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Joachim André Raymond Sarr

Doctor of Philosophy

Graduate Department of Aerospace Engineering

University of Toronto

2023

New, efficient, realizable and hyperbolic interpolative-based first- and second-order max-

imum entropy, M1 and M2, respectively, moment closures for providing approximate

numerical solutions to the equation of radiative transfer in both gray (for M2) and non-

gray (for M1 and M2) participating media are proposed and thoroughly described. These

newly-developed interpolative closure techniques, in addition to retaining many of the de-

sirable mathematical and numerical properties of the original maximum entropy closures,

allow to accurately reproduce maximum entropy solutions at a fraction of the compu-

tational costs associated with the expensive direct numerical solution of the entropy

optimization problem. Furthermore, a new procedure for the particular implementation

of the proposed interpolative non-gray M1 and M2 closures in the context of a statistical

narrow-band correlated-k (SNBCK) model, is also presented. The latter is used for the

treatment of the strong spectral dependence exhibited by the absorption coefficient of

radiatively participating real gases. New boundary conditions, based on the method of

characteristics, are also proposed for use with the hyperbolic systems of moment equa-

tions arising from the M1 and M2 closures. The predictive capabilities of the M1 and

M2 closures are then assessed by comparing their solutions to those of the more com-

monly adopted first-order, P1, and third-order, P3, spherical harmonic moment closures,

as well as the popular discrete ordinates method (DOM). The latter is used as a bench-
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mark for the comparisons whenever exact analytical solutions of the radiative transfer

equation (RTE) are not available. A first set of assessments is performed by considering

tests problems involving both gray and non-gray radiative heat transfer within one- and

two-dimensional enclosures, with prescribed thermochemical quantities. Reactive flows

simulations of sooting laminar co-flow diffusion flames are then considered at various

pressures. The numerical results for most of the test cases studied in the context of

non-reactive flows show that the M1 maximum-entropy moment closure, in addition to

providing extra computational robustness relative to the P1 and P3 moment closures,

provides solutions of at least comparable accuracy to those of the P3 closure while in-

curring only a rather modest or minor increase in computational costs relative to the P1

spherical harmonic moment closure. In situations where streams of photons emanating

from different directions cross each other, the M2 closure represents a better alternative

to the M1 closure which cannot properly capture such phenomena and instead may yield

unphysical solutions, though the computational costs associated with former are observed

to be much more involved than those associated with the latter. For the high-pressure

reactive flow simulations performed as part of this thesis, the predictive capabilities of

the M1 and M2 closures were observed to be superior to those of the P1 closure for all the

pressures studied. On the other hand, the P3 closure was observed to be of comparable

accuracy to the M2 closure at low pressures. However, at higher pressures, both the M1

and M2 closures displayed a trend of increasingly improved accuracy compared to the P3

closure.
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Chapter 1

Introduction

1.1 Overview

The recent advances in computer science and engineering have paved the way for the more

widespread use of numerical modelling for studying the behaviour of physical systems

in a wide variety of applications. Despite still relying on empirical data in many cases,

whether it be for validation purposes or due to the lack of mathematical models for

the purpose of numerical simulations, numerical modelling is also very attractive as it

provides greater flexibility for evaluating the sensitivity of a given physical system to any

of the parameters that influence its behaviour.

The combustion of hydrocarbons is still today the main source of energy production

worldwide [2], despite its negative environmental impact. This, combined with the ob-

served depletion of hydrocarbons resources, and the lack of sufficient alternative resources,

has rendered the development of efficient and environmentally friendly combustion de-

vices even more important, whether it be for transportation systems or for industrial

energy production. Combustion is however a complex process which involves a wide va-

riety of phenomena including but not limited to fluid dynamics, chemical kinetics, heat

transfer. Among such phenomena, a primary focus over the past few decades has been

on gaining an improved understanding of the complex physical and chemical processes

governing the formation and evolution of soot [3–22].

In hydrocarbon combustion, concentrated regions of participating gases, such as carbon

1
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dioxide (CO2), water vapour (H2O) and carbon monoxide (CO), as well as clouds of small

particles such as soot, reach high temperatures. This in turn results in significant heat

losses to the surroundings, mainly via radiation, with soot accounting for a substantial

portion of such radiative heat losses. Since the net production rates of both soot and

gaseous species involved in combustion processes are strongly dependent on temperature,

it therefore follows that accurate predictions of species concentration and soot formation

rely heavily on detailed treatment of thermal radiation [2].

The equation governing the transport of radiative energy within a radiatively participat-

ing medium, which is commonly referred to as the radiative transfer equation (RTE) [23],

is a complex linear integro-differential equation with high dimensionality, since the distri-

bution of radiation is a function of seven independent variables. The high dimensionality

makes it impossible to derive general exact analytical solutions for the RTE in the gen-

eral case, and approximate solutions of the latter equation are generally obtained by

numerical means.

In addition to its spatial and temporal dependencies, the radiative intensity distribu-

tion is also a function of frequency or wavenumber and direction of propagation of ra-

diation. The spatial and temporal variations are commonly treated using traditional

finite-volume schemes for the solution of discrete governing equations over finite control

volumes [24–30]. A wide range of spectral radiation models have been developed for the

treatment of the spectral dependence of the distribution of radiative intensity, including

the state-of-the-art statistical narrow-band correlated-k (SNBCK) and the full spectrum

correlated-k (FSCK) techniques [31–34]. It should be emphasized that, as a result of the

high dimensionality of the RTE, the assumption of gray radiatively participating media

is also sometimes employed in order to cope with the spectral dependence of the radiative

intensity distribution. While simplifying the solution of the RTE, such an assumption,

which consists of neglecting the spectral dependence of the absorption coefficient, is how-

ever strongly violated in the context of real-gas radiation where such dependence is rather

strong and must be properly accounted for accurate predictions of radiation solutions.

The treatment of the directional dependence of the radiative intensity distribution, for

accurate and efficient predictions of radiative quantities, is still an active research subject.

Stochastic models such as the Monte Carlo method [35] have been reported to yield realis-

tic solutions of the RTE. The zonal method [36] has also been used widely for engineering
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radiative heat transfer calculations in multi-dimensional enclosures. Its implementation

is however limited to non-scattering media as it cannot be readily adapted for a scatter-

ing medium. Both of those methods are also somewhat limited in the sense that they

are not compatible with the usual numerical methods used for solving the appropriate

variants of the partial differential equations (PDEs) governing the flow and temperature

fields arising from the Navier-Stokes equations for a reactive mixture.

The discrete ordinates method (DOM) [37,38] and the finite-volume method (FVM) [39]

are some of the most widely used techniques for providing approximate solutions for the

RTE. The DOM is based on a direct discretization of the angular dependence of the

radiative intensity distribution, and is generally used in conjunction with space marching

iterative techniques [37] in order to provide numerical solutions of the RTE for any given

problem. While extremely efficient for problems involving relatively simple geometry

and simplified physics (e.g., non-scattering media), the space marching techniques can

become inefficient for problems with complex three-dimensional geometries and realistic

physics [29], as is the case in many practical applications.

The potential computational limitations of the DOM have motivated the investigation of

alternative approximate radiation solution techniques, such as the method of moments as

originally proposed by Grad [40] in the case of gas-kinetic theory. As the name suggests,

the method of moments solves directly for just a finite set of angular integrals of the

intensity distribution, instead of solving directly for the angular distribution, and this

can afford a reduction in computational costs compared to those associated with solving

directly the high-dimensional RTE. The resulting system of equations for the finite set of

moments can not be readily solved however, as there are more unknowns than equations.

Additional relations, or closure relations, between the highest-order moments (unknown)

and the known finite set of lower-order moments are required for closure. The closure

relations are generally obtained by making an assumption about the approximate form

for the underlying radiative intensity distribution in terms of the lower-order moments,

among the infinite family of possible angular distributions reproducing a given finite set

of angular moments.

The most common approach for providing closure to the finite-sized systems of angular

moment equations arising from the RTE is the spherical harmonic PN approximation

[41, 42], where N refers to the order of the approximation, or the order of the highest
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moments in the closed system of moment equations. In the PN moment closures, the

radiative intensity distribution is approximated by a truncated series expansion in terms

of a basis of orthogonal spherical harmonic functions. Analytical expressions for the

closing relations can be obtained, for any order N , by appropriately integrating the

approximate form of the distribution with respect to its angular variables. Nevertheless,

one of the main limitations of the PN moment closures is their inability to properly

capture highly anisotropic regimes. In fact, in such regimes, the distribution of radiation

is uniquely determined by a Dirac-delta, which is almost impossible to reproduce with a

polynomial expansion of the radiative intensity distribution, as in the linear PN closures.

The lowest-order spherical harmonic approximation, namely the first-order, P1, closure

has been extensively used to provide approximate solutions to the radiative heat transfer

equation [43–46], due to its simplicity and relatively low computational costs. However,

because the closing relations for the P1 approximation are similar to those of an isotropic

distribution with the same energy density, the latter closure cannot properly describe

highly anisotropic distributions of radiation. In fact, the resulting approximate form of

the radiative intensity distribution is indeed a first-order polynomial expansion of the true

distribution around directional equilibrium. Beyond the P1 closure, even-order PN ap-

proximations are known to be less accurate than their odd-lower-order counterparts [47]

and thus only odd-order spherical harmonic closures are generally considered. While

the P3 approximation can capture more anisotropy in the distribution than its first-order

counterpart, this comes at the expense of significant increases in computational costs [47].

Beyond the P3 closure, it was observed that the efficiency of the PN approximations de-

graded rapidly while improvements in terms of accuracy were rather minor [48]. Another

important drawback of the PN closures is that the approximate forms of the distribution

of radiative intensity are not strictly positive and the closures are not valid for the full

range of physically realizable moments at any order.

As alternatives to spherical harmonic expansions of the radiative intensity distribution,

there has recently been particular interest in maximum-entropy-based, MN , closures to

the system of moment equations arising from application of the method of moments to

the RTE [49]. Approaches based on the principle of maximization of entropy are partic-

ularly attractive for several reasons, among which is the fact that, for a given finite set of

moments, they provide the most likely form of the radiative intensity distribution among

all the possible forms that reproduce the given set of moments [50], which is a highly
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desirable feature for an accurate closure. In fact, unlike their spherical harmonic coun-

terparts, which are based on a mathematical representation of the angular distribution

on the surface of the unit sphere, entropy-based moment closures use a physically con-

sistent principle to derive the form of the underlying distribution, for a given finite set of

moments. The hierarchy of MN models also possesses many desirable mathematical and

numerical properties, including hyperbolicity and moment realizability. The latter prop-

erty implies that the entropy-maximizing distribution for a given finite set of moments is

strictly non-negative. Furthermore, even the lower-order approximations, including the

first-order M1 maximum entropy moment closure, can accurately capture a wide range

of optical conditions, in both equilibrium and non-equilibrium regimes.

The M1 moment closure for gray gas, with an entropy of radiation obeying Bose-Einstein

statistics, is the only member of the hierarchy of maximum entropy moment closures

for which there exists a closed form analytical expression for the closing relations. As

such, it has been studied by a number of researchers [51, 52]. Its predictive capabilities

were observed to be superior to those of the P1 closure for a relatively wide range of

optical conditions. However, one important limitation of the M1 closure is its inability

to properly capture situations where streams of photons travelling in different directions

cross one another. In these cases, the M1 closure generally produces nonphysical solutions

in the radiative energy density [51,53].

Due to the observed limitations of the M1 closure for particular radiative transfer prob-

lems, there has also been interest in the higher-order members of the maximum entropy

moment closure hierarchy, beginning with the second-order maximum entropy, M2, clo-

sure. Unfortunately, the application of the higher-order MN closures is made difficult

due to the lack of closed-form analytical expressions for the closing fluxes, even for prob-

lems involving gray gases. Repeated numerical solution of the optimization problem for

entropy maximization is therefore generally required, which can make the application of

the higher-order MN closures computationally prohibitive. In spite of these difficulties,

in a previous study, Hauck [54,55] explored the predictive capabilities of the higher-order

maximum entropy moment closures (i.e., M2, M3, M4 and M5) for various test problems

involving gray-gas radiative heat transfer in one-dimensional slab geometries. In this pre-

vious study, the solutions of the aforementioned MN closures were obtained by solving the

optimization problem for entropy maximization via a numerical approach. Furthermore,

Hauck compared the predictions of the aforementioned MN closures to those of the M1
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closure, as well as those obtained using the P1 and P3 spherical harmonic approximations

and clearly demonstrated that the higher-order MN closures provided significantly im-

proved predictions of radiative quantities, relative to the M1 closure. Similar results have

been obtained by Monreal and Frank [56], who proposed an analytical approximation for

the M2 closing relations in the one-dimensional case.

Motivated by a desire for moment closures, for practical radiative transport applica-

tions, which have the desirable properties of the high-order MN closures without the

prohibitive computational costs associated with the repeated numerical solution of the

optimization problem for entropy maximization, Pichard et al. [53] recently proposed

interpolative-based approximations of the closing relations for both the gray M1 and the

gray M2 moment closures, in multiple space dimensions, with an entropy of radiation

obeying Boltzmann statistics. Similar interpolative-based variants of maximum entropy

closures have been considered previously by McDonald and Groth [57] and McDonald

and Torrilhon [58] in the case of gas-kinetic theory. The interpolative procedure adopted

by Pichard et al. [53] for the M1 closure is based on a convex combination between the

known analytical expressions of the Eddington factor, on the upper and lower boundaries

of the space of realizable angular moments up to second-order. The convex interpolant

is then determined such that numerical values of the Eddington factor as well as its first

derivatives, both on the boundaries of the realizable space up to first-order and in the

isotropic limit, are exactly reproduced. In addition, the interpolant was also chosen such

that the error between the proposed approximation and pre-computed solutions of the

optimization problem for entropy maximization, for sets of angular moments uniformly

spanning the full realizable space up to first-order, was minimized.

For the M2 closure, a first set of interpolations was performed in the 1D case, based

on convex combinations of the known exact form of the closure relations on the upper

and lower boundaries of the realizability domain for angular moments up to third-order.

However, since, to date, closed-form analytical expressions for the closing relations on the

boundaries of the multi-dimensional realizable space for the third-order moments do not

exist, the extension of the interpolation to multi-dimensional physical space was then

carried out in the realizable domain for moments up to first-order, the latter being a

subset of the full realizable space for the M2 closure, which involves angular moments up

to second-order. It should also be pointed out that a variant of the M2 closure in multiple

space dimensions, the extended quadrature method of moments (EQMOM)-based second-
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order moment closure, using a β probability density function, has also been recently

developed by Li et al. [59]. One of the main advantages of this so-called B2 model of Li et

al. [59], compared to the M2 closure, is the existence of closed-form analytical expressions

for the closure relations. Moreover, the B2 model provides a smooth interpolation between

the isotropic and the free-streaming limits. However, this EQMOM-based closure does

not really attempt to mimic closely the properties of the M2 maximum entropy closure

and the B2 model in multiple space dimensions is neither globally realizable nor globally

hyperbolic. In fact, Li et al. [59] have shown that the quadrature-based approximation

to the M2 closure is only realizable and hyperbolic in a portion of the realizable space

defined by the moments up to second order. With the recent significant advances in

the field of machine learning, there also has been growing interest in the development

of deep learning-based approaches for approximating maximum-entropy-based closures

[60,61]. While certainly promising, issues with ensuring hyperbolicity and avoiding high

computational and/or storage costs may be problematic for the latter. Additionally,

moment closures based on φ-divergence [62] have also been very recently considered

as alternatives to the MN closures as they result in tractable closure approximations,

even for higher-order members of the hierarchy. Despite being able to represent beam-

like distributions with reasonable accuracy particularly for large moment sets, the φ-

divergence-based closures are not able to capture accurately highly anisotropic and/or

bi-modal distributions associated with beam crossings for small moment sets, unlike the

MN closures. Like the PN approximations on which they are based, the approximate

distributions of radiative intensity associated with the φ-divergence closures are also not

guaranteed to be strictly positive.

As a result of the lack of closed form analytical expressions for the MN closures in the

general case, there has been a rather limited number of studies involving maximum-

entropy-closure-based treatment of radiative transport in the context of real-gas simula-

tions. In the context of reactive flows simulations, the only studies involving maximum-

entropy-based moment closures, to our knowledge, were due to Ripoll [63] and Ripoll and

Pitsch [64] and were only concerned with the M1 closure for gray radiation, due to the

availability of closed form analytical expressions for the closing fluxes. In particular, the

latter authors proposed a RANS-based formulation of the gray M1 closure. The latter

model does not however take into account the spectral variations of the closing fluxes aris-

ing from the strong spectral dependence of the absorption coefficient of participating real
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gases. For more realistic treatments of radiation in real gases using maximum-entropy

closures, the spectral variations of the radiative intensity distribution must be fully ac-

counted for through the use of non-gray maximum entropy moment closures. To date,

the only study that have dealt with the issue of assessing moment closures based on the

maximum entropy principle in non-gray participating media, in particular the non-gray

M1 closure, is due to Turpault [65, 66]. The latter formulated a multi-group variant of

the non-gray M1 closure, whereby the spectrally dependent form of the entropy maximiz-

ing distribution was approximated by averages over groups of frequencies, spanning the

spectrum of interest for the computations. For any given set of band-averaged angular

moments up to first order, the Eddington factor, which is the only unknown parameter

in the closing relations, was then obtained by numerically solving the underlying dual

optimization problem for entropy maximization for the corresponding frequency group.

Finally, when solving the resulting system of hyperbolic equations that arise from appli-

cation of the method of moments, appropriate boundary conditions are generally required

for the boundary and initial value problems of interest. In the context of the truncated

moment problem, proper prescription of boundary conditions is still an active topic of

research [51, 67–69]. From the kinetic point of view, even though the partial moments

boundary data prescription would the most logical approach for providing boundary

conditions to the infinite system of moment equations that would uniquely character-

ize a unique distribution, for a finite set of moments, such an approach could result in

neglecting crucial angular information that can only be provided by higher-order mo-

ments. The type of boundary data prescription used to solve the truncated system of

moment equations, for a given test problem, can significantly affect the accuracy of the

obtained results and must therefore be chosen carefully. In light of this, several types

of boundary conditions for the spherical harmonic moment closures [69] have been con-

sidered and assessed, including but not limited to the partial moments, Marshak, and

partial numerical flux boundary data prescriptions. It is worth mentioning that such in-

vestigation was facilitated by the existence of closed-form analytical expressions for such

boundary conditions as far as the hierarchy of spherical harmonic, PN , moment closures.

For the maximum entropy moment closures, on the other hand, there exist no closed-

form expressions for the boundary conditions, except for the Bose-Einstein-based gray

M1 closure in one dimension. Assessment of the impact of different types of boundary

conditions prescriptions on the accuracy of the M1 closure, with an entropy of radiation
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obeying Boltzmann statistics, in one-dimensional test problems, has been carried out

by Brunner and Holloway [51]. Their study clearly demonstrated the importance of the

choice of appropriate boundary conditions for accurate predictions of radiative quanti-

ties. However, to date there has been no complete and systematic study regarding the

assessment of boundary conditions for maximum entropy moment closures in multiple

space dimensions.

1.2 Motivation

The literature review of radiation transport modelling and the method of moments pre-

sented in the previous section clearly illustrates the potential benefits of entropy-based

moment closure techniques, despite the challenges associated with such approaches, in-

cluding the lack of closed-form analytical expressions for the closing relations, unlike their

spherical harmonic counterparts. The interpolative-based approximations of the closing

relations for both the gray first- and second-order, respectively M1 and M2, maximum-

entropy moment closures proposed by Pichard et al. [53] in the case of Boltzmann-based

entropy of radiation have strongly motivated the use of maximum-entropy-based inter-

polation procedures in lieu of direct numerical solutions of the maximum entropy opti-

mization problem. Such procedures have the potential to accurately mimic numerical

maximum entropy solutions at a fraction of the computational costs associated with

the expensive numerical solution of the optimization problem for entropy maximization.

However, the interpolative-based gray second-order, M2, maximum entropy closure pro-

posed by Pichard et al. [53] was observed to suffer from several limitations. More specif-

ically, by the way of its construction, the interpolation procedure proposed by Pichard

et al. [53], for the gray M2 closure, only mimics accurately the corresponding maximum

entropy solutions for one dimensional problems, but not in fully multiple space dimen-

sions. Moreover, the fact that the construction in multiple dimensions is based on the

realizability domain for moments up to first order does not take into account the possible

regimes that can only be described by higher-order moments describing the realizable

space for the M2 closure. In order to take full advantage of the desirable properties of

the original gray M2 closure, a new interpolation procedure, which accurately reproduces

the numerical solutions of the optimization problem for entropy maximization, for sets

of moments spanning the full realizable space for angular moments up to second order,
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in multiple space dimensions, must be developed. In addition to accuracy with respect

to the maximum entropy solutions, it would also be highly desirable for the interpolation

procedure to efficiently mimic solutions of the maximum entropy optimization problem

at a fraction of the computational costs associated with the direct numerical solution of

the latter.

In the context of non-gray radiation, even though the previous study carried out by

Turpault [65, 66] has demonstrated the promising predictive capabilities of the non-gray

M1 closure, the repeated numerical solution of the maximum entropy problem carried out

in this analysis is rather impractical, especially for engineering applications of interest,

where radiation must be coupled with other underlying phenomena. Moreover, the multi-

group approach, which consists of approximating spectral radiative quantities over a given

group of frequencies by an average over that set, may lead to substantial over- or under-

estimations of the spectrally integrated radiative quantities, due to the strong spectral

dependence of the absorption coefficient of real gases [70]. Such strong variations of the

absorption coefficient with respect to frequency has led to the development of efficient,

state-of-the-art spectral techniques for efficient integration of radiative quantities over

the full spectrum of frequencies, in particular the SNBCK model [31, 71] and the FSCK

[34] method. Both techniques are based on re-ordering of the strongly varying spectral

absorption coefficient into a monotonic function of a cumulative distribution function,

the main difference between the two approaches being the way in which re-ordering is

applied throughout the spectrum. They can yield comparable accuracy with respect

to the straightforward and very expensive line-by-line (LBL) calculations [23], but with

substantial improvements in computational efficiency relative to the latter. In light of

these developments, it would be crucial to develop efficient interpolative-based maximum-

entropy moment closures that accurately mimic numerical solutions of the maximum

entropy optimization problem and also couple naturally with the SNBCK or other related

models, so as to take full advantage of the computational benefits provided by the latter

spectral techniques, for radiation calculations in real gases.

In addition to the choice of a suitable closure technique for the truncated moment equa-

tions, proper and accurate enforcement of boundary conditions to the resulting closed

systems of moment equations is also important in order to obtain realistic numerical

solutions. In the context of M1 and M2 entropy-based closures which are of interest in

the present study, there exist no closed-form expressions for the Roe matrices in multiple
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space dimensions, to date. Such matrices would be helpful if the method of character-

istics [51, 72] is to be used for the prescription of boundary conditions to the resulting

moment equations in multi-dimensional physical space. Furthermore, in the general case,

there exist no closed-form analytical expressions for the partial angular moments of the

entropy maximizing distributions, unlike their spherical harmonic counterparts. As such,

the repeated numerical solution of the entropy optimization problem would be required

in the context of the Marshak, partial moments, and partial numerical flux boundary

conditions for the MN -closure-based systems of moment equations. In order to cope with

the substantial computational expenses associated with such a numerical approach, inter-

polative procedures must also be developed for accurately and efficiently computing the

partial angular moments arising from the entropy maximizing distributions associated

with the M1 and M2 closures.

1.3 Research Goals of Thesis

Based on the status of the field and findings of the literature review given above, the

objective of this thesis is to develop new efficient interpolative-based non-gray maximum

entropy moment closures for the more realistic predictions of radiative heat transfer in

reactive flows simulations, in particular laminar co-flow diffusion at elevated pressures

with soot formation for a range of optical depths. The proposed interpolative-based MN

closures result in significant computational savings compared to an approach that makes

use of the direct numerical solution of the entropy optimization problem, while mimicking

very closely the solution quality and desirable properties of the original maximum entropy

closures. The objectives of the thesis can be summarized as follows:

• development of new, efficient, realizable and hyperbolic interpolative-based second-

order, M2, maximum-entropy moment closure, obeying Bose-Einstein statistics, for

predicting radiation transport in gray participating media;

• development of new, efficient, realizable and hyperbolic interpolative-based first-

and second-order, M1 and M2, respectively, maximum-entropy moment closures,

with an entropy of radiation based on Bose-Einstein statistics, for predicting radi-

ation transport in non-gray participating media;
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• development and assessment of boundary conditions for the maximum-entropy-

based M1 and M2 closures;

• incorporation of non-gray spectral models, in particular the 9-band SNBCK [31,71]

technique;

• validation of the implementation of resulting maximum-entropy moment closures

in radiation transport problems involving both gray and non-gray, non-reactive,

participating media; and

• application and evaluation of resulting non-gray maximum-entropy closures to the

prediction of radiation transport in sooting laminar flames at elevated pressures.

The complexity reduction and computational efficiencies offered by the M1 and M2

maximum-entropy closures will be evaluated by comparison to both the DOM and the

PN moment closures. For the non-reactive flows test cases, both gray and non-gray ra-

diative transfer between parallel plates, as well as within rectangular enclosures, will be

considered. For the laminar flame cases, non-premixed methane-air co-flow flames of the

type previously considered by [17,20,22,73–75] will be of interest.

The original contributions resulting from the thesis research are as follows:

• new formulation of gray M2 closure for Bose-Einstein entropy of radiation;

• new formulation of boundary conditions for both the gray M1 and M2 closures;

• new formulation of non-gray M1 and M2 closures for Bose-Einstein radiative entropy

with realistic absorption models;

• new formulation of boundary conditions for the non-gray M1 and M2 closures;

• evaluation of predictive performance of the new gray M2 maximum-entropy moment

closure for gray radiative transport in non-reactive flows; and

• evaluation of predictive performance of the new non-gray maximum-entropy mo-

ment closures for non-gray radiative transport in non-reactive flows as well as in

sooting laminar diffusion flames.
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1.4 Outline of Thesis

The organization of the remainder of this doctoral thesis is as follows. In Chapter 2, a

review of the mathematical modelling of reacting gases and of the background theory for

radiation transport in both gray and non-gray participating media is provided, along with

a description of the more common approaches for solving the radiative transfer equation,

in particular the discrete ordinates method. Moment closures based on the spherical

harmonic expansion of the underlying angular distribution of the radiative intensity are

also discussed, in particular the first- and third-order, P1 and P3, respectively, spherical

harmonic moment closures. Next, in Chapter 3, moment closure techniques based on the

principle of maximization of entropy are presented. A detailed description of the theoret-

ical details pertaining to our proposed interpolation procedures for efficiently computing

the closing moment fluxes for the non-gray first-order maximum entropy, M1, closure,

as well as those of the gray and non-gray second-order maximum entropy, M2, moment

closures, in three-dimensional physical space, is carried out. Chapter 4 then provides a

description of the state-of-the-art SNBCK spectral radiation model used for the efficient

integration of the radiative quantities of interest over the full spectrum of frequencies,

in addition to its coupling with our newly-developed interpolative-based non-gray M1

and M2 maximum entropy moment closures. This is followed by a description of the

efficient Godunov-type finite-volume scheme used for providing numerical solutions for

the resulting hyperbolic closed systems of moment equations, in Chapter 5. The remain-

ing chapters are then concerned with the investigation of the predictive capabilities of

our interpolative-based maximum entropy moment closures. In particular, Chapters 6

and 7 respectively illustrate numerical results for gray and non-gray participating media

with prescribed thermochemical quantities. Numerical results for laminar non-premixed

flames at elevated pressures with soot formation are presented in Chapter 8. Finally, a

summary of the findings and contributions of the present study is given in Chapter 9

along with suggestions for future research, thereby concluding the thesis.





Chapter 2

Radiation Transport Theory

As gaseous molecules undergo translational, rotational and vibrational motions, or

changes in their electronic states, their molecular energy level either increases or de-

creases via the absorption or emission of electromagnetic waves or photons. This process

is referred to as radiation transfer and the energy carried by the photons, as well as the

frequency at which they are either emitted or absorbed, is strongly dependent on the

temperature of the material under consideration. The absorption and emission of pho-

tons occur over a range of wavenumbers. In the context of heat transfer analysis, thermal

radiation is of interest and generally occurs at wavelengths ranging from 10−7 µm (ultra-

violet) to 10−3 µm (infrared) [23].

The background gaseous medium can be categorized as either participating or transpar-

ent, depending on the nature of its interactions with the radiative field. A medium is said

to be participating if it interacts with travelling photons. On the other hand, transparent

media do not interact with the photons. As mentioned in the introduction, gases such

as H2O, CO2 and CO, as well as solid soot particles, fall in the category of radiatively

participating species and are some of the main contributors to the typically substantial

radiative heat losses from the relatively hot regions to the colder surroundings in hydro-

carbon combustion. It therefore follows that proper treatment of thermal radiation is a

key component, in numerical simulations of hydrocarbon combustion, for the accurate

predictions of the structure of the flame, as well as of the strongly temperature-dependent

net production rates of both soot and intermediate species [2, 76].

Numerical predictions of radiative heat losses can be rather complicated as they require

15
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solving a complex integro-differential equation with high dimensionality and strongly

varying properties, for which there exists no general exact analytical solution. A wide

variety of techniques have been developed for the treatment of the independent variables

involved in the equation of radiative transfer and will be discussed to some extent in the

present thesis. It is however worth mentioning that the main focus of the present study

is on the treatment of the directional dependence of the distribution of the radiative

intensity. In particular, the more popular direction-discretization techniques such as the

DOM [37,38] and the more common spherical harmonic, PN , moment closures [41] will be

considered herein. Maximum-entropy-based, MN , moment closure techniques [49] have

been gaining attention in the radiative transfer modelling community, and their applica-

tion and assessment for gray and non-gray radiatively participating media, whether be it

for reactive or non-reactive flows, is the primary focus of the thesis. As will be discussed

in Chapter 4, the strong spectral variations exhibited by the absorption coefficient of

real-gas mixtures is treated herein by means of the SNBCK [31, 71] model whereas the

Rayleigh scattering approximation is used for the modelling of the absorption properties

of soot particles. Finally, the spatial and temporal dependencies of the radiative intensity

distribution of the RTE as represented by the moment equations are treated herein using

the now standard and traditional Godunov-type finite-volume scheme for solving discrete

governing equations, which is described in Chapter 5.

This chapter provides a brief overview of the governing equations for gaseous combust-

ing flows followed by a description of radiation transport theory, as well as a literature

review on the different approaches that have been used to solve the equations of ra-

diative transfer, in particular techniques for the treatment of both the directional and

spectral independent variables of the RTE. The direction-discretization-based DOM is

then described. Finally, the theory of moments for the RTE is presented, along with the

theoretical details pertaining to the spherical harmonic, PN , moment closures. Entropy-

based approaches for providing closure to the finite system of moment equations resulting

from the RTE are discussed in the next chapter.
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2.1 Governing Equations for Laminar Reactive Flows

Gas-phase multi-component combusting flows can generally be described by a set of

equations consisting of the conservation of total mass, individual species mass, mixture

momentum, and mixture energy [17, 77]. In addition to those conservation equations,

modelling soot formation and destruction in gaseous combustion also requires tracking an

additional solid phase and capturing the interactions that occur between the two phases.

