

AIM-OS: Aviation Integrated Modelling Open Source

Dr. Aidan O'Sullivan

Overview

- 1 Background
 - Project History
- 2 AIM Architecture
 - Core Modules
 - Global Climate Module
 - Local Air Quality and Noise

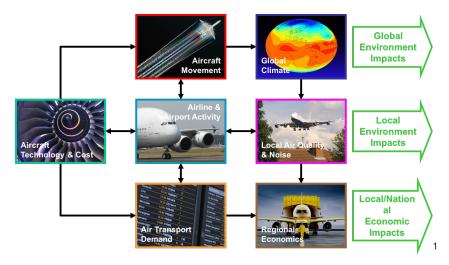
- Regional Economics
- 3 AIM in Practice
 - Fleet Replacement Policy
 - Policy Results
- 4 Ongoing and Future Developments
 - Team
 - References

Aviation Integrated Modelling

- AIM global aviation policy assessment tool in development since 2007 and used in numerous publications.
- Allows for comprehensive analyses of aviation, environment and economic interactions, at both local and global level.
- Composed of a set of inter-linked modules modelling key elements of global aviation.
- Current work: Update for an Open Source release to the community ~ Oct 2016.

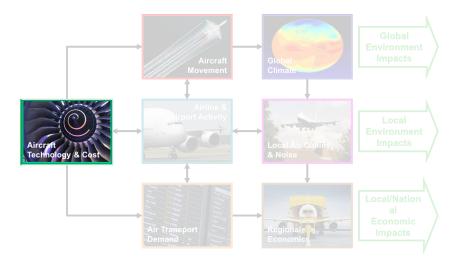
AIM Project History

- In development since 2007
- Involvement of large number of institutions and collaborators



Imperial College Southampton

With funding from:


AIM Architecture

AIM Architecture

- Modular design has a number of benefits:
 - Temporal and spatial resolution can be tailored to the application.
 - ▲ Modules can be run independently.
 - Permits extensions and developments of the capabilities of the different modules.
 - ▲ Each module is an input site for policy levers.

Aircraft Technology and Cost

Aircraft Technology and Cost

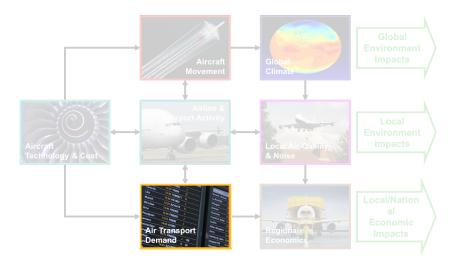
- Simulates fuel burn, emissions and operating costs by stage length and load factor for airframe and engine technologies to 2050.
- Fleet aggregated into 3 categories based on size:
 - ▲ < 199, 190-300 seats, > 300 seats
- Fuel burn and emissions costs:
 - ▲ below 3,000ft estimated from ICAO Exhaust Emission Data, LTO cycle
 - ▲ above 3,000ft estimated using EUROCONTROL Base of Aircraft Data
- Non-fuel related operating costs estimated using US DOT form 41 airline financial data adjusted for global differences based on ICAO data.

Future Technology

A range of advanced technologies are considered to become available:

Biofuels:

20-50% blend possible by 2020

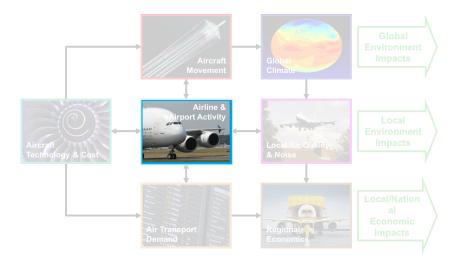

- New Aircraft technology:
 - Fuel burn of new aircraft models improves 1% per year
 - ATM improvements 4% decrease in fuel burn globally
 - Retrofits, e.g. winglets

Tech	Year	Reduction
Composite Evolutionary Replacement Narrowbody	2025	22%
Open Rotor Narrowbody	2025	35%
Blended Wing Body Widebody	2037	30%

Aircraft Technology and Cost

- Airlines make decision to invest in current or future technology based on cost.
- For alterations to existing aircraft three year payback period is used.
- For new aircraft types Net Present Value model is used.
- Parameters derived from financial reports and vary by region
- Effective payback for new aircraft in US ~ 7.5 years, Africa ~ 6.2 years.

