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Lightweight structures directly contribute to the sustainability of aviation, as their use reduces the

structural weight of aircraft which in turn reduces fuel burned during flight. One family of lightweight

structures are metal-coated polymers. Hybrid polymer-nanometal microtrusses are a member of this family.

These structures are fabricated by 3D printing complex truss-like structures out of polymer material, and

electrodepositing nanocrystalline metal onto the polymer. Recent work has shown that buckling instabilities

govern the strength of these systems. Hence this study focuses on modelling local shell buckling, one of the

critical buckling mechanisms.

In studying filled-shell buckling, hollow-shell buckling theory provides the framework for the behaviour

of the shell as it undergoes buckling in a filled cylindrical shell. However, a model for the core must be

realized. The Southwell stress model is used to develop an energy model of the core as it is subject to radial

displacements, and the Timoshenko energy method is then utilized to determine the axial buckling load for a

filled cylindrical shell. The models developed in this thesis include a fundamental model where the shell and

core are fully adhered, a non-adhesion model where the shell and core are not adhered, a hollow-core model

where the core is partially hollowed out along its axis, and an inelastic model where the shell behaviour is

inelastic. These models are later verified through finite element analysis. Experiments on dogbone specimens

also revealed some practical implications that must be considered when attempting to validate these theories.

In addition, optimization for minimum mass design was carried out using the newly-developed models.

The results of these studies indicate that while the new models are theoretically sound, there are still

aspects of metal-coated polymer structures which bear investigating. Fine-tuning of the present models is

warranted, which may include more complex curve fitting procedures for determining the model constants

or the use of numerical techniques other than finite differences. In addition, the manufacturing processes for

these structures must be improved prior to their use as primary structural elements in aerospace applications.
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Chapter 1

Introduction

With the world’s industries moving to become greener to reduce their environmental impact, aviation is

examining environmentally-friendly technologies that will not only reduce the aviation industry’s impact on

the environment, but will also help airline operators save money in the process. The sustainable aviation

initiative aims to “reduce the footprint of next-generation aircraft, engines and avionics systems” [8]. A

multitude of technologies are being researched or developed to meet the challenges of sustainable aviation

for the commercial sector, focusing on all aspects of aircraft or their everyday operations. For instance,

novel configurations for aircraft propose to overhaul the airframe design through the use of unconventional

configurations, such as the blended-wing body [9] or the truss-braced wing [10]. Alternative sources of fuel

are being considered, and in some cases have already been tested on existing engine architectures [11, 12].

Electric taxiing operations aim to reduce or eliminate fuel consumption during ground operations [13].

A key part of any aircraft design is its structure, whether the aircraft has a novel blended wing body

design or a legacy tube-and-wing configuration. For civil aircraft, the empty weight of an aircraft is defined

as the weight before fuel, passengers and cargo are present [14]. As the structure can contribute half of the

empty weight of an aircraft, light-weight structural designs are utilized. Lighter structures lead to reduced

fuel consumption, translating into reduced aircraft emissions and directly contributing towards the goals of

sustainable aviation. In legacy aircraft such as the Boeing 737 family and its derivatives, metals dominate

the aircraft empty weight [15]. However in more recent aircraft such as the Boeing 787 or the Airbus

A350, composite materials are predominantly utilized for the structure [16, 17]. While composite materials

are preferred for their higher strength-to-weight ratios than metals [18, 19], their use is coupled with several

drawbacks. Composites materials are more expensive to produce than metals, and require specialized tooling

and worker training. Compared to metal structures, it is not always clear when a composite structure is

damaged, necessitating the use of exotic inspection methods. For these reasons, they are often passed over

in favour of all-metal structures.

For aerospace applications, it is of interest to create structures which have high strength-to-weight

ratios while also being economical to produce. Composite materials are light-weight, strong, and expensive;

metals are heavy, strong and low-cost [18, 19]. Conversely, polymer materials are light-weight and not

very strong, but they have low manufacturing costs [20]. Due to these characteristics, polymer materials in

aerospace applications are typically relegated to roles which do not require high strength. The most common

applications for polymer materials in aircraft are as matrix materials for fibre-polymer composites, and for

the passenger seating [19]. In order to create structural components that satisfy the three criteria for weight,

1
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Figure 1.1: A typical microtruss topology with cylindrical struts. One unit cell of this microtruss has an edge length of 10 mm. [image
modified from Lausic et al. [1].]

cost, and strength, a proposed idea is to harness the advantages of both metal and polymer materials [1, 21].

Metal-coated polymer parts have traditionally been used in non-structural applications [22], but specifically-

tailored parts can be used to replace their heavier all-metal counterparts. This requires careful design of

metal-coated polymer structures to produce components which have minimum weight, superior strength, and

economical production costs. Used in conjunction, organized cellular polymer materials and nanocrystaline

metals provide the solution for this criteria.

Foamed polymer materials – an application of cellular solids – have previously been utilized in sandwich

panel construction, where their low densities make them ideal for sandwich cores [23, 24]. Due to the random

orientation of the foam cells, foamed materials suffer from bending-dominated behaviour. It has been shown

by Deshpande [25] that structures with more stretching-dominated behaviour have higher strength-to-weight

ratios than those with bending-dominated behaviour. A microtruss, as shown in Figure 1.1, is an example of

an organized cellular architecture whose deformations are stretch-dominated. This contribues to their higher

strength-to-weight and stiffness-to-weight performance metrics compared to less-organized cellular solids.

3D printing is the most attractive manufacturing method for these geometries, as the complex microtruss

topologies can be manufactured with ease and with less material waste compared to more traditional methods

of manufacture [26, 27]. The reduced amount of waste produced by 3D printing methods also furthers the

goals of sustainable aviation.

Looking at metals, there are now economical ways to produce high-strength metals known as nanocrys-

talline metals. As their name implies, nanocrystalline metals have grain sizes on the nanometer scale, pro-

viding them with increased strength via the Hall-Petch effect [4, 28–31]. For instance, nanocrystalline nickel

may have up to seven times the strength of its conventional counterpart. The increased strength of nanocrys-

talline metals allows for structures with higher strength-to-weight ratios compared to the same application

if using conventional metals. At present, the most repeatable process for producing nanocrystalline metals

is electrodeposition [28, 32], an application for which capital investments are very low compared to more

exotic methods of manufacture.

A metal-coated polymer microtruss is produced by first 3D printing a polymer preform followed by

electrodeposition of a nanocrystalline metal coating [1, 4, 21, 33]. These structures harness the mass-efficient

topology of a microtruss structure along with the high-strength properties of nanocrystalline metal. In
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addition, the metal coating on the outside of the microtruss struts positions the metal away from the neutral

axes of bending [21], further increasing the bending and buckling resistance of these structures. Though

there have been advances in producing these hybrid structures, their use in practical applications requires a

thorough understanding of their behaviour. Previous studies involving three-point bending tests of hybrid

microtrusses have found that their failure is governed by compressive instabilities of the struts [1, 4], while

the nanocrystalline metal coating provides the strength of these structures. As the struts have cylindrical

goemetries as seen in Figure 1.1, the compressive failure mechanisms of metal-coated polymer cylinders are

of interest. Through understanding the failure mechanisms of metal-coated polymer cylinders, knowledge of

the failure mechanisms of hybrid microtrusses will be developed.

1.1 Thesis Objectives and Outline

The primary goals of this thesis are as follows:

� model failure mechanisms relevant to metal-coated polymer cylinders under axial loads,

� examine the behaviour of metal-coated polymer cylinders through experiments, and

� optimize strut geometries for minimum mass design of microtrusses.

As the struts in metal-coated polymer microtrusses are metal-coated polymer cylinders, the modelled

failure mechanisms can be applied to study the behaviour of hybrid metal-polymer structures. A variety of

cylinder configurations and conditions are examined, including those where the metal coating is not fully

adhered to the polymer substrate or where polymer core is partially hollowed out.

A summary of the existing research on metal-coated polymer cylinders is presented in Chapter 2, which

also provides a thorough background to the related topics of hollow metal shells and foam-filled cylinders

subject to axial loads. Compresssive instabilities are the dominant failure modes of metal-coated polymer

microtrusses [1, 4, 21]. For metal-coated polymer cylinders, the compressive failure mechanisms are Euler

buckling and local shell buckling. Of these two mechanisms, local shell buckling is less explored. When

considering metal-coated polymer cylinders, hollow-shell theory [34–37] governs the behaviour of the metal

shell while the core requires separate treatment. The Southwell model [6, 38, 39] is employed to develop a

model for the polymer core of the metal-coated polymer cylinder. This model is presented in Chapter 3.

The derivation of local shell buckling loads is explored for the following cases:

1. A metal-coated polymer cylinder with a fully-adhered metal shell and polymer core undergoing elastic

local shell buckling (Chapter 4);

2. A metal-coated polymer cylinder where the metal shell and polymer core are not adhered (Chapter 5);

3. A metal-coated polymer cylinder where the core is partially hollowed out along its axis (Chapter 6); and

4. A metal-coated polymer cylinder where the metal shell exhibits inelastic behaviour (Chapter 7).
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These four models utilize the core model development of Chapter 3, and finite element studies are

utilized to verify all of the models. The results of experimental investigations into the behaviour of metal-

coated polymer cylinders are presented in Chapter 8. For minimum-mass design in aerospace applications,

optimization can be utilized to achieve designs with the highest strength-to-weight ratios [14]. The methods

and results of optimization studies, which optimize cylinder geometries relevant to the models developed in

Chapters 4 through 6, are presented in Chapter 9. Finally, Chapter 10 provides a summary of the findings

and concluding comments.
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Chapter 2

Literature Review

2.1 Introduction

The continued move towards more fuel-efficient designs for aircraft is taking place on all fronts, from aerody-

namic shape optimization to new combustion technology for aircraft engines. From a structural standpoint,

the empty weight of aircraft can be reduced by utilizing materials with higher ratios of strength-to-weight

and stiffness-to-weight. Polymer microtruss structures coated with nanocrystalline metal (or simply hy-

brid microtrusses) offer the lightweight benefits of polymers while potentially providing the same or better

strength than metal structures. Like any new technology, the behaviour of this new structure must be better

understood before it is used to replace current structural components in aircraft.

This literature review covers the topics dealing with the failure mechanisms in metal-coated mi-

crotrusses as outlined in the flowchart of Figure 2.1. The strength and stiffness of nanocoated microtrusses

are derived from the metal coating; the 3D-printed polymer contributes little to the structure [4, 21]. Hence,

the failure mechanisms of the metal coating on metal-coated polymer cylinders are of more importance.

Although other failure modes for metal-coated microtrusses exist, such as failure of nodal connections,

previous studies on nanocoated microtrusses have shown that their strength is governed by compressive

instabilities [21]. As the truss elements of nanocoated microtrusses can be modelled as metal-coated polymer

cylinders, the present topic explores the compressive instabilities associated with metal-coated polymer

cylinders. The goal is to understand the compressive failure modes associated with metal-coated cylinders,

and by extension the failure modes of metal-coated polymer microtrusses.

The literature on the properties and manufacturing methods of nanocrytstalline metals is discussed

first, followed by the rationale for the microtruss design. Next, an overview of the failure modes of interest is

given, with a strong focus on local shell buckling. An in-depth review of hollow-shell buckling will be done,

followed by a review of the existing body of knowledge on filled-shell buckling. There are a limited number

of studies on filled shells with hollow cores, inelastic buckling of filled shells, and optimization of filled shell

geometries; an overview of these will be provided.

2.2 Nanocrystalline Metals

Nanocrystalline metals, or simply nanometals, are those which have average grain sizes less than 100 nm

[29]. Conventional metals, by comparison, are composed of grains which are typically larger than 10µm.

5
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Figure 2.1: A flowchart of topics relevant to metal-coated polymer microtruss structures and their failure mechanisms.

The reduced grain size of nanocrystalline metals improves material strength, wear resistance [28, 29], and

superplastic formability [40]. The increased material strength is a consequence of Hall-Petch strengthening,

whereby smaller grain sizes offer higher material strength [18]. The strength of nanocrystalline metals can

be up to seven times greater than their conventional counterparts [28, 29]. However, the advantages of these

metals also come with decreases in ductility and Young’s modulus. In particular, the decrease in Young’s

modulus of nanocrystalline metals is due to the increased grain boundary volume fraction [41]. The higher

yield strength can often result in more brittle behaviour, similar to when materials are cold-worked [18]. It

is of note that the density of metals changes little as their grain sizes are reduced [28, 30].

Metals which are most readily produced in nanocrystalline forms include iron, nickel, lead, cobalt, and

copper as well as alloys of these metals [28, 29]. The strength of these metals has been shown to increase as

grains are reduced to sizes between 10 and 20 nm. Below this threshold, further grain size reduction leads

to the reverse Hall-Petch effect, causing a decrease in material strength [18, 29].

Through the use of nanometals, a substantial decrease in weight required for a given application

can be realized. For designs dominated by strength, less material is required for a given application if a

nanocrystalline metal is used compared to its conventional counterpart [4].

2.2.1 Processing Techniques and Manufacturability

Several manufacturing methods for nanocrystalline metals exist, however only a few have potential for

future development into larger-scale processes which can be readily used for industrial-level production of

nanocrystalline metals. Current methods to produce nanometals include mechanical alloying, gas phase

condensation, severe plastic deformation, and electrodeposition [29, 40, 42].
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Figure 2.2: An example of a microtruss geometry with major dimensions given for scale.

A primary manufacturing issue for nanometals is the variation of material properties across manufac-

turing processes [29, 30], and between different material batches produced by the same process. Furthermore,

the grain size reduction capabilities of various processes vary: while mechanical alloying can yield grain sizes

on the order of 5 to 10 nm [42], severe plastic deformation of metals cannot yield grain sizes below 150

nm. Some processes cannot produce very large amounts of material owing to the apparatus required for

nanometal production. Consolidation of small quantities can lead to specimen purity issues, such as the

introduction of voids during consolidation operations or the appearance of hydrogen pockets [29, 32]. These

purity issues can lead to sample densities below the theoretical values of the parent materials.

The aforementioned issues currently prevent large scale industrialised manufacturing of nanometals.

However, of the existing methods, electrodeposition has proven to be the most reliable. The electrodeposition

process can be tailored to produce repeatable material properties, with results that are consistent across

different material batches [28]. This is done by carefully controlling vital parameters of the electrodeposition

process, including current density, supplied voltage, deposition material choices and constituents of the

electrodeposition bath [1, 4, 28]. The electrodeposition of nanometals has been shown to increase their

purity, specifically by reducing the presence of voids in the produced materials [28]. In addition, the grain

size variation of electrodeposited nanometals is very narrow [28, 29].

Electrodeposition methods are well-developed, and the investment required to procure the equipment

for the process is not prohibitive [28, 29]. This is especially advantageous considering the reliability of the

electrodeposition method for nanometal production. While electrodeposition methods are typically used for

thin metal coatings [18], it is possible to create very thick depositions of nanometal (i.e. thickness of 2 mm

or greater) with purities comparable to thin coatings by utilizing the aforementioned process controls.

2.3 Microtruss Structures

Truss structures are extremely efficient for load bearing applications. A truss is an example of a cellular solid,

whereby voids are deliberately introduced in order to improve the strength-to-weight and stiffness-to-weight

ratios of the structure [23]. A more typical example of a cellular solid is a stochastic foam, which can be
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made of polymers (for instance, StyrofoamTM), metals, or even edible solids [23]. Typical stochastic foams

are comprised of an interconnected network of solid struts.

A main disadvantage of stochastic cellular solids, however, is that their mechanical behaviour is bending

dominated [1, 4, 21]. It is desirable to have a structure that is stretch-dominated, as this allows for higher

values of strength-to-weight and stiffness-to-weight ratios relative to those which are bending dominated [25].

The use of a microtruss allows for stretch-dominated truss members while at the same time exploiting the

advantages of cellular architectures [43]. The term “microtruss” is used since these trusses are significantly

smaller than large-scale trusses used in current major structural assemblies. A typical microtruss is shown

in Figure 2.2 with major dimensions labelled for scale.

Efficient design of the microtruss geometry requires consideration of both the strut design and the num-

ber of connections at each truss node [21]. The Maxwell criterion provides an algebraic rule that stipulates

the nodal connectivity of a truss to ensure rigidity [25, 44]. For three-dimensional trusses, 6 connections per

node are necessary but not sufficient in order to ensure completely stretch dominated behaviour for a truss

structure. Fewer connections at each node than this will result in increased bending-dominated behaviour.

The best strut cross-section for maximizing axial compression loading at minimum strut mass is found to be

a hollow cylindrical strut with a sandwich-type wall [45]. However these are hard to manufacture, especially

at the scales of microtruss structures. The next best strut design is a thin hollow cylindrical strut, however

these would also be difficult to fabricate. For metal-coated polymer struts, a cylindrical cross-section is ideal

with the polymer preform positioning the stiffer metal coating away from the strut neutral axes [1, 4, 31, 33].

As can be inferred from the microtruss geometry in Figure 2.2, the use of more traditional manufac-

turing methods to make these complex structures will result in high costs and large amounts of material

waste. For this reason, 3-dimensional (3D) printing is the most cost- and time-effective way to manufacture

these structures, while also saving on material usage.

2.4 3D Printing Methods and their Limitations

3D printing, or additive manufacturing, is a method to produce materials by depositing and/or curing a

material in layers, while also hardening these layers through some secondary procedure to produce a finished

part [4, 21, 26, 27, 46]. 3D printing methods require some feedstock material which is deposited or fused to

shape the part being manufactured. Support material is often required while parts are being printed, which

must be discarded upon completion of the part or removed through finishing processes.

Several 3D printing technologies exist, each intended for different end uses. Three of the main processes

in common use include fused deposition modelling, selective laser sintering, and stereolithography [26, 47, 48].

All of these processes require a flat plate upon which to build parts, one layer at a time. Figure 2.3 provides

diagrams of how these three processes produce a part. Fused deposition modelling heats a thin plastic

“filament” feedstock and deposits it in layers on a plate, with the heat from the hot deposited plastic
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Fused Deposition Modelling (FDM) Selective Laser Sintering (SLS) Stereolithography (STL)

Figure 2.3: Illustration showing some common processes of 3D printing. From left to right: fused deposition modelling, selective laser
sintering and stereolithography. [image modified National Geographic [2]]

melting the layers together [26, 47]. These printers are intended for desktop use at offices, and produce parts

at lower costs and reduced qualities compared to other methods. Selective laser sintering involves heating

fine powders with lasers, which cause the powder particles to coalesce and harden together. This is done

in layers to produce the final part, and this technology can also be used to produce parts made of a wide

variety of materials, including metals [49].

Finally, stereolithography produces parts either by selectively curing a photo-sensitive polymer using

ultraviolet lasers (as shown in Figure 2.3), or by depositing an ultraviolet-sensitive liquid in layers [26, 50, 51].

These layers are cured upon sufficient exposure to ultraviolet light, causing them to harden. Stereolithog-

raphy printers can produce very high resolution parts with fewer voids compared to other 3D printing

technologies. It is among the most promising processes for producing 3D-printed polymer parts for end-use

applications [52]. However, stereolithography places stricter limitations on materials that can be used due

its reliance on photopolymerization. The cured material properties are also harder to control [26].

While 3D printing allows for the manufacture of complex designs with relative ease compared to tradi-

tional manufacturing methods, there are still some drawbacks which must be overcome. The inherent voids

introduced in many methods of 3D printing lead to failure inevitably occurring through brittle fracture with

little ductility, especially when compared to similar polymer materials produced through more conventional

means [26, 48]. In addition, lower-quality printing methods such as fused deposition modelling [47] can lead

to unreliable material properties. As with early manufacturing issues of nanocrystalline metals, this currently

limits their viability for use in major structural applications. However, these issues are being overcome with

advances in 3D printing technology.

2.5 Metal-coated Polymer Microtrusses

With the deposition of nanocrystalline metal onto a microtruss structure, the high-strength capabilities of

nanocrystalline materials can be utilized, while at the same time realizing the structural efficiency of the

cellular architectures of microtrusses [1, 4, 21, 33, 53]. Two photographs of coated microtruss structures are

shown in Figure 2.4, while a representation of the scales relevant to a coated microtruss are seen in Figure
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Figure 2.4: Two photographs of metal-coated polymer microtruss structures [3]

2.5. The geometry of the microtruss struts is controlled by changing the dimensions t, r and l, as shown in

Figure 2.5. The use of a nanometal for the coating allows for further tailoring of the structure by controlling

the grain size of the electrodeposited nanometal. If desired, the polymer preform can be made only for the

purpose of providing a geometry for deposited nanometal to conform to, and can later be removed [1, 4].

However, a thin hollow shell structure presents other problems which lead to drastically reduced strength;

these will be discussed in later sections.

2.5.1 Electroless Coating of Polymer Materials

Electrodeposition requires electrically conductive surfaces in order to deposit metal [54], regardless of whether

the metal to be deposited is conventional or nanocrystalline. 3D printed microtrusses are made of polymer

materials, and surface preparation must be performed so that nanocrystalline metals can be readily electrode-

posited [55–57]. Due to the low conductivity of polymer materials, surfaces to be coated with nanocrystalline

metal must be prepared through a series of processes, as depicted in Figure 2.6. These surface preparation

steps are, briefly [1, 22, 56, 58]:

1. Cleaning with standard industrial-grade solvents,

2. Etching to roughen the polymer surface (an optional step),

3. Pre-activation using one of various solutions,

4. Activation or “seeding” using catatylic solutions, and

5. Metallization through electroless coating.

Surface cleanliness is paramount to starting the process as any residue or contaminants will negatively

affect adhesion quality [22, 58]. The etching step, while not performed on all polymers, allows for mechanical

roughness to be created on the polymer surface [52] . This allows for better adhesion, but the process must

be time-limited as over-etching will negatively affect coating quality.

The surface preparation step (or pre-activation step) is of highest importance while also being the most

difficult to accomplish chemically. For this reason, the solutions used in this step are proprietary [22, 56, 57].

The polymer being coated guides the chemistry of this step and will determine the selection of appropriate
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Figure 2.5: Diagram showing the different scales associated with a
nanocoated microtruss structure. From top left clockwise: coated mi-
crotruss structure, one unit cell of the coated microtruss, one cylindrical
strut showing dimensions t, r and l; and the individual polymer and
nanometal atoms [image modified from Lausic et al. [4]]

Cleaned Polymer
Surface

Etched Surface

Paladium 
Seeding/Activation

Pre-activation

Electroless Metal
Deposition

Figure 2.6: Diagrams of the steps required to coat a poly-
mer surface with electroless metal.

compounds to use [59]. If chosen correctly, certain pre-activation solutions will allow for better adhesion

between the electroless metal layer and the polymer surface. The activation step uses a readily-available

chemical solution containing catalytic metal ions, typically chromium and/or palladium [22, 60, 61].

The final step is an electroless process used to “metalize” the now-activated polymer surface with a thin

layer of metal. Nickel or copper are most commonly used for the metallization, with nickel being preferred

as it involves a less complicated process [22, 58]. As the name implies, electroless plating does not require

a voltage source: the coating process proceeds through a redox reaction occurring between the activated

polymer surface and a metal ion-filled solution [54], resulting in deposition of a thin layer of metal.

The quality of the metallized polymer surface is affected not only by handling of specimens, but also on

other factors which are not controlled in these steps. For instance, some polymers will be harder to metallize

with nickel or copper due to the inherent chemistry between the base polymer material and the metal, which

may prevent good adhesion [59]. Because some of these steps are performed above room temperature, the

ambient temperature can also play a factor, especially in the final metallization step [22, 57].

In many cases, the adhesion between the metallization layer and the polymer will be less than that

between the electrodeposited nanometal and the metallization layer. The poor adhesion between the elec-

troless metal coating and polymer substrate can lead to premature failure of the coating through buckling,

even if a load is applied only to the polymer substrate [62]. The larger the difference in Young’s modulus

between the polymer substrate and the thin metal film, the more pronounced this buckling delamination of

the metal coating [63]. The known adhesion issues between the metal and polymer surfaces can hinder the

strength of metal-coated polymer structures, and warrants inclusion in models for compressive instabilities

of the metal-coated polymer structures.
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2.5.2 Failure Mechanisms in Metal-Coated Microtrusses

Previous studies on nanocoated microtrusses in bending have shown that their failure mechanisms are driven

by compressive instabilities [1, 4, 64]. As the truss elements of nanocoated microtrusses are metal-coated

polymer cylinders (as seen in Figure 2.5), the present research topic seeks to explore the compressive in-

stabilities associated with metal-coated polymer cylinders. The goal of the project is to understand the

compressive failure modes associated with these metal-coated cylinders, and by extension the failure modes

associated with nanocoated microtrusses.

The behaviour of metal-coated polymer microtruses must be understood in order to develop accurate

models for these structures. While this behaviour also includes other aspects (such as responses to dynamic

loading, as seen in Figure 2.1), the focus of this research is on the failure mechanisms in static or quasi-static

loading conditions. More specifically, this refers to the failure mechanisms of the struts themselves. As the

struts used for metal-coated microtruss structures have cylindrical cross sections, the failure mechanisms of

metal-coated polymer cylinders will be investigated in detail. Henceforth, the focus will be on the failure

mechanisms of metal-coated polymer cylinders in axial compression, or metal shells filled with polymer cores.

The two compressive instabilities of interest for metal-coated polymer cylinders are local shell buckling

and global (or Euler) buckling, as seen in Figure 2.7. Local shell buckling is characterized by the appearance

of waves on the surface of the cylindrical shell [34, 65, 66], while global buckling results in the lateral

deflection of a column relative to its original undeformed axis. Both of these failure modes arise from

buckling instabilities under the action of compressive loads.

The Euler buckling load for a strut of uniform material is given as [34, 65, 67]:

F =
πEI

(kl)2
, (2.1)

where F is the Euler buckling load, E is the Young’s modulus of the strut material, I is the second moment

of area of the strut cross-section, k is the effective column length factor and l is the length of the strut.

The value of of k is dependant upon the end conditions of the strut [65, 67]. For metal-coated polymer

microtrusses, the nodal connections of the microtruss geometry cause the struts to have a behaviour in

between those of pin ends (k = 1) and fixed ends (k = 0.5) [21].

As the metal coatings of microtruss structures are responsible for the majority of the load-bearing

capacity, past investigations of the metal-coated microtrusses assumed that the failure mechanisms of the

struts only depended on the geometry and material properties of the metal shell [1, 4], and that the polymer

core contributed only parasitic weight. However, for thinly-coated microtruss structures, where the cross-

sectional area of the polymer is much greater than that of the shell, the polymer contributes markedly towards

the load-bearing capabilities of the struts, and also increases their resistance to buckling. With respect to

Euler buckling, the method of transformed sections [67] can be used to adapt the Euler buckling load to a

strut made of multiple materials, such as a metal-coated polymer cylinder. However, local shell buckling
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Figure 2.7: A thin slender strut undergoing global buckling (left), and a thin cylindrical shell undergoing local shell buckling (right)

of filled cylindrical shells – or simply filled-shell buckling – is an ongoing research topic. The theories of

filled-shell buckling make use of the concepts of hollow-shell buckling. A discussion of hollow-shell buckling

is undertaken prior to discussing the existing literature on filled-shell buckling.

2.6 Hollow-Shell Local Shell Buckling

Hollow-shell buckling is an instability that occurs when a thin cylindrical shell is subject to axial compression

loads, as shown in Figure 2.7. It is characterized by sinusoidal waves along the length of an axially-loaded

shell. The appearance of local shell buckling on a cylinder has two basic forms, as seen in in Figure 2.8.

The concertina or accordion folds appear as axisymmetric rings [66, 68–70], while diamond indents are not

axisymmetric about the cylinder’s circumference. Combinations of one or more concertina folds and diamond

indents can be observed after a cylinder has failed. For hollow-shell structures, the shell’s geometry dictates

which of these buckling modes is more prevalent [66, 68]. The appearance of buckling folds is immediate

upon the reaching the critical load of a thin hollow shell. However for metallic shells, further compression

of the shell beyond its critical load will result in the coalescence of many folds into one or two folds [68].

The local shell buckling load for a thin cylindrical shell in axial compression was found independently

by several authors [71]: Lorenz in 1908 [37], Timoshenko in 1910 [34], and Southwell in 1914 [36]. At the

inception of buckling, the energy of a thin shell undergoing buckling deformations includes its bending energy

and its circumferential stretching energy. The shell bending energy refers to the energy contained under the

bending action of longitudinal sections of the shell as they undergo sinusoidal buckling deformations, while

the circumferential stretching energy results from the tension or compression of the shell hoop sections.

The critical – or buckling – load occurs when the total shell energy no longer increases as the axial load is
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Figure 2.8: Photographs of various hollow shells after local shell buckling failure. The images depict concertina buckling (left) and
diamond buckling (right) [images modified from Allan [68]].

increased further. For a thin cylindrical shell in axial compression, the stress in the shell at which this occurs

is found to be [34, 36, 37, 68, 71–76]:

σHS =
E√

3(1− ν2)

t

r
, (2.2)

where σHS is the axial buckling stress of the shell, E is the Young’s modulus of the shell’s material, ν is its

Poisson’s ratio, and t and r are the thickness and inner radius of the shell, respectively.

A later derivation of Equation 2.2 by von Karman and Tsien in 1914 [35], along with the derivation

by Timoshenko [34], proved that the buckled shape of the shell – be it axisymmetric or non-axisymmetric

– is not a factor in determining its buckling load. The end conditions also do not affect the buckling load

provided that the cylinder is sufficiently long [34–36, 72, 73, 75, 77]. However, the buckling load of the shell

is dependant directly on its critical buckling wavelength, and a value for this wavelength must be found

before the buckling load can be determined.

One outcome of the various investigations into hollow-shell buckling was a partial differential equation

expressing the radial deflection of the shell as a function of the coordinate axes. This equation, known as

Donnell’s equation, takes the form [74, 75, 78]:

Et3

12(1− ν2)
∇8w +

Et

r2

∂4w

∂x4
+ t∇4

(
σx
∂2w

∂x2
+ 2τxy

∂2w

∂x∂y
+ σy

∂2w

∂y2

)
, (2.3)

where ∇ is the gradient operator, w is the radial deformation of the shell, x and y are the axial and

circumferential coordinates of the cylinder, respectively; σx, σy and τxy are the axial, circumferential and

shear stresses, respectively; and E, ν, t and r are as in Equation 2.2.

Donnell’s equation became prominent because the only unknown is the radial buckling deformation

w, a variable that previous theorists up till this time had not been able to isolate. This equation became

indispensable at finding buckling loads for various loading conditions in thin cylindrical shells, including

combined loading configurations [72, 74, 75]. By setting r to zero, the Kirchoff-Love plate bending equations

can be recovered from Equation 2.3 [35, 74, 75]. The local shell buckling equation for hollow cylinders

(Equation 2.2) is obtained upon simplification of Equation 2.3 to account for axial loading only.
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Experimental investigations were carried out in an attempt to validate the theoretical buckling load

(Equation 2.2). The majority of these attempts, however, attained less than 80% of the theoretical load

[72, 73, 76–81]. This is because local-shell buckling loads of thin shells are extremely sensitive to material or

geometric imperfections, or loading asymmetry around the shell circumference. The effects of imperfections

become more pronounced as shells become thinner (i.e. the shell thickness-to-radius ratio, t/r becomes

smaller), as the magnitude of the imperfections is nearly equivalent to that of the shell thickness [73, 78,

79, 81]. The imperfection sensitivity of hollow shells has forced designers to create less optimal designs by

using stringer-stiffened shells or other fortifying elements [73, 77, 82]. Numerical investigations of thin-shell

buckling, such as linear buckling analysis using finite element software, have found that the closely-spaced

eigenvalues of thin shell structures under axial compression indicate their imperfection sensitivity [83–85].

A practical solution to the imperfection sensitivity of hollow shells under axial compression was to use

empirically-derived correction factors [73, 77], such as those of Weingarten et al. [79]. This correction factor

γ accounted for the geometry of the shell and takes the form:

γ = 1− 0.901

[
1− exp

(
− 1

16

r

t

)]
, (2.4)

where r and t are the inner radius and thickness of the shell, respectively.

Correction factors such as these became the cornerstone of NASA analysis manuals for hollow shells in

axial compression [72, 86], which are extremely useful for launch vehicle design. However, these correction

factors gave very conservative estimates for the critical loads [72, 73, 86], often leading to over-designed

structures that are heavier than needed. In aerospace applications, heavier structures are detrimental to

aircraft performance and lead to increased fuel burn [14].

In 1964, Tennyson conducted extensive studies using polymer shells which included a layer of photoe-

lastic material [78, 87, 88]. The photoelastic layer allowed Tennyson to see the stress fields present in the

material while the shells were compressed axially [89]. The cylinders for his experiments were fabricated

using spin casting, producing shells with very tight geometric tolerances and which were also virtually im-

perfection free. Strain gauges were also equally spaced around the circumference of all shells under load.

Through his experiments, Tennyson was able to achieve experimental buckling loads that were within 1%

of the theoretical values (Equation 2.2). From these studies, it was concluded that it is possible to obtain

buckling loads close to theoretical values if the cylinders are manufactured to strict tolerances, include few

material imperfections, and are aligned carefully to the axis of loading. This proved that making near-perfect

shells would alleviate the imperfection sensitivity of hollow shells [80, 87, 88].

The theories of hollow-shell buckling are well established and have been verified through experimental

investigations. However, modern applications for shells require that the shell be filled with another, less

stiff material. This leads to the study of filled-shell buckling, which relies on the behaviour of hollow-shell

buckling to describe the shell’s behaviour.
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Figure 2.9: A beam with a Young’s modulus E and second moment of area I is lying on an elastic foundation under an axial load P
and has a distributed loading q. The elastic foundation can be represented as a Winkler foundation with modulus k, and this can be
depicted as a bed of springs.

2.7 Filled-Shell Local Shell Buckling

Modelling filled-shell local shell buckling requires separate treatment of the shell and filler (or core) behaviour.

While the hollow-shell theories are utilized to describe shell behaviour, various models representing the core

have been derived in the literature. Many of these models utilize the aspects of Hetenyi’s theories for beams

on elastic foundations [90]. This topic is discussed first prior to delving into filled-shell buckling literature.

2.7.1 Beams on Elastic Foundations

A beam of unit width lies on an semi-infinite elastic material or “foundation,” as shown in Figure 2.9. The

beam is subject to an axial load P and distributed loading q. The foundation material with modulus k is

modelled as a bed of independent springs, such that the transverse deflection at any point in the foundation

is independent of the deflections at any other point [82, 90, 91]. This spring-like foundation model is often

called the Winkler model [92, 93]. The original beam-on-foundation model focuses on the deformations

of the beam [90], and does not consider the stresses or deformations in the foundation. In this case, the

foundation modulus k is adequate to describe the behaviour of the elastic foundation. However, in certain

cases the stress distribution within the core is also desired, and for these cases various stress functions have

been developed to describe the core behaviour [82, 91, 92].

The governing equation of the beam on the elastic foundation shown in Figure 2.9 is:

EI
d4y

dx4
+ ky + P − q = 0, (2.5)

where E and I are the Young’s modulus and second moment of area of the beam, respectively; k is the

foundation modulus or spring constant for the spring layer, and q and P are the distributed load and axial

load applied to the beam, respectively.

Beam on elastic foundation theories have been utilized in the treatment of face wrinkling composite

beams [24, 94], and also for some analyses of hollow-shell buckling by treating the surrounding shell material
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around a shell slice as a foundation [34, 35, 73, 90, 95]. By assuming certain behaviours of the foundation,

various other models can be derived which can include modifications of Winkler’s model [82, 91, 92]. Some of

these have accounted for the shear behaviour of the foundation material, as well as non-infinite foundations.

Many of the existing models derived using the theories of beams on elastic foundations became the

groundwork for theoretical treatment of filled-shell local shell buckling [96, 97].

2.7.2 Literature on Filled-Shell Buckling

The problem of local shell buckling of filled cylindrical shells was not studied until the early 1960’s. Driven

by the need to understand buckling of solid propellant rockets under axial loads [5, 72, 97–101], various

authors undertook theoretical and experimental investigations.

The earliest attempt at a filled-shell buckling theory by Myint in 1966 [97] emulated the approach used

by von Karman and Tsien [35]. It was assumed that the core acts as a Pasternak foundation, or a Winkler

layer which accounts for both the transverse deflections in the core as well as the shear interactions between

the shell and the core [91, 92]. The filled-shell buckling equation derived in this way yields:

σM =
1√

3(1− ν2)

√
1 +

kr2

Et
+

gr

Et2
, (2.6)

where σM is the axial buckling stress of the filled cylinder, k is the modulus of the spring layer, E is the

Young’s modulus of the shell material, ν is its poisson’s ratio, g is the modulus of the shear layer, and r and

t are the radius and thickness of the shell, respectively.

This equation is similar to the hollow-shell local shell buckling not only because of the similarity

between this procedure and that of von Karman and Tsien [35], but also because Myint assumed that the

behaviour of the shell for filled-shell buckling follows that of hollow-shell buckling. Since Myint’s theoretical

development, this treatment of the shell behaviour for filled-shell buckling has continued to remain this way

for the majority of filled-shell buckling models in the literature.