The approach used in this thesis for the modelling of the formation and destruction

of soot is similar to the one adopted in the computational framework developed by

Charest et al. [17] for the numerical simulations of sooting laminar reactive flows. In this

framework, soot formation and destruction is modelled using the two-equation-based

simplified soot kinetics described by Liu et al. [78]. This model is based on the reduced

soot mechanisms of Leung et al. [79] and Fairweather et al. [80] which describe the

evolution of soot through basic steps for nucleation, surface growth, coagulation, and

oxidation. Acetylene is assumed to be the only precursor responsible for the presence of

soot. Multi-species diffusion is modelled using the first-order Hirschfelder and Curtiss

approximation [81] while soot is assumed to diffuse primarily by thermophoresis using a

model based on the limit of free-molecular flow [82]. In addition to contributions from

thermophoresis, a small Fickian diffusive flux is included in the soot particle transport

equations. The latter procedure, which is similar to that adopted by Kennedy et al. [83],

is required to enhance numerical stability even though the transport of soot via Brownian

motion is generally negligible.

The partial differential equations governing the conservation of global mass, momentum,

energy, individual species mass, soot mass, and particle number, under the assumption

of a Newtonian flow, can be summarized as follows [17]:

∂ρ

∂t
+∇ · (ρv⃗) = 0, (2.1)

∂

∂t
(ρv⃗) +∇ · (ρv⃗v⃗ + p⃗I) = ∇ · τ⃗ + ρg⃗, (2.2)

∂

∂t
(ρe) +∇ ·

[
ρv⃗

(
e+

p

ρ

)]
= ∇ · (v⃗ · τ⃗ )−∇ · q⃗ + ρg⃗ · v⃗, (2.3)

∂

∂t
(ρYk) +∇ ·

[
ρYk(v⃗ + V⃗k)

]
= ω̇k, k = 1, 2, . . . , N, (2.4)
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∂

∂t
(ρYs) +∇ ·

[
ρYs(v⃗ + V⃗y)

]
= Sy, (2.5)

∂

∂t
(ρNs) +∇ ·

[
ρNs(v⃗ + V⃗n)

]
= Sn, (2.6)

where t is the time, ρ is the mixture density, p is the total mixture pressure, v⃗ is the

mixture velocity vector, e is the total mixture energy, Yk is the mass fraction of species

k, Ys is the mass fraction of soot, Ns is the soot number density (number of particles

per unit mass of mixture), V⃗k is the diffusion velocity of gas species k, V⃗y is the diffusion

velocity related to soot mass, V⃗n is the diffusion velocity related to soot number, ω̇k is the

time rate of change of the kth species mass, Sy is the time rate of change of the soot mass,

Sn is the time rate of change of the soot number, τ⃗ is the fluid stress tensor, g⃗ is the

acceleration vector due to gravity, N is the number of gaseous species in the mixture, and

q⃗ is the heat flux vector. The latter contains contributions from conduction, diffusion,

and radiation, and is given by

q⃗ = −κ∇T + ρ
N+1∑
k=1

hkYkV⃗k + q⃗rad, (2.7)

where κ is the mixture thermal conductivity, hk is the individual species enthalpy, and

q⃗rad is the radiative heat flux, the determination of which, along with its divergence, is

of particular interest in this study. In Eq. (2.7), and throughout this work, the (N +1)th

species refers to the solid soot particles, the enthalpy of which is approximated using the

properties of graphite. The time rate of change of gaseous species includes contributions

from both gas-phase chemistry and soot surface reactions.

2.2 Radiative Transfer Equation

The interaction between the radiative field and a radiatively participating background

medium can be summarized by three different processes: namely absorption, emission

and scattering, as illustrated in Fig. 2.1. In particular, at any given location in physical

space, x⃗, at time, t, and for the wavenumber, η, a stream of photons travelling in the

direction of propagation, s⃗, may be attenuated via absorption by the molecules making up

the participating medium, with an absorption coefficient, κη = κη(x⃗, t), thereby resulting

in increased molecular energy levels. The passing beam of photons travelling along the

direction, s⃗, may also be augmented via emission of radiant energy from the participating
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gaseous molecules and soot particles, which in turn translates into lower molecular energy

levels and soot temperatures. Scattering involves the deviation of radiative particles into

a direction that is different from its original direction of travel. It is characterized by

a scattering coefficient, σsη = σsη(x⃗, t), and can be categorized as either in-scattering

or out-scattering. The former refers to the deviation of streams of photons travelling

in another direction, s⃗ ′, into the direction of interest, s⃗. On the other hand, the latter

can be thought of as the loss of radiant energy along the direction, s⃗, via scattering into

another direction s⃗ ′.

Figure 2.1: Processes resulting from the interactions between the incident radiation (ar-

rows) and a radiatively participating matter (circles).

For a Cartesian coordinate system, the unit vector defining the direction of travel of

radiant energy, s⃗, also called the direction cosine vector, can be expressed in terms of the

associated polar and azimuthal angles, θ and ψ, respectively, as follows

s⃗ = Ω1⃗i+ Ω2j⃗ + Ω3k⃗, (2.8)

where Ω1 = sin θ cosψ, Ω2 = sin θ sinψ, and Ω3 = cos θ are the corresponding direction

cosines and i⃗, j⃗, and k⃗ are unit normal vectors in the positive directions of the x, y, and

z Cartesian axes, respectively.

The radiative transfer equation can be obtained by applying an energy balance to a

monochromatic beam of photons confined to a infinitesimal solid angle element and
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passing through an infinitesimal volume of participating media along the direction of

propagation, s⃗, yielding [84]

1

c

∂Iη
∂t

+ s⃗.∇⃗Iη = κηIbη − (κη + σsη)Iη +
σsη
4π

∫
4π

Iη(s⃗
′)Φη(s⃗

′, s⃗)dΩ′, (2.9)

where c is the speed of light in a vacuum, Iη = Iη(x⃗, s⃗, t) is the spectral radiative in-

tensity distribution, Ibη = Ibη(T ) (where T = T (x⃗, t) is the temperature field) is the

spectral Planck function or black-body intensity, Ω denotes solid angle, and Φη(s⃗
′, s⃗) is

the scattering phase function. The latter describes the probability that a ray travelling

in direction, s⃗ ′, will be scattered into direction, s⃗, and is also a function of location in

physical space and time. The subscript, η, indicates a spectrally varying quantity.

Taking the integral of Iη over the full range of solid angles, Ω, after pre-multiplying it

by the vector of propagation, s⃗, yields the net flow of radiant energy due to radiation in

all directions per unit area, time and wavenumber interval. The latter quantity can be

interpreted as the spectral radiative flux vector and reads as follows

q⃗η =

∫ 4π

0

s⃗IηdΩ. (2.10)

The divergence of the spectral heat flux vector can be obtained by integrating the RTE

over all solid angles and neglecting the temporal derivatives, yielding

∇ · q⃗η = κη

(
4πIbη −

∫ 4π

0

IηdΩ

)
= κη (4πIbη −Gη) , (2.11)

where Gη is the spectral incident radiation and is given by

Gη =

∫ 4π

0

IηdΩ. (2.12)

For gas mixtures with spectrally varying radiative properties, Eq. (2.11) must be inte-

grated over the full spectrum of wavenumbers or frequencies to yield the divergence of

the total radiative heat flux vector, ∇ · q⃗rad, which is the radiative quantity of interest in

the energy equation, Eq. (2.3), an can be formulated as follows

∇ · q⃗ =
∫ ∞

0

∇ · q⃗ηdη =

∫ ∞

0

κη (4πIbη −Gη) dη. (2.13)

For non-polarized light, the RTE, as given in Eq. (2.9), is a complex linear integro-

differential equation with high dimensionality (7 independent variables) as it involves
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dependencies on the spatial variables characterized by the location vector, x⃗, a three-

component vector in three-dimensional physical space, the temporal variable, t, the spec-

tral variable, η, and the direction variables parameterized by the polar and azimuthal

angles, θ and ψ, respectively. One must typically rely on numerical solution methods in-

volving approximate treatments of the independent variables since there exists no general

exact analytical solution to the RTE. As mentioned earlier, the now standard family of

upwind Godunov-type finite-volume techniques for hyperbolic governing equations [24]

are the most commonly used numerical techniques for the treatment of both the temporal

and spatial dependencies.

As noted in the introduction to this thesis, several approaches have been developed for

the treatment of the angular (directional) dependence of the radiative intensity distribu-

tion [2]. Monte Carlo methods are known to be the most accurate and computationally

expensive [35]. Hotel’s zonal method [36, 85] has been used widely for engineering ra-

diative heat transfer calculations in multi-dimensional enclosures. It consists of dividing

the solid angle domain into a finite set of zones and performing energy balances of the

radiative exchange between the zones. Its implementation is however limited to non-

scattering media as is cannot be readily adapted for a scattering medium. The discrete

ordinates method (DOM) [37,38] has also been used extensively to solve the RTE, due to

its good balance between accuracy and computational efforts, especially in the absence

of scattering. The finite-volume method (FVM) [39, 86] for radiation is a variation of

the DOM, whereby the RTE is solved over finite-sized control angles rather than along

discrete directions as in the DOM. The discrete transfer method (DTM) of Lockwood

and Shah [87] has also been used extensively in the radiative transfer modelling commu-

nity. The method of moments, originally proposed by Grad [40] in the field of gas-kinetic

theory, has also gained popularity in the radiation modelling community. It consists of

solving directly for a finite set of angular moments of the distribution of the radiative in-

tensity and is particularly attractive due to its potential to capture a relatively wide range

of optical conditions with a relatively low number of unknowns, relative to the DOM. The

more commonly used technique for tackling the underlying closure problem for a finite

set of moment is the so-called spherical harmonic approximation [41, 42] whereby the

distribution of radiant energy is approximated by a truncated series expansion in terms

of orthogonal spherical harmonic functions of the directional variables. Entropy-based

approaches [49] for providing closure to the unclosed finite system of moment equations
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arising from the method of moments have more recently been considered. Instead of a

mathematical representation of the radiative intensity distribution as advocated in the

spherical harmonic, PN , moment closures, entropy-based, MN , closures make use of the

physically consistent principle of maximization/minimization of entropy to construct the

distribution.

Another challenge associated with the solution of the RTE is the treatment of the spectral

dependence of the optical properties of the background medium. A common assumption

that is made to cope with such a dependence and also reduce the dimensionality of the

RTE as well as the complexity associated with the numerical solution of the latter is that

of a gray medium. A medium is said to be gray if its radiative properties can be assumed

to be independent of wavenumber, i.e., κη = κ and σsη = σs. Under such an assumption,

the RTE of Eq. (2.9) can be directly integrated over the full spectrum of frequencies,

thereby yielding the following form for the RTE [84]

1

c

∂I

∂t
+ s⃗.∇⃗I = κIb − (κ+ σs)I +

σs
4π

∫
4π

I(s⃗ ′)Φ(s⃗ ′, s⃗)dΩ′, (2.14)

where I =
∫∞
0
Iηdη is the total, spectrally integrated radiative intensity distribution.

Compared to the RTE of Eq. (2.9), the form given in Eq. (2.14) only involves 6 indepen-

dent variables, since the spectral variable, η, has been integrated out in the latter. The

assumption of gray radiation, while convenient when solely focusing on the treatment of

the directional dependence of the radiative intensity distribution, is however violated in

real-gas radiation which typically involves strong and chaotic variations of the spectral

absorption coefficient with respect to wavenumber, η. Such strong variations must be

properly accounted for in order to more accurately predict total spectrally-integrated

radiative quantities and consequently yield more realistic predictions of radiative heat

losses in real-gas simulations, such as in hydrocarbon combustion.

In the context of real-gas radiation simulations, a variety of spectral radiation models

have been proposed for the numerical integration of spectral radiative quantities over the

full spectrum of frequencies [23]. LBL calculations are the most detailed and computa-

tionally expensive approaches. In LBL computations, the RTE is solved for each of the

hundred thousands lines making up the absorption spectrum of the gas mixture under

consideration followed by integration of the results over the spectrum. In narrow-band

models, the spectrum is subdivided into small spectral intervals, and radiative quanti-

ties, averaged over each band, are calculated from the absorption spectrum (correlated-k
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(CK) model), or from the statistical properties of the lines (SNBCK model). Global

models attempt to calculate the total radiative quantities directly, using spectrally in-

tegrated radiative properties. An example of global model is the weighted-sum-of-gray-

gases (WSGG) model [88]. More recently, a more advanced global spectral technique,

the so-called FSCK method [34] has been developed and has been shown to be superior

to the WSGG model, to which it reduces in its crudest implementation.

The SNBCK model is an attractive method allowing to compute low-resolution spectral

intensity with levels of accuracy similar to those of the line-by-line calculations and

significantly reduced computational efforts compared to the latter approach. It employs

the same reordering concepts as the CK model [89]. However, instead of computing

the cumulative distribution function from large line-by-line spectroscopic databases as is

done in the CK model [71,90], the SNBCK model avoids such expensive calculations by

building the cumulative distribution function analytically from statistical narrow-band

(SNB) parameters [89].

It is worth mentioning that scattering is usually neglected in numerical simulations of

many reactive flows as it is assumed to be insignificant relative to absorption [2]. Further-

more, in sooting flames, soot radiation must also be included for it is often stronger than

the radiation arising from the combustion gases. In general, soot particles are assumed

to be very small, and their radiative properties are determined by means of Rayleigh’s

theory for small particles [84].

2.3 Discrete Ordinates Method (DOM)

In the DOM, angular quadrature is used to transform the equation of radiative transfer

into a set of PDEs with only spectral, spatial and temporal dependencies. The angular

discretization technique makes use of the assumption that the radiation is transported

only along a finite set of discrete directions, instead of the effectively infinite number

of directions allowed in Eq. (2.14) by a continuous representation of the solid angle. In

other words, the solid angle is divided into a finite number, M , of discrete directions (or

ordinates), s⃗m, m = 0, 1, . . . ,M . In this way, the RTE is transformed into a system of
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M coupled equations given by

1

c

∂Iη,m
∂t

+ s⃗m.∇⃗Iη,m = κηIbη − (κη + σsη)Iη,m +
σsη
4π

M∑
n=1

wnIη,nΦη(s⃗n, s⃗m), (2.15)

where the subscript m denotes the index of the discrete ordinate direction, Im is the

intensity in the mth direction and wm is the quadrature weight associated with the direc-

tion, s⃗m. Several angular quadrature rules have been developed for the DOM, including

the SN schemes of Lathrop and Carlson [91] and the TN schemes of Thurgood et al. [92].

The T4 quadrature scheme is used in this thesis for all of the reported DOM simulation

results.

The DOM has been used extensively to provide approximate solutions to the RTE due its

good balance between accuracy and computational efficiency. In fact, to date, along with

the DTM method, it has been one of the most widely used approaches for the treatment

of radiative transfer in reactive flows simulations involving hydrocarbon combustion with

soot formation [9, 11, 76, 78, 93–106]. However, this direct discretization technique is as-

sociated with two major limitations [107]: false scattering and ray effects. The former

is due to the spatial discretization of the RTE whereas the latter is related to the dis-

cretization of the angular distribution of the radiative intensity. Several approaches have

been proposed in order to cope with such issues [92,108–112]. Additionally, as mentioned

in the introduction, the space marching techniques commonly used to solve the result-

ing discretized equations of the DOM can be extremely efficient for problems involving

relatively simple geometries and physics; however, the space marching techniques may

exhibit poor convergence for applications involving complex three-dimensional geome-

tries and complex physics [29] (e.g., highly scattering media, turbulent reactive flows,

etc.).

2.4 Moment Closure Techniques

An alternative approach to the DOM for the treatment of the angular dependence of

the radiative intensity distribution involves solving directly for the angular integrals or
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macroscopic moments, I
(n)
η , of the distribution, which can be written as follows

I(n)η (x⃗, t) = ⟨s⃗ nIη(x⃗, s⃗, t)⟩ =
∫
4π

s⃗ nIη(x⃗, s⃗, t) dΩ

=

∫ 2π

0

∫ π

0

s⃗ nIη(x⃗, s⃗, t) sin θdθdψ,

(2.16)

where s⃗ n = s⃗⊗ n. . . ⊗s⃗, for n = 0, 1, . . .∞, are the weights associated with the angular

moments and whose independent entries form a monomial basis in terms of the angular

variables. One particular feature of the method of moments is that the quantities of

interest can be computed directly from the solution of the resulting governing equations,

whereas, for the DOM, angular numerical quadrature is used to compute such quantities

once values of the intensity distribution in the discrete directions are known.

The first few angular moments, as defined by Eq. (2.16), can be related to well-known

physical quantities. More specifically, the zeroth-order moment, I
(0)
η , which is a scalar, is

related to the radiative energy density, the first-order moment, I
(1)
η , a three-component

vector in three-dimensional physical space, is associated with the radiative flux, and

finally, the second-order moment, I
(2)
η , which is a second-order tensor with six indepen-

dent entries in three dimensions, is associated to the radiative pressure. Beyond second

order, the angular moments, which then correspond to symmetric tensors of order at

least three, have no well-established physical interpretation. One can also define the

normalized angular moments of order n, denoted by N (n), as follows

N (n) =
I
(n)
η

I
(0)
η

. (2.17)

Taking angular integrals of the RTE, Eq. (2.9), results in a system of moment equations

of infinite size characterizing uniquely an arbitrary distribution. Solving such an infinite

system of equations is however obviously unfeasible from a practical viewpoint. Instead,

a reduced finite set of moments and their transport equations are considered, in practice.

In this case however, a solution to the so-called closure problem is then required as the

resulting system of transport equations for the finite set of moments generally involves

the next higher-order moments. In particular, additional expressions relating the highest-

order moments to the tracked or known lower-order moments are required for closure.

These so-called closing relations are usually obtained via the reconstruction of an assumed

form for the underlying strictly non-negative angular distribution in terms of the known

finite set of lower-order moments.
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There exists a wide range of possible forms for the approximate distribution of radiative

intensity yielding a closed system of moment equations. In fact, there is effectively an

infinite set of possible distributions sharing the same finite set of known lower-order

moments. However, the choice of the approximate form generally dictates the many

important mathematical properties of the resulting closed system of moment equations:

namely the realizability of the predicted moments and hyperbolicity of the resulting

moment equations. A set of moments is said to be physically realizable if there exists

a strictly non-negative-valued distribution of the radiative intensity that will yield the

given moments [27]. The set of all realizable moments up to a given order, n, then defines

the so-called n-dimensional phase space of physically realizable moments and is denoted

here asR(n). This region is generally described by a set of inequalities on the values of the

moments: so-called moment realizability conditions. In this thesis, approximate forms

for the angular distribution resulting from the spherical harmonic approximation as well

as the principle of maximization of entropy will be considered for providing closure to

the finite-sized truncated systems of moment equations and their application to radiative

transport in non-gray media will be the primary focus.

Another important consideration for the moment closure techniques outlined above is

the selection or choice of the number of moments to be included in the closure of inter-

est, and which are subsequently used to reconstruct the approximate angular intensity

distribution. In general, only the zeroth- and first-order moments, namely the radiative

energy density, I
(0)
η , and the radiative heat flux, I

(1)
η , respectively, are of primary inter-

est in engineering applications. However, the more angular moments that are used in

the closure to reconstruct the approximate distribution, the wider the range of optical

conditions that may be captured accurately by the closure.

2.4.1 Spherical Harmonic (PN) Moment Closures

In the spherical harmonic, PN , moment closures, the spectral radiative intensity distri-

bution, Iη(x⃗, s⃗, t), is approximated by a truncated series expansion in terms of orthogonal

spherical harmonic functions as follows [41,84]

Iη(x⃗, s⃗, t) =
N∑

n=0

n∑
m=−n

Imη,n(x⃗, t)Y
m
n (s⃗), (2.18)
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where N is the order of the series expansion or of the highest moment in the closed

system, Imη,n(x⃗, t) are location-dependent coefficients of the series expansion which can be

directly related to the know finite set of moments, and Y m
n (s⃗) is the spherical harmonic

function of degree, n, and order, m, having the form

Y m
n (s⃗) =

cos(mψ)Pm
n (cos θ), for m ≥ 0,

sin(|m|ψ)P |m|
n (cos θ), for m < 0,

(2.19)

and where Pm
n (cos θ) is the associated Legendre polynomial.

2.4.2 First-Order P1 Spherical Harmonic Moment Closure

The first-order P1 spherical harmonic approximation provides closure to the system of

transport equations for angular moments up to first order, which only involves transport

equations for the zeroth- and first-order moments, I
(0)
η and I

(1)
η , respectively (i.e., a set of

four moments in three space dimensions for the scalar radiative energy density and vector

of energy fluxes in each coordinate direction). This is achieved by approximating the

distribution using the form given in Eq. (2.18), with N = 1, which is then reconstructed

in terms of angular moments up to first order. The second-order moment, I
(2)
η , is a

dyadic quantity (i.e., a second-order tensor) and is involved in the transport equation for

I
(1)
η . This quantity can be directly expressed in terms of the lower-order moments via

integration of the reconstructed distribution, yielding

I
(2)
ij,η =

δij
3
I(0)η , (2.20)

where δij is the Kronecker delta operator. This is the so-called P1 approximation, which

is generally considered to be accurate only for optically thick media as it is associated

with nearly-isotropic distributions of the radiative intensity. Due to its simplicity and

relatively straightforward implementation, the P1 closure has been widely used to provide

approximate solutions to the RTE in the context of real-gas simulations in combustion

systems [43–46].

2.4.3 Third-Order P3 Spherical Harmonic Moment Closure

Closure to the system of transport equations for angular moments up to third order,

I
(n)
η , n ∈ {0, 1, 2, 3}, can be obtained via the use of the form for the distribution given in
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Eq. (2.18), with N = 3, and with known angular moments up to third order. The fourth-

order moments, I
(4)
η , involved in the transport equations for the third-order moments can

then be expressed directly in terms of the known lower-order moments, thereby yielding

the so-called third-order P3 spherical harmonic moment closure. The resulting closing

relations can be summarized as follows

I
(4)
iiii,η = − 3

35
I(0)η +

6

7
I
(2)
ii,η,

I
(4)
iijj,η =

4

35
I(0)η − 1

7
I
(2)
jj,η,

I
(4)
iiij,η =

3

7
I
(2)
ij,η,

I
(4)
iijk,η =

1

7
I
(2)
jk,η.

(2.21)

It has been shown previously that the third-order P3 spherical harmonic closure yields

significantly improved predictions compared the P1 closure [47]. This accuracy improve-

ment however comes at the expense of a significant increases in computational costs and

storage requirements. More specifically, for any given wavenumber, η, in two-dimensional

physical space, the P1 closure requires the solution of 3 transport equations, whereas the

P3 closure involves 10 unknowns, per grid point. For fully three-dimensional problems

the P1 and P3 closures involve 4 and 20 unknowns, respectively, for any given wavenum-

ber and per grid point. Due to the increased mathematical and numerical complexity of

the P3 closure relative to its lover-order P1 counterpart, there has been a rather limited

number of studies where the P3 closure was used to provide approximate numerical solu-

tions of the RTE [23]. Moreover, higher-order approximations (N > 3) of the hierarchy

of spherical harmonic moment closures result in further substantial increases in compu-

tational efforts, whereas the accuracy improvements with increasing N are somewhat

more modest [113, 114]. For these reasons, it is felt that the P3 approximation provides

a reasonable balance between accuracy and computational costs, relative to its higher-

and lower-order counterparts.



Chapter 3

Maximum Entropy Moment

Closures

Despite their relative simplicity, the spherical harmonic, PN , moment closures do not al-

ways guarantee the physical requirement of non-negativity of the reconstructed distribu-

tion of the radiative intensity. Moreover, Dirac-like distributions, which are encountered

in the free-streaming limit of radiation, cannot be properly captured by a polynomial

representation of the radiative intensity distribution as is carried out in the PN moment

closures. In light of these, entropy-based models represent rather promising approaches

for providing approximate forms of the intensity distribution. For a given realizable finite

set of angular moments, they provide the most likely form of the distribution among the

infinite family of possible forms for the distribution reproducing such moments [50]. In

addition, they always guarantee non-negativity of the reconstructed distribution of the

radiative intensity and can also capture both isotropic and anisotropic radiative intensity

distributions, the latter regime being characterized by Dirac-delta-like distributions. As

a result of the many desirable properties of the hierarchy of the MN closures described

above, application of entropy-based moment closure techniques has gained considerable

interest in the radiation modelling community.

In this chapter, a review of the theoretical details pertaining to maximum-entropy-based

moment closures is carried out in Section 3.1, as well as a brief discussion of the challenges

associated with the use of such approaches, including the lack of closed-form expressions

for the closing fluxes or higher-order moments, for any given finite set of moments,

29
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in the general case. Evaluation of the closing fluxes for a given finite set of angular

moments typically requires the direct numerical solution of the entropy maximization

problem, which, in addition to being prohibitively expensive, can be very challenging,

especially as any of the boundaries of the realizable space for the given set of lower-order

angular moments is approached. A description of the algorithm used for the numerical

solution of the optimization problem for entropy maximization is presented in Section

3.2, along with the strategies adopted as part of this thesis to improve convergence of the

algorithm near the boundaries of the realizable space of interest. Efficient interpolative-

based approximations of the closing fluxes arising from the first few lower-order members

of the hierarchy of MN closures, in particular the first-order, M1, and second-order,

M2, closures, are then proposed and thoroughly described. The proposed interpolative-

based approximations accurately reproduce the numerical maximum entropy solutions

associated with the closing fluxes for any given set of realizable angular moments up to

first order for the M1 closure and up to second order for the M2 closure, at a fraction of

the computational costs associated with the expensive, direct, and multiple (i.e., many

times over) numerical solution of the maximum-entropy optimization problem.

A brief review of the M1 closure for gray-gas radiation is given in Section 3.3.1, the latter

being the only member of the hierarchy of MN closures for which there exists closed-form

analytical expressions for the second-order closing fluxes, in the case of an entropy of radi-

ation obeying Bose-Einstein statistics. This is followed by a thorough and comprehensive

description, in Section 3.3.2, of the theoretical details pertaining to the newly-proposed

interpolative-based procedure for the approximation of the second-order closing fluxes for

the first-order, M1, maximum entropy closure, in the case of non-gray radiation. Section

3.4 then presents a new interpolative procedure for the approximation of the third-order

closing fluxes arising from the second-order, M2, maximum entropy moment closure for

gray radiation, as well as its extension to the case of non-gray radiation.

3.1 Maximum-Entropy (MN) Moment Closures

Among the infinite family of possible distributions that can be used to approximate

the underlying distribution of the radiative intensity, the most probable form of the

latter is given, according to Jaynes [50], by the distribution that maximizes the radiative
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entropy, HR(Iη), subject to the constraints that a finite set of its angular moments, I
(n)
η ,

n = 0, 1, . . . , N , is known. The problem of finding such a distribution can be formulated

in mathematical terms as follows:

Iη = argmax
Iη

HR(Iη)

s.t. ⟨s⃗ (n)Iη⟩ = I(n)η , n = 0, 1, . . . , N,

(3.1)

where N is the order of the highest moments in the closed system of moment equations

and

HR(Iη) = ⟨hR⟩ =
∫
4π

hR(Iη)dΩ, (3.2)

and where hR denotes the radiative entropy density, which, for combustion applications,

corresponds to the entropy of radiation obeying Bose-Einstein statistics [115] and is given

by

hR(Iη) =
2kη2

c
[(n+ 1) ln(n+ 1)− n ln(n)], n =

Iη
2hcη3

. (3.3)

In Eq. (3.3), n is the occupation number, and h and k are the Planck and Boltzmann

constants, respectively. The Lagrangian of the optimization problem given in Eq. (3.1)

is

L(Iη,α) = HR(Iη)−αT (⟨m(s⃗)Iη⟩ − Eη), (3.4)

where Eη is a vector containing all the independent entries of I
(n)
η , n = 0, 1, . . . , N , m(s⃗)

is a vector containing all the independent entries of s⃗ (n), n = 0, 1, . . . , N , and α is the

vector of Lagrange multipliers associated with the moment constraints.

For a given finite set of angular moments with associated Lagrange multipliers, α, the

form of the entropy maximizing distribution can be derived via the stationary point of the

Lagrangian, Eq. (3.4), i.e., ∂L(Iη,α)/∂Iη = 0, which yields the following expression [49]

Iη(α, m) = 2hcη3
[
exp

(
c2hη

k
αTm(s⃗ )

)
− 1

]−1

. (3.5)

In Eq. (3.5), the radiative intensity distribution is expressed in terms of the Lagrange

multipliers, α, which depend on the angular moments of the distribution, Eη. With

the exception of the gray M1 closure [49], there exists no analytical expressions for the

Lagrange multipliers in terms of the known lower-order angular moments. The former

must therefore be determined numerically in terms of the latter by solving the Lagrangian

dual optimization problem

max
α

{L∗(α)}, (3.6)
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where L∗(α) is the Legendre transform of L(Iη,α), Eq. (3.4), and has the form

L∗(α) =
2kη2

c

〈
log

[
exp

(
c2hη

k
αTm(s⃗ )

)
− 1

]〉
−αTEη. (3.7)

The wavenumber variable within the exponential term of Eq. (3.7) is rather inconvenient,

since the Lagrange multipliers must then be solved not only for the given realizable finite

set of moments, but also for values of wavenumber spanning the semi-infinite interval

[0, +∞]. A more convenient form for the optimization problem for entropy maximiza-

tion, Eqs. (3.6) and (3.7), for the purpose of the proposed interpolation procedures, can

however be obtained by the change of variables β = (c2hη)α/k, such that

L∗(β) =
〈
log
[
exp

(
βTm(s⃗ )

)
− 1
]〉

− βTE⋆
η, L∗(α) = 2ckη2L∗(β), (3.8)

where

E⋆
η =

πEη

C1η3
= {I(0)⋆η , I(1)⋆η , . . .}, I(n)⋆η =

πI
(n)
η

C1η3
, (3.9)

represents the set of angular moments up to order N used for the solution of the dual op-

timization problem, Eq. (3.8), and C1 = 2πhc2 is the so-called first radiation constant. It

is clear from Eq. (3.8) that, for any given wavenumber, η, maximizing L∗(β) is equivalent

to maximizing L∗(α). Furthermore, the form of the former allows the parameterization

of the Lagrange multipliers in terms of the ratio I
(0)
η /η3, instead of I

(0)
η and η, separately,

and this parameterization yields a reduction in the number of independent variables for

the proposed interpolation procedures of the non-gray M1 and M2 closures, which will

be described in the sections to follow.