Air Transport Demand


Air Transport Demand

Simulates O-D demand for 700 cities (1127 airports) - accounting for 95% of global scheduled RPK. Gravity Equation:

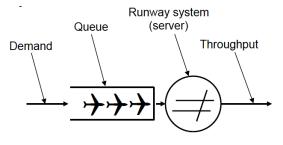
$$D_{i,j} = (P_i P_j)^{\alpha} (I_i I_j)^{\gamma} e^{\delta A_{i,j}} e^{\epsilon B_{i,j}} e^{\phi S_{i,j}} (\overline{\mathsf{Fare}}_{i,j} + \theta_1 \overline{T}_{i,j} + \theta_2 \overline{\mathsf{Delay}}_{i,j})^{\tau}$$

- Population and income are assumed to grow according to forecasts from the MIT Integrated Systems Model for the US CCSP.
- Demand growth rates predicted consistent with industry projections ~ 5%
- Fare and delay feedback from Airline and Airport Activity Module.

Airline and Airport Activity

Airline and Airport Activity

Forecasts the air traffic required to satisfy the demand projected by the demand module and resulting delay.

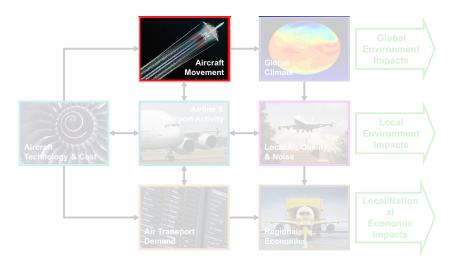

- Aircraft choice modelled by Multinomial Logit model:
 - ▲ Segment passenger demand
 - ▲ Stage length
 - ▲ Type of route (hub-spoke, etc)
- Average delay at airport predicted based on schedule and airport capacity.
- Base year network applied to all forecasts
 - ▲ No network change modelled

Modelling Fares

- Real world airline fare setting governed by complex revenue management in order to capture consumer surplus.
- Instead, average city-pair fares estimated assuming constant rate of return:
 - ▲ Ratio of operating cost and fares remains constant
 - ▲ Rate of return does not vary significantly across most networks
 - Tight linear relationship between observed operating cost per RPK and observed yield
 - ▲ In many market network-wide rate of return is low, suggesting these markets experience high fare competition.

Modelling Delay

- Runways typically primary bottleneck in system
- Delays resulting from airport capacity constraints modelled using queueing theory


Delays affect airline costs and passenger travel time

Based on airport capacities (aircraft per hour)

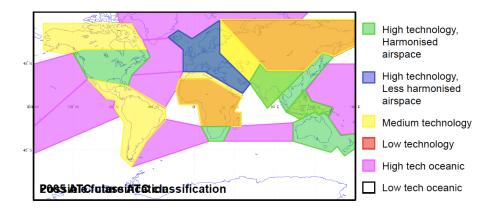
²Evans 2008

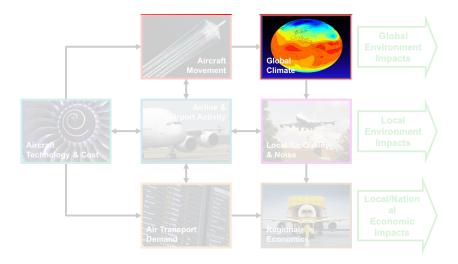
²

Aircraft Movement

Aircraft Movement

Simulates location of emissions released from aircraft in flight, accounting for ATM inefficiencies

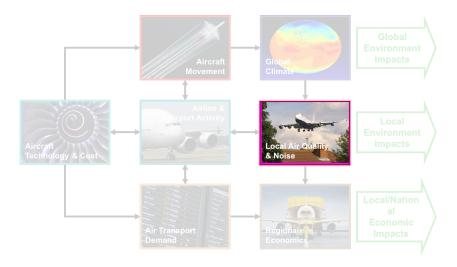

- Calculate optimal routes between airport pairs, great circle.
- Add inefficiency factors to account for air traffic control
- Inefficiency factors vary by region and by time


Aircraft Movement

- Inefficiency factors defined for different world regions
- Optimal routes degraded by restrictions (military, weather), conflict avoidance (separation minima)

≜UC

Global Climate Module

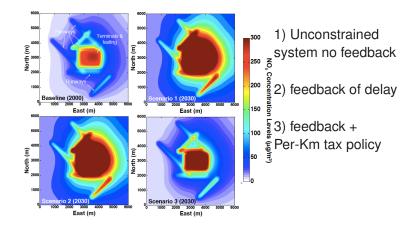

Global Climate Module

- Takes aircraft emissions from Airport Movement module and determines impact on global climate system.
- Three possible configurations of reducing complexity
 - ▲ Global climate model
 - Atmospheric circulation, applied chemistry transport, radiative forcing -> future meteorological conditions
 - ▲ Chemistry transport model
 - Atmospheric circulation, applied chemistry transport
 - Offline radiative forcing and external meteorological conditions
 - ▲ Simple parametric model