Although the Myint model accounts for the shear behaviour of the shell-core system (i.e. g in Equation

2.6), it was later shown by various other studies that the shear interactions between the shell and the core

were negligible [96, 98–100]. A more recent development in filled-shell buckling utilizes a foundation model

derived by Gough et al. [82], which was originally intended for buckling of face sheets on sandwich panels

subject to axial compression. This filled-shell buckling model was derived by Karam and Gibson [98] as:

Pcr = 2πEt2
(

1 +
r

2t

Ec
E

)[
1

12(1− ν2)

r/t

(λcr/t)2
+

(λcr/t)
2

r/t
+

2(Ec/E)

(3− νc)(1 + νc)

λcr
t

r

t

]
(2.7)

where E is the Young’s modulus of the shell, Ec is the Young’s modulus of the core material, t is the shell

thickness, r is the shell inner radius, ν is the Poisson’s ratio of the shell, νc is the Poisson’s ratio of the core

material, and λcr is the critical buckling wavelength. The critical wavelength must be found by determining
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the positive real root of the quadratic equation given by ∂Pcr/∂λ = 0.

The buckling load of Equation 2.7 is derived through modifying the hollow-shell derivations of Tim-

oshenko [34] and Lorenz [37] to account for the presence of a core material with foundation modulus as

defined by Gough [82]. A comparison between Equations 2.7 and 2.6 reveals that the Karam and Gibson

theory neglects shear interactions.

Various other theoretical investigations also provided models for filled-shell local shell buckling. Seide

[96] and Kounandis [102] used Donnell’s Equation (Equation 2.3) [74, 75] to derive the local shell buckling

load of a filled cylindrical shell, with Seide treating the core material as a Winkler spring layer [91]. Reddy

and Wall [103] focused on the effects of the density of the filler material for foam-filled cylindrical shells,

while using a model that incorporated the angle of the “hinges” of the buckling folds caused by local shell

buckling. Malyutin et al. [104] and Weingarten et al. [100] each produced different theoretical models, both

of which utilized an eigenvalue-solving method. The application of filled-shell buckling was also extended to

concrete-filled steel or polymer tubes [105, 106], where it was found that the high compressive strength of a

concrete core substantially increased the buckling resistance of the tubes.

Experimental investigations were also undertaken in an attempt to validate the aforementioned theories,

and to investigate the phenomenon of filled-shell buckling. The majority of the experiments were performed

using metal tubes filled with polymer or polymer-like foams [5, 103, 104, 107–109], intended to mimic the

structure of solid propellant rockets or natural materials like plant stems. The theoretical model of Karam

and Gibson [98] was also used to estimate the axial buckling strength of porcupine quills [69, 70]. Reddy and

Wall investigated the energy absorption of filled shells [103], and were primarily interested in the optimal

core stiffness where the energy absorption was maximized. Some finite element studies were also undertaken

to understand the post-buckling behaviour of filled shells [100].

Through these experiments, it was reported that the filler material prevented or hindered the formation

of diamond indents (non-axisymmetric buckling deformations previously shown in Figure 2.8). This caused

concertina folds to appear more readily in filled shells than for hollow shells of the same geometry. It was also

found that a better agreement between theory and experiment occurred with shells when the thickness-to-

radius ratios were large [5, 69, 70, 107, 110], due to the fact that buckling loads for thick shells are less prone

to imperfection sensitivity. While the strengthening effect of the core is more apparent for thinner shells

[103], imperfection sensitivity still persists. Although Seide originally derived different theoretical models

for both axisymmetric and non-axisymmetric buckling in filled shells [96], this effect was not found to cause

differences in buckling loads as found through experiments.

The graph in Figure 2.10 shows data from the aforementioned experiments investigating filled-shell

buckling, all of the experiments using tubes filled with a foamed polymer. The exception to these are the

studies done by Yang et al [69, 70], which were conducted using porcupine quills. The theoretical predictions

of Karam and Gibson [98] and Seide [96] are also shown. The experimental buckling loads are presented as

normalized values relative to the hollow-shell buckling equation (Equation 2.2), while both the shell material
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Figure 2.10: Graph of experimental results from investigations of axial buckling of filled cylindrical shells, plotted against the
theoretical models for filled-shell buckling. The buckling stress σCR has been normalized against hollow local shell buckling equation,
σ0 (Equation 2.2) [adapted from Karam and Gibson [5]].

and geometry are considered in the non-dimensional parameter used as the abscissa.

The trends in the theoretical curves of Seide and Karam and Gibson generally agree with the exper-

imental data, with the Seide model overpredicting all of the experimental values except those of Reddy

and Wall. For shells with lower thicknesses (left end of Figure 2.10), there is less agreement between the

predictions and experimental results. This indicates that the imperfection sensitivity of thinner filled shells

persists as it does with hollow shells [73, 76, 78, 79, 102]. The experiments conducted by Reddy and Wall

[103] involved different foam densities, whereas the other experiments used shells with different geometries.

The theoretical investigations of filled-shell buckling have focused on elastic buckling of thin shells with

a soft elastic core. However, for thicker shells both with and without a core, inelastic local shell buckling

becomes the dominant mode of failure.

2.8 Inelastic Buckling

While a majority of theoretical efforts investigate shell buckling phenomena assuming elastic material be-

haviour, some practical applications of buckling demand that inelastic behaviour be taken into account. This

occurs when buckling takes place beyond the yield strength of the shell material.

Both the elastic and plastic behaviours of a linear-elastic work-hardening material can be represented

diagramatically on a stress-strain curve as shown in Figure 2.11. While a material is behaving elastically,

it is susceptible to elastic buckling. This means that removal of any load at the inception of buckling will

cause all buckling deformations to disappear, causing the shell to return to its undeformed shape [78, 87].
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Figure 2.11: An annotated true stress-strain curve diagram showing regions of elastic and plastic behaviour. The methods of
calculation for the Elastic Modulus E and tangent modulus ET are shown.

The experiments conducted by Tennyson to investigate the imperfection sensitivity of hollow shells under

axial loads included unloading buckled shells to confirm that buckled deflections disappeared, thus confirming

elastic buckling. For elastic buckling predictions, the buckling loads can be calculated using values of Young’s

moduli found in material data sheets [34].

A material that is behaving plastically can fail by buckling inelastically, and this may occur before

the material achieves its ultimate strength [1, 4, 34]. The proportional limit as shown on Figure 2.11 is the

end of the linear-elastic region of the stress strain curve and the beginning of plastic behaviour. Like any

plastic deformation, plastic buckling deformations are non-recoverable upon removal of the load as energy

has been dissipated through plastic flow [18]. The Young’s modulus E cannot be used to calculate inelastic

buckling loads accurately. Instead either the tangent modulus (ET) or the reduced modulus (ER) must be

used. The tangent modulus is found by calculating the instantaneous slope of the stress-strain curve, as

shown in Figure 2.11, while the reduced modulus uses the tangent modulus along with a representation of

the strut’s cross section [34].

The inelastic buckling load can be calculated by replacing the Young’s Modulus E with either ET or

ER. However due to a difference in stress on opposite sides of a buckled shape (i.e. the concave and convex

sides), using the tangent modulus can result in conservative estimates for buckling loads [111, 112]. The

reduced modulus is intended to alleviate this issue, but it is more difficult to work with in practice and must

be recalculated for different strut cross-sections.

Calculating the tangent and reduced modulus requires an analytical representation of a material stress-

strain behaviour. While the Ramberg-Osgood curve fitting procedure is a generally-accepted representa-

tion of material stress-strain behaviour [113], the Voce curve fit remedies some of the shortcomings of the
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Figure 2.12: Illustrations of optimal compression member cross-sections from existing literature

Ramberg-Osgood model [114] as it is a continuous model between stress and strain with no transition area.

The Voce model takes the form [1, 4, 114]:

σT = Bv − (Bv −Av) exp(−CvεT), (2.8)

where σT is the true stress, εT is the true strain, and Av, Bv and Cv are fitting constants of the model. Like

other material stress-strain models, the Voce model can be used to find the tangent modulus at any stress.

2.9 Optimization

Optimization of metal-coated polymer microtrusses has focused on several areas. These include topology

optimization of the microtruss structure [21, 115], grain size optimization of the metal coating [1, 4], and

optimization of the struts for maximum load-bearing capability with minimum mass [45]. While not origi-

nally intended for microtrusses, investigations into optimizing general compression members have also been

undertaken.

As the electrodeposition process requires tailoring of the process controls in order to produce nanomet-

als, these same controls can be used to control the grain size of the produced nanocrystalline materials.

Referring to Figure 2.5, optimization of metal-coated microtrusses can be done by controlling four length

scales: the length of the struts l, the coating thickness t, the strut radius r and the grain size of the elec-

trodeposited nanometal [1, 4, 33]. The ability to select the grain size of the deposited nanocrystalline metal

gives a very fine degree of control over the behaviour of metal-coated polymer structures. Optimization of

metal-coated microtruss structures while accounting for inelastic behaviour of the metal coating has also

been undertaken [1, 4].

Looking at compression members, an analytical study was undertaken by Budiansky [45] to determine

the minimum mass for a strut under an axial load. He showed that the optimal compression strut cross-section

is that which has a sandwich wall with a hollow core [45], as shown in the centre of Figure 2.12. However,

given the scale of the microtrusses being manufactured [4, 21, 33], as well as the manufacturing difficulties

associated with this sandwich-wall cross section, it is difficult to use this cross section in a microtruss.

An alternative is to utilize hollow cylindrical cross sections which can be designed to have low weights

comparable to that of sandwich-wall cylindrical cross sections. The buckling sensitivity of hollow shells to
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imperfections, especially at low shell thicknesses, makes this an impractical solution after knockdown factors

are accounted for. For this reason, filled shells are recommended for their reduced sensitivity to imperfections

[98, 103, 104, 107].

An optimization study of foam-filled metal cylinders loaded in axial compression was also undertaken

[116] with a focus on very thin shells and low loads. Through this study, the optimal core stiffness ratio

was determined for a given axial load. This same study revealed, however, that a metal shell with a hollow

honeycomb core wall (right side of Figure 2.12) would outperform a hollow shell or a foam-filled shell in

axial compression. This is a similar finding to that of Budiansky [45], as well as studies where optimization

of sandwich panels was undertaken [117].

Some other studies have focused on other optimization aspects of foam-filled compression members.

For instance, after conducting experiments on foam-filled metal shells, Reddy and Wall undertook numerical

studies to determine the optimal foam density that provides the maximum specific energy absorption for a

filled shell in axial compression [103]. It has also been revealed that a foam-filled cylinder can hold more

energy than a hollow cylinder of the same mass, and the energy stored in filled-shell is more than that given

by the individual energies of the core and shell added together [69, 82]. Examination of natural materials

such as plant stems, bird feathers and porcupine quills have found that these naturally-made structures often

have higher buckling strength-to-weight ratios than man-made structures [23, 69, 98, 118, 119]. As such,

these natural materials provide inspiration to make more efficient compression members.

As of this writing, there are no relevant optimization studies which investigate the area of metal shells

filled with solid polymer cores. It is this area that this research project intends to investigate, specifically

geometries and loads relevant to metal-coated polymer microtrusses.

2.10 Summary

Metal-coated polymer microtrusses offer the high-strength benefits of nanocrystalline metals and the lightweight

aspects of polymer materials. Although nanocrystalline metals are most reliably produced through electrode-

position methods, 3D printed polymer microtrusses must first be metallized using an electroless procedure.

While electroless methods are well-developed, adhesion between the electroless metal layer and their polymer

substrates is imperfect.

The dominant failure modes of metal-coated polymer microtrusses are compressive instabilities of the

struts. These instabilities include both global buckling and local shell buckling. For local shell buckling of

filled cylindrical shells under axial compressive loads, the shell behaviour is described by hollow-shell theory.

The core decreases the imperfection sensitivity of the shell while also providing increased buckling strength.

The majority of filled-shell experimental investigations have focused on foam-filled tubes, with the relevant

theoretical models intended for this material combination. Optimization efforts of hollow- and filled-shell

structures has been undertaken in several areas, but none have looked at polymer-filled metal shells in detail.



Chapter 3

Energy Model of an Elastic Cylinder Subject

to an Axially Varying Axisymmetric Load

3.1 Introduction

Metal-coated polymer microtrusses are a lightweight complement to the current generation of aircraft struc-

tures. These hybrid structures are produced by electrodepositing nanocrystalline metal onto a 3D printed

polymer preform, taking advantage of both the high-strength benefits of nanocrystalline metal [28–30] and

the mass-efficient properties of microtruss topologies [1, 4, 21]. Three-point bending tests of metal-coated

polymer microtrusses demonstrated that compressive instabilities dominate the failure modes of their struts,

which have cylindrical cross-sections [4]. Therefore, the behaviour of metal-coated polymer cylinders is

studied in order to understand the compressive instabilities of the hybrid microtruss structures.

Local shell buckling and global buckling are the compressive instabilities exhibited by metal-coated

polymer cylinders under axial loads [4], and by extension metal-coated polymer microtrusses when subject

to three-point bending loads. Of these mechanisms, local shell buckling of polymer-filled metal shells is

less understood. The behaviour of hollow cylindrical shells undergoing local shell buckling has been studied

extensively [34–37, 66, 75, 79, 87, 88], but filled-shell buckling has not been studied in the same depth. An

undeformed filled cylindrical shell is shown in Figure 3.1(a), while a filled shell undergoing local shell buckling

is shown in Figure 3.1(b). Though no studies specifically examine the buckling of solid polymer-filled metal

shells, there have been several theoretical and experimental studies investigating the local-shell buckling of

foam-filled shells [96, 98, 103, 104, 107, 109]. These foam-filled shell models utilize hollow-shell theory to

describe the behaviour of the shell, and it has been shown that the inclusion of a core reduces the propensity

of the shell to buckle.

Each of the filled-shell studies use different approaches in modelling the core behaviour [96, 98, 103,

104, 107, 109]. Of note is the filled-shell model developed by Karam and Gibson [98], currently the best-

available buckling model for filled shells subject to axially compressive loads. Their model utilizes a core

model developed by Gough et al [24, 82], originally derived for face sheet buckling of composite sandwich

panels. However, the Gough model is two-dimensional and does not account for stresses in the circumferential

direction. As the Karam and Gibson model relies on the Gough model, their model is not axisymmetric. In

addition, the Karam and Gibson model cannot be used for more complicated filled-shell buckling situations,

such as those where the core is hollowed out along its axis or a metal-coated polymer cylinder where the

23
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Figure 3.1: (a) A metal-coated polymer cylinder under an axial load F prior to buckling deformations. The cylinder has a length l,
shell thickness t and inner radius r. The shell and core have Young’s Moduli E and Ec while their respective Poisson’s ratios are ν and
νc. The coordinate axes for reference are z, r and θ. (b) A metal-coated polymer cylinder undergoing buckling with buckle wavelengths
λ and buckle amplitude A.

shell and core are not adhered to each other.

To predict the buckling load of a metal-coated polymer cylinder, the theories of hollow-shell buckling

[34, 35, 37] are utilized for the metal shell. However, as with previous filled-shell approaches [96, 98, 103, 104,

107, 109] a model is required for the polymer core. The Southwell model [6, 38, 39] enables calculation of

the stress state in an elastic cylinder subject to an axisymmetric load. The Southwell model can be used to

determine the stresses in a solid polymer cylinder as it undergoes deformations consistent with the sinusoidal

local shell buckling of a surrounding shell. The stress state in a cylinder is determined as a function of two

stress potentials, and unlike the Gough model this provides stresses in three dimensions [6, 38, 39]. Due

to the nature of its governing equations, the Southwell model cannot be solved analytically and so a stress

solution is found numerically through computational methods. Because this stress model is intended for the

specific case of a cylinder under axisymmetric loads, the Southwell model is less expensive computationally

compared to using general finite element software, as a lower mesh resolution can be used. In addition, a

custom-written script intended for solving the Southwell model for the particular case of an axisymmetric

loading would enable much faster solution times compared to general finite element software.

The goal of this work is to predict the axial load at which a shell filled with elastic material will exhibit

local buckling. Analysis of strain energy is a convenient approach to such a prediction. It is assumed that

an elastic core material is perfectly bonded to a thin elastic shell. When the shell begins to buckle locally

under an axial load, the core material deforms in accordance with the shell deflection. Timoshenko [34]

provides an analysis of the buckling of a hollow shell; in this chapter a novel approach to modelling the
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core will be explicated. First, the Southwell model for a cylinder subjected to axisymmetric loading will

be described. Next, this model will be coupled to the deformations associated with shell buckling through

an appropriate choice of boundary conditions. This enables the determination of the elastic stress field in

the core material at the onset of buckling, and hence the elastic strain energy in the core. The Southwell

model is next verified through high-resolution finite element analysis to ensure that the stresses calculated

match those determined through finite element simulations. A representation of the energy state of the

core is then developed by determining the relationship between the strain energy and the geometric and

material parameters of the problem. This is done by fitting an analytic function to the strain energy values

calculated using the Southwell model. This improves the efficiency and enables differentiation of the model.

The resulting function can therefore be used for strain energy predictions in a gradient-based optimization

context, where sensitivities are required.

3.2 Model of the Core Behaviour

Predicting the axial buckling load for a metal-coated polymer cylinder requires the use of hollow-shell buckling

theories [34, 35, 37] to describe the shell behaviour along with an accurate model to represent the core

behaviour. Previous predictions for filled-shell buckling have modelled the core behaviour by utilizing the

theories of beams on elastic foundations [96, 97], or have adapted the approaches intended for buckling

of face sheets on composite sandwich panels [24, 82, 98]. However, the past models for the core are not

axisymmetric as they do not account for the stresses in all relevant coordinate directions. Specifically, the

circumferential direction is not included in the Gough model, on which the Karam and Gibson model relies.

In this section, the procedure used for developing a new core model is detailed. Using the energy method

of Timoshenko [34] to predict the local buckling load of the elastic shell, this new model of the core will be

used to derive an axial buckling load prediction for a filled cylindrical shell.

The buckling load is to be determined for a metal-coated polymer cylinder under an axial load, as

shown in Figure 3.1(a). The appearance of the filled shell while it is undergoing buckling is shown in 3.1(b).

In determining the axial buckling load, the following assumptions hold:

� the shell and core are perfectly bonded;

� both the shell and core materials behave elastically;

� the buckling displacements are sinusoidal;

� there are many waves that form when the shell buckles; and

� the core conforms to the buckled shape of the shell.

When the shell and core are fully adhered, local buckling of the shell causes radial displacements on

the surface of the core. In order to determine the strain energy in the core caused by these displacements, a

model for the stress state of the core is required. The Southwell stress model will be used to determine the
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Figure 3.2: A polymer core with length l, inner radius ri and outer radius r. An axisymmetric section is detailed showing the
boundary conditions as relevant for the Southwell model (diagram adapted from Southwell [6]).

stress state in the core as it is subjected to sinusoidal radial displacements, and these stresses will be used

to determine the strain energy in the core.

3.2.1 The Southwell Model

Southwell [39, 120] created a model that employs a stress potential function to calculate the stress field in an

axisymmetrically-loaded isotropic elastic cylinder. Although the present aim of using the Southwell model is

to determine the stress state in a solid polymer cylinder under axisymmetric radial loads, the model can be

used to describe the stress states of either solid or hollow cylinders. A general cylinder geometry is shown

in Figure 3.2, showing a hollow cylinder with inner radius ri, outer radius r and length l. An axisymmetric

section of this cylinder is detailed, with a radial stress field σrB applied at the outer surface of the cylinder.

Along the edges of this axisymmetric section shown in Figure 3.2, the shear stress τzr = 0, while the axial

stresses σz = 0 at the top and bottom of the section (or top and bottom of the cylinder). These boundary

conditions hold when the cylinder is hollow (ri > 0), and will change when the cylinder is solid (ri = 0) as

shown in Figure 3.2. The Southwell stress model provides the stress state of the cylinder by solving for the

stress state of the axisymmetric section shown in the Figure.

The present goal to determine the stress state of a solid cylinder (i.e. a polymer core of a filled shell)

as it is subject to sinusoidal radial displacements. As the Southwell model is a stress model, it requires stress

boundary conditions, as shown in Figure 3.2. The radial buckling displacements will be transformed into

appropriate sinusoidal stress fields in order to adapt the Southwell model to the requirements of filled-shell

buckling. In addition, the equations arising from the Southwell model require a numerical solution, and so
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the axisymmetric domain to be studied must be discretized; the methods of discretization and meshing will

be detailed in Section 3.2.3.

The Southwell model presents a more direct approach to solving for the core behaviour compared to

classical finite element analysis. The model is uniquely suited to solving for the stress states in axisymmetrically-

loaded cylinders. Solutions to the stress states of cylinders can be solved quickly and accurately using rel-

atively low-density meshes. A finite element solution for similar geometries and loading conditions would

require high resolutions to match the accuracy of the Southwell model. Thus, the use of a custom-written

program developed solely for analysing core geometries of interest provides more efficient solutions than

using general purpose finite element software.

Previous models for filled-shell buckling are intended only for fully-filled cylinders and when the shell

and core are perfectly bonded [82, 96, 98, 103, 104, 107, 109]. The Southwell model can be used to determine

the stress state in a cylinder subject to any axisymmetric loading cases, regardless of the cylinder geometry.

This allows for the study of filled shells with hollow cores or cylinders where the shell and core are not

adhered, two important cases which have not been studied previously in the area of filled-shell buckling.

3.2.2 Governing Equations for the Southwell Model

The governing equations to the Southwell model will be discussed in this section, followed by the methods

used for discretizing these equations. The process of adapting the Southwell model for a polymer core subject

to radial displacements will also be detailed.

The Southwell model provides the stress field in an axisymmetrically loaded cylinder, as shown in Figure

3.2. This requires rearranging the compatibility and equilibrium equations so that they are a function of

two stress potential functions. First, the compatibility and equilibrium equations are written in terms of a

single stress function ζ as follows [6, 38, 39, 121]:

σr + σθ =
1

r

∂3ζ

∂r∂z2
,
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∂

∂r

(
∂2ζ
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∂
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r

∂
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(
∂2ζ

∂z2
− (1 + ν)∇2ζ

)
,

(3.1)

where σr, σz, σθ are the radial, axial and circumferential stresses respectively; τzr is the shear stress; and ν

is the Poisson’s ratio of the cylinder material. The details on the derivations of these equations are contained

in [36] and [38]. Due the assumption of axisymmetric behaviour, the stress components τrθ and τzθ vanish

everywhere. The stress function ζ satisfies the equation:

∇4ζ = 0, (3.2)
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where ∇ is the gradient operator. Two more stress functions φ and ψ are introduced which are functions of

the first stress function ζ:

φ = ∇2ζ and ψ =
∂2ζ

∂z2
− (1 + ν)∇2ζ. (3.3)

The boundary conditions shown in Figure 3.2 as well as the functions for the stresses in Equations 3.5

allow for finding a constant value of ψ on all the boundaries of the axisymmetric domain. In this way, the

value of ψ is 0 along the boundary.

Utilizing Equations 3.1 through 3.3, the equilibrium equations for φ and ψ are found to be [6, 38, 121]:

∂2φ

∂r2
− 1

r

∂φ

∂r
+
∂2φ
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∂2ψ
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− 1

r
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∂z2
.

(3.4)

A numerical solution to Equations 3.4 provides the values of φ and ψ in the cylinder. The methods for this

will be detailed in the next section. The individual stress components can be calculated using their equations

written in terms of φ and ψ:
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(3.5)

3.2.3 Discretization of Equations for a Numerical Solution

A general analytical solution is not obtainable for the Southwell model. A finite differencing solution was

developed by Allen et al. [6, 38, 121] which utilizes second-order central differencing throughout the domain.

The axisymmetric section of the cylinder shown in Figure 3.2 is discretized using evenly spaced nodes, as

shown in Figure 3.3. The node spacing in the radial and axial directions are a and b respectively. For

the following equations, the node numbering follows the indexing pattern shown in Figure 3.3, with node 0

referring to the centre node of the pattern and nodes 1 through 4 indexed counter-clockwise starting from

the bottom of the pattern. A discretized set of the stress function equilibrium equations (Equations 3.4) is

determined for every single node in the domain, providing a matrix of undetermined coefficients. This is

solved using standard matrix solution techniques which are readily available, such as those in MATLAB.

The equations for the stress functions φ and ψ (Equations 3.4) are discretized as follows:

φ1 + φ3 − 2φ0 +

(
as

bs

)2

(φ2 + φ4 − 2φ0)− a2
s

2r0bs
(φ2 − φ4) = 0, and

ψ1 + ψ3 − 2ψ0 +

(
as

bs

)2

(ψ2 + ψ4 − 2ψ0)− a2
s

2r0bs
(ψ2 − ψ4) + 2φ0 − φ1 − φ3 = 0.

(3.6)
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Figure 3.3: Node spacing and indexing pattern used for the axisymmetric section of the polymer core. The entire section is discretized
using node spacings a in the z-direction and b in the r-direction. The node numbering follows a conter-clockwise pattern starting with
node 1 at the bottom.

In these equations as and bs are the grid spacings in the radial and axial directions respectively, r0 is the

radial position at the node of interest, and φ0, φ1, etc., ψ0, ψ1, etc. refer to the values of φ and ψ at various

nodal locations as shown in Figure 3.3.

Due to the boundary conditions of the domain (as seen in Figure 3.2), the value of ψ is zero on all

boundary nodes [6, 38]. To determine the values of ψ in the interior nodes, as well as the values of φ

everywhere in the domain, requires the use of the boundary σr specified by the applied stress field σrB .

Along the outer edge of the cylinder where r0 = ro, the equation used to find the nodal values of φ is [6, 38]:

2(φ4 + ψ4)− φ0

[
2− 2(1− ν)bs

r0

(
1− bs

2r0

)]
+ 2bsr0

(
1− bs

2r0

)
(σrB)0 = 0, (3.7)

where the values of (σrB)0 are non-zero along the region where values of σrB are specified, and zero every-

where else. Equation 3.7 replaces the second of Equations 3.6 along the outside edge of the domain, where

r0 = ro. At the other three boundaries of the domain, the node numbering pattern used in Equations 3.6

and 3.8 will lead to spurious node references, as some nodes to which reference is made will not exist. At

these domain extremities, second-order directional differencing is used in place of central differencing.

This discretization scheme generates one set of Equations 3.6 for every node in the domain. Along the

outer edge where r0 = rout, Equation 3.7 is used. Solving the resulting matrix of coefficients using standard

matrix-solving algorithms provides values of φ and ψ. These can then be used to determine the values of

the stress components (Equation 3.5), which are also discretized using second-order central differencing:

(σr)0 =
1

2br0
[(φ2 − φ4) + (ψ2 − ψ4)]− 1

r2
0

[ψ0 + (1− ν)φ0],

(σθ)0 =
ν

2br0
(φ2 − φ4) +

1

r2
0

[ψ0 + (1− ν)φ0],
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(σz)0 = − 1

2br0
(ψ2 − ψ4), and

(τzr)0 =
1

2ar0
(ψ1 − ψ3). (3.8)

These stresses, once calculated, provide the complete stress state of the cylinder in Figure 3.2 when subject

to a radial stress field σrB. The stress distribution can also be used to determine the strain fields and the

resulting strain energy in the cylinder.

3.2.4 Adapting the Southwell Model to Filled-Shell Buckling

The present aim is to develop an energy model for the polymer core in a metal-coated polymer cylinder when

the metal shell is buckling (refer to Figure 3.1(b)). The Southwell stress model will be used to develop a model

which provides the strain energy of a solid polymer cylinder as it undergoes sinusoidal radial deflections.

This model will be used to determine the buckling load of a metal-coated polymer cylinder subject to an

axial compressive load.

A cylinder subject to an axial load F has a length of l, core radius r and shell thickness t is shown in

Figure 3.1(a). When the load reaches a critical value, the shell buckles along its length as shown in Figure

3.1(b). The buckle wavelengths are sinusoidal and are axisymmetric about the circumference of the cylinder.

Each wave has a wavelength of λ and a peak amplitude of A as shown in Figure 3.1(b). The metal shell and

polymer core are assumed to be perfectly bonded, thus as the shell buckles the shell and core will have the

same radial deformations at the interface. These radial deformations have the expression:

w = A sin
mπz

l
, (3.9)

where w is the radial displacement at some axial position z, and m is the number of half waves.

The general form of the Southwell model was developed for the hollow cylinder of Figure 3.2. However,

the stress state of a solid polymer cylinder must be determined. A limitation of the Southwell model is that

it requires stress boundary conditions. While it would be ideal to use displacement boundary conditions in

the form of Equation 3.9, a stress boundary condition must be specified. Sinusoidal displacements lead to

sinusoidal stress fields [24, 82], and so a sinousoidal stress field is introduced to mimic the form of the applied

displacements. This stress field takes the form:

σrB = σ0 cos
(mπz

l

)
, (3.10)

where σ0 is a given stress amplitude. When applied to a solid polymer cylinder of length l and radius r as

shown in Figure 3.4, this stress field causes radial deflections in the form of Equation 3.9. An axisymmetric

section of this cylinder is shown in detail, showing the stress field σrB applied to the outer edge of the

domain. The stress state and strain energy of this cylinder is to be determined by using the Southwell model
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axisymmetric section of length l of the polymer core is examined, and a sinusoidal stress field is applied to this section to cause
sinusoidal buckling deflections

to analyse this axisymmetric section.

As seen in the axisymmetric section of the cylinder of Figure 3.4, the length of the domain to be studied

is λ, or one wavelength of the applied radial stress and the buckled shape. Periodic boundary conditions

ensure that a calculation for one buckle wavelength can be used when multiple waves are present. It is

assumed that during buckling there will be many waves, consistent with experiments and models of hollow

shell buckling [34, 35]. For long cylinders, the end effects are also assumed to be negligible.

The Southwell model determines the stress state for one cylinder geometry and one loading condition.

For the purposes of determining the axial buckling load of a metal-coated polymer cylinder, the energy state

of a solid cylinder subject to sinusoidal radial stresses must be determined for any cylinder geometry. The

relationship between the strain energy and the buckle wavelength λ must also be determined. To determine

these relations while also maintaining the generality of the resulting model, the stress state of the geometry

in Figure 3.4 must be found for various domain geometries (i.e. many values of λ/r) and several load

magnitudes values σ0. The model developed in this way will be used to calculate the strain energy of the

core as a function of the buckle wavelength λ and the geometric dimensions of the cylinder.

3.3 Finite Element Verification and Mesh Convergence Studies

Prior to any further model development, a verification of the Southwell model for a cylinder subject to a

radial stress field will be determined (i.e. Figure 3.4). A finite element analysis of the axisymmetric periodic
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domain will be performed and compared to results determined from the Southwell model. In addition, a

mesh convergence study will be undertaken to establish the ideal mesh density for accurate results.

Verification studies were carried out using Abaqus in order to confirm the accuracy of the Southwell

stress model. These studies included a comparison of the stress distributions and strain energies predicted by

both the Southwell model and Abaqus. Mesh convergence studies were also undertaken in order to determine

an adequate mesh density for the Southwell model to ensure accurate results.

3.3.1 Finite Element Verification of Southwell Model

Finite element verification was carried out using an axisymmetric cylinder section with a length of 24 mm

and a radius of 12 mm, as shown in Figure 3.5. This chosen geometry is similar to that used by Allen and

Southwell when they described the implementation of the Southwell model [6, 38, 39]. A sinusoidal radial

loading with an amplitude σ0 of 100 MPa was applied to this domain (refer to Equation 3.10), and the

material properties of steel were used. Periodic boundary conditions were also used to match the loading

case of Figure 3.4, and only one wavelength was modelled (i.e. λ = 24 mm)

The Southwell model was implemented in MATLAB to solve for the stresses in a cylinder represented

by the axisymmetric section shown in Figure 3.4. The mesh density is set by prescribing the number of nodes

in the radial direction. The node count in the axial direction is then determined by keeping the aspect ratio

for the node spacing as close to 1 as possible. In Abaqus, an axisymmetric domain was generated for the

same geometry and meshed with quadrilateral elements having aspect ratios of 1. The radial, circumferential,

axial and shear stresses were calculated using both the Southwell model and Abaqus. The strain energies
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Figure 3.6: Radial and circumferential stresses as calculated for a steel cylinder using Abaqus (below) and a MATLAB implementation
of a Southwell model (above) for a cylinder with dimensions of 24 mm in the z-direction and 12 mm in the r-direction. The cylinder is
loaded with a sinusoidal radial stress with a magnitude σ0 = 100 MPa.

were also determined.

Figure 3.6 shows the radial and circumferential stresses, respectively, as calculated by the axisymmetric

Abaqus simulation and the MATLAB implementation of the Southwell model. About 80 000 nodes were used

for the Southwell model solution, while approximately 150 000 nodes were used in Abaqus (or roughly 150 000

elements). As seen in the Figure, there is a good agreement between the stresses predicted by Abaqus and

the Southwell model. Although the stress distributions are slightly different when comparing the Abaqus

results and Southwell model, the total strain energies calculated for each case are very similar: the Abaqus

simulation predicted 12.32 J while the Southwell Model gave 12.29 J.

Similar stress comparison studies were conducted for many cylinder geometries, loading conditions,

and material properties to ensure that the results were similar for changing conditions. These results as well

as those shown in Figure 3.6 confirm that the Southwell model is valid. As the intention is to determine

the strain energy of a cylinder using the Southwell model, a mesh convergence study was also undertaken to

determine when the strain energy becomes independent of the number of nodes.

3.3.2 Mesh Convergence Studies

A mesh convergence study was undertaken to determine the mesh density required to obtain accurate results

with little mesh dependence. The same geometry and loading conditions as shown in Figure 3.6 was used

(axisymmetric domain with radius of 12 mm and length of 24 mm), and the MATLAB implementation of the

Southwell model was utilized. As previously done for the verification studies, the spacing between nodes was

made to be as square as possible to achieve an aspect ratio of 1 (equivalently, a = b as seen in Figure 3.3).

The strain energy values calculated using the Southwell model were normalized against the strain energy

calculated from the Abaqus verification simulation of the same geometry (i.e. 12.32 J).



CHAPTER 3. ENERGY MODEL OF AN ELASTIC CORE 34

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Number of Elements in Domain
0 20000 40000 60000 80000

E
ne

rg
y 

R
el

at
iv

e 
to

 A
ba

qu
s 

P
re

di
ct

io
n

10000 30000 50000 70000

nb = 20

nb = number of nodes along radius

40

60

80
100

120 140 160 180 200

Figure 3.7: A graph showing the results of mesh convergence studies. The energy predictions relative to Abaqus energy calculation
for various node counts are shown, with the number of nodes in the radial direction shown for reference.

Figure 3.7 shows calculated values of the strain energy from the Southwell model solutions as imple-

mented in MATLAB. The values are shown for increasing mesh densities and have been normalized against

the internal energy calculated from the Abaqus simulation for the case shown in Figure 3.5. The number

of nodes in the radial direction is also provided for each relative energy quantity shown on this graph. It is

seen that as the number of nodes approaches 30 000, there is less than 1% difference between the energies

predicted by the Southwell model and Abaqus. When the number of nodes approaches 80 000 there is less

than a 0.5% difference. Based on the results of this mesh refinement study, it was determined that over

150 nodes through the radius (or over 80 000 nodes in total) are required to obtain accurate results for each

Southwell model execution.

The Abaqus verification studies show that the Southwell model is valid. In addition, mesh refinement

studies show that over 80 000 nodes (or 150 nodes in the radial directions) are required to achieve accurate

strain energy calculations from the Southwell stress model. This model will now be used to develop a strain

energy prediction model for a polymer core when subject to sinusoidal radial stresses. Once developed, this

will be used to predict the axial buckling load of a metal-coated polymer cylinder.

3.4 Core Model Development

The Southwell model implementation in MATLAB has been verified using finite element analysis, and mesh

refinement studies have been undertaken to determine the minimum number of nodes required for accurate

results. The Southwell model is now utilized to develop a model which predicts the strain energy in a polymer

core subject to sinusoidal radial displacements. These radial displacements are the consequence of the shell

buckling as shown in Figure 3.1(a); the assumed adhesion between the shell and core means their radial

displacement distributions are identical. The Southwell model requires stress boundary conditions, and thus
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the sinusoidal radial displacements are transformed into an equivalent stress field.

As the desired model is to be utilized for any core geometry and buckle wavelengths, the strain energy

will be determined for various buckle wavelength values and changing core dimensions. A function is fit to

the strain energy predictions to create a general core model. The resulting model must be differentiable

so that it can be used to calculate the axial buckling load of a metal-coated polymer cylinder through an

energy-based method.

3.4.1 Strain Energy Data Generation Using the Southwell Model

A core model is to be developed in order to determine the axial buckling load of a filled shell. The Timoshenko

method [34] was previously used to determine the buckling load of a hollow shell, and it will be utilized to

determine the filled-shell buckling load. As the Timoshenko method is an energy-based approach that

requires the strain energy as a function of the buckling displacement magnitude A, the strain energy of the

core will be modelled.

The strain energy of the core will be calculated for the polymer core geometry and loading conditions

as shown in Figure 3.4. The radial stress magnitude σ0 and buckle wavelength-to-radius ratio λ/r will each

be varied, and the energy recalculated for new values of these variables. Values of λ/r between 0 and 10

are used, while the radial stress magnitudes σ0 is varied between 50 MPa to 400 MPa. For the radial stress

loading, one complete wavelength is used as shown in Figure 3.4 (i.e. m = 2 in Equation 3.10). In varying

λ/r and σ0, the objective is to obtain strain energy information for the polymer core such that a general

model can be developed for any core geometry and stress magnitude.

The calculated values of the strain energy U are divided by the cylindrical volume represented by the

axisymmetric section in Figure 3.4. The resulting values of U/(πr2λ) plotted as a function of λ/r is shown

in Figure 3.8. Since a stress boundary condition is required for the Southwell model (refer to Figure 3.2),

a relationship must be determined between the displacement amplitude A and the stress magnitude σ0. A

graph of the normalized displacement magnitude A/r is plotted as a function of λ/r in Figure 3.9. The

energy and displacement amplitude values were calculated using the material properties of VisiJet Crystal

(Ec = 1.5 GPa, νc = 0.35) [122].

In the graphs shown in Figures 3.8 and 3.9, there are two distinct regions: one of linearly increasing

energy density at lower λ/r values, and an asymptotic value of energy density at higher λ/r values. As

indicated on the Figures, the end of the linear behaviour occurs at a transition point of (λ/r)tr = 2.5,

beyond which there is a brief transition region followed by the asymptotic region. The same behaviour and

transition point is seen for all load magnitudes (σ0), while further investigations revealed that the transition

value of (λ/r)tr = 2.5 is unaffected by material properties. Because elastic local shell buckling leads to

buckle waves which have small wavelength-to-radius ratios [5, 78], the trends that hold in the linear region

of 0 < λ/r < 2.5 are of interest (specifically when λ/r � 2.5). The core model will be developed using the

strain energy data in this linear region. However, a more useful method of representing the data must be
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Figure 3.9: Calculated dimensionless radial displacement magni-
tudes as a function of dimensionless wavelengths for increasing load
magnitudes. Data is valid for a VisiJet Crystal cylinder, and all
values were found using the Southwell model.

developed first.

In order to determine the relations needed, the strain energy and displacement magnitude information

contained in Figures 3.8 and 3.9 is plotted as a function of the stress amplitude σ0. Figures 3.10 and 3.11

show the values of U/(πr2λ) and A/r, respectively, as a function of σ0. As λ/r is increased beyond 2.5, the

energy density values in Figures 3.10 and 3.11 no longer increase, leading to lines which lie on top of each

other in the graphs. These overlapping lines correspond to the asymptotic regions in Figures 3.8 and 3.9,

where further increases in λ/r beyond 2.5 lead to asymptotic increases in U/(πr2λ) and A/r. As the core

model is to be developed for the behaviour when λ/r < 2.5, these asymptotic regions (or similar energy

density values in Figures 3.10 and 3.11) will not be considered. The behaviour observed in Figures 3.10 and

3.11 will be used in developing the relations for the model.

3.4.2 Trend Analysis and Core Model Development

A model is desired that predicts the strain energy in the core U as a function of the buckle wavelength

λ, the displacement magnitude A and the radius r. Relations are to be determined from trends in the

calculated strain energies, which are shown graphically in Figures 3.8 through 3.11. The core model must be

an analytical function and must also be a differentiable function of the displacement magnitude A, so that

the change in strain energy as a function of the displacement amplitude can be found. This will allow the

use of the Timoshenko energy method [34] to determine the buckling load of an axially-loaded metal-coated

polymer cylinder.

The Southwell model was used to determine the strain energy in a polymer core subject to sinusoidal

radial displacements by transforming these into equivalent stress fields. However, the core model must

provide the strain energy in the core U as a function of the displacement magnitude A. Thus, a relationship
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between U and A is required that is not a function of the load magnitude σ0. Figures 3.10 and 3.11 show

plots of the energy density U/(πr2λ) and the maximum normalized radial displacement A/r, respectively,

plotted against the load magnitudes values σ0. Through inspection it is seen that a quadratic relationship

exists between U/(πr2λ) and σ0, while there is a linear relationship between A/r and σ0. Looking only at

the behaviour when λ/r < 2.5, a general quadratic expression relating U/(πr2λ) and σ0 is:

U

πλr2
= K2σ0, (3.11)

where K2 is the quadratic fit constant. Similarly, the linear relationship between the A/r and σ0 can be

expressed as:
A

r
= K1σ0, (3.12)

where K1 is the linear fit constant. When λ/r is much lower than the transition value 2.5, the constants K1

and K2 are linearly related to λ/r through:

K2 = K3
λ

r
and K1 = K4

λ

r
, (3.13)

where K3 and K4 are the parameters which relate the quadratic and linear fit co-efficients, respectively, to

λ/r.

The values of U/(πr2λ) and A/r have been calculated for one complete buckle wavelength, or when

m = 2 in Equations 3.9 and 3.10. Thus the expressions contains in Equations 3.11 through 3.13 are valid

for one complete buckle wavelength, or the loading condition shown for the axisymmetric cylinder section in

Figure 3.4. Using Equations 3.11 through 3.13, the expression for the energy of one complete wavelength in
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a solid cylinder (or core) under an axisymmetric radial stress as seen in Figure 3.4 is found to be:

U =
K3

K2
4

A2πr = KA2πr, (3.14)

where U is the internal energy, A is the radial displacement magnitude of buckling, and K = K3/K
2
4 is the

model fit coefficient. In this equation, the stress magnitude σ0 has been eliminated, and the core model is

only a function of K, A and r. The value of K is valid for one set of core material properties, and must be

recalculated when the core material changes.

It is of interest to note that the core energy is not a function of the buckle wavelength λ, though

varying values of λ/r were used in calculating strain energy magnitudes using the Southwell model. This

indicates that for a elastic core undergoing sinusoidal buckling radial deformations, the resulting energy in

the core is not a function of the buckle wavelength.

Because Equation 3.14 is the expression for the energy of one wavelength, it must be corrected to

account for multiple waves. Since m is the number of half-waves, the total energy of a cylinder under m half

waves is found to be:

Uc =
m

2
KA2πr, (3.15)

where Uc is the internal energy of the core. This expression holds while λ/r is much lower than 2.5, which

is the case for elastic buckling of filled shells with an elastic core. This core energy expression is required

for a complete buckling analysis of a filled-shell system when using an energy-based method, similar to the

method used by Timoshenko [34] in developing hollow-shell buckling theory. While the material properties

of VisiJet crystal were used to obtain the data as shown in Figures 3.8 through 3.11, the relations shown in

Equations 3.11 through 3.13 are valid regardless of material chosen.

As seen in the form of Equation 3.15, the strain energy of the core is not a function of the buckle

wavelength λ. Further analysis using the Southwell model MATLAB code, as well as finite element analyses,

revealed that for small wavelengths the value of U is indeed insensitive to λ. This implies that, if the values

of λ and r are chosen such that λ/r < 2.5, only one calculation using the Southwell model is needed for a

given core material. In this way, the value of K is found by rearranging Equation 3.15:

K =
2U

mA2πr
. (3.16)

The material properties of VisiJet crystal were used to determine the strain energy and radial displacement

amplitudes. Using the calculation shown in Equation 3.16 leads to the same value of K as found if using the

methods outlined in Section 3.4.2. This single-calculation method provides a quicker method of calculating

the model constant K for the core energy model, enabling expedient calculation of the constant as the core

material is changed.
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3.5 Conclusions

An energy-based method is to be used in determining the axial buckling load of a metal-coated polymer

cylinder. The behaviour of the metal shell is governed by hollow-shell buckling theory, but the behaviour

of the polymer core requires a differentiable analytical model. When a filled cylindrical shell undergoes

buckling deformations, the shell buckles in a sinusoidal pattern. As it is assumed that the metal shell and

the polymer core are perfectly adhered, their displacements are coupled. Thus it was of interest to develop

an energy model of the core as it is subject to sinusoidal radial displacements. In this chapter, a new core

model has been developed which accurately accounts for the stresses in the polymer core of a metal-coated

polymer cylinder as the cylinder undergoes sinusoidal buckling deformations. This model will be used to

represent the core behaviour of a filled-shell system for buckling analysis.

An implementation of the Southwell stress model was utilized in order to develop this new core model.

This stress model calculates the triaxial stress components, unlike the Gough at al. model used by Karam

and Gibson which only calculates the stresses in two coordinate directions. The Southwell model cannot be

solved through analytical means; hence, a finite difference method was implemented using MATLAB. The

core model was derived from functions fitted to Southwell model strain energy calculations, such that the

energy of a solid cylinder under axisymmetric sinusoidal radial displacements can be found for any cylinder

geometry and buckle wavelength. Each core model constant is valid only for one core material.

The resulting core model is a true axisymmetric representation of the core behaviour. When imple-

mented, this core model is expected to provide more accurate load predictions than previous models for

filled-shell buckling. In addition, the versatility of the Southwell model allows for more complicated core ge-

ometries such as hollow cores, or lack of adhesion between the shell and the core. Furthermore, the buckling

model utilizing the present core model enables the optimization of cylinder geometries for mass minimization

purposes.



Chapter 4

Local Buckling of an Elastic Shell Filled with

a Solid Elastic Cylinder

4.1 Introduction

Metal-coated polymer microtrusses are a low-weight alternative to all-metal structures, offering the high-

strength benefits of nanocrystalline metal and the low weight of polymer materials. A thorough understand-

ing of their behaviour is required prior to using these hybrid structures in practical applications. Because

three-point bend tests on hybrid microtruss structures have shown that their failure mechanisms are dom-

inated by compressive instabilities [1, 4], the failure modes of local shell buckling and global buckling are

being investigated. Due to the cylindrical shape of the microtruss struts, the focus will be on understanding

the compressive failure modes of metal-coated polymer cylinders in axial compression.

Earlier investigations into the failure mechanisms of metal-coated polymer microtrusses assumed that

the polymer material acted purely as parasitic mass [1, 4]. These past studies did not accurately account

for the polymer core when it is subject to sinusoidal radial displacements, the observed shape when local

shell buckling of the metal shell takes place [5, 66, 78, 109]. Theoretical and experimental investigations

of foam-filled tubes, where the core material was accurately accounted for, have shown that the foam core

hinders the onset of buckling and provides increased axial strength [69, 98, 103, 107]. These models make

use of well-tested hollow-shell concepts in describing the behaviour of the shell [34, 35, 74]

There are, however, no models which are intended specifically for tubes with solid polymer cores

instead of foamed cores. While some of the existing models may be adequate, they utilize foundation models

intended for composite sandwich panels [24, 82], and are thus not true axisymmetric representations of the

core behaviour. Given the shortcomings of presently existing models, there is a necessity for an improved

model that is relevant to metal-coated polymer microtruss structures – or more specifically, their struts –

which accurately describing the behaviour of both the metal shell and polymer core.

The Southwell model characterizes the stress distributions in a cylinder subject to axiysmmetric stresses

[6, 38, 39]. In the preceding chapter, the Southwell model was used to develop a simple method to predict

the internal energy of a polymer cylinder subject to sinusoidal radial stresses. The intention was to represent

the core of a polymer-filled metal shell as the shell undergoes sinusoidal buckling displacements.

In this chapter, predictions of the buckling load for a metal-coated polymer cylinder will be derived

utilizing this core model. Additionally, finite element analysis will be undertaken to verify this model and to

40
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Figure 4.1: A filled shell when undeformed (left) and buckled (right). The filled shell is under an axial load F with length l, shell
thickness t and inner radius r. The shell has material properties E and ν while those of the core are Ec and νc. When buckled, the
buckle waves have wavelength λ and amplitude A.

determine whether the stresses in the core during buckling match those predicted by the Southwell model.

Although there are some differences in the stresses predicted by the Southwell model, the buckling loads are

nevertheless accurately predicted and the model performs better than the best-available foam-core model.

4.2 Axial Buckling Load for Metal-coated Polymer Cylinder

A metal-coated polymer cylinder subject to an axial load F is shown in Figure 4.1(a). The shell has a

Young’s modulus E and Poisson’s ratio ν, while the corresponding properties of the core material are Ec and

νc, respectively. The cylinder has a length of l and a shell thickness of t, while both the shell inner radius

and core outer radius are designated as r. At some critical load, the shell buckles with buckle wavelengths

λ and wave amplitude A as shown in Figure 4.1(b). An energy analysis considering the separate energy

contributions of the shell and core will be used to determine this critical load. The assumptions used while

determining the buckling load are as follows:

� the shell and core are perfectly bonded;

� both the shell and core materials behave elastically;

� the buckling displacements are sinusoidal;

� there are many waves that form when the shell buckles;

� the core conforms to the buckled shape of the shell; and

� the thickness of the shell is small compared to the radius (i.e. t/r ≤ 0.1).

While undergoing buckling deformations as shown in Figure 4.1(a), the strain energy is accumulated due
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to the bending and circumferential stretching of the shell. The shell bending energy is the energy associated

with bending of longitudinal sections of the shell as they undergo sinusoidal buckling deformations, while

the stretching energy results from the stretching or compressing of the shell circumferential sections as they

expand or contract to accommodate the bending. The energy contained in the core is due to the radial

displacements caused by the buckling of the shell. These buckling displacements are transferred from the

shell to the core due to their adhesion, and have the sinusoidal shape [34, 35, 97, 98]:

w = A sin
mπz

l
, (4.1)

where A is the amplitude of the radial deflections, m is the number of buckle half waves along the length l of

the shell, and z is the axial coordinate as seen in Figures 4.1(a) and (b). Equation 4.1 is the same assumed

displacement used in the derivation of the core energy term of Chapter 3. The shell bending energy Ub is

[34, 37]:

Ub =

∫ l

0

D∗κ

2
dx =

πErt3

12(1− ν2)

m4π4

l4
A2l

2
(4.2)

where:

κ = w′′ =
d2w

dx2
=
A2m4π4

l2
sin2

(mπx
l

)
and D∗ = 2πr

Et3

12(1− ν2)
.

κ is the curvature of the shell surface undergoing buckling deformations, while D∗ is the flexural stiffness of

a curved plate [34, 123]. The circumferential stretching energy Uc is [34]:

Uc =

∫ 2π

0

∫ r+t

r

∫ l

0

∫ εrc

0

σrcrdεdzdrdθ =
πEtA2l

2r2
, (4.3)

where the stress field σrc results from the radial strains (εrc) caused by buckling deformations:

σrc = Eεrc = E
1

r
A sin

(mπz
l

)
.

Finally, the core energy as determined in Chapter 3 is:

Up =
m

2
KA2πr. (4.4)

During buckling, the total internal energy (Ui) of a cylindrical shell with a polymer core is the sum

of the shell bending energy (Equation 4.2), the shell circumferential stretching energy (Equation 4.3), and

the core energy (Equation 4.4). The external energy (Ue) is due to the applied axial force F as indicated in

Figure 4.1. These two energy terms, respectively, are:

Ui = Ub + Uc + Up =
πErt3

12(1− ν2)

m4π4

l4
A2l

2
+
πEtA2l

2r
+
m

2
KA2πr (4.5)
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Figure 4.2: (a) A filled cylinder with length l, radius r and shell thickness t under an axial displacement ∆. The shell has material
properties E and ν while the core properties are Ec and νc. (b) The buckled shape of the shell at a critical value of ∆. The buckle
waves have wavelength λ and amplitude A.

and

Ue =
Fm2π2A2

4l
. (4.6)

4.2.1 Bifurcation Point and Buckling Load Derivation

A shell subject to an axial displacement ∆ is shown in Figure 4.2(a). Conservation of energy stipulates

that the internal energy of the shell (sum of Ub and Uc) is always equal to the external energy (Ue) for any

displacement ∆. At a critical ∆, the increment in energy required to cause buckling of the cylinder is equal

to the energy increment required for continued axial compression without buckling:

∂Ui

∂∆
=
∂Uic

∂∆
=
∂Ue

∂∆
, (4.7)

where Ui is the internal energy of the filled cylinder as it undergoes buckling and Uic is the internal energy

under continued axial compression. Equation 4.7 identifies the bifurcation point of a cylindrical shell under

an axial displacement. Any further increase in the applied axial displacement ∆ (or equivalently the axial

load F ) will either lead to an increase in load without buckling (i.e. undeformed geometry of Figure 4.2(a))

or the appearance of buckle waves (Figure 4.2(b)). For ideal cylinders buckling will not take place, however

imperfections will always cause a thin-shelled cylinder to buckle rather than continue to compress [73, 78, 124].

After the formation of buckling wrinkles, the axial displacement ∆ and the radial displacement ampli-

tude A are related geometrically through:

∆ =
A2m2π2

4l
. (4.8)
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Using this relation, a part of Equation 4.7 can now be rewritten as a function of A instead of ∆:

∂Ue

∂A
=
∂Ui

∂A
. (4.9)

This enables the use of the energy expressions (Equations 4.2 through 4.6). Using Equations 4.5 (Ui) and

4.6 (Ue) and applying the operation in Equation 4.9, the elastic buckling load of a metal-coated polymer

cylinder in axial compression is found to be

F =
2π3rEt3

3(1− ν2)

1

λ2
+

Et

2rπ
λ2 +

Kr

π
λ (4.10)

where λ = 2l/m is the buckling wavelength, as shown in Figure 4.2(b). The total load for a cylindrical shell

under an axial load includes the loads carried by the core and that of the shell. Equation 4.10 only describes

the buckling load in the metal shell, without accounting for the load borne by the polymer core. Applying a

factor to account for the relative stiffness and geometry of the shell and the core, the buckling equation for

a metal-coated polymer cylinder is:

F =

(
1 +

Ec

E

r

2t

)[
2π3rEt3

3(1− ν2)

1

λ2
+

Et

2rπ
λ2 +

Kr

π
λ

]
. (4.11)

Equation 4.11 applies for any value of λ. However, for a cylinder with known geometry and material

properties, there is only one value of λ that is physically permissible, and its value leads to the buckling

load. The critical λ value is found by minimizing the value of F , which entails finding the positive real root

of the 4th-order polynomial expression ∂F/∂λ = 0 as given by:

Et

rπ
λ4 +

Kr

π
λ3 − 4π3rEt3

3(1− ν2)
= 0. (4.12)

Once found, the critical value of λ is substituted into Equation 4.11 to give the critical load.

4.2.2 Recovery of the Hollow-Shell Buckling Equation

The hollow-shell local shell buckling equation (refer to Equation 2.2 of Chapter 2) can be recovered from

Equation 4.11 when the core constant K is zero (i.e. when the core is removed). First, K is eliminated to

give:

FHS =
2π3rEt3

3(1− ν2)

1

λ2
HS

+
Et

2rπ
λ2

HS. (4.13)

The solution for λ is found from the equation ∂F/∂λ = 0 as:

λHS =

(
12(1− ν2)

r2t2

)1/4

, (4.14)

which, when substituted into 4.13 gives
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FHS =
2πEt2√
3(1− ν2)

. (4.15)

This equation is most familiarly written as a stress:

σHS =
Et

r
√

3(1− ν2)
. (4.16)

Equation 4.16 is the classical hollow-shell local shell buckling equation [34, 35, 37, 39, 75]. Its isolation from

Equation 4.11 demonstrates that the filled-shell buckling model is fundamentally sound.

4.3 Predicted Behaviour of Axially Compressed Filled Shells

In order to compare the hollow-shell (Equation 4.15) and the filled-shell models (Equation 4.11), their

predictions are compared graphically. The Karam and Gibson filled-shell buckling model [98] will also be

used for reference.

Another model used for comparison purposes is the plane stress buckling model. Timoshenko and

Goodier [123] determined that for a solid polymer cylinder loaded axisymmetrically, constant and equal

radial and circumferential stresses are present at every cross section of the cylinder. Since this is a plane

stress condition, the corresponding model is referred to as the plane stress model. The plane stress condition

is a minimum value for the critical buckling load of a filled shell, when full adhesion between the shell and

core is assumed.

Prior to calculating values for the model constant K, values of Ec were determined by choosing ratios

of the core-to-shell Young’s modulus Ec/E and by using a the Young’s Modulus of a known shell material.

The shell was assumed to be nanocrystalline nickel manufactured by RePliForm [7]; this is a common metal

produced through electrodeposition [28]. The ratios of the Young’s moduli were chosen to represent ABS

(i.e. Ec/E = 0.01) and LDPE (Ec/E = 0.001). The values of the shell and core Poisson ratios used for

calculations were 0.3 and 0.35 respectively. Using these material properties, K = 0.0199 when Ec/E = 0.01,

and K = 0.00199 when Ec/E = 0.001. These values of K were used to determine load predictions using the

new filled-shell buckling model.

Figure 4.3(a) is a plot of the critical buckling load (Equation 4.11) for Ec/E = 0.01, while that for

Ec/E = 0.001 is in Figure 4.3(b). Included in both of these figures are the loads predicted by the Karam and

Gibson model [98], the plane stress model and the hollow-shell model (Equation 4.15). As seen in Figures

4.3(a) and 4.3(b), the new elastic model predicts slightly higher critical loads than the Karam and Gibson

model. Both predict failure loads much larger than those predicted by the plane stress model, a lower bound

for filled-shell buckling. When the shell thickness-to-radius ratio of the shell is very high (i.e. very close to

0.1 in both graphs), the buckling load is dominated by the shell behaviour. At these high values of shell

thickness, the hollow-shell and all three of the filled-shell models predict nearly equal loads because they can
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Figure 4.3: Predictions of the buckling load found for the new elastic model, Karam and Gibson model and the hollow-shell model
plotted against increasing shell thickness-to-radius ratios for (a)Ec/E = 0.01 and (b)Ec/E = 0.001
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Figure 4.4: Predictions of critical wavelength for the new elastic model, Karam and Gibson model and the hollow-shell model plotted
against increasing shell thickness-to-radius ratios for (a)Ec/E = 0.01 and (b)Ec/E = 0.001

all be reduced to the Timoshenko expression (Equation 4.15) for local shell buckling.

Figures 4.4(a) and 4.4(b) show the critical ratio of buckling wavelength to shell thickness (λ/t) as a

function of the ratio of shell thickness-to-radius (t/r), for the high (Ec/ = 0.01) and low (Ec/ = 0.001)

values of the relative core stiffness, respectively. The predictions for the new elastic model, the plane stress

model, the Karam and Gibson model and the hollow-shell model are plotted in these figures. The normalized

wavelength-to-thickness ratio shown in these graphs, λ/t, is the critical wavelength needed to cause buckling.

Its value is essential to determining the buckling load of a cylinder.

For the new elastic model, the predicted wavelengths (λ/t) are unaffected at lower values of shell
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thickness-to-radius. This behaviour is mirrored in the Karam and Gibson model. However λ/t decreases

quickly and eventually approaches the normalized wavelength value of hollow-shell buckling, which is when

the filled-shell and hollow-shell load predictions become equal. As seen for the predicted loads in Figures

4.3(a) and 4.3(b), the effect of the core is insignificant at higher t/r values.

The values of the predicted wavelengths are noticeably higher for the plane stress model when compared

to the Karam and Gibson and new elastic models; conversely the plane stress model predicts lower loads.

From this observation, as well as from the behaviours of λ/t for the new model and the Karam and Gibson

model, it can be deduced that higher loads correspond to smaller buckle wavelengths for both filled and

hollow shells.

The higher predicted loads of the new model are in accordance with the increased energy that this

model predicts. The circumferential stress component (refer to Equation 3.5 in Chapter 3) is not calculated

for the Karam and Gibson model, as the Gough model they utilize for the core behaviour only accounts for the

axial, circumferential and shear stress components. Though the energy contribution of the circumferential

stress is small compared to these components, its exclusion in the Karam and Gibson model contributes to

lower predictions of buckling load.

4.4 Finite Element Verification of the New Elastic Model

A verification of the buckling loads was conducted using linear buckling analysis in Abaqus; this is also

referred to as modal analysis. This analysis was used to verify the loads predicted by the new model

as shown in Figures 4.3(a) and 4.3(b) as well as the predicted wavelengths of Figures 4.4(a) and 4.4(b).

However, in order to verify the stresses predicted by the Southwell model, post-buckling analysis was used.

4.4.1 Buckling Load Verification through Modal Analysis

Buckling analysis was undertaken using the eigenvalue buckling solver in Abaqus in order to validate the

buckling loads predicted by the new model. The general eigenvalue buckling problem is used to find the

buckling loads of a structure by determining when its stiffness matrix becomes singular provided given applied

displacements or loads [83]. The solutions of the eigenvalue buckling problem provide the bucking loads and

the buckled shapes of the structure. Due the large number of degrees of freedom in a finite element problem,

the eigenvalue buckling solutions must be determined through an iterative process that would otherwise be

computationally expensive to calculate directly [83].

As the eigenvalue buckling problem requires a load or applied displacement, a perturbation was applied

in the form of an axial displacement δl at one end of the cylinder as seen in Figure 4.5, while the opposite

end of the cylinder was fixed axially. Both ends of the cylinder were permitted to displace radially. A range

of ratios of the length to the radius of the cylinder were selected, and these were generated using the criteria

given in Table 4.1.
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Figure 4.5: Diagram showing the configuration of a finite element simulation using Abaqus for an axisymmetric section of a filled
shell with length l, radius r mm and shell thickness t. The section is loaded with an applied axial displacement δl. An example mesh
is also shown, with decreasing mesh density towards the cylinder centreline.

Table 4.1: List of criteria for the cylinder geometries chosen for verification simulations of fundamental model using Abaqus.

Quantity Chosen values
Thickness-to-radius ratios (t/r) 0.005, 0.0075, 0.01, 0.025, 0.05 and 0.1
Length-to-radius ratios*(l/r) Between 5 and 35, in increments of 5
Relative core stiffness ratio (Ec/E) 0.01 and 0.001
* Length of cylinder fixed at 50 mm

The Lanczos algorithm [83] was used to solve for the eigenvalues and corresponding eigenvectors for

the element stiffness matrix of the discretized axisymmetric domain (see Figure 4.5). The eigenvalues found

from the Abaqus results are compared to the predicted loads and wavelengths shown in Figures 4.3 and 4.4,

respectively. As an axial displacement was the applied perturbation for the modal analysis, the resulting

eigenvalue provided the displacement at which the shell buckled. Using models of elasticity and the geometry

of the cylinder, the buckling force can then be determined:

Fb = π((r + t)2 − r2)E
δlb
l

+ πr2Ec
δlb
l
, (4.17)

where δlb is the eigenvalue solution from the Abaqus analysis and Fb is the resulting buckling load.

The geometries were meshed in such a way to ensure that there were at least 5 elements through

the thicknesses of the coatings as seen in Figure 4.5. The first eigenvalue calculated by the solver was

taken to indicate buckling. In order to verify that the eigenvalues were insensitive to cylinder length, the

modal analyses were completed for ratios of length-to-radius (l/r) ranging between 5 and 35. The ratios of

thickness-to-radius (t/r) studied for the modal analysis ranged between 0.005 and 0.1. Ratios of t/r below
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Figure 4.6: Predictions of the buckling load determined from Abaqus modal analyses compared to theoretical models for (a)Ec/E =
0.01 and (b)Ec/E = 0.001

0.005 indicate very low shell thickness values which may be impractical to manufacture for hybrid microtruss

structures, while those above 0.1 are outside the scope of the thin-shell assumption used for the derivation

of the new elastic buckling model. Beyond this value, the predicted loads of the model are less accurate.

Figures 4.6(a) and (b) show graphs of the calculated buckling loads as predicted by Abaqus along with

the theoretical buckling loads predicted by both the new elastic model and the Karam and Gibson model.

Figure 4.6(a) shows the results for Ec/E = 0.01, while Figure 4.6(b) shows the results for Ec/E = 0.001.

Both Figures include insets showing detail at lower values of the ratio of shell thickness-to-radius (t/r)

where the data appear to overlap (i.e. data points on the graph are nearly coincident). Where applicable,

the overlapping Abaqus data points indicate solutions at different ratios of length-to-radius (l/r) for the

same t/r. This overlap in Abaqus data is not present for all ratios of shell thickness to radius; it is due to

slight differences in mesh characteristics as the ratio of length-to-radius is changed (e.g. different element

counts).

As seen in Figure 4.6(a), for Ec/E = 0.01 both the Karam and Gibson model and the new model

predict lower loads than the Abaqus results. The Karam and Gibson model predicts loads that are up

to 10% less than those predicted by Abaqus, while the new elastic model predicts loads that are no more

than 3% less than the Abaqus results. The agreement between the Abaqus results and the Southwell model

improves at higher values of the shell thickness to radius (t/r).

The results in Figure 4.6(b) show that when Ec/E = 0.001 there is a better agreement between the

Abaqus results and the Southwell model model. The Karam and Gibson model also has better predictions

at this lower Ec/E value, as the diminished core stiffness reduces the core contribution during buckling.

However it is seen that at t/r = 0.1, both theoretical models over-predict the buckling load relative to the

Abaqus results. The Karam and Gibson model is a better predictor of the load at this higher t/r value.
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Figure 4.7: Predictions of the critical wavelengths determined from Abaqus compared to theoretical predictions for (a)Ec/E = 0.01
and (b)Ec/E = 0.001

The difference between the new model and the Abaqus results can be attributed to an incorrect model

constant K, which arises from poor function fits when developing the core model. Nevertheless, the new

model is still an improvement over the Karam and Gibson model, which does not predict the buckling loads

relative to Abaqus as well. It is likely that this is due to the underlying assumptions of the Karam and

Gibson model, such as the lack of its inclusion of the circumferential stresses due to its reliance on the

Gough model [82].

The predictions of the wavelengths (λ/r) are shown in Figures 4.7(a) for Ec/E = 0.01 and Figure

4.7(b) for Ec/E = 0.001. The values from the Abaqus simulations were obtained by counting the number

of buckling lobes (m) and using the relation λ = 2l/m to get the wavelengths. Because m is an integer

value, there is more scatter to the predicted values from Abaqus relative to the theoretical values. This is

because the wavelength λ was calculated by counting the waves from buckled shapes obtained from Abaqus,

whereas the values calculated for theoretical predictions assume that m is continuous. The Abaqus λ/r

values gravitate towards the Karam and Gibson predictions for both Ec/E values, indicating that their

model is a more accurate prediction for the buckled wavelength.

It is of interest to note that for each geometry assessed, several eigenvalues were requested for the

buckling analyses conducted in Abaqus. For a given geometry, the eigenvalues obtained were very close

to each other: the first and sixth eigenvalues were within 2% of each other. In addition, the number of

waves in each resulting mode shape were very similar, with only differences in the buckle wave amplitudes

marking the differences between the eigenvalues. The closeness of the eigenvalues indicates the sensitivity

of filled-shell buckling loads to the imperfections of the shell geometry [83], while the similarity of the mode

shapes illustrates that the buckling load is not strongly dependant on the buckled shape of the shell.

Based on the modal analysis for values of Ec/E of 0.01 and 0.001, it is seen that the new model is a
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more accurate predictor of buckling load while the Karam and Gibson model predicts the wavelengths of the

buckles more accurately.

4.4.2 Verification of Stress Distributions

While the modal analysis provides the buckling loads and mode shapes, it is of interest to also determine the

stresses in the cores of metal-coated polymer cylinders subsequent to the emergence of buckling deformations

(as in Figure 4.1(b)) and compare this to the values obtained in the MATLAB implementation of the

Southwell model (as developed for Chapter 3). Eigenvalue or modal analysis in Abaqus is used to determine

the critical loads and buckled shapes of structures [83], but cannot be used to determine the stress state in

the resulting buckled geometries. This necessitates the use of post-buckling analysis, whereby imperfections

are deliberately introduced to cylinder geometries in order to induce buckling in standard finite element

analysis. Without the use of imperfections, the cylinders would continue to undergo axial straining without

buckling taking place.

As was done for the modal analyses, an axisymmetric section of a cylinder is loaded axially as shown

in Figure 4.5. The boundary conditions were identical to those used for the modal analysis, and the meshes

previously generated for each cylinder geometry were reused. The modal analyses provided the axial dis-

placement of each geometry at which buckling was incipient. For the post-buckling analysis, the axial

displacements applied to the cylinders utilized the values found from the modal analyses.

The undeformed mesh of each cylinder was deliberately made imperfect by offsetting the nodes using

the information from buckled shapes obtained from the modal analyses. This was done using a series of

buckled shapes, and the imperfections applied in this way were controlled by varying the scale factors of

each mode shape. Table 4.2 lists the scaling factors used for the first six mode shapes for each geometry.

Utilizing more than six eigenmodes did not affect the results of the post-buckling analyses, while larger

scaling factors led to lower buckling loads than previously found from the modal analysis.

The geometries studied for the modal analysis were also analysed using post-buckling analysis (hence

the same meshes could be used). The loads determined from the results of the modal analysis were ver-

ified through post-buckling analyses. All of the loads obtained in this manner were very similar to their

modal analysis counterparts, and are thus not given in this section. However, an examination of the stress

Table 4.2: Scaling factors used for each eigenvalue, as applied to the geometries used for post-buckling analyses in order to generate
imperfect meshes.

Eigenvalue/Mode # Scaling Factor
1 5.000× 10−3

2 2.500× 10−3

3 1.250× 10−3

4 6.250× 10−4

5 3.125× 10−4

6 1.562× 10−4
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Figure 4.8: Mode shape from modal results and deflected shape from post-buckling analysis for (a) t/r = 0.01, l/r = 10 and (b)
t/r = 0.05, l/r = 15. The core relative stifness Ec/E = 0.01 for both cases, and the radial deformations have been exaggerated.

distributions for some geometries will be given, as well as comparisons of some deformed shapes of several

geometries analysed.

Figure 4.8(a) shows the first buckling mode from a modal analysis performed for l/r = 10 and t/r =

0.01, while also showing the buckled shape for a simulation of post-buckling behaviour. Figure 4.8(b) shows

the buckled shapes for l/r = 10 and t/r = 0.05, again for both simulations. The value of Ec/E for both

figures is 0.01. It is seen that the number of buckle waves is similar for both the modal and post-buckling

simulations. This is most likely due to the fact that the modal analysis was the basis for the imperfections

used for the post-buckling analyses. Although the imperfection pattern for the geometries was a weighted

sum of the first six mode shapes (refer to Table 4.2), these figures illustrated that the buckled shapes are still

similar to the first mode shape. Recall that the axial load as determined from the first eigenvalue (which

corresponds to the first mode shape as shown in Figures 4.8(a) and (b) was compared against the predictions

of the filled-shell models shown in Figures 4.6 and 4.7.

While a stress analysis of the core subsequent to the emergence of buckling displacements for several

select geometries was undertaken, only the results pertaining to l/r = 10 and t/r = 0.01 are shown (r = 5

mm and l = 50 mm). This is the same geometry whose buckled shapes are shown in Figure 4.8(a). The

stress distributions in the core as obtained from the post-buckling simulations and the Southwell model are

shown in Figure 4.9. In this Figure, the radial and axial stresses for l/r = 10, t/r = 0.01 and Ec/E = 0.01
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are shown. Only one wavelength λ of the cylinder is shown for clarity. In addition, only the outer 2 mm

of the core is shown as the rapidly decreasing stresses towards the core centreline mask the stress activity

at the core outer sections. The axial stress for the Southwell model solution was changed by −40 MPa to

account for pure axial loading of the core, as this effect is not accounted for in the Southwell stress solution.
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Figure 4.9: Radial (left) and axial (right) stress distributions in the core calculated from the Southwell Model (top) and Abaqus
post-buckling analysis (bottom) for a geometry with l/r = 10, t/r = 0.01 and Ec/E = 0.01. Note that only one wavelength of the
geometry is shown, and only the outer 2 mm of the core as shown in the diagram above.

For the core sections shown in Figure 4.9, the stress distributions determined for the radial and axial

directions are similar in appearance for both the Abaqus and Southwell model solutions. Although the radial

stress fields are more spread out in the radial direction for the Southwell model solution, the minimum and

maximum values of the radial stresses obtained from both the Abaqus and Southwell solutions are the same.

However, there are notable differences in the axial stress solutions. While the distributions of the axial

stresses in both the Abaqus and Southwell model solutions are visually similar, the values of these stresses

are not. The minimum axial stress determined from both results is −60 MPa. However, the axial stress

value at r = 3 mm is −50 MPa while the value found from the Southwell model is −45 MPa. The stress

values at r = 3 mm represent the stress state far away from the influence of buckle deformations at the outer

surface of the core.

It is believed that this discrepancy in the axial stress distributions is due to a Poisson effect that is not

accounted for in the Southwell model, despite the -40 MPa change to the results prior to comparisons. An

inspection of the strain energy contributions of the core (as determined using the Southwell model) reveals
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that the radial stress has the highest contribution to the strain energy, followed by the shear strain energy.

The contribution of the axial strain energy is lower than both the radial and shear strain contributions. In

addition, the buckling load calculated by the new elastic model matches that from the Abaqus modal analysis

and the present post-buckling analysis. This implies that the differences in the axial stress distributions do

not markedly affect the results of the buckling loads.

Despite the differences in the axial stresses obtained from the Abaqus and Southwell model solutions,

the circumferential and shear stress distributions, which have not been shown here, compare well for the

Southwell model and Abaqus results. The maximum absolute shear stress for the same core section shown in

Figure 4.9 is found to be 10 MPa, and this value is found through both the Abaqus and Southwell solutions.

The radial stress distributions for this geometry were found to be similar for the Abaqus and Southwell

model solutions. The differences in the axial stress distributions are attributable to a Poisson effect in the

core that is not accounted for in the Southwell model solution. As the contribution of the axial strain energy

to the total core strain energy is less than other strain energy components, these differences in the axial

stresses do not affect the results of the buckling load estimates obtained from Abaqus. As such, despite the

differences in the axial stresses, the buckling load calculations obtained from Abaqus verify the predictions

obtained using the new elastic model.

