

Since these mean parameters are typically unknown, µ̂ϑh,MF cannot be computed.

In σ̂2
c,MF , the µl and µh are approximated by µ̂h,MC

ns , µ̂l,MC
ms , and µ̂l,MC

ns . The

σ̂2
c,MF is rewritten to include µ̂ϑh,MF in its expression:

σ̂2
h,MC

ns

=
1

ns − 1

ns∑
i=1

(ch,i − µ̂h,MC
ns)2 =

1

ns − 1

ns∑
i=1

((ch,i − µh) + (µh − µ̂h,MC
ns))2,

=

[
1

ns

ns∑
i=1

(ch,i − µh)
2

]
+ (µh − µ̂h,MC

ns)2 +
1

ns

σ̂2
h,MC

ns

.

Similar derivation can be done for σ̂2
l,MC

ms

and σ̂2
l,MC

ns

, hence σ̂2
c,MF can be rewritten

as:

σ̂2
c,MF = σ̂2

h,MC

ns

+ ασ

(
σ̂2
l,MC

ms

− σ̂2
l,MC

ns
)
,

=

{
1

ns

ns∑
i=1

(ch,i − µh)
2 + ασ

1

ms

ms∑
i=1

(cl,i − µl)
2 − ασ

1

ns

ns∑
i=1

(cl,i − µl)
2

}
+
{
(µh − µ̂h,MC

ns)2 + ασ(µl − µ̂l,MC
ms)2 − ασ(µl − µ̂l,MC

ns)2
}

+

{
1

ns

σ̂2
h,MC

ns

+ ασ
1

ms

σ̂2
l,MC

ms

− ασ
1

ns

σ̂2
l,MC

ns
}
.

(A.9)
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The ασ is assumed to be a bounded constant. In the right hand side of the last

equality in Equation (A.9), the first curly bracket term is the definition of µ̂ϑh,MF . For

the second curly bracket term, by the weak law of large numbers, the MCmean estima-

tors converges in probability to the true parameters, meaning limns→∞ µ̂h,MC
ns P−→ µh,

limms→∞ µ̂l,MC
ms P−→ µl, and limns→∞ µ̂l,MC

ns P−→ µl, where
P−→ denote convergence in

probability. By the Slutsky’s theorem or by the Continuous mapping theorem, the

squared differences converges in probability to zero. Hence, the second term overall

converges in probability to zero:

lim
ns→∞

lim
ms→∞

{
(µh − µ̂h,MC

ns)2 + ασ(µl − µ̂l,MC
ms)2 − ασ(µl − µ̂l,MC

ns)2
} P−→ 0.

For the third curly bracket term, since the ch and cl are second order random vari-

ables, they have finite variance and the unbiased variance estimators are also bounded.

Hence, the σ̂2
h,MC

ns

, σ̂2
l,MC

ms

, and σ̂2
l,MC

ns

converges to their distributions, which are

bounded in the support. Taking limns→∞ or limms→∞, the 1
ns

and 1
ms

are conver-

gent deterministic sequences, and they converge almost surely to zero, which implies

convergence in probability. Combining these behaviors, by Slutsky’s theorem,

lim
ns→∞

lim
ms→∞

{
1

ns

σ̂2
h,MC

ns

+ ασ
1

ms

σ̂2
l,MC

ms

− ασ
1

ns

σ̂2
l,MC

ns
}

d−→ 0.

In summary, taking limns→∞ limms→∞ in the last equality in Equation (A.9), the first

curly bracket term converges in distribution to µ̂ϑh,MF , the second curly bracket term

converges in probability to zero, and the third term converges in distribution to zero.

Hence, applying Slutsky’s theorem again, limns→∞ limms→∞ σ̂2
c,MF

d−→ µ̂ϑh,MF . This

shows that the limiting distribution of σ̂2
c,MF follows that of µ̂ϑh,MF .

A.2.4 Proof of Lemma 5

Proof of Lemma 5: Since σ̂2
c,MC is unbiased, its MSE is equivalent to its variance:

E
[(

σ̂2
c,MC − E

[
σ̂2
c,MC

])2]
= MSE[σ̂2

c,MC ] = E
[
(σ̂2

c,MC)
2
]
− (σ2

c )
2.