While the radiative properties of participating real gases, in particular the absorption

coefficient, is strongly dependent on the wavenumber, the assumption of gray radiation,

which consists of neglecting the spectral dependence of the radiative properties of the par-

ticipating gases, is sometimes employed when studying radiative transfer problems. The

latter assumption indeed yields significant simplifications to radiative transfer problems

and, when used in conjunction with the moment closure techniques under consideration

in the present study, allows to solely focus on the ability of the closures to accurately

treat the directional dependence of the radiative intensity distribution. In the context

of entropy-based closures obeying Bose-Einstein statistics, the form of the distribution

resulting from the assumption of gray radiation can be obtained via integration of the

spectral entropy-maximizing distribution function, Eq. (3.5), over the full spectrum of
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frequencies (η ∈ [0, ∞]), yielding

I(α, m) =
σstef
π

[
αTm(s⃗ )

]−4
, (3.10)

where σstef is the Stephan-Boltzmann constant, and reads as follows

σstef =
2π5k4

15c2h3
. (3.11)

In Eq. (3.10), the radiative intensity distribution is again expressed in terms of the

Lagrange multipliers, α, which have to be determined from the set of nonlinear coupled

algebraic equations ⟨m(s⃗ )I⟩ = E, where E =
∫∞
0

Eηdη.

With the exception of the gray M1 model [49], the Lagrange multipliers, in the case of gray

radiation, must be determined numerically by solving the Lagrangian dual optimization

problem for entropy maximization given by

argmax
α

{L∗(α)}, (3.12)

where L∗(α) is the Legendre transform of L(I,α), and has the form

L∗(α) = −σstef
3π

〈[
αTm(s⃗ )

]−3
〉
−αTE. (3.13)

The nonlinear optimization problem for entropy maximization, given in Eqs. (3.12)

and (3.13) for gray radiation and Eqs. (3.6) and (3.8) in the case of non-gray radiation,

can be solved relatively easily for sets of angular moments characterized by near-uniform

angular distributions of the radiative intensity. However, as one of the boundaries of the

realizable space for the given finite set of moments is approached, the maximum entropy

optimization problem becomes increasingly difficult to solve due to ill-conditioning of

the Hessian matrix of the dual objective function. In fact, near the boundaries of the

realizable space, the distribution of radiative intensity becomes nearly-singular along a

set of directions corresponding to a subset of the full solid angle. The difficulty in solving

the maximum-entropy problem near the realizable boundary is further exacerbated by

the necessity of using an inexact quadrature and finite-precision arithmetic to approxi-

mate the angular integrals of the radiative intensity distribution. The contribution to the

quadrature may effectively be zero for most of the quadrature points, which may result

in singularity of the computed Hessian. Furthermore, in the context of nearly singular

distributions of the radiative intensity, suitable quadrature schemes must be designed so
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as to properly capture the essential features of the distribution and consequently yield

accurate estimates of its angular moments. One way to achieve the latter is by cluster-

ing the integration nodes in the regions where the peaks occur, and such a procedure

is adopted in the present study, and is described in the next section. In particular, the

domain of integration is divided into smaller sub-intervals, especially in the areas where

the peaks occur, and static quadrature rules are then applied within each sub-interval.

3.2 Numerical Solution of the Optimization Problem

for Entropy Maximization

The entropy of radiation based on Bose-Einstein statistics given by Eqs. (3.2) and (3.3) is

a strictly convex functional, and, as such, any locally optimal set of Lagrange multipliers,

α, would also be a globally optimal set. The sequential quadratic programming (SQP)

algorithm as implemented in the software package NLopt [116–118] an open source library

for nonlinear optimization was therefore used herein for the solution of the optimization

problem as defined by Eqs. (3.12) and (3.13) for gray radiation and by Eqs. (3.6) and (3.8)

in the case of non-gray radiation. In this implementation, an objective function and its

gradients, as well as additional constraints, are supplied by the user. The Hessian matrix

of second derivatives, which is required for solving the Newton system of equations, is

then estimated by means of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,

which provides substantial computational savings compared to the direct evaluation of

the Hessian matrix.

The SQP algorithm provides very good convergence for sets of moments far away from

the boundaries of the realizability domain. However, as one of the boundaries is ap-

proached, the dual optimization problem becomes increasingly difficult to solve and

might even fail to converge due to ill-conditioning of the Hessian matrix. In order to

improve the condition number of the Hessian matrix, a preconditioning of the latter,

similar to that described by Alldredge et al [119] is advocated. The preconditioning is

equivalent to an adaptive change of polynomial basis, relative to the original basis, m(s⃗),

such that the Hessian is the identity matrix in the new basis system. In addition, the

regularization scheme introduced by Alldredge et al. [120] is employed to make the opti-

mization algorithm more robust, especially for very ill-conditioned problem. Instead of
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using a Cholesky factorization of the Hessian for the preconditioning as chosen by All-

dredge et al. [119], the numerically stable modified Gram-Schmidt algorithm, described

by Abramov [121], is adopted. Instead of preconditioning the Hessian matrix at each

Newton steps during the optimization, the procedure advocated by Abramov [122], al-

lowing for several Newton steps between successive reorthogonalizations, is adopted. The

procedure consists of tracking the condition number of the inverse of the Hessian during

the BFGS iterations, and then precondition the Hessian matrix whenever the condition

number exceeds a threshold value of 20.

3.3 First-Order Maximum-Entropy M1 Moment

Closure

As an alternative to the first-order spherical harmonic, P1, moment closure, the system

of transport equations for angular moments up to first order can be closed by assuming

an entropy maximizing distribution, of the form given in Eq. (3.10) for gray radiation

or Eq. (3.5) for non-gray radiation, based on the known angular moments up to first

order. The reconstructed approximate form of the distribution can then be integrated

using the appropriate angular weights to obtain the closing second-order moments in

terms of the lower-order moments, i.e., I(2) = I(2)(I(0), I(1)) in the case of gray radiation

and I
(2)⋆
η = I

(2)⋆
η (I

(0)⋆
η , I

(1)⋆
η ) for non-gray radiation. This procedure results in the so-

called first-order maximum-entropy, M1, moment closure. One peculiarity of angular

distributions of radiative energy represented only by their angular moments up to first

order, as is the case for the P1 and M1 closures, is the fact that such distributions

are symmetric with respect to the direction described by the corresponding first-order

moment vector, as the latter is the only available information for describing departures

from the isotropic limit. Using this property, in conjunction with suitable frame rotations,

it is a simple exercise to show that the tensor of second-order normalized moments, N (2),

for all first-order moment closures, can be written in the so-called Eddington form given

by [123]

N (2) =
1− χ2

2
⃗⃗
I +

3χ2 − 1

2
n⃗⊗ n⃗, (3.14)

where
⃗⃗
I is the identity dyad, n⃗ = N (1)/∥N (1)∥ is the unit vector in the direction of the

vector of first-order normalized moments, N (1), and χ2 is the so-called Eddington fac-
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tor, a scalar quantity which is the only unknown in Eq. (3.14). A closed-form analytical

expression of the Eddington factor for the M1 closure only exists in the case of gray radia-

tion, as will be illustrated in Section 3.3.1. In the more general case of non-gray radiative

transfer, one must therefore rely on the numerical solution of the optimization problem

for entropy maximization, Eqs. (3.6) and (3.8), to compute the second-order closing fluxes

of the M1 closure. Such an approach however, if adopted repeatedly whenever an update

of the radiation solutions is required, can make the application of the closure extremely

computationally expensive and consequently undesirable for the applications of interest

in the present study (i.e., hydrocarbon combustion).

To circumvent the need for the repetitive use of the costly solution of the optimization

problem to determine the Lagrange multipliers defining the maximum entropy distri-

bution, an alternative interpolative-based approach, for accurately approximating pre-

computed values of the second-order closing fluxes for the non-gray M1 closure [124], is

proposed herein. This approximation, in addition to attempting to retain many of the de-

sirable properties of the original model (e.g., moment realizability and hyperbolicity of the

moment equations), also results in substantially reduced computational costs compared

to the repeated solution of the entropy maximization problem. The proposed interpolant

is formulated to closely match the form of the M1 maximum entropy solutions over the

full spectrum of frequencies as well as over the entire space of physically realizable mo-

ments defined by the angular moments up to first order (i.e., the space defined by the set

of necessary and sufficient conditions such that there exists a non-negative distribution

reproducing angular moments up to first order). More specifically, a convex combination

of the known analytical forms of the Eddington factor in the isotropic and free-streaming

limits, in terms of I
(0)⋆
η and ∥N (1)∥, is adopted as an approximation for the closing fluxes.

The interpolant is chosen such that the known analytical expressions of the Eddington

factor in the isotropic and anisotropic limits are exactly reproduced. In the interior of the

realizable space, the convex interpolant also exactly reproduces pre-computed numerical

solutions of the Eddington factor at a finite set of points, chosen such that the overall

accuracy of the interpolation, over the full range of realizable angular moments up to

first order as well as over the full spectrum of frequencies, is optimized. Furthermore, the

nodal distribution chosen for the purpose of the proposed interpolation procedure also

allows for derivatives of the Eddington factor in the isotropic and free-streaming limits

to be exactly reproduced for a finite set of values of the radiative energy density. The
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development and description of the proposed interpolative-based non-gray first-order M1

closure are given below in Section 3.3.2.

It is worth pointing out that a related interpolative-based approximation of the gray M1

closure for radiative transport obeying Boltzmann statistics was previously proposed by

Pichard et al. [53], as already discussed in the introduction of this thesis. The interpo-

lation procedure of Pichard et al. consists of approximating the Eddington factor as a

convex combination between the upper and lower boundaries of the realizable space for

the second-order moments. The convex interpolant is defined as a polynomial expression

in terms of the normalized first-order moment, ∥N (1)∥, which exactly reproduces known

exact analytical expressions of the Eddington factor as well as its first derivatives in both

the isotropic and free-streaming limits. The remaining free coefficients of the polynomial

expression were then determined such that the accuracy of the proposed interpolation

procedure, evaluated via the error with respect to solutions of the optimization prob-

lem for entropy maximization, computed for a large set of evaluation points uniformly

distributed between the isotropic and free-streaming limits, is optimized.

Unlike the interpolation procedure proposed by Pichard et al. [53], the proposed approx-

imation of the Eddington factor herein is an interpolant based on the solutions in the

isotropic and free-streaming limits. Moreover, instead of expanding the interpolant in

terms of a monomial basis, an expansion in terms of orthogonal Chebyshev polynomi-

als is adopted, thereby resulting in a very well conditioned Vandermonde system, with

interpolation points corresponding to Chebyshev-Gauss-Lobatto nodes. This choice of

interpolation nodes allows accurate reproduction of the derivatives of the Eddington fac-

tor in the isotropic and anisotropic limits, and provides a quasi-optimal approximation

of the maximum entropy solutions everywhere within the realizable space for angular

moments up to first order. In addition to the above, the type of interpolation nodes

adopted in the present study minimizes so-called Runge oscillations of the approximated

Eddington factor near the free-streaming, which may result in loss of hyperbolicity and

realizability near such boundaries. Moreover, while the assumption of gray radiation was

invoked in the study by Pichard et al. [53], non-gray participating media are of interest

in this thesis, which involve the additional dependencies of the Eddington factor on the

radiative energy density and wavenumber.

It should be pointed out that, prior to the recent study by Sarr et al. [74], there had
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been no development of interpolative-based approximations of the M1 closure in the case

of non-gray radiation transport obeying Bose-Einstein statistics, to our knowledge. In

fact, the only other previous attempt to solve the system of moment equations arising

from the non-gray M1 closure with Bose-Einstein entropy is by Turpault [65, 66]. In

his approach, the latter author transformed the optimization problem for entropy maxi-

mization, Eq. (3.1), into several maximum entropy optimization problems, defined over

groups of frequencies spanning the whole spectrum of interest for their applications. The

second-order closing fluxes, for any realizable, group-averaged, set of moments up to first

order, were then obtained via numerical solution of the corresponding optimization prob-

lem for entropy maximization. However, as mentioned earlier, the expensive repeated

numerical solution of the maximum entropy problem should be avoided for practical ap-

plications, where the radiation transport is coupled to the mathematical modelling of

other phenomena, making computational efficiency an equally important criterion.

It should also be pointed out that the proposed treatment of the spectral dependence

of the Eddington factor, as well as its dependence on the radiative energy density, has

been extended and enhanced significantly in this thesis as compared to the approach

described by Sarr et al. [74] in the recent practical application of the closure to laminar

flames. Instead of a simple algebraic mapping of the radiative energy density, as adopted

in the laminar-flame study, an exponential mapping is proposed here, as it was observed

to better capture the variations of the Eddington factor throughout the full spectrum

of frequencies. Moreover, instead of choosing an arbitrary value for the length scale of

the mapping, as was proposed in [74], the present study considers a more systematic

choice of the length scale, such that the resulting non-gray M1 closure is realizable and

hyperbolic everywhere within the realizable space of interest, and the accuracy of the

proposed approximation for the Eddington factor is optimized for the full spectrum of

possible frequencies.



3.3. First-Order Maximum-Entropy M1 Moment Closure 39

3.3.1 First-Order Maximum Entropy M1 Moment Closure for

Gray Gas

Using the Eddington form given in Eq. (3.14), the closing relations for the M1 closure for

gray radiation can be derived and expressed as

I(2) = N (2)I(0), (3.15)

where the tensor of second-order normalized moments, N (2), is given in Eq. (3.14) in

terms of the Eddington factor, χ2, which has the explicit analytical form

χ2 =
3 + 4∥N (1)∥2

5 + 2ξ
, ξ =

√
4− 3∥N (1)∥2. (3.16)

In spite of the ability to capture a wider range of optical conditions than the P1 model,

the M1 closure is known to produce nonphysical solutions in the radiative energy density

in the context of crossing streams of radiative particles emanating from different direc-

tions [51, 53]. In fact, when the zeroth- and first-order angular moments are the only

available information for reconstructing the angular distribution of radiative energy, the

only possible form for the latter in the case of crossing streams of photons with zero net

flux is that of an isotropic distribution, even though the underlying angular distributions

are highly non-isotropic. This issue can however be remedied by considering high-order

members of the maximum-entropy hierarchy [53–55]. The second-order M2 closure is also

considered as part of this thesis.

3.3.2 Interpolative-Based First-Order Maximum-Entropy M1

Moment Closure for Non-Gray Gas

As for the case of a gray gas, the second-order closing fluxes arising from the M1 closure

in the context of non-gray radiation can again be written in the following form

I(2)⋆η = N (2)I(0)⋆η , (3.17)

where the tensor of second-order normalized moments, N (2), is again given in terms of

the Eddington factor, χ2, in Eq. (3.14). However, unlike the case of the M1 closure for

a gray gas, there exists no closed-form exact analytical expression for the Eddington
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factor for a non-gray gas. Values of the latter must therefore be determined numeri-

cally by solving the relatively expensive optimization problem for entropy maximization,

Eqs. (3.6) and (3.8), for any given realizable set of moments up to first order. For the

purpose of radiative transport in real gases, repetition of this prohibitively expensive

procedure is avoided here by constructing an interpolative-based approximation of the

Eddington factor, the description of which is presented here in this section. Following

a brief overview of the realizable space for moments up to first order, an in-depth de-

scription of the theoretical details of the interpolative procedure for the non-gray M1

closure is provided, followed by the assessment of several key mathematical properties.

The moment realizability of the resulting approximation of the Eddington factor, for sets

of angular moments up to first order spanning the full realizable space, and for values

of wavenumbers spanning the full spectrum of frequencies, is considered. Following this,

the hyperbolicity of the closed system of partial differential equations for the angular

moments, resulting from the interpolative non-gray M1 closure, is then discussed later in

Section 5.1.2 of Chapter 5.

The space of realizable moments up to order one is defined by the set of necessary and

sufficient conditions for the existence of a non-negative distribution yielding physically-

realistic moments up to first order. This space is denoted here by R(1) and can be defined

as follows

R(1) = {(I(0)η , I(1)η ) ∈ R× R3 s.t. I(0)η ≥ 0 and ||N (1)|| ≤ 1}. (3.18)

Figure 3.1: Realizable space R(1) for the first-order moments for any non-negative energy

density, I
(0)
η .
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Table 3.1: Form of the entropy maximizing distribution on the boundaries of the realiz-

able space for angular moments up to first order.

Regime Form of the Distribution

∥N (1)∥ = 1 Iη = I
(0)
η δ(s⃗−N (1))

I
(0)
η → 0 Iη(α, m) = 2hcη3 exp

(
− c2hη

k
αTm(s⃗ )

)
I
(0)
η → +∞ Iη(α, m) = 2kη2

c

[
αTm(s⃗ )

]−1

R̃(1) Iη(α, m) = 2hcη3
[
exp

(
c2hη
k

αTm(s⃗ )
)
− 1
]−1

As can be seen from Eq. (3.18), the realizability domain, R(1), spans the semi-infinite

interval [0, +∞] for any realizable vector of first-order moments, N (1), and the unit ball

for any non-negative density, I
(0)
η , as illustrated in Fig. 3.1. It is worth mentioning that

the radiation entropy based on Bose-Einstein statistics, given previously in Eq. (3.3),

becomes singular on the boundaries of the realizable moment space, denoted here by

∂R(1), and where the inequalities defining the realizable space, R(1), become sharp such

that

∂R(1) = {(I(0)η , I(1)η ) ∈ R× R3 s.t. I(0)η → 0 or I(0)η → +∞ or ||N (1)|| = 1}.
(3.19)

In particular, on ∂R(1), the non-gray entropy maximizing distribution of Eq. (3.5) is either

uniquely determined by a Dirac-delta distribution (for ∥N (1)∥ = 1), or takes a particular

form, as in the case of the limit where I
(0)
η → 0 or I

(0)
η → +∞, which are referred to

as the hyperbolic and the logarithmic limits [125], respectively. The expressions for the

entropy maximizing distribution associated with each of the aforementioned limits, are

summarized in Table 3.1, where R̃(1) denotes the interior of the realizable space, R(1).

Based on the above, maximum-entropy solutions for the Eddington factor throughout the

full realizable space,R(1) = R̃(1)∪∂R(1), can then be obtained by solving the optimization

problem for entropy maximization using the appropriate form of the distribution for any

given set of moments up to first order. For illustration purposes, numerical values of

the Eddington factor throughout R(1), as well as over the full spectrum of frequencies,

obtained by solving the dual maximum-entropy problem for 100 values of ∥N (1)∥ equally

distributed within [0, 1], with values of I
(0)⋆
η (see Eq. (3.9)) ranging from the hyperbolic

to the logarithmic limits for any given frequency, are illustrated in Fig. 3.2. It can

be observed that, for any given value of I
(0)⋆
η , the Eddington factor displays a smooth,
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monotonically increasing solution between the isotropic and free-streaming limits. As

such, we then choose to write the latter, i.e., the Eddington factor, χ2 = χ2(I
(0)⋆
η , ∥N (1)∥),

as a smooth interpolant between the two aforementioned limits as follows

χ2 =
1

3
+

2

3
fχ2 , (3.20)

where the convex interpolant, fχ2 = fχ2(I
(0)⋆
η , ∥N (1)∥), is chosen such that the known

exact expressions for χ2 are exactly reproduced in both the isotropic and anisotropic

limits, corresponding to ∥N (1)∥ = 0 and ∥N (1)∥ = 1, respectively. The interpolant, fχ2 ,

is then taken to have the form

fχ2 = ∥N (1)∥2
[
1 +

(
1− ∥N (1)∥2

)
gχ2

]
. (3.21)

It can be easily shown from Eqs. (3.20) and (3.21) that χ2(I
(0)⋆
η , 0) = 1/3, and χ2(I

(0)⋆
η , 1) =

1. It is also worth mentioning that, for reasons of simplicity especially when evaluating

derivatives of the Eddington factor, the expression for fχ2 is different from that proposed

previously in the application to laminar flames by Sarr et al. [74].

The weighting function, gχ2 = gχ2(I
(0)⋆
η , ∥N (1)∥), appearing in Eq. (3.21), is chosen to

be a polynomial expression, the coefficients of which are chosen such that maximum-

entropy solution for the Eddington factor are accurately reproduced for all realizable

Figure 3.2: Non-gray M1 Eddington factor, χ2, solution profiles with respect to ∥N (1)∥
for different values of the radiative energy density, I

(0)⋆
η , ranging from the hyperbolic

limit (I
(0)⋆
η → 0) to the logarithmic limit (I

(0)⋆
η → +∞) for any given frequency.
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sets of angular moments up to first order. However, instead of adopting a least-squares

curve fitting procedure in terms of monomials [74], a more robust approach is adopted for

the interpolation procedure applied to gχ2 herein. In particular, an approach based on

truncated series expansion in terms of orthogonal Chebyshev polynomials is advocated,

the coefficients of which are determined via the solution of the Vandermonde system

of equations associated with suitably chosen interpolation nodes. In this case, gχ2 is

expressed as

gχ2 =

ni∑
i=0

nj∑
j=0

Ti

(
M

I
(0)⋆
η

)
T2j
(
∥N (1)∥

)
Dχ2

ij , (3.22)

with ni = nj = 5, where Tn is the Chebyshev polynomial of the first kind of degree n,

and M
I
(0)⋆
η

represents an exponential mapping for the zeroth-order moment, I
(0)⋆
η , of the

following form

M
I
(0)⋆
η

: [0, +∞] → [−1, 1],

I(0)⋆η → 1− 2 exp

(
−I

(0)⋆
η

Lχ2

)
,

(3.23)

and where Lχ2 is the length scale of the mapping, M
I
(0)⋆
η

.

The evaluation of Lχ2 is particularly important to the accuracy and robustness of the

proposed interpolative closure. Rather than adopting an arbitrary scalar-valued map-

ping length scale as considered in the previous application to laminar flames [74], a more

systematic evaluation of Lχ2 is proposed herein, such that the accuracy of the approxi-

mation for the Eddington factor compared to the values associated with the numerical

maximum-entropy solutions, is optimized systematically, for sets of angular moments up

to first order spanning R̃(1)∪∂R(1), and over the full spectrum of frequencies. The choice

of the form of the mapping length scale is also dictated by some of the desirable prop-

erties of the original non-gray M1 closure: in particular, realizability of the interpolative

Eddington factor as well as hyperbolicity of the resulting closed system of moment equa-

tions. An in-depth description of the procedure adopted here for determining the optimal

distribution of Lχ2 is given later in this section.

In Eq. (3.22), the coefficients, Dχ2

ij , i = 0, 1, . . . , ni, j = 0, 1, . . . , nj, defining the vector

of coefficients, Dχ2 , are determined via the solution of the Vandermonde system arising

from the enforcement of Eq. (3.22) at several interpolation nodes spanning R̃(1) ∪ ∂R(1).

Here, the interpolation points forM
I
(0)⋆
η

and ∥N (1)∥ were chosen to coincide with extrema
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of Chebyshev polynomials of the first kind of order ni and 2nj, respectively, including

the endpoints, for given values of ni and nj. Such interpolation nodes, also known as

Chebyshev-Gauss-Lobatto points, yield a quasi-optimal approximation of the Eddington

factor over the full realizable space, R(1). Moreover, the fact that this choice of interpola-

tion nodes also includes the endpoints allows for the derivatives of the Eddington factor

to be accurately reproduced in both the isotropic and anisotropic limits. This feature

is quite desirable as it ensures that the proposed interpolative-based approximation of

the Eddington factor accurately captures the rates of change of the original maximum

entropy solutions in these limits, and, consequently, oscillations of the interpolated solu-

tions as theses limits are approached, which can yield both realizability and hyperbolicity

issues, are minimized. Nevertheless, computations of the numerical values of gχ2 from the

maximum entropy solutions, using Eqs. (3.20) and (3.21), for the purpose of solving the

Vandermonde system for the vector of coefficients, Dχ2 , defined by Eq. (3.22), though

straightforward for distributions away from the isotropic and free-streaming limits, result

in undetermined expressions in these two limits. The procedure adopted here to compute

the corresponding numerical values in such cases makes use of the l’Hopital’s rule and is

summarized in Appendix A.

Figure 3.3: Non-gray M1 Eddington factor, χ2, solution profiles with respect to the

exponential mapping, M
I
(0)⋆
η

, obtained for ∥N (1)∥ = 0.5, for different values of the length

scale Lχ2 .
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For illustration purposes, pre-computed solutions of the Eddington factor with respect to

M
I
(0)⋆
η

, given in Eq. (3.23), for different values of the length scale, Lχ2 , are presented in

Fig. 3.3, for ∥N (1)∥ = 0.5. It can be observed that the rate of change of χ2 with respect

to M
I
(0)⋆
η

is strongly affected by the values of the length scale. More specifically, for very

small or very large values of Lχ2 , the Eddington factor changes very rapidly near the

logarithmic or the hyperbolic limit, and such strong variations cannot be easily captured

by standard polynomial approximations, especially relatively low-degree polynomials.

On the other hand, for intermediate values of the length scale, the Eddington factor is

observed to be more well behaved (i.e, varies more linearly), with rates of change that

can be easily captured using relatively low-order polynomials. This can be explained

by the fact that small values of Lχ2 cluster the interpolation nodes for the radiative

energy density near the hyperbolic limit, whereas, conversely, very large values of Lχ2

concentrate the interpolation points closer to the logarithmic limit, leading to under-

resolution, and consequently the large rates of change of the Eddington factor as the

opposite limit is approached. Similar features are also observed for any given value of

the anisotropic factor, ∥N (1)∥, between the isotropic and the free-streaming limits. These

findings suggest that, for any given value of ∥N (1)∥, an optimal value of the length scale,

Lχ2 , can be found, which minimizes the error of our interpolative-based approximation

of the Eddington factor over the full spectrum of frequencies and energy levels. Based on

the above, the length scale, Lχ2 = Lχ2

(
∥N (1)∥

)
, is expressed here in the following form

Lχ2 = exp

[
nj∑
j=0

T2j
(
∥N (1)∥

)
D

Lχ2
j

]
, (3.24)

where the coefficients, D
Lχ2
j , j = 0, 1, . . . , nj, defining the vector of coefficients, DLχ2 ,

are chosen so as to accurately mimic numerical solutions of the entropy optimization

problem for the Eddington factor over the full realizable space, R̃(1) ∪ ∂R(1), as well as

over the full spectrum of frequencies.

In the present study, the vector of coefficients, DLχ2 , is determined via the solution

of a nonlinear least-squares problem, which consists of minimizing the L2 error of the

interpolative-based approximation of the Eddington factor, and can be summarized by
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the following procedure

min
DLχ2

{errorgχ2
},

errorgχ2
=

Ni∑
i=1

Nj∑
j=1

Nk∑
k=1

wiwjwk(g
ijk
χ2,fit

− gijkχ2,numerical)
2.

(3.25)

In Eq. (3.25), gijkχ2,numerical represents values of the weighting function, gχ2 , of Eq. (3.22),

of the affine interpolant, obtained via numerical solution of the optimization problem

for entropy maximization for N = NiNjNk = 106 evaluation points. These test points

consist of Ni = 100 values of M
I
(0)⋆
η

following a Gauss-Lobatto-Chebyshev distribution

in [−1, 1], with associated weights, wi, Nj = 100 values of ∥N (1)∥ associated with non-

negative Gauss-Lobatto-Chebyshev points in [−1, 1], with weighting wj, and Nk = 100

values of Lχ2 based on roots of Laguerre polynomials with weighting wk. Moreover,

gχ2,fit corresponds to values of the weighting function, gχ2 , computed via evaluation of

the proposed polynomial approximation, Eq. (3.22), at the test points. At each iteration

of the nonlinear least-squares problem defined by Eq. (3.25), the iterate, DLχ2 , can be

used, in conjunction with Eq. (3.24) as well as the inverse of the exponential mapping

of Eq. (3.23), to compute values of I
(0)⋆
η associated with the chosen interpolation nodes

for M
I
(0)⋆
η

, and consequently solve the corresponding dual maximum-entropy problem,

Eqs. (3.6) and (3.8), at each of the interpolation points. The vector of coefficients, Dχ2 ,

given in Eq. (3.22), is then obtained via solution of the associated Vandermonde system,

and the resulting polynomial expression of Eq. (3.22) is subsequently used to compute

approximate values of gχ2,fit at each of the evaluation points.

It is worth pointing out that, while the choice of uniformly distributed points for M
I
(0)⋆
η

and ∥N (1)∥ for the purpose of assessing the error in the least-squares problem of Eq. (3.25)

may be more intuitive and straightforward, such an approach was observed to be prob-

lematic in our study. In particular, with the current choice choice of Chebyshev-Gauss-

Lobatto nodes for the interpolation procedure, the use of uniform distributions for com-

puting the error in Eq. (3.25) resulted in an under-resolution of the latter in areas of the

realizable space, R̃(1) ∪ ∂R(1), with larger densities of interpolation points, i.e., in the

hyperbolic and logarithmic limits for M
I
(0)⋆
η

, and in the free-streaming limit for ∥N (1)∥.
Moreover, over-resolution of the error was also observed in regions of R(1) with relatively

small density of interpolation points. To alleviate this issue, Chebyshev-Gauss-Lobatto

nodal distribution of points for M
I
(0)⋆
η

and ∥N (1)∥ were also employed for computing the
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error given in Eq. (3.25), similar to those used for the interpolation points.

Two equally important properties to consider for the purpose of our interpolation proce-

dure, in addition to accuracy with respect to numerical maximum-entropy solutions, are

realizability and hyperbolicity of the interpolative-based non-gray M1 closure, through-

out the full realizable space for angular moments up to first order, in multiple space

dimensions, as well as over the full spectrum of frequencies. The necessary and sufficient

conditions for realizability of the second-order normalized moments, N (2), for any given

realizable set of moments up to first order, {I(0)η , I
(1)
η }, are well established and are given

by [126]

N (2) −N (1)(N (1))T ≥ 0. (3.26)

The conditions for moment realizability for moment systems up to second order are also

reviewed later in this chapter in Section 3.4.1.

Using the Eddington form of N (2), presented in Eq. (3.14), it can be shown that the

realizability conditions above are satisfied if and only if the Eddington factor, χ2, satisfies

the following inequality constraints

∥N (1)∥2 ≤ χ2 ≤ 1. (3.27)

In order to ensure realizability of our interpolative-based approximation of the Edding-
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Figure 3.4: Optimal values of the length scale, Lχ2 , for the exponential mapping, M
I
(0)⋆
η

,

of the radiative energy density for different levels of anisotropy.
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ton factor, at every step of the non-linear least-squares optimization problem defined by

Eq. (3.25), the constraint of Eq. (3.27) is enforced, for a large set of sample points, consist-

ing of 103 values of M
I
(0)⋆
η

following a Gauss-Lobatto-Chebyshev distribution in [−1, 1],

103 values of ∥N (1)∥ coinciding with non-negative Gauss-Lobatto-Chebyshev points in

[−1, 1], and 102 values of Lχ2 based on roots of Laguerre polynomials. Moreover, hyper-

bolicity is also enforced at each step of the least-squares optimization problem, Eq. (3.25),

by also applying constraints on the eigenvalues of the flux Jacobians of the resulting closed

system of equations, as discussed in Section 5.1.2. The additional realizability constraints

minimize the risk of the optimization algorithm used to solve the least-squares problem

converging to a local minimum outside the realizable space. The latter was sometimes

encountered when the additional realizability conditions were not enforced throughout

the non-linear least-squares iterations, especially near the free-streaming limit.

