The Lifting-Fuselage Aircraft Configuration

Thomas A. Reist and David W. Zingg J. Armand Bombardier Foundation Chair in Aerospace Flight Institute for Aerospace Studies University of Toronto

> 5th UTIAS International Workshop on Aviation and Climate Change May 20, 2016

Background

 For both economic and environmental reasons, improving aircraft fuel efficiency is crucial

This requires reductions in drag

 \star unconventional configurations

 \star advanced aerodynamic concepts

★ flow control

Unconventional Aircraft Configurations

- Strut-braced wing
- Box wing (joined wing)
- "Double bubble" or D8
- Blended or hybrid wing-body (BWB or HWB)

The Blended Wing-Body (BWB)

Advantages:

- Aerodynamic
 - High wetted aspect ratio gives high lift-to-drag ratio
 - Natural 'area-ruling' improves high-speed performance
- Structural
 - Natural spanloading reduces bending loads
- Propulsive
 - Boundary-layer ingesting engines reduce fuel-burn
- Acoustic
 - Body-mounted engines are acoustically shielded
 - Low landing speed reduces airframe noise

Challenges:

- Aerodynamic
 - Shock-free airfoils with sufficient thickness
 - Maintaining stability and control without an empennage
- Structural
 - Design of non-cylindrical pressure vessel for the cabin
 - More complicated load-paths
- Propulsive
 - Robust boundary-layer ingesting engine technology
- Passenger comfort
 - Ride quality

Blended Wing-Body Aircraft

 \star usually considered for very large aircraft

★ scaling studies (Nickol 2012) indicate that they are not advantageous for smaller aircraft classes

Blended Wing-Body: Questions

- why is the BWB configuration less advantageous for smaller aircraft classes?
- can the concept be modified to achieve better performance for smaller aircraft?
- how does the optimal aerodynamic shape vary with aircraft size?

Aerodynamic Shape Optimization

numerical optimization is a powerful tool that enables:

★ optimization and assessment of novel configurations and advanced aerodynamic concepts

 \star optimization of parameters in flow control strategies

★ possible invention of hitherto unknown configurations or concepts

Components of Jetstream Aerodynamic Shape Optimization Methodology

- Efficient and robust flow solver for Euler and Reynolds-averaged Navier-Stokes equations: Diablo
 - parallel implicit Newton-Krylov-Schur algorithm using summation-by-parts method for spatial discretization
- Adjoint method for gradient computation
- B-spline surface geometry parameterization
- Free form deformation or B-spline geometry control
- Integrated mesh movement technique based on B-spline volumes
- Sequential quadratic programming method for gradient-based optimization

- Investigate the optimal aerodynamic performance of blended wing-body (BWB) transport aircraft
- Four classes of BWBs are considered:
 - A 100-passenger regional jet (similar to the Embraer E190)
 - A 160-passenger narrow-body (similar to the Boeing 737-800)
 - A 220-passenger mid-size transport (similar to the Boeing 767-200ER)
 - A 300-passenger wide-body (similar to the Boeing 777-200LR)
- Equivalent conventional tube-and-wing (CTW) designs are created for the regional, narrow-body, and wide-body classes, which serve as performance references
- Low-fidelity conceptual models are constructed for each design in order to obtain weight and balance estimates
- The span of each BWB is chosen so that its 'bending span' is similar to that of each CTW, and fits within a gate one size larger than each CTW
- Each design is optimized for a nominal mission

Blended Wing-Body Designs

BWB220

BWB300

220

300

Е

 \mathbf{F}

213

262

150

185

8,000

9,500

78,400

141,000

432,600

826,800

Conventional Tube-and-Wing Reference Designs

Design	PAX	Gate	${f Span}\ [{ m ft}]$	$\begin{array}{c} \text{Bending span} \\ [\text{ft}] \end{array}$	Max range [nmi]	Max payload [lb]	MTOW [lb]
CTW100	100	С	94	85	$2,\!900$	$28,\!400$	$105,\!800$
CTW160	160	\mathbf{C}	118	105	3,700	$47,\!000$	$173,\!900$
CTW300	$\overline{3}00$	E	213	193	9,500	141,000	775,500

Design Variables and Constraints

- Trim-constrained drag-minimization based on the RANS equations
- Angle-of-attack $(\pm 3^{\circ})$

•	CTW wing and tail angles $(\pm 5^{\circ})$ Segment spans	Class	$egin{array}{c} { m Altitude} \ [{ m ft}] \end{array}$	$\operatorname{Mach}[-]$
•	Chord and twist	Regional Narrow-body	$36,000 \\ 36,000$	$\begin{array}{c} 0.78 \\ 0.79 \end{array}$
٠	Section shape with t/c constraints	Mid-size Wide-body	36,000 36,000	$0.80 \\ 0.84$
٩	Wing volume constraint			