Applying the MSE expression in Equation (A.4) to the above equation:

σ4
c = E

[
(σ̂2

c,MC)
2
]
− 1

ns

(δc −
ns − 3

ns − 1
σ4
c ).
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Rearranging to isolate σ4
c to obtain:

σ4
c =

ns(ns − 1)

n2
s − 2ns + 3

E
[
(σ̂2

c,MC)
2
]
− ns − 1

n2
s − 2ns + 3

δc.

Replacing δc with its unbiased estimator δ̂c as presented in Equation (A.6), removing

the E[] operator for (σ̂2
c,MC)

2, and replacing σ4
c with σ̂4

c , the final expression for σ̂4
c is

obtained.

σ̂4
c =

ns(ns − 1)

n2
s − 2ns + 3

(σ̂2
c,MC)

2 − ns − 1

n2
s − 2ns + 3

δ̂c.

Since E
[
δ̂c

]
= δc, the estimator σ̂4

c is unbiased as applying E[·] to the right hand side

of the above equation leads to σ4
c .

A.2.5 Corollary 15.1

Corollary 15.1. Given nplt pilot samples of ch evaluated from the HFM and cl eval-

uated from the LFM, the unbiased estimators of σ2
h, σ

2
l , δh, and δl are:

σ̂2
h =

1

nplt − 1

nplt∑
i=1

(
ch,i −

(
1

nplt

nplt∑
j=1

ch,j

))2

; (A.10)

σ̂2
l =

1

nplt − 1

nplt∑
i=1

(
cl,i −

(
1

nplt

nplt∑
j=1

cl,j

))2

; (A.11)

δ̂h =
−3nplt(2nplt − 3)

(nplt − 1)(nplt − 2)(nplt − 3)
m̂2,h

2 +
nplt(n

2
plt − 2nplt + 3)

(nplt − 1)(nplt − 2)(nplt − 3)
m̂4,h; (A.12)

δ̂l =
−3nplt(2nplt − 3)

(nplt − 1)(nplt − 2)(nplt − 3)
m̂2,l

2 +
nplt(n

2
plt − 2nplt + 3)

(nplt − 1)(nplt − 2)(nplt − 3)
m̂4,l. (A.13)

Proof of Corollary 15.1: The expressions for σ̂2
h and σ̂2

l follow the regular MC variance

estimator with ns = nplt samples from Equation (A.2), where c is replaced with ch or

cl. The expressions for δ̂h and δ̂l follow the unbiased MC estimator in Equation (A.6)

with ns = nplt samples. The c are replaced with ch or cl. Similar procedure is also

used to obtain m̂2,h and m̂2,l from Equation (A.7), in addition to m̂4,h and m̂4,l from

Equation (A.7).
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A.2.6 Proof of Lemma 6

Proof of Lemma 6: Taking the expected value of µ̂Aµ̂B leads to:

E[µ̂Aµ̂B] =
1

n2
s

E

[(
ns∑
i=1

Ai

)(
ns∑
j=1

Bj

)]
.

The product of sum inside E[·] has n2
s total terms, ns of them have i = j, while

ns(ns − 1) has i ̸= j. Hence, the above equation simplifies to:

E[µ̂Aµ̂B] =
1

n2
s

(nsE[AB] + ns(ns − 1)E[A]E[B]) .

Re-arranging and isolating for E[A]E[B]:

E[A]E[B] =
1

ns − 1
(nsE[µ̂Aµ̂B]− E[AB]) .

Replacing E[A]E[B] with µ̂AµB, replacing E[AB] with µ̂AB and removing E[·] from
E[µ̂Aµ̂B] leads to the unbiased estimator shown in Lemma 6. Taking E[·] on the

right hand side of the equation leads to E[A]E[B] = µAµB, hence the estimator is

unbiased.

A.2.7 Proof for Lemma 7

Proof of Lemma 7: Taking the expected value of µ̂Aµ̂Bµ̂C leads to:

E[µ̂Aµ̂Bµ̂C ] =
1

n3
s

E

[(
ns∑
i=1

Ai

)(
ns∑
i=1

Bi

)(
ns∑
i=1

Ci

)]
.

The product of the sums inside E[·] has n3
s total terms. ns terms have i = j = k,

three cases of ns(ns − 1) terms have either (i = j ̸= k) or (i = k ̸= j) or (j = k ̸= i),

and ns(ns − 1)(ns − 2) terms of i ̸= j ̸= k. Gathering the like terms and simplifying:

E[µ̂Aµ̂Bµ̂C ] =
1
n3
s

(
nsE[ABC] + ns(ns − 1)(E[AB]E[C] + E[AC]E[B] + E[BC]E[A]) + ns(ns − 2)(ns − 1)E[A]E[B]E[C]

)
.