Optimal values of the length scale, Lχ2 , obtained using the procedure described above,

are depicted in Fig. 3.4, for various levels of anisotropy between the isotropic and free-

streaming limits. It can be observed that the length scale, Lχ2 , as defined by Eq. (3.24),

displays little to no variations with respect to the anisotropic factor in the vicinity of the

isotropic limit. As the free-streaming limit is approached, on the other hand, monoton-

ically increasing rates of change of the optimal length scale are observed. Compared to

the interpolative procedure adopted previously by Sarr et al. [74], where the choice of

the length scale was arbitrary, the interpolation procedure for the non-gray M1 closure

proposed herein considers a more systematic choice of the distribution of the length of the

mapping of the radiative energy density. This in turn yields a more robust and accurate

approximation of the Eddington factor, throughout the full realizable space for angular

moments up to first order, and over the full spectrum of frequencies. More specifically, a

value of Lχ2 = 1 was employed by Sarr et al. [74], which yielded rather accurate approx-

imations of maximum entropy solutions closer to the hyperbolic limit. However, as the

logarithmic limit was approached, the relatively large rates of change of the Eddington

factor with respect to the corresponding algebraic mapping resulted in a less accurate

interpolative-based procedure, especially near the free-streaming limit, where this issue

also translated into loss of realizability.

For the sake of improving the efficiency of the interpolative non-gray M1 closure, the

final polynomial expressions, given in Eqs. (3.22) and (3.24), can be rewritten in terms

of monomials with respect to the independent variables. The resulting polynomial ex-
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pressions, expressed in monomial bases, can consequently be evaluated very efficiently

by means of Horner’s method [127,128] when implemented in a computer code.

The optimal sets of coefficients, Dχ2 , and DLχ2 , defined by Eqs. (3.22) and (3.24), re-

spectively, resulting from the numerical solution of the non-linear least-squares problem

of Eq. (3.25), in conjunction with the constraints of realizability given by Eq. (3.27),

yield a closure that is realizable at all the points where the inequality constraints are

enforced. This is illustrated in Fig. 3.5 where iso-contours of the parameter, frealiz =(
χ2 − ∥N (1)∥2

)
/
(
1− ∥N (1)∥2

)
, are shown. As can be expected, the realizability condi-

tions of Eq. (3.27), which require that 0 ≤ frealiz ≤ 1, appear to be satisfied everywhere

in R(1) and over the full spectrum of frequencies. While this is certainly not a proof

that the proposed interpolative-based non-gray M1 closure, Eqs. (3.20)–(3.24), is realiz-

able everywhere within R̃(1) ∪ ∂R(1) and over the full spectrum of frequencies, the local

realizability of the proposed closure at all the points examined demonstrates the extent

to which the latter closely mimics the exact non-gray M1 closure, which is known to be

everywhere realizable.

Similar to the underlying original maximum-entropy model, the non-gray interpolative-

based M1 model developed in this study, in addition to its desirable mathematical prop-

Figure 3.5: Realizability contours for the Eddington factor of the non-gray M1 closure

for sets of moments {I(0)η , I
(1)
η } spanning the whole realizability domain for moments up

to first order, R(1), and wavenumbers, η, spanning the full spectrum of frequencies.
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Figure 3.6: Eddington factor corresponding to non-gray first-order maximum entropy

(M1) moment closure for all realizable sets of moments {I(0)η , I
(1)
η }, and values of wavenum-

ber, η, spanning the full spectrum of frequencies.

erties, is able to capture radiative transfer regimes lying anywhere between the isotropic

limit (∥N (1)∥ = 0) and anisotropic limit (∥N (1)∥ = 1). On the other hand, its spheri-

cal harmonic counterpart, i.e., the first-order, P1, closure, can only accurately capture

small to moderate departures from equilibrium since the corresponding closure relation is

equivalent to that of an isotropic distribution with the same radiative energy density, I
(0)
η .

These facts are illustrated in Fig. 3.6, where the realizability domain for the Eddington

factor, χ2, is shown along with the range of values of the latter obtained using the first-

order maximum entropy, M1, and the first-order spherical harmonic, P1, closures for sets

of angular moments up to first order, Eη = {I(0)η , I
(1)
η }, spanning R(1), and wavenumber

values spanning the full spectrum of frequencies. It can be observed that the M1 closure

is realizable throughout R(1) whereas the P1 approximation is only strictly realizable for

∥N (1)∥ ≤
√
3/3.



3.4. Second-Order Maximum-Entropy M2 Moment Closure 51

3.4 Second-Order Maximum-Entropy M2 Moment

Closure

The next member of the maximum-entropy hierarchy is the second-order, M2, closure,

which, in a procedure similar to that described for the M1 closure, provides closing

relations to the system of moment equations up to second order via reconstruction of

an entropy maximizing distribution in terms of its known angular moments up to order

two. The reconstructed distribution again takes the form given in Eq. (3.10) in the case

of gray radiative transfer or Eq. (3.5) for non-gray radiation. Computing the resulting

third-order angular moments then yields the third-order closing fluxes, arising from the

M2 closure, in terms of the lower-order angular moments, i.e., I(3) = I(3)(I(0), I(1), I(2))

for gray radiation and I
(3)⋆
η = I

(3)⋆
η (I

(0)⋆
η , I

(1)⋆
η , I

(2)⋆
η ) in the case of non-gray radiation.

Unfortunately, as mentioned earlier, it is not possible to obtain closed-form analytical

expressions for the closing moment fluxes for the MN closures, to the exception of the

Bose-Einstein-based M1 closure for a gray medium. As such, repeated numerical solution

of the optimization problem for entropy maximization, given in Eqs. (3.12) and (3.13)

for gray radiation and in Eqs. (3.6) and (3.8) for non-gray radiation, would therefore

be necessary for computing the third-order closing fluxes arising from the M2 closure,

whenever an update of the radiation solutions is required, making the application of the

second-order closure computationally expensive.

To circumvent the need for the costly solutions of the optimization problem to deter-

mine the Lagrange multipliers defining the maximum entropy distribution, alternative

interpolative-based approaches for accurately approximating pre-computed values of the

third-order closing fluxes, for both the gray and non-gray M2 closures, are proposed

herein. These approximations, in addition to attempting to retain key desirable prop-

erties of the original closures (e.g., hyperbolicity of the closed systems of moment equa-

tions), also result in substantially reduced computational costs compared to the repeated

solution of the optimization problem for entropy maximization.

The proposed interpolation procedure for the gray M2 closure is formulated so as to

closely match the form of the gray M2 maximum entropy solutions, for the third-order

closing fluxes, over the entire space of physically realizable moments up to second or-

der (i.e., the space defined by the set of necessary and sufficient conditions such that
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there exists a non-negative distribution reproducing moments up to second order). More

specifically, a procedure based on affine combinations of the known analytical expressions

of the normalized third-order angular moments, N (3), on some of the boundaries of the

realizable space for the second-order angular moments, is adopted to provide approxi-

mations for the closing fluxes of the gray M2 closure. The interpolants are chosen such

that known analytical expressions of the third-order closing fluxes in the isotropic and

the free-streaming limits, as well as on the boundaries of the realizable space for the

second-order moments, are exactly reproduced. In the interior of the realizable space for

the M2 closure, the interpolants also exactly reproduce pre-computed numerical maxi-

mum entropy solutions at a finite set of points, chosen to coincide with roots or extrema

of suitably selected orthogonal polynomials, which are known to provide quasi-optimal

approximation to a function.

It is worth mentioning that the theoretical details pertaining to the development of the

M2 closure for gray radiation proposed in this thesis, have also been presented previ-

ously by Sarr and Groth [129, 130]. However, the present formulation considers a more

suitable choice of orthogonal polynomial basis for the interpolation over the realizable

space for the second-order angular moments, in addition to exploiting evenness of the

third-order closing fluxes so as to reduce the number of coefficients required for the in-

terpolation. In the case of the M2 closure for non-gray radiation, which also involves the

additional dependencies of the third-order closing fluxes on the radiative energy density

and wavenumber relative to its gray counterpart, the proposed interpolation procedure

is a direct extension of the framework adopted herein for the interpolative-based approx-

imation of the gray M2 closure. More specifically, the interpolant is formulated so as

to closely match the form of the non-gray M2 maximum entropy solutions for the third-

order closing fluxes over the entire space of physically realizable moments up to second

order as well as over the full spectrum of frequencies. The additional dependencies on

the radiative energy density and wavenumber are treated in a similar way as was done for

the non-gray M1 closure presented in Section 3.3.2. In particular, an exponential map-

ping of the radiative energy density, I
(0)⋆
η , is employed for the purpose of our polynomial

interpolation procedure, and the length scale of the mapping is systematically chosen so

as optimize the accuracy with respect to numerical maximum entropy solutions, while

resulting in an overall hyperbolic closed system of moment equations up to second order.

However, unlike the procedure adopted for the non-gray M1 closure, realizability of the
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closing fluxes of the non-gray M2 closure is not considered herein for the determination

of the distribution of the length scale of the exponential mapping, due to the lack of

necessary and sufficient conditions for realizability of angular moments up to third order.

It should also be noted that several authors have recently developed interpolative-based

approximations of the M2 maximum-entropy moment closure for gray radiation in multi-

dimensional physical space. Firstly, as noted earlier in the thesis, Pichard et al. [53]

proposed an extension of the previously-developed approximation to the M2 closure by

Monreal and Frank [56] for one space dimension to multiple dimensions. The multi-

dimensional interpolative-based M2 closure proposed by Pichard et al. [53] was formu-

lated for radiative transport obeying Boltzmann statistics. However, by way of its con-

struction, the resulting interpolation procedure only mimics accurately the corresponding

maximum entropy solutions in one dimensional physical space, but not in multiple space

dimensions. Moreover, the fact that the construction in multiple dimensions is based on

the realizability domain for moments up to first order does not take into account some

of the possible regimes that can only be described by higher-order moments describing

the realizable space of the M2 closure.

More recently, an extended quadrature method of moments (EQMOM)-based second-

order moment closure was developed by Li et al. [59], as an approximation to the M2

maximum-entropy closure. While attractive due to the existence of closed-form analytical

expressions for the third-order closing fluxes, this so-called B2 model of Li et al. [59] does

not really attempt to mimic closely the properties of the M2 maximum entropy closure

and, in multiple space dimensions, is neither globally realizable nor globally hyperbolic.

In fact, Li et al. [59] have shown that the quadrature-based approximation to the M2

closure is not realizable and hyperbolic everywhere within the realizable space defined

by moments up to second order. It is worth mentioning that, prior to the present thesis

study, there has been no development or investigation of any kind for the second-order

maximum entropy, M2, closure in the case of non-gray radiation.

Unlike the interpolative procedure adopted by Pichard et al. [53], the M2 closure for gray

radiation proposed in this thesis aims at fully mimicking the maximum entropy solutions

everywhere within the realizable space for angular moments up to second order in mul-

tiple space dimensions. In particular, suitable choices for the form of the interpolants

for the third-order closing fluxes are made through a careful study and characteriza-
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tion of the realizable space for angular moments up to second order in multiple space

dimensions. Such a characterization also allows to gain better insight as far as the ap-

propriate choice of orthogonal polynomials bases for the expansion and approximation

of the third-order closing fluxes. More specifically, the interpolation procedure proposed

herein makes use of the known closed-form analytical expressions for the third-order clos-

ing fluxes on the boundaries of the realizable space for angular moments up to second

order in multi-dimensional physical space, the derivation of which is presented in the

sections to follow. On the other hand, the interpolative approach adopted by Pichard et

al. [53] for the M2 closure is based on the form of the third-order closing fluxes on the

boundaries of the realizable space for the third-order angular moments, the closed-form

expressions of which only exist in one dimensional physical space. Furthermore, while

geometrical mappings of the realizable space, in particular triangle to rectangle mapping,

were carried out by Pichard et al. [53] for the polynomial interpolation over the full re-

alizable space, the proposed interpolative-based M2 closure for gray radiation directly

interpolates maximum-entropy solutions over the realizable space for angular moments

up to order 2 via expansion with respect to appropriately selected orthogonal polynomial

bases. The construction of the interpolative-based third-order closing fluxes based on

the non-gray M2 closure is directly inspired from the proposed procedure for its gray

counterpart, while also taking into account the additional dependencies on the spectral

variable and the radiative energy density.

The development and description of the proposed interpolative-based second-order M2

closures for gray and non-gray radiation are given below in the sections to follow. More

specifically, after revisiting the necessary and sufficient conditions for the realizability of

angular moments up to second order, an in-depth description of the theoretical details

of the interpolative procedures adopted for both the gray and non-gray M2 closures is

carried out. Hyperbolicity of the closed system of partial differential equations for the

angular moments, resulting from our proposed interpolative M2 closures, is discussed

later in Section 5.1.3 of Chapter 5.
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3.4.1 Necessary and Sufficient Conditions for Realizability of

Angular Moments Up to Second Order

As a first step in the development of the M2 closures, the necessary and sufficient con-

ditions for realizability of angular moments up to second order are presented and given.

A proof of sufficiency is also provided. These conditions and the proof were previously

established for both one- and multi-dimensional radiative heat transfer problems by Ker-

shaw [126]. They were also key elements in the construction of the previous second-order

closures of Pichard et al. [53] and Li et al. [59]; however, as they are crucial to the devel-

opment of the proposed interpolative-based approximations of the M2 closure for both

gray and non-gray radiation, they are re-summarized here. In particular, a geometrical

interpretation of Kershaw’s proof of sufficiency [126] is proposed here, which subsequently

provides the inspiration for the construction of the interpolative M2 closures. For the sake

of notational simplicity, the wavenumber subscript is dropped, though the derivations to

follow for moment realizability also apply to spectrally-dependent angular distributions

of the radiative intensity.

Realizability of the predicted angular moments of a given closure deals with the issue of

whether or not a physically realistic (i.e., strictly positive valued or non-negative) angular

distribution of the radiation intensity can be associated with the given set of moments.

If such an angular distribution can be identified, then the moment set is deemed to

be realizable. The conditions for moment realizability give rise to a set of constraints

or realizability conditions on the predicted moments which can be used to define the

extent of possible closure solutions in moment space. The approach essentially consists

of multiplying a presumed non-negative distribution by a non-negative polynomial test

function defined in terms of the angular variables, from which necessary conditions for

realizability of the moments can be derived. For angular moments up to second order,

necessary realizability conditions can be obtained by constructing the polynomial, P(s⃗) =

aTS, where S = [1, s⃗T]T is the set of angular weights up to first order and aT are the

coefficients of the polynomial. It then follows that for any globally positive-valued angular

distribution, I, one must have [131]

〈
||P(s⃗)||2I

〉
= aT

〈
SSTI

〉
a ≥ 0 , (3.28)

which, for an arbitrary polynomial, requires that the real symmetric matrix, M, given
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by

M =
〈
SSTI

〉
, (3.29)

must be positive definite. For situations in which this matrix is negative definite, it follows

that the moment set is not consistent with any possible positive-valued distribution, I,

and, hence, the moments are not physically realizable.

It is worth mentioning that the realizability constraints above yield necessary realizability

conditions on the second-order angular moments. The necessary conditions on the zeroth-

order angular moment can be easily derived from the fact that the underlying radiative

intensity distribution must be strictly non-negative. On the other hand, for the first-

order angular moments, conditions for realizability can be obtained by considering the

polynomial P(s⃗) = 1 − s⃗ · u⃗, where u⃗ is an arbitrary unit vector. It is clear that P(s⃗)

is non-negative and consequently ⟨||P(s⃗)||I⟩ = I(0) − I(1) · u⃗ ≥ 0. Taking u⃗ = N (1) then

yields the conditions on the first-order angular moments. For angular moments up to

second order associated with an every-where non-negative angular distribution of the

radiative intensity, the necessary realizability conditions, defining the realizable space,

R(2), can then be summarized as follows [126]:

R(2) = {(I(0), I(1), I(2)) ∈ R× R3 × R3×3, s.t. I(0) ≥ 0, ∥N (1)∥ ≤ 1,

N (2) −N (1)(N (1))T ≥ 0, tr(N (2)) = 1 and N
(2)
ij = N

(2)
ji } .

(3.30)

The proof of the existence of a non-negative distribution reproducing moments inR(2) also

provides a proof that the conditions given in Eq. (3.30) are both necessary and sufficient.

One of the key steps in the demonstration of this proof is the rotational transformation of

R(2) which places the Cartesian axes in the coordinate frame where the covariance matrix,(
N (2) −N (1)(N (1)

)T
), is diagonal, i.e., the Cartesian axes aligned with the principal axes

of the covariance matrix. Such a transformation can be summarized as follows:

T : (I(0), I(1), I(2)) → (I ′ (0), I ′ (1), I ′ (2))

s.t. (N ′ (2) −N ′ (1)(N ′ (1))T ) is diagonal positive definite,
(3.31)

where I ′ (i), i ∈ {0, 1, 2}, denote the images of the angular moments, I(i), i ∈ {0, 1, 2},
under the rotational transformation which aligns the coordinate axes with the principal

axes of the covariance matrix. The latter can be expressed in terms of the former via the

following relationships

I ′ (0) = I(0), I
′ (1)
i = RjiI

(1)
j , I

′ (2)
ij = RpiRqjI

(2)
pq , (3.32)
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where R is the rotation matrix such that RT (N (2) −N (1)(N (1))T )R is diagonal positive

definite.

In Eq. (3.31), the quantities, N ′ (i), i ∈ {1, 2}, represent normalized angular moments

associated with the transformed full angular moments, I ′ (i), i ∈ {1, 2}. In the new

coordinate frame, the transformed second-order moment tensor can be written as follows

N ′ (2) = N ′ (1)(N ′ (1))T +
(
1− ∥N ′ (1)∥2

)
diag(γ1, γ2, γ3), (3.33)

where γi, i ∈ {1, 2, 3}, are the normalized eigenvalues of the covariance matrix, which

satisfy the constraints γi ≥ 0 and
∑3

i=1 γi = 1 (please refer to Appendix B.1 for further

details), and where the former constraint is a consequence of the positive semi-definiteness

of the covariance matrix, whereas the latter equality stems from the trace equality on

the covariance matrix. The realizability conditions in the new coordinate frame can then

be summarized as follows

R(2)
T = {(I ′ (0), I ′ (1), I ′ (2)) ∈ R× R3 × R3×3, s.t. I ′ (0) ≥ 0, ∥N ′ (1)∥ ≤ 1,

0 ≤ γi ≤ 1, i ∈ {1, 2, 3}, and
3∑

i=1

γi = 1} .
(3.34)

The transformation which aligns the Cartesian axes with the principal axes of the covari-

ance matrix clearly allows for a more straightforward characterization of the realizable

space for angular moments up to second order via a reduction in the number of inde-

pendent variables from 9 to 6, in three-dimensional physical space. In fact, the set of

angular moments up to second order is represented by 9 independent variables since the

zeroth-order moment, I(0), is a scalar, the first-order moment, I(1), is a 3-component

vector, and the second-order moment, I(2), is a symmetric second-order dyad or tensor

with 5 unique entries.

A graphical representation of the transformed realizability domain for angular moments

up to second order, R(2)
T , is shown in Fig. 3.7, for any given non-negative radiative energy

density, I ′ (0). It can be clearly observed that for any given realizable first-order angular

moment vector, the matrix of second-order angular moments is realizable if and only if its

normalized eigenvalues lie within the equilateral triangle (P1, P2, P3) in the coordinates

frame (γ1, γ2, γ3). At the vertices of the latter triangle, the underlying distributions, IPi
,

i ∈ {1, 2, 3}, are uniquely determined by a combination of Dirac deltas, as demonstrated
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(a) (b)

Figure 3.7: Realizability domain, R(2)
T , for the M2 closure in the frame where the covari-

ance matrix,
(
N (2) −N (1)(N (1))T

)
, is diagonal positive definite for any given non-negative

radiative energy density, I ′ (0), and (a) a fixed set of normalized eigenvalues {γ1, γ2, γ3};
and (b) a fixed set of first-order moments {N ′ (1)

1 , N
′ (1)
2 , N

′ (1)
3 }.

in Appendix B.2, and take the form

IPi
= I ′ (0)

[
ρ+i δ

(
Ωi − x+i

)
+ ρ−i δ

(
Ωi − x−i

)]
δ
(
Ωj −N

′ (1)
j

)
δ
(
Ωk −N

′ (1)
k

)
, (3.35)

where (i, j, k) ∈ (1, 2, 3) with i ̸= j ̸= k

x±i = ±
√

1− ∥N ′ (1)∥2 +
(
N

′ (1)
i

)2
, (3.36)

and

ρ±i =
N

′ (1)
i − x∓i
2x±i

. (3.37)

It is a simple exercise to show that distributions of the form given in Eq. (3.35) are

non-negative for any given realizable set of angular moments up to first order. The

distribution at any point, P , lying inside the triangle defined by points, Pi, i ∈ {1, 2, 3},
can then be written as a barycentric interpolant of the distributions at Pi, denoted by

IPi
, and expressed as

IP =
3∑

i=1

γiIPi
. (3.38)

It is clear that the distribution given in Eq. (3.38) is non-negative since it corresponds to a

convex combination of non-negative distributions, IPi
, i ∈ {1, 2, 3}. In order to complete
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the proof of sufficiency, it must be shown that the distribution given by Eq. (3.38)

also reproduces moments lying inside the realizable space, R(2)
T (see Appendix B.3).

The distributions IPi
, i ∈ {1, 2, 3}, reproduce moments at the vertices of the triangle

(P1, P2, P3), and, as such, any convex combination of these three distributions will

therefore reproduce moments lying within the triangle and consequently within R(2)
T .

This completes the proof of moment realizability.

It is worth pointing out that the distribution of Eq. (3.38) is similar to the one given

by Kershaw [126] in the multi-dimensional case and also reduces to his results in the

one-dimensional case, i.e., for N
′ (1)
2 = 0 and N

′ (1)
3 = 0. More specifically, in the case

where N
′ (2)
11 = 1, i.e., γ1 = 1, Eq. (3.38) reduces to

IP = I ′ (0)

[
1 +N

′ (1)
1

2
δ(Ω1 − 1) +

1−N
′ (1)
1

2
δ(Ω1 + 1)

]
δ(Ω2)δ(Ω3), (3.39)

and for N
′ (2)
11 = (N

′ (1)
1 )2, i.e., γ1 = 0, one obtains

IP = I
′(0)
[
ρ+i δ(Ωi − xi) + ρ−i δ(Ωi + xi)

]
δ(Ωj −N

′(1)
j )δ(Ωk −N

′(1)
k ). (3.40)

Armed with the necessary and sufficient realizability conditions for moments up to second

order, we can now proceed with the development of interpolative-based approximations

of the M2 closure for radiative heat transfer in both gray and non-gray participating

media.

3.4.2 Interpolative-Based Second-Order Maximum-Entropy M2

Moment Closures

The interpolation procedure proposed herein for the approximation of the third-order

closing fluxes arising from the gray and non-gray M2 closures is inspired from the approach

used to prove sufficiency of the realizability conditions for moments up to order two.

More specifically, the third-order closing fluxes are approximated within R(2)
T via affine

combinations of their known closed-form analytical expressions at the vertices, Pi, i ∈
{1, 2, 3}. These expressions, the derivations of which are presented in Appendix B.2, are

summarized in Table 3.2.

The interpolative-based approximations of the third-order closing fluxes for the M2 clo-

sure proposed herein are expressed in the frame where the covariance matrix is diagonal,
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Table 3.2: Closed-Form Analytic Expressions of M2 Closing Relations at the Vertices of

the Triangle (P1, P2, P3).

Vertex N
′ (3)
111 N

′ (3)
122 N

′ (3)
123

P1 N
′ (1)
1

[
(N

′ (1)
1 )2 +

(
1− ∥N ′ (1)∥2

)]
N

′ (1)
1

(
N

′ (1)
2

)2
N

′ (1)
1 N

′ (1)
2 N

′ (1)
3

P2

(
N

′ (1)
1

)3
N

′ (1)
1

[
(N

′ (1)
2 )2 +

(
1− ∥N ′ (1)∥2

)]
N

′ (1)
1 N

′ (1)
2 N

′ (1)
3

P3

(
N

′ (1)
1

)3
N

′ (1)
1

(
N

′ (1)
2

)2
N

′ (1)
1 N

′ (1)
2 N

′ (1)
3

the latter being characterized by the realizable space, R(2)
T . Following the interpolation

procedure, the third-order closing fluxes in the original coordinate frame, characterized

by R(2), may be obtained via the inverse of the following transformation

I
′ (3)
ijk = RliRmjRnkI

(3)
lmn. (3.41)

It is worth pointing out that the third-order normalized moment tensor, N ′ (3), is also

symmetric and therefore has just 10 unique, independent entries, in three-dimensional

physical space. Furthermore, knowledge of just 3 of these entries, namely N
′ (3)
111 , N

′ (3)
122 and

N
′ (3)
123 , is sufficient to obtain expressions for the remaining 7 independent entries, N

′ (3)
ijk =

N
′ (3)
ijk (I

′ (0)⋆
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), which, in the context of non-gray radiation, can be

related to these 3 entries as follows:

N
′ (3)
222 = N

′ (3)
111 (I

′ (0)⋆
η , N

′ (1)
2 ,−N ′ (1)

1 , N
′ (1)
3 , γ2, γ1),

N
′ (3)
333 = N

′ (3)
111 (I

′ (0)⋆
η , N

′ (1)
3 , N

′ (1)
2 ,−N ′ (1)

1 , γ3, γ2),

N
′ (3)
112 = N

′ (3)
122 (I

′ (0)⋆
η , N

′ (1)
2 ,−N ′ (1)

1 , N
′ (1)
3 , γ2, γ1),

N
′ (3)
113 = N

′ (3)
122 (I

′ (0)⋆
η , N

′ (1)
3 , N

′ (1)
1 , N

′ (1)
2 , γ3, γ1),

N
′ (3)
133 = N

′ (3)
122 (I

′ (0)⋆
η , N

′ (1)
1 , N

′ (1)
3 ,−N ′ (1)

2 , γ1, γ3),

N
′ (3)
223 = N

′ (3)
122 (I

′ (0)⋆
η , N

′ (1)
3 , N

′ (1)
2 ,−N ′ (1)

1 , γ3, γ2),

N
′ (3)
233 = N

′ (3)
122 (I

′ (0)⋆
η , N

′ (1)
2 , N

′ (1)
3 , N

′ (1)
1 , γ2, γ3).

(3.42)

For gray radiative transfer, the same relationships as those given in Eq. (3.42) hold,

except for the fact that the third-order closing fluxes no longer depend on the radiative

energy density, I
′ (0)⋆
η .

It is also worth mentioning that the optimization problem for entropy maximization given

by Eqs. (3.6) and (3.8) for non-gray radiation cannot be solved directly on the boundaries

of the realizability domain, R(2)
T , denoted here as ∂R(2)

T . On these boundaries, some of
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Table 3.3: Form of the entropy maximizing distribution for non-gray radiation on the

boundaries of the realizable space for angular moments up to second-order.

Regime Form of the Distribution

∥N ′ (1)∥ = 1 Iη = I
(0)
η δ(Ω⃗−N (1))

γi = 0 or γi = 1 see [130]

I
′ (0)
η → 0 Iη(α, m) = 2hcη3 exp

(
− c2hη

k
αTm(s⃗ )

)
I
′ (0)
η → +∞ Iη(α, m) = 2kη2

c

[
αTm(s⃗ )

]−1

R̃(2)
T Iη(α, m) = 2hcη3

[
exp

(
c2hη
k

αTm(s⃗ )
)
− 1
]−1

the inequalities defining the realizable space, R(2)
T , become sharp, i.e.,

∂R(2)
T = {(I ′ (0)η , I ′ (1)η , I ′ (2)η ) ∈ R× R3 × R3×3 s.t. I ′ (0)η → 0 or I ′ (0)η → +∞

or ||N ′ (1)|| = 1, or γi = 0 or γi = 1, i ∈ {1, 2, 3}}.
(3.43)

In fact, on ∂R(2)
T , the entropy maximizing distribution of Eq. (3.5) becomes singular due

to the fact that propagation of radiation is then only allowed along specific directions,

instead of spanning the full solid angle. More specifically, the entropy maximizing distri-

bution is either uniquely determined by a single Dirac-delta distribution (for ∥N (1)∥ = 1),

a combination of Dirac-delta distributions (for γi = 1, i ∈ {1, 2, 3}, see [130]), or takes

a particular form, as in the case of the limit where I
′ (0)
η → 0 or I

′ (0)
η → +∞, also known

as the hyperbolic and the logarithmic limits [125], respectively. In the case where only

one eigenvalue vanishes, i.e., γi = 0, i ∈ {1, 2, 3}, the distribution still has the form

given in Eq. (3.5) for the entropy maximizing distribution, but is only defined over a

circle instead of the full solid angle, as it becomes singular with respect to one of the

direction cosines of the vector, s⃗, characterizing the direction of propagation of the radi-

ation. The expressions for the entropy maximizing distribution associated with each of

the aforementioned limits, are summarized in Table 3.3, where R̃(2)
T denotes the interior

of the realizable space, R(2)
T .

The finding discussed above in the context of non-gray radiation also hold for gray radia-

tive transfer. In particular, the entropy optimization problem for gray radiation given in

Eqs. (3.12) and (3.13) cannot be readily solved on the boundaries, ∂R(2)
T , of R(2)

T , to the

exception of the hyperbolic and the logarithmic limits. On such boundaries, the entropy
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Table 3.4: Form of the entropy maximizing distribution for gray radiation on the bound-

aries of the realizable space for angular moments up to second-order.

Regime Form of the Distribution

∥N ′ (1)∥ = 1 I = I(0)δ(Ω⃗−N (1))

γi = 0 or γi = 1 see [130]

R̃(2)
T I(α, m) =

σstef

π

[
αTm(s⃗ )

]−4

maximizing distribution of Eq. (3.10) no longer spans the full solid angle, but is rather

defined on a subset of the latter, since propagation of radiation is then only allowed

along specific directions. However, unlike the case of non-gray radiation, the form of

the entropy maximizing distribution for gray radiation remains unchanged in either the

hyperbolic or the logarithmic limits. Table 3.4 presents a summary of the expressions

for the gray entropy maximizing distribution of Eq. (3.10) associated with the various

limits.

