DLR Contributions to the Development of Engine-Airframe Integration Concepts for Environmentally Acceptable and Economically Viable Transport Aircraft

Arne Stuermer DLR Institute of Aerodynamics & Flow Technology Braunschweig, Germany

Knowledge for Tomorrow

5th UTIAS International Workshop on Aviation and Climate Change May 18-20, 2016 University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada

DLR Institute of Aerodynamics & Flow Technology Engine Integration Activities

Turbofans:

- Integration activities since 1990s
- Analysis and design of installed through flow nacelles & turbo powered simulators
- Experimental & numerical work (internal, DLR-ONERA, EU, Lufo, DLR-RRD, US)
- Processes analysis and optimization of under wing & rear mounted installations

Propeller & CROR:

- CFD-based open rotor analysis experience built up during the past 15 years
- Propeller: cooperation with Airbus
- CROR activities since 2007: internal, Rolls-Royce, Airbus, EU-JTI Clean Sky

Maturation of DLRs CFD/CAA Process Chain for High Quality Aerodynamic & Aeroacoustic Performance Predictions of Installed CROR Engines

Arne Stuermer DLR Institute of Aerodynamics & Flow Technology Braunschweig, Germany

5th UTIAS International Workshop on Aviation and Climate Change May 18-20, 2016 University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada

Knowledge for Tomorrow

Introduction & Motivation: Contra-Rotating Open Rotor (CROR)

Tip Vortex

Blade Wakes

Potential Flow

- Notable fuel burn benefit for CROR vs comparable tech TF
- Current research activities primarily address noise, installation effects, certification & overall aircraft economic viability
- ICAO Chapter 14 rules & research progress have practically eliminated noise as CROR show-stopper
- But noise still a design driver, mandating good prediction tools
- Potor-rotor-interactions are the dominant noise sources

The EU Clean Sky JTI SFWA Project

- Generic Airbus-designed AI-PX7 CROR is the focus engine configuration in JTI-SFWA [2]
 - 11x9 bladed configuration
 - 10% aft rotor diameter crop

 Stuermer, A. and Akkermans, R.: "Multidisciplinary analysis of CROR propulsion systems: DLR activities in the JTI SFWA project", CEAS Aeronautical Journal, 2014.
Negulescu, C.: "Airbus AI-PX7 CROR Design Features and Aerodynamics", SAE Int. J. Aerosp, Vol. 6, 2013.

JTI-SFWA Task 2.2.4.5: Installation Effects Analysis Z08 CROR Test Cases

- 1:7-scale Z08-CROR tested @ low-speed flow conditions in DNW-LLF
- Study of installation effects using isolated & semi-installed Z08-CROR test
 - Angle of attack
 - Pylon wake

	Mach	α [º]	n [rpm]	β _{75,F}	β _{75,A}
Isolated: R34P87D472	0.2	0	n _F =n _A		
Isolated: R34P87D473	0.2	3	n _F =n _A	Identical	Identical
Pylon: R21P28D206	0.2	3	n _F =n _A		

DLR-AS CFD/CAA Analysis: TAU-APSIM+ Process Chain

- Multidisciplinary simulations coupling aerodynamics (TAU-Code) & aeroacoustics (APSIM+-Code)
- TAU uRANS-simulations for aerodynamic- & performance analysis and input data for CAA
 - 2nd order dual time method for unsteady flows
 - 2nd order central scheme for spatial discretization
 - LUSGS time integration
 - SA turbulence model with vortical correction
 - Chimera & motion libraries for moving bodies
 - Simulations run using 360-720 CPUs
- DLR FW-H Code APSIM+ for the prediction of farfield noise emissions:
 - Use of the "permeable surface"-approach with uRANS-data on nacelle Chimera boundary

Numerical Approach: Mesh Philosophy & Generation

- Mesh family for a robust validation & parametric study [3]
- 5 block-structured ICEM-Hexa Chimera mesh blocks (Farfield, Front Sting, Aft Sting, Front Rotor, Aft Rotor)
 - Fine nearfield mesh to resolve acoustic installation & non-linear propagation effects in uRANS and enable variations in APSIM+ permeable surface placement
 - Particular focus on rotor-rotor-interface-mesh for optimal wake and tip vortex transfer
- "Optimized" mesh as base for additional test cases
 - Optimized boundary layer resolution & hybridunstructured Farfield-Mesh

