

Aircraft Engine Sustainability

Life Cycle Environmental Impact Reduction

Russell Stratton May 20th 2016

SUPPORT

INNOVATION

 \mathbb{N}

PEOPLE

EXPORT CLASSIFICATION

Check if presentation contains no technical data	Χ	or mark export classification
below:		

Classification	
1. Canadian ECL(s):	
2. ECCN(s):	
3. P-ECCN(s):	
4. USML (ITAR):	
5. P-USML:	

If unsure of classification, contact the originator of the information or your <u>local BAER</u>. For more details, please view the <u>classification instructions</u>.

PROPRIETARY NOTICE

This document is the property of Pratt & Whitney Canada Corp. ("P&WC"). You may not possess, use, copy or disclose this document or any information in it, for any purpose, including without limitation to design, manufacture, or repair parts, or obtain TCCA, FAA, or other government approval to do so, without P&WC's express written permission. Neither receipt nor possession of this document alone, from any source, constitutes such permission. Possession, use, copying or disclosure by anyone without P&WC's express written permission is not authorized and may result in criminal or civil liability.

A MAJOR CANADIAN EMPLOYER

Corporate headquarters Engine development, production and aftermarket

GLACIER Cold weather testing and research facility

Maintenance, Repair & Overhaul

Component manufacturing

GLOBAL SERVICE NETWORK

Export Classification: no technical data

For planning purposes only 4

DEPENDABLE

GLOBAL CUSTOMER BASE 30+ major aircraft OEMs

EMPOWERING THE FUTURE

Our sustainable product journey continues...

Export Classification: no technical data

THE RISK IMPERATIVE

Long-term Environmental

- § Political Instability
- s Floods/Mudslides
- \$ Wildfires
- \$ Drought
- \$ Storms Damage
- \$ Dying Coral
- \$ Infrastructure Loss
- \$ Climate Refugees
- \$\$\$\$ \$\$\$\$ \$\$\$ \$\$
- \$ Biodiversity
- \$ Glacier Loss
- **\$** Famine
- Water Scarcity
- \$ Ecosystem Loss
- \$ Political Instability
- Diseases
- Sea Level Rise

By 2050, Climate Change could cost Canada \$21 – \$43 billion per year

Product and Operations

- Over 75% of Canadians live in a province with carbon pricing
- Carbon price growth is inevitable
- Customer operating costs (fuel and future carbon offsetting)
- Material price volatility and scarcity risk
- Manufacturing energy intensity and material efficiency

For planning purposes only

SUSTAINABILITY AND BUSINESS

88% of investors surveyed <u>see sustainability as an</u> <u>opportunity</u> for competitive advantage.

78% as a differentiator in determining industry leaders

91% believe that sustainability should be **<u>better embedded</u>** <u>into discussions between companies and investors</u>

88% believe that they should pay greater attention to sustainability in company valuations

Source: United Nations Principles for Responsible Investment

Data from over 10,000 mutual funds and 2,800 separately managed accounts over the last seven years indicate: investing in <u>sustainability has</u> <u>usually met and often exceeded the performance of comparable</u> <u>traditional investments</u>, both on an absolute and risk-adjusted basis across asset classes and over time

Source: Morgan Stanley Institute for Sustainable Investing

UTC INFLUENCE / ALIGNMENT

2020 Goals Released to Public

✓ UTC Continued Commitment

✓ PWC's Influence: Continue to Lead; UTC's "Sustainability Lab"

OUR 2028 VISION

Fleet Emissions

Significantly reduce our 52,000+ engine fleet impacts

Sustainable Products Designed, manufactured and serviced to minimize impacts

Zero Waste Sites All by-products 100% recycled

Ű

Carbon Neutral Sites Only sustainable energy sources

Influence Be a force for positive change Be the best aerospace company FOR the world

2028 SUSTAINABILITY GOALS

Scope and Relationships

 Sustainable Products Ecodesign Supplier sustainability MOCs in product Material intensity Design recyclability Take back policies 		 Zero Waste Industrial recycling Domestic recycling MOCs in manufacturing Factory water consumption Non GHG factory emissions
Take-back policies	 Positive Influence Reputation Employee engagement Suppliers / partners Industry leadership Community engagement Corporate policies 	
Emissions Fleet emissions Fleet oil consumption Noise Alt. energy compatibility 		 Carbon Neutral Renewable energy Energy efficiency Operations GHGs