Based on the above, numerical maximum-entropy solutions for the third-order closing

fluxes throughout the full realizable space, R(2)
T = R̃(2)

T ∪ ∂R(2)
T , can then be obtained by

solving the optimization problem for entropy maximization using the appropriate form

of the distribution for any given set of moments up to second order. The third-order

closing fluxes at any point within R(2)
T are then approximated by writing the entries,

N
′ (3)
uvw = N

′ (3)
uvw(I

′ (0)⋆
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), {uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, as

affine interpolants between their known closed-form expressions at the vertices of the

triangle (P1, P2, P3) (see Table 3.2) as follows:

N
′ (3)
111 = N

′ (1)
1

[(
N

′ (1)
1

)2
+ f

N
′ (3)
111

(
1− ∥N ′ (1)∥2

)]
, (3.44)

N
′ (3)
122 = N

′ (1)
1

[(
N

′ (1)
2

)2
+ f

N
′ (3)
122

(
1− ∥N ′ (1)∥2

)]
, (3.45)

and

N
′ (3)
123 = f

N
′ (3)
123
N

′ (1)
1 N

′ (1)
2 N

′ (1)
3 , (3.46)

where f
N

′ (3)
uvw

= f
N

′ (3)
uvw

(I
′ (0)⋆
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2),

{uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, are polynomial expressions defined such that

the proposed approximations of the third-order closing fluxes exactly match the known

closed-form expressions at the vertices of the triangle, (P1, P2, P3), and takes the forms

f
N

′ (3)
111

= γ1

[
1 + (1− γ1)gN ′ (3)

111

]
, (3.47)
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f
N

′ (3)
122

= γ2

[
1 + (1− γ2)gN ′ (3)

122

]
, (3.48)

and

f
N

′ (3)
123

= 1 + γ1γ2γ3gN ′ (3)
123
, (3.49)

and where g
N

′ (3)
uvw

= g
N

′ (3)
uvw

(I
′ (0)⋆
η , N

′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2),

{uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, are polynomial expressions which are chosen such

that numerical solutions of the optimization problem for entropy maximization, for the

third-order closing fluxes, are accurately reproduced for any given set of angular moments

up to second order in R(2)
T . The choices of the forms of the polynomial expressions, g

N
′ (3)
uvw

,

for the purpose of our interpolation procedure, are discussed in the sections to follow, for

both gray and non-gray radiation, in that order.

It is worthwhile defining the polar and azimuthal angles characterizing the direction of

the normalized first-order angular moment vector, N ′ (1), in a spherical coordinate system,

denoted by θ and ϕ respectively, as follows

θ = arccos

(
N

′ (1)
1

∥N ′ (1)∥

)
, ϕ = arccos

 N
′ (1)
2√

(N
′ (1)
2 )2 + (N

′ (1)
3 )2

 . (3.50)

For the interpolation of maximum-entropy solutions over the realizable space for the first-

order moment vector, which spans the unit ball, spherical coordinates represent a rather

natural and more suitable choice over Cartesian coordinates. In fact, performing the

interpolation over the unit ball, spanned by the first-order moment vector, with respect

to the latter coordinate system would require a mapping of the unit ball into more

conventional geometries for Cartesian coordinate frames, in particular cubic shapes.

3.4.3 Polynomial Interpolation Procedure for Gray M2 Moment

Closure

For gray-gas radiation, we aim to write the weighting functions, g
N

′ (3)
uvw

,

{uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, as truncated series expansions in terms of orthog-

onal polynomials as follows

g
N

′ (3)
uvw

=

nj∑
j=0

nk∑
k=0

k∑
l=0

np∑
p=0

np−p∑
q=0

CN
′ (3)
uvw

jklpq T2j(∥N
′ (1)∥)Y 2l

2k(θ, ϕ)Ppq(γ1, γ2), (3.51)



64 Chapter 3. Maximum Entropy Moment Closures

where Tn represent Chebyshev polynomials of the first kind of degree n, Y l
k are spherical

harmonic functions of degree k and order l, and Ppq correspond to Proriol polynomials

of order, p + q. The coefficients, CN
′ (3)
uvw

jklpq , j = 0, 1, . . . , nj, k = 0, 1, . . . , nk, l = 0, 1, . . . , k,

p = 0, 1, . . . , np, q = 0, 1, . . . , np − p, appearing in Eq. (3.51), and defining the vector of

coefficients, CN
′ (3)
uvw , are determined via the solution of the Vandermonde system arising

from the enforcement of the latter equation at several, suitably chosen, interpolation

nodes spanning R(2)
T . In the present study, the interpolation points for ∥N ′(1)∥ are cho-

sen to coincide with extrema of Chebyshev polynomials of the first kind of order 2nj,

including the endpoints. On the other hand, for the eigenvalues of the covariance ma-

trix, a distribution similar to the one proposed by Blyth and Pozrikidis [132] for the

interpolation over the standard triangle is employed, which yields

γ1,i =
1

3
(1 + 2vi − vj − vk), γ2,j =

1

3
(1 + 2vj − vi − vk), (3.52)

where i = 1, 2, . . . , np + 1, j = 1, 2, . . . , np + 2 − i, and k = np + 3 − i − j, and where

vm, m = 1, 2, . . . , np + 1, are chosen to coincide with extrema of the shifted Chebyshev

polynomial of the first kind of order np, also including the endpoints. The interpolation

nodes for the polar angle θ were chosen such that cos θ coincides with roots of the Legendre

polynomials of order (2nk + 1), whereas, for the azimuthal angle, ϕ, a set of 4nk points

uniformly distributed on the unit circle were selected as the interpolation points.

The choice of extrema of Chebyshev polynomials of the first kind, including the endpoints,

also known as Chebyshev-Gauss-Lobatto points, for the purpose of interpolating over the

domain spanned by the norm of the first-order normalized moment vector, ∥N ′(1)∥, as
well as over the triangle (P1, P2, P3), allows for the derivatives of the third-order closing

fluxes to be accurately reproduced in the isotropic (∥N (1)∥ = 0) and free-streaming

(∥N (1)∥ = 1) limits, as well as on the boundaries (edges) of the triangle (P1, P2, P3),

which correspond to situations where at least one of the eigenvalues of the covariance

matrix vanishes. This feature is quite desirable as it ensures that our interpolative-based

approximations of the third-order closing fluxes accurately capture the rates of change

of the original maximum entropy solutions in such limits, and, consequently, Runge-type

oscillations of the interpolated solutions as such limits are approached, which can yield

both realizability and hyperbolicity issues, are minimized. However, computations of the

numerical values for g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

from the maximum entropy solutions, using

Eqs. (3.44) and (3.47) for N
′(3)
111 , Eqs. (3.45) and (3.48) for N

′(3)
122 , or Eqs. (3.46) and (3.49)

for N
′(3)
123 , respectively, for the purpose of solving the Vandermonde system for the vector
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of coefficients, CN
′ (3)
111 , CN

′ (3)
122 , and CN

′ (3)
123 , from Eq. (3.51), though straightforward for

distributions away from the isotropic and free-streaming limits, as well as distributions

away from the edges of the triangle described by the eigenvalues of the covariance matrix,

result in undetermined expressions in these limits. In this study, l’Hopital’s rule is used to

provide computable expressions for g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

in such limits, the derivation

of which is presented in Appendix C of the thesis.

The weighting functions, g
N

′ (3)
uvw

, {uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, are chosen such

that nj = np = 4 and nk = 2, as this choice was observed to yield a good balance between

accuracy and efficiency for the proposed polynomial interpolation procedure. To assess

the accuracy of the proposed interpolative-based approximations of the third-order clos-

ing fluxes, N
′ (3)
111 , N

′ (3)
122 , and N

′ (3)
123 , for the M2 closure for gray radiation, predicted values

of these closing fluxes are compared to numerical solutions of the optimization problem

for entropy maximization for sets of angular moments up to second order spanning the full

realizable space, R(2)
T . More specifically, a set of 20 values of ∥N ′(1)∥ uniformly distributed

in [0, 1], 40 values of ϕ equally distributed in [0, 2π], 20 values of θ evenly distributed

in [0, π], as well as 20(20 + 1)/2 = 210 sets of (γ1, γ2, γ3) equally distributed within the

triangle (P1, P2, P3) (see Fig. 3.7) were considered for the assessment of the accuracy

of the proposed interpolation procedure for the third-order closing fluxes. The errors in

the L∞-norm sense was 1.811× 10−2 for N
′ (3)
111 , 2.6113× 10−2 for N

′ (3)
122 , and 7.54× 10−3

for N
′ (3)
123 . The interpolated third-order closing fluxes and the errors associated with the

corresponding interpolation procedure are illustrated graphically in Figs. 3.8 and 3.9 for

moment N
′ (3)
111 and Figs. 3.10 and 3.11 for moment N

′ (3)
122 , respectively. These figures show

the aforementioned quantities with respect to both the norm of the first-order normalized

moment, ∥N ′ (1)∥, and the eigenvalues of the covariance matrix, γ1 and γ2.

It should be pointed out that the polynomial interpolation procedure proposed in the

present study, for the third-order closing fluxes of the gray M2 closure, involves sev-

eral improvements, in terms of both efficiency and accuracy, compared to the approach

adopted in the recent paper by Sarr and Groth [130]. First, instead of the rectangle-

triangle mapping adopted by Sarr and Groth [130], in conjunction with a product of

Chebyshev polynomials, the procedure adopted in this thesis makes use of Proriol poly-

nomials for the interpolation over the triangle, (P1, P2, P3). Proriol polynomials form a

complete set of orthogonal basis polynomials on the standard triangle, and result in a

well-conditioned Vandermonde matrix when used in conjunction with the nodal distribu-
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Figure 3.8: Interpolated third-order closing flux, N
′ (3)
111 , with respect to (a) the norm of

the first-order normalized moment, ∥N ′ (1)∥, and (b) the eigenvalues of the covariance

matrix, γ1 and γ2.
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Figure 3.9: Interpolation error for the third-order closing flux, N
′ (3)
111 , with respect to (a)

the norm of the first-order normalized moment, ∥N ′ (1)∥, and (b) the eigenvalues of the

covariance matrix, γ1 and γ2.

tion given in Eq. (3.52), for the interpolation over the triangle, (P1, P2, P3). Moreover,

the latter nodal distribution, i.e., that of Eq. (3.52), provides a better distribution of

interpolation nodes over the triangle, compared to the rectangle-triangle mapping ap-

proach employed by Sarr and Groth [130], which unnecessarily and undesirably clusters

the interpolation points near one of the vertices or edges of the triangle. As for the
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Figure 3.10: Interpolated third-order closing flux, N
′ (3)
122 , with respect to (a) the norm

of the first-order normalized moment, ∥N ′ (1)∥, and (b) the eigenvalues of the covariance

matrix, γ1 and γ2.
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Figure 3.11: Interpolation error for the third-order closing flux, N
′ (3)
122 , with respect to

(a) the norm of the first-order normalized moment, ∥N ′ (1)∥, and (b) the eigenvalues of

the covariance matrix, γ1 and γ2.

spherical harmonic expansion in terms of the polar and azimuthal angles describing the

direction of the vector of first-order moments, a careful analysis of the evenness of the

third-order closing fluxes revealed that only the spherical harmonic functions of even

degree or order need to be retained for the interpolations, instead of including all the

terms in the expansion, as was done in the previous study [130]. The adoption of these



68 Chapter 3. Maximum Entropy Moment Closures

modifications yields a reduction in the total number of coefficients for the interpolations

by at least a factor of a half.

The aforementioned improvements, despite resulting in a more efficient interpolative

procedure for the third-order closing fluxes of the M2 closure, still yield a relatively com-

putationally expensive closure in comparisons to its lower-order counterpart, the gray M1

closure, described in Section 3.3.1, as well as the P1 and P3 spherical harmonic moment

closures. In fact, the set of orthogonal polynomial bases, used for the interpolation of

maximum entropy solutions, for the third-order closing fluxes, over the full realizable

space for moments up to second order, while very convenient for accurately computing

the coefficients associated with the proposed polynomial approximations of Eq. (3.51),

would involve repeated computations of factorial expressions, among others, if imple-

mented directly as written here when computing the approximations to the entries of

N ′ (3). Further substantial computational savings can be achieved by reformulating the

polynomial expressions, g
N

′ (3)
uvw

, for {uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}, in terms of

monomials with respect to the independent variables, and recomputing the coefficients,

CN
′ (3)
111 , CN

′ (3)
122 , and CN

′ (3)
123 , in a monomial basis once the interpolation procedure has been

carried out. The resulting polynomial expressions, can then be evaluated very efficiently

by means of the well known Horner scheme [127,128].

3.4.4 Polynomial Interpolation Procedure for Non-Gray M2

Moment Closure

As discussed earlier in Section 3.4, the closing relations for the non-gray M2 closure in-

volve the additional dependencies on the radiative energy density and wavenumber when

compared to the M2 closure for gray radiation. Inspired by this knowledge, the approx-

imate forms of the weighting functions, g
N

′ (3)
uvw

, for {uvw} = {{1, 1, 1}, {1, 2, 2}, {1, 2, 3}}
in the context of non-gray radiation are constructed herein via extension of the polyno-

mial interpolant given in Eq. (3.51) for gray radiative transfer, such that the spectral

and energy density dependencies are also accounted for. More specifically, the weight-

ing functions, g
N

′ (3)
uvw

, are expressed as truncated series expansions in terms of orthogonal
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polynomials as follows

g
N

′ (3)
uvw

=

ni∑
i=0

nj∑
j=0

nk∑
k=0

k∑
l=0

np∑
p=0

np−p∑
q=0

CN
′ (3)
uvw

ijklpqTi

(
M

I
′ (0)⋆
η

)
T2j(∥N ′ (1)∥)Y 2l

2k(θ, ϕ)Ppq(γ1, γ2),

(3.53)

with ni = nj = np = 4 and nk = 2, where again Tn are Chebyshev polynomials of the

first kind of degree n, Y l
k are spherical harmonic functions of degree k and order l, and

Ppq represent Proriol polynomials of order, p + q. Furthermore, M
I
′ (0)⋆
η

represents an

exponential mapping of the radiative energy density, similar to the procedure adopted

for the interpolative non-gray M1 closure as given in Eq. (3.23), of the form:

M
I
′(0)⋆
η

: [0, +∞] → [−1, 1],

I ′(0)⋆η → 1− 2 exp

(
− I

′(0)⋆
η

LN ′ (3)

)
,

(3.54)

where LN ′ (3) is the length scale of the mapping, M
I
′(0)⋆
η

, the distribution of which is

chosen such that the accuracy of our interpolative-based approximations of the third-

order closing fluxes, with respect to numerical maximum-entropy solutions, is optimized,

for sets of angular moments up to second order spanning R(2)
T and over the full spectrum

of frequencies. As for the M1 closure, the choice of the form of the mapping length scale

is also dictated by some of the desirable properties of the original non-gray M2 closure, in

particular hyperbolicity of the resulting closed system of moment equations. An in-depth

description of the procedure adopted in the present study for determining the optimal

distribution of LN ′ (3) is presented below.

The coefficients, CN
′ (3)
uvw

ijklpq, i = 0, 1, . . . , ni, j = 0, 1, . . . , nj, k = 0, 1, . . . , nk, l = 0, 1, . . . , k,

p = 0, 1, . . . , np, q = 0, 1, . . . , np − p, appearing in Eq. (3.53), and making up the vector

of coefficients, CN
′ (3)
uvw , are determined via the solution of the Vandermonde system aris-

ing from the enforcement of the latter equation at several, suitably chosen, interpolation

nodes spanning R(2)
T . For the interpolation of the third-order closing fluxes arising from

the non-gray M2 closure over the unit ball spanned by the first-order moment vector, as

well as over the equilateral triangle describing the realizable space for the eigenvalues of

the covariance matrix, nodal distributions similar to those adopted for the interpolative-

based gray M2 closure are employed herein. More specifically, the interpolation within

the unit ball is carried out by considering extrema of Chebyshev polynomials of the first

kind of order 2nj (including the endpoints) for ∥N ′(1)∥, roots of the Legendre polynomi-

als of order (2nk + 1) for the cosine of the polar angle, i.e., cos θ, and 4nk points evenly
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distributed on the unit circle for the azimuthal angle, ϕ. Moreover, for the interpolation

procedure over the standard triangle spanned by the eigenvalues of the covariance matrix,

a nodal distribution similar to the one proposed by Blyth and Pozrikidis [132] and given

in Eq. (3.52) is adopted. Finally, the interpolation over the full spectrum of frequen-

cies as well as over the realizable energy levels, which was not of concern in the context

of the gray M2 closure, is carried out by choosing M
I
′(0)⋆
η

to coincide with extrema of

Chebyshev polynomials of the first kind of order ni, including the endpoints. Similar to

the interpolative procedure adopted for its gray counterpart, the choice of Chebyshev-

Gauss-Lobatto-based nodal distributions for the interpolation of the non-gray M2 closing

fluxes with respect to the norm of the first-order normalized moment vector, ∥N ′(1)∥,
as well as over the triangle (P1, P2, P3), minimizes the risk of oscillations near the re-

alizable boundaries and consequently helps with realizability and hyperbolicity of the

resulting interpolative-based closure. The solution of the Vandermonde systems arising

from Eq. (3.53), for the determination of the vectors of coefficients, CN
′ (3)
111 , CN

′ (3)
122 , and

CN
′ (3)
123 , requires computations of the weighting functions, g

N
′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

, at the

selected interpolation points, from the solutions of the maximum entropy problem of

Eqs. (3.6) and (3.8). Such computations can be carried out in a rather straightforward

manner for distributions away from the isotropic and free-streaming limits, as well as

distributions away from the edges of the triangle described by the eigenvalues of the co-

variance matrix. In fact, for distributions away from such limits, g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

can be directly computed using Eqs. (3.44) and (3.47) for N
′(3)
111 , Eqs. (3.45) and (3.48)

for N
′(3)
122 , or Eqs. (3.46) and (3.49) for N

′(3)
123 , respectively. However, for distributions

associated with the aforementioned limits, the latter procedure cannot be readily used

to compute the weighting functions, g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

, as it would result in unde-

termined expressions. In this study, l’Hopital’s rule is again used to provide computable

expressions for g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

in such limits, similar to the gray M2 closure, and

the corresponding procedure is summarized in Appendix C.

In the present study, the form of the length scale, LN ′ (3) , of the exponential mapping

given in Eq. (3.54) is inspired from the expression proposed and given in Eq. (3.24) in

the case of the non-gray M1 closure, and can be seen as an extension of the latter to the

case of known angular moments up to second order. More specifically, the length scale,
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LN ′ (3) = LN ′ (3)(N
′ (1)
1 , N

′ (1)
2 , N

′ (1)
3 , γ1, γ2), is written in the following form

LN ′ (3) = exp

[
nj∑
j=0

nk∑
k=0

k∑
l=0

np∑
p=0

np−p∑
q=0

C
L
N′(3)

jklpq T2j(∥N ′(1)∥)Y 2l
2k(θ, ϕ)Ppq(γ1, γ2)

]
, (3.55)

where C
L
N′ (3)

jklpq , j = 0, 1, . . . , nj, k = 0, 1, . . . , nk, l = 0, 1, . . . , k, p = 0, 1, . . . , np, q =

0, 1, . . . , np − p, are the coefficients of our proposed interpolative-based approximation of

the mapping length scale, LN ′ (3) , and make up the vector of coefficients, CL
N′ (3) . The

latter coefficients are chosen such that the proposed interpolative-based approximations

of the third-order closing fluxes accurately mimic the corresponding numerical solutions

of the entropy optimization problem over the full realizable space for angular moments

up to second order, R(2)
T , as well as over the full spectrum of frequencies. In the context

of the interpolative non-gray M1 closure proposed in Section 3.3.2, the determination of

the coefficients for the length scale of the exponential mapping was only concerned with

the Eddington factor. In fact, since the latter is the only unknown in the second-order

closing fluxes of the M1 closure, it therefore follows that an accurate approximation of the

Eddington factor would directly translate into an accurate approximation of the second-

order closing fluxes. On the other hand, the interpolation procedure for the non-gray

M2 closure is rendered more complicated, when compared to its lower-order counterpart,

due to the fact that the tensor of third-order closing fluxes cannot be parameterized

with respect to a single unknown. Instead, 3 entries, i.e., N
′ (3)
111 , N

′ (3)
122 , and N

′ (3)
123 , must

be approximated simultaneously, which, in conjunction with considerations of symmetry

(see Eq. (3.42)), yield an approximation for all the entries making up the tensor of

third-order angular moments. In order to account for each of these 3 entries in the

determination of the optimal distribution of the length scale, LN ′ (3) , a multi-objective

least-squares optimization problem is advocated, which consists of minimizing a weighted

sum of the L2 errors of the interpolative-based approximations of the third-order closing

fluxes, N
′ (3)
111 , N

′ (3)
122 , and N

′ (3)
123 , and can be summarized by the following expressions

min
C

L
N′ (3)

{errorg
N′ (3)},

errorg
N′ (3) = w

N
′ (3)
111
.errg

N
′ (3)
111

+ w
N

′ (3)
122
.errg

N
′ (3)
122

+ w
N

′ (3)
123
.errg

N
′ (3)
123

,
(3.56)

where the weights, w
N

′ (3)
111

= 0.4, w
N

′ (3)
122

= 0.3, and w
N

′ (3)
123

= 0.3, respectively express the

relative importance of each of the third-order closing fluxes, N
′(3)
111 , N

′(3)
122 , and N

′(3)
123 , in the

determination of the coefficients of the length scale of the exponential mapping of the
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radiative energy density. In Eq. (3.56), errg
N

′ (3)
uvw

represents the error of the interpolative-

based approximation of the weighting function, g
N

′ (3)
uvw

, of Eq. (3.53) associated with the

third-order closing flux, N
′ (3)
uvw , with respect to numerical solutions of the maximum en-

tropy problem of Eqs. (3.6) and (3.8), and is evaluated as follows

errg
N

′ (3)
uvw

=

Ni∑
i=1

Nj∑
j=1

2Nk∑
k=1

Nk∑
l=1

Np∑
p=1

Np−p∑
q=1

Nr∑
r=1

wiwjwkwlwpqwr

(
gijklpqr
N

′ (3)
uvw ,fit

− gijklpqr
N

′ (3)
uvw ,numerical

)2
.

(3.57)

In Eq. (3.57), gijklpqr
N

′ (3)
uvw ,numerical

represents values of the weighting function, g
N

′ (3)
uvw

, and are

computed from the solutions of the entropy optimization problem of Eqs. (3.6) and (3.8),

for a given set of test points spanning the full realizable space for angular moments up to

second order, R(2)
T , as well as the full spectrum of frequencies. The weighting functions

are computed from the maximum entropy solutions for the third-order closing fluxes

using Eqs. (3.44) and (3.47) for g
N

′(3)
111

, Eqs. (3.45) and (3.48) for g
N

′(3)
122

, or Eqs. (3.46) and

(3.49) for g
N

′(3)
123

. In situations where undetermined expressions are encountered using the

above procedure, as is the case in the isotropic and free-streaming limits, as well as along

the edges of the triangle (P1, P2, P3), the procedure described in Appendix C of the thesis

may be used to compute the weighting functions, g
N

′(3)
111

, g
N

′(3)
122

, and g
N

′(3)
123

. Furthermore,

gijklpqr
N

′ (3)
uvw ,fit

corresponds to values of the weighting function, g
N

′ (3)
uvw

, computed via evaluation

of the proposed polynomial approximation, Eq. (3.53), at the test points.

The error given in Eq. (3.57) is computed using a set of N = 2NiNj(Nk)
2NpqNr = 6.72×

109 evaluation points. The latter consist of Ni = 20 values of M
I
′(0)⋆
η

following a Gauss-

Lobatto-Chebyshev distribution in [−1, 1], with associated weights, wi, i = 1, 2, . . . , Ni,

Nj = 20 values of ∥N ′(1)∥ associated with non-negative Gauss-Lobatto-Chebyshev points

in [−1, 1], with weighting wj, j = 1, 2, . . . , Nj, and Nr = 100 values of LN ′ (3) based on

roots of Laguerre polynomials with weighting wr, r = 1, 2, . . . , Nr. Moreover, Nk = 20

values of θ and 40 values of ϕ (see Eq. (3.50)) uniformly distributed in [0, π] and [0, 2π],

respectively, with weights, wl, l = 1, 2, . . . , Nk, and wk, k = 1, 2, . . . , 2Nk, were also used

in the solution of the least-squares problem, in addition to Npq = Np(Np + 1)/2 = 210

points (with Np = 20) following the distribution given in Eq. (3.52), with associated

weights, wpq, p = 1, 2, . . . , Np, q = 1, 2, . . . , Np − p, for the eigenvalues of the covariance

matrix.

At each iteration of the nonlinear least-squares problem defined by Eq. (3.56), the iter-
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ate, CL
N′ (3) , can be used, in conjunction with Eq. (3.55) as well as the inverse of the

exponential mapping of Eq. (3.54), to compute values of I
′(0)⋆
η associated with the chosen

interpolation nodes forM
I
′(0)⋆
η

, and consequently solve the corresponding dual maximum-

entropy problem at each of the interpolation points. The vectors of coefficients, CN
′ (3)
111 ,

CN
′ (3)
122 , and CN

′ (3)
123 (see Eq. (3.53)), are then obtained via solution of the associated Van-

dermonde systems, and the resulting polynomial expressions of Eq. (3.53) are then used

to compute the quantities, g
N

′ (3)
111 ,fit

, g
N

′ (3)
122 ,fit

, and g
N

′ (3)
123 ,fit

, at the evaluation points.

Two equally important properties to consider for the purpose of our interpolation pro-

cedure, in addition to accuracy with respect to numerical maximum-entropy solutions

for the third-order closing fluxes, are realizability and hyperbolicity of the interpolative-

based non-gray M2 closure, throughout the full realizable space for angular moments

up to second order, in multiple space dimensions, as well as over the full spectrum of

frequencies. Unfortunately, unlike the case for the non-gray M1 closure, identification

and proof of the necessary and sufficient conditions for realizability of angular moments

up to third order in multi-dimensional physical space are not available theoretically to

date, and, as such, realizability of the third-order closing fluxes is not considered in the

proposed interpolation procedure. On the other hand, hyperbolicity of the proposed non-

gray M2 closure is sought by enforcing, at each step of the multi-objective least-squares

optimization problem of Eq. (3.56), appropriate constraints on the eigenvalues of the

flux Jacobian of the resulting closed system of equations, as discussed in Section 5.1.3 of

Chapter 5 to follow.

Following the interpolation procedure outlined above for the third-order closing fluxes of

the non-gray M2 closure, leading to the determination of the coefficients, CN
′ (3)
111 , CN

′ (3)
122 ,

CN
′ (3)
123 , and CL

N′(3) of Eqs. (3.53) and (3.55), respectively, a procedure similar to the one

described in Section 3.4.3 can be adopted in order to improve efficiency. In particular,

once the interpolative procedure has been carried out, substantial computational savings

can be achieved by reformulating the polynomial expressions for g
N

′ (3)
111

, g
N

′ (3)
122

, and g
N

′ (3)
123

,

as well as for LN ′ (3) , in terms of monomials with respect to the independent variables,

and recomputing the coefficients in the monomial bases. The resulting polynomial inter-

polants, can then again be evaluated very efficiently by means of the well known Horner

scheme [127,128].





Chapter 4

Spectral Radiation Models

The RTE, as given in Eq. (2.9) of Chapter 2, represents the transport of radiation for a

single wavenumber. Moreover, the numerical approaches described in the previous two

chapters have focused on coping with the angular/directional dependence of the radiative

intensity distribution, for a given wavenumber. In reactive flows however, the radiative

properties of participating real-gas mixtures, in particular the absorption coefficient,

vary strongly throughout the spectrum. A comprehensive and realistic radiation model

must therefore account for these non-gray effects through the use of real-gas spectral

properties and accurate approximations for the optical characteristics of soot. From the

computational point of view, incorporation of non-gray effects involves solution of the

RTE of Eq. (2.9) for different values of the absorption coefficient over the full spectrum of

frequencies followed by integration over the spectrum to obtain the quantities of interest

such as the divergence of the total radiant heat flux given in Eq. (2.13).

In the present study, real-gas radiation over the full spectrum of frequencies is accounted

for using the SNBCK technique [31, 71] whereas the optical properties of soot are es-

timated by means of Rayleigh theory for small particles. This chapter provides a de-

scription of the background theory for the SNBCK spectral radiation technique along

with its incorporation with the DOM, P1, and P3 radiation models, as well as with the

newly-developed interpolative-based non-gray M1 and M2 closures.

75
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4.1 Statistical Narrow-Band Correlated-k Model

In the SNBCK model [31,71], the spectral domain is divided into bands of frequencies of

size ∆η. The width of the bands is chosen to be sufficiently small such that the Planck

function, Ibη, can be assumed to be constant within each band. A cumulative distribution

function for the absorption coefficient is then introduced, which allows the reordering of

the strongly spectrally varying absorption coefficient into a monotonic function, such

that the number of evaluations of the RTE, required for accurate integration over each

narrow-band, is substantially reduced in comparison to straightforward LBL methods.

For illustration purposes, the absorption coefficient of CO2 across a small portion of its

4.3 µm band is shown in Fig. 4.1(a). Over such a narrow spectral interval, the Planck

function is essentially constant, while the absorption coefficient varies rather strongly, at-

taining the same value several times. Since every identical value for absorption coefficient

produces identical solutions for the RTE in the case of a constant Planck function, sub-

stantial computational savings, compared to LBL calculations, can indeed be achieved by

re-ordering the absorption coefficient into a monotonically increasing function. This re-

ordering concept was first reported about five decades ago by Arking and Grossman [133]

but has received significant attention in the heat transfer community only in the last three

decades [90,134,135]. The re-ordering introduces a distribution function, f(k), such that

f(k)dk represents the fraction of the spectrum between η and η +∆η where the absorp-

tion coefficient lies between k and k + dk. The distribution function, f(k), is directly

computed from the absorption coefficient spectrum as a weighted sum of the number of

points where κη = k [23]. As can be seen in Fig. 4.1(b) however, the distribution func-

tion, f(k), is ill-behaved and would still require a large number of quadrature points for

the accurate integration of the absorption coefficient over the narrow band. To alleviate

this issue, a cumulative distribution function, g(k), is introduced, of the form

g(k) =

∫ k

0

f(k′)dk′. (4.1)

The cumulative distribution function, g(k), for the absorption coefficient can be inter-

preted as a dimensionless wavenumber coordinate. It is a monotonically increasing func-

tion varying between 0 and 1, and represents the fraction of the spectrum where κη ≤ k.

Figure 4.1(c) illustrates the cumulative distribution function associated with the absorp-

tion band of CO2 shown in Fig.4.1(a). It is evident that g(k) is much better behaved
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Figure 4.1: (a) Absorption coefficient for the 4.3 µm CO2 band at T = 1000K and

p = 1 bar; (b) The PDF of the absorption coefficient for the 4.3 µm CO2 band; (c) The

k-distribution of absorption coefficient for the 4.3 µm CO2 band [1]

than f(k) and should be expected to require substantially fewer quadrature points for

the accurate spectral integration over the narrow band.