	Coarse	Medium	Base	Opt	Pylon
Farfield	2x10 ⁶	6x10 ⁶	15x10 ⁶	13x10 ⁶	7x10 ⁶
Nacelle	10x10 ⁶	32x10 ⁶	76x10 ⁶	74x10 ⁶	55x10 ⁶
Sting	2x10 ⁶	8x10 ⁶	19x10 ⁶	18x10 ⁶	14x10 ⁶
Front Rotor	5x10 ⁶	19x10 ⁶	43x10 ⁶	36>	(10 ⁶
Aft Rotor	7x10 ⁶	23x10 ⁶	54x10 ⁶	44>	(10 ⁶
Total	26x10 ⁶	88x10 ⁶	207x10 ⁶	185x10 ⁶	154x10 ⁶

[3] Stuermer, A. and Akkermans, R.: "Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions", AIAA 2014-3133, Atlanta, GA, USA, 2014.

Numerical Approach: Robust CFD/CAA Validation Study of Spatial & Temporal Discretization

[3] Stuermer, A. and Akkermans, R.: "Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions", AIAA 2014-3133, Atlanta, GA, USA, 2014.

Aerodynamic Analysis AoA-Effect – Front Blade

DLI

Aerodynamic Analysis: Pylon-Effect – Front Blade

DLI

Aerodynamic Analysis: Installation Effects @ Front Blades

Aerodynamic Analysis: Installation Effects @ Aft Blades

Aerodynamic Analysis: Mean Performance - Validation

		lsolated α=0º	lsolated α=3º	Pylon α=3º
Front Rotor	T/T _{WTT}	0.9986	0.9967	0.9947
	P/P _{WTT}	0.9637	0.9629	0.9639
	η/η _{wττ}	1.0406	1.0384	1.0342
Aft Rotor	T/T _{WTT}	1.0066	1.0026	1.0073
	P/P _{WTT}	1.0029	1.0015	1.0071
	η/η _{wττ}	1.0079	1.0046	1.0024

- Very good match with WTT data
- Predictions of
 - Thrust to within <1% accuracy consistently
 - Power at <1%/<4% accuracy consistently
 - Practically no impact of temporal resolution

Aerodynamic Analysis: 1P-Loads Mean Performance - Validation

- Non-uniform inflow leads to loads د المعنية acting in the planes of the rotor
- Example: Vertical 1P-load of the front rotor for the pylon case
- 1P loads impact engine-airframe structural integration design and flight control/handling qualities

Front rotor vertical load development

Aerodynamic Analysis: 1P-Loads Mean Performance - Validation

		lso α=3º	Pylon α=3 ^o
Front Rotor	F _{1P} /F _{1P} ,WTT	0.9928	1.0132
	$\Delta\psi_{1P}=\psi_{1P}-\psi_{1P'WTT}$	1.6908°	4.3841°
Aft Rotor	F _{1P} /F _{1P} ,WTT	1.0683	1.1827
	$\Delta\psi_{1P}=\psi_{1P}-\psi_{1P},_{WTT}$	0.0848°	8.5569°

- Very good prediction accuracy for front & acceptable accuracy for aft rotor for isolated CROR at α=3°:
 - 1P-load magnitude predicted to <1%/~6%
 - 1P-phase angle shows deviation of ~1°
- Slightly larger deviations in 1P-predictions for semiinstalled CROR at α=3°:
 - 1P-load magnitude predicted to <1%/~18%
 - 1P-phase angle shows deviations of ~4º/~8º

Aeroacoustic Analysis: Validation Data and Specifications

- Validation of numerical results with acoustic data from DNW-LLF WTT
- In-flow traversing microphone array gives azimuthal directivity information

Aeroacoustic Analysis: Rotor Tones Impact of CFD Temporal Resolution

- APSIM+-runs using uRANS input at several temporal resolutions (720p & 2772p)
- Very good prediction of rotor tones, Δ~1dB
- Deviations versus WTT data generally increase with CFD data at lower resolution of 720p
 - 720p most likely an inadequate temporal resolution

Aeroacoustic Analysis: 1F+1A Tone Impact of CFD Temporal Resolution

- APSIM+-runs using uRANS input at several temporal resolutions (720p & 2772p)
- Good prediction of 1F+1A interaction tone directivity
- Small but evident improvement with higher CFD temporal resolution, Δ~1-2dB
- Shift in downstream directivity lobes in CFD/CAA: Probable impact of neglected non-linear propagation in propeller slipstream