2028 SUSTAINABILITY GOALS

Scope and Relationships

 Sustainable Products Ecodesign Supplier sustainability MOCs in product Material intensity Design recyclability Take-back policies 	Positive Influence	 Zero Waste Industrial recycling Domestic recycling MOCs in manufacturing Factory water consumption Non GHG factory emissions
	 Reputation Employee engagement Suppliers / partners Industry leadership Community engagement Corporate policies 	
 Emissions Fleet emissions Fleet oil consumption Noise Alt. energy compatibility 		 Carbon Neutral Renewable energy Energy efficiency Operations GHGs

LIFE CYCLE ANALYSIS (LCA)

Methodology

Assesses environmental impacts from material extraction to end of life

Can vary in scope (company to product to subcomponent)

Are used to identify the key environmental impacts (hotspots)

LIFE CYCLE ASSESSMENT

Company Level

Our footprint clearly extends beyond our four walls

Export Classification: no technical data

FLEET EMISSIONS

• P&WC sees significant future growth in fleet emissions

- P&WC fleet emissions reduction strategies include: New Product Introduction, Upgrades, Retrofits, Operational Efficiency
 - Operational efficiency: near-term lever to reduce fleet emissions
 - Indirect support: industry adoption of sustainable alternative jet fuels

OPERATIONAL EFFICIENCY

Fuel efficiency manuals

Analytics of aftermarket engine health management operational data

• By 2017, help customers identify more efficient operating practices through mission analysis and fuel burn trends

TECHNOLOGY DEVELOPMENT

Major Portion of Technology Portfolio links to Sustainability:

- Advanced Manufacturing (improved buy-to-fly)
- Improved fuel efficiency
- Materials of Concern elimination (REACH)
- Alternate fuels
- Advanced Combustion Technologies
- Oil Consumption reduction
- Noise reduction technologies
- Thermoplastics vs Thermosets
- Optimized aircraft operational algorithms
- Disruptive Technologies

Biofuel commercial Flight (GARDN)

Additive DPHM

LIFE CYCLE ASSESSMENT (LCA)

Company Level

Our footprint clearly extends beyond our four walls

Export Classification: no technical data

LIFE CYCLE ASSESSMENT (LCA)

Product Level

Impact per pound

GHG impact heavily dependant on types and quantities of metals used

Carbon footprint of different metals depends on how and where they are extracted, prepared, heat treated, and machined

ECODESIGN – P&WC APPROACH

Through both process and execution

PROCESS

 Sustainable execution requires cascaded accountability down from leadership, to program leaders, to program execution, creating a mandate for day-to-day work

P&WC is targeting its engineering standard work to build sustainability into our core business activities

ECODESIGN – P&WC APPROACH

Through both process and execution

EXECUTION

- Environmentally focused design requirements
- Building capability and knowledge to explore trade space between eco-design KPI and conventional performance metrics
 - Supporting calculation methods, benchmarking, best-in-class standards
 - Significant potential improvements identified within existing products

END-OF-LIFE

A future business necessity

Years Remaining
72
1700
750
42
83
36
69

Approximately 2.3 million lbs of metal reaches end-of-life each year in overhaul and retirement of P&WC engines

Blisks

Impellers

Diffusers **HPC** Cases

Cases

Stators

Waspaloy

- HP disks LP disks
- PT disks

Inconel – Nickel - Cobalt

- Cases
- Blades Shrouds
- Stators
- Vanes
- C.C liners Exhaust

Titanium

Ferrous Metal

Mg Hsg LP Shafts Small parts

- Price volatility (*medium term*)
- Supply stability (long term)

END-OF-LIFE

BEST PRACTICES AND KEY PROCESSES

WINNING BEST PRACTICES

- I. Management Commitment
- II. Aggressive Targets & Assignments
- III. Embedded Processes & Protocols
- IV. Proven & Continuous Return
- V. Clear & Consistent Communication
- VI. Company Wide Engagement
- VII. Dedicated R&D / Innovation

Corporate Strategy

Compelling Vision R&D Impact metrics and tracking Sustainable development structure

Individual Contributors

Employee Performance Reviews Dedicated resources SD Champions Training programs

Business Processes

Budgets Green process improvement Supply Chain Management Standard Work Design metrics and targets

Making Sustainability Stick – A Worthy Challenge

Export Classification: no technical data

"When you are being asked to make the business case for sustainability.. ...perhaps ask them to make the business case for being un-sustainable"

Ray Anderson

1934 - 2011

WWW.PWC.CA