Using the reordering concepts presented above, the RTE of Eq. (2.9), integrated over

each narrow band, under the assumption of a non-scattering medium, yields∫ 1

0

1

c

∂Ig
∂t
dg +

∫ 1

0

s⃗.∇⃗Igdg =
∫ 1

0

k(g)(Ibηc − Ig)dg, (4.2)

where

Ig =

∫
∆η
Iηδ(k − κη)dη∫

∆η
δ(k − κη)dη

, (4.3)

and where Ibηc is the Planck function evaluated at the wavenumber corresponding to the

band centre, denoted herein by ηc. The integration over each narrow band is performed

by means of numerical quadrature, such that the spectrally integrated intensity for each

band can be computed as

I∆η =

Ng∑
i=1

wiI(gi), (4.4)

where Ng is the number of quadrature points, gi, i = 0, 1, . . . , Ng, correspond to the

abscissas of the quadrature scheme and wi are the associated quadrature weights. Based

on the findings of Liu et al. [31], a four-point Gauss-Legendre quadrature was observed

to provide good balance between accuracy and computational costs and is therefore used

in the present study. The divergence of the total radiative heat flux, also referred to as
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the radiative source term, is then evaluated as

SR = ∇ · q⃗rad ≈
Nb∑
j=1

Ng∑
i=1

wiκ(gi)
[
4πIbηcj − ⟨I(gi)⟩

]
∆ηj, (4.5)

where Nb is the number of narrow bands, ∆ηj is the width of the jth narrow band, and

⟨I(gi)⟩ represents the angular integral, more specifically the zeroth-order moment defined

in Eq. (2.16), of the intensity distribution obtained by solving the RTE at quadrature

point gi.

While the CK method outlined above computes numerically the distribution function,

f(k), using line-by-line data for the absorption coefficient from databases like HITRAN

[136], the SNBCK method employs a more efficient alternative whereby the distribution

function is computed analytically using SNB parameters. More specifically, assuming the

participating gas follows the Malkmus model [137], a closed-form analytical expression for

the k-distribution function can be obtained by taking the inverse Laplace transformation

of the statistical narrow-band transmissivity [71]

f(k) = L−1{τ∆η} =
1

2
k−3/2(BS)1/2 exp

[
πB

4

(
2− S

k
− k

S

)]
, (4.6)

where L−1 is the inverse Laplace transform, ∆η is the narrow-band averaged transmissiv-

ity, B is the effective line half-width, and S represents the effective line strength. Using

the form of the k-distribution function given in Eq. (4.6) and substituting the latter in

Eq. (4.1) yields the following form for the cumulative distribution function

g(k) =
1

2
erfc

(
a√
k
− b

√
k

)
+

1

2
erfc

(
a√
k
+ b

√
k

)
exp (πB) , (4.7)

where erfc(x) is the complementary error function, a = 1
2

√
πBS and b = 1

2

√
πB/S. The

band model parameters, B and S, are generated from the narrow-band dataset of Soufiani

and Taine [138]). This dataset accounts for gas-band radiation from water vapour (H2O),

carbon dioxide (CO2) and carbon monoxide (CO) only, and consists of 367 uniformly-

spaced bands between 150 cm−1 to 9300 cm−1 with a bandwidth of 25 cm−1. For any

given value, gi, of the cumulative distribution function at a given quadrature point, a

Newton-Raphson procedure is used to invert Eq. (4.7) and compute the corresponding

value for the absorption coefficient, ki = k(gi). Solutions of the RTE are then obtained

at each quadrature point of the SNBCK approach.
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The SNBCK is exact for homogeneous media for which it can achieve the same accuracy

as line-by-line calculations while significantly reducing the required number of spectral

evaluations. For non-homogeneous media on the other hand, some assumptions about

the k-distribution functions have to be made since both f(k) and g(k) vary with position,

and, as such, there is no way to uniquely invert the cumulative distribution function g(k)

to obtain k(g). Two commonly used methods for addressing non-homogeneity are the

scaling approximation and the assumption of a correlated k-distribution [139], the latter

being the foundation of the SNBCK method. The scaling approximation is based on the

assumption that the spectral and spatial dependencies of the absorption coefficient are

separable. The correlated-k assumption, on the other hand, operates under the basis that

the cumulative distribution function, g(k), at any given location maps to the same value

of g(k) at another location, but with a different value of k. The correlated-k assumption

has been shown to be very accurate in meteorological applications, characterized by large

pressure variations and only moderate temperature changes. However, the assumption

of a correlated absorption coefficient breaks down in the presence of strong temperature

gradients [140, 141], as encountered in high-temperature combustion applications. The

scaling approximation can produce superior results in such cases, owing to the fact that

the scaling function can be optimized for the problem at hand.

In order to achieve further computational savings, the three radiating gases are approx-

imated by a single gas with effective narrow-band parameters based on the optically

thin limit [33]. In addition, the band lumping procedure described by Liu et al. [32] is

also adopted, whereby several bands are combined to form wide bands. A total of nine

non-uniformly spaced wide bands are employed herein based on the recommendation of

Goutiere et al. [142].

4.2 Soot Radiation

For the purposes of radiation transport, soot particulates are generally assumed to be

small spherical particles and their optical properties are estimated by means of Rayleigh’s

scattering approximation. The latter is a particular case of Mie scattering theory [143]

and is valid for spherical particles that are small in comparison with the wavelength of

the incident radiation. In most combustion applications however, soot particles typically
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have diameters smaller than 50 nm while being irradiated by light with a wavelength of

approximately 3 µm [84]. Scattering from soot is usually neglected due their typically

small sizes [2].

Under the assumption of a constant index of refraction over the spectrum of frequencies

and based on the above, the spectral absorption coefficient of soot following from the

Rayleigh limit of Mie theory can be written as follows

κη,soot = Cfvη, (4.8)

where fv is the soot volume fraction and C is an empirical constant, which is taken to

have the value of 5.5 as suggested by Liu et al. [78].

The definition of soot spectral absorption coefficient given above in Eq. (4.8) yields a

difference of only about 6% for the mean absorption coefficients in the optically-thin and

optically-thick limits. As such, based on the work of Felske and Tien [144], the following

average is used as an approximation of the absorption coefficient of soot for all optical

regimes:

κsoot = 3.72 CfvT/C2 (4.9)

where C2 = 1.4388 cmK is the second Planck function constant.

It is worth mentioning that the above derivation is only valid for very small soot parti-

cles and results in an underestimation of the extinction coefficient for aggregates or for

particles with sizes exceeding the limits of applicability of Rayleigh scattering theory.

4.3 Mixture Spectral Absorption Coefficient

As mentioned above, soot is treated in the present study as a gray absorber while the gas

absorption coefficient is allowed to vary over the whole spectrum. The spectral absorption

coefficient for the gas-soot mixture is given by

κη,mix = κsoot + κη,g (4.10)

where κη,g and κη,mix are the spectral absorption coefficients for the gas and mixture,

respectively.
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4.4 Implementation of MN Closures with

Narrow-Band Correlated-k Model

Using either the DOM or PN moment closures, an estimate of the radiative energy

density, ⟨I(gi)⟩, at each of the quadrature points, gi, for use in Eq. (4.5), can be easily

obtained. However, for the proposed interpolative-based non-gray M1 and M2 closures,

coupling with the SNBCK presents additional challenges due to the explicit wavenumber

dependencies of the resulting closing relations. Nevertheless, closer inspection of the

entropy maximizing distribution of Eq. (3.5) reveals that it has the same form as the

Planck function given by

Ibη(T ) = 2hcη3
[
exp

(
hcη

kT

)
− 1

]−1

. (4.11)

It can be observed that the Planck function and the entropy maximizing distribution,

for a given finite set of angular moments, only differ by the expressions in the respective

exponential terms. More specifically, for any given wavenumber, the Planck function can

be thought of as an isotropic distribution of the radiative intensity, while the entropy

maximizing distribution allows departures from the equilibrium or isotropic distribution

via the Lagrange multipliers. This suggests that, for the same energy density (zeroth-

order moment), the entropy maximizing distribution has similar profiles compared to the

blackbody intensity over the full spectrum of frequencies, except that the former is shifted

relative to the latter in frequency space. As such, similar to how the Planck function is

assumed to be essentially constant within a narrow-band band, it would seem reasonable

to make the same assumption for the entropy maximizing distribution and consequently

evaluate the spectrally dependent closing relations for the non-gray MN closures at the

wavenumber corresponding to the band centre. Such a procedure is adopted in the

present study.





Chapter 5

Finite-Volume Numerical Solution

Method

Similar to the P1 and P3 moment closures, as well as the M1 closure for gray radiation,

the proposed interpolative-based first-order M1 (for non-gray radiation) and second-order

M2 (for gray and non-gray radiation) maximum-entropy moment closures are expected

to be strictly hyperbolic in the sense of Lax [145], as will be explored later in this

chapter. In the original definition, quasi-linear inhomogeneous PDEs are said to be

strictly hyperbolic if the eigenvalues associated with the eigensystem of the coefficient

matrices and flux Jacobians are all real and distinct. A slightly less restrictive demand

for strict hyperbolicity is that the eigenvalues are all real (i.e., repeated eigenvalues are

permitted) and that the corresponding right eigenvectors form a complete and linearly

independent set such that the coefficient matrices and flux Jacobians are diagonalizable.

Levermore [146] has shown that the maximum-entropy closures applied to the Boltzmann

equations of gas kinetic theory with the Boltzmann entropy result in moment equations

that are symmetric hyperbolic systems and strictly hyperbolic. Dubroca and Feugeas [49]

also showed that the systems of angular moment equations arising from the Bose-Einstein

maximum-entropy-based closures for radiative transfer are hyperbolic.

The quasi-linear hyperbolic PDEs of the type governing the system of angular moments

for the M1 and M2 closures are very well suited to solution by the now standard family of

upwind finite-volume spatial discretization techniques originally developed by Godunov

[24] for hyperbolic systems of conservation laws. In this study, numerical solutions of the

83



84 Chapter 5. Finite-Volume Numerical Solution Method

system of moment equations arising from the M1, M2, P1 and P3 closures, in the cases

of either gray or non-gray radiation, are all obtained using a parallel, implicit, upwind

Godunov-type finite-volume scheme with block-based anisotropic AMR. The proposed

scheme is similar to those previously described by Groth and co-workers [25–30] for

systems of partial differential equations, where the moment equations are integrated over

quadrilateral cells of a two-dimensional body-fitted, multi-block mesh.

In what follows, the main elements of the proposed upwind finite-volume scheme used to

provide numerical solutions to the governing moment equations arising from the various

closure techniques are presented. In particular, a brief summary of the weak conservation

form of the moment equations is given in Section 5.1, in addition to the description of

the eigenstructure and demonstration of hyperbolicity of the closed systems of moment

equations arising from the moment closures under consideration in the present study.

In the context of the proposed interpolative-based M1 and M2 closures, hyperbolicity is

explored by numerical means, but not proven. Following the latter, the key elements

of the finite-volume spatial discretization scheme as well as the details related to the

evaluation of the hyperbolic numerical fluxes are presented in Section 5.2. Boundary

conditions prescriptions for the angular moment equations are then discussed in Section

5.3. In Section 5.4, the incorporation of the finite-volume scheme within a parallel block-

based anisotropic adaptive mesh refinement (AMR) is discussed. Finally, the solution

of the resulting semi-discrete form of the conservation equations via a parallel implicit

Newton-Krylov iterative technique is described in Section 5.5.

5.1 Weak Conservation Form of Moment Equations

The finite-volume scheme used for numerically solving the governing moment equations

arising from the M1, M2, P1 and P3 closure techniques, for both gray and non-gray

participating media, considers the solution of the weak conservation form of the moment

equations on two-dimensional, body-fitted, multi-block, quadrilateral meshes. The weak

conservation form of the transport equations, for angular moments up to third order, for

a two-dimensional Cartesian coordinate system can be obtained by taking appropriate

angular moments of the underlying RTE. In the context of non-gray radiation, the form of

the RTE given in Eq. (2.9) is employed, which, in conjunction with the SNBCK treatment
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of the spectral absorption coefficient, yields the following weak conservation form

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= S , (5.1)

where U is the vector of conserved moments, F and G are the flux vectors in the x- and

y-coordinate directions, respectively, and S represents the source term vector.

For the M1 and P1 closures, for which angular moments up to only first order are solved

for, U, F and G are respectively given by

U =
[
I
(0)
g , I

(1)
g,1 , I

(1)
g,2

]T
,

F = c
[
I
(1)
g,1 , I

(2)
g,11, I

(2)
g,12

]T
,

G = c
[
I
(1)
g,2 , I

(2)
g,12, I

(2)
g,22

]T
.

(5.2)

The unknown second-order closing fluxes can be related to the known lower-order mo-

ments using the closure relations of Eq. (2.20) for P1 or Eqs. (3.14), (3.17), and (3.20)–

(3.24) for M1. Furthermore, under the assumption of isotropic scattering, the source

term column vector for the system of angular moment equations arising from either the

M1 or the P1 closures, S, is given by

S = c


k(g)(4πIbηc − I

(0)
g )

−(k(g) + σs)I
(1)
g,1

−(k(g) + σs)I
(1)
g,2

 . (5.3)

In the context of the M2 closure, which involves the solution of angular moments up to

second order, U, F and G are respectively given by

U =
[
I
(0)
g , I

(1)
g,1 , I

(1)
g,2 , I

(2)
g,11, I

(2)
g,12, I

(2)
g,22

]T
,

F = c
[
I
(1)
g,1 , I

(2)
g,11, I

(2)
g,12, I

(3)
g,111, I

(3)
g,112, I

(3)
g,122

]T
,

G = c
[
I
(1)
g,2 , I

(2)
g,12, I

(2)
g,22, I

(3)
g,211, I

(3)
g,212, I

(3)
g,222

]T
.

(5.4)

In the context of the proposed interpolative-based non-gray M2 closure, the unknown

third-order closing fluxes are expressed in terms of the lower-order moments via the

expressions given in Eqs. (3.41), (3.42), (3.44)–(3.50), and (3.53)–(3.55). Under the

assumption of isotropic scattering, the source term vector associated with the resulting



86 Chapter 5. Finite-Volume Numerical Solution Method

system of angular moments up to second order takes the form

S = c



k(g)(4πIbηc − I
(0)
g )

−(k(g) + σs)I
(1)
g,1

−(k(g) + σs)I
(1)
g,2

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,11

−(k(g) + σs)I
(2)
g,12

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,22


. (5.5)

Finally, the P3 closure results in a system of angular moment equations whose unknowns

consist of angular moments up to third order, and for which the vectors U, F and G are

respectively given by

U =
[
I
(0)
g , I

(1)
g,1 , I

(1)
g,2 , I

(2)
g,11, I

(2)
g,12, I

(2)
g,22, I

(3)
g,111, I

(3)
g,112, I

(3)
g,122, I

(3)
g,222

]T
,

F = c
[
I
(1)
g,1 , I

(2)
g,11, I

(2)
g,12, I

(3)
g,111, I

(3)
g,112, I

(3)
g,122, I

(4)
g,1111, I

(4)
g,1112, I

(4)
g,1122, I

(4)
g,1222

]T
,

G = c
[
I
(1)
g,2 , I

(2)
g,12, I

(2)
g,22, I

(3)
g,211, I

(3)
g,212, I

(3)
g,222, I

(4)
g,2111, I

(4)
g,2112, I

(4)
g,2122, I

(4)
g,2222

]T
,

(5.6)

and the corresponding source term vector, S, based on the assumption of isotropic scat-

tering, takes the form

S = c



k(g)(4πIbηc − I
(0)
g )

−(k(g) + σs)I
(1)
g,1

−(k(g) + σs)I
(1)
g,2

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,11

−(k(g) + σs)I
(2)
g,12

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,22

−(k(g) + σs)I
(3)
g,111

−(k(g) + σs)I
(3)
g,112

−(k(g) + σs)I
(3)
g,122

−(k(g) + σs)I
(3)
g,222



. (5.7)

The unknown fourth-order closing fluxes are expressed in terms of known lower-order

moments via the relationships given in Eq. (2.21), thereby resulting in the P3 closure.

It is worth mentioning that the subscript, g, indicates a reordered quantity, from fre-

quency space to the domain defined by the cumulative distribution function, g, and the

following definition holds

I(n)g (x⃗, t) = ⟨s⃗ nIg(x⃗, s⃗, t)⟩, (5.8)
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where the reordered intensity distribution, Ig, is defined in Eq. (4.3). The corresponding

normalized angular moments in the reordered space are computed in a similar way as in

Eq. (2.17), except that the wavenumber subscript is replaced by a subscript based on the

cumulative distribution function, g.

In the context of gray radiation, taking appropriate angular moments of the form of the

RTE given in Eq. (2.14) yields a system of moment equations the weak conservation form

of which can be written in a similar way as for non-gray participating media. However,

in the case of gray radiation, the subscript g appearing in the entries of the vector of

conserved moments and of the flux vectors, Eq. (5.2) for M1 and P1, Eq. (5.4) for M2,

and Eq. (5.6) for P3, must be dropped since spectrally integrated quantities must be

solved for directly. Moreover, the source term vector, S, for gray participating media

with isotropic scattering, is given by

S = c


κ(4πIb − I(0))

−(κ+ σs)I
(1)
1

−(κ+ σs)I
(1)
2

 , (5.9)

for the M1 and P1 closures,

S = c



κ(4πIb − I(0))

−(κ+ σs)I
(1)
1

−(κ+ σs)I
(1)
2

1
3
(4πκIb + σsI

(0))− (κ+ σs)I
(2)
11

−(κ+ σs)I
(2)
12

1
3
(4πκIb + σsI

(0))− (κ+ σs)I
(2)
22


, (5.10)

for the M2 closure, and

S = c



κ(4πIb − I(0))

−(κ+ σs)I
(1)
1

−(κ+ σs)I
(1)
2

1
3
(4πκIb + σsI

(0))− (κ+ σs)I
(2)
11

−(κ+ σs)I
(2)
12

1
3
(4πκIb + σsI

(0))− (κ+ σs)I
(2)
22

−(κ+ σs)I
(3)
111

−(κ+ σs)I
(3)
112

−(κ+ σs)I
(3)
122

−(κ+ σs)I
(3)
222



, (5.11)
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for the P3 closure.

In Eq. (5.9)–(5.11), Ib =
∫∞
0
Ibηdη = 4σstefT

4 is the spectrally integrated Planck function

or blackbody intensity and where σstef is the Stephan-Boltzmann constant defined in

Eq. (3.11). While the closing relations for the P1 and P3 spherical harmonic moment

closures are similar for both gray and non-gray radiation, to the exception of the spectral

dependence which must be dropped for the former, the same principle does not hold

for the MN maximum-entropy moment closures. In particular, the closing relations of

Eqs. (3.14), (3.15), and (3.16) must be used in the case of the M1 closure for gray radiation

whereas, for the gray M2 closure, the relationships of Eqs. (3.41), (3.42), (3.44)–(3.50),

and (3.51) are to be employed.

It should be emphasized that when axisymmetric flows are of interest, as is the case in

many laminar reactive flows simulations, the governing equations given in Eq. (5.1) must

be expressed in a cylindrical coordinates. Compared to the Cartesian coordinate frame

however, expressing the governing equations in a curvilinear coordinate basis presents

additional challenges due to the fact that there can be non-zero Christoffel symbols

[147–150] which in turn may give rise to the so-called axisymmetric source terms. The

weak conservation forms of the governing equations arising from the M1, M2, P1, and P3

closures in cylindrical coordinates (r, θ, z) are given in Appendix F and can be summarized

as follows
∂U

∂t
+
∂F

∂r
+
∂G

∂z
= −SA

r
+ S , (5.12)

where U is again the vector of conserved moments, F and G are the flux vectors in the

r- and z-coordinate directions, respectively, S again represents the source term vector,

and SA corresponds to the axisymmetric source term vector.

It is now worthwhile to investigate the hyperbolicity of the closed systems of moment

equations arising from the moment closures studied herein. As a first step, the weak

conservation form of the governing equations, Eq. (5.1), is re-expressed in the following

form
∂U

∂t
+A

∂U

∂x
+B

∂U

∂y
= S, (5.13)

where A = ∂F/∂U and B = ∂G/∂U are the flux Jacobians in the x- and y- directions,

respectively. The hyperbolic nature of the moment equations, in two space dimensions, is

investigated by considering the eigenvalues of the flux Jacobians, A and B. Hyperbolicity

is ensured if the eigenvalues of A and B are all real. In what follows however, we will
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solely focus on the properties of the x-direction flux Jacobian, A, as similar findings are

expected for the y-direction flux Jacobian, B, due to the geometric symmetries of the

closures. In particular, we aim to find a decomposition of A of the form

A = RΛR−1, (5.14)

where R represents the matrix of right eigenvectors, and Λ is the diagonal matrix of

eigenvalues of A.

5.1.1 Eigenstructure of the P1 and P3 Spherical Harmonic

Moment Closures

For the first-order, P1, spherical harmonic moment closure, the x-direction flux Jacobian

takes the form

∂F

∂U
= c


0 1 0
1
3

0 0

0 0 0

 (5.15)

and the corresponding diagonal matrix of eigenvalues and matrix of right eigenvectors,

respectively, are given by

Λ = c


0 0 0

0 −
√
3
3

0

0 0
√
3
3

 , (5.16)

and

R =


0 1 1

0 −
√
3
3

√
3
3

1 0 0

 . (5.17)

For the third-order, P3, spherical harmonic closure technique, the x-direction flux Jaco-
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bian is given by

∂F

∂U
= c



0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

− 3
35

0 0 6
7

0 0 0 0 0 0

0 0 0 0 3
7

0 0 0 0 0

− 1
35

0 0 1
7

0 1
7

0 0 0 0

0 0 0 0 3
7

0 0 0 0 0



. (5.18)

The diagonal matrix of eigenvalues corresponding to the latter Jacobian matrix can be

written as follows

Λ = c



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 λ−P3
0 0 0 0 0 0 0

0 0 0 λ+P3
0 0 0 0 0 0

0 0 0 0 −λ−P3
0 0 0 0 0

0 0 0 0 0 −λ+P3
0 0 0 0

0 0 0 0 0 0 −
√
7
7

0 0 0

0 0 0 0 0 0 0
√
7
7

0 0

0 0 0 0 0 0 0 0 −
√
21
7

0

0 0 0 0 0 0 0 0 0
√
21
7



, (5.19)

where

λ±P3
=

√
3

7
± 2

√
30

35
. (5.20)

Furthermore, the matrix of right eigenvectors associated with the form of the Jacobian
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matrix given in Eq. (5.18) may be written in the following form

R =



0 0 a+x−R −a−x+R −a+x−R a−x+R 0 0 0 0

0 0 5−
√
30
2

5 +
√
30
2

5−
√
30
2

5 +
√
30
2

0 0 0 0

1 0 0 0 0 0 0 0 7
3

7
3

0 0 −b−x−R b+x+R b−x−R −b+x+R 0 0 0 0

0 0 0 0 0 0 0 0 −
√
21
3

√
21
3

0 0
√
35x−

R(x
+
R)

2

105
−

√
35x+

R(x
−
R)

2

105
−

√
35x−

R(x
+
R)

2

105

√
35x+

R(x
−
R)

2

105
−
√
7

√
7 0 0

0 0 3−
√
30
2

3 +
√
30
2

3−
√
30
2

3 +
√
30
2

0 0 0 0

0 0 0 0 0 0 0 0 1 1

0 0 1 1 1 1 1 1 0 0

0 1 0 0 0 0 0 0 1 1



,

(5.21)

where

a± =

√
35(

√
30± 18)

42
,

b± =

√
35(

√
30± 10)

70
,

x±R =

√
15± 2

√
30.

(5.22)

As can be seen from Eq. (5.16), the system of moment equations arising from the P1

closure is hyperbolic, since the eigenvalues of the x-direction flux Jacobian are all real,

for any given finite set of angular moments up to first order. Similar observations can

be made for the P3 closure by inspection of the diagonal matrix of eigenvalues given

in Eq. (5.19), i.e., the system of moment equations arising from the latter closure is

hyperbolic for any given set of angular moments up to third order. Furthermore, as both

systems give rise to a complete set of linearly independent eigenvectors, the moments

equations are also strictly hyperbolic in the sense of Lax.
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5.1.2 Eigenstructure and Hyperbolicity of Gray and Interpolative-

Based Non-Gray M1 Moment Closures

For the M1 closure in the context of non-gray radiation, the flux Jacobian in the x-

direction, A, can be written as

∂F

∂U
= c


0 1 0

∂I
(2)
g,11

∂I
(0)
g

∂I
(2)
g,11

∂I
(1)
g,1

∂I
(2)
g,11

∂I
(1)
g,2

∂I
(2)
g,12

∂I
(0)
g

∂I
(2)
g,12

∂I
(1)
g,1

∂I
(2)
g,12

∂I
(1)
g,2

 , (5.23)

where
∂I

(2)
g,ij

∂I
(0)
g

=
1− χT

2
δij +

3χT − 1

2
ninj, χT = χ2 + I(0)g

∂χ2

∂I
(0)
g

, (5.24)

and where

∂I
(2)
g,ij

∂I
(1)
g,l

=
1

∥N (1)∥

[
3χ2 − 1

2
(njδil + niδjl − 2ninjnkδlk) +

3ninj − δij
2

N
(1)
k δkl

∂χ2

∂∥N (1)∥

]
.

(5.25)

Analytical expressions for the derivatives of the Eddington factor, χ2, with respect to

the lower-order moments, Uq, q ∈ {1, 2, 3} (see Eq. (5.2)), in R(1), can be readily derived

from the proposed interpolative-based approximation of χ2 as given in Eqs. (3.20)–(3.24).

In the case of gray radiation, the x-direction flux Jacobian for the M1 closure reads in a

similar way as in Eq. (5.23), except that the subscript g must be dropped. Moreover, the

derivatives of the second-order closing fluxes with respect to the lower-order moments

read in a similar way as in the relationships given in Eqs. (5.24) and (5.25), where the

subscript g must again be dropped. Closed-form analytical expressions for the derivatives

of the Eddington factor, χ2, with respect to the lower-order moments can then be easily

derived from the relationship given in Eq. (3.16).

The matrix of right eigenvectors associated with the form of the flux Jacobian given in

Eq. (5.23) can be written in the following form

R =


1 1 1

λ
M1
1

c

λ
M1
2

c

λ
M1
3

c

− cA21+λ
M1
1 (A22−λ

M1
1 )

cA23
− cA21+λ

M1
2 (A22−λ

M1
2 )

cA23
− cA21+λ

M1
3 (A22−λ

M1
3 )

cA23

 , (5.26)

where λM1
i , i ∈ {1, 2, 3}, are the eigenvalues associated with the form of the flux Jaco-

bian given in Eq. (5.23), and Aij = ∂Fi/∂Uj represents the entry of the flux Jacobian
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associated with the ith line and jth column. Closed-form analytical expressions for the

eigenvalues of the M1 closure in the context of gray radiation for two-dimensional prob-

lems exist, the diagonal matrix of which can be written as follows

Λ = c


N

(1)
1 −Υ

ξ
0 0

0
N

(1)
1 +Υ

ξ
0

0 0
N

(1)
1 (2−ξ)

∥N(1)∥2

 , (5.27)

where

Υ =

√
2(ξ − 1)(ξ + 2)

(
2(ξ − 1)(ξ + 2) + 3

(
N

(1)
2

)2)
√
3(ξ + 2)

, (5.28)

and where ξ is a scalar quantity defined in Eq. (3.16).

A close inspection of the last two equations, Eqs. (5.27) and (5.28), shows that the

eigenvalues of the flux Jacobian matrix associated with the M1 closure for gray radiation

are all real everywhere within the realizable space for angular moments up to first order,

R(1). Furthermore, a complete set of linearly independent eigenvectors exists. It therefore

follows that the resulting system of moment equations is strictly hyperbolic everywhere

within R(1).

In the context of non-gray radiative transfer on the other hand, the eigenvalues of the

flux Jacobian matrix for the M1 closure cannot be expressed in a relatively compact

form similar to its counterpart in the case of gray radiation. In the present study, the

eigenvalues of the system of moment equations arising from the non-gray M1 closure, for

two-dimensional problems, are obtained via numerical solution of a cubic characteristic

polynomial equation associated with the flux Jacobian of Eq. (5.23). The discriminant

of the cubic polynomial characteristic equation has the following form

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2, (5.29)

where

a = −1,

b = A22 + A33,

c = A12A21 − A22A33 + A23A32,

d = −A12A21A33 + A12A23A31.

(5.30)
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A necessary and sufficient condition for the eigenvalues of the associated flux Jacobian

to be real is that the discriminant of the characteristic polynomial, given in Eq. (5.29),

be non-negative, i.e.,

∆ ≥ 0. (5.31)

In order to ensure hyperbolicity of the system of equations resulting from the proposed

interpolative non-gray M1 closure, the constraint of Eq. (5.31) is enforced, at every step

of the non-linear least-squares optimization problem, Eq. (3.25), for a large set of sample

points consisting of 103 values of M
I
(0)⋆
η

following a Gauss-Lobatto-Chebyshev distri-

bution in [−1, 1], 103 values of ∥N (1)∥ associated with non-negative Gauss-Lobatto-

Chebyshev points in [−1, 1], 102 values of ϕ uniformly distributed in [0, 2π], where ϕ

represents the polar angle characterizing the direction of the vector of first-order mo-

ments, N (1), and is defined as follows

ϕ = arccos

(
N

(1)
1

∥N (1)∥

)
. (5.32)

The numerical solution of the non-linear least-squares problem, Eq. (3.25), in conjunction

with constraints of realizability and hyperbolicity discussed above, yields a minimum

value of the discriminant, ∆ ≈ −10−6. Thus, to a numerical accuracy of 10−6, the

eigenvalues of the flux Jacobian, A, are all real valued for all of the points considered

within the space of realizable moments.

It should be emphasized that the above findings in the case of the non-gray M1 closure are

certainly not a proof that the eigenvalues are everywhere real nor was the issue of strict

hyperbolicity tested as part of this thesis research. In particular, it was indeed felt that

the distinct nature of the eigenvalues and/or non-degenerate nature of the eigenstructure

can be difficult to confirm by numerical means. Nevertheless, the local hyperbolicity

of the proposed interpolative-based closure for all points examined within the space of

physically realizable moments is very encouraging and provides strong evidence of the

extent to which the proposed interpolative-based closure mimics the actual non-gray first-

order, M1, maximum-entropy model, which of course is known to be strictly hyperbolic.
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5.1.3 Eigenstructure and Hyperbolicity of Interpolative-Based

Gray and Non-Gray M2 Moment Closures

For the non-gray M2 closure, the flux Jacobian in the x-direction, A, can be written as

A = c



0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
∂I

(3)
g,111

∂I
(0)
g

∂I
(3)
g,111

∂I
(1)
g,1

∂I
(3)
g,111

∂I
(1)
g,2

∂I
(3)
g,111

∂I
(2)
g,11

∂I
(3)
g,111

∂I
(2)
g,12

∂I
(3)
g,111

∂I
(2)
g,22

∂I
(3)
g,112

∂I
(0)
g

∂I
(3)
g,112

∂I
(1)
g,1

∂I
(3)
g,112

∂I
(1)
g,2

∂I
(3)
g,112

∂I
(2)
g,11

∂I
(3)
g,112

∂I
(2)
g,12

∂I
(3)
g,112

∂I
(2)
g,22

∂I
(3)
g,122

∂I
(0)
g

∂I
(3)
g,122

∂I
(1)
g,1

∂I
(3)
g,122

∂I
(1)
g,2

∂I
(3)
g,122

∂I
(2)
g,11

∂I
(3)
g,122

∂I
(2)
g,12

∂I
(3)
g,122

∂I
(2)
g,22


, (5.33)

where the derivatives of the third-order closing fluxes with respect to the lower-order

angular moments making up the components of the solution vector, Uq, q = 1, 2, . . . , 6

(see Eq. (5.4)), in R(2), can be written, using the product rule, in conjunction with the

inverse of the relationship of Eq. (3.41), in the form

∂I
(3)
g,ijk

∂Uq

= I
′ (3)
g,lmn

∂

∂Uq

(RilRjmRkn) +RilRjmRkn

∂I
′ (3)
g,lmn

∂Uq

. (5.34)

Further applying the product rule for the derivatives appearing in the first term on the

right hand side of the latter equation allows one to write

∂

∂Uq

(RilRjmRkn) = RjmRkn
∂Ril

∂Uq

+RilRkn
∂Rjm

∂Uq

+RilRjm
∂Rkn

∂Uq

. (5.35)

To further decompose the derivatives involved in the second term on the right hand side

of Eq. (5.34), we make use of the chain rule, which, when combined with the application

of the product rule on the relationship, U ′
i = TijUj, yields the following expression

∂I
′ (3)
g,lmn

∂Uq

=
∂I

′ (3)
g,lmn

∂U ′
p

(
Tpq + Ur

∂Tpr
∂Uq

)
, (5.36)

where T represents the rotation matrix which transforms the components of the vector

of conserved variables, U, in R(2), into the elements of the vector of conserved variables,

U′, in R(2)
T .