Isolating for E[A]E[B]E[C] leads to

E[A]E[B]E[C] = 1
(ns−1)(ns−2)

(
n2
sE[µ̂Aµ̂Bµ̂C ]− E[ABC]− (ns − 1) (E[AB]E[C] + E[AC]E[B] + E[BC]E[A])

)
.
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Removing the E[·] from E[µ̂Aµ̂Bµ̂C ], replacing E[A]E[B]E[C] by ̂µAµBµC , E[ABC]

by µ̂ABC , as well as E[AB]E[C], E[AC]E[B], and E[BC]E[A] by µ̂ABµC , µ̂ACµB,

and µ̂BCµA leads to the estimator in Lemma 7. This estimator µ̂Aµ̂Bµ̂C is unbiased

since taking the expected value of the right hand side of the expression leads to

µAµBµC = E[A]E[B]E[C].

A.2.8 Lemma 16

Lemma 16. Given two random variables of interest A and B, and nplt MC samples.

The unbiased MC estimators of their mean µA = E[A] and µB = E[B] are µ̂A =
1

nplt

∑nplt

i=1Ai and µ̂B = 1
nplt

∑nplt

i=1Bi. The unbiased MC estimators of their product

µAB = E[AB] is µ̂AB = 1
nplt

∑nplt

i=1AiBi. An unbiased MC estimator for approximating

their covariance Cov[A,B] is:

̂Cov[A,B] =
nplt

nplt − 1
(µ̂AB − µ̂Aµ̂B) . (A.14)

Proof of Lemma 16: Re-expressing the covariance as Cov[A,B] = µAB − µAµB, an

unbiased estimator for E[AB] = µAB is the MC mean estimator µ̂AB. Following the

result from Lemma 6, an unbiased estimator for µAµB is:

µ̂AµB =
1

nplt − 1
(npltµ̂Aµ̂B − µ̂AB) ,

where µ̂A, µ̂B, and µ̂AB are the MC unbiased estimators of µA, µB, and µAB. Hence,
̂Cov[A,B] is obtained by combining these two unbiased estimators according to the

definition of Cov[A,B]:

̂Cov[A,B] = µ̂AB − µ̂AµB =
nplt

nplt − 1
(µ̂AB − µ̂Aµ̂B) .

This estimator is unbiased since taking E[·] on the right hand side of the equation

leads to E[AB]− E[A]E[B] = µAB − µAµB, which recovers Cov[A,B].

A.2.9 Proof for Lemma 8

Proof of Lemma 8: Although µ̂h
2µ̂l

2 is an biased estimator of µ2
hµ

2
l , additional terms

can be added to correct for an unbiased estimator. To do so, consider the expected
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value of the biased estimator:

E
[
µ̂h

2µ̂l
2
]
=

1

n4
plt

E

[(
nplt∑
i=1

ch,i

)(
nplt∑
j=1

ch,j

)(
nplt∑
k=1

cl,k

)(
nplt∑
w=1

cl,w

)]
.

The expected value consists of the product of four sums, which leads to n4
plt total

terms. To simplify the expression, the idea is to assess the indices using the com-

binatorics Pascal’s triangle. The number of cases where all four indices are equal is(
4
4

)
= 1, corresponding to i = j = k = w, which has nplt terms. The number of cases

with three identical indices is
(
4
3

)
= 4, corresponding to i = j = k ̸= w, i = j = w ̸= k,

i = k = w ̸= j, and j = k = w ̸= i, each of which results in nplt(nplt − 1) terms. The

number of unique cases with two pairs of identical indices is
(
3
2

)
= 3, corresponding

to (i = j) ̸= (k = w), (i = k) ̸= (j = w), and (i = w) ̸= (j = k), each of which results

in nplt(nplt−1) terms. The number of cases with only two identical indices is
(
4
2

)
= 6,

corresponding to i = j ̸= k ̸= w, i = k ̸= j ̸= w, i = w ̸= j ̸= k, j = k ̸= i ̸= w,

j = w ̸= i ̸= k, and k = w ̸= i ̸= j, each of which results in nplt(nplt − 1)(nplt − 2)

terms. Lastly, the number of cases with no equal index is
(
4
0

)
= 1, corresponding to

i ̸= j ̸= k ̸= w, which has nplt(nplt − 1)(nplt − 2)(nplt − 3) terms. Using these index

patterns, the expected value expression above is expanded into:

E
[
µ̂h

2µ̂l
2
]
=

1

n4
plt

(
npltE

[
c2hc

2
l

]
+ 2nplt(nplt − 1)E

[
c2hcl
]
E[cl] + 2nplt(nplt − 1)E

[
chc

2
l

]
E[ch]

+ 2nplt(nplt − 1)E[chcl]2 + nplt(nplt − 1)E
[
c2h
]
E
[
c2l
]

+ nplt(nplt − 1)(nplt − 2)E
[
c2h
]
E[cl]2 + nplt(nplt − 1)(nplt − 2)E

[
c2l
]
E[ch]2

+ 4nplt(nplt − 1)(nplt − 2)E[chcl]E[ch]E[cl]

+ nplt(nplt − 1)(nplt − 2)(nplt − 3)E[ch]2E[cl]2
)
.

Rearranging and isolating for E[ch]2E[cl]2 = µ2
hµ

2
l leads to:

µ2
hµ

2
l =

1

(nplt − 2)(nplt − 3)

(
n3
plt

nplt − 1
E
[
µ̂h

2µ̂l
2
]
− 1

nplt − 1
µh2l2 − 2µh2lµl

− 2µhl2µh − 2µ2
hl − µh2µl2 − (nplt − 2)µh2µ2

l

− (nplt − 2)µl2µ
2
h − 4(nplt − 2)µhlµhµl

)
,

Removing the E[·] from µ̂h
2µ̂l

2, and replacing the rest of the parameters with their

respective unbiased estimators (see Remark 1) leads to the expression for µ̂2
hµ

2
l in



APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 4 105

Lemma 8. The estimator µ̂h2µl2 is unbiased since taking the expected value of the

right hand side of the above equation, after the said augmentations, leads to µ2
hµ

2
l =

E[ch]2E[cl]2.

A.2.10 Proof for Lemma 10

Proof of Lemma 10: Expanding based on the definition of Cov[ϑh, ϑl] and using the

properties of covariance:

Cov[ϑh, ϑl] = Cov
[
(ch − µh)

2, (cl − µl)
2
]
,

= Cov
[
c2h − 2chµh + µ2

h, c
2
l − 2clµl + µ2

l

]
,

= Cov
[
c2h − 2chµh, c

2
l − 2clµl

]
,

= Cov
[
c2h, c

2
l

]
− 2µlCov

[
c2h, cl

]
− 2µhCov

[
ch, c

2
l

]
+ 4µhµlCov[ch, cl].

Hence, an unbiased estimator for Cov[ϑh, ϑl] is obtained by replacing the four param-

eters in the right hand side with their unbiased estimators.

Applying Lemma 16, an unbiased estimator for Cov[c2h, c
2
l ] is obtained by A = c2h

and B = c2l , leading to ̂Cov[c2h, c
2
l ] shown in Equation (4.18).

Expanding µlCov[c
2
h, cl] as:

µlCov
[
c2h, cl

]
= E[cl](E

[
c2hcl
]
− E

[
c2h
]
E[cl]) = E[cl]E

[
c2hcl
]
− E

[
c2h
]
E[cl]2,

using the unbiased estimators discussed in Remark 1, replace E[cl]E[c2hcl] = µh2lµl

with µ̂h2lµl and E[c2h]E[cl]
2 = µh2µ2

l with µ̂h2µ2
l , an unbiased estimator for µlCov[c

2
h, cl]

is obtained as shown in Equation (4.19).

Similarly, expanding µhCov[ch, c
2
l ] as:

µhCov
[
ch, c

2
l

]
= E[ch]E

[
chc

2
l

]
− E

[
c2l
]
E[ch]2,

using the unbiased estimators discussed in Remark 1, replace E[ch]E[chc2l ] = µhl2µh

with µ̂hl2µh and E[c2l ]E[ch]
2 = µl2µ

2
h with µ̂l2µ

2
h, an unbiased estimator for µhCov[ch, c

2
l ]

is obtained as shown in Equation (4.20).