4.5 Conclusions

The buckling load for a metal-coated polymer cylinder (or a filled shell) in axial compression has been derived.

This new model predicts slightly higher buckling loads than the Karam and Gibson model, currently the

standard for the buckling of foam-filled cylinders. For very thick shells, the contribution of the core to the

buckling load becomes insignificant, and the loads approach the theoretical hollow-shell buckling load.

Through Abaqus modal analysis, it was shown that the new model is in better agreement with buck-

ling loads found through finite element analysis compared to the Karam and Gibson model. The buckle

wavelengths, however, are better predicted by the Karam and Gibson model. A stress analysis undertaken

utilizing post-buckling analysis showed that the radial stresses agree well with those predicted by the South-

well model. However, while the axial stress distributions are visually similar for the Abaqus results and

Southwell model, the stress magnitudes are not identical even after accounting for the added axial load in

the Abaqus simulations (which is not originally present in the Southwell model). Despite this difference in

magnitudes, the buckling loads found through Abaqus are in better agreement with the new model than

with the Karam and Gibson model.

Although the Karam and Gibson model does not match as well with the results found through Abaqus,

it is a simpler model to implement in practice. Were one to require an analysis of a known geometry, the

Karam and Gibson model would be much more efficient than the model described here. The advantage of

the new model lies in its adaptability to other conditions that are very important in filled-shell buckling.



Chapter 5

Local Buckling of an Elastic Shell Filled with

a Solid Elastic Cylinder without Interfacial

Adhesion

5.1 Introduction

Metal-coated polymer microtruss structures take advantage of mass-efficient microtruss topologies while

utilizing the high-strength benefits of nanocrystalline metals [4]. These structures are produced by 3D

printing a polymer preform followed by coating this preform with nanocrystalline metal. During the metal-

coating process, an electroless step is necessary in order to create a thin layer of metal on the polymer

surface. This provides a conductive surface for the electrodeposition of nanocrystalline metal. While the

bond between the electroless metal layer and the nanocrystalline metal is strong, the adhesion between

the electroless metal and the polymer surface is known to be imperfect [22, 59]. The quality of the bond

between the electroless metal and the polymer is affected by several factors. These can include the ambient

temperature during the electroless process [57], the cleanliness of the polymer surface [22, 58], the difference

in Young’s moduli between the metal and polymer [63] and the chemistry of the polymer [59].

A key assumption of the elastic model (Chapter 4) is that the core and the shell are perfectly bonded.

The imperfect bond between the metal and polymer (specifically the electroless layer and the polymer) results

in lower critical loads than would be expected with a fully-adhered metal shell and polymer core [62, 63].

With full adhesion, the metal shell and surface of the polymer core move as one unit. The core increases the

buckling resistance of the filled shell compared to a hollow shell of the same geometry. Without adhesion,

the core still provides added resistance to buckling, but does not provide as much support compared to a

fully-adhered filled-shell. The terms “shell” and “coating” refer to the electroless and electrodeposited metal

together, as the bond between these metal layers is not of concern.

The lack of adhesion requires modification of the model. While the shape of the shell subject to

buckling deformations remains unchanged, only the radial deflections which push the core inward will affect

the shape of core, while those that would have pulled the core outward do not affect the core. Lack of

adhesion between the shell and the core reduces the axial buckling strength of a filled shell. However, even

without adhesion, a filled shell will buckle at a higher load compared to a hollow shell of the same shell

geometry.

55
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Figure 5.1: A fully-adhered filled cylindrical shell of length l and radius r undergoing buckling deformations. The buckle wavelengths
have length λ and amplitude A. An axisymmetric section of the core with length λ and periodic boundary conditions is shown in detail.

5.2 Modelling the Core for Non-adhesion

Although the coating is not adhered to the core, the shell is assumed to maintain its sinusoidal deformations

when it buckles. However, the lack of adhesion between the metal coating and polymer core results in the

transfer of less energy to the core compared to fully-adhered conditions. This is because the core undergoes

less deformation compared to when the shell and core are fully adhered.

During buckling of a fully-adhered filled shell under axial load, the outer surface of the core moves in

tandem with the shell. Figure 5.1 depicts the deformed shape of a filled cylinder while buckling, and also the

resulting deformed shape of an axisymmetric section of the core undergoing sinusoidal radial displacements.

These displacements are a consequence of the buckling displacements of the shell transferred to the core, due

to the adhesion between the shell and core. As the shell moves towards or away from the cylinder centreline,

so too does the core. The magnitude of the radial displacement of the buckle waves is A, and the radial

displacement of the surface of the core takes the form:

w = A sin
mπz

l
, (5.1)

where m is the number of buckle half waves along the length l of the shell, and z is the axial coordinate as

seen in Figure 5.1. The core section in Figure 5.1 has length λ, the same as that of the buckle waves. The

periodic boundary conditions ensure that a model of this axisymmetric section is relevant for any section of
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Figure 5.2: A non-adhered filled cylindrical shell of length l and radius r undergoing buckling deformations. The buckle wavelengths
have length λ and amplitude A. An axisymmetric section of the core with length λ and periodic boundary conditions is shown in detail.
Full penetration of the core is assumed.

the core subject to buckling displacements. This is important when developing the model for the core, as

was detailed previously in Chapter 3.

Without adhesion between the shell and core, only the movements of the shell that push into the core

are transferred to the core, as shown in Figure 5.2. Comparing Figures 5.1 and 5.2 shows that only the

radial displacements of the shell that move in the −r direction are transferred to the core. Half of the shell

buckle wavelength penetrates the core, as given by the dimension λ/2 in Figure 5.2. Because of the reduced

interaction region of the core in Figure 5.2 compared to core movement under a fully-adhered shell and core

(Figure 5.1), the strain energy accumulated in the core without adhesion conditions will be less than that

compared to full adhesion.

5.2.1 Full penetration and partial penetration

The deformed shape of the core depicted in Figure 5.2 assumes that there is full penetration of the buckled

shell into the core, so that all shell displacements in the −r direction are transferred to the core. It is of

interest to also examine when it is energetically efficient for the shell to expand radially outward uniformly

in addition to buckling sinusoidally, instead of for the core to deform inward. This particular case is referred

to as “partial penetration,” and is depicted in Figure 5.3. The core and the average position of the shell are

now separated by a distance r′ as depicted in the Figure, and the penetration depth of the radial deflections

becomes A′. When r′ = 0, there is “full penetration” of the shell into the core as the shell buckles, as
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Figure 5.3: A partially-adhered filled cylindrical shell of length l and radius r undergoing buckling deformations. The buckle wave-
lengths have length λ and amplitude A. An axisymmetric section of the core with length λ and periodic boundary conditions is shown
in detail.

previously shown in Figure 5.2. The penetration length b, as shown in Figure 5.3, represents the portion

of the half-buckle wavelength which penetrates the core. It reaches a maximum value of λ/2, when full

penetration takes place as given in Figure 5.2. In order to quantify the effects of partial penetration, a new

variable b/λ is introduced to represent the degree of partial penetration under non-adhesion conditions. The

quantities of b/λ and r′ are related geometrically through:

r′

A
= sin

[
π

(
1

2
− b

λ

)]
, (5.2)

while the quantity A′ is related to A and r′ through

A′ = A− r′. (5.3)

As the value of b/λ can be used to completely describe the degree of penetration for a non-adhered filled-shell

under partial penetration conditions, b/λ is treated as its own variable for the non-adhesion model.

5.3 Development of Non-adhered Core Model

The Southwell model employs a stress potential function to calculate the stress field in an axisymmetrically-

loaded isotropic cylinder [39, 120]. It was previously utilized in Chapter 3 to determine the stress state of
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a core under full-adhesion conditions (i.e. as in Figure 5.1). The Southwell model was used in order to

determine the constant, K. The equation used to find this fitting constant was given as:

K =
2U

mA2πr
, (5.4)

where U is the internal energy in an axisymmetric section of the core, m is the number of half-buckle waves,

A is the radial displacement magnitude (as shown in Figure 5.1) and r is the radius of the core. The radial

displacements applied to the core are shown in Figure 5.1, and they take the form of Equation 5.1.

A limitation of the Southwell model is its reliance on stress boundary conditions [6, 38, 39]. To

circumvent this, a MATLAB function was developed that determines the stress amplitude required to obtain

a prescribed displacement amplitude A. In this way, A and r can be set for a given core geometry (refer

to Figure 5.1), and the value of K (the fitting constant) can be found through Equation 5.4 for one buckle

wavelength (i.e. m = 2). For the fundamental (or full-adhesion) case in Chapter 4, K was simply a constant

which is independent of the buckle wavelength λ. However, the behaviour of a cylinder when there is no

adhesion between the shell and the core causes K to become a function of the penetration variable b/λ.

In order to determine the behaviour of a core under non-adhesion conditions, the value U/(A2πr) was

found for many λ/r values. This process was repeated for various b/λ between 0 and 0.5, representing the

limiting conditions of no penetration and full penetration respectively. Using the data generated with these

varying geometric values, a model for a non-adhered core was developed. As was done in Chapter 3 for a

fully-adhered core, this was done for two different relative core stiffness values (Ec/E) of 0.01 and 0.001.

The material properties for the shell and core are indicated in Figure 5.3.

The results for the energy analysis are given here for Ec/E = 0.01 only. Only final fit parameters for

Ec/E = 0.001 will be provided. Figure 5.4 shows the graph for U/(A2πr) plotted against λ/r for values of

b/λ ranging between 0 and 0.5. As indicated with lines of best fit in this Figure, there is approximately a

linear relationship between U/(A2πr) and λ/r for every b/λ. An examination of the lower part of Figure

5.4(a) is shown in Figure 5.4(b), showing that the linear fits also hold at lower b/λ.

From the graphs of Figures 5.4(a) and (b), it is seen that the slopes and vertical-axis intercepts of the

linear fits change with b/λ. Denoting the slopes as Ks and the intercepts as Ki, the fit function K is:

K

(
b

λ
,
λ

r

)
= Ks

(
b

λ

)
+Ki

(
b

λ

)
λ

r
. (5.5)

The values of Ks and Ki are functions of b/λ, as shown in the figure. A graph containing values of

Ks and Ki is given in Figure 5.5 for the best fit lines plotted previously in Figures 5.4(a) and 5.4(b). As

seen in Figure 5.5, the values of Ks and Ki are very small as b/λ becomes small (i.e. b/λ < 0.2). An

exponential fit weighted towards the low b/λ values allows for adequate interpolation of Ks and Ki values.

These exponential fits for Ks and Ki take the form:
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Figure 5.4: (a) Normalized energy quantity U/(A2πr) plotted against the wavelength-to-radius ratio λ/r for increasing b/λ values.
The data pertains to a core with Ec/E = 0.01. (b) Normalized energies for low b/λ values only, showing that the linear fit (Equation
5.6) still holds for these low b/λ values
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Figure 5.5: Ks and Ki values plotted against increasing values of b/λ for Ec/E = 0.01 (refer to Equation 5.6).

Ks = a1 exp

−
 b

λ
− b1
c1


2
 and Ki = a2 exp

−
 b

λ
− b2
c2


2
 , (5.6)

where a1, b1, c1, a2, b2 and c2 are the fit constants from the exponential fits as found using least-squares

curve-fitting algorithms. Equations 5.6 and 5.5 together provide the energy model for a core subject to

sinusoidal deflections for a non-adhered filled shell undergoing axial buckling. The model can be used to

represent the conditions of varying penetration (i.e. b/λ can vary) or full penetration (i.e. b/λ = 1/2).

Using the form of K as shown in Equation 5.5 and utilizing the original form of Up as given in Equation

3.15 of Chapter 3, the form of Up for a core under non-adhesion conditions takes the form:
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Figure 5.6: A filled shell when undeformed (left) and buckled (right). The filled shell is under an axial load F with length l, shell
thickness t and inner radius r. The shell has material properties E and ν while those of the core are Ec and νc. When buckled, the
buckle waves have wavelength λ and amplitude A.

Up =
m

2

(
Ks +Ki

λ

r

)
A2πr, (5.7)

where the multiplier m/2, as for the fully-adhered case, extends this energy model to account for many

buckle waves. Equation 5.7 provides the energy for a core subject to partially-penetrating sinusoidal radial

displacements of length b/λ.

5.4 Buckling Load for a Non-Adhered Filled Shell

A filled shell is under an axial load F is shown on the left of Figure 5.6. The shell has a thickness t, radius

r and length l. When buckling takes place, the shell buckles with waves of length λ and amplitude A.

The buckling load for the non-adhered shell in axial compression is derived as detailed in Chapter 4. The

assumptions are the same as those used in Chapter 4, with the exception of full-adhesion. It is instead

assumed that there is no adhesion between the shell and the core, and any sliding contact between the shell

and core is frictionless as it is assumed that any frictional effects will not affect the buckling behaviour. The

energy contributors involved in the calculation of the buckling load include:

� the longitudinal bending load of the shell due to sinusoidal buckling deformations (Ub),

� the circumferential stretching of the shell due to these same buckling deformations (Uc), and

� the contribution of the core energy due to buckling deformations pushing into the core (Uc2), given in

Equation 5.7).

When partial penetration of the core takes place (Figure 5.3), another energy term must be included.

As the shell and core separate with distance r′, this causes additional circumferential stretching of the shell.

The energy associated with this additional circumferential stretching is:
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Table 5.1: Values of the fitting constants for (Ks, Ki) found from core model analysis. The reference value for E (125 GPa) is that
of nanocrystalline nickel manufactured by RePliForm [7].

Ec/E a1 b1 c1 a2 b2 c2
0.01 6.932× 108 0.6020 0.1842 7.299× 108 0.5212 0.1711
0.001 7.086× 107 0.8698 0.6153 8.434× 107 0.3325 0.7655

Uc2 =
πEtA2l

r
sin2

[
π

(
1

2
− b

λ

)]
. (5.8)

The expressions for Ub and Uc have been presented in Chapter 4 in Equations 4.2 and 4.3 respectively.

The internal energy of the filled shell is the sum of the circumferential energy (Equation 5.8) as well as Ub,

Uc and Up. The external energy is due to the applied axial load F as shown in Figure 5.6, and its expression

is given in Equation 4.6 of Chapter 4.

Using the derivation method of Chapter 4, the buckling load for the non-adhesion case is:

F =

(
1 +

Ec
E

r

2t

)[
2π3rEt3

3(1− ν2)

1

λ2
+

[
Et

r

(
1

2
+ sin2

(
π

(
1

2
− b

λ

)))
+Ks

]
1

π
λ2 +

Kir

π
λ

]
. (5.9)

Due to the dependence of non-adhesion buckling on the degree of penetration b/λ, λ is also a function of b/λ.

Thus the critical load F is a function of the wavelength λ, b/λ, and the material properties and geometric

values in Equation 5.9. The buckling load is thus found by minimizing Equation 5.9 for both λ and b/λ.

5.4.1 Non-Adhesion Buckling Load Behaviour

The behaviour of the non-adhesion buckling load (Equation 5.9) is compared to that of the fundamental

model (Equation 4.11 in Chapter 4) and the hollow-shell model [34–37]. The fitting constants found for

the non-adhesion case are shown for two values of Ec/E in Table 5.1. The reference value of E is that of

nanocrystalline nickel given by RePliForm Inc (125 GPa) [7]. In order to find the values of b/λ and λ, a

non-linear solver was used to determine their values which lead to the lowest buckling loads for given shell

geometry and material properties. This behaviour is compared to that of a non-adhered filled shell with

full-penetration (i.e. b/λ = 0.5).

The values of the non-dimensional critical loads for the fundamental, non-adhesion, and hollow-shell

models are provided in Figure 5.7(a) and (b) for Ec/E values of 0.01 and 0.001 respectively. The critical

wavelengths pertaining to these same models are shown in Figures 5.8(a) and (b). The critical loads and

wavelengths have been given for both the full penetration case (b/λ = 0.5 in Figure 5.2) as well as for varying

penetration (0 ≤ b/λ ≤ 0.5 in Figure 5.3). As b/λ is a variable of the buckling problem, its values are given

graphically in Figure 5.9.

As seen in Figure 5.8(a) for Ec/E = 0.01, the normalized buckle wavelengths (λ/t) corresponding

to the full-penetration case are lower than those of the non-adhesion case with varying penetration. For

both values of Ec/E (Figures 5.8(a) and 5.8(b)), the critical wavelengths are smaller than for hollow shell
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Figure 5.7: Predictions of buckling loads for the non adhesion (variable penetration and full penetration), fundamental and hollow
shell models as functions of t/r for (a)Ec/E = 0.01 and (b)Ec/E = 0.001

buckling, indicating that this is a permissible response. A λ/t greater than that of the hollow shell model

would imply that the buckling loads are lower than the hollow shell buckling load.

The core stiffness, however, plays a strong role in the transition from full penetration to varying

penetration. As seen in Figure 5.8(b) for Ec/E = 0.001, the λ/t curves for variable penetration and full-

penetration are nearly coincident with each other, indicating that this lower stiffness cores it is more energy

efficient for the core to be fully penetrated than for varying penetration to occur. This is confirmed upon

inspection of Fig 5.9, which shows that b/λ is very close to 0.5 (i.e. full penetration). In the opposite limit

of a rigid core, the penetration must be zero.

The plots of the buckling load for Ec/E = 0.01 in Figure 5.7(a) indicate that the buckling loads for full

and varying penetration are below that of the full adhesion case, as would be expected. There is a noticeable

difference between the full penetration and varying penetration loads when Ec/E = 0.01 (Figure 5.7(a)),

corresponding to changing values of b/λ for this core stiffness value in Fig 5.9. However, the dependence of

the buckling load on b/λ disappears when Ec/E = 0.001. The load behaviours of the variable penetration

and full penetration cases are nearly identical in Figure 5.7(b), except at very low values of t/r.

In summary, the non-adhesion model with variable penetration predicts very low loads compared to

full-penetration conditions when Ec/E is 0.01. However, for less stiff cores (i.e. Ec/E of 0.001) the full

penetration and varying penetration assumptions produce the same results. The behaviour of the non-

adhesion model is verified next using finite element simulations.

5.5 Finite Element Verification of Non-Adhesion Buckling Loads

Abaqus simulations were used to verify the predicted loads and critical wavelengths calculated using the

non-adhesion model. As the non-adhesion model requires that the shell and core remain unbonded, contact
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Figure 5.8: Predictions for the critical wavelengths for the non adhesion, fundamental and hollow shell models as functions of t/r for
(a)Ec/E = 0.01 and (b)Ec/E = 0.01
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Figure 5.9: Critical values of b/λ for Ec/E = 0.01 and 0.001 as a function of t/r for the non-adhesion model with varying penetration.
The values are those found for the critical loads and wavelengths found in Figures 5.7 and 5.8.

definitions were required for these simulations in order to ensure a correct representation of the shell and

core. However, because of the inclusion of contact definitions, modal analysis could not be performed as the

eigenvalue solvers in Abaqus assume pairs of surfaces with contact definitions remain in their base states

[83].

Figure 5.10 shows the setup used for the finite element simulations. The simulations were performed

using an axisymmetric representation of a filled cylinder, while the loads were applied through the use of a

displacement boundary condition at the cylinder top surface (shown as an edge in Figure 5.10). As for the

simulations for the fundamental case, axisymmetric simulations allowed for reduced processing times and

was used due to the independence between buckling modes (refer to Section 2.7.2 of Chapter 2). However,

any non-axisymmetric buckling behaviour is lost.
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Figure 5.10: Diagram showing setup of an Abaqus simulation for an axisymmetric section of a filled shell with length l = 50 mm,
radius r and shell thickness t. A contact definition is used for the shell-core common surface, while the shell is loaded with an axial
displacement at the top surface. A sample mesh is also provided, showing the use of tetrahedral and quadrilateral elements due to the
induced imperfections in the shell.

Imperfect shell geometries were required in order to induce local shell buckling. Imperfections were

generated by using a sum of several buckling mode shapes with varying amplitudes. The maximum imper-

fection peak amplitude was limited to 0.01t, or 1/100th of the thickness of the shell. The imperfection curve

was only applied to the shell outer edge, as shown in Figure 5.10. This ensured that the common shell-core

surface was geometrically flat to generate an adequate contact pair.

Contact definitions were required for these simulations in order create the necessary conditions for

a non-adhered shell-core system. Contact was defined using the built-in general contact mode in Abaqus,

which allows the software to determine the best contact algorithms. The contact properties were chosen

such that there was hard normal contact, but translational movement between the surfaces was allowed and

remained frictionless. This is in accordance with the assumptions used for the buckling model. Moreover,

no sliding occurs at the inception of buckling, which is the focus of the finite element investigations.

Meshes were generated to have at least 5000 to 8000 elements along the length of the cylinder and at

least 5 elements through the thickness of the coating. Due to the the imperfect outer edge of the coating,

both triangular and quadrilateral elements were used. The geometries for the simulations were chosen using

the criteria as given previously in Table 4.1, through which a total of 72 geometries for the simulations were

generated. The use of various l/r values allowed for a sensitivity analysis of the buckling load to the l/r

ratio, while also ensuring that many values for the wavelength λ could be obtained for each t/r value. All
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Figure 5.11: Predictions for the buckling loads as functions of t/r for various theoretical models and from Abaqus simulations for
(a)Ec/E = 0.01 and (b)Ec/E = 0.01.

Figure 5.12: Predictions for the buckling wavelengths as functions of t/r for various theoretical models and from Abaqus simulations
for (a)Ec/E = 0.01 and (b)Ec/E = 0.01.

geometries had a length of 50 mm.

5.5.1 Results of Finite Element Verification

As was done for the Abaqus verification results of Chapter 4 (Section 4.4), the buckling loads were calculated

from the Abaqus results using Equation 4.17. The calculated loads are presented graphically and compared

to the models shown in Figure 5.7.

Figure 5.11(a) shows the Abaqus predictions for the buckling loads as functions of t/r along with the

two non-adhesion models (full penetration and varying penetration) as well as for the fundamental model

for Ec/E = 0.01, while Figure 5.11(b) shows the corresponding information for Ec/E = 0.001. As expected,

there is little scatter in the load predictions with changing l/r (as shown by overlapping data points),
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indicating the buckling load is insensitive to this parameter as predicted by the model.

For the intermediate core stiffness (Ec/E = 0.01 as shown in Figure 5.11), there is a closer agreement

at lower t/r between the fundamental predictions and the loads found through Abaqus. However, as t/r

increases, the buckling loads agree more closely with the non-adhesion models. At the higher t/r, the

predictions of the full penetration and varying penetration models are similar. However, at lower t/r, the

varying penetration model predicted much lower critical loads than the Abaqus calculations. The reduced

agreement between the model and simulation data at low t/r values suggests an opposite trend compared

to that of the model (refer to Figure 5.9). The model suggests that there is lower penetration (i.e. lower

b/λ) at lower t/r values for the variable penetration model when Ec/E = 0.01. The loads predicted through

simulations, however, are consistently lower than loads predicted for full-adhesion (fundamental) simulations

in Abaqus (refer to Figures 4.6(a) and 4.6(b) in Chapter 4), indicating that there is a loss of load-bearing

capability. The degree to which loss of load carrying capacity is captured by the non-adhesion model is

inadequate as ascertained through the Abaqus simulation data. It is possible that this is due to the assumed

deformed shape used for the non-adhesion model or even the methods chosen to represent the behaviour (for

instance the use of the variable b/λ).

This disagreement between the Abaqus simulation data and the loads predicted by the non-adhesion

models is narrowed when Ec/E = 0.001, as expected given the reduced importance of the core. As seen in

Figure 5.11(b), there is increased agreement between the loads as found through the simulations and those

given by the fundamental and varying penetration models. A detail of the data at low t/r (shown in the

inset of Figure 5.11(b)) reveals how the loads are still closer to the fundamental model, as was the case for

Ec/E = 0.01. However, the Abaqus loads are closer to the non-adhesion model than for Ec/E = 0.01 (Figure

5.11). Because the reduced stiffness of the core already narrows the difference between the non-adhesion and

fundamental models, it is also likely that this may be a contributing factor in narrowing the gap between

the loads as found through finite element simulations and the predicted loads from the model.

For Ec/E = 0.01, the lack of agreement between the Abaqus results and non-adhesion models is

further seen upon inspection of the λ/r plots. Figures 5.12(a) and 5.12(b) show the wavelengths predicted

by Abaqus during buckling. The full-penetration, varying penetration, fundamental and hollow-shell models

are also shown on these Figures for comparison. Each data point on these graphs represents the wavelength

as calculated using λ = 2l/m, and there is scatter in the data points is because discrete numbers for wave

counts (i.e. m) are being compared to theoretical values originally calculated as continuous quantities. When

the cylinders become very long (i.e. large l/r), the number of waves would be high enough that this scatter

would be less apparent, but geometries with these l/r values would be more susceptible to global buckling.

The low wavelengths as predicted by Abaqus (shown in Figures 5.12(a) and 5.12(b)) compared to the

non-adhesion model (and further the fundamental model) indicate that there is a disagreement between the

models and the simulations. As the buckling load is dependent upon the critical wavelength, an estimate of

the buckling wavelength is required in order to accurately estimate the buckling load. Typically, higher λ/t
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Figure 5.13: Buckling shape progression of the outer edge of the shell for (a)t/r = 0.01 and (b)t/r = 0.1, in quarter-load increments
of the critical load. The data pertains to filled cylinders with Ec/E = 0.01 and l/r = 10; the final buckled shape of the shell is
independent of the imperfection configuration.

values correspond to lower buckling loads and vice versa. Thus the higher λ/t predictions of the non-adhesion

models are an underlying factor contributing to the lower load estimates compared to the Abaqus results.

5.5.2 Comparing Buckled Shapes between fundamental and Non-Adhesion Abaqus

Simulations

Because of the disconnect between the theoretical load predictions and those obtained through Abaqus

simulations for non-adhered filled shells, it was warranted to investigate the buckled shapes of some of the

geometries found for both the non-adhesion simulations as well as those done previously to validate the

fundamental model. The shape of the outer surface of the shell was examined throughout the process of a

finite element analyses for several geometries, and their shapes compared with those found from fundamental

simulations completed previously.

Figure 5.13(a) shows examples of the buckling progress of the surface of the outer shell over the course

of a simulation for t/r = 0.01, while Figure 5.13(b) shows the same for t/r = 0.1. For both of these Figures,

the core relative stiffness was Ec/E = 0.01. The lines drawn in these Figures represent the shape of the

outer-most shell edge as the simulations progressed at 1/4 increments in load relative to the critical load.

The initial waveform in the shapes prior to buckling shows the growth of the initially-generated imperfection

pattern applied to the outer cylinder edge (as shown previously in Figure 5.10). In both cases, buckling is
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shown to be very abrupt, with no noticeable difference in the progression towards the final buckled shapes

between the different values of t/r. These buckled shapes were shown to be nearly identical on the surfaces

of the core for these same geometries, indicating that there was no change in the penetration length b/λ with

changes in t/r and that the penetration length did not change as the critical load was approached. Of note

is that the final buckled shapes of the shells is not dependent upon the initial imperfections.

A comparison between the buckled shapes of the shells for non-adhesion and full adhesion simulations

was also done. Figure 5.14 shows the buckled shapes of the shells as found for t/r = 0.01 and 0.1 for

both non-adhesion and full-adhesion (fundamental) simulations (Ec/E = 0.01 for both sets of geometries).

While the number of waves initially appears similar for the same t/r values at first glance, a count of the

number of half-waves m shows that there are slightly fewer waves for non-adhesion simulations than there

are for comparable full-adhesion simulations. This indicates that there is a difference in the behaviour when

adhesion between the shell and core is not present, leading to lower buckling loads for the non-adhesion

system. The difference in the number of waves is more apparent for thicker shells, as seen on the right side

of Figure 5.14.

Of note is the flattened portion towards the centre of the cylinder length for the non-adhesion simu-

lations for both of the t/r values in Figure 5.14. Though not shown here for brevity, this effect is present

on many of the other simulated geometries for the non-adhesion analyses. These flattened areas lead to a

change in the buckled shape of the shell compared to those found for fundamental, and may be a contributing

factor in the variance observed between the Abaqus results and the model. The flattened regions indicate

that there is likely an edge effect present on the top and bottom of the shell, which is currently unaccounted

for in the model as the buckled shape of the shell assumes a uniform sinusoidal buckled shape for the shell

with no changes in wavelength or amplitude along the length of the shell.

5.5.3 Discussion of Disagreement between Abaqus and Analytical Results

The Abaqus results have shown that while non-adhesion is a factor in reducing the buckling load compared

to fundamental case, the reduction in the buckling load is not as detrimental compared to the predictions by

the analytical model for practical values of core stiffness (i.e. Ec/E = 0.01). The buckling loads predicted

by Abaqus simulations are closer to full-penetration load predictions at lower t/r, while the wavelengths are

much lower than those predicted by the non-adhesion models for all t/r values investigated. Furthermore,

there is little evidence of varying penetration in the simulations despite the prediction of low penetration at

lower t/r values for Ec/E = 0.01.

There are several reasons as to why this disagreement exists. The most likely of these is that the

assumed deformed shape is wrong, thereby giving incorrect energy predictions. The flattened regions near

the centres of cylinders may cause non-uniform sinusoidal buckles (Figure 5.14), leading to different buckled

shapes than assumed for the buckling load derivations. It is also possible that free radial expansion of the

core (i.e. due to the separation distance r′ in Figure 5.3) causes added Poisson-related effects, which increases
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Figure 5.14: A comparison of the buckled shapes of the shells as obtained from Abaqus verification studies for full-adhesion and
non-adhesion. All images are provided for l/r = 10, with comparisons made for t/r = 0.01 and 0.1.

the buckling loads for the low t/r geometries than what is predicted by the model. If present, this effect

would be less prevalent at higher shell thickness values whereby the shell would restrict the movement of the

core. This would explain the decrease in load closer to the non-adhesion model as t/r increases.

While less likely, it is also possible that some frictional effects are present which are not being accounted

for in the buckling load analysis or the simulations. It is to be reiterated that the simulations were run with

frictionless tangential contact, which makes this factor even less likely. The end conditions may also play

more of a role for non-adhesion than originally accounted for in the buckling load analysis.

Despite the shortcomings of this model, it is seen that although the buckling loads predicted by

the non-adhesion model are lower compared to the Abaqus simulation data, the non-adhesion predictions

provide a lower bound to the buckling loads of non-adhered filled-shell systems. While practical coated

cylinders will likely include partially-adhered metal coatings, the lower bound determined from this model
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is nevertheless helpful for design purposes of filled-shell systems under axial compression. It is possible that

the simplifications used for this buckling problem (i.e. uniform buckling pattern, use of only one variable

to describe penetration length) may not be suitable as the situation may be more complex than can be

accounted for by this model.

5.6 Conclusions

A novel model for the axial buckling load of a non-adhered filled-shell system was developed which accounts

for a variable penetration depth of a non-adhered buckled shell into a core. This variance in the penetration

depth was predicted to lead to lower buckling loads for filled shells with lower thickness-to-radius ratios.

Finite element verification of the model, however, found that the buckling loads predicted by the non-

adhesion model are lower than the simulated loads. This may be due to the incorrect predictions of the

buckle wavelength, likely caused by an incorrectly assumed buckled shape or some misrepresentation of the

energy within the shell-core system. It is also possible that the end conditions of a non-adhered shell-core

system may have much more of an influence than anticipated. Nevertheless this model presents a lower

bound on the buckling load of a non-adhered filled-shell subject to axial compression, nd is a starting point

for more complicated problems involving partial adhesion of metal coatings on polymer cylinders.



Chapter 6

Local Buckling of an Elastic Shell Filled with

a Hollow Elastic Cylinder

6.1 Introduction

Hybrid microtruss structures provide the high-strength benefits of nanocrystalline metals while utilizing the

mass-efficient topology of a microtruss [1, 4, 21]. These structures are produced by 3D printing a polymer

microtruss preform and electrodepositing nanocrytalline metal onto the polymer surface. The strength of

these structures are governed by compressive instabilities of the cylindrical struts, which are modelled as

metal-coated polymer cylinders. Failure mechanisms for metal-coated polymer cylinders have been developed

in the preceding chapters, however in these previous models the core geometry remains unchanged. Previous

studies treated the polymer as a parasitic mass, and optimization studies on hybrid microtruss structures

found that the most mass-efficient designs eliminated the polymer preform [1, 4]. However, as hollow-shell

structures are inherently sensitive to imperfections [73, 78, 79, 81], keeping some amount of the polymer

core is advantageous for buckling performance. A polymer core which is bored out along its axis is termed

a “hollow core”, and the buckling of hollow-core filled shells is the topic of this chapter.

The majority of models and experimental programs examining filled-shell buckling have focused on

the buckling of a shell containing a solid core [69, 70, 96–99, 101, 103–107]. Rationales behind these studies

included investigating natural materials such as porcupine quills [69, 70, 118], developing models for solid

propellant launch vehicles [97, 104], and quantifying the effects of steel tubes filled with concrete [105, 106].

Beams on elastic foundations [90, 93] are often utilized as models where the core is treated as bed of

independent springs. Others have modelled the core using the same stress distributions as those found in

cores of composite sandwich panels where the face sheets are buckling [24, 82, 91, 125].

The investigation of hollow-core filled shells is a less-examined area. One reason for this is the difficulty

associated with accurately representing the behaviour of a hollow core. A previous examination of hollow-

core buckling utilized assumed stress distributions within the core [5, 116], whereby the stresses in the core

were decayed towards the cylinder axis. As the Southwell model is used to solve for stress distributions in

solids of revolution [6, 38, 39], it can be used to develop a more accurate model for the hollow core in a filled

shell undergoing buckling. However, for a filled shell with a hollow core, this core model is only valid when

only the shell buckles. Figure 6.1(a) shows an undeformed filled shell with a hollow core, while Figure 6.1(b)

depicts local shell buckling, the case for which a hollow-core model is essential. A second type of buckling

72
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Figure 6.1: Diagrams of a filled cylindrical shell with a hollow core. (a) A filled shell with thickness t, radius r, inner radius ri and
length l under an axial load F . The shell has Young’s modulus E and Poisson’s ratio ν while the corresponding properties of the core
are Ec and νc. (b) Depiction of hollow-core local shell buckling with buckle wavelength λ and radial displacement amplitude A. (c)
Depiction of simultaneous buckling of the shell and hollow core.

shown in Figure 6.1(c), referred to as simultaneous buckling, where the shell and core buckle in unison.

This chapter details predictions for both the shell buckling load (Figure 6.1(b)) and simultaneous

buckling load (Figure 6.1(c)). The former requires a model for the energy behaviour of a hollow core subject

to sinusoidal radial displacements, which will be obtained using the Southwell stress model. Finite element

analysis will be used to verify these models and determine if the transition point from simultaneous buckling

to local shell buckling is consistent with that determined by the models.

6.2 The Hollow-Core Model

The development of a core model requires an understanding of the behaviour of a hollow-core geometry

subject to radial sinusoidal displacements. These displacements are the consequence of local shell buckling,

as shown in Figure 6.1(b). The core model is essential for determining the local shell buckling load of a

filled shell with a hollow core. The model is not required for determining the simultaneous buckling load, as

shown in Figure 6.1(c); this will be found using a separate analysis. While undergoing local shell buckling,

the shell behaviour is described by the hollow-shell model [34–37].

The sinusoidal buckling pattern along the length of a cylinder, as shown in Figure 6.1(a), is assumed

to be axisymmetric around the cylinder circumference. Neglecting the end conditions of the cylinder, a

representative axisymmetric section with periodic boundary conditions represents the behaviour of the entire

cylinder. A filled shell with a hollow core undergoing local shell buckling is shown in Figure 6.2, and

an axisymmetric section of the hollow core is in the same figure. The buckle waves have length λ and
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Figure 6.2: A filled shell with a hollow core undergoing buckling deformations, and an axisymmetric section of the core of length λ.
The behaviour of this axisymmetric section as solved using the Southwell model is representative of the entire hollow core.

displacement amplitude A. The applied displacement on the antisymmetric core section in Figure 6.2, as

well as the length of this core section, are A cos(2πz/l) and λ, respectively. Periodic boundary conditions

are used for the axisymmetric core section, as the periodic nature of the sinusoidal buckling waves and

the assumption of many waves during buckling allow for the core behaviour to be represented using one

wavelength. As shown in the Figure, the inner hollow section of the core has radius ri, while the core-shell

interface radius is r. A new parameter h is introduced which takes the value ri/r, and is referred to as

the hollowness factor of the core. Its values range between 0 and 1, representing fully filled and completely

hollow cores, respectively. In the limit of h = 1, the shell is completely hollow.

Using the Southwell model and the associated equations [6, 38, 39, 121], the stress state inside this

representative domain of the core (Figure 6.2) can be found. The solutions to the Southwell model equations

requires stress boundary conditions as it is a solution to the stress state of an axisymmetric domain. For

the hollow core section shown in Figure 6.2, these are provided by the conditions of the cylinder, while the

outer surface will be subject to a stress field σ0 previously given in Equation 3.10 of Chapter 3. The stress

field on the outer core surface provides a sinusoidal radial load with a form similar to that of the sinusoidal

displacement shown in Figure 6.2. For the fundamental model (Chapters 3 and 4), this was found to provide

an accurate representation of the buckling displacements.