Aeroacoustic Analysis: Aft Rotor Tone Installation Effect

- APSIM+-runs for all cases using uRANS input at highest temporal resolution (2772p)
- Good prediction of aft rotor tone for isolated CROR at α =0°
 - Scatter due to aft blade unsteady flow separation
- Trend of incidence effect well predicted & good agreement with WTT data, Δ~1-2dB
- Trend of pylon effect well predicted, reasonable agreement with WTT in terms of magnitude

Aeroacoustic Analysis: First Interaction Tone Installation Effect

- APSIM+-runs for all cases using uRANS input at highest temporal resolution (2772p)

r/D=27.23

- Reasonable prediction of interaction tone for isolated CROR at α =0°
- Very good agreement with WTT data for incidence case
- Small AoA impact, with trends generally well reflected
- Good match for pylon case directivity, with trends of pylon effect (practically none) well predicted

Conclusion & Outlook

- Good prediction of aerodynamic & aeroacoustic installation effects, in line with WTT
- Good maturity of CFD/CAA-approach for the analysis of performance and noise
- In parallel to research in the frame of SFWA, these tools have been applied to full CRORpowered aircraft configuration analysis in support of airframer design activities

- So where are we in 2016 with CROR

- In a low-cost fuel environment?
- With a need for a likely rather radical aircraft configuration change and remaining technological challenges in an industry that is risk averse?
- Where neo's and MAX's are just entering the market with low(er)-risk but still quite impressive aircraft level fuel burn improvements?
- In 2016, SNECMA will ground test a CROR demonstrator engine in Clean Sky
- Need to address an engine and aircraft level fuel burn discrepency
 - CROR engine sfc shows potential double digit advantage versus turbofan
 - But: Focus aircraft configuration for presumed lowest risk CROR integration suffers weight penalty due to empennage installation, long pylon, blade release shielding, ...
- Support of Airbus-led configuration analyses for CROR economic viability studies in the frame of follow-on activities in Clean Sky 2 project(s) with plans for FTD support in place

Application of Active Flow Control Technology to Enable Efficient UHBR Turbofan-Powered Aircraft Configurations

Sebastian Fricke, Anna Kröhnert, Vlad Ciobaca, Jochen Wild DLR Institute of Aerodynamics & Flow Technology Braunschweig, Germany

5th UTIAS International Workshop on Aviation and Climate Change May 18-20, 2016 University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada

Knowledge for Tomorrow

Introduction & Motivation: Challenges of UHBR Turbofan Airframe Integration

- Engine level SFC improvements through BPF increases don't always translate directly to improved aircraft level fuel burn due to weight, nacelle & installation drag penalties
- Challenging trade-off for large TF engine integration in underwing installation
 - Nacelle & Interference drag & aerodynamic interactions, pylon/system weight, ground clearance and landing gear height & weight
- Most likely scenario: Very close coupling of engine & wing
 - Biggest potential penalty could be the need for a large slat/leading edge device cutout with adverse impact on low-speed high-lift flight performance
- Aerodynamic performance may be recovered through the application of active flow control (AFC) technology

Introduction & Motivation: AFC Basic Principles & UHBR Integration Application

EU FP7 AFLoNext TS3: CFD & WTT Studies of AFC for Engine Integration

- Active Flow Loads & Noise control on next generation wing
- EU funded studies for various AFC applications, 2013-2017
- TS3: Technologies for local flow separation control applied in wing/pylon junction
 - Goal: Maturation through TRL 4 of AFC for this application
 - Focus on overall AFC system and integration with the airframe
 - Practically full-scale wind tunnel test at TsAGI (1/1.5 scale)
 - DLR work focused on aerodynamic design of the AFC system

- Focus configuration:
- 2.5D model with representative throughflow UHBR nacelle
- Based on DLR F15 configuration: b=5.2m, c=3.29m and sweep of 28°

AFC as an Enabler for UHBR Turbofan Integration: Outlook: EU Clean Sky 2 Studies

- Synergistic and continued work currently under way to further mature the application of AFC for UHBR engine intergration facilitation in the frame of the EU Clean Sky 2 program
- Full system view, extension to 3D full aircraft application ("retrofit" and design for AFC configurations) and planned culmination in flight test demonstration

DLR Contributions to the Development of Engine-Airframe Integration Concepts for Environmentally Acceptable and Economically Viable Transport Aircraft

Arne Stuermer DLR Institute of Aerodynamics & Flow Technology Braunschweig, Germany

Knowledge for Tomorrow

5th UTIAS International Workshop on Aviation and Climate Change May 18-20, 2016 University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada

