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Boundary Layer Ingestion (BLI) Reduces Wasted Energy
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I Basic Idea: propulsor ingests and reaccelerates airframe boundary layer

I Less wake and jet kinetic energy for the same net force→ less power
needs to be added to the flow by propulsor→ less fuel burn

Uranga et al., Boundary Layer Ingestion Benefit of the D8 Aircraft
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Main Messages: Benefit, Challenges, and Opportunities

I Aerodynamic benefit: reduced propulsor mechanical flow power (∼10%)

I Challenges
I Configuration: “can you explain how BLI reduces drag?”
I Engine: effect of inlet distortion on efficiency, operability, aeromechanics

I Opportunities
I New tools: flow power analysis, non-axisymmetric throughflow method
I Design: non-axisymmetric stator for distortion tolerant turbomachinery
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Aggressive NASA Targets for N+3 Performance (2008)

I Phase I (2008-2010): concepts and technologies to reach goals
I Phase II (2010-2015): investigation of key technologies
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Phase I: Conceptual Design of D8 Advanced Civil Transport

I Cruise Mach number 0.72: reduced drag, unswept wings
I “Double bubble” fuselage: increased carryover lift, pitch-up moment
I BLI: engines ingest 40% fuselage boundary layer (17% total airframe)

www.aurora.aero/d8
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Morphing Chart: Path of Configuration Optimization
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I BLI provides largest single-step reduction in fuel burn

Greitzer et al., N+3 Aircraft Concept Designs and Trade Studies, Final Report
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Phase II: Wind Tunnel Assessment of D8 BLI Benefit
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Phase II: Wind Tunnel Assessment of D8 BLI Benefit

I Comparison of powered models in BLI and non-BLI configurations
I Measurements of net force, power input, stagnation pressures and

velocities at propulsor inlet and exit
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Contributions in Two Research Areas

1. Configuration aerodynamics (external flow problem)
I Identification of relevant flow mechanisms associated with BLI
I Assessment of BLI benefit, inlet distortion challenges

2. Propulsor performance with BLI distortion (internal flow problem)
I Non-axisymmetric throughflow method for fan distortion response
I Definition of design attributes for BLI fan stages
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“How does BLI reduce drag?”

Drela, Power Balance in Aerodynamic Flows

I Without BLI: engine thrust must balance airframe drag, both well-defined

I With BLI: definitions of thrust and drag ambiguous
I Propulsor mass flow applies viscous force to airframe
I Mutual interaction forces due to static pressure perturbations
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“How Does BLI reduce drag?” What is “drag”?

Drela, Power Balance in Aerodynamic Flows

I Without BLI: engine thrust must balance airframe drag, both well-defined

I With BLI: definitions of thrust and drag ambiguous
I Propulsor mass flow applies viscous force to airframe
I Mutual interaction forces due to static pressure perturbations
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“How Does BLI reduce drag?” What is “drag”?
Do We Even Care?

Drela, Power Balance in Aerodynamic Flows

I Without BLI: engine thrust must balance airframe drag, both well-defined

I With BLI: definitions of thrust and drag ambiguous
I Propulsor mass flow applies viscous force to airframe
I Mutual interaction forces due to static pressure perturbations

I Fuel burn related to power added to flow by the propulsor
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Aerodynamic Analysis Based on Power Balance

FX

Φsurf

Φwake Φvortex

ΦjetPK

I Power added to flow by propulsor (PK ) balances lost power due to
dissipation (Φ) in shear layers, jets, vortex system

PK − Φjet︸ ︷︷ ︸
net propulsive power

= Φsurf + Φwake + Φvortex︸ ︷︷ ︸
total airframe dissipation

−FXV∞

I Can estimate power requirements from isolated airframe performance

Drela, Power Balance in Aerodynamic Flows
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Physical Mechanisms of BLI Aerodynamic Benefit

FX

Φsurf

Φwake Φvortex

ΦjetPK

1. Jet dissipation reduction:
Power added to boundary layer flow with lower average velocity
→ reduced jet velocity, wasted kinetic energy

2. Wake dissipation reduction:
No wake mixing in ingested flow
(book-keeping: downstream losses clearly defined as jet dissipation)
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Propulsive Efficiency as a Measure of Jet Dissipation

I Rational definition in terms of power and dissipation (lost power)

ηp ≡
useful power delivered to airframe

power added to the flow
=
PK − Φjet

PK

I BLI increases propulsive efficiency
I Power ∼ ṁ∆KE added to fluid with V < V∞
I Reduced jet velocity and jet dissipation ∼ ṁ(Vjet − V∞)2

I BLI Power reduction: airframe dissipation reduction and propulsive
efficiency increase

PK =
Φsurf + Φwake + Φvortex

ηp

airframe dissipation (wake) ↓
propulsive efficiency ⇑⇑
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BLI Benefit Depends on Propulsor Sizing
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BLI Benefit Depends on Propulsor Sizing
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I BLI yields decreased flow power, decreased mass flow (engine size and
weight), or combination of both
⇒ No unique comparison of BLI and non-BLI propulsion systems

Hall et al., Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
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Options for Increasing Propulsive Efficiency

T
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Larger Fan

I Decrease FPR→ increased weight and drag, installation challenges
I BLI→ step change at fixed size, other installation challenges

Uranga et al., Power Balance Assessment of BLI Benefits for Civil Aircraft
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Primary BLI Benefit: Increased Propulsive Efficiency
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I BLI yields higher propulsive efficiency for given propulsor mass flow
I Small wake dissipation reduction (∼1% of total airframe dissipation)

Hall et al., Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
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I BLI yields higher propulsive efficiency for given propulsor mass flow
I Small wake dissipation reduction (∼1% of total airframe dissipation)

Hall et al., Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft
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Experimental Assessment of Aerodynamic BLI Benefit
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I Measured power vs net force in BLI and non-BLI configurations
I Propulsive efficiency benefit; negligible change in airframe dissipation
I BLI benefit: 8.6% at equal nozzle area, 10.3% at equal mass flow

Uranga et al., Aircraft and Technology Concepts for an N+3 Subsonic Transport, Phase 2 Final Report
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Measurements Taken Over Range of Operating Conditions
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Variations in Inlet Stagnation Pressure Distortions

Simulated Start of Climb
(high power)

Simulated Top of Climb

Simulated Cruise Simulated Max CL Descent
(low power)
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Challenge: Engine Operation with Inlet Distortion

I Fan efficiency (primary focus)
I Part of the fan always operating at “off-design” conditions
I Do fan losses outweight external aerodynamic benefit?

I Current fans estimated to lose 1-2% efficiency with BLI type inlet distortion
I Can we design the fan to operate better with distortion?

I Engine stability: decreased fan stall margin, distortion fed into LPC

I Aeromechanics: unsteady once-per-revolution force on BLI fan blade

I Noise: BLI changes generation and propogation mechanisms
Gunn and Hall, Aerodynamics of Boundary Layer Ingesting Fans

Florea et al., Aerodynamic Analysis of a Boundary Layer Ingesting Distortion-Tolerant Fan
Perovic et al., Stall Inception in a Boundary Layer Ingesting Fan

Defoe and Spakovszky, Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors
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New Capability Developed for Fan Distortion Analysis

Specified inlet
total pressure
distortion Rotor, stator blade row

source distributions

I Non-axisymmetric throughflow method
I Design characterized by velocity triangles, detailed geometry not needed
I Steady calculation on annular domain (grid size ≈ single passage RANS)

I Parametric study on effect of design on distortion response
I Rotor: Design point flow and loading coefficient, radial loading distributions
I Stator: axial location, circumferential variations in exit flow angle

Hall, et al., Analysis of Fan Stage Design Attributes for Boundary Layer Ingestion
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Analysis Captures Relevant Behavior with Distortion

-5 0 5
Fan inlet total

pressure coefficient
pt,inl − pref
ρU2

mid

Rotor incidence angle

βinl − (βinl)θ−avg

Fan pressure
rise coefficient
pt,out − pt,inl

ρU2
mid

Fan exit total
pressure coefficient

pt,out − pref
ρU2

mid

(degrees)

0.4 0.5 0.60.0-0.1-0.2 0.7 0.8 0.9

I Upstream flow redistribution→ significant incidence ranges (>10◦)
I Fan “pulls harder” on low velocity fluid→ top-to-bottom redistribution
I Incidence increase near tip due to reduced axial velocity,

decrease/increase near hub due to co-/counter-swirl

I Non-uniform fan work input (pressure rise)
I Increased incidence→ increased pressure rise
I Distortion attenuation near tip, amplification near hub
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Summary of Parametric Study Findings

I Goal: reduce non-uniformity in velocity changes across blade row
→ reduce blade operating point excursions and unsteady forcing

I 1D: May be better to limit amount of fan rotor distortion attenuation
I Reduce co- and counter-swirl induced by upstream redistribution
I Distortion in jet has negligible effect on propulsive efficiency benefit

I 2D: Radial loading distribution had smallest effect on distortion response

I Non-axisymmetric stator geometry to improve fan efficiency
I Trailing edge: use circumferential variations in exit swirl to set up favorable

rotor back-pressure (“destructive intereference” with inlet distortion)
I Leading edge: set metal angle to accept rotor exit distortion
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Concluding Remarks

I Benefit : BLI enables step change reduction in aircraft fuel burn

I Challenges: unexplored design space
I No clear definition of propulsion system requirements
I Engine inlet distortions for all flight conditions, including cruise

I Opportunities: new technologies lead to new ways of thinking
I Tools: power balance (external), source distribution model (internal)
I Design: non-axisymmetric turbomachinery to mitigate distortion effects
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Progress in BLI Propulsion for Civil Aviation
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Strong Interactions to Advance Technology
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I Role of fundamental research: thinking outside the box
I Identification and early development of breakthrough technologies
I Teaming with experts and stakeholders increases credibility and impact

Drela, Simultaneous Optimization of the Airframe, Powerplant, and Operation of Transport Aircraft
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Concluding Remarks

I Collaboration: key requirement for addressing the difficult challenge of
reducing the impact of aviation on climate change

I Benefit : BLI enables step change reduction in aircraft fuel burn

I Challenges: moving outside the box
I No clear definition of propulsion system requirements
I Engine inlet distortions for all flight conditions, including cruise

I Opportunities: new technologies lead to new ways of thinking
I Tools: power balance (external), source distribution model (internal)
I Design: non-axisymmetric turbomachinery to mitigate distortion effects
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