It is desirable to have a model for the core section of Figure 6.2 which calculates strain energy for any

given values of the buckle wavelength λ, the hollowness factor h = ri/r and radius r. This requires that the

stress state of the core be found, followed by the calculation of the strain fields in the relevant coordinate
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directions. The strain energy can then be calculated for a known applied radial load magnitude σ0. Similar

to the behaviour of the non-adhesion model in Chapter 5, the core model for hollow-core filled-shell buckling

is a function of the buckle wavelength λ. Thus, calculations must be done for many buckle wavelengths and

for various core geometries in order to develop a complete model for the core.

A model for the core will be developed which will provide the energy in a polymer hollow core subject to

a sinusoidal radial displacement with magnitude A. This will be a function of the hollowness factor h and the

buckle wavelength λ. In order to develop this model, the internal energy of the core section shown in Figure

6.2 is to be found for h values between 0 (fully filled shell) and 1 (completely hollow shell), for normalized

buckle wavelengths (λ/r) between 0 and 1. Buckle wavelengths ratios higher than 1.0 are unnecessary as

these higher values would imply physically unobtainable wavelengths, which are not observed in elastic local

shell buckling of filled shells [98, 104].

6.2.1 Data Generation

When the core was a solid polymer cylinder (Chapter 3), the internal energy of the solid polymer core subject

to a sinusoidal displacement was determined. The equation for the fit co-efficient K took the form:

K =
U

A2πr
, (6.1)

where U is the internal energy of the core, A is the buckling displacement magnitude as shown in Figure

6.2(b) and r is the outer radius of the core. For solid polymer cores, there is no dependence between the

energy and the buckle wavelength λ. However, for a hollow core, the fit-coefficient is instead a function of

the hollowness factor and the ratio of buckle wavelength-to-radius, i.e. K(h, λ/r). The form of this function

must be determined in order to develop the form of the function K(h, λ/r).

As the Southwell model requires stress boundary conditions [6, 38, 39, 121], an algorithm was written

which finds the required stress amplitude to generate a desired buckling displacement. A fixed value of

A/λ = 0.01 was chosen to normalize the value of A across all geometries studied. The value of U/(A2πr)

was found for geometries with h varying between 0 and 1, each of these examined with λ/r values ranging

between 0 and 1. Figure 6.3 shows the values of U/(A2πr) as a function of λ/r for the various values

of h. The information presented in these Figures was generated using Ec/E = 0.01, with E = 125 GPa

corresponding to the value for nanocrystalline nickel [7]. There is little difference in the energies for the

various h values when λ/r is close to zero. However, the energy stored in the hollowest cores (i.e. h close to

0) is reduced significantly as λ/r becomes larger. This is to be expected as there is less energy contained in

hollower cores.
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Figure 6.3: Energy behaviour as a function of the buckle wave-
length λ/r and core hollowness factors h.

Figure 6.4: Energy behaviour as a function of the buckle wave-
length λ/r and core hollowness factors h, and fitted surface of
Equation 6.2.

6.2.2 Model Development

A function must be fit to the data shown in Figures 6.3 so that the energy in a hollow core can be found for

any core geometry and buckle wavelength. In addition, the model for the energy behaviour of the core must

be a differentiable function of A, as this allows the model to be used when determining the buckling load for

a filled shell with a hollow core.

For the data shown in Figures 6.3, the function found to fit this data was a least-squares fitted, 5th-order

two-dimensional polynomial of the form:
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= Kf exp(K̂),

(6.2)

where Kf is the fundamental model constant for the core material (obtained from using Equation 6.1 for a

solid core as in Chapter 3), K is the fitting function for the hollow core, and K̂ contains the contracted two-

dimensional polynomial. As Equation 6.2 implies, this is a logarithmic fit to values of U/(A2πr) normalized

against the fundamental model energy quantity for a solid polymer core of the same material. The graph of

this fitting function together with the original data is shown in Figure 6.4. Using Equation 3.15 in Chapter

3, the energy function for a hollow core of any degree of hollowness can then be expressed as:

Up = K

(
h,

λ

r

)
m

2
A2πr, (6.3)
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where m is the number of half-buckle waves. Other than the representation of K as the two-dimensional

polynomial in Equation 6.2, this energy expression is similar to that found for full adhesion (Equation 3.15

in Chapter 3). The m/2 multiplier accounts for many buckle waves encountered in a complete cylinder,

instead of just one wave as represented by the core domain Figure 6.2.

It is to be noted that while the value of h is required in order to find a value for K, it is not a parameter

of the energy minimization problem. Allowing h to be a variable for energy minimization would cause the

hollow-shell buckling solution to be obtained, and not solutions for different core hollowness factors. Thus,

the value of h is chosen prior to the energy minimization, as this value defines the geometry of the core.

6.3 Critical Buckling Loads for Filled Shells with Hollow Cores

The axial local shell buckling load for a filled cylindrical shell with a hollow core (Figure 6.1(b)) is found

by determining the minimum energy required when buckling is incipient [34, 73, 77]. The buckling load is

found as a function of the critical buckling wavelength for the shell, which is part of the energy minimization

solution. Since a thin hollow core can also lead to buckling of the shell and core simultaneously (Figure

6.1(c)), this is another critical load of a filled shell with a hollow core. The derivation for both of these

critical loads will be detailed in this section, followed by a comparison of these buckling loads to existing

theories for filled-shell buckling.

6.3.1 Critical Buckling Load for Shell Buckling

A filled cylindrical shell with a hollow polymer core is subject to an axial load F , as shown in Figure 6.1(a).

The shell has Young’s modulus E and Poisson’s ratio ν, while the corresponding material properties of the

core are Ec and νc. The shell has a thickness of t, while the shell-core common surface has radius r. The

hollow core has inner radius ri while the cylinder has length l. The buckle waves have length λ and axial

displacement magnitude A, as shown in Figure 6.1(b).

While undergoing buckling, the strain energy accumulates in the shell due to bending Ub and the cir-

cumferential stretching energy Uc. The shell bending energy refers to the energy contained under the bending

action of longitudinal sections of the shell as they undergo sinusoidal buckling deformations (Equation 4.2 in

Chapter 4), while the circumferential stretching energy is the circumferential tension or compression of the

shell hoop sections [34] (Equation 4.3 in Chapter 4). The core energy Up is the energy of the core subject to

radial sinusoidal displacements, and has the form given in Equation 6.3.

The procedure and assumptions for deriving the local shell buckling load for a filled shell with a hollow

core are the same as those used previously for a filled shell with a solid core (refer to Section 4.2 of Chapter

4). In this way, the local shell buckling load for a filled shell with a hollow core is given as:
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Figure 6.5: Diagram showing original and transformed cross sections of filled cylinder with hollow core. The dimension c is introduced
while new dimensions re and te result from this method of transformed sections

This equation is nearly identical to that of the buckling equation for a filled shell with a solid polymer core

(Equation 4.11 in Chapter 4), except that the correction term leading the equation now accounts for the

presence of a hollow core instead of a completely filled core and the fitting constant K is now the function

K(h, λ/r) (Equation 6.2).

Equation 6.4 applies for any buckle wavelength λ. However for a given cylinder with known material

properties and geometry as shown in Figure 6.1(a), only one value of λ yields the lowest load. This critical λ

is found by finding the positive real root of the expression ∂F/∂λ = 0. Once found, the critical value of λ is

substituted into Equation 6.4 to give the critical load for a filled cylindrical shell with a hollow core. Because

K(h, λ/r) contains the buckle wavelength λ, this precludes an analytical solution for λ and a numerical

solution for λ is required.

6.3.2 Critical Buckling Load for Simultaneous Buckling

When the core is sufficiently hollow, the thin membrane that remains after much of the core is removed does

not act as enough of a foundation to absorb radial deflections of local shell buckling. Instead, it buckles in

tandem with the shell as in Figure 6.1(c), often at a buckling load closer to the hollow-shell buckling load.

The thin remaining core effectively acts to thicken the metal shell. The method of transformed sections [67]

can be utilized to find the effective thickness of the thin remnant of the core as it supplements the shell,

as shown in Figure 6.5. The hollow core cross section with dimensions of ri and r is transformed into an

equivalent section using a modulus-weighed transformation. The new cross section for the shell has new

dimensions te, re and c = r(1 − h). Using the new section, a new hollow-shell buckling load for a filled

cylinder with a hollow core can be found. This will be done by modifying the existing equation for local

shell buckling of a hollow shell.
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The hollow-shell local buckling equation is [34, 35, 37, 74]:

σ0 =
E√

3(1− ν2)

t

r
,

where σ is the buckling stress, E is the Young’s modulus of the shell material, ν is its Poisson’s ratio, t is

the thickness of the shell as shown in Figure 6.5 and r is the inner radius of the shell. As a load, F0, this

expression becomes:

F0 =
2πEt2√
3(1− ν2)

. (6.5)

The addition of the inner layer of core material, as in Figure 6.5, leads to an effective thickening of

the shell. However, due to differences in material properties between the shell and core, the polymer core

contributes less to the total shell buckling strength because of its smaller stiffness. The effective thickness

of the shell, using a modulus-weighted transformed section for the core [67], is:

te = t+ r(1− h)
Ec

E
= t+ cE, (6.6)

while the transformed inner radius is

re = r − r(1− h)
Ec

E
= r − cE. (6.7)

The term E = Ec/E in Equations 6.6 and 6.7 is the ratio of the core stiffness to that of the shell. The

method of solution for the simultaneous buckling load follows that of Timoshenko [34] for hollow shells. The

flextural stiffness D = E/(1− ν2) [123] is modified for the core contribution [5]:

Dsb =
E

1− ν2

[
t3

12
+ t

(
c+

t

2
− y0

)2
c3E

3

12
+ cE

(
y0 −

c

2

)2
]

,

where the centroid y0 is defined as:

y0 =

(
c+

t

2

)
t+

c2E

2

t+ cE
.

The expression for Dsb is utilized in the buckling stress equation derived by Timoshenko [34]:

σSB =
2

rete

√
EDsbte,

which as a load is written as:
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Figure 6.6: Predictions for the buckling load for a range of hollowness factors h as a function of t/r for (a)Ec/E = 0.01 and

(b)Ec/E = 0.001. The predictions for simultaneous buckling for h = 0.9 and the hollow-shell buckling are also shown.

FSB = 4πE

{
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)2
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(
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2

)2
]}1/2

.

(6.8)

This is the load at which simultaneous buckling of the shell and core takes place (Figure 6.1(c)).

6.4 Hollow-core Buckling Load

The buckling load for a filled shell with a hollow core will be found as a function of t/r for two different core

stiffness values (Ec/E = 0.01 and 0.001, where E = 125 GPa). The behaviour is compared to hollow-shell

buckling (Equation 6.5), and will be verified through modal analyses using Abaqus. The value of E was

chosen to be that of nanocrystalline nickel with an average grain size of approximately 65 µm [7].

Figure 6.6(a) shows the non-dimensional critical loads for Ec/E = 0.01 as a function of λ/t for the

fundamental model and for filled shells with hollowed cores of various hollowness ratios h. The hollow-core

model is equivalent to fundamental filled-shell model for h = 0, and thus the fundamental model is an

upper bound on the load for the hollow-core model. Figure 6.6(b) shows the non-dimensional load curves for

Ec/E = 0.001. The simultaneous buckling load (Equation 6.8) is only shown for h = 0.9 in Figure 6.6(a),

as h values higher than this lead to the simultaneous buckling load being higher than the corresponding

hollow-core load.

There is a decrease in the load carrying capacity of the shell as t/r decreases, and also while h decreases.

There is a more distinct decrease in load at lower h with smaller t/r, implying that a hollow core is more
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Figure 6.7: Predictions of the critical wavelengths for various core hollowness factors h as a function of t/r for (a)Ec/E = 0.01 and
(b)Ec/E = 0.001.

detrimental to the strength of the filled shell for smaller shell thickness values. For Ec/E = 0.01 (Figure

6.6(a)) it is seen that near t/r = 0.01, there is a marked decrease in the buckling load when h = 0.9, while

there is a less-pronounced decrease in the buckling load at lower values of h. The cause for this sudden

decrease in the buckling load is not known, however it is hypothesized that this reduction is due to the

hollow core approaching the hollow-shell buckling load for the same t/r. While it is possible that there is

some interaction occurring between the hollow-shell and simultaneous buckling modes, the hollow-core shell

model (Equation 6.4) is not intended to account for any interaction of this nature. The load predictions in

Figure 6.6(a) shows that the simultaneous buckling model predicts lower loads than the hollow-core model

when t/r is very small; this is not where this drop in the hollow-core load occurs. The simultaneous buckling

load is also lower when t/r is very large.

For the hollow-core shell buckling predictions, the same trends hold for this more compliant core

(6.6(b)) when compared to the behaviour of the predictions for Ec/E = 0.01 (Figure 6.6(a)). However,

the simultaneous buckling load predictions for h = 0.9 are much higher than the corresponding hollow-core

behaviour. This implies that as the core becomes more compliant, the hollow-core shell buckling load will

become dominant while the simultaneous buckling mode is of less importance.

Figures 6.7(a) and (b) show the non-dimensional critical wavelengths for Ec/E = 0.01 and 0.001,

respectively, for values of h for which the critical loads were shown in Figures 6.6(a) and (b). Although the

loads for hollow-core shell buckling are well above those predicted for hollow-shell buckling for Ec/E = 0.01

(Figure 6.7(a)), there is a potential for the shell to have nearly the same buckle wavelength as would be

seen for a hollow shell without any supporting core material. The appearance of the corresponding load

predictions for h = 0.9 in Figure Ec/E = 0.01 (Figure 6.7(a)), may explain the large bulge in the load

behaviour seen previously in Figure 6.6(a): because the wavelength predictions for hollow-core shell buckling

are closer to those of hollow-sell behaviour, these loads are tending to equality for t/r ≈ 0.015.



CHAPTER 6. LOCAL BUCKLING OF AN FILLED SHELL WITH A HOLLOW CORE 82

l =
 5

0 
m

m

r = 5 mm t

Applied Axial 
Displacement (radial 
expansion free)

Core Shell

Shell-Core 
Interface 
(fully adhered)

Bottom fixed axially, 
radial expansion free

Example Mesh

ShellCore

δl

r i

Figure 6.8: Diagram showing the setup of an Abaqus simulation for an axisymmetric section of a filled shell with a hollow core. The
section has with length l = 50 mm, radius r = 5 mm, shell thickness t, and inner radius ri determined by the value of h. The top is
loaded with a displacement δl, while the bottom cannot move axially. Radial expansion is allowed on both the top and bottom. An
example of a meshed geometry is also provided.

6.5 Finite Element Verification of the Hollow-core Model

The critical values of load for a filled shell with a hollow core were verified using modal analyses in Abaqus.

The criteria used for geometry selection is given in Table 6.1. The length-to-radius ratio of the cylinder was

kept at 10, deemed to be an appropriate ratio based on the actual geometries of coated microtruss structures

[4, 21]. With the criteria in Table 6.1, a total of 120 geometries were generated and their buckling loads

found using modal analysis in Abaqus.

Figure 6.8 shows the finite element simulation setup for the hollow core simulations. A section of

the filled shell was used to represent the axisymmetric behaviour of the entire cylinder, which means that

buckling deformations determined would be axisymmetric about the cylinder circumference. The top and

bottom edges of the cylinder were allowed to move radially. The radius r was fixed at 5 mm while the cylinder

length was chosen to be 50 mm, yielding the desired criterion l/r value of 10. A displacement was applied to

the top edge as shown in Figure 6.8, and the resulting eigenvalues from the analysis are the displacements

at which buckling occurs. All geometries were meshed using quadrilateral elements, with at least 7 elements

through the thickness of the shell. The mesh was generated such that elements had an aspect ratio of nearly

1.0 inside the shell area, with larger aspect ratio elements used in the core to reduce computation time. An

example mesh is shown in the inset of Figure 6.8.

The Abaqus subspace eigenvalue solver was used to find the buckling modes, with three modes re-
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Table 6.1: List of criteria for the cylinder geometries chosen for verification simulations of hollow-core model using Abaqus.

Quantity Chosen values
Thickness-to-radius ratios (t/r) 0.005, 0.0075, 0.01, 0.025, 0.05 and 0.1
Length-to-radius ratios *(l/r) 10

Hollowness ratios (h) Between 0 and 0.9, in increments of 0.1
Relative core stiffness ratio (Ec/E) 0.01 and 0.001
* Fixed at 10 for hollow-core verification simulations, with r = 5 mm and l = 50 mm.

quested. The resulting values returned by the solver indicate the displacements at which buckling would

occur. The number of half-waves from each mode shape was used to compare the number of buckle waves

and their wavelengths to theoretical estimates.

6.5.1 Comparison of Modal Analysis Solutions to Analytical Values

The simulations run for every case converged, yielding three eigenvalues and corresponding mode shapes

for every geometry. For each case, all three eigenvalues were very close in value, the difference between

the highest and lowest eigenvalues being less than 0.5% for the majority of the geometries. This implies

that many buckling modes are possible for the hollow shell structures near the critical load, and that the

buckling loads required to attain these modes are very close to each other or that multiple modes may be

superimposed upon one another at the critical load [83–85]. This observation also further illustrates that the

buckling load is independent of the mode shape, an observation which holds true for hollow shell buckling

[34, 35, 37, 75] and for filled-shell buckling (Chapter 3). Due to the number of results obtained from the

finite element simulations, several graphs are presented to compare and contrast the differences between the

simulation results and the analytical buckling loads.

Figures 6.9(a) and (b) show the load predictions for a hollow core with h = 0.3, for core stiffness

values of Ec/E = 0.01 and Ec/E = 0.001 respectively. The load predictions for the relevant geometries

as determined from Abaqus modal analyses are also shown on these graphs. The hollow-core analytical

predictions and Abaqus results for h = 0.6 are shown in Figures 6.9(c) and (d), while the same data for

h = 0.9 is shown in Figures 6.9(e) and (f). Although Abaqus simulations were performed for every 0.1

increment of h (refer to Table 6.1), only these graphs are presented for brevity.

It is seen in Figures 6.9(a) and (b) that the analytical predictions are very close to the loads calculated

from finite element analyses, for both of the core stiffnesses. However, as seen in Figures 6.9(c) through (f),

there is a larger disagreement between the simulation data and the analytical results as h becomes larger,

or as the core becomes more hollow. This discrepancy is magnified more for a stiffer core (Figures 6.9(a),

(c), and (e)), implying that a stiffer core has more of an effect on the buckling load of a filled shell with a

hollow core. This is a trend also seen in the underlying analytical model for hollow core shell buckling.

The loads obtained from simulation data are higher than those predicted by the analysis, the opposite

of what would be expected during finite element verification of a model. Typically, the maximum energy

that can be calculated from finite element simulations will always be less than the theoretical calculation
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for the same result [126]. Given that the hollow core model was derived using an energy model for the core,

this could imply a fault in the data used to create the this model or in the curve-fitting procedures used to

generate the fit function K (Equation 6.2).

Considering the number of waves as shown in Figures 6.10(a) and (b), for Ec/E = 0.01 and 0.001

respectively, there is better agreement with the results for the more compliant core (Ec/E = 0.001) than

there is for a stiffer core (Ec/E = 0.01). The spread of the data points in Figure 6.10(a) (Ec/E = 0.01)

is much pronounced more than for the lower stiffness case. Specifically, for h = 0.9 and t/r = 0.01, the

wavelength predicted for buckling is much higher than that predicted by hollow-shell buckling. The large

wavelengths for this geometry are a likely indicator that simultaneous buckling of the shell and core is taking

place (refer to Figure 6.1 (b)), even though the hollow core load is lower for this t/r as shown in Figure 6.6(a).

A closer look at the mode shapes is warranted to investigate this. The spread in the predicted wavelengths

can be reduced by using longer cylinders for the simulations, however this will lead to cylinder geometries

where Euler buckling will be more energetically preferable and thus will not be physically representative for

local shell buckling.

The complete set of simulation data is shown in Figures 6.11(a) and (b) for core relative stiffnesses of

Ec/E = 0.01 and 0.001 respectively. These two Figures show values of the buckling loads calculated from

the simulations normalized against the load prediction from the fundamental model for a completely filled

shell (Equation 4.11 of Chapter 4, or when h = 1 in Equation 6.4). The predicted loads corresponding to the

hollow-core shell buckling load for h = 0.9 are also plotted on these figures together with the simultaneous

buckling load for the relevant Ec/E values. The spread of the simulation data as h increases is apparent

for each value of t/r, indicating a larger decrease in the buckling load as the core becomes more hollow.

This same trend is matched by the analytical values of the hollow-core shell buckling load (refer to Figures

6.6(a) and (b)). In addition, the buckling loads predictions from Abaqus are larger than the corresponding

predictions from the hollow-core model for h = 0.9, indicating that the simulated data is bounded by the

predicted loads.

6.5.2 Comparison of Buckled Mode Shapes

It is of interest to examine the buckled mode shapes of some of the geometries to aid in determining when the

dominant buckling failure mode will change from hollow-core shell buckling (Figure 6.1(b)) to simultaneous

buckling of the shell and core (Figure 6.1(c)). For some geometry h, there is a given t/r at which it is more

energetically efficient to have the core buckle in tandem with the shell instead of the shell buckling alone.

Figures 6.12(a) through (c) show various buckled mode shapes for hollow shells with t/r values of

0.005, 0.05 and 0.1, respectively. For each of these three Figures, the mode shapes corresponding to h values

of 0 (fully filled), 0.5 and 0.9 are shown. For each geometry, the mode shapes shown are those corresponding

to the first eigenvalue that was found through Abaqus modal analysis. All Figures correspond to a material

combination of Ec/E = 0.01, as simultaneous buckling is not a dominant mode of failure when Ec/E =
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Figure 6.9: Predictions for the buckling load from Abaqus simulations for filled shells with hollow cores for (a) h = 0.3 and Ec/E =

0.01; (b)h = 0.3 and Ec/E = 0.001; (c)h = 0.6 and Ec/E = 0.01; (d)h = 0.6 and Ec/E = 0.001; (e)h = 0.9 and Ec/E = 0.01; and

(f)h = 0.9 and Ec/E = 0.001.



CHAPTER 6. LOCAL BUCKLING OF AN FILLED SHELL WITH A HOLLOW CORE 86

Figure 6.10: Predictions of critical wavelengths from Abaqus for filled shells with hollow cores with h = 0.3, 0.6 and 0.9 for
(a)Ec/E = 0.01 and (b)Ec/E = 0.001. The predicted loads for the hollow shell and full adhesion models are also shown for comparison.

Figure 6.11: Predictions for the buckling loads relative to fundamental model load of same t/r for hollow-core model, simultaneous
buckling model and Abaqus simulations for (a)Ec/E = 0.01 and (b)Ec/E = 0.001.

0.001 (refer to Figure 6.6(b)).

For each individual t/r value, there is a reduction in the number of waves as h increases, with a

corresponding increase in the wavelength of the waves. This is due to the shifts in the behaviour of the

cylinder as it moves from filled-shell (h = 0), to hollow-core (0 < h < 1) and finally to hollow-shell (h = 1).

For the same t/r, hollow-shell buckling is accompanied by the same or greater wavelengths as filled-shell

buckling (refer to Figures 6.10(a) and (b)).

While the number of waves is a function of cylinder geometry and failure mechanism, the low-frequency

mode shape fluctuations are not dependant on the geometry of the cylinder, but rather are unique to the

eigenvalue for each specific geometry. The fluctuations are not mesh dependant as there is a large number

of quadrilateral elements, and the calculated mode shapes changed little after the geometries were meshed
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Figure 6.12: Buckled shapes for three hollowness factor ratios h, shown for a core stiffness ratio Ec/E = 0.01 and thickness-to-radius
ratios of (a)t/r = 0.005, (b)t/r = 0.01 and (c)t/r = 0.05.

with over 200 000 elements. In addition, the boundary conditions play a strong role in these fluctuations, as

restricting radial movement at the top and bottom of the cylinders leads to more symmetrical mode shapes.

For very thin coating thicknesses, or t/r = 0.005 (Figure 6.12(a)), buckling of the shell always takes

place even when the core is very hollow (h = 0.9 in the right-most part of the figure). However starting

at t/r = 0.01 (Figures 6.12(b) and 6.12(c)), a hollow core with h = 0.9 will lead to simultaneous buckling,

where the shell and core buckle in tandem. This leads to larger buckle wavelengths than those predicted

by the hollow core shell buckling model, and very close to or exceeding those predicted by the hollow-shell

model. Given the appearance of the buckle mode shape for h = 0.9 in Figure 6.12(b), the outlying calculated

wavelength previously highlighted in Figure 6.10(a) (for t/r = 0.01) is justified given that complete buckling

has occurred for this geometry and material combination. This contrasts to the load predictions of Figure

6.6(a), which shows that hollow-core shell buckling has a lower load and thus should dominate for t/r = 0.01.

The sharp drop in the hollow-core load prediction for h = 0.9 may indicate an interaction load between the

hollow-core shell buckling and simultaneous buckling loads, even though these loads do not intersect near

t/r = 0.01. The lack of an intersection near this t/r may indicate that some fine-tuning is necessary for the

core model for hollow-core shell buckling prediction. Figures 6.12(a) through 6.12(c) also show that as the
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shell thickness becomes very large, simultaneous buckling will always occur for filled shells with very hollow

cores (h ≥ 0.9), an observation confirmed by the theoretical behaviour of the hollow-core shell buckling and

simultaneous buckling predictions (Figures 6.6(a) and (b)).

6.6 Concluding Remarks

A model for the buckling behaviour of an axially-loaded polymer-filled metal shell with a hollow core has been

developed. This required a model which predicts the strain energy in a hollow core undergoing sinusoidal

radial deflections, which was used in conjunction with the energy contributions from a shell undergoing

buckling deformations in order to determine the local shell buckling load. The load required to cause

simultaneous buckling of the shell and core together was also derived. Finite element simulations verified

the hollow-core shell buckling load behaviour, while also highlighting some of the weaknesses of the model.

Namely, the analytical predictions are lower than the Abaqus results for more hollow core geometries, while

the transition from shell buckling to simultaneous buckling is not captured as well in the model. These

simulations also showed that simultaneous buckling can lead to wavelengths which are larger than those

corresponding to hollow-shell buckling for the same shell geometry. In addition, the simulations revealed

that the buckling loads for hollow-core filled shells may be lower than those predicted by the model, and this

may warrant a closer look at the curve-fit used for the core model.

Future investigations into filled shells with hollow cores should possibly look at more complex fitting

models for the core energy behaviour. This should alleviate the current issue whereby the transition to

simultaneous buckling is not being found accurately. In addition, future studies should also consider the role

that end conditions have in the mode shapes calculated from finite element simulations.



Chapter 7

Local Buckling of an Inelastic Shell Filled with

a Solid Elastic Cylinder

7.1 Introduction

The models for buckling presented thus far have assumed that buckling takes place for filled shells with

elastically-behaving shell and core materials. The models have been presented for elastic buckling of metal-

filled shells (Chapter 4), for shells and cores that are not adhered (Chapter 5), and hollow cores (Chapter

6). A practical treatment of filled shells subject to axial loads warrants inclusion of the buckling behaviour

while the shell material behaves inelastically. This chapter will describe such a model for local shell buckling.

While subject to axial compression, buckling failure of both hollow and filled cylindrical shells can

occur before or after the initiation of plastic yield in the shell material. During elastic buckling, all buckling

deformations are recovered if the load is removed immediately after the initiation of buckling [78, 112].

Inelastic buckling, however, results in deformations that are not always recoverable after buckling has been

initiated. This type of buckling takes place before ultimate material failure of the shell [1, 4, 34]. For shells

made of metal, this is after the end of the linear-elastic region on a stress-strain curve.

There are several studies investigating the inelastic behaviour of hollow shells subject to axial com-

pression [77, 124, 127]. Analytical and experimental investigations of filled shells have focused on elastic

behaviour [96, 98–100, 104, 107]. Two studies examined the inelastic behaviour of filled shells without ac-

counting for the core [1, 4, 116]; one of these studies considered the yield strength of the shell without

accounting for its inelastic behaviour explicitly [116].

For elastic local buckling predictions of thick shells filled with polymer cores (Chapter 4), the load-

bearing capacity of the core leads to elastic local shell buckling loads that exceed the yield strength of the

metal. As polymer materials require higher strains to yield then metals, the polymer core remains elastic

even as the shell behaves inelastically. A new model for inelastic buckling of filled shells will remedy this

shortcoming of thick shells while still assuming that the core material behaves elastically. The development

of an inelastic model allows for validation of filled-shell predictions through experiments by using geometries

with thicker shells. The use of thicker shells in experiments is expected to alleviate the imperfection sensitivity

inherent in shell buckling, an effect which is magnified when the shell thickness is small [73, 78, 79, 81].

This chapter presents an extension to the fundamental buckling model of Chapter 4, which will allow

for buckling load predictions for inelastically-behaving shells filled with solid elastic cores. As was done for

89
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Figure 7.1: Annotated true stress-strain curve diagram showing regions of elastic and plastic behaviour, along with labels for Young’s
modulus E and the tangent modulus (ET).

the fundamental model, the Timoshenko energy treatment of the shell [34] is used in conjunction with the

strain energy model of the core developed in Chapter 3. To represent the behaviour of the shell material

when it is behaving inelastically, an analytical representation of its stress-strain behaviour is required. The

Voce material model is used for this purpose, and a description of it is provided. Using the value of the

shell material modulus given by the Voce model, the fundamental model is modified for inelastic behaviour.

Verification of this inelastic model is carried out through the use of non-linear finite element analysis.

The results of the finite element verification studies illustrate that the new inelastic model is accurate

for a wide range of shell thickness-to-radius ratios. However, for filled shells that contain less stiff core

materials, the inelastic model is less accurate for very high shell thickness-to-radius ratios.

7.2 Inelastic Material Behaviour and the Voce Material Model

To accurately calculate the inelastic buckling load for a filled shell under an axial load, an analytical material

model is required. The rationale behind this is explained here, followed by a description of the Voce material

model.

The elastic and plastic behaviours of a linear-elastic work-hardening material can be represented on

a stress-strain curve as shown in Figure 7.1. At the inception of elastic buckling, the removal of any load

will cause all buckling deformations to disappear, and the shell will return to its original shape [78, 87].

Typically, elastic buckling loads are calculated using Young’s moduli found in material data sheets [34, 65].

Inelastic buckling, conversely, occurs before the ultimate strength of a material is reached [1, 4, 34]. The

proportional limit as shown on Figure 7.1 denotes the end of the linear-elastic region of the stress strain
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curve and the beginning of inelastic (or plastic) behaviour. Like any plastic deformation, inelastic buckling

deformations are non-recoverable upon removal of the load as energy has been dissipated through plastic

flow [18].

To calculate inelastic buckling loads, the Young’s modulus E is replaced with either the tangent

modulus ET or the reduced modulus ER. The tangent modulus is found by calculating the instantaneous

slope of the stress-strain curve, as shown in Figure 7.1, while the reduced modulus uses the tangent modulus

along with a representation of the cylinder cross section [34, 112]. While the reduced modulus is more

complicated to calculate in practice, it is also more accurate for some models of inelastic buckling [111, 112].

For the present analysis, the tangent modulus is used for inelastic buckling predictions due to its simplicity.

7.2.1 The Voce Material Model

In order to calculate the tangent modulus for the shell material, it is desired to have a smooth fit between for

its stress-strain behaviour. The Ramberg-Osgood model [113] uses a power law relationship between stress

and strain, introducing a transition region between the elastic and inelastic behaviours of the material.

Conversely, the Voce model provides a smooth fit between stress and strain without any transition region

[114]. The Voce model requires the engineering stresses and strains to be in true stress-strain space, as seen

in Figure 7.1. The conversion from engineering to true stress and strain can be done using [18]:

σT = σE(1 + εE) and εT = (1 + εE), (7.1)

where σT is the true stress, εT is the true strain, σE is the engineering stress and εE is the engineering strain.

The Voce function takes the form [1, 4, 114]:

σT = Bv − (Bv −Av) exp(−CvεT), (7.2)

where Av, Bv and Cv are the fitting constants. The Voce model can be used to find the tangent modulus

ET at any stress value by differentiating Equation 7.2 with respect to εT [114]:

ET = Cv(Bv − σT). (7.3)

In order to calculate the inelastic buckling load, the elastic modulus E is set to ET as given in Equation

7.3. The constants in Equation 7.2 can be determined for given material through a least-squares fit to

experimental data.
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7.3 Inelastic Buckling Load for a Filled Shell

A model for the prediction of the inelastic buckling load for a filled shell with a solid polymer core is presented

here. This modified version of the fundamental buckling model (Chapter 4) makes use of the Voce material

model for nanocrystalline nickel.

7.3.1 Voce Material Model for Nanocrystalline Nickel

Stress-strain data were obtained for nanocrystalline nickel (nNi) from RePliForm [7]. This data were pro-

duced through tensile tests of electrodeposited nNi specimens. The average grain size of this nanometal was

65 nm as determined by transmission electron microscope (TEM). A micrograph is in Figure 7.2.

Figure 7.3 shows the stress-strain data for the nanocrystalline nickel and the least squares fit to Equa-

tion 7.2. Table 7.1 shows the Young’s modulus corresponding to this material along with the Voce coefficients

for the curve in Figure 7.3. Equation 7.3 is used with the co-efficients in Table 7.1 to represent the material

behaviour of the metal shell. Since the value of Av is significantly smaller than the other coefficients, its

value is set to 0.

7.3.2 Model for Inelastic Buckling

The development for the buckling load prediction for a filled cylinder with an inelastically-behaving shell

material follows the method utilized in Chapter 4. Figure 7.4 shows a diagram of a filled cylinder of length

l, radius r and thickness t subject to an axial load F . The core has Young’s modulus of Ec and Poisson’s

ratio of νc, while the same properties of the shell are E and ν. The derivation of the inelastic buckling load

uses the following assumptions:

� the core remains elastic at all times,

� the shell buckles with a sinusoid shape along its length,

� there are many waves during buckling,

� the shell is thin compared to the radius of the cylinder (t/r < 0.1), and

� the shell and core are perfectly bonded.

Due to the final assumption, the surface of the core takes on the same shape as the shell during

buckling. Because the core remains elastic, the Southwell model (previously discussed in Chapter 3) is used

to predict the behaviour of the core.

Table 7.1: Mechanical properties and Voce fit parameters for nanocrystalline nickel, as determined from stress-strain data provided
by RePliForm [7]. The coefficient of determination (R2) for the parameters is 0.9937.

Young’s Modulus, E
(GPa)

Poisson’s
Ratio

Yield Strength, σy

(MPa)
Av (MPa) Bv (MPa) Cv

125.0 0.3 1180 1.766× 10−6 1615 107.3



CHAPTER 7. INELASTIC LOCAL BUCKLING OF A FILLED SHELL 93

Figure 7.2: Micrograph captured using a transmission electron microscope during grain-size measurements of RePliForm nanocrys-
talline nickel. The average grain size found was 65 nm.
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Figure 7.4: A filled cylinder under an axial load F with
a length l, inner radius r and shell thickness t. The shell
has Young’s modulus E and Poisson’s ratio ν while those
of the core are Ec and νc.

Prior to deriving the buckling load F , the value of E is replaced with ET (Equation 7.3). The stress

σT is the load on the shell divided by the shell area. Thus the value of ET becomes:

ET = C

(
B − Fs

2πrt

)
, (7.4)

where Fs is the load on the shell only. The load carried by the core will be determined separately.

A filled shell in axial compression undergoing incipient local shell buckling experiences bending and

circumferential stretching (refer to Equations 4.2 and 4.3 in Chapter 4). Modifying these equations for

inelastic behaviour by replacing E with ET gives:

Ubi =
πETrt

3

12(1− ν2)

m4π4

l4
A2l

2
=
t2C(2πrtB − Fs)

24(1− ν2)

m4π4

l4
A2l

2
and (7.5)
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Uci =
πETtA

2l

2r
= C(2πrtB − Fs)

A2l

4r2
. (7.6)

The core energy term remains unchanged from the full adhesion fundamental model (Equation 3.14)

as it is does not rely on the material properties of the shell. Performing the same operations as in Section

4.2 of Chapter 4 and isolating for Fs gives:

Fs =

[
2π3rt3BvCv

3(1− ν2)

1

λ2
+
tBvCv

2rπ
λ2 +

Kr

π
λ

] [
1 +

π2t2Cv

3(1− ν2)

1

λ2
+

Cv

4π2r2
λ2

]−1

. (7.7)

The values for K are obtained from the model that represents the core behaviour as developed in

Chapter 3. Equation 7.7 applies for any λ value, however only one critical λ value exists for a given cylinder

with known material properties. This critical λ value is found by finding the positive real root of ∂F/∂λ = 0

[34, 77, 98].

The core provides added axial strength to the shell. For inelastic shell behaviour, the core contribution

to the total cylinder load is determined by using the axial strain in the shell along with linear elastic

expressions for the core behaviour. This strain, ε, in both the core and the shell is found by rearranging the

Voce relation of Equation 7.2 to give:

ε = − 1

C
ln

B − Fs
2πrt

B −Av

 . (7.8)

Finally, the total axial load for the filled shell is determined by adding the shell and core loads together:

F = Fs + Ecεπr
2, (7.9)

where Ec is the Young’s modulus of the core, and ε is determined using Equations 7.8 and 7.7.