Lastly, expanding µhµlCov[ch, cl] as:

µhµlCov[ch, cl] = E[ch]E[cl]E[chcl]− E[ch]2E[cl]2,

using the unbiased estimators discussed in Remark 1, replace E[ch]E[cl]E[chcl] = µhlµhµl

with µ̂hlµhµl and E[ch]2E[cl]2 = µ2
hµ

2
l with µ̂2

hµ
2
l , an unbiased estimator for µhµlCov[ch, cl]
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as shown in Equation (4.21) is obtained.

A.3 Proofs for Section 4.3

A.3.1 Proof of Theorem 1

Proof of Theorem 1: Apply the definition of MSE to the estimator ĉR:

E
[
(ĉR − cR)

2
]
= E

[
(µ̂c − µc)

2
]
+ κ2E

[
(

√
σ̂2
c − σc)

2

]
+ 2κE

[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
.

(A.15)

The first term is by definition MSE[µ̂c]. The second term, is further expanded as:

κ2E
[
(

√
σ̂2
c − σc)

2

]
= κ2E

[
σ̂2
c − σ2

c

]
+ 2κ2E

[
(σ2

c −
√

σ̂2
cσc)

]
.

The first value is 0 as σ̂2
c is unbiased, and

√
σ̂2
c is approximated using the same Taylor

expansion presented in the proof of Lemma 14, and hence:

κ2E
[
(

√
σ̂2
c − σc)

2

]
= 2κ2σcE

[
σc −

√
σ̂2
c

]
,

=
κ2

4σ2
c

MSE
[
σ̂2
c

]
+O(E

[
(σ̂2

c − σ2
c )

3
]
).

(A.16)

The further expansion of the third term in Equation (A.15) leads to the different

MSE bounds or approximation.

Firstly, consider

E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
= E

[
µ̂c

√
σ̂2
c

]
− E

[√
σ̂2
cµc

]
− E[µ̂cσc] + E[µcσc],

= E
[
µ̂c

√
σ̂2
c

]
− µc

(
σc −

1

8σ3
c

MSE
[
σ̂2
c

])
− µcσc

+ µcσc +O(E
[
(σ̂2

c − σ2
c )

3
]
),

= E
[
µ̂c

√
σ̂2
c

]
− µcσc +

µc

8σ3
c

MSE
[
σ̂2
c

]
+O(E

[
(σ̂2

c − σ2
c )

3
]
).

(A.17)

Note that since both µ̂c and σ̂2
c are unbiased estimators, they converge in expected

value to their corresponding true population statistics. The Cauchy-Schwarz bound
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can be applied to upper bound E
[
µ̂c

√
σ̂2
c

]
, leading to:

E
[
µ̂c

√
σ̂2
c

]
≤
√

E
[
µ̂c

2
]
E
[
σ̂2
c

]
=
√
E
[
µ̂c

2
]
σ2
c .

Using the unbiased property of µ̂c, the E
[
µ̂c

2
]
can then be rewritten in terms of

MSE[µ̂c], leading to:

√
E
[
µ̂c

2
]
=

√
MSE[µ̂c] + E[µ̂c]

2 = µc

√
MSE[µ̂c]

µ2
c

+ 1.

In practical problems, MSE[µ̂c] is orders of magnitudes less than µc, hence
MSE[µ̂c]

µ2
c

tends to be much less than 1. Thus, the Taylor expansion of the function f(x) =
√
1 + x about x = 0 can be used to approximate the above expression. The Taylor

expansion is:
√
1 + x = 1 +

1

2
x+O(x2)

Substituting x = MSE[µ̂c]
µ2
c

leads to:

√
E
[
µ̂c

2
]
= µc +

MSE[µ̂c]

2µc

+O

((
MSE[µ̂c]

µ2
c

)2
)
.

Hence, the upper bound for Equation (A.17) is:

E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
≤ σc

2µc

MSE[µ̂c] +
µc

8σ3
c

MSE
[
σ̂2
c

]
+O

((
MSE[µ̂c]

µ2
c

)2
)

+O(E
[
(σ̂2

c − σ2
c )

3
]
).

(A.18)

Finally, substituting MSE[µ̂c], expressions in Equations (A.18) and (A.16) into Equa-

tion (A.15), the MSE[ĉR]
ub
cs upper bound is obtained:

MSE[ĉR] ≤ MSE[µ̂c] +
κ2

4σ2
c

MSE
[
σ̂2
c

]
+ 2κ

σc

2µc

MSE[µ̂c] + 2κ
µc

8σ3
c

MSE
[
σ̂2
c

]
+O

((
MSE[µ̂c]

µ2
c

)2
)

+O(E
[
(σ̂2

c − σ2
c )

3
]
),

= (1 + κ
σc

µc

)MSE[µ̂c] +

(
κ2

4σ2
c

+
κµc

4σ3
c

)
MSE

[
σ̂2
c

]
+O

((
MSE[µ̂c]

µ2
c

)2

+ E
[
(σ̂2

c − σ2
c )

3
])
≈ MSE[ĉR]

ub
cs .

For the second ĉR MSE bound, consider Cauchy-Schwarz inequality applied to the

E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
and the result in Lemma 14:
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E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
≤

√
E[(µ̂c − µc)2]E

[
(

√
σ̂2
c − σc)2

]
,

=
√

MSE[µ̂c]
√

MSE [σ̂c],

=
√
MSE[µ̂c]

√
1

4σ2
c

MSE
[
σ̂2
c

]
+O(E

[
(σ̂2

c − σ2
c )

3
]
),

≈ 1

2σc

√
MSE[µ̂c]

√
MSE

[
σ̂2
c

]
.

(A.19)

Substituting the bound in Equation (A.19) into Equation (A.15) leads to the

MSE[ĉR]
ub
p expression:

MSE[ĉR] ≤ MSE[µ̂c] +
κ2

4σ2
c

MSE
[
σ̂2
c

]
+

κ

σc

√
MSE[µ̂c]

√
MSE

[
σ̂2
c

]
+O(E

[
(σ̂2

c − σ2
c )

3
]
),

≈ MSE[ĉR]
ub
p .

For the MSE[ĉR]µσ approximation, E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
is exactly expanded

alongside the Taylor series approximation of

√
σ̂2
c :

E
[
(µ̂c − µc)(

√
σ̂2
c − σc)

]
= E[(µc − µ̂c)σc] + E

[
(µ̂c − µc)

√
σ̂2
c

]
,

≈ E[(µc − µ̂c)]σc + E[(µ̂c − µc)]σc + E
[
µ̂cσ̂2

c

] 1

2σc

− µc

2σc

E
[
σ̂2
c

]
− σ2

c

2σc

E[µ̂c] +
µcσ

2
c

2σc

− 1

8σ3
c

E
[
(µ̂c − µc)(σ̂2

c − σ2
c )

2
]
,

= E
[
µ̂cσ̂2

c

] 1

2σc

− µcσc

2
− 1

8σ3
c

E
[
(µ̂c − µc)(σ̂2

c − σ2
c )

2
]
.

(A.20)

Considering E
[
(µ̂c − µc)(σ̂2

c − σ2
c )

2
]
as negligible and substituting Equation (A.20)

into Equation (A.15), the MSE[ĉR]µσ approximation is obtained:

MSE[ĉR] ≈ MSE[µ̂c] +
κ2

4σ2
c

MSE
[
σ̂2
c

]
+ 2κ

(
E
[
µ̂cσ̂2

c

] 1

2σc

− µcσc

2

)
+O

(
E
[
(µ̂c − µc)(σ̂2

c − σ2
c )

2
])

,

≈ MSE[ĉR]µσ.
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A.3.2 Proof of Lemma 11

Proof of Lemma 11: Let q = max(nA, nB), expand E
[
µ̂A,MC

nAσ̂2
B,MC

nB
]
by its defi-

nition:

E
[
µ̂A,MC

nAσ̂2
B,MC

nB
]
= E

( 1

nA

nA∑
i=1

Ai

) 1

nB − 1

nB∑
j=1

(
Bj −

(
1

nB

nB∑
k=1

Bk

))2
,

=
1

nA(nB − 1)

(
E

[(
nA∑
i=1

Ai

)(
nB∑
j=1

B2
j

)]
− 2

nB

E

[(
nA∑
i=1

Ai

)(
nB∑
j=1

nB∑
k=1

BjBk

)]

+
1

nB

E

[(
nA∑
i=1

Ai

)(
nB∑
j=1

Bj

)(
nB∑
k=1

Bk

)])

Let w = min(nA, nB), the first E[·] expression in the second equality results in nAnB

terms, with w terms having i = j, and the rest having i ̸= j. Hence, this leads to:

E

[(
nA∑
i=1

Ai

)(
nB∑
j=1

B2
j

)]
= wE

[
AB2

]
+ (nAnB − w)E[A]E

[
B2
]
.

The second E[·] expression in the second equality leads to nAn
2
B terms, with w terms

of i = j = k, w(nB − 1) terms of (i = j ̸= k) or (i = k ̸= j), nAnB − w terms of

(j = k ̸= i), and (1− nB)(2w − nAnB) terms of i ̸= j ̸= k. Hence, this expression

simplifies to:

E

[(
nA∑
i=1

Ai

)(
nB∑
j=1

nB∑
k=1

BjBk

)]
= 2w(nB − 1)E[AB]E[B] + (nAnB − w)E[A]E

[
B2
]

+ wE
[
AB2

]
+ (1− nB)(2w − nAnB)E[A]E[B]2.

The third E[·] expression in the second equality leads to the same outcome as the

second E[·] expression above, with the only difference of having a multiplier of 1
nB

instead of 2
nB

. Lastly, putting everything together and simplifying to obtain:

E
[
µ̂A,MC

nAσ̂2
B,MC

nB
]
=

1

nA(nB − 1)

[
wE
[
AB2

]
+ (nAnB − w)E[A]E

[
B2
]
− 1

nB

(
wE
[
AB2

]
+ (1− nB)(2w − nAnB)E[A]E[B]2

+ 2w(nB − 1)E[AB]E[B] + (nAnB − w)E[A]E
[
B2
])]

,

=
w

nAnB

E
[
AB2

]
+

nAnB − w

nAnB

E[A]E
[
B2
]
− 2w

nAnB

E[AB]E[B]− nAnB − 2w

nAnB

E[A]E[B]2.

Recall that w = min(nA, nB) and q = max(nA, nB), the above expression leads to the

result in Lemma 11 for any A and B, and any nA and nB.
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A.3.3 Proof of Lemma 13

Proof of Lemma 13: As shown in Peherstorfer et al. [86], the results in Lemma 1 is

obtained from solving the necessary Karush–Kuhn–Tucker (KKT) conditions of the

optimization problem where the MSE of µ̂c,MF is minimized under the Pb constraint,

and hence the stationary points of α and rm are achieved. This procedure can be

extended for the case of linear combination of MSE posed in Lemma 13.

Firstly, note that the MSE in Lemma 1 with the optimal α substituted in leads

to:

MSE
[
µ̂MF
Γ

]
=

1

Pb

(1 +
rm
wc

)

[
V[Γ](1− Corr[Γ, γ]2) +

1

rm
V[Γ]Corr[Γ, γ]2

]
.

Since the new objective is to minimize the positive weighted sum of two MSEs,

the α that minimizes individual MSE will remain optimal in this case. Hence, the

equations for αµ and ασ are obtained by substitute the appropriate parameters into

the α expression in Lemma 1. Subsequently, using the MSE equation in Lemma 1,

the expression for the linear combination of MSE is obtained, and substituting αµ

and ασ leads to:

χ1MSE
[
µ̂c,MF

]
+ χ2MSE

[
µ̂ϑh,MF

]
=

χ1

Pb

(1 +
rm
wc

)

[
σ2
h +

rm − 1

rm
(α2

µσ
2
h − 2αµCov[ch, cl])

]
+

χ2

Pb

(1 +
rm
wc

)

[
τh +

rm − 1

rm
(α2

στh − 2αµCov[ϑh, ϑl])

]
,

=
1

Pb

(1 +
rm
wc

)
[
χ1σ

2
h(1− Corr[ch, cl]

2) + χ2τh(1− Corr[ϑh, ϑl]
2)

+
1

rm
(χ1σ

2
hCorr[ch, cl]

2 + χ2τhCorr[ϑh, ϑl]
2)
]
.

Comparing this equation with the one above defined in terms of Γ and γ, it is

evident that they have the same form, and the multiplicative coefficients of the terms

with rm matches:

V[Γ](1− Corr[Γ, γ]2) ∼ χ1σ
2
h(1− Corr[ch, cl]

2) + χ2τh(1− Corr[ϑh, ϑl]
2)

and

V[Γ]Corr[Γ, γ]2 ∼ χ1σ
2
hCorr[ch, cl]

2 + χ2τhCorr[ϑh, ϑl]
2.

Hence, the KKT minimum for rm in Lemma 1 is still applicable here. For the ex-

pression under the square root, substitute the numerator V[Γ]Corr[Γ, γ]2 and the

denominator V[Γ](1−Corr[Γ, γ]2) with the equivalent expressions above leads to the

final outcome for optimal r∗m shown in Lemma 13.
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