- BWB cabin shape constraint
- Fins are not modelled, but their drag is accounted for post-optimization
- All final performance numbers are obtained through grid-refinement studies

Optimized Designs

10

		v z x			y v v
CTW100-1	CTW160-	-1		CTW300-1	y y x
BWB100-1	BWB160-	1 BWB	220-1	BWB300-1	
BWB100-1	BWB160-	1 BWB	220-1	BWB300-1	
BWB100-1 Class	BWB160- Design	1 BWB Center-body lift	220-1 L/D	BWB300-1 Cruise fuel-burn	
BWB100-1 Class Regional	BWB160- Design CTW100-1 BWB100-1	1 BWB Center-body lift 13.0 % 40.3 %	L/D 19.8 23.0	BWB300-1 Cruise fuel-burn - +0.6 %	
BWB100-1 Class Regional Narrow-body	BWB160- Design CTW100-1 BWB100-1 CTW160-1 BWB160-1	1 BWB Center-body lift 13.0 % 40.3 % 13.5 % 31.4 %	$ \begin{array}{c} 220-1 \\ L/D \\ 19.8 \\ 23.0 \\ 20.3 \\ 26.6 \\ \end{array} $	BWB300-1 Cruise fuel-burn 	
BWB100-1 Class Regional Narrow-body Mid-size	BWB160- Design CTW100-1 BWB100-1 CTW160-1 BWB160-1 BWB220-1	1 BWB Center-body lift 13.0 % 40.3 % 13.5 % 31.4 %	$ \begin{array}{c} 220-1 \\ L/D \\ 19.8 \\ 23.0 \\ 20.3 \\ 26.6 \\ 28.9 \\ \end{array} $	BWB300-1 Cruise fuel-burn 	

Importance of wetted area and span

- Wetted area determines friction drag
- Induced drag is inversely proportional to span
- Hence a high wetted aspect ratio is desirable
- BWB configuration enables increased span
 - \star wings carry reduced load
 - \star wide center-body reduces bending span

- Investigate the scaling of wetted area with BWB size and shape using a simple geometric model
- Wing span and area are related to cabin area based on existing aircraft
- For zero center plug width this model reduces to a conventional tube-and-wing (CTW)

BWB Geometric Scaling

- Regional-class:
 - 3% lower wetted area than a conventional design
- Wide-body-class:
 - 20% lower wetted area

Motivation:

- The smaller BWBs do not reduce wetted area, and thus have little-to-no drag benefit
- Investigate alternative BWB configurations which may offer better aerodynamic performance
- Use RANS-based ASO to 'discover' novel shapes

Definition:

- Optimize each BWB with more geometric freedom and without the cabin shape constraint
- Instead, place bounds on the center-body floor area and volume
- Maximize the lift-to-drag ratio

Exploratory Results

- The exploratory optimizations result in a more slender lifting center-body with distinct wings
- The extent of these features is a function of aircraft size
- These exploratory results guide the design of a new configuration which can take into account additional considerations

Lifting-Fuselage Configurations (LFCs)

		20) ft		20 ft		20 ft
LFC100			LFC160 LFC220)		
Design	PAX	Gate	Span	Bending span	Max range	Max payload	MTOW
LFC100	100	C	[1t] 118	[It] .88	$\frac{1}{2.900}$	$\frac{10}{28.400}$	118,700
LFC160	160	D	150	108	3,700	47,000	$209,\!600$
$\overline{\rm LFC220}$	220	E	213	158	8,000	$78,\!400$	$444,\!400$

• Each design has a bending span close to that of the equivalent CTW

• With the exception of the LFC160, each LFC fits within the same gate limit as the corresponding CTW

Optimized LFC Designs Relative to the BWBs

	v x	v x		y x
BWB1	.00-1 v x	BWB160-1	F	3WB220-1
LFC1	.00-1	LFC160-1	L	FC220-1
lass	Design	Center-body lift	L/D	Cruise fuel-bu
egional	BWB100-1 LFC100-1	$40.3~\%\ 31.5~\%$	23.0 24.0	-6.6
arrow-body	BWB160-1 LFC160-1	${31.4}\ \%\ {28.2}\ \%$	26.6 27.9	-8.4
lid-size	BWB220-1		28.9	

Optimized LFC Designs Relative to the CTWs

Class	Design	Center-body lift	L/D	Cruise fuel-burn
Regional	CTW100-1 LFC100-1	$13.0 \\ 31.5$	19.8 24.0	-6.1%
Narrow-body	CTW160-1 LFC160-1	$13.5\\38.2$	$20.3 \\ 27.9$	-9.7%

CONCLUSIONS

- the lifting fuselage configuration is a promising option in the regional and single-aisle classes, with the potential to reduce fuel burn by up to 10%
- more refined studies that include additional disciplines are needed to confirm the potential efficiency benefits
- this configuration was "invented" by aerodynamic shape optimization!