7.3.3 Inelastic Buckling Behaviour for a Filled Shell

The behaviour of the inelastic model is compared to the fundamental elastic model of Chapter 4, as well as

to the inelastic buckling load for hollow shells. The latter was derived by Lausic et al. [1, 4]:

Fhi =
2πrt2CB√

3(1− ν2) + Ct
. (7.10)

Figure 7.5(a) shows the behaviour for various buckling loads for Ec/E = 0.01, while Figure 7.5(b)

shows the same loads for Ec/E = 0.001. The corresponding graphs of λ/t are shown in Figures 7.6(a) and

(b) for Ec/E = 0.01 and 0.001 respectively. On the graphs of Figures 7.5, buckling predictions are given

as a function of shell thickness-to-radius ratio (t/r) for the inelastic filled-shell (Equation 7.9) and elastic

filled-shell (Chapter 4, Equation 4.11), inelastic hollow-shell load (Equation 7.10) and elastic hollow-shell
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Figure 7.5: Predictions of the inelastic buckling load for filled cylinders as a function of t/r for (a)Ec/E = 0.01 and (b)Ec/E = 0.01.
The predictions for the elastic and inelastic hollow and filled shell models are shown, along with the yield loads of a filled cylinder.

Figure 7.6: Predictions of the inelastic buckling load for filled cylinders as a function of t/r for (a)Ec/E = 0.01 and (b)Ec/E = 0.01.
The predictions for the elastic and inelastic hollow and filled shell models are shown, along with the yield loads of a filled cylinder.

models [34]. The load to yield for a filled shell is also given as a reference.

As seen in Figure 7.5(a), both predictions of the elastic and inelastic filled-shell load for Ec/E = 0.01

are all above the yield load for the entire range of t/r on this graph. This implies that metal-coated polymer

cylinders with very stiff cores (i.e. Ec/E & 0.01) will readily lead to inelastic shell buckling for a wide range

of shell thickness-to-radius ratios. This is supported by Figure 7.5(b) for Ec/E = 0.001, which shows that

yielding of the shell does not begin until t/r ≈ 0.03 for this reduced core stiffness.

The graphs of λ/t (Figures 7.6(a) and (b)) show the critical wavelengths for elastic and inelastic

buckling of both hollow and filled shells. Inelastic behaviour of a filled shell causes the critical buckling
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wavelengths to be lower than for elastic buckling. However, for a hollow shell, it is seen that the buckling

wavelengths for both elastic and inelastic buckling are the same. This difference between hollow- and filled-

shell buckling wavelengths is because the critical wavelength of filled-shell buckling depends on the shell

material properties, whereas this is not the case for hollow-shell buckling [34]. Hence, as the shell behaviour

changes from elastic to inelastic, the critical wavelength changes as well.

Figure 7.6(b) illustrates that the model for inelastic buckling of a filled shell with Ec/E = 0.001 yields

wavelengths that are much closer to elastic buckling wavelengths, which lead to the predicted loads being

closer to the loads for elastic buckling. This is confirmed by the inelastic filled-shell loads in Figure 7.5(b),

which are closer to their elastic counterparts compared to the corresponding predictions shown in Figure

7.5(a) for Ec/E = 0.01. Inelastic buckling for filled shells with more compliant cores will occur at loads that

are much closer to the hollow shell loads, showing the reduced importance of the core as its relative stiffness

is reduced. For both Ec/E = 0.01 and 0.001, inelastic buckling predictions are below the elastic hollow-shell

buckling model when t/r is very large. However, for smaller t/r, Figure 7.5(b) reveals that the inelastic load

for Ec/E = 0.001 predicts a lower load than the elastic filled-shell model. This is a limitation of the inelastic

model: to represent the complete axial behaviour of a filled shell, elastic shell buckling should take place for

thin shells and this should transition smoothly to the inelastic buckling behaviour at higher thickness values.

7.4 Finite Element Verification

Finite element verification was carried out using Abaqus. Axisymmetric cylinder geometries were represented

using a fixed radius r of 10 mm while varying cylinder length l and coating thickness t to generate different

values of length-to-radius (l/r) and thickness-to-radius (t/r). A total of 18 geometries were generated using

six t/r values of 0.005, 0.0075, 0.01, 0.025, 0.05 and 0.1, each of these used with l/r values of 5, 15 and

25. An example of a typical finite element configuration is shown in Figure 7.7 with a sample section of a

mesh for one geometry. All geometries were discretized using a minimum of 5× 106 elements, with at least 8

elements through the shell thickness. The cylinders were loaded axially by applying a displacement δl at the

top edge of the axisymmetric section (i.e. the top surface of the cylinder), as shown in Figure 7.7. The top

and bottom edges – representing the top and bottom surfaces of the cylinder – were allowed to expand in

the radial direction as the axial displacement was applied. The material properties of nNi were used for the

shell (refer to Table 7.1) while a ratio of Ec/E controlled the Young’s modulus of the core. To be consistent

with the results in Figures 7.5(a) and (b), the values of Ec/E used were 0.01 and 0.001.

Two cases were calculated for each geometry. First a modal analysis was performed to extract eigen-

values and mode shapes for elastic buckling of the geometry using a linear perturbation analysis [83]. A

static analysis followed, using material stress-strain data for nanocrytalline nickel as well as imperfections

applied to the mesh using the modal data generated from the elastic buckling analysis. The imperfections

were applied using a scaling factor for the first 6 mode shapes from the modal analysis, with the scaling
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Figure 7.7: Diagram showing setup of an Abaqus simulation for an axisymmetric section of a filled shell with length l, radius r = 10
mm and shell thickness t. The inset shows an example of a mesh.

Table 7.2: Scaling factors used for each eigenvalue, as applied to
the mesh for the analysis of inelastic buckling in Abaqus

Eigenvalue/Mode # Scaling Factor
1 5.000× 10−3

2 2.500× 10−3

3 1.250× 10−3

4 6.250× 10−4

5 3.125× 10−4

6 1.562× 10−4

Table 7.3: Plasticity data for shell material used for Abaqus in-
elastic buckling simulations (refer to [83] for methods of use)

Plastic Strain True Stress (Pa)
0 9.865× 108

4.058× 10−3 1.189× 109

1.011× 10−2 1.396× 109

1.747× 10−2 1.517× 109

2.179× 10−2 1.549× 109

3.004× 10−2 1.537× 109

factors listed in Table 7.2. These magnitudes were determined through a sensitivity analysis on hollow- and

filled-shell simulations using similar geometries. The inclusion of mode shapes beyond the 6th mode did not

affect the results.

Abaqus utilizes material stress-strain data in the form of plasticity data. The plasticity data for

nanocystalline nickel is given in Table 7.3 while the corresponding data points on the original nNi stress-

strain data is shown in Figure 7.3. The eigenvalue buckling predictions did not use plastic material behaviour

as the Abaqus eigenvalue solver cannot account for plasticity [83]. No plasticity information was used for

the core as it is assumed to remain elastic. The displacement applied to the geometries for the static general

analyses was determined through the eigenvalues returned by the preceeding buckling analyses.

7.4.1 Methods for Data Extraction

The criterion for failure in non-linear simulations is typically not apparent as it often is for elastic simulations

[71]. As such a method was chosen to determine the point of failure for the verification simulations. A
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as extracted from an inelastic Abaqus simulation for Ec/E = 0.01,
t/r = 0.25 and l/r = 5

reduction in the load-carrying capacity of the shell on a force-displacement diagram was deemed the point of

failure. This was confirmed by a sharp increase in the radial deflections of buckle folds. To illustrate these

failure criteria in practice, two figures will be provided.

Figure 7.8 shows the axial force plotted as a function of axial displacement, while Figure 7.9 shows the

averaged radial strains calculated for several nodes on the outermost surface of the coating as a function of

the axial force. For the latter figure, several nodes were selected at random along the outer coating edge

and their radial strains determined. Figures 7.8 and 7.9 correspond to the simulation for Ec/E = 0.01,

t/r = 0.025 and l/r = 5. The force-displacement graph (Figure 7.8) shows the data for both the complete

cylinder as well as for the shell only. While there is a pronounced decrease in the shell force at the indicated

failure point, there is not a pronounced decrease in the force in the entire filled shell. This sharp change in

the force-displacement behaviour of the shell is where the cylinder has failed through inelastic buckling. The

axial strains in Figure 7.9 illustrate how there is a large rise in radial displacement at the outer coating edge

after the failure load is reached. These axial strains thus act as a confirmation of inelastic failure.

7.4.2 Verification Results

Figure 7.10(a) shows the non-dimensional loads obtained for the finite element verification simulations for

Ec/E = 0.01, while simulation data for Ec/E = 0.001 is shown in Figure 7.10(b). On both Figures 7.10(a)

and (b), the predictions for elastic buckling of a filled shell (Equation 4.11 in Chapter 4), inelastic buckling

of a filled-shell (Equation 7.9) and inelastic buckling of a hollow shell (Equation 7.10) are included.

There is a very good agreement between the values obtained from Abaqus simulations and the predic-

tions for an inelastic filled-shell with Ec/E = 0.01 (Figure 7.10(a)), indicating that the inelastic filled shell

buckling model is sound. There is a slight scatter in the loads obtained from Abaqus due to the various l/r
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Figure 7.10: Predictions of the inelastic buckling loads for hollow shells, filled shells and the Abaqus simulation results as a function
of t/r for (a)Ec/E = 0.01 and (b)Ec/E = 0.001.

values that were used. This is likely due to element counts inside the meshes and not due to the sensitivity

of the buckling load to l/r. At t/r = 0.1 some of the values are greater than the predicted loads. This is

likely because this is near the limits of the thin shell assumption (refer to Section 7.3.2), where the shell

behaviour becomes dominant over that of the core. However, for Ec/E = 0.001 (Figure 7.10(b)) the values

obtained from Abaqus are far above the predictions for inelastic shells starting at t/r values of 0.05 and

above. The core behaviour may be more important than the inelastic model predicts, even when the core

stiffness is substantially lower than that of the shell. Both of these deviations from the Abaqus results show

that the inelastic model is not accurate for very thick filled shells (i.e. t/r ≥ 0.1), but this is outside the

assumed range of thicknesses for the inelastic filled-shell model.

The appearance of some of the final buckled shapes for the shells is shown in Figure 7.11 for several

values of t/r. For comparison, the mode shapes corresponding to the first eigenvalue for the same values of

t/r are shown in Figure 7.12. Buckled shapes for Ec/E values of 0.01 and 0.001 are shown in both figures.

For all of the geometries studied, the first and tenth eigenvalues were within 1% of each other, an indication

of the strong imperfection sensitivity of inelastic local shell buckling [71, 83–85].

The imperfect coating geometry, supplied by a weighted sum of the mode shapes (refer to Table 7.2),

coalesced into large folds when Ec/E = 0.001, or into groups of folds at some location along the length when

Ec/E = 0.01. This is more apparent for larger t/r values (i.e. t/r = 0.05 in Figure 7.11(b)). For both Ec/E

values, the coalescence takes place well after the buckling load is exceeded (i.e. at very high axial strain

values), as made apparent by comparing the values of δl in Figure 7.11 to the eigenvalues indicated in Figure

7.12. In addition, the visual appearance of the inelastic folds is similar to the first mode shape, which was

given the highest weight factor in the imperfections. The appearance of the folds along the lengths of the

cylinders is consistent with concertina buckle folds encountered in both hollow and filled metal shells tested
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Figure 7.11: Buckled shapes for some geometries studied using inelastic Abaqus simulations for l/r = 5 (r = 10 mm) where a)
Ec/E = 0.01 and b) Ec/E = 0.001. Note how the applied axial displacements compare to the eigenvalues for the elastic mode shapes
in Figure 7.12.

Figure 7.12: Elastic mode shapes for first eigenvalues as obtained for some geometries studied using Abaqus for l/r = 5 (r = 10 mm)
where a) Ec/E = 0.01 and b) Ec/E = 0.001.
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in experimental investigations [66, 98, 103].

Although the majority of the loads obtained from Abaqus simulations were in line with the predictions,

it was not possible to verify the critical wavelengths for inelastic buckling. Since the critical wavelengths for

elastic and inelastic buckling of filled shells are not the same (unlike those for hollow-shell buckling – refer

to Figure 7.6), the use of mode shapes obtained through an elastic perturbation analysis was not guaranteed

to give wavelengths corresponding to the inelastic model. This is illustrated in Figure 7.13, which shows the

wavelengths from the simulations for Ec/E = 0.01. As seen in this Figure, all of the wavelength predictions

from Abaqus are closer to those predicted by the elastic model. A second attempt to obtain the wavelengths

was undertaken: to rule out the effect of the elastic mode shapes influencing the wavelength predictions, a

less structured imperfection pattern was applied to the cylinders. The method of imperfection generation as

used for verification of non-adhesion buckling loads was utilized (refer to Section 5.5 in Chapter 5). Using

this second imperfection pattern resulted in radial growth of the buckle folds, with the wavelengths remaining

unchanged as the axial load was applied. The buckling load in both of these was the same even as the final

shape of the shell changed.

It is deduced from this behaviour that it is not the critical wavelength of a cylinder undergoing filled-

shell buckling that affects the buckling load; instead, this load is more dependant upon the material behaviour

of the shell. It is possible that the critical wavelength appears for a very short period at the inception of

buckling, as this is observed in experimental investigations of hollow-shell buckling [66, 78, 87]. However,

the limitations of Abaqus simulations made this difficult to investigate in detail.
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7.5 Concluding Remarks

A model for inelastic local shell buckling of filled cylindrical shells has been developed. This utilizes the Voce

material model to represent the behaviour of nanocrystalline nickel, one possible shell material that can be

used for metal-coated polymer cylinders. The Voce material model was utilized to determine the instanta-

neous tangent modulus, which allowed for the existing elastic filled-shell buckling model to be modified for

inelastic buckling. As the core is assumed to remain elastic, the model developed previously for the core was

utilized again.

Verification using Abaqus finite element simulations was undertaken, using both elastic linear per-

turbation analysis to determine mode shapes for chosen cylinder geometries followed by a non-linear static

analysis to determine the inelastic buckling load. The non-linear analyses used meshes with deliberately-

introduced imperfections, which were determined using a weighted sum of the mode shapes found from the

elastic perturbation analyses. Through these verification studies, it was deduced that the model is sound

at lower thickness-to-radius ratios, but becomes less accurate as the thickness-to-radius ratio increases. The

divergence from the model is more pronounced as the shell-to-core stiffness ratio is lowered, implying that

the inelastic model may not be robust enough at higher thickeness-to-radius ratios. However these higher

ratios are near the limits of the assumptions used in deriving the inelastic model. Despite the fact that the

buckling loads were verified for a higher shell-to-core stiffness ratio, it was not possible to verify the critical

wavelengths for this inelastic model.



Chapter 8

Experiments

8.1 Introduction

The dominant failure modes of metal-coated polymer microtruss structures are compressive instabilities

[1, 4, 128]. These hybrid structures make use of mass-efficient microtruss topologies while utilizing the high-

strength benefits of nanocrystalline metals. Metal-coated polymer cylinders (referred to as filled shells) are

the struts of these structures, and studying their compressive instabilities leads to an understanding of the

behaviour of hybrid microtruss structures. Of research interest is the local shell buckling mode of failure, as

global buckling of bi-material struts is a better understood phenomenon. In previous chapters, filled-shell

buckling models have been developed for various cylinder configurations and assumptions. These include

a fully-adhered filled shell buckling elastically (Chapter 4), a filled shell where the shell and core are not

perfectly adhered (Chapter 5), buckling of a filled shell with a partially hollow core (Chapter 6), and inelastic

buckling of the shell (Chapter 7).

For the last of these models, many studies have examined the buckling behaviour of inelastic hollow

shells [127, 129] while others provide predictions of the elastic buckling load of filled shells [5, 72, 97–101, 104–

108]. However, studies that have investigated inelastic buckling of filled shells treated the polymer core as

a parasitic mass, and did not properly account for the core behaviour [1, 4, 130]. Several of the filled-

shell elastic buckling theories have been experimentally validated using tubes filled with polymer foams

[5, 69, 70, 96, 103, 109]. These experimental programs obtained axial buckling loads that were within 90%

of predictions, an agreement which decreases rapidly for cylinders with thinner shells (refer to Figure 2.10

of Chapter 2). Past experiments all utilized one or more methods to fix the ends of the cylinders during

axial loading, including the use of sample geometries intended to fit neatly in a specific load frame or potting

compounds to secure the ends [72, 78]. The intention of the clamped ends was to mitigate asymmetric

loading of the shells, which can cause failure well below predicted loads given by models [73, 77].

Experimental investigations of filled-shell buckling phenomena have thus far been focused on foam-

filled cylinders [5, 69, 70, 96, 103, 109]. The results of these experiments are less relevant to polymer-filled

metal cylinders, where the core is not a foamed material. For this reason, it is of interest to undertake

experimental studies of polymer-filled metal cylinders, as these would be more relevant to metal-coated

polymer microtrusses. In addition, it is appealing to manufacture and test thick-shelled cylinders, as thinner

shells are more susceptible to premature failure due to their increased sensitivity to imperfections [73, 78,

79, 81]. The use of thicker shells allows for comparison to the experimental results to the inelastic model

103
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Figure 8.1: An annotated drawing of the dogbone geometry designed for compression tests with labels for the gauge section, its radius
r and the neck region. All dimensions in mm.

for filled-shell buckling (Chapter 7), which provides more accurate loads than elastic buckling models for

cylinders with thick shells.

This chapter presents the procedures and results of the experiments intended to explore the behaviour

of metal-coated polymer cylinders subject to axial loads, the results of which will be compared with the

inelastic buckling model developed in Chapter 7. As the inelastic model has been verified through finite

element analysis, experiments allow for an examination of factors that are not considered in the model, such

as asymmetric loading or imperfect cylinder geometries. In addition, the experimental data are compared

to finite element simulations in order to ensure that the samples behave as expected. It will be shown that

factors not considered in the theoretical derivation of buckling, such as non-uniform shell thicknesses or

loading asymmetry, can severely affect buckling loads in practice.

8.2 Objectives of Experiments and Specimen Design

The objective of the experiments was to validate the predictions of inelastic buckling loads for filled cylindrical

shells in axial compression by using specimens designed to fail through local shell buckling. The measured

peak loads will be compared to predictions of the filled-shell inelastic model (Chapter 7), and to finite element

simulations.

In contrast to the manufacturing method of foam-filled shells which first involves production of the

shells prior to filling them with foam [5, 103, 107, 109], the present samples were produced by machining

the polymer core followed by electrodeposition of a nanocrystalline metal coating. This was required as

electrodeposition methods are currently the most viable and cost-effective method of producing high-quality

nanocrystalline metal coatings [28–30].

8.2.1 Specimen Design and Manufacture

In designing specimens to investigate axial buckling, the intention was to reduce the likelihood of failure

near the ends of the gauge section while ensuring that inelastic local shell buckling was the dominant failure

mechanism. The geometry in Figure 8.1 was designed with this in mind while also maximizing the stresses

in the gauge section. As seen in the figure, the sample geomtry has a dogbone shape, and the gauge section
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Figure 8.2: An image of all 11 samples as received from Integran with given nanocrystalline metal coating thickness t as indicated.
The samples were coated all around with metal, including the top and bottom ends of the geometry.

Table 8.1: Coating thickness values as provided by Integran, the resulting thickness-to-radius ratios and quan-
tities manufactured for experiment samples. A total of 11 samples were manufactured, two of which were coated
with 56 µm of nNi while the rest were coated with 40 µm nNi.

Coating Thicknessa (µm) Thickness-to-Radius Ratio in
Gauge Section, t/r

Quantity Manufactured

40 0.0080 9
56 0.0112 2

Total — 11
a Coating thickness values provided by Integran

is a circular cylinder. This geometry was chosen after finite element studies were conducted to determine

the shape of the neck region to reduce the von Mises stresses there.

The dogbone samples were machined out of ABS polymer and coated with nanocrystalline nickel (nNi).

The proprietary surface cleaning and coating processes were performed by Integran Technologies. The choices

of ABS polymer for the core and nNi for the coating provided a Young’s modulus ratio of Ec/E = 0.0176,

where E is the Young’s modulus of the nNi coating (125 GPa) [7] and Ec is that of the ABS plastic (2.2 GPa).

A total of 11 samples were machined out of ABS and coated with nNi. An image of the samples

as received from Integran is shown in Figure 8.2, while the coating specifications of these samples are

provided in Table 8.1. Two of the samples were coated with 56µm of nNi, while the remainder were coated

with 40µm nNi. These coating thickness values correspond to thickness-to-radius (t/r) values of 0.008 and

0.0112, respectively. Because verification of coating thicknesses required cutting sections from the samples,

a microscopy investigation was undertaken after the experiments to confirm the thickness.

8.3 Experimental Procedure and Analysis Methods

The equipment used during experimental studies included a servo-hydraulic load frame, a laser extensometer,

and two desktop computers to control the load frame and for data aquisition. Figure 8.3 shows a photograph

of the load frame with one sample positioned in the frame, as well as the laser extensometer aligned with the
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Figure 8.3: A photograph showing the equipment setup for the
experiments. A laser extensometer is pointing at a sample po-
sitioned in compression platens, which are attached to the MTS
load frame. The inset shows reflective laser tape used to mark the
gauge length to be measured by the laser extensometer, as well as
the aluminium collars used to hold the sample in place.

Figure 8.4: A dogbone sample mounted in aluminium collars
prior to test. Note the weight on top to keep the sample pressed
down as epoxy cures

sample. The load frame was an MTS 880 used in displacement-control mode and fitted with compression

platens. The surfaces of the compression platens were checked for levelness after each sample was tested.

Fibre optic lighting was used for increased illumination of the samples both during setup and testing.

The laser extensometer was an EIR LE-05 manufactured by Electronic Instruments Research. Reflec-

tive adhesive tape provided by the manufacturer was used to mark the gauge length being measured by the

extensometer, as indicated in the inset of Figure 8.3. As the laser extensometer is a non-contact method of

sensing displacement, the tape is required to indicate the gauge section.

The analog voltage output of both the load frame and the laser extensometer were provided to a

computer running a virtual instrument (VI) programmed using National Instruments LabVIEW. The VI

created text files containing the force from the load frame and the displacement recorded by the laser

extensometer at 1 s intervals.

8.3.1 Sample Preparations and Testing Procedures

The dogbone samples were coated entirely with nNi, including the top and bottom ends of each sample.

The ends of the samples were sanded using a sanding wheel fitted with 60 grit sand paper. This flattened

the end surfaces, thereby ensuring better load alignment along the sample axis. Following this, the sample

was mounted into two aluminium collars using epoxy as shown in Figure 8.4. This was done to enforce

clamped end conditions and also to reduce loading misalignment. The practice of clamping the ends has

been previously used in experiments involving axial compression of both hollow and filled shells [5, 72, 78,

96, 99, 107].

A LePage Speed Set two-part epoxy was used to pot the sample into the aluminium collars. Care was

taken to ensure that the sample was potted in the centre of the collars, and a weight was placed on top of
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specimens as the epoxy cured (as shown in Figure 8.4) to ensure that the surfaces of the collar and potted

end were flush. Each end was potted separately, with a minimum time of 30 minutes given for each potting

operation to allow the epoxy to cure fully. Samples were checked for alignment and levelness after each

potting operation, and if necessary the potting operation was redone.

Once mounted in the aluminium collars, the prepared sample was positioned in the MTS load frame,

as seen in Figure 8.3. The sample was bonded to the MTS machine platens using the same general-purpose

epoxy. A small pre-load of 30–50 N was applied to each sample in order to keep it in place as the epoxy

cured.

The behaviour of polymer materials is known to be strain-rate dependant [20, 131]. Prior compres-

sion tests on ABS samples were used to determine a suitable strain rate below which excessive strain-rate

dependant behaviour would not be observed. This was determined to be 4× 10−5 s−1, giving a cross-head

displacement rate of 2× 10−3 mm/s for the sample gauge length of 50 mm (refer to Figure 8.1).

The LabVIEW VI recorded force data obtained from the MTS machine and displacement readings

from the laser extensometer. After each experiment, the aluminium collars were removed and cleaned of

any epoxy so that they could be used for later samples. The surfaces of the compression platens were also

cleaned and checked for levelness between experiments.

8.3.2 Microscope Examination of Coating Thickness

After the axial buckling experiments had been completed, the gauge sections of four of the 40µm samples

were cut to expose the coating-core interface. The sectioned samples were smoothed using 800 grit sandpaper

to allow for easier viewing of the coating in an optical microscope.

An Olympus BX63 microscope was used for thickness measurements of the nNi coatings. Four locations

around the circumference of each sample (at 90 degree spacings) were photographed in the microscope, and

five measurements of the coating thickness were taken at each of these locations. This provided a profile

of the coating thickness around the circumference for each of the sectioned samples while providing enough

measurements to obtain average thickness values.

8.4 Results of Experiments

The failure mechanism for all specimens was inelastic local shell buckling of the coating, though not within

the gauge section of the samples as desired. Buckling failure involved the rapid formation of a buckle fold

along with a drop in the axial load of the sample as seen on a force-displacement diagram. The data gathered

from experiments are presented in this section, along with photographs of several samples after being tested

as well as the results of microscopy measurements of coating thickness. The data from experiments is

compared to the inelastic model developed in Chapter 7.
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Figure 8.5: A failed specimen showing an axisymmetric buckle
fold near the neck region of the specimen. This is an undesirable
failure location and indicative of high stresses in the neck region.

Figure 8.6: A failed specimen showing a non-
axisymmetric buckle fold near the neck region of the
specimen.

8.4.1 Appearance of Tested Samples

Figures 8.5 and 8.6 show images of specimens after being loaded past the point of failure. A buckle fold

near the neck region of both samples indicates failure through local shell buckling. Nearly all of the samples

tested had at least one buckle fold that formed near the neck region, with subsequent folds appearing at

lower loads than the first fold. One sample that did not have a fold near the neck region instead failed at a

much lower load than the rest of the specimens, indicating that misalignment had contributed to its early

failure. The appearance of the buckle folds in the neck region reveals that the attempts at reducing stresses

in this region were not successful: it would have been desirable to have failure in the gauge section.

The appearance of folds outside the gauge section also contributes to lower buckling loads than pre-

dicted by the inelastic model, as the neck region has a higher t/r compared to the gauge section. In addition,

the varying geometry along the neck region provides a varying t/r, further complicating predictions using

the buckling model.

Several of the samples which were not properly aligned with the axis of loading failed through Euler

buckling, or through non-axisymmetric local shell buckling as seen in Figure 8.6. This was an indication of

asymmetric loading which led to premature failure for these samples. Inspection of all the failed samples

revealed that adhesion between the shell and the core was not a contributing factor to the failure of the

specimens

8.4.2 Force-displacement Data from Experiments

Figure 8.7 shows the force-displacement data obtained from the experiments for all 11 samples. The failure

load was the highest load encountered in the experiment for each sample, and the force-displacement data

after failure have not been included. The failure loads are represented as endpoints on the individual sample



CHAPTER 8. EXPERIMENTS 109

Figure 8.7: Force-displacement data obtained from the buckling experiments. The predicted inelastic buckling load is shown, along
with the predictions for inelastic hollow shell buckling and the yield point of the metal coating. Force-displacement behaviour found
from an Abaqus simulation for a 100 µm thick sample is also provided, and the highlighted curves (labelled A through D) were used for
thickness measurements using microscopy analysis. The two samples with 56 µm of nNi are also indicated.

data curves. The two samples with 56 µm of nNi are highlighted to distinguish them from the 40 µm samples.

Of the two 56 µm samples, the force-displacement behaviour of one was similar to the 40 µm samples, while

the other had very different force-displacement behaviour. The failure loads of all samples are in the the same

range, and do not appear to be dependant on the force-displacement behaviour or on the coating thickness.

Error bars are shown for the failure loads only. This error is ±2% of the measured load F , and is due to the

noise recorded from the LabVIEW VI during data acquisition.

Because of the uncertainty in the coating thickness of the samples as received from Integran, a mi-

croscopy measurement program was undertaken after all samples had been tested.

8.4.3 Microscopy Measurements of Sample Thickness

Four of the 40 µm samples were sectioned and their surfaces smoothed using 800 grit sandpaper. The

sanding process was required in order to facilitate easier viewing of features while using an optical microscope.

Sections were cut from the gage section of samples whose force-displacement behaviour is indicated in Figure

8.7, and have been labelled A through D for reference. Due to the large thickness of the metal coatings, it

was not necessary to use an electron microscope for thickness measurements.

Figure 8.8 shows a micrograph of a section of Sample D as seen in the Olympus BX63 microscope at

a magnification of 10×. Comparing the metal coating thickness to the scale bar indicates that the metal

coating is approximately 100 µm thick.

More precise measurements were taken at 4 different locations around the circumference of each sample.

The thickness measurements for the quadrant of Sample D in Figure 8.8 are shown at five points along
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Figure 8.8: Micrograph of Sample D for quadrant 3 at 10× magnification (refer to Table 8.2). Measurements are shown along the
thickness of the coating, with the average thickness calculated to be 112.26 µm.

Table 8.2: Thickness measurements as found for four locations, or quadrants, for four different sectioned samples. The mean mea-
surements for each quadrant and the overall mean values are given. The samples used for microscopy analysis are indicated in Figure
8.7.

Mean of 5 Thickness Measurements (µm) Overall
Sample ID Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4 Mean Thickness (µm)

A 109.46 102.25 87.17 122.05 105.23
B 121.81 123.79 124.12 127.86 124.40
C 144.06 95.34 99.14 143.65 120.55
D 123.25 128.74 112.26 90.85 113.78

Average Thickness 115.99

the metal coating. Similar measurements were taken at 3 other quadrants for this sample. The average

coating thickness of these five meausrements shown in the figure is 112.26 µm for this quadrant. The same

measurement process was repeated for each of the 4 quadrants for all 4 samples tested. In this way, 16 sets

of 5 thickness measurements were obtained.

Table 8.2 shows the averaged results of all the thickness measurements from the microscope investiga-

tions. The average thickness at the four quadrants of each of the samples is given, a mean thickness for each

sectioned sample, and an average for all four samples. As seen from the values in the Table, the average

thickness for the four samples together is approximately 116µm, while the thickness can be up to 21 µm

higher or lower at different points around the circumference of one sample. The average of 116µm gives a

new t/r of 0.0232 for the samples manufactured for these experiments.

While it is clear that the mean thickness of all samples is well above the nominal value of 40 µm, it

is also seen that the coating thickness is not constant around the circumference of any of the four samples

examined. This implies that the estimated thicknesses were not accurate, and that there is substantial

variation of the coating thickness around the circumference of the samples. As the buckling loads of shells

are highly sensitive to geometric imperfections [73, 76, 78, 79, 102], the variation in coating thickness around
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Figure 8.9: (a) Finite element simulation setup for a dogbone specimen with a 100 µm coating thickness. The sample is fixed at the
all indicated positions except at the top where an axial displacement is applied. (b) The meshed geometry with 200 000 elements, and 5
elements through the coating thickness as shown in the inset. (c) Resulting displacements near the point of local shell buckling failure
encountered in the simulation.

the circumference of all samples (including those not sectioned) likely contributed to deviations from the

predicted buckling behaviour.

8.4.4 Comparing Results to Predictions

As seen in Figure 8.7, the predicted loads shown include the those for hollow-shell inelastic buckling (Equation

7.10 of Chapter 7) and filled-shell inelastic buckling (Equations 7.9 and 7.9 of Chapter 7). Load predictions

were found using a thickness of 100µm, while the yield point of the coating is also shown for reference. A

lower value of the thickness was used than is given by the average value in Table 8.2 due to the uncertainty

associated with the samples which were not sectioned for the microscope analysis. The stress-strain data

for nNi as obtained from RepLiForm Inc [7] were used to calculate the inelastic buckling loads, utilizing the

Voce fit parameters as shown previously in Table 7.1 of Chapter 7.

An Abaqus finite element simulation was also conducted using the dogbone geometry with a 100 µm

coating for comparison to the force-displacement behaviour of the tested samples. Figure 8.9(a) shows the

boundary conditions used for the finite element simulation, where the top end of the sample was compressed

axially while both ends of the sample were not allowed to move in the x or z directions. These boundary

conditions match those imposed through the use of the aluminium collars and the axial displacement applied

using the MTS load frame. The dogbone geometry was meshed using over 200 000 first-order elements, with

5 elements enforced through the coating thickness as shown in the inset of Figure 8.9(b).

As previously done for the verification simulations of the inelastic buckling model (refer to Section

7.4 of Chapter 7), an elastic buckling simulation was first performed to determine the buckled shapes of
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Table 8.3: Statistics of failure loads (in N) of the samples as found from the experiments. Results are given for the nine 40 µm samples,
the two 56 µm samples and all 11 samples together.

Coating Thickness
40 microns 56 micron All samples

Maximum Observed Failure Load 5084 7155 7155
Minimum Observed Failure Load 7060 5599 5084
Mean Value of Observed Loads 6102 6377 6152
Standard Deviation 615 — 661
Inelastic Buckling Load 8657 9155 11 345*

* Calculated using coating thickness of 100 µm

the geometry. An imperfection pattern was generated using the first 6 elastic buckled shapes, which were

used together with plastic material properties for the shell (refer to Tables 7.2 and 7.3 in Chapter 7). The

resulting buckling pattern on the coating surface is shown in Figure 8.9(c). As done previously for the

inelastic buckling simulations, another method of determining failure was required [71], as a sharp drop in

force-displacement behaviour was not apparent.

The force-displacement behaviour of the Abaqus simulation is shown with the experimental data in

Figure 8.7. This behaviour is more compliant than the experimental data, an indication that the coatings

of the majority of the experimental samples may be thicker than the value of 100 µm used in both the

theoretical predictions and the Abaqus simulations. However, the shape of the force-displacement curve

generated from the Abaqus simulation is consistent with the general shapes of the force-displacement curves

as obtained from the experimental data, showing that the behaviour of the samples was captured accurately

by the Abaqus simulations despite the lower thickness value used for the analysis.

8.4.5 Finite Element Simulation of Off-axis Loading

Despite the use of aluminium collars for clamping the ends of the specimens during axial loading, there are

very large deviations of the failure loads compared to the predictions for inelastic filled-shell buckling, as

seen in Figure 8.7. While one reason for this is the non-axisymmetric coatings as found from the microscopy

analysis, a finite element simulation using an off-axis load was performed to verify whether this causes

premature failure.

The finite element simulation as previously shown in Figure 8.9 was modified to use an off-axis dis-

placement loading that varied linearly in the xz plane. The mesh characteristics and material properties

were unchanged for this modified simulation. Figure 8.10(a) shows the displacement magnitudes for both

the pure axial loading simulation as previously shown in Figure 8.9(c), along with the results of the modified

simulation (Figure 8.10(b)) at an axial strain value of 0.025. This corresponds to a point below the inelastic

shell buckling load encountered for this geometry, as seen in the force-displacement diagram of Figure 8.7.

The deflected shape and displacements of the geometry in Figure 8.10(b) indicate that Euler buckling

takes place well before local shell buckling when an off-axis load is applied to the specimen. The transition

of the dominant failure mode from local shell buckling to global buckling depends on how pronounced the
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Figure 8.10: (a) Displacement magnitudes from a finite element analysis for the pure axial loading simulation as previously shown
in Figure 8.9(a). (b) Displacement magnitudes from a finite element analysis where an off-axis loading is applied to deliberately cause
Euler buckling of the sample.

mismatch is between the axis of the applied load and that of the sample geometry.

8.5 Discussion

While the aim of these experiments was to validate the inelastic model for filled shell buckling derived in

Chapter 7, both the imperfections in the sample geometries as well as the asymmetry in the axial loading lead

to buckling loads that were well below the predicted values. The buckling loads found through experiments

were within 45-65% of the predicted buckling load. The sample which failed at 45% of the load predictions

was below the yield strength of the nNi coating. For the same thickness-to-radius ratio as the present

specimens (approximately 0.02 for the average measured thickness of 116µm), experiments performed by

Karam and Gibson were within 75% of their predictions [5].

Although the nominal coating thicknesses were 40 µm and 56µm, microscopy investigations of four of

the 40µm samples revealed that the average coating thickness was at least 100 µm. Although there were two

samples with a quoted thickness of 56µm, their force displacement behaviours (Figure 8.7) are indicative of

thicknesses closer to what was found in the microscopy investigations. It is also likely that the irregularity

found in the four sectioned samples existed in all of the samples. As local shell buckling is highly sensitive to

geometric imperfections of the shell [73, 76, 78, 79, 102], the large differences in coating thickness on different

sides of the specimens likely caused large deviations from the predicted loads.

The asymmetry in loading was partially overcome through potting the samples into the aluminium

collars (see Figure 8.4). As mentioned in Section 8.3.1, the levelness of the compression platens on the

load frame was checked in between experiments. Given that the symmetry of the load was not checked
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as extensively as was done by Tennyson [78, 88], the exact nature of the asymmetric loading could not be

ascertained. However, premature buckling did take place for a few of the samples whereby Euler buckling

took place concurrently with local shell buckling of the coating. The results of the off-axis loading simulations

in Abaqus (Figure 8.10) have shown that this is a possible outcome when the loading is not symmetric about

the circumference of the sample.