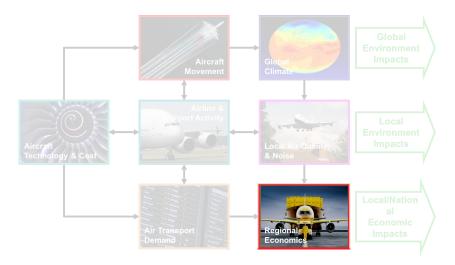
Parametric version of chemistry transport model

 Allows large number of sensitivity studies at low computational cost

Local Air Quality and Noise


Local Air Quality and Noise Module

Simulates dispersion of critical pollutants (NO_x, O₃, PM)


- Emission dispersion impact parameter estimated using meteorology parameterization
 - ▲ LTO time, emissions and path inputs from Airline and Airport Activity Module
- Emissions concentrations estimated using dispersion model
 - Dispersion impact parameter and source parameter (from source pre-processing) impacts
- LAQ contours estimated using atmospheric chemistry model based on emission concentrations
- Noise contours estimated using Industry Noise Model
- Outputs:
 - ▲ NO_x, NO₂, PM₁₀ and PM_{2.5} concentrations, noise contours/population impacts

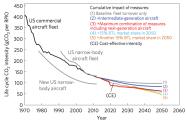
LAQ Chicago O'Hare

Annual local NO_x emissions under 3 scenarios:

Regional Economics

Regional Economics Module

Positive regional impacts:


- ▲ Direct (e.g. jobs at the airport)
- ▲ Indiret (e.g. jobs at local hotels, business relocation)
- ▲ Induced (e.g. jobs at suppliers of local hotels)
- Negative regional impacts:
 - ▲ Local air pollution (NO_x, SO_x, PM_{2.5}) health impacts
 - ▲ Noise around airports lowers property values
 - ▲ Visual intrusion, landscape degradation
 - ▲ Climate impacts through contrails and emissions
- Conversion factors used to convert pollutant concentration or marginal effect of emissions into health effects/economic costs

AIM in Practice

AIM can be used to:

- Simulate impacts of new technologies and changes to fleet composition on CO2, cost reduction etc.
- Test new policy measures, carbon tax.
- Assess impacts of traffic growth in light of constrained airport capacity.
- Local effects such as noise.

Example Case Study

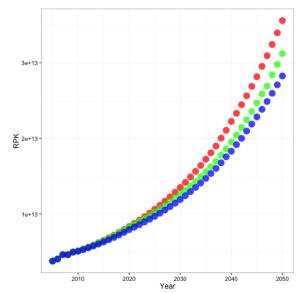
Integrated modelling allows us to test global aviation response to theoretical climate mitigation policies

- Replacing older aircraft with newer fleet could significantly improve emissions.
- Policy: Revenue from worldwide aviation carbon tax used:
 - ▲ to fund fleet replacement for all airlines.
 - ▲ to promote technology transfer to developing countries.

Future Scenarios

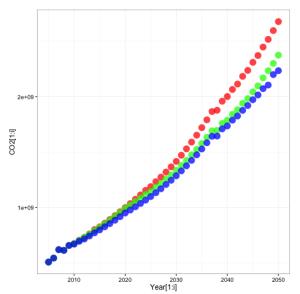
- MIT Integrated Global Systems Model (IGSM)
 - ▲ High GDP growth, high oil price
- Model for Evaluating the Regional and Global Effects of GHG Reduction Policies (MERGE)
 - ▲ Medium GDP growth and oil price
- Joint Global Change Research Institute's Climate Assessment Model (miniCAM)
 - ▲ Low GDP growth, low oil price

Future Scenarios


	Scenario	US	Western Europe	Eastern Europe - For- mer Soviet Union	China	India	Japan	Africa - Latin America -Rest of the world
Pop growth (%/year)	IGSM	0.6	-0.2	-0.3	0.3	0.9	-0.2	1.3
	MERGE	0.4	0.0	-0.1	0.3	0.7	0.0	1.1
	MiniCAM	0.6	0.0	-0.1	0.2	0.8	-0.2	1.2
GDP/capita (%/year)	IGSM	2.2	2.9	4.0	4.0	2.5	3.1	1.9
	MERGE	1.4	1.7	3.4	4.5	4.3	1.3	2.5
	MiniCAM	1.3	1.0	3.3	5.1	4.8	1.2	1.9

		2020	2040
Oil price (\$2005 per barrel)	IGSM	106.0	153.9
	MERGE	82.4	123.6
	MiniCam	73.7	92.2

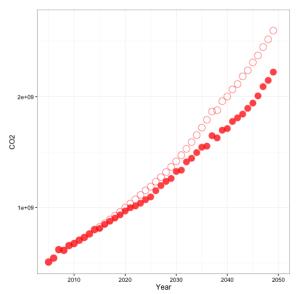
- Result in demand growth rates consistent with sector wide projections:
 - ▲ IGSM 5.1%, MERGE 4.8% and MiniCAM 4.6%
- **G**lobal average CO_2 emissions growth of 3.8%, 3.5% and 3.1%.