During the careful experiments of hollow-shell buckling performed by Tennyson [78, 87], strain gauges

were positioned around the circumference of each tested specimens to ensure an axisymmetric distribution

of the axial load. The aim of potting the ends of the present specimens in aluminium collars was to achieve

axisymmetry in the load, but any mismatch between the load and geometry axes would lead to buckling

loads below the predicted values. The strain distribution around the circumference of the samples was not

tested as carefully as it was by Tennyson. Thus there is a high likelihood that there was loading asymmetry

that led to premature shell buckling. It is the presence of imperfections in loading and geometry which drove

the creation of empirical correction factors for hollow shells [72, 79].

Past experimental methods have focused heavily on the manufacturing methods of samples intended for

either hollow or filled shell buckling analysis. Several of the experimental programs also involved manufac-

turing the specimens as a first step to ensure that few imperfections are present in the shells [5, 78, 107, 109].

For filled-shell experiments, the shells were manufactured first prior to being filled with a foam core. How-

ever, in the case of the present experiments, the core material was machined from ABS stock rod before

nanocrystalline nickel was electrodeposited. This did not allow for inspection of the coating quality (i.e. that

of the shell) prior to experiments being conducted, a practice which was carried out in previous experiments

for both hollow and filled shell buckling [5, 78, 96].

There were not enough samples used for this study to indicate whether the deviations from the model

are a regular occurrence for polymer-filled metal cylinders. Furthermore, the breadth of the data is not

enough to warrant the creation of empirical correction factors for filled shells. Given the irregularity in the

metal coatings along with the presence of asymmetric loading, both the sample manufacturing methods as

well as experimental procedures will need to be refined prior to the undertaking of more validation programs

for metal-coated polymer cylinders, whether this be for investigations of elastic or inelastic buckling.

8.6 Conclusions

Experiments were performed in an attempt to validate the load predictions of the inelastic filled-shell buckling

model for metal-coated polymer cylinders loaded in axial compression. Specimens were made by using ABS

dogbone-shaped specimens coated with an electrodeposited nanocrystalline nickel coating. The shape of the

specimens was designed in conjunction with finite element studies in order to minimize von Mises stresses

at the ends of the gauge section while maximizing stresses within the gauge section. The specimens were

coated with a nominal coating thickness of 40 or 56 µm.
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Prior to testing, each specimen was potted in aluminium collars using an off-the-shelf two-part epoxy.

The intention was to alleviate asymmetric loading that can cause premature buckling of the samples, either

through early Euler buckling or premature local shell buckling of the coating. The specimens were also

bonded to the compression platens of the load frame for the same reasons.

Even though the samples had been designed to minimize stresses in the neck region, the majority of the

samples failed with buckle folds appearing near this narrowing neck area. This implies that although care

was taken to mitigate failure near at the ends of the gauge section, the higher stresses in this region still lead

to buckling folds. Improper alignment of some specimens – either through inadequate potting techniques

or poor compression platen levelling – also caused Euler buckling to occur before local shell buckling of the

coating, a phenomenon that was confirmed through finite element analysis of the sample geometry under an

off-axis load.

Microscopy investigations performed on sections cut from several tested samples revealed that the

coating thicknesses were well above the nominal values: an average thickness of 116 µm was found among

four samples sectioned compared with the 40µm nominal thickness for these samples. Furthermore, the

variation of the coating thickness of each of the samples sectioned revealed that the coating thickness for

one sample could vary up to 25 µm around its circumference or over 20% of the average coating thickness.

As local shell buckling of axially compressed cylinders is highly sensitive to material, geometric and

loading imperfections, it is likely that the above factors contributed to the poor agreement between the

experimentally-determined failure loads for these specimens and the inelastic local shell buckling predictions.

The failure loads for the the specimens with the highest buckling load were 35% away from the predicted

inelastic failure load. There was little tearing of the coatings upon failure, indicating a good bond between

the metal coating and the polymer surface and thus ruling out poor adhesion as a contributing factor. The

undesirable Euler buckling and fold locations were due to poor specimen alignment and unforeseen effects

of stress concentration near the narrowing sections of the samples, respectively.

Future test campaigns must include a thorough specimen design study prior to validating any filled

shell models. In addition, more care must be taken to align the sample geometry axis to that of the loading

direction, potentially requiring additional load frame attachments such as self-aligning compression platens.

If possible, better coating methods must be developed to ensure a more even coating thickness around

the circumference of samples. This may require various microscopy operations to ensure even coatings on

cylindrical specimens prior to manufacturing the final specimens for experimental investigations of a similar

nature.



Chapter 9

Mass Minimization of Axially-Loaded

Filled Cylinders

9.1 Introduction

In designing aircraft, structural weight should be minimized in order to reduce fuel consumption. Simulta-

neously, strength, stiffness and safety must be maintained. Metal-coated polymer microtruss structures offer

the low-weight capabilities of truss topologies together with the high strength and increased wear resistance

of nanocrystalline metals. To make these hybrid structures more mass-efficient, a characteristic attractive

for aircraft design, their efficiency can be improved through minimum mass design.

Hybrid microtruss structures are created by first building a polymer preform through 3D printing

and subsequently electrodepositing a thin layer of nanocrystalline metal on the polymer surface [4, 21, 31].

These structures utilize the mass-efficient geometries of microtruss topologies, the advantageous second

moment of area of a coated cylinder and the high strength of nanocrystalline metals. Analyses previously

carried out by Lausic et al [1] focused on minimum mass configurations for polymer/nanocrystalline metal

hybrid microtrusses. A consistent phenomenon found through three point bending tests was that failure

was associated with buckling instabilities in the compression members. Failure occurred either through

global Euler buckling of struts, or by local shell buckling of the nanocrystalline metal coating. Because the

strut geometry of these microtrusses is cylindrical, the axial buckling load of metal-coated polymer cylinders

has been investigated to understand the strut behaviour. The buckling behaviour of hollow-shell cylinders,

polymer-filled cylinders and hollow-core cylinders have been previously examined in Chapters 4 and 6. This

chapter examines the methods of optimizing cylinder geometries for minimum mass design.

Various studies have examined different facets of the mass efficiency of axially-loaded columns. In a

general analysis of compression members, Budiansky [45] showed that the optimal member has a cylindrical

cross-section. He further showed that a cylindrical section with a sandwich core and rigid face sheets on the

inner and outer surfaces offers the best performance. As the study done by Budiansky was purely analytical,

methods of producing these optimal compression members were not discussed. Optimization studies have

also been conducted for cylinders filled with polymer foams by Dawson and Gibson [116]. It was shown

that a foam-filled cylinder can be designed to fail simultaneously through elastic local shell buckling and

material yielding if a sufficiently low ratio of shell-to-core moduli is selected. This study also accounted for

cylinders with hollow polymer cores; however the cases considered were limited to cylinders with very small

116
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shell thickness-to-radius ratios.

Polymer-filled metal shells have been examined by Lausic et al [1, 4], where geometries were optimized

for minimum mass design. These studies focused primarily on the shell behaviour while treating the polymer

core as a parasitic mass, and the optimization studies were carried out for metal-coated polymer cylinders

loaded in axial compression. In these studies, the objective was to find both the ideal geometry as well as

optimal grain size of the electrodeposited nanocrystalline metal [1, 4], the latter of which is controlled by

tuning the parameters of the electrodeposition process [28–30, 41]. The results revealed that hollow cylinders

are preferred for minimum mass design, while the grain size can be chosen according to the load-carrying

capacity required. This load capacity is a trade-off between the elastic buckling load and the material yield

strength: as the grain size of a nanocrystalline metal is decreased its Young’s modulus will decrease while

its strength increases [132].

Although Lausic et al. assumed that the polymer core was merely a parasitic mass, it is intuitive

that the polymer provides a strength benefit beyond its axial load-bearing capacity by supporting the shell

against buckling [96–98, 107, 116]. The present work (Chapters 4 through 7) also details the contributions

that a polymer core provides. Though Dawson and Gibson [116] conducted a limited set of studies involving

foam-filled cylinders, their work did not extend to thick cylinders. Additionally, while the work of Lausic

et al. on grain-size optimization [1, 4] is relevant to the present work, their theoretical expressions for local

shell buckling did not account for the presence of the polymer core. The present study addresses metal-

coated polymer cylinders under axial loads with intermediate-to-high shell thickness (i.e. thickness-to-radius

ratios above 0.01), while also accounting for the effects of the core. The analysis will compare the results

for hollow-shell cylinders, filled-shell cylinders and hollow-core cylinders. As the length of filled cylinders is

also varied for the optimization studies, global buckling becomes a dominant failure mechanism. Thus, in

addition to the local shell buckling models developed in earlier Chapters, global buckling is considered as

well.

For the present optimization studies, the mass minimization problem can be stated mathematically as:

min
r,t,h

M(r, t, h)

s.t. F (r, t, h)− f = 0,

where the objective function M is the mass of the filled cylinder, r is the radius-to-length ratio of the cylinder,

t is the thickness-to-radius ratio, h is the hollowness factor of the core, F is the expression for the failure

load and f is a required axial load. All the variables are non-dimensional and the design variables of the

optimization problem (r, t and h) are the geometric parameters for the cylinder.

The aim of the current optimization problem is to determine the minimum mass M(r, t, h) of a metal-

coated polymer cylinder subject to an axial load f , as it fails under the action of the mechanism described

by F (r, t, h). Both the shell and core materials are assumed to behave elastically; inelastic behaviour is not
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considered for this analysis. The material properties used for the shell are those of nanocrystalline nickel

manufactured by RePliForm [7]. The core materials investigated included ABS, LDPE and Divnycell H200

foam. Cylinder configurations which are compared include hollow shells, fully filled cylinders and hollow core

cylinders. To investigate the effect of the thin-shell assumption as used for derivation of the hollow-shell,

filled-shell and hollow-core shell buckling models, a thick-shell buckling load is also derived for comparison

purposes.

This chapter details the procedure used for minimum mass design of axially-loaded filled cylinders,

and presents the results of these investigations. The optimization problem will first be outlined in detail,

along with a description of the Lagrange multipliers method used for the solution. A set of non-dimensional

variables is introduced to generalize the process and results of the optimization procedure. Next, an ex-

pression for the global buckling failure mechanism is derived for hollow and filled cylinders, including cores

which vary in hollowness. As the mechanisms of local shell buckling, global buckling and simultaneous

buckling are investigated, the expressions for these failure mechanisms are rewritten using the system of

non-dimensional variables. To compare the results, trajectories of minimum mass are compared graphically

for various cylinder configurations. Finally, the implications of the optimization results are provided.

The results of this analysis reveal that the optimal hollow-shell geometry will always have a lower mass

than the optimal filled shell. When optimizing cylinders with hollow cores, the most mass-efficient geometry

involves complete removal of the core (i.e. convergence to hollow-shell geometries). Although hollow shells

may indeed be the most mass efficient, their susceptibility to imperfections makes them unreliable. In prac-

tical applications, stiffening elements are used to alleviate this sensitivity [73, 130]. However, for minimum

mass design, cylinders filled with hollow polymer cores will likely provide lower masses than stringer-stiffened

metal shells.

9.2 Optimization Problem Statement and Methods of Solution

The statement of the optimization problem is presented in this section, followed by a brief description of the

Lagrange multipliers method. The optimization procedure is carried out using non-dimensional expressions,

and so the optimization problem and the method of Lagrange multipliers are presented using non-dimensional

variables. These non-dimensionalized variables are introduced first.

9.2.1 Non-dimensional Variables

To maintain a level of generality for the optimization process, a set of non-dimensional variables is introduced.

The equations for the various failure modes will be provided using these non-dimensional terms, and the

non-dimensionalized equations will be used for the optimization analysis.

Diagrams of hollow-shell, filled-shell and hollow-core cylinders under an axial load are shown in Figure

9.1. In these diagrams, the cylinders have shell thickness t and inner radius r, while the cylinder has a
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Figure 9.1: Diagrams of (a) hollow shell, (b) filled shell and (c) hollow core cylinders subject to an axial load F . The cylinders have
a length l while the shells have thickness t and inner radius r. The hollow core cylinder has an inner radius ri. The shell and core have
Young’s Moduli E and Ec while their respective Poisson’s ratios are ν and νc.

length l. The Young’s modulus of the shell is E while its Poisson’s ratio is ν; the corresponding properties

for the core are Ec and νc. The hollow core cylinder, shown in Figure 9.1(c) has an inner radius of ri. While

undergoing local shell buckling, as shown in Figures 9.1(a) through (c), the buckle folds have wavelength

λ and amplitude A. Though not indicated in the figures, the cylinders each have a mass M . The non-

dimensional parameters for load and mass, respectively, are given as:

F =
F

El2
and M =

M

ρl3
. (9.1)

Those for non-dimensional Young’s modulus and material density are:

E =
Ec
E

and ρ =
ρc
ρ
, (9.2)

while those for non-dimensional thickness, radius, hollowness factor and wavelength are:

t =
t

r
r =

r

l
h =

ri

r
and λ =

λ

t
. (9.3)

These non-dimensional variables will be used when expressing the optimization problem statement as well

as failure loads given in Section 9.4.

9.2.2 Optimization Problem Statement

The objective of optimizing a metal-coated polymer cylinder is to minimize its mass while it is subject to a

given axial load. This optimization problem is:
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min
x

M(x)

s.t. F (x)− f = 0

(9.4)

where the objective function M is the mass of the cylinder, F is the expression for the failure load and f

is a required load carrying capacity. The materials of the cylinder are known, and only elastic behaviour is

considered. The variables of the optimization problem x consist purely of the geometric parameters for the

cylinder: its radius r, shell thickness t and its length l as seen in Figure 9.1. The mass of the cylinder M is:

M = πl(2rtρ+ rρc(1− h 2)), (9.5)

where l is the cylinder length, r is the core outer radius, t is the shell thickness, h is the hollowness ratio,

and ρ and ρc are the densities of the shell and core materials (respectively). Equation 9.5 can be used for

hollow cylinders (when h = 1), filled cylinders (when h = 0) and hollow core cylinders (when 0 < h < 1).

Using the non-dimensional variables given in Equations 9.1 through 9.3, this mass can be represented as:

M = πr2(2t+ ρ(1− h 2)) (9.6)

Using the non-dimensional variables, the optimization problem is:

min
r,t,h

M(r, t, h)

s.t. F (r, t, h)− f = 0,

(9.7)

where f = f/El2 is the non-dimensionalized form of the required load f . The value of the force obtained

from F (r, t, h) is dependant on the wavelength λ (or its non-dimensional equivalent λ). This wavelength

value is determined by solving the equation ∂F/∂λ = 0 for given values of r, t and h.

9.2.3 Method of of Lagrange Multipliers

An analytical solution to the optimization problem is ideal, as it will provide closed-form expressions which

lead to optimal cylinder geometries when the material properties are known. The method of Lagrange

multipliers is ideally suited to solving multi-variable optimization problems with one or more equality con-

straints [133]. To find the maximum and minimum values of the non-dimensional mass M subject to the

load constraint as given in Equation 9.7, the values r, t and h are found such that:

∇M(r, t, h) = µ∇F (r, t, h), (9.8)

where µ is a Lagrange multiplier. In some cases, the analytical solutions are intractable, necessitating the

use of numerical solutions. Furthermore, there are instances where the optimal mass for given load may lead
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to infeasible geometries, such as those where the core hollowness values h are above 1 or a solution provides

negative values of the non-dimensional variables r, t, and h.

For a complete description of the optimal geometries for each of the cylinder configurations, the opti-

mality conditions for each of the non-dimensional load expressions (Section 9.4) must be found first, followed

by the solutions for regions where two or more loads have equal values. The use of failure mechanism maps

and minimum mass trajectories will aid in representing the failure modes and optimal cylinder geometries.

9.2.4 Failure Mechanism Maps

A failure mechanism map is useful to illustrate the influence of different material or geometric parameters on

the failure mode of a structure. Failure mechanism maps are two-dimensional or three-dimensional graphs

where the axes are non-dimensional material or geometrical parameters. As these parameters are varied, the

map shows the active failure mechanisms for different designs [23]. A failure mechanism map is divided into

regions, each of which has an active failure mechanism. The borders between the regions are where two or

more failure mechanisms are activated by the same load. Failure mechanism maps are useful for determining

the relationships between geometry or material properties and the dominant failure mechanisms. In addition,

they can be utilized to show trajectories of minimum mass, which is the locus along which the mass of a

structure is a minimum as the load is increased.

To develop a complete failure mechanism map for a metal-coated polymer cylinder subject to axial

compressive loads, the information of all failure mechanisms is required. This includes both the local shell

buckling and global buckling failure mechanisms, which are discussed in the next section.

9.3 Thick-shell Buckling and Global Buckling Failure

In undertaking optimization studies, it is necessary to determine the relevant failure modes. In addition, the

results of different geometric configurations are to be examined. In this section, the failure loads for global

Euler buckling of various shell configurations are provided. It is also of interest to examine the implications of

removing the thin-shell assumption that is utilized in the hollow-shell buckling load derivation of Timoshenko

[34]. The resulting “thick-shell” buckling load is also discussed in this section.

9.3.1 Thick-Shell Local Shell Buckling

Figure 9.1(a) shows a hollow cylinder under an axial load F . Its dimensions include its length l, radius r

and shell thickness t. The shell material has a Young’s Modulus E and Poisson’s ratio ν. At a critical load

F , the shell buckles along its length with wavelength λ and amplitude A, as shown in Figure 9.2(a). The

buckling load for thin hollow cylindrical shells in axial compression is [34–37]:

σHS =
Et

r
√

3(1− ν2)
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Figure 9.2: Diagrams of (a) hollow shell, (b) filled shell and (c) hollow core cylinders undergoing local shell buckling under an axial
load F . The buckle folds have wavelength λ and amplitude A. (d) A hollow core cylinder undergoing simultaneous buckling.

where σHS is the axial buckling stress on the cylinder. This equation can be rewritten to give a buckling

force [4]:

FHS =
2πEt2√
3(1− ν2)

. (9.9)

The above equations are derived assuming that the shell is thin (i.e. t/r ≤ 0.1) and therefore is less

accurate as the shell thickness becomes large (when t/r ≥ 0.1). Accounting for a thick shell requires a change

in the derivation of the local shell buckling load.

As mentioned in Chapter 4, the strain energy for a cylindrical shell under an axial compression load

includes its bending energy Ub (Equation 4.2) as well as the energy due to circumferential stretching Uc

(Equation 4.3). The shell bending energy refers to the strain energy accumulated due to the bending of

longitudinal sections of the shell as they undergo sinusoidal buckling deformations, while the circumferential

stretching energy results from the tension or compression of the shell hoop sections to accommodate that

bending. The external energy Ue (Equation 4.6) applied to the cylinder arises due to the axial compression

load F as shown in Figure 9.1(a).

When deriving the hollow-shell buckling equation, an energy minimization procedure using Ub, Uc and

Uex leads to Equation 9.9. Originally, the expression for Uc assumes that the shell is very thin compared to

the shell radius. Re-deriving this expression while removing the thin-shell approximation leads to:

Uc =

∫
A

∫ l

0

∫ εrc

0

σrcr dεdzdrdθ =
πt(2r + t)EA2l

4r2
, (9.10)

where

σrc = Eεrc = E
1

r
A sin

(mπz
l

)
.
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Here, εrc is the circumferential strain in the shell. The new expression for Uc (Equation 9.10) is

used in conjunction with the unmodified expressions for Ub and Ue (Equations 4.2 and 4.6 from Chapter 4,

respectively). Utilizing the same procedure detailed in Chapter 4, the thick-shell buckling load is:

FTL =
2Eπ3t3r√
3(1− ν2)

1

λTS
+
Et(2r + t)

4πr2
λ2

TS (9.11)

where the critical buckling wavelength is found by solving for λTS in the equation ∂FTL/∂λTS = 0:

λTS = π

(
8t2r3

3(1− ν2)(2r + t)

)1/4

. (9.12)

The thick-shell local shell buckling equation (Equation 9.11) produces the same results as that of the

thin-shell (Equation 9.9) when the shell thickness is small (i.e. t/r ≤ 0.01). However, when the shell thickness

is increased substantially, the thick-shell buckling load will give more accurate predictions.

9.3.2 Global Buckling

Global or Euler buckling dominates when a compression member has large aspect ratio. When a strut fails

through global buckling, it forms visible curvature along its length at a critical load, often well before the

strut material yield point. The global buckling load of a strut in axial compression is given by [34, 65]:

FGB =
πEI

l2
, (9.13)

where FGB is the global buckling load and I is the second moment of area of the strut cross-section. It is of

interest to determine the global buckling load of a cylindrical strut loaded in axial compression, both with

and without a polymer core. Figures 9.1(a) and (b) illustrate the dimensions of a hollow and filled cylinder,

respectively.

Consider a thin hollow shell in axial compression (Figure 9.1(a)) undergoing global buckling. The

second moment of area is approximated as:

IHS =
π

4
[(r + t)4 − r4] =

π

4
(4r3t+ 6r2t2 + 4rt3 + t4) ≈ πr3t. (9.14)

This produces the global buckling equation for a thin hollow shell in axial compression:

FHG =
π3Er3t

l2
. (9.15)

For a thick cylindrical shell, or equivalently by ignoring the thin-shell assumption, all terms from
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Equation 9.14 are kept, leading to a global buckling load for a cylinder with a thick shell:

FTG =
π3E(4r3t+ 6r2t2 + 4rt3 + t4)

4l2
. (9.16)

When calculating the global buckling load for a filled cylinder (Figure 9.1(b)), the second moment of

area includes the modulus-weighted second moment of area of the polymer core:

IFS =
π

4

(
4r3t+

Ec

E
r4

)
. (9.17)

This expression utilizes the thin-shell assumption. The use of IFS produces the filled shell global buckling

equation:

FFG =
π3Er3[4t+ rEc

E ]

4l2
(9.18)

A final configuration of a filled cylindrical shell occurs when the core is partially removed as shown

in Figure 9.1(c). Here, the shell has the same dimensions as previously shown in Figure 9.1(b), but now

includes a core inner radius ri. To normalize the hollow core geometry, the hollowness factor h is used (see

Equations 9.3). For the hollow-core configuration, the second moment of area of the filled shell (Equation

9.17) is modified to account for this:

IHC =
π

4

(
4r3t+

Ec

E
r4(1− h 4)

)
. (9.19)

This produces the hollow core global buckling equation:

FHCG =
π3Er3[4t+ rEc

E (1− h 4)]

4l2
. (9.20)

Equation 9.20 reduces to Equation 9.18 when the core is completely filled (i.e. h = 0) and to Equation 9.15

when the core is completely removed (i.e. h = 1). Like the filled shell buckling load, the hollow core buckling

load also utilizes the thin-shell approximation (i.e. t/r ≤ 0.1).

9.4 Non-dimensional Load Expressions

The variables introduced in Equations 9.1 through 9.3 are used to non-dimensionalize the load expressions

given in Section 9.3, as well as those introduced in earlier chapters.

9.4.1 Hollow Shell

For a thin hollow cylindrical shell (Figure 9.1(a)), the mass of the cylinder is given as:

MHS = 2πrtlρ. (9.21)
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Using the non-dimensional variables given in Equations 9.1 through 9.3, the non-dimensional mass of a

hollow metal cylinder is:

MHS = 2πr2t. (9.22)

This is the same expression obtained when the mass expression introduced in Equation 9.5 is used with

h = 1. The failure modes associated with hollow-shell buckling are global buckling and local shell buckling.

The global buckling load was previously found as Equation 9.15, while the local shell buckling equation was

given in Equation 9.9. Using non-dimensional forms, their expressions are rewritten as:

FHG = π3r4t, and (9.23)

FHS =
2πr2t

2√
3(1− ν2)

. (9.24)

9.4.2 Thick Hollow Shell

The mass of a thick hollow shell is:

MTS = πρtl(2r + t). (9.25)

It is represented non-dimensionally as:

MTS = πr2t(2 + t). (9.26)

Equations 9.16 and 9.11 provided the global and local shell buckling loads, respectively, for a thick

hollow shell in axial compression. Using the non-dimensional parameters of Equations 9.1 through 9.3,

FTG =
π3r4

4
(4t+ 6t 2 + 4t 3 + t 4), and (9.27)

FTL = r 2

(
2π3t√

3(1− ν2)

1

λ 2
TS

+
t 3(2 + t)

4π
λ 2

TS

)
, (9.28)

where

λTS = π

(
8

3t 2(1− ν2)(2 + t)

)1/4

.

9.4.3 Polymer-Filled Shell

The mass of a metal shell filled with a polymer foam, as shown in Figure 9.1(b), is given as:

MFS = πl(2rtρ+ rρc). (9.29)

Representing this mass using the non-dimensional variables of Equations 9.1 through 9.3,

MFS = πr2(2t+ ρ). (9.30)
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This expression is also obtained by using h = 0 in Equation 9.6. The equation for the global buckling load

of a filled cylindrical shell was previously given in Equation 9.18. Its non-dimensional form is:

FFG =
π3r4

4
[4t+ E]. (9.31)

For filled-shell local shell buckling, the load was previously derived in Chapter 4:

FFL =

(
1 +

Ec
E

r

2t

)[
2π3rEt3

3(1− ν2)

1

λ2
FS

+
Et

2rπ
λ2

FS +
Kfr

π
λFS

]
, (9.32)

where the critical wavelength λFS is found by determining the root of ∂FFL/∂λFS = 0. This gives a 4th-order

polynomial which can be solved for an exact value of λFS. The non-dimensional form of 9.32 is:

FFL = r2

(
1 +

E

2t

)[
2π3t

3(1− ν2)

1

λ
2

FS

+
t
3

2π
λ

2

FS +
Kft

π
λFS

]
. (9.33)

9.4.4 Filled Shell with Hollow Core

The mass of a polymer-filled cylinder with the core partially bored out (as shown in Figure 9.1(c)) is:

MHC = πl(2rtρ+ rρc(1− h 2)).

Non-dimensionally, this mass can be represented as:

MHC = πr2(2t+ ρ(1− h 2)).

These expressions were previously introduced in Equations 9.5 and 9.6. The hollow-core global buckling load

was previously given in Equation 9.20. It is represented using non-dimensional variables as:

FHCG =
π3r4

4
[4t+ E(1− h 4)]. (9.34)

The local shell buckling load of a filled shell with a hollow core, with hollowness factor h was previously

given in Equation 6.4 of Chapter 6 as:

FHCL =

(
1 +

Ec
E

(1− h 2)
r

2t

)[
2π3rEt3

3(1− ν2)

1

λ2
HC

+
Et

2rπ
λ2

HC +
r

π
K

(
h,

λHC

r

)
λHC

]
, (9.35)

where K is defined previously in Equation 6.2 of Chapter 6. As with filled-shell local shell buckling, Equation

9.32, the critical wavelength is found by solving the equation ∂FHCL/∂λHC = 0. Unlike the filled-shell

buckling equation, Equation 9.32, this does not yield a closed-form solution for λHC, necessitating the use
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of numerical methods to find its value. The non-dimensional form of Equation 9.35 is:

FHCL = r2

(
1 +

E(1− h 2)

2t

)[
2π3t

3(1− ν2)

1

λ
2

HC

+
t
3

2π
λ

2

HC +
Kt

π
λHC

]
. (9.36)

where K, the non-dimensional form of K, is given as:

K
(
h, λHCt

)
=Kf exp

[
p00 + p10h+ p01λHCt+ p20h

2
+ p11hλHCt+ p02(λHCt)

2+

p30h
3

+ p21h
2
λHCt+ p12h(λHCt)

2 + p03(λHCt)
3 + p40h

4
+

p31h
3
λHCt+ p22h

2
(λHCt)

2 + p13h(λHCt)
3 + p04(λHCt)

4 + p50h
5

+p41h
4
λHCt+ p32h

3
(λHCt)

2 + p23h
2
(λHCt)

3 + p14h(λHCt)
4+

p05(λHCt)
5
]
.

(9.37)

A third failure mode for hollow-core cylinders is simultaneous buckling, as previously described in

Chapter 6. Its appearance contrasts that of local shell buckling (Figure 9.2(c)) because the inner core wall

buckles with the same shape as the shell, as seen in Figure 9.2(d). Its equation was given in Chapter 6 as:

FHCS = 4πE

{
t+ E(1− h 2)

1− ν2

[
t3

12
+ t

(
(1− h) +

t

2
− y0

)2

(1− h)3E
3

12
+ (1− h)E

(
y0 −

(1− h)

2

)2
]}1/2

,

(9.38)

where the centroid y0 is defined as:

y0 =

(
(1− h) +

t

2

)
t+

(1− h)2E

2

t+ E(1− h)
. (9.39)

The non-dimensional representation of Equations 9.38 and 9.39 are:

FHCS = 4πr2

{
t+ E(1− h 2)

1− ν2

[
t 3

12
+ t

(
(1− h) +

t

2
− y0

)2

(1− h)3E
3

12
+ (1− h)E

(
y0 −

(1− h)

2

)2
]}1/2 (9.40)

and:

y0 =

(
(1− h) +

t

2

)
t+

(1− h)2E

2

t+ E(1− h)
. (9.41)

The above non-dimensional equations for thin hollow shells (Equations 9.22, 9.23 and 9.24), thick

hollow shells (Equations 9.26, 9.27 and 9.28), filled shells (Equations 9.30, 9.31 and 9.33) and hollow-core

shells (Equations 9.6, 9.34, 9.36 and 9.40) will be used in the optimization of an axially-loaded metal-coated
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Table 9.1: Materials considered and their mechanical properties and density as utilized for optimization studies. The
Young’s Modulus, density and yield strength of each material is provided, while the non-dimensional ratios of Ec/E and
ρc/ρ are also given for the core materials. Nanocrystalline nickel is the shell material for all the material combinations
studied, while the core materials considered were ABS, LDPE and H200 foam.

Material Young’s Modulus
(GPa)

Ec/E Density
(kg/m3)

ρc/ρ Yield Strength
(MPa)

Nano Nickela 125 — 8908 — 1180
ABS b 2.20 0.0176 1050 0.1177 44.81
LDPE 0.286 0.00230 940 0.1055 9.391
H200 0.288 0.00230 200 0.02245 4.850

a Nanocrystalline nickel with a grain size of 65 µm; properties obtained from RePliForm Inc. [7]
b Divinycell H200 foam; material properties taken as average of nominal and minimum values from [134].
c ABS and LDPE material properties obtained from [135, 136]

polymer cylinders.

The mass optimization is carried out by increasing the required load f and determining which failure

mechanism or mechanisms leads to the lowest mass for that load (refer to Equation 9.7). The mass is

calculated by determining the values of r, t and h required to achieve the load f for each mechanism, and

calculating the mass of the cylinders obtained in this way. The resulting mass trajectories are plotted on

the failure mechanism maps for each cylinder configuration (filled shell, hollow core and hollow shell). The

results of this optimization procedure are given in the next section.

9.5 Optimization Results

The optimization studies were only carried out for elastic failure modes. The failure mechanisms maps for

each cylinder geometry are presented, along with the minimum mass trajectories for each case.

Table 9.1 lists the material properties used for the material combinations considered. Divinycell H200,

a typical sandwich panel foam, is used to compare the performance of a high stiffness-to-weight core ma-

terial against typical polymer materials. The material used for the shell in all cylinder configurations is

nanocrystalline nickel, while E changes as the core material changes.

Failure mechanism maps will be used to illustrate the relationship between the dominant failure modes

for different cylinder configurations. For a metal-coated polymer cylinder in axial compression, the primary

failure mechanisms are global buckling and local shell buckling, while the design variables are the thickness-

to-radius ratio t and the radius-to-length ratio r. For hollow-core cylinders, the hollowness factor h is also

a design variable. Minimum mass trajectories will show the locus of optimal cylinder designs. Both failure

mechanism maps and minimum mass trajectories will be used to compare the optimal designs for the various

cylinder configurations.
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Figure 9.3: Failure mechanism map of a thin hollow shell subject
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Figure 9.4: Minimum mass trajectory for a thin hollow
shell subject to an axial compressive load, showing the non-
dimensional optimal cylinder mass M as a function of the non-
dimensional axial load F . An optimal thin hollow cylinder will
always fail concurrently through local shell and global buckling.

9.5.1 Optimization of Hollow Shells

Figure 9.3 shows the failure mechanism map for a hollow cylinder in axial compression. The relevant failure

mechanisms are global buckling and local shell buckling. Equations 9.23 and 9.24 were used to calculate the

failure modes, both of which utilize the thin-shell assumption. The optimal trajectory for minimum mass is

shown on this Figure, and is plotted against the non-dimensional load index F in Figure 9.4. The minimum

mass trajectory lies on the boundary between the global and local shell buckling failure modes because there

is no feasible optimum for both the global and local shell buckling modes.

The thick hollow shell equations (expressed non-dimensionally in Equations 9.27 and 9.28) eliminate

the thin-shell assumption used in classic local shell buckling (Equation 9.35). Figure 9.5 shows the failure

mechanism map for a thick hollow shell in axial compression. Comparing this to Figure 9.3 reveals slight

changes in the regions for global buckling and local shell buckling, namely the reduced area of the global

buckling region. As for the thin-shell buckling behaviour, however, the minimum mass trajectory is once

again along the boundary between global and local shell buckling. Despite the elimination of the thin-shell

approximation, there is no feasible solution while optimizing for a thick hollow shell to fail through global

buckling. However, a solution is found for thick-shell local shell buckling, as shown in the graph of Figure

9.6. The optimal for thick-shell local shell buckling occurs when t is well above 0.5, and hence its minimum

mass trajectory is not shown on the failure mechanism map of Figure 9.5.

The graph of M plotted against F in Figure 9.6 includes the data from Figure 9.4 for thin hollow shells.

The differences in the minimum mass trajectories are seen as the mass M of the cylinder (and therefore the

shell thickness-to-radius ratio t) becomes much larger, illustrating how the thick-shell assumption is more

accurate for thicker shells.
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Figure 9.5: Failure mechanism map of a thick hollow shell sub-
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r. The two dominant failure mechanisms are local shell buckling
and global Euler buckling, while the minimum mass trajectory is
along the boundary of these two failure mechanisms.
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From the results of the thin- and thick-shell analyses, it is determined that the minimum mass of

a cylinder is achieved when a hollow cylinder is designed to fail concurrently through global and local

shell buckling. When the loads become very large, local shell buckling is the preferred mode of failure

corresponding to very thick-shelled cylinders.

9.5.2 Completely Filled Shell

As a core is now included in the geometry, the results will be presented for a nickel-coated ABS cylinder

(i.e. Ec/E ≈ 0.02), a nickel-coated LDPE cylinder (i.e. Ec/E ≈ 0.002) and a foam-filled nickel cylinder

(Ec/E ≈ 0.002 with H200 foam). The material properties and densities for these materials are given in

Table 9.1. The foam-filled cylinder (i.e. with H200 foam) is examined to compare the results of optimizing

foam-filled cylinders against those with solid polymer cores.

The failure mechanism map and the minimum mass trajectory for a filled shell for a nickel-coated

ABS cylinder is shown in Figure 9.7(a) while that of a nickel-coated LDPE and a foam-filled nickel cylinder

is shown in Figure 9.7(b). On both of these figures, the dominant failure modes are local shell buckling

(Equation 9.33) and global buckling (Equation 9.31). Unlike for a thin hollow shell, the minimum mass

trajectory for a filled shell passes through the global buckling region, travels along the boundary between

global and local shell buckling, and finally passes through the local shell buckling region. This is because

there is a feasible solution in the global Euler buckling region for a filled shell, a solution not obtainable for

a hollow shell.

Optimization of a filled shell in the global buckling region leads to a single thickness-to-radius ratio
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Figure 9.7: Failure mechanism map of filled cylinders subject to axial compressive loads with core materials comprised of (a) ABS
(Ec/E = 0.02) and (b) LDPE and H200 foam (Ec/E = 0.002). For both failure mechanism maps, the design space is shown for a range
of thickness-to-radius ratios t and radius-to-length ratios r. The two dominant failure mechanisms are local shell buckling and global
Euler buckling. The minimum mass trajectory transitions through these failure regions and along their boundary.
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Figure 9.8: Minimum mass trajectories for thin-shell, thick-shell and various filled cylinders. The non-dimensional optimal cylinder
masses M are given as a function of the non-dimensional axial loads F . The optimal masses of all filled cylinders are below those of
the hollow shells, except for a small region of the load F .

t for a given set of material properties. The lower density of the H200 foam leads to a lower optimal t

value for global buckling compared to ABS or LDPE cores (see Figure 9.7(b)), but otherwise the same

optimal trajectories along the global-local-buckling boundary and through the local shell buckling regions.

The optimal thickness-to-radius ratio t for the ABS and LDPE shells are very similar: 0.0539 for ABS

(Ec/E ≈ 0.02) and 0.0523 for LDPE (Ec/E ≈ 0.002). The optimal trajectories for these two materials

are nearly identical, indicating that the density of the core material has a strong influence on the optimal

trajectory when global buckling is the preferred failure mode.
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Figure 9.9: Failure mechanism map of an axially-loaded filled shell containing a hollow ABS core (Ec/E = 0.02) having a hollowness

factor of (a)h = 0.93 and (b)h = 0.99. The design space is shown for a range of thickness-to-radius ratios t and radius-to-length ratios

r. The dominant failure mechanisms are local shell buckling, global Euler buckling, and simultaneous buckling. For h = 0.93, there
is no minimum mass trajectory. However, for h = 0.99 the minimum mass trajectory follows the global-simultaneous buckling and
global-local shell buckling boundaries.

Figures 9.8 shows the mass-versus-load (or M vs F ) plots for the various material combinations. Also

shown on this Figure are the minimum mass trajectories for thin- and thick-shelled hollow cylinders. For

minimum mass of a filled cylinder, the preferred failure mode at high loads is local shell buckling, as it is for

thick-shelled hollow cylinders. However, the transition to local shell buckling occurs at a much lower load

than it does for hollow cylinders. The global buckling region of the foam-filled cylinder has a smaller F range

than the ABS or LDPE materials owing to the reduced t value as seen in Figure 9.7(b). Even compared to

a metal cylinder filled with a low-density foam core, hollow shells are always preferred for minimum mass.

In addition, the similar mass of ABS and LDPE negates the advantage of having a lower-stiffness core. If a

less stiff core material is desired, a foamed polymer material such as H200 is more ideal.

9.5.3 Filled Shell with Hollow Core

The hollowness factor h (Equation 9.3) is a design variable when the a cylinder with a hollow-core is con-

sidered. A true representation of the failure mechanism map for this cylinder configuration would be three-

dimensional, however for clarity several two-dimensional failure mechanism maps are presented.

Figure 9.9(a) shows a failure mechanism map for a metal-coated polymer cylinder in axial compression

with a hollow polymer core having h = 0.93. The minimum mass trajectory cannot be shown on this failure

mechanism map as there is no optimal trajectory for this value of h. Instead, the minimum mass trajectory

is shown in Figure 9.9(b), which illustrates the failure mechanism map for h = 0.99, when most of the

core has been removed. Equations 9.34, 9.36 and 9.40 are used to calculate the failure modes for these

failure mechanism maps. The minimum mass trajectory is shown to be along the simultaneous buckling and
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global buckling boundary at lower thickness-to-radius t values, and along the local shell buckling and global

buckling boundary at higher t values. The value of Ec/E ≈ 0.02 in both of these Figures, corresponding

to a nickel-coated ABS cylinder. The failure mechanism maps are similar for Ec/E ≈ 0.002 (LDPE and

foam-filled cylinders) and are not shown here.

Although the method of Lagrange multipliers was presented in Section 9.2.3, the complexity of the

equations for the hollow core local shell buckling and simultaneous buckling loads (Equations 9.36 and 9.40

respectively) makes the analytical solution for their optima less tractable. Instead, a numerical solution

for the minimum mass trajectories for these failure loads was found. While the global buckling load for a

hollow-core cylinder (Equation 9.34) did have an analytical solution, the result was infeasible.

Figure 9.10 shows the minimum mass trajectories in M vs F space for the hollow core case for both

ABS- and LDPE-filled cylinders, with h = 0.99. Because of the similarity of the results for the H200 foam

and LDPE polymer solutions, the foam-filled cylinder is not included on this graph. However, the minimum

mass trajectories for the filled-shell cases as well as the thin- and thick-shell cases are shown for comparison.

The remaining core material for the hollow core cases (i.e. since h = 0.99) causes a slight increase in the

mass of a hollow-core cylinder compared to a hollow-shell, as seen in the inset of Figure 9.10. Because the

the core is almost removed, there is little advantage to using an LDPE core. Instead of a slight decrease in

mass when using an LDPE core (as found for the filled-shell configuration), the use of a less stiff core for a

hollow-core cylinder negates the benefits of a less dense material, leading instead to an increase in mass for

the same load-bearing capacity.

To compare the geometries for the various optimization cases, the minimum mass trajectories for the

hollow-shell, filled-shell and hollow-core cases are drawn together in Figure 9.11 on t and r axes. As seen in
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Table 9.2: Results of first case study where a 10 mm long strut has its radius specified, as given in the first column. The optimal
cylinder geometries, failure loads and masses for thick hollow shells and ABS-filled cylinders are given.

Radius, r
(mm)

Optimal Thick Hollow Shell Optimal Filled Shell with
ABS Core

t (µm) F (N) Mass (g) t (µm) F (N) Mass (g)
0.5 10.8 5.57× 105 0.0030 27.0 1.37× 102 0.0496
1.5 124.1 7.48× 107 0.0109 83.5 5.54× 107 0.4534
2.0 652.6 2.18× 109 0.8497 298.2 4.93× 108 1.4632

Table 9.3: Results of first case study where a 10 mm long strut has its radius specified, as given in the first column. The optimal
cylinder geometries, failure loads and masses for H200-filled and hollow-core ABS-filled cylinders are given.

Radius, r
(mm)

Optimal Filled Shell with
H200 Core

Optimal Filled Shell with
Hollow ABS Core (h=0.99)

t (µm) F (N) Mass (g) t (µm) F (N) Mass (g)
0.5 8.0 4.25× 105 0.0120 10.1 5.30× 105 0.0030
1.5 272.4 3.88× 108 0.7629 287.0 3.92× 108 0.2425
2.0 298.2 4.30× 108 1.1277 651.0 2.02× 109 0.7314

this figure, the optimal design of a hollow-core cylinder at low t requires an increased r. For this hollow-core

geometry, there will be concurrent failure through simultaneous and global buckling at lower loads. The

shape of the minimum mass trajectories for the hollow-core cases is consistent with the boundary between

local shell buckling and global buckling in the filled shell cases (refer to Figures 9.7(a) and (b)). For the filled

shell cases, the minimum mass trajectoriess are nearly identical whereas using a H200 foam core results in

a lower thickness-to-radius ratio t – and thus a lower mass M – in the global buckling region.

It is deduced that when core material is an option (and not a requirement as in the filled-shell case),

the optimal design necessitates the removal of the core entirely. The mass of the hollow-core cases are

slightly above the thin-shell mass due to the small sliver of material remaining in the core. The hollow-shell

cases provide the most mass-efficient designs for minimum mass cylinder construction. However, the optimal

geometries for the hollow shells calculated for the present optimization studies do not take into account the

imperfection sensitivity of local shell buckling loads for hollow shells.

9.6 Case Studies

To illustrate the results of these optimization results in practice, two case studies are presented. The first

represents a typical strut geometry in a microtruss structure, while the second represents a larger column in

compression. For these case studies, the optimal designs for the configurations of a hollow shell (using the

thick-shell assumption), an ABS-filled shell, an H200-filled shell, and an ABS-filled shell with a hollow core

are considered. Based on the results of the filled-shell optimization studies (Section 9.5.2), the filled-shell and

hollow-core configurations with an LDPE core are expected to give similar mass values to their ABS-filled

counterparts (refer to Figures 9.10 and 9.11). As such, an LDPE core is not considered for the case study.

For the first case, consider a 10 mm strut loaded in axial compression. Three different strut radii values

are to be examined: 0.5, 1.5 and 2.0 mm. These values are shown in Tables 9.2 and 9.3. Using these radii
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Table 9.4: Results of second case study where a 500 mm long strut is subject to a specified load, as given in the first column. The
optimal cylinder shell thickness values, inner radii and masses for thick hollow shells and ABS-filled cylinders are given.

Load, F
(kN)

Optimal Thick Hollow Shell Optimal Filled Shell with
ABS Core

t (µm) r (mm) Mass (kg) t (µm) r (mm) Mass (kg)
40 290.7 20.6 0.172 790.5 14.7 0.678
90 436.1 23.6 0.298 967.2 17.9 1.015
200 656.4 26.9 0.516 1184 21.9 1.318

Table 9.5: Results of second case study where a 500 mm long strut is subject to a specified load, as given in the first column. The
optimal cylinder shell thickness values, inner radii and masses for H200-filled and hollow-core ABS-filled cylinders are given.

Load, F
(kN)

Optimal Filled Shell with
H200 Core

Optimal Filled Shell with
Hollow ABS Core (h=0.99)

t (µm) r (mm) Mass (kg) t (µm) r (mm) Mass (kg)
40 237.7 22.2 0.302 293.3 20.8 0.172
90 331.8 22.2 0.446 430.8 24.7 0.318
200 707.1 31.0 0.713 631.1 27.3 0.507

and a length of 10 mm, a radius to length value r can be calculated. From this, the optimal values of t, F

and M can be calculated using the optimization methods presently used. Alternatively, Figures 9.10 and

9.11 can also be used to find values for t, F and M .

The results of the first case study are provided in Tables 9.2 and 9.3, which give the optimal shell

thickness t for the cylinder, the load F at failure and the mass M of the optimum strut. Table 9.2 provides

the results for a hollow shell and ABS-filled shell, while Table 9.3 provides the results for an H200-filled

shell and the hollow-core ABS-filled shell. The results of this case study confirm the results found from the

non-dimensional optimization analysis: the optimal thick hollow shell provides the lowest mass for each of

the radii considered, while the optimal filled shell always gives the highest mass. The optimal hollow-core

configuration has a lower mass at the highest radius of 2.0 mm, however its shell thickness is very high

(651 µm) and very close to the thick-shell optimal value of (652.6 µm). At this thickness-to-radius ratio, the

thin-shell assumptions used for the hollow-core models are beyond their appropriate limits, and the mass of

the thick shell value – although higher – is indeed the true optimum cylinder mass for this load.

While the optimum filled shell with an H200 foam core (Table 9.2) gives heavier cylinder masses than

the thick hollow shells, they are considerably lighter at lower radii than ABS-filled cylinders (Table 9.3). At

the higher radius of 2.0 mm, the shell thickness values of both filled shells are similar but the mass of the

foam-filled cylinder is about 25% of the ABS-filled cylinder mass, owing to the lower density of the foam

material. The low load of the ABS-filled cylinder at a radius of 0.5 mm is due to the buckling mode of global

buckling, whereas combined global and local buckling is the failure mode when the radius is 1.5 or 2.0 mm.

For the second case study, a 500 mm strut is loaded at 40, 90 and 200 kN and the optimum cylinder

mass is to be found. Tables 9.4 and 9.5 provide the optimal cylinder construction for the same cylinder

configurations as the first case study. Since the load is now specified, the optimal shell thickness t and radius

r is found along with the optimal cylinder mass M . The masses of the resulting cylinders are larger than
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those found from the first case study due to the longer length requirement of this cylinder. As was found

with the first case study, the optimal hollow shell still gives the lowest mass for all loads considered. Once

again, the filled cylinder with a hollow ABS core has a slightly lower mass than the optimal thick-shelled

cylinder; this is due to the thin-shell assumption used for the hollow-core calculations.

Although the results of these case studies demonstrate that the hollow-shell are predicted to provide

the lowest mass designs, the imperfection sensitivity of hollow shells plays a strong role in determining their

performance. This will be examined in a practical discussion of the results.

9.7 Discussion and Practical Considerations

The results of the optimization process can be summarized as follows:

1. If a hollow cylinder is loaded in axial compression, design it such that it fails concurrently through global

and local shell buckling;

2. If a hollow cylinder is very thick or must sustain a high load, it should fail through local shell buckling;

3. If a filled cylinder is loaded axially, it should buckle globally if it is very long, fail by local shell buckling

if very thick, and fail concurrently through global and local shell buckling otherwise; and

4. If a filled cylinder is loaded axially but its core thickness can vary, remove the core completely and treat

it as if it were a hollow-shell cylinder as in items 1 and 2.

Of interest is the result obtained from the hollow-core cases, where optimization allows for varying core

thickness (i.e. treating h as a variable). Instead of keeping a moderate amount of the core, the optimization

revealed that the most mass-efficient designs do not utilize any core material. Only the shell remains, and the

cylinder behaves as a hollow shell in axial compression. The optimization procedure performed by Dawson

and Gibson [116] found that the core is desirable at lower loads. Thus at low loads a partially filled core is

most mass-efficient (as per the results of Dawson and Gibson), while at high loads a hollow shell is preferred

(as per the results of the present analysis). While the results of the hollow-core analysis lead to a design

which does not contain a core, the nanocrystalline nickel coating requires a surface for electrodeposition

[28, 30]. Thus for the shell to be produced, a polymer preform – even a very thin one – must be present.

The results of Lausic et al. [4] found that filled-shell cylinders would always lead to a higher mass than

a hollow shell designed for the same load. This agrees with the present analysis for filled shells, where the

core was represented with an accurate model compared to the analysis of Lausic et al. The aforementioned

authors also found that a hollow shell will always be more mass efficient than a filled shell carrying the

same load. The treatment of hollow shells in the present optimization studies, however, ignores the fact that

local shell buckling loads of axially-loaded hollow shells are very imperfection-sensitive. As such, the optimal

designs predicted for hollow shells in the present analysis will not hold their design loads [72, 73, 78, 79],

leading to an increase in cylinder mass due to the utilization of thicker shells.
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Figure 9.12: Photograph of a microtruss with hollow-core struts (hollowness factor h ≈ 0.85) produced through 3D printing methods.
This microtruss can be coated with nanocrystalline metal, and the preform either later discarded or kept for added buckling support.

Imperfection sensitivities aside, for shell thicknesses that are optimal, the hollow-shell model is in-

accurate because it ignores the behaviour of the core. This point can illustrated by considering the case

study results for a cylinder designed to hold a 40 kN load (Table 9.4) and the graph which compares the

behaviours of the filled-shell and hollow-shell models (Figure 4.3(a)). To hold this load, the results of Table

9.4 reveal that an optimum hollow shell requires a thickness-to-radius ratio of approximately 0.015. Looking

at the graph of Figure 4.3(a), this corresponds to a non-dimensional load of approximately 2 × 10−3, and

a filled shell with a thickness-to-radius ratio of approximately 0.08 would be required to carry this same

load. This large difference in geometry for the same load illustrates why the filled shell models are necessary:

for the likely case where the core cannot be removed, the hollow-shell model will not accurately predict the

behaviour of a polymer- or a foam-filled shell. The filled shell models will always account for the behaviour of

the core, not only when predicting the load of the structure but also when undertaking optimization studies.

For the filled shells with hollow cores, some manufacturability aspects bear consideration. If it is

desired to produce microtruss geometries with very hollow struts (i.e. h ≥ 0.8), high-quality 3D printing

methods such as sterolithography can be used [26, 50]. Figure 9.12 shows a photo of 3D-printed polymer

microtruss where the strut hollowness factor is very high (h = 0.85 or higher). The finishing processes of

these microtrusses involve removing the wax support material while taking care to not break the delicate

struts. The full strength of this structure is only realized once it is coated with nanocrystalline metal, a

process which would also require careful handling to avoid breakage.

If it is desired to completely remove the core, acid dissolution of 3D printed polymers has been shown

to be a viable process [1]. Sulphuric acid or other strong acids can be used to preferentially dissolve the

polymer preform in a metal-coated polymer structure. Depending on the polymer chemistry, the polymer

core will be completely dissolved while the metal coating will remain. This dissolution process only works

well for simpler structures (such as a single cylindrical strut or one unit cell of a microtruss). If the microtruss

structure of Figure 9.12 were to be coated with metal, acid dissolution of the polymer preform would be
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difficult, as the interior of the coated structure would be less accessible even if submerged fully in acid.

Because of this and the inaccuracy of the hollow-shell model when predicting the behaviour of filled shells,

the filled-shell models used for the present optimization studies are necessary.

Even if a microtruss with hollow metal struts is produced, the imperfection sensitivity of hollow shells

will lead to significantly lower failure loads than those predicted by the hollow-shell buckling model. Studies

with foam-filled cylinders have shown that filling a hollow shell reduces this sensitivity to imperfections to a

large degree [98–100]. This resistance to buckling persists when part of the core is hollowed out (i.e. h > 0),

but removing too much of the core (i.e. h close to 1) results in the introduction of simultaneous buckling

as a dominant failure mode (as seen in the failure mechanism map of Figure 9.9(a)). A filled or partially-

filled cylinder will lead to more predictable loads for structures compared to hollow cylinders with the same

thickness-to-radius ratios, even though these designs will be heavier than an ideal hollow shell intended for

the same load carrying capacity. The improved predictability of filled shells is more desirable for engineered

structures, where safety and reliability are often paramount.

In summary, the hollow-shell model should not be used to predict the behaviour of filled-shell structures,

especially for shell thickness-to-radius ratios which are optimal, making the filled-shell models crucial. While

a hollow cylinder is the most mass-efficient design, its imperfection sensitivity makes it unsuitable for many

engineering applications, necessitating the use of shell stiffeners or thickening of the shell itself which will

lead to sub-optimal structures [73]. A filled-cylinder allows for more readily-realized buckling loads, a

characteristic which is preferable in engineering applications.

9.8 Concluding Remarks

This chapter examined optimization methods of metal-coated polymer cylinder to design low-mass nanocoated

polymer cylinders. The results were determined for several cylinder configurations including hollow shells,

completely filled shells and filled shells with hollowed-out cores. The thin-shell assumption was also assessed

in this analysis, and it was shown to have a measurable effect when thicker shells were considered. Non-

dimensional variables were used to generalize the results, and case studies were presented to illustrate their

use.

The hollow-shell case – even with the thin-shell assumption disregarded – led to the most mass-efficient

designs. Shells filled with ABS and LDPE were substantially heavier for the same load-carrying capacity.

However, shells filled with Divinycell H200 foam, a low-density foam with properties similar to LDPE, lead

to lower masses than ABS- or LDPE-filled cylinders. When allowing core hollowness to be a variable, as was

done for the hollow core case, the optimal design always removed the core entirely. This reveals that even a

small portion of the core leads to undesired mass from an optimal design standpoint.

However, for shell thicknesses that are optimal, the hollow shell model is incorrect because it does not

account for the presence of the core. The complexity of a microtruss structure makes removal of the core
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very difficult, and the use of the hollow shell model leads to inaccurate predictions for the behaviour of the

structure. In addition, once the imperfection sensitivity of hollow shells is considered, it is clear that their

use in practice will lead to much higher masses than predicted by the present optimization studies. For these

reasons, the models developed from the present research as well as the optimum filled-cylinder designs given

here are important.

Practical considerations for constructing hollow shells include the electrodeposition process of the

nanocrystalline metal coating and, if possible, subsequent removal of the polymer core. The electrodeposition

process needs a surface upon which to deposit metal, while removal of the core would be problematic for

complex geometries such as those encountered in microtruss structures.

Future considerations for optimization of filled shells should take into account inelastic behaviour for

both the shell and the core. This will lead to more accurate results for optimal designs, which may be more

useful for further development and for use in practical structures. Analytical solutions to all of the above

cases are also desirable so the results can be determined quickly once basic design specifications are known.



Chapter 10

Concluding Statements and Recommendations

The motivation for this research project was to understand the failure mechanisms of metal-coated polymer

microtruss structures, which are dominated by compressive instabilities. As these structures have cylindrical

struts, the failure mechanisms of metal-coated polymer cylinders under axial compressive loads were studied.

The objectives of this research project included developing models for local shell buckling, examining the

behaviour of the cylinders through experiments, and optimizing cylinder geometries for minimum mass

design. With respect to these objectives, this final chapter of the thesis summarizes the key conclusions,

reviews the key contributions, and proposes recommendations for future research directions.

10.1 Summaries

The conclusions for each chapter are reiterated here to summarize the main findings.

10.1.1 Elastic Core Model and Fundamental Buckling Model

Past studies examining the theoretical and experimental behaviour of foam-filled shells under axial loads

utilized the models of beams on elastic foundations or the behaviour of foam cores in composite sandwich

panels. Both of these approaches, however, only describe the stresses state in two coordinate directions,

and thus do not lead to true axisymmetric representations of the polymer core behaviour for a filled shell.

The best-available model for filled-shell buckling is that of Karam and Gibson [98], which utilizes the Gough

sandwich panel model [82]. In contrast, the Southwell stress model [6, 38, 39] describes the stress state in

three coordinate directions, and is intended for cylinder geometries subject to axisymmetric stresses. The

Southwell model was implemented in MATLAB in order to calculate the stress state and strain energy of

a polymer cylinder subject to sinusoidal radial stresses. Once the strain energies had been determined for

a range of cylinder geometries and buckle wavelengths, an analytic fit was used to approximate the strain

energy of an elastic core as a function of the core geometry and the buckle wavelength.

The new core model was used to develop an axial buckling load prediction for a metal-coated polymer

cylinder by applying the energy method of Timoshenko [34]. Finite element verification revealed that this

new elastic buckling model predicts the buckling loads slightly more accurately than the Karam and Gibson

model [98]. In addition, a comparison between the stress distributions obtained from Abaqus buckling

investigations and the Southwell model [6, 38, 39] revealed that the latter accurately describes the stress

state of the core under buckling conditions, or when the shell and core are subject to sinusoidal radial

140
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deflections due to the buckling of the shell and the assumed adhesion between the shell and the core. A

main takeaway of the new model is that, while the Karam and Gibson model [82] is easier to implement in

practice, the new elastic buckling model is more accurate than the current state-of-the-art. In addition, the

versatility of the Southwell model allows for various core loading situations to be studied by changing the

core geometry (i.e. by hollowing it along its axis) or different problem assumptions (i.e. when there is no

adhesion between the shell and core). This versatility was harnessed to create more complex models later in

the thesis.

10.1.2 Non-Adhesion Model

In previous investigations for filled-shell buckling, a key assumption for buckling load predictions is that

the metal shell and polymer core are perfectly adhered. In many cases, such as for foam-filled cylinder

construction, this is a reasonable assumption as the core is very well adhered to the shell. When metal-

coated polymer cylinders are considered, however, adverse adhesion issues can be present. It is warranted

to develop a buckling model for a filled-shell cylinder which assumes no adhesion between the shell and the

core. In this situation, the core model developed for the fully-adhered shell core (or the fundamental model)

must be modified for non-adhesion buckling.

A model for the core was created for the case when the shell and core are not adhered. This model

only considers radial deflections which push the core inward towards the cylinder centreline. Any sinusoidal

deflections which would move the core radially outward were disregarded, as these are not present when the

shell and core are not adhered. A new non-dimensional variable, the penetration length, was introduced in

order to express the energy of the shell as a function of how much the shell penetrates the core. As was

done previously, the Southwell stress model was utilized to determine the energy state of the polymer core

subject to non-adhesion buckling deformations. The resulting non-adhesion core model expresses the core

strain energy as a function of the cylinder geometry, buckle wavelength and the penetration length. The

energy-minimization procedure used for finding the buckling load was again utilized when determining the

non-adhesion buckling load, with the penetration length becoming another variable of the problem. When

compared to the full-adhesion buckling load, the non-adhesion buckling load is substantially lower, implying

that the assumption of perfect adhesion has a large impact on buckling predictions.

Finite element investigations for non-adhesion buckling were carried out in Abaqus, using contact

algorithms to model a non-adhered filled shell under axial loads. The buckling loads determined from these

verification investigations were much higher than those predicted by the non-adhesion buckling model. This

indicated that while the non-adhesion model provides a lower bound for metal-coated polymer cylinders with

no adhesion, the model is not as accurate as was hoped. The cause for this discrepancy can be attributed

to the assumed buckled shape of the shell: even though there is no adhesion between the shell and the core,

it was assumed that the shell buckles along its length with uniform sinusoidal waves. The shapes of buckled

shell geometries obtained from the Abaqus investigations showed buckling waves with non-uniform sinusoidal



CHAPTER 10. CONCLUDING STATEMENTS AND RECOMMENDATIONS 142

shapes; their wavelengths and amplitudes were not consistent along the length of the cylinder. As the core

model assumes uniform sinusoidal buckling along the length of the cylinder, the resulting predictions of the

buckling behaviour would have been incorrect.

Although finite element investigations revealed that the non-adhesion model under-predicts buckling

loads, the approach used to model non-adhesion buckling is nevertheless unique to this thesis project. The

use of the Southwell model allowed for developing a core model for a non-adhered filled shell more readily.

In addition, the non-adhesion model provides a practical lower bound for filled-shell buckling under adverse

adhesion situations, a prediction which until this time has not been examined in the literature.

10.1.3 Hollow-core Model

Existing predictions for the buckling load of filled shells are intended for geometries where the core is

completely filled. A more general model is necessary which accounts for core geometries where part of the

core is hollow along the cylinder axis, or when its “hollowness factor” is changed. A core which is more

hollow has a higher hollowness factor. While some previous studies have investigated hollow core behaviour,

these studies used an estimate of the stress state for hollow cores. The Southwell model [6, 38, 39] allows

for more accurate treatment of the hollow core buckling problem.

As done similarly for the fundamental and non-adhesion model, a new core model was developed for

changing core hollowness factors. The versatility of the Southwell model [6, 38, 39] allowed for determining

strain energies for various core geometries (i.e. as the hollowness factor is varied), and a function was fit to

this strain energy data. This new hollow core model was used to determine the hollow core buckling load

through the energy method of Timoshenko [34]. Higher core hollowness factors lead to cylinder geometries

where buckling of the shell and core takes place together; this is simultaneous buckling. The loads predicted

by the new hollow core model were verified through finite element investigations, while the transition point

between hollow buckling and simultaneous buckling was determined as a function of the core stiffness and

hollowness factor. Very hollow cores lead to filled-shell behaviours closely resembling those of hollow-shell

buckling, and the effect of the core in these cases is negligible.

The creation of a hollow core buckling model is a novel contribution in the area of filled shell buckling.

The buckling load can now be determined for cores which are partially hollow and not just those which are

completely filled. Not only is this model more general for filled-shell buckling, it is more accurate than the

previously-developed models for hollow core buckling due the use of the Southwell model for description of

the core behaviour.

10.1.4 Inelastic Model

The models developed earlier in the thesis – as well as a large part of the existing literature – focus on the

elastic buckling load for filled shells under axial loads. For very thick shells, elastic buckling load predictions

become inaccurate due to yielding of the shell material at the high failure strains of these thicker shells. An
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inelastic buckling model is needed for the cases. There have been notable investigations into the inelastic

behaviour of hollow shells, but comparatively fewer studies into the inelastic behaviour of filled shells.

An inelastic buckling model was developed for axially-loaded filled shells. These predictions require

the use of the tangent modulus, or a modulus determined by the tangent of the stress-strain behaviour of a

material as it deforms inelastically. This requires a differentiable stress strain function for a material. The

Voce relationship [114] is a function for the stress of a material given its strain, and is easily differentiated

to provide the tangent modulus. As nanocrystalline material is the shell material for metal-coated polymer

cylinders, the Voce fit constants were determined for nanocrystalline nickel. While inelastic behaviour was

considered for the shell material, it was not considered for the polymer core as polymers have higher strains to

yield compared to metals. As such, the elastic core model developed for the fundamental model was utilized

to again represent the core behaviour. In contrast to the hollow shell inelastic buckling loads (determined

previously by Lausic et al. [1]), the buckle wavelengths for inelastically-buckling filled shells are lower than

their elastic counterparts. This indicates that the material properties of the core have a strong effect on

both the elastic and inelastic behaviours of filled shells.

Verification studies using Abaqus determined that the inelastic buckling load predictions are accurate

over a large range of cylinder geometries, but become inaccurate for extremely thick shells (i.e. those where

the shell thickness-to-radius ratios exceed 0.1). Due to the methods used to verify the inelastic buckling

loads, the wavelength predictions of the inelastic buckling model could not be verified, and will require an

independent investigation. The determination of an inelastic buckling load is a unique contribution to the

study of filled-shell buckling, as this area is often not explored in the study of filled shells.

10.1.5 Experiments

Filled-shell buckling models have previously been validated using foam-filled cylinders. As metal coated

microtruss structures have solid polymer cores, the behaviour of metal-coated polymer cylinders is of interest.

The buckling loads of cylinders with larger thickness-to-radius ratios are less sensitive to imperfections, so

these geometries are preferred for manufacturing and experimental investigations. The behaviours of the

cylinders found through experiments can be compared to the inelastic buckling model, which provides more

accurate buckling loads for thicker shells.

For the experimental studies, dogbone-shaped specimens were machined from ABS plastic and coated

with nanocrystalline nickel provided by Integran Technologies. The gauge sections of these samples had

cylindrical cross sections, while the geometry of the specimens concentrated the stresses in this cylindrical

section. The samples were tested in axial compression in a servo-hydraulic load frame. A constant displace-

ment rate was used which had been determined through strain rate sensitivity investigations done prior to

the experiments. Each dogbone specimen was clamped to the load frame prior to the start of each test to

minimize the risk of asymmetric loading. The axial load and displacement was measured throughout each

experiment, and the load was removed after a substantial reduction in load was observed (indicating failure).
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Despite efforts to maintain symmetrical loading around the circumference of each specimen, some

buckle folds were not axisymmetric about the circumference of the cylinders. In addition, none of the

specimens tested failed in their gauge sections, despite careful specimen design prior to manufacturing.

The highest buckling loads obtained during the experiments were within 65% of the theoretical values; by

contrast, earlier experiments of filled shells by Karam and Gibson [5] for similar shell geometries achieved

up to 75% agreement with theoretical values. Microscopy investigations also revealed that the coatings were

not uniform around the circumference of each specimen. This non-uniformity along with the evidence of

asymmetrical loading both likely led to the discrepancy between predicted and measured buckling loads.

The results of the experiments highlight the limitations of producing and testing metal-coated polymer

structures, specifically those manufactured by electrodepositing nanocrystalline onto a polymer preform.

The procedure to manufacture foam-filled cylinders involves first manufacturing the shell structure, followed

by filling the shell with a foam compound and allowing this to set. The metal-coated polymer cylinders

are manufactured in reverse: the polymer preform is machined or 3D-printed first, and the metal coating is

then electrodeposited onto the polymer surface. The methods of manufacturing foam filled cylinders allow

for inspection of the shell prior to filling them with foam, a process which cannot be done for metal-coated

polymer cylinders without destructive inspection methods. In summary, the experiments showed that very

careful preparations are required in order to validate filled-shell buckling models through experiment.

10.1.6 Mass Minimization of Filled Shells

In designing aircraft, structural weight should be minimized in order to reduce fuel consumption. This

contributes to the goals of sustainable aviation while reducing operating costs for airlines. Nanocoated

polymer microtrusses offer the mass-efficiency of microtruss topologies while providing the high strength of

nanocrystalline metals. To realize the full benefits of these hybrid structures, optimization of the microtruss

geometry can be carried out, which involves mass minimization of the cylindrical struts. Optimization studies

have been previously undertaken for microtruss geometries by Lausic et al [1, 4]. However, the filled-shell

models used for these studies did not use accurate treatments of the core. A study of hollow core geometries

was previously done by Dawson and Gibson [116], but the results were limited to very thin shells.

An optimization study was carried out using the method of Lagrange multipliers, where the minimum

mass of cylinders subject to a given range of axial loads was determined. Where necessary, numerical methods

were used. The full-adhesion and hollow-core models were used for mass minimization, while the hollow-shell

models were also used for comparison purposes. Both global and local shell buckling loads were considered,

while simultaneous buckling was accounted for when analyzing hollow core cylinders. For the analysis,

nanocrystalline nickel was the material chosen for the shell, while the core materials considered were ABS,

LDPE and H200 Divinycell foam. The last of these materials allowed for comparisons between polymer-

filled and foam-filled cylinders. The configurations examined for minimum mass optimization included hollow

shells, completely filled shells and shells with hollow cores.
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For the entire range of loads considered, hollow shells are always more mass-efficient than filled shells or

shells with hollow cores. Cylinders with LDPE cores were more mass efficient than cylinders filled with ABS.

The H200-filled cylinders had the lowest mass of the filled cylinders, highlighting the advantages of using

foam-filled cylinders for minimum mass design. When the hollow-core model was used for mass minimization,

the optimization results showed that the polymer core should be removed leaving only the metal shell behind.

This indicates that even if the core hollowness factor is a variable, the optimal design for minimum mass is

still a hollow shell.

For optimal cylinder geometries, the hollow shell model cannot be used to predict the behaviour of

filled shells as it does not account for the presence of the core. If the hollow shell model were used in place of

the presently-developed filled shell models, it would lead to shell designs which would be much thicker than

needed. In addition, the practical use of hollow shells is limited by their imperfection sensitivity. Theoretical

and experimental investigations have shown a very high sensitivity of hollow shell structures to imperfections

[79]. These can include material defects, geometric imperfections or asymmetric axial loads. An alternative

to using hollow shell structures is to manufacture very thin hollow core cylinders (or microtrusses with

hollow core struts) through 3D printing methods. This will provide a surface for the electrodeposition of

nanocrystalline metal while keeping the mass of the structure at a minimum. However, in many cases, it is

very difficult to completely remove the core. Because of this and the innaccuracy of the hollow shell model

in predicting filled-shell loads, the filled shell models are crucial.

The optimization results provide a comparison of the mass efficiencies for various cylinder configurations

using known materials and standard optimization procedures. The algorithms and derived expressions can

be used to develop practical cylinder geometries for compression members or for the struts of microtrusses.

10.2 Contributions of Research

There are several novel contributions that have resulted from this thesis project; these are highlighted and

summarized below.

1. Accurate core modelling: A new and accurate core model was developed using the Southwell stress

model. For a metal-coated polymer cylinder subject to radial buckling deformations, this model provides

an accurate calculation of the strain energy in a polymer core subject to sinusoidal radial deformations.

This model was used to develop a new buckling prediction for a filled shell under an axial load, and the

performance of this new model exceeded that of the best-available model for filled-shell buckling.

2. Non-adhesion behaviour: A lower bound for the buckling behaviour of a non-adhered filled shell

was determined. The core model developed for this case only accounts for the core behaviour under

radial deformations which push the core inwards (i.e. towards the cylinder centerline). This investigation

revealed the implications of assuming perfect adhesion for filled shell buckling predictions, an assumption

used in the majority of filled-shell buckling models.
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3. Hollow core geometries: Hollowing out the core along its axis changes the buckling behaviour of a

filled shell, and this can also lead to simultaneous buckling when the core hollowness factor is very high.

The hollow core model is a more general form of the full-adhesion model, and can be used for optimization

studies.

4. Inelastic Buckling: A prediction for the inelastic buckling load of a filled shell was derived by using

the tangent modulus in place of the elastic modulus in the previously-derived full-adhesion model. The

resulting model was shown to be accurate through non-linear finite element analysis. In the literature,

inelastic buckling is a less-explored topic for filled shells.

5. Experiments on metal-coated polymer cylinders: The existing body of work on experimental

treatment of shells have thus far been focused on hollow shells or foam-filled shells. The experimental

program undertaken for this research revealed some limitations of creating high-quality metal-coated

polymer specimens for validation purposes, while also illustrating methods for alleviating some of these

limitations.

6. Optimized cylinders: An algorithm was developed for determining the minimum mass of hollow shell,

filled shell or hollow core cylinders. Though hollow shells provide the most mass-efficient solutions, the

design of compression members for practical purposes may require filled or partially hollow cylinders; in

these cases, these optimization procedures are useful for optimum cylinder design.

10.3 Recommendations for Future Research Directions

The objectives of this thesis project were met, and novel contributions were made to the area of filled-shell

buckling and structural mechanics. However, for future research efforts that may stem from this thesis

project, some recommendations are provided here.

The Southwell model is an accurate representation of the stress state of the core. While it was imple-

mented in MATLAB, it could also be written in other programming languages as well. This would aid in

later optimization studies, which could be carried out using more efficient algorithms written in other pro-

gramming environments. In addition, this could also allow for higher mesh densities at a lower computational

cost.

In developing the various core models, the behaviours of the models for two values of the core Young’s

moduli were investigated, while the Poisson’s ratio was kept fixed. It is warranted to account for changing

values of the Poisson’s ratio in future investigations, while also examining a larger range of Young’s moduli

for the core. In addition, a function for the core parameters (i.e. K) could be fit to various values of the

core Poisson ratio and Young’s modulus, thereby generating more general core models for each case.

The thin-shell assumption is used for the hollow shell buckling model, and is consistently used in

all the approaches for deriving hollow-shell buckling loads (i.e. by Timoshenko, von Karam and Tsien,

Southwell and Lorenz); the same assumption was used when deriving the present filled-shell models. Another
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recommendation, then, would be to eliminate the thin-shell assumption for these filled-shell predictions. The

resulting new predictions created in this way would be more general than the present models, as they would

be valid for a wider range of shell thickness values.

For the hollow core model, a 5th-order two-variable polynomial was fit to the strain energy data

generated by the Southwell model. A less complicated fit could be used for this model, such that an

analytical solution to the buckle wavelength can be derived for hollow-core geometries. This would allow for

analytical expressions to be derived for the minimum mass trajectories, instead of relying on the numerical

procedures as performed for the present optimization studies. The geometries for minimum mass cylinders

could then be determined using the analytical formulas generated as a result of these new, simpler core

models.

The development of the non-adhesion model assumed the extreme case where a metal shell and polymer

core are not adhered. In reality, a shell and core would be partially adhered, in between the best case of full

adhesion and the least desirable case of no adhesion. It is warranted to explore the development of a partial

adhesion model which would account for varying degrees of adhesion, and therefore be more complex than

the present non-adhesion model. This resulting model would be of interest to manufacturers of the metal

coatings, such as the suppliers used for the manufacture of the experiment samples.

An approach often used in determining inelastic buckling predictions is to use the reduced modulus. As

the present implementation for inelastic buckling uses the tangent modulus, it is of interest to determine the

inelastic buckling load using the reduced modulus method, and compare these results to both experimental

and finite element results.

Finally, in the area of experiments many facets require improvement. More specimens would need to

be tested for a complete experimental program, while more careful specimen design and manufacturing is

necessary. Trial specimens will need to be created to ensure that the electrodeposition process produces

uniform coatings. If using core materials other than ABS, coating processes may need adjusting to account

for new surface chemistries as this is known to cause adhesion issues.
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