Base Scenario Growth in RPK

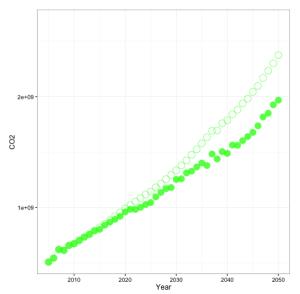
Base Scenario Growth in CO2 Emissions

Fleet Replacement subsidized by Carbon Tax Policy

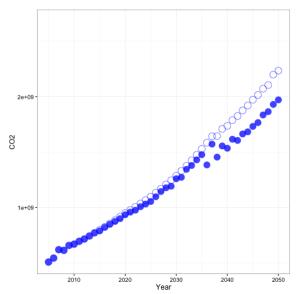

- Replacing all current aircraft with the latest technology could produce a 10% reduction in aviation CO₂ (Dray 2014).
 - ▲ However, extremely unlikely that large numbers of aircraft will undergo early retirement without incentives.
- Simulate a policy to subsidize fleet renewal via carbon tax
 - ▲ Begins 2015 replacement of all aircraft over 30 years old
 - ▲ 2015-2025 threshold is tightened to retirement age of 20 years
 - Carbon tax calculated based on numbers and types of aircraft over the age threshold
 - Changes each year
 - Two variations:
 - ▲ Global fleet subsidized
 - ▲ Only developing countries subsidized (global tax)

Policy Effects

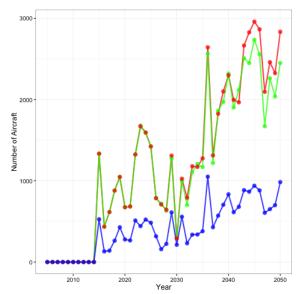
- Policy has three primary effects
 - ▲ Funds fleet renewal with advanced technology
 - ▲ Increase passenger costs and reduce demand
 - ▲ Airlines incentivised to apply cost-effective mitigation measure to reduce emissions and lower costs i.e. maintenance.



Policy Results IGSM CO2 Emissions



Policy Results Merge CO2 Emissions



Policy Results MiniCAM CO2 Emissios

Fleet Replacement

Global Policy Evaluation

Compared to no-policy RPK declines 10-12% by 2050.

- Long haul affected more.
- ▲ flights <500 miles 6-7% decline
- ▲ flights >500 miles 11-13% decline
- Total decrease in CO2 emissions of 29-34% by 2050.
 - ▲ $\sim \frac{1}{3}$ comes from reduction in demand ▲ $\sim \frac{1}{3}$ new technology ▲ $\sim \frac{1}{3}$ increased adoption of biofuels

Regional Policy Evaluation

- Regional policy leads to reduction in CO_2 emissions of $\sim 25\%$
- Less effective than global policy
- Costs are much lower
 - ▲ Global policy cost of reducing lifecycle CO₂ by 1 tonne \$40-80 /tCO₂
 - ▲ Regional policy cost of reducing lifecycle CO₂ by 1 tonne \$20-50 /tCO₂

Future Developments

- Update base year of AIM from 2005 to 2015.
- Release open source version, ~ Oct 2016.
- ACCLAIM, Airport Constraint Consequences Leveraging AIM
 - ▲ Combines AIM with Airline Response Model (ARM).
 - ARM: simulates competitive game between airlines to maximise profit.
 - ▲ Develop a fare model estimating average airline itinerary fares.
 - ▲ More advanced passenger choice model.
- Conduct simulation studies to assess the impact of future constrained airport capacity on aviation network.
 - ▲ Example Heathrow/Gatwick additional runway.

Team

UCL:

Prof. Andreas Schafer Dr. Lynnette Dray Dr. Maria Kamargianni Dr. Anna Mavrogianni Dr. Antony Evans (NASA) Dr. Steven Barrett Mr. Bojun Wang Southampton: Prof. Rod Self Dr. Antonio Martinez Imperial: Prof. Jon Polak Dr. Aruna Sivakumar

References

www.aimproject.aero

- Costs of Mitigating CO₂ Emissions from Passenger Aircraft. Schafer et al. 2015
- Airline Fleet Replacement Funded by a Carbon Tax: An Integrated Assessment. Dray et al. 2014.
- Rapid Modelling of Airport Delay. Evans. 2008.
- Modelling Environmental and Economic Impacts of Aviation: Introducing the Aviation Integrated Modelling Project. Reynolds et al. 2007.

Thank you