Analytical expressions for the derivatives of the closing fluxes I
′ (3)
g,ijk, in R(2)

T , with respect

to the lower-order moments, U ′
q, in R(2)

T , can be readily derived by using the relation-

ships given in Eqs. (3.41), (3.42), (3.44)–(3.50), and (3.53)–(3.55). Furthermore, the
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derivatives appearing in Eq. (5.35) can also be obtained from the analytical form of the

rotation matrix, R, with respect to the lower-order moments, Uq, q = 1, 2, . . . , 6, in R(2).

In the case of the M2 closure for gray radiation, the same expressions as those given in

Eqs. (5.33)–(5.36) may be used, with the only exception that the subscript g must be

dropped to account for the fact that spectrally integrated quantities are under considera-

tion. Moreover, analytical expressions for the derivatives of the third-order closing fluxes,

I
′ (3)
ijk , in R(2)

T , with respect to the lower-order moments, U ′
q, in R(2)

T , can then be readily

derived by making use of the relationships given in Eqs. (3.41), (3.42), (3.44)–(3.50),

and (3.51).

Unlike its first-order counterpart, the matrix of eigenvectors associated with the Jacobian

of the flux corresponding to the M2 closure, for either gray or non-gray radiation, cannot

be written in a relatively compact form. In the present study, the diagonal matrix of

eigenvalues and the matrix of eigenvectors for both the gray and non-gray M2 closures

are computed numerically via an efficient iterative QR decomposition algorithm provided

by the LAPACK library [151].

In the present study, hyperbolicity of the proposed interpolative-based M2 closure for gray

radiation was assessed by computing the eigenvalues of the x-direction flux Jacobian, A,

of Eq. (5.33), for sets of angular moments up to second order spanning the full realizable

space, R(2)
T . More specifically, 50 values of ∥N (1)∥ equally distributed in [0, 1], 20 values

of θ and 40 values of ϕ (see Eq. (3.50)) uniformly distributed in [0, π] and [0, 2π],

respectively, 20(20 + 1)/2 = 210 points following the distribution given in Eq. (3.52) for

the eigenvalues of the covariance matrix, γi, i ∈ {1, 2, 3}, were used for the assessment.

The numerical study revealed that the eigenvalues of the flux Jacobian, A, are all real

valued for all of the points considered within the space of realizable moments.

In order to ensure hyperbolicity of the system of equations arising from the proposed

interpolative non-gray M2 closure, constraints on the eigenvalues of the flux Jacobian of

Eq. (5.33), such that the latter are real valued, are enforced, at every step of the non-

linear least-squares optimization problem, Eq. (3.56), for each of the sample points used

to assess the error given in the latter equation. The numerical solution of the non-linear

least-squares problem, Eq. (3.56), in conjunction with the constraints of hyperbolicity

discussed above, yields a distribution of the length scale, LN ′ (3) (see Eq. (3.55)), of the

exponential mapping for which the eigenvalues of the flux Jacobian, A, are all real valued
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for all of the test points considered within the space of realizable moments up to second

order.

Similar to the findings for the non-gray M1 closure above, the procedure followed herein

for assessing the hyperbolicity of the gray and non-gray M2 closures does not yield a

formal proof that the eigenvalues are everywhere real or that the resulting closed systems

of moment equations are strictly hyperbolic. Despite these facts, the local hyperbolicity

of the proposed interpolative-based M2 closures, for all points examined within R(2)
T ,

illustrate the extent to which they can mimic the actual second-order, M2, maximum-

entropy closures, which of course are provably strictly hyperbolic.

5.2 Finite-Volume Spatial Discretization Method

The basic concept of a finite-volume approach consists of solving the governing partial

differential equations on a domain discretized into series of contiguous control volumes or

cells making up the computational grid for the geometry of interest. The finite-volume

method used in this thesis follows from the integral form of the governing conserva-

tion equations. By integrating the differential form of the governing equations given

in Eq. (5.1) over a two-dimensional control volume in physical space and subsequently

applying the divergence theorem, the following integral form can be obtained

d

dt

∫
A

U dA+

∮
C

F⃗ · n⃗ dl =
∫
A

S dA, (5.37)

where A is the control volume (actually area in 2D), C is the closed contour containing

the control volume, and n⃗ is the unit outward vector normal to the closed contour. For

axisymmetric geometries, the source vector of Eq. (5.37) includes sources associated with

both absorption/emission/scattering and axisymmetric geometry as defined in Eq. (5.12).

The flux dyad, F⃗ = (F,G), represents the flux of solution quantities through the bound-

aries of the control volume. These fluxes can be generally categorized as either arising

from wave propagation phenomena (hyperbolic fluxes) or from diffusion processes (ellip-

tic fluxes). Governing equations of the type arising from the moment closures considered

in the present study are however only concerned with the former, i.e., hyperbolic fluxes.

In the finite-volume method, the integral form of the governing equations is enforced

discretely in each of many small contiguous control volumes making up a computational
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mesh. Using Eq. (5.37), the net rate of change of any radiative quantity, for example the

radiative energy density or the radiative heat flux, within each finite control volume can

be expressed as a balance between the net solution fluxes through the surface containing

the volume of interest and volumetric sources tending to increase or decrease its value.

For details regarding conservation equations and their properties, the reader is referred

to the textbooks by Toro [152], Hirsch [153,154], and Lomax et al. [155].

For the purpose of briefly illustrating the main elements of a finite-volume method,

one can consider the discretization of the equations for the angular moments over a set

of control volumes in a two-dimensional coordinate frame where it is assumed that the

control volumes (areas in two space dimensions) do not vary with time. The cell-averaged

solution and source vectors, U and S, respectively, within each cell or control volume,

can then be defined by an integration over the control volume as follows

U ≡ 1

A

∫
A

U dA, (5.38)

S ≡ 1

A

∫
A

S dA, (5.39)

where A is the cell area. Substituting these last two expressions into Eq. (5.37) the latter

to be rewritten as
dU

dt
+

1

A

∮
C

F⃗ · n⃗ dl = S(U), (5.40)

where dl is an element of the closed contour containing the control volume or cell of

interest. Under the assumption that the control volume (i, j) is a polygon defined by

Nf straight-line segments or cell faces (Nf = 4 for quadrilateral cells) and a standard

mid-point quadrature rule is used in the flux integration, Eq. (5.40) can be rewritten in

semi-discrete form as follows

dUi,j

dt
= − 1

Ai,j

Nf∑
m=1

F⃗i,j,m · n⃗i,j,m ∆li,j,m + Si,j(U), (5.41)

or
dUi,j

dt
= −Ri,j(U), (5.42)

where ∆li,j,m and n⃗i,j,m are the length and unit outward normal vector of the mth face of

cell (i, j), respectively, and Ri,j(U) is the so-called residual operator for computational

cell (i, j).

The semi-discrete form of Eq (5.41) is a coupled non-linear system of first-order ordi-

nary differential equations (ODEs), whereby the integration of the solution flux over the
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cell surface has been replaced by the mid-point quadrature rule (valid for second-order

accuracy). The solution procedure for solving the latter equation involves three steps:

reconstruction, flux evaluation and evolution. In the first step, for a given value

of U in each computational cell, an approximation of U(x⃗) throughout each cell is con-

structed and used to find U at the boundaries of the corresponding cell. The accuracy

of this so-called solution reconstruction procedure directly affects the spatial order of

accuracy of the solution as well as the accuracy of the cell-normal flux evaluation. In this

thesis, a piecewise linear limited reconstruction is used, the details of which are presented

in Section 5.2.1. Next, the flux, F⃗(U) at the cell boundaries is evaluated as a function

of the discontinuous states on either side of the interface, where the discontinuities arise

due to the piecewise approximations of U within each control volume. In this thesis, the

numerical flux at each cell face is evaluated as the solution of the approximate Riemann

problem based on either the Harten-Lax-van-Leer-Einfeldt (HLLE) flux function [156] or

Roe flux function [157]. The evaluation of the numerical fluxes is discussed in Section

5.2.1. Finally, steady-state solutions of the semi-discrete form of the governing equations

are obtained here using an implicit Newton-Krylov Schwarz (NKS) iterative algorithm

with Generalized Minimal Residual (GMRES) technique. Details of the NKS solution

procedure adopted in this study can be found in Section 5.5.

The remainder of this chapter outlines aspects of the finite-volume scheme used for pro-

viding numerical solutions to the system of moments equations arising from the M1, M2,

P1 and P3 moment closures. For notational simplicity, in the remainder of the thesis, the

overline sign “¯” is dropped for cell-averaged solution and source vectors.

5.2.1 Hyperbolic Flux Evaluation

The original Godunov method makes use of the solution of locally one-dimensional Rie-

mann problems in order to evaluate the numerical fluxes at the cell boundaries, and is

based on a piecewise constant reconstruction of the solution within each cell of the com-

putational domain. The piecewise constant reconstruction reduces the accuracy of the

overall scheme to first order. The latter can be further improved to yield high-resolution

schemes. In particular, the components of the flux, F⃗, appearing in Eq. (5.41) are evalu-

ated herein by means of a second-order Godunov-type upwind finite-volume spatial dis-

cretization procedure, based on approximate Riemann solvers and least-squares piecewise
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limited linear solution reconstruction. The emergence of high-resolution Godunov-type

methods motivated the design of effective limiters for use in higher-order reconstruc-

tions [156,158,159].

Piecewise Limited Linear Reconstruction

The solution reconstruction procedure adopted in the present study achieves higher-order

accuracy (i.e., second-order in smooth regions) compared to the original Godunov method

via a limited linear spatial reconstruction of the solution in each computational cell. The

values of the left and right solution states at a cell interface are determined by means of

a least-squares piecewise limited linear solution reconstruction. More specifically, for a

given cell (i, j), at the cell interface (i+ 1
2
, j), the flux is computed as follows

F⃗i,j,m · n⃗i,j,m = F⃗ (R (WL,WR, n⃗i,j,m)) (5.43)

where n⃗i,j,m corresponds to the outward unit vector normal to the cell interface, R rep-

resents the solution of the Riemann problem, and WL and WR are the left and right

primitive solution vectors from the piecewise limited linear reconstruction procedure at

the cell interface (i+ 1
2
, j), and are respectively given by

WL = Wi,j +Φi,j∇⃗Wi,j ·∆x⃗L,

WR = Wi+1,j +Φi+1,j∇⃗Wi+1,j ·∆x⃗R.
(5.44)

In Eq. (5.44), Φ is the slope limiter, Wi,j and Wi+1,j are cell-averaged primitive solution

vectors in the neighbouring cells, ∆x⃗L and ∆x⃗R are the distances between the centroid

of the cell and the cell interface for the left and right cells, respectively, and are given by

the following relationships

∆x⃗L = x⃗− x⃗i,j,

∆x⃗R = x⃗− x⃗i+1,j,
(5.45)

and where x⃗ is the location of the cell interface and x⃗i,j and x⃗i+1,j represent the position

vectors of the centers of the left and right cells, respectively.

The slope limiter, Φ, is introduced for the purpose of limiting the solution gradient so

as to ensure solution monotonicity. In the present study, the slope limiter proposed by

Venkatakrishnan [160] was adopted for the solution reconstruction procedure, and is of
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the following form

Φi,j,q =


ϕ
(

Wmax,q−Wi,j,q

Wk,q−Wi,j,q

)
if Wk,q −Wi,j,q > 0,

ϕ
(

Wmin,q−Wi,j,q

Wk,q−Wi,j,q

)
if Wk,q −Wi,j,q < 0,

1 otherwise,

(5.46)

where ϕ(y) is a smooth function given by

ϕ(y) =
y2 + 2y

y2 + y + 2
, (5.47)

and where Wk is the unlimited reconstructed solution vector at the kth flux quadrature

point, and Wmax,q = max (Wi,j,q,Wneighbours,q) and Wmin,q = min (Wi,j,q,Wneighbours,q), q =

1, 2, . . . , Nc (where Nc represents the number of conserved variables), are respectively the

maximum and minimum cell averaged values of the qth primitive solution between cell

(i, j) and its neighbouring cells used in the reconstruction procedure.

Least-Squares Gradient Evaluation

The gradients of the primitive variables, ∇⃗W, are determined by applying a least-squares

approach [161], which relies on a stencil formed by the nearest and possibly next to

nearest neighbouring cells. For the boundary stencil, a layer of ghost cells containing

boundary condition information is used to generalize the procedure without reducing the

reconstruction stencil. For a cell-centered discretization in two dimensions, the stencil is

formed by joining the nearest eight neighbouring cell centroids. For the qth primitive vari-

able, Wq, the approximate gradients, ∇⃗Wq, using the least-squares gradient construction

procedure are obtained by minimizing the error defined by

N∑
k=1

ϵ2ik,q =
N∑
k=1

(∆Wik,q − ∇⃗Wi,q ·∆x⃗ik)2, q = 1, 2, . . . , Nc, (5.48)

where ∆Wik,q = Wi,q − Wk,q, ∆x⃗ik = x⃗i − x⃗k, and N = 8 in two dimensions. The

2 × 2 system of linear algebraic equations resulting from the minimization problem can

be expressed as [
(∆x)2 ∆x∆y

∆x∆y (∆y)2

][
∂Wq

∂x
∂Wq

∂y

]
=

[
∆Wq∆x

∆Wq∆y

]
, (5.49)

where

∆x2 =
1

N

N∑
k=1

∆x2ki, (5.50)
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∆x∆y =
1

N

N∑
k=1

∆xki∆yki, (5.51)

and

∆Wq∆x =
1

N

N∑
k=1

∆Wki,q∆xki. (5.52)

The other terms in Eq. (5.49) can be formulated similarly. The above expressions only

depend on grid geometry and can therefore be precomputed and stored. Solutions of the

2 × 2 linear system represented by Eq. (5.49) can be readily obtained using Cramer’s

rule.

Riemann Problem

A Riemann problem is a special form of a one-dimensional initial value problem (IVP)

with discontinuous initial data and self-similar solutions. It can be seen to be posed at

the interface between adjacent computational cells and is used in Godunov-type finite-

volume methods as a mean for evaluating the numerical fluxes at cell boundaries. For a

one-dimensional system of conservation laws given by

∂U

∂t
+
∂F

∂x
=
∂U

∂t
+A

∂U

∂x
= 0, (5.53)

where A = ∂F/∂U is the Jacobian matrix, the corresponding initial conditions for the

Riemann problem can be expressed as follows

U (x, 0) =

UL if x < 0,

UR if x > 0,
(5.54)

and where UL and UR respectively correspond to the left and right initial states on either

side of the discontinuity occurring at the cell interface characterized by x = 0 (see Fig.

5.1 for illustrations). The discontinuities between the initial states and the subsequent

time evolution of the latter are representative of conditions present between neighbouring

cells in finite-volume methods. The state variables in the intermediate region, represented

by U⋆, are the conservative unknowns in this problem, the solution of which provides a

means to compute the flux, F⋆, at the interface (x = 0).

An intuitive approach for the solution of the Riemann problem is the use of numerical

iterative solution procedures, which tend to be rather computationally involved. In the
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Figure 5.1: Illustration of the one-dimensional Riemann problem.

context of the conservation equations governing a compressible polytropic gas, a very

efficient exact solution procedure for the Riemann problem has been proposed by Gottlieb

and Groth [162]. For more general systems of conservation laws, such as those arising

from the moments closures of interest in the present study, an approximation is often

sufficient for use in finite-volume schemes. The approximate methods of Roe [157] and

Osher [163] are the most detailed approximations for the wave system associated with

the Riemann problem. The former solution procedure is based on a local linearization of

the governing equations, whereas the latter replaces shock waves by inverted isentropic

waves. In situations where the detailed Riemann solution is complicated, the family of

solvers presented by Harten, Lax, and van Leer (HLL) [156], in which a reduced number

of waves are considered, may be suitable.

In this thesis, both the Roe and Harten-Lax-van Leer Einfeldt (HLLE) [156, 164] ap-

proximate Riemann solvers are used, the theoretical details of which are given in what

follows.

Roe Approximate Riemann Solver

Roe’s approximate Riemann solver is based on the fact that for a strictly linear system of

equations, the Riemann problem can be solved exactly by making use of the eigenstruc-

ture of the system. For nonlinear hyperbolic equations, locally linearized characteristic
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variables are used to provide approximation to the solution. In order to illustrate Roe’s

approach, let us consider the nonlinear system of conservation equations in one-space

dimension of the form given in Eq. (5.53). In the context of Roe’s approach, the latter

nonlinear system is solved in an approximate manner via linearization of the Jacobian

matrix, A. In particular, an approximation, Ā, to the Jacobian matrix, A, is sought,

which generally depends non-linearly on the initial states UL and UR, and results in the

following “linearized” system of equations

∂U

∂t
+ Ā

∂U

∂x
= 0. (5.55)

The so-called Roe matrix, Ā, must satisfy several conditions so as to accurately mimic

the behaviour of the original Jacobian. These conditions, making up Roe’s so-called

property U [157] can be summarized as follows:

1. An exact solution exists for an isolated discontinuity between UL and UR, such

that

∆F = Ā (UL,UR)∆U, (5.56)

where

∆U = UR −UL, ∆F = FR − FL. (5.57)

2. In the limit that UL = UR = U, Ā (UL,UR) should be able to recover the same

system as the original Jacobian such that

Ā (UL,UR) =
∂F

∂U
. (5.58)

3. Ā(UL,UR) is diagonalizable with real, distinct eigenvalues, and a complete set of

linearly independent eigenvectors.

The first and second properties are necessary to obtain the correct net change of the

conserved variables in each cell from one time step to the next. The third property is

used in the transformation of conserved variables into characteristic variables.

The Roe approximate Riemann solver provides exact solutions to the systems of moment

equations arising from the P1 and P3 spherical harmonic moment closures, since the

latter are fully linear in nature. On the other hand, the systems of conservation laws

resulting from the M1 and M2 closures are highly nonlinear, and a linearization of the
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Jacobian matrix, given in Eq. (5.23) for M1 and Eq. (5.33) for M2, must be performed.

The development of approximate Roe matrices for the MN closures is certainly not a

trivial task since the strong non-linearities associated with the closing relations make it

impossible to apply the original approach proposed by Roe [157], in the context of the

equations for steady and unsteady gas dynamics, for computing such matrices. As such,

there has been very limited studies involving the use of Roe’s approximate Riemann

solver for evaluating the flux functions arising from the MN -closure-based systems of

moment equations. In particular, to date the only study concerned with the use of Roe’s

approximate solver for the MN closures is due to Brunner and Holloway [51] and was

concerned with the M1 closure obeying Boltzmann statistics in one-dimensional physical

space, for which an approximate form of the Roe matrix was proposed. In the context

of radiative transfer problems in multi-dimensional physical space, there exist to date no

closed-form expressions for the Roe matrices arising from the M1 and M2 closures, as

well as from higher-order MN closures. As part of this thesis research, new generalized

Roe matrices for the M1 and M2 closures, in two-dimensional physical space, have been

proposed and developed and are described in Appendix E. The development of Roe

matrices, for the M1 and M2 closures, is presented in Sections E.1 and E.2 of Appendix E,

respectively, and follows the Multiple Averages (MAs) methodology proposed by Rosatti

and Begnudelli [165]. It is worth pointing out that the latter methodology has some

similarities with the corrected average approach proposed by Brown [166] for providing

approximate Roe Riemann solvers for moment models of dilute gases.

Once a Roe matrix has been determined, the characteristic variables associated with the

left and right states can be evaluated as follows

WL,R
c,k = lk.UL,R, k = 1, 2, . . . , Nc, (5.59)

where Nc represents the number of conserved variables, and lk, k = 1, 2, . . . , Nc, cor-

respond to the left eigenvectors (row vectors) of the flux Jacobian (for P1 and P3)

or of the Roe matrix (for the M1 and M2 closures). The matrix of left eigenvec-

tors, L = [lT1 , l
T
2 , . . . , l

T
Nc
]T can be determined from the matrix of right eigenvectors,

R = [r1, r2, . . . , rNc ], as follows

L = R−1. (5.60)
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The characteristic variables at the interface between two adjacent cells are then given by

Wc,k =

WL
c,k, if λk > 0,

WR
c,k, if λk < 0,

(5.61)

where λk correspond to the eigenvalues of the Roe matrix, making up the components

of the diagonal matrix of eigenvalues, Λ. The matrix of right eigenvectors associated

with the Roe matrices of the P1 and P3 closures are given in Eqs. (5.17) and (5.21),

respectively, and the corresponding diagonal matrices of eigenvalues are respectively given

in Eqs. (5.16) and (5.19). In the context of the M1 closure, for either gray or non-gray

radiation, the matrix of right eigenvectors has the form given in Eq. (5.26), except that,

instead of the original Jacobian of Eq. (5.23), the proposed approximate Roe matrix given

in Section E.1 of Appendix E must be considered. The eigenvalues of the latter matrix

can be computed by means of a cubic solver, and such a procedure is adopted herein. For

both the gray and non-gray M2 closures, the proposed approximate Roe matrix given in

Section E.2 of Appendix E is used in lieu of the original Jacobian of Eq. (5.33), and the

corresponding matrix of right eigenvectors as well as the diagonal matrix of eigenvalues

are computed numerically via the LAPACK library.

The conserved solutions vector associated with the interface under consideration is de-

rived from the characteristic variables, Wc,k, k = 1, 2, . . . , Nc, as follows

U⋆ =
Nc∑
k=1

Wc,krk, (5.62)

and the flux vector at such an interface can also be computed using the following expres-

sion

F⋆ = A(UL,UR)U⋆ =
1

2
(FR + FL)−

1

2
|Ā| (UR −UL) , (5.63)

where FL and FR correspond to the flux vectors associated with the left and right states,

UL and UR, respectively, and

|Ā| = |Ā(UL,UR)| = R|Λ|L, (5.64)

and Λ is again the diagonal matrix of eigenvalues.

HLL Riemann Solver

The HLL approximate Riemann solver [156] is based on a two-wave solution or 3-state

approximate solution to the Riemann problem. In this approach, the corresponding flux
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function is given by

F(UL,UR, n⃗) =


FL if λ− ≥ 0,

F⋆ if λ− ≤ 0 ≤ λ+,

FR if λ+ ≤ 0,

where λ− and λ+ are the left and right signal velocities, respectively. The flux function

F⋆ in the intermediate region can be expressed in terms of the known quantities on the

left and right states using Rankine-Hugoniot conditions [167]. Applying such conditions

across each of the wavespeeds λ− and λ+ yields the following relationships

F⋆ − FL = λ−(U⋆ −UL), (5.65)

F⋆ − FR = λ+(U⋆ −UR), (5.66)

where U⋆ is the intermediate state vector. Solving the system of equations formed by

Eqs. (5.65) and (5.66) for the solution vector in the intermediate state as well as for the

corresponding flux vector results in the following expressions

U⋆ =
λ+UR − λ−UL

λ+ − λ−
− FR − FL

λ+ − λ−
, (5.67)

F⋆ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL). (5.68)

One primary defect of this scheme is exposed by contact discontinuities, shear waves

and material interfaces due to the missing intermediate waves. Einfeldt [164] proposed a

modification of the HLL scheme, whereby the left and right signal velocities, λ− and λ+,

respectively, are estimated as follows

λ− = min(λmin
L , λ

min
(UL,UR)), (5.69)

λ+ = max(λmax
R , λ

max
(UL,UR)), (5.70)

where λ represents Roe’s averaged eigenvalue. Einfeldt’s contribution yields a more

effective and robust scheme, which is referred to in this work as the HLLE approximate

Riemann solver.
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5.2.2 Frame Rotation

For the purpose of dealing with the multi-dimensional nature of the quadrilateral com-

putational grids considered herein, the hyperbolic numerical fluxes at each cell face are

computed via the solution of the Riemann problem in a rotated frame. The new rotated

coordinate frame is defined such that the x-axis is aligned and in the same direction as the

outward vector normal to the cell face. The boundary conditions discussed in Section 5.3

also make use of such transformation in order to evaluate the full angular moments or nu-

merical fluxes on the boundaries of the computational domain under consideration. This

rotational transformation greatly simplifies the implementation of the moment closure

methods in a computer code. In fact, instead of deriving expressions for the numerical

fluxes or boundary conditions for each coordinate direction, the only expressions that are

needed are those in the x-direction, and those in the other directions can be computed

accordingly via appropriate rotational transformations of the coordinate frame.

In two-dimensional physical space, the rotational transformation from the original co-

ordinate frame, (x, y), to the new frame, (x′, y′), results in a transformation of angular

moments up to third order according to the following relationships

I
(1)
η,i = RijI

(1)′
η,j , I

(1)′
η,i = RjiI

(1)
η,j , (5.71)

I
(2)
η,ij = RipRjqI

(2)′
η,pq, I

(2)′
η,ij = RpiRqjI

(2)
η,pq, (5.72)

Figure 5.2: Frame rotation in two-dimensional physical space.
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I
(3)
η,ijk = RipRjqRrkI

(3)′
η,pqr, I

(3)′
η,ijk = RpiRqjRkrI

(3)
η,pqr, (5.73)

where I
(i)′
η , i = 0, 1, . . . , 3, denote the images of the angular moments, I

(i)
η , i = 0, 1, . . . , 3,

under the rotational transformation. In Eqs. (5.71)–(5.73), R denotes the rotation matrix

characterizing the rotational transformation and reads as follows

R =

[
cos θ − sin θ

sin θ cos θ

]
, (5.74)

where θ is the angle between the rotated coordinate system, (x′, y′), and the original one,

(x, y).

5.3 Characteristic Boundary Conditions

The numerical solution of systems of partial differential equations generally requires the

prescription of boundary conditions in order to evaluate the numerical fluxes at the

boundaries of the computational domain. In the context of the system of equations for

the angular moments of the radiative intensity distribution resulting from the moment

closures presented in this thesis, see Eq. (5.1), boundary conditions are generally pre-

scribed in terms of the full moments at the interfaces describing the boundaries of the

computational domain of interest.

The method of characteristics is an approach that allows the prescription of the solution

vector of conserved variables, U⋆, as well as the corresponding numerical flux vector,

F⋆, at the interface between two cells in terms of the solution vectors, UL and UR,

respectively associated with the mid-point of the cell face to the left and right sides of

the interface. This is achieved by first computing the vector of characteristic variables,

Wc, at the interface in terms of those associated with the left, WL
c , or the right, WR

c ,

cells, depending on the nature of the corresponding wave (incoming or outgoing), as given

in Eq. (5.61). The conserved solutions vector at the interface can then be obtained from

the characteristic variables via the matrix of right eigenvectors using Eq. (5.62), whereas

the associated numerical flux vector can be computed by means of Eq. (5.63), and this

procedure is adopted herein to provide boundary conditions to the system of moments

equations arising from the M1, M2, P1 and P3 moment closures.

In the case where the characteristics are computed along the unit normal vector pointing
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outside the computational domain of interest (as is the case when the rotational transfor-

mation described in Section 5.2.2 is used), UL then corresponds to the solution associated

with the interior cell attached to the interface under consideration, whereas UR is the

vector of conserved variables associated the ghost cell, and containing full moments cor-

responding to the outgoing distribution of radiative intensity. For diffusely reflecting

and emitting wall surfaces, as is the case in most practical combustion systems [69], the

outgoing radiative intensity distribution can be expressed as follows

Iη,w = ϵwIbη(Tw) +
(1− ϵw)

π

∫
Ω=2π

siIηdΩ, (5.75)

where Tw and ϵw represent the wall temperature and emissivity, respectively, Iη rep-

resents the spectral incoming distribution of radiative intensity, and si corresponds to

the directional cosine associated with the normal direction on the boundary of interest.

The derivation of the angular moments for distributions of the form given in Eq. (5.75)

is rather straightforward for black walls (ϵw = 1), which are of interest in this thesis.

However, if the walls also reflect a portion of the incoming radiation, i.e, ϵw < 1, com-

putations of the full moments of the distribution of Eq. (5.75) would involve the partial

first-order angular moment of the incoming intensity distribution. The latter moment

can be evaluated in a rather straightforward manner with the PN closures owing to the

existence of closed-form analytical expressions for the partial angular moments of any

order. For the MN closures on the other hand, as has been mentioned throughout this

thesis, closed-form analytical integrals of the underlying intensity distribution, whether

full or partial, only exist for the first-order approximation, i.e, the M1 closure, in the case

of one-dimensional gray radiation obeying Bose-Einstein statistics. As such, computing

moments of the distribution of Eq. (5.75) for ϵw < 1 would present additional challenges

as it would require on-the-fly numerical solution of the entropy optimization problem or

more efficient alternative such as the development of interpolative-based approximations

of the partial angular moments for the MN closures.

5.4 Anisotropic Adaptive Mesh Refinement

Typical computational fluid dynamics (CFD) problems are usually hard to solve due to

numerical stiffness associated with disparate spatial and temporal scales. More specif-

ically, certain areas of the computational domain may require higher resolution than
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others due to the existence of particular features (shock, steep gradients, discontinu-

ities). A block-based hierarchical data structure can be used here in conjunction with

the finite-volume scheme described above to facilitate automatic solution-directed mesh

adaptation on multi-block meshes according to physics-based criteria. By changing the

mesh based on the physics-based criteria as the computations are performed, areas with

particular solution features are resolved with higher mesh densities, while areas with

smaller solution changes are evaluated with coarser meshes. When combined with the

finite-volume scheme described above, the overall solution procedure can be used to ac-

curately treat problems with steep gradients in the radiation solutions and small length

scales with reduced computational costs.

A flexible block-based AMR scheme has been proposed by Groth and co-workers [25,

26, 28, 29, 168], which is suitable for implementation on large-scale distributed-memory

computing clusters and has been successfully used for a range of physically-complex

flows. The scheme borrows aspects from previous work by Berger and co-workers [169–

172], Quirk [173], and De Zeeuw and Powell [174] for Cartesian grids. In the AMR

scheme, the systems of moment equations are first integrated forward in time on an initial

structured, multi-block mesh in order to obtain volume-averaged solution quantities. The

mesh is then adapted by coarsening or refining the block designated by the refinement

criteria. A hierarchical tree-like data structure, shown in Fig. 5.3, is used to retain

Figure 5.3: Adaptive mesh refinement quad-tree data structure and associated solution

blocks for a quadrilateral mesh.
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Figure 5.4: Illustration of refinement and coarsening of an 8 x 8 block, during (i)

anisotropic AMR in ξ, (ii) anisotropic AMR in ζ and (iii) isotropic AMR cell division.

Their geometrical relationships are also represented.

connectivity between solution blocks and track their refinement history. The blocks

requiring refinement are termed “parents” and are divided into four new block called

“children”. Each child is a new block with the same number of cells as its parent,

thereby doubling the mesh resolution in the corresponding region. Coarsening flagged

blocks is carried out by reversing this process and combining four children into one single

parent.

The AMR scheme described above refines the mesh equally in all directions based on

the refinement criteria. However, in problems with anisotropic features, refinement of

the mesh may only be needed in a specific direction. In such situations, an anisotropic

variant of the isotropic AMR procedure can offer greater flexibility and further com-

putational savings by adding directionality to the refinement process. Following the

work by Groth et al. [175, 176] for computational magneto-hydrodynamics, Zhang and

Groth [177] proposed an anisotropic AMR technique for computations in two-dimensional

problems. Extensions to the three-dimensional case have also been considered by Freret

et al. [178–182]. The procedure is somewhat similar to that of the isotropic AMR, the
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Figure 5.5: Adaptive mesh refinement binary-tree data structure and associated solution

blocks for a quadrilateral mesh.

main distinction lying in the way blocks are divided. For a 2D Cartesian mesh, isotropic

AMR divides each parent block into four children, which is equivalent to doubling the

mesh resolution in both directions. In comparison, the anisotropic AMR technique al-

lows each parent block to be divided into two children by splitting the parent blocks in

either one of the directions of interest, as shown in Fig. 5.4. As a result, cell resolution

doubles in the direction of interest, but remains the same in the other directions. Fig. 5.5

illustrates the hierarchical tree-like data structure used to retain connectivity between

blocks and track their refinement history.

The refinement criteria used in this thesis are based on the gradient of the total radiative

energy, I(0), computed numerically from neighbouring cells solutions. In the case of the

isotropic AMR, for which the mesh is refined equally in both directions, the refinement

criteria can be written as follows

ϵ1 ∝
|∇I(0)|
I(0)

, (5.76)

and blocks are added wherever ϵ1 is large. On the other hand, the criteria used in the

anisotropic mesh refinement procedure can be written as follows

ϵ1x ∝
|∇xI

(0)|
I(0)

, (5.77)

ϵ1y ∝
|∇yI

(0)|
I(0)

, (5.78)

and the mesh refinement is performed in the x-direction when ϵ1x is large while the

refinement in the y-direction is dictated by values of ϵ1y.
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Figure 5.6: Sample multi-block grid and solution blocks depicting ghost cells.

To further decrease the overall computational time of the AMR schemes, integration of

the governing equations is performed in parallel. This is achieved by distributing the

computational blocks among available processors and simultaneously computing the so-

lutions for each block on each processor. Both AMR schemes (isotropic and anisotropic)

were implemented using the message passing interface (MPI) library of the C++ pro-

gramming language [183].

Ghost cells which surround the solution block and overlap with cells on neighbouring

blocks, as shown in Fig. 5.6, are used to share solution content through inter-block com-

munication. The conservation properties of the finite-volume discretization are retained

across blocks with resolution changes by using the fine-grid interface flux to correct the

flux computed on neighbouring coarse blocks. Passing these flux corrections and the over-

lapping cell solution content between processors at each stage of the integration scheme

accounts for the main source of inter-processor communication.

5.5 Newton Krylov Schwarz (NKS) Method

The finite-volume solution procedure adopted in the present study is based on a transfor-

mation of the governing equations in two dimensional physical space into the semi-discrete

form given in Eq. (5.42). This procedure results in a coupled set of linear (in the case of
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P1 and P3) or non-linear (in the case of M1 and M2) ODEs. In addition to the accurate

evaluation of the numerical fluxes at the cell interfaces, which was discussed above in Sec-

tion 5.2.1, a procedure for the evolution of the solution (in time for unsteady problems or

to steady-state for steady problems) is also required in order to solve the coupled ODEs.

It is however worth mentioning that only steady-state solutions of the RTE are of interest

herein. This can be justified by the fact that the times scales associated with radiative

heat transfer are much smaller compared to those of the other phenomena involved in

most combustion processes.

Various numerical time-marching schemes can be used for the solution evolution pro-

cedure of Eq. (5.42), some of the more common being explicit Euler and Runge-Kutta

methods. These two approaches are however conditionally stable and as such limited

by the Courant-Friedrichs-Lewy (CFL) and von Neumann stability conditions [155]. For

these reasons, they have difficulty in the context of numerically stiff systems of equations,

for which they may involve excessive iterations to converge as they would generally re-

quire very small time-steps. Multigrid-based approaches [184] have shown promising

results for aerodynamic simulations, where they were observed to be very good at accel-

erating convergence. In the context of turbulent non-premixed combustion however, Gao

et al. [28, 185] found that a multigrid solution procedure still requires a relatively large

number of iterations and/or time steps.

Implicit methods represent good candidates for effectively addressing the issues of sta-

bility and convergence, which may be encountered with explicit time-marching solution

procedures. They are known to be much more stable than their explicit counterparts and

are also less sensitive to numerical stiffness. This in turn implies that larger time steps

can be used. Their additional robustness however comes at the expense of increases in

computational efforts per iteration and memory overhead, which arise from the result-

ing linear system of equations that must be solved. Nevertheless, for many numerically

stiff problems, the higher computational expenses per iteration resulting from fully im-

plicit treatments can be compensated by the use of sufficiently large time steps, thereby

yielding an overall more efficient solution procedure.

In the present study, Newton’s method is applied to obtain steady-state solutions for

the system of linear/non-linear moment equations given in Eq. (5.1) by relaxing the
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semi-discrete form of the latter (see Eqs. (5.41) and (5.42)) to a steady-state such that

R(U) =
dU

dt
= 0. (5.79)

The particular implementation of Newton’s method used here has been developed pre-

viously by Groth and Northrup [168] as well as Charest et al. [17, 29] for computations

on large multi-processor parallel clusters. It consists of a Jacobian-free inexact New-

ton method coupled with an iterative Krylov subspace linear solver. Given an initial

estimate U0, Newton’s method seeks a solution to Eq. (5.79) by iteratively solving a

sequence of linear systems until a desired reduction of the residual is achieved, i.e.,

∥R(Uk)∥ < ϵ∥R(U0)∥, where the parameter ϵ is the tolerance and is given a value of

10−10 in this work. At the kth Newton step iteration, the linear system to be solved has

the form (
∂R

∂U

)k

∆Uk = J(Uk)∆Uk = −R(Uk), (5.80)

where J = ∂R/∂U is the residual Jacobian, and the improved solution at the kth step is

determined using

Uk+1 = Uk +∆Uk. (5.81)

The linear system of equations defined by Eq. (5.80) tends to be large, sparse, and non-

symmetric. One effective approach that is widely used for solving systems of such type

is the GMRES technique, developed by Saad and co-workers [186–189]. The GMRES

is an Arnoldi-based solution technique which generates orthogonal bases of the Krylov

subspace to construct the solution. A particularly attractive feature of the technique is

the fact that explicit formulation of the Jacobian matrix, J, is not required. Instead,

only matrix-vector products are required at each iteration to create new trial vectors,

hence reducing the required storage. Termination also generally only requires solving the

linear system to some specified tolerance, ∥R(Uk) + J(Uk)∆Uk∥ < ζ∥R(Uk)∥, where ζ
is typically in the range 0.1–0.5 [190].

The matrix-vector products required at each iteration of the GMRES method are com-

puted in a approximate manner by means of numerical differentiation based on Fréchet

derivatives [188,191–196]. This procedure is referred to as a “matrix-free” or “Jacobian-

free” approach, which, when applied to Eq (5.80) yields

Jv ≈ R(U+ εv)−R(U)

ε
, (5.82)
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where v is a Krylov vector, R(U+ εv) is the physical residual vector evaluated at some

perturbed solution state and ε is a small scalar quantity, the choice of which directly

impacts the performance of the Jacobian-free method. The study of Nielsen et al. [191]

has shown that ε = ε◦/||v||1/22 yields good performance, with ε◦ ≈ 10−8–10−7, and the

current implementation therefore makes use of this expression.

To guarantee effectiveness of the GMRES method, right preconditioning of the matrix

J is performed, which helps facilitate the solution of Eq. (5.80) without affecting the

solution residual vector b = −R(Uk). The preconditioning is performed as follows

(JM−1)(Mx) = b, (5.83)

where M is the preconditioning matrix and x = ∆Uk. A combination of an additive

Schwarz preconditioner and a block incomplete lower-upper (BILU) local preconditioner

is used which is easily implemented in the block-based anisotropic AMR scheme described

in Section 5.4. The additive Schwarz preconditioner updates the solution in each block

simultaneously whereas shared boundary data is not updated until a full cycle of updates

has been performed on all domains. The preconditioner is defined as follows

M−1 =

NB∑
k=1

BT
kM

−1
k Bk, (5.84)

where NB is the number of blocks and Bk is the gather matrix for the kth domain. The

local preconditioner M−1
k is based on block ILU(p) factorization [189] of the Jacobian

for the first-order approximation of each domain. In this work, the level of fill, p, was

maintained at 4 in order to minimize storage requirements.

In the context of gray radiation, the Jacobian matrices arising from the system of equa-

tions resulting from the M1, M2, P1, and P3 closures can be inverted very efficiently

by means of the original implementation of the ILU(p) factorization algorithm for the

purpose of preconditioning the system of equations given by Eq. (5.83). For non-gray ra-

diation, on the other hand, the computational framework developed in this thesis consists

of solving the RTE simultaneously at all the quadrature points used for the integration

over the spectrum of frequencies. The resulting Jacobian matrix, for any the closure tech-

niques investigated in this thesis, is however block diagonal, since the moment equations

from one spectral location (or quadrature point) to another are not coupled. In this case,

a more efficient alternative to the original implementation of the ILU(p) factorization
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procedure has been proposed, which consists of preconditioning the Jacobian matrix for

each quadrature point separately, instead of inefficiently inverting directly the full block

diagonal Jacobian matrix as would be the case with the original implementation. It is

worth mentioning that another alternative to the computational framework for non-gray

radiation adopted herein exists, which consists of solving the RTE at each quadrature

point separately, and such an approach couples naturally and efficiently with the orig-

inal implementation of the ILU(p) factorization algorithm. However, for the radiation

problems considered in this thesis, the procedure adopted herein for non-gray radiation,

along with the improvements for the preconditioning algorithm, was observed to yield a

better performance in terms of computational efficiency. This can be attributed to the

fact that the latter approach, unlike its alternative, has less of a tendency to over-resolve

wavenumbers associated with low radiative energy density.

The application of Newton’s method to the system of moment equations does not yield an

unconditionally stable scheme, and failure can occur, especially when the initial solution

estimates fall outside the radius of convergence. To ensure global convergence of the

algorithm, the implicit Euler startup procedure with switched evolution/relaxation (SER)

that was proposed by Mulder and Van Leer [197] was used. Application of this startup

procedure to the semi-discrete form of the governing equations gives[
− I

∆tn
+

(
∂R

∂U

)n]
∆Un = −Rn, (5.85)

where I is the identity tensor and ∆tn is the time step. In the SER approach, the time

step is varied from some small finite value and gradually increased as the steady state

solution is approached. As ∆tn → ∞, Newton’s method is recovered. In particular,

a time step multiplier, νn, is introduced, which increases as the solution residual, R,

decreases, and is of the following form

νn = νmin max

(
1,

1

||R||2

)
, (5.86)

where the parameter, νmin, also refereed to as CFL number, is an adjustable minimum

or initial multiplier.

The time step size is then determined by applying the multiplier of Eq. (5.86) in con-

junction with a set of stability conditions, thereby yielding

∆τn = νn min

(
min

(
∆x

λi

)
,

(
max

(
∂S

∂U

))−1
)
, (5.87)
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where λi, i = 1, 2, . . . , Nc, are the eigenvalues of the system of moment equations under

consideration. The terms ∆x/λi correspond to stability criteria arising from the wave

propagation phenomena. On the other hand, the inverse of the maximum diagonal of

the radiative source term Jacobian, ∂S/∂U, is incorporated as a measure of radiative

extinction time scales. A value for νmin or CFL number between 10–100 is typically

used during the startup phase of the proposed Newton method.





Chapter 6

Numerical Results: Assessment in

Gray Participating Media

In this section, the predictive performance and accuracy of the proposed interpolative-

based second-order M2 maximum-entropy moment closure for gray radiation are assessed.

More specifically, its solutions are compared to and evaluated against those of its lower-

order counterpart, i.e., the first-order M1 maximum entropy closure, as well as those of

the P1 and P3 spherical harmonic approximations and the DOM. The comparisons are

performed in terms of the radiative energy density, I(0), the radiative heat flux, I(1), and

the radiative source term, SR, as defined in Eq. (2.13) of Chapter 2. The assumption

of isotropic scattering (Φ(s⃗ ′, s⃗) = 1) is employed in all the problems where scattering

effects are accounted for. In all of the cases studied, steady-state numerical solutions

for the gray M1, M2, P1, and P3 closures are obtained using the upwind Godunov-type

finite volume scheme and the NKS iterative procedure described earlier in Chapter 5.

Moreover, the method of characteristics is used to provide boundary conditions to the

systems of equations arising from the aforementioned moment closure techniques. For

the DOM, the space marching iterative technique described by Charest et al. [29] is used

to solve the resulting set of ODEs. Unless specified otherwise, the DOM is used with

quadrature rules based on the T4 scheme of Thurgood et al. [92]. For some of the cases

studied herein, exact analytical solutions of the RTE are available and are therefore used

as references in the comparisons.

The first set of test cases consists of radiative transfer between two parallel plates of

121
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infinite length similar to those examined previously by Hauck [54,55]. Different scenarios

are considered whereby the properties of the medium (optical properties and temperature

distribution) between the two plates, as well as the separation distance between the plates,

are varied in order to assess the impact on the predictive capabilities of the proposed M2

closure. The next test problem involves radiative heat transfer throughout a cold (non-

emitting) and absorbing medium contained within a square enclosure for which all of the

walls have the same temperature. The final test problem aims at assessing the predictive

capabilities of the proposed interpolative M2 closure for gray radiation associated with

two identical beams of radiative particles crossing at an angle of 90◦. This last case was

inspired by a similar problem studied previously by Pichard et al. [53] and is considered

here for the purpose of illustrating the ability of the M2 closure to capture accurately the

crossing of two separate beams of photons.

Solution comparisons for all the radiation problems considered herein are made based

on grid-independent results for the M1, M2, P1, and P3 moment closures, as well as

the DOM. The procedure adopted herein to obtain grid-independent solutions consists

of comparing predictions of each of the radiation models on a sequence of increasingly

refined grids and subsequently selecting the mesh size for which no significant change in

the solution is observed as the mesh is further refined. For each of the cases studied,

comparisons of the relative computational costs of each solution method in terms of the

total computational time to obtain a solution were also performed and are reported along

with the mesh convergence study results.

Note that, when comparing the reported computational times, the computational/memory

storage costs should also be taken into account. In particular, for the one- and two-

dimensional canonical problems examined herein, the storage requirements for the M1

and P1 moment closures are such that three transport equations are solved at each loca-

tion within the computational grid. For the M2 closure, 6 moment equations are solved

whereas the P3 closure involves 10 unknowns and, for the DOM simulations, the T4

angular quadrature scheme [92] is used with 64 angular directions at each point within

the grid. It should be noted that the relative numbers of unknowns at each grid point

would change for fully three-dimensional problems with the M1 and P1 closures involv-

ing 4 unknowns, the M2 closure resulting in 10 unknowns, the P3 closure involving 20

unknowns, and the DOM requiring the solution of 128 unknowns per grid point. The

low-order M1 and P1 moment closures quite clearly offer significant savings in storage rel-
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ative to the other methods. Finally, for all of the canonical-type gray radiation problems

considered here having either one-dimensional or rectangular two-dimensional compu-

tational domains, the space marching solution method used here to obtain the DOM

solutions [29] is extremely efficient and therefore the DOM solutions reported here gen-

erally require less computational effort in terms of computational time compared to the

moment closure techniques. However, for practical applications involving more complex

three-dimensional geometries combined with more realistic physics, space marching tech-

niques can lose their effectiveness and the moment closures are expected to be far more

competitive.

6.1 Parallel Plates

The geometry for the parallel plate test problems considered in the present study for

the assessment of the proposed interpolative-based M2 closure for gray radiation is il-

lustrated in Fig. 6.1. The bounding wall surfaces are assumed to be black, i.e., with

emissivities ϵL = ϵU = 1. As a first step, different plate separation distances are consid-

ered while the medium between the two plates is taken to be cold (non-emitting) and

non-scattering. Next scattering is considered and its impact on the accuracy of the M2

closure is assessed. Grid convergence analyses for the parallel plate test problems con-

sidered herein were performed on a sequence of increasingly refined grids, characterized

by Ncells = {20, 40, 80, 160, 320} cells. The accuracy of the predictions of the radiative

source term associated with each of the grids in the sequence was assessed via the L1

error with respect to solutions obtained on a reference grid with Ncells = 640 cells.

6.1.1 Exact Solution for Non-Scattering Case

For a non-scattering medium confined between two black, parallel plates, there exist

an exact analytical solution to the radiative transfer equation, Eq. (2.14), as given by

Modest [84]. The distribution of the radiative intensity emitted from the lower and upper

plates, respectively, are given by

I+(τ, µ) = Iw,Le
−τ/µ + 1

µ

∫ τ

0
Ib(τ ′)e−(τ−τ ′)/µdτ ′, 0 < µ < 1,

I−(τ, µ) = Iw,Ue
(τL−τ)/µ + 1

µ

∫ τ

0
Ib(τ ′)e(τ ′−τ)/µdτ ′, −1 < µ < 0,

(6.1)
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Figure 6.1: Illustration of geometry for test problems involving for gray radiative transfer

between parallel plates.

where τL =
∫ L

0
β(s)ds is the optical thickness (or optical depth), L is the distance between

the two plates, Iw,L and Iw,U are the intensities leaving the lower and upper plates

respectively, and Ib(τ ′) = Ib is the blackbody radiative intensity associated with optical

depth τ ′.

The partial radiative energy densities, I(0)±, and the partial radiative fluxes, I(1)±, asso-

ciated with the partial distributions, I±, given in Eq. (6.1), can be accurately computed

by means of a 20-point Gauss-Legendre quadrature rule, along with the appropriate

quadrature weights and integration domains, as follows

I(0)± = ±2π

∫ ±1

0

I±(τ, µ)dµ = 2π
20∑
n=1

wnI
±(τ, µn), (6.2)

I(1)± = ±2π

∫ ±1

0

µI±(τ, µ)dµ = 2π
20∑
n=1

wnµnI
±(τ, µn), (6.3)

where the abscissas, µn, and weights, wn, are determined by the Gauss-Legendre quadra-

ture in the appropriate domains (i.e., µn ∈ [0, 1] for lower plate and µn ∈ [−1, 0] for

upper plate). The overall radiative energy at any optical distance, τ , between the two

plates is the sum of the radiative energies arising from both the lower and upper plates,

i.e., I(0) = I(0)+ + I(0)−. The same also holds for the overall radiative heat flux, i.e.,

I(1) = I(1)+ + I(1)−.
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Figure 6.2: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3 and, (b) computational costs associated with each of

the radiation models for the different mesh resolutions. Results are shown for radiative

transfer within an absorbing, non-emitting (T = 0K), non-scattering medium between

two infinitely long parallel plates with a separation distance of 1m.

6.1.2 Absorbing-Non-Emitting Medium with No Scattering

The first test problem involving gray radiative transfer between parallel plates consists

of a cold (non-emitting, i.e., T = 0K) and non-scattering medium with an absorption

coefficient κ = 2m−1. The bounding plates are taken to be at a temperature of T = 500K.

Two plate separations are considered for the comparisons, i.e., L = 1 m and L = 10 m.

Results of grid convergence analysis as well as comparisons of computational costs are

illustrated in Fig. 6.2 for the smaller plate separation and Fig. 6.3 for the larger plate

separation. Comparisons of the solutions obtained using the proposed M2 interpolative-

based closure to those of the M1, P1 and P3 moment closures as well as the DOM

are depicted in Fig. 6.4 for the smaller plate separation and in Fig. 6.5 for the larger

separation distance. For both plate separations, the comparisons are made based on the

solutions obtained on the second-finest grid, withNcells = 160 cells. In fact, as can be seen

in Fig. 6.2(a) and 6.3(a) for the smaller and larger plate separations, respectively, this

mesh resolution falls well within the asymptotic range of convergence of the numerical

method, thereby ensuring that the comparisons of the predicted solutions are not affected

by spatial discretization errors.
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Figure 6.3: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3 and, (b) computational costs associated with each of

the radiation models for the different mesh resolutions. Results are shown for radiative

transfer within an absorbing, non-emitting (T = 0K), non-scattering medium between

two infinitely long parallel plates with a separation distance of 10m.

For the small plate separation, it is readily apparent from Fig. 6.4 that the P1 and P3

closures yield somewhat better predictions than the M1 maximum entropy closure, both

qualitatively and quantitatively. It can also be observed that the M1 model produces a

nonphysical discontinuity in the radiative energy (and also consequently in the radiative

source term). Near either of the bounding walls, the distribution of radiative intensity

is beam-like as it is dominated by the incoming flux from the closest boundary, and

the eigenvalues associated with the M1 closure have the same sign. In the centre of

the medium between the two plates on the other hand, the true solution is essentially

two identical beam-like distributions pointed in opposite directions. This crossing of

identical beam-like distributions, which is characterized by a zero net flux, cannot be

properly captured by the M1 closure, which predicts an isotropic distribution of the

radiative intensity. This is due to the fact that the only available information in the

M1 distribution of radiative intensity for describing departures from the isotropic limit

is the radiative flux. In the latter case, the M1 closure (in the one-dimensional case) has

two eigenvalues of opposite signs. As was illustrated by Brunner and Holloway [51], the

transitions in the characteristic directions of the M1 closure occur at the locations where

the jumps in the radiative energy density are observed.
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(a) (b)

(c)

Figure 6.4: Numerical predictions of (a) the radiative energy, E; (b) radiative flux, F ;

and (c) the source of radiative energy transfer, Sr, obtained using the M2 interpolative-

based closure using a 160-node mesh compared to the exact analytical solution as well

as the predictions of the M1 maximum-entropy closure, P1 and P3 spherical harmonic

closures, and DOM. Results are shown for radiative transfer within an absorbing, non-

emitting (T = 0K), non-scattering medium between two infinitely long parallel plates

with a separation distance of 1m.

For the larger plate separation, the M1 closure still displays a jump in the solution of

the radiative energy density and of the radiative source term, though not as significant

as for the smaller plate separation distance. In fact, the increased distance between

the bounding walls results in an increase in the optical depth of the medium between

the plates which in turns translates into more substantial attenuation of the beams of
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(a) (b)

(c)

Figure 6.5: Numerical predictions of (a) the radiative energy, E; (b) radiative flux, F ;

and (c) the source of radiative energy transfer, Sr, obtained using the M2 interpolative-

based closure using a 160-node mesh compared to the exact analytical solution as well

as the predictions of the M1 maximum-entropy closure, P1 and P3 spherical harmonic

closures, and DOM. Results are shown for radiative transfer within an absorbing, non-

emitting (T = 0K), non-scattering medium between two infinitely long parallel plates

with a separation distance of 10m.

radiative energy emanating from either walls, as the centre of the medium is approached.

For both plate separation distances, the proposed second-order interpolative-based M2

closure quite clearly overcomes the inability of the M1 model to adequately represent

radiative transport in more than one direction and also results in improved solution
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accuracy compared to the latter closure. More specifically, the proposed M2 closure

produces solutions that are qualitatively in very good agreement with the exact solutions,

of similar accuracy to those of the P1 closure for the small plate separation, and virtually

identical to the P3 closure results for the larger plate separation distance.

6.1.3 Absorbing-Non-Emitting Medium with Scattering

The next parallel plates test problem considered herein aims at evaluating the impact

of scattering on the solutions of the proposed M2 closure. A cold (non-emitting, i.e.,

T = 0K) medium is again considered with an absorption coefficient κ = 2m−1 and a

scattering coefficient σs = 2.0m−1. The separation distance between the two plates is

L = 1 m and the bounding walls are taken to be at a temperature T = 500K. Results of

grid convergence analysis for this test problem as well as computational costs comparisons

are shown in Fig. 6.6. The predictions for the radiative energy density, radiative heat flux,

and radiative source term obtained using the proposed M2 interpolative-based closure

as well as the M1, P1 and P3 moment closures and the DOM are compared in Fig. 6.7.

Solutions obtained on the second-finest grid, with Ncells = 160 cells, are again used for the
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Figure 6.6: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3 and, (b) computational costs associated with each of

the radiation models for the different mesh resolutions. Results are shown for radiative

transfer within an absorbing-scattering, non-emitting (T = 0K) medium between two

infinitely long parallel plates with a separation distance of 1m.
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(a) (b)

(c)

Figure 6.7: Numerical predictions of (a) the radiative energy, E; (b) radiative flux, F ; and

(c) the source of radiative energy transfer, Sr, obtained using the M2 interpolative-based

closure using a 160-node mesh compared to the exact analytical solution as well as the

predictions of the M1 maximum-entropy closure, P1 and P3 spherical harmonic closures,

and DOM. Results are shown for radiative transfer within an absorbing-scattering, non-

emitting (T = 0K) medium between two infinitely long parallel plates with a separation

distance of 1m.

comparisons since this mesh resolution falls within the asymptotic range of convergence,

as can be depicted in Fig. 6.6(a).

As an exact solution does not exist for this case, the DOM is taken as a reference for

the comparisons. As can be seen in the results reported in Fig. 6.7, the M1 closure
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Figure 6.8: Comparison of computational costs associated with the DOM, M1, M2, P1,

and P3 radiation models for different levels of scattering using a 160-node mesh. Results

are shown for radiative transfer within an absorbing-scattering, non-emitting (T = 0K)

medium between two infinitely long parallel plates with a separation distance of 1m..

no longer displays a non-physical jump in the solution of the radiative energy density

and of the radiative source term, when isotropic scattering effects are also considered.

This can be expected since the “isotropic” scattering terms yield a redistribution of the

radiative intensity distribution equally along all directions of propagation spanning the

full solid angle. In particular, the distributions leaving either bounding walls, in addition

to being attenuated via absorption by the medium, are also redistributed uniformly

along all possible directions of propagation of the photons, thereby resulting in more

isotropy in the distributions compared to the non-scattering case studied in the previous

section. In the centre of the medium between the two plates, the true solution is two

identical and nearly isotropic distributions, and the M1 closure is observed to properly

capture this phenomenon, though its predictions are not as accurate as those of the

P1 and P3 spherical harmonic moment closures. As can be expected, the proposed

interpolative-based M2 closure provides improved predictions of the radiative quantities

under consideration when compared to its lower-order counterpart, i.e, the M1 closure.

Moreover, the M2 closure yields more accurate predictions than the P1 closure and is in

very good agreement with the P3 closure and the DOM.

To further asses the impact of scattering on the different radiation models of interest

in the present study, the computational costs associated with these models for different

levels of scattering, for a 160-node mesh, are reported in Fig.6.8. While the predictive
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performance of the M1, M2, P1, and P3 moment closure techniques (in terms of com-

putational efficiency) display little to no changes with increasing scattering effects, the

DOM on the other hand loses its effectiveness as scattering becomes more important. In

fact, the more important the scattering effects, the stronger the coupling between trans-

port equations for the intensity distribution along the discrete directions involved in the

DOM, and the more the number of iterations required for the space marching iterative

technique used in solving the DOM equations to converge.

6.2 Square Enclosure

Radiative transfer within a square enclosure is now considered. The medium within the

enclosure is cold (non-emitting, i.e., T = 0K) with an absorption coefficient κ = 20m−1.

All of the walls are taken to have identical temperatures of T = 500K. Results of grid

convergence analysis on the radiative source term, for the DOM, as well as the M1, M2,

P1, and P3 moment closure techniques, are illustrated in Fig. 6.9(a). The latter analysis

is performed on a sequence of increasingly uniformly refined two-dimensional grids, with

Ncells = {20× 20, 40× 40, 80× 80, 160× 160, 320× 320} cells. Moreover, the accuracy

of the predictions of the radiative source term obtained on each of the grids in the

sequence was assessed via the L1 error with respect to solutions obtained on a reference

grid with Ncells = 640× 640 cells. The grid with Ncells = 160× 160 cells can be observed

to fall well within the asymptotic range of convergence and is deemed to provide sufficient

accuracy for all the radiation models considered in the present analysis. As such, it is

therefore used for the comparisons of the solutions so as to ensure that the latter are

not influenced by numerical errors. Comparisons of computational costs associated with

each of the approximate radiation models, for the mesh resolutions considered in the grid

convergence study, are presented in Fig. 6.9(b).

The predicted distributions of the radiative energy density and the magnitude of the

radiative flux within the two-dimensional enclosure, obtained using the DOM and the

interpolative-based M2 moment closure, respectively, are given in Fig. 6.10, for a (160×
160)-node mesh. Additionally, the predictions of the proposed interpolative-based M2

closure are compared to those of the M1, P1 and P3 moment closures, as well as to

those of the DOM, in Fig. 6.11. The comparisons are performed in terms of results for
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Figure 6.9: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3 and, (b) computational costs associated with each of

the radiation models for the different mesh resolutions. Results are shown for test problem

involving radiative transfer throughout an absorbing, non-emitting and non-scattering

medium confined within a square enclosure with wall temperatures of T = 500K.

the radiative energy density, magnitude of the radiative flux, and radiative heat source,

along the line of the rectangular enclosure parameterized by y = 0.5 m.

Both the M1 and P1 moment closures fail to predict accurately the distributions of the

radiative energy density and radiative source term near the centre of the medium within

the square enclosure. In the absence of scattering and emission effects, absorption is the

only mechanism via which the radiative field interacts with the background medium. In

particular, radiative particles emanating from the bounding walls travel along straight

lines while being attenuated via absorption processes only. Photons propagating towards

the centre of the enclosure travel longer distances when emitted closer to the corners of

the square enclosure as compared to radiative particles emanating from near the centre

of one of the bounding walls. Since the level of attenuation increases with the optical

depth, it therefore follows that the true solution at the centre of the square enclosure

is a non-isotropic distribution which is symmetric with respect to both the x- and y-

axis, with its maximum occurring along the aforementioned axes of symmetry, and is

associated with a zero net flux of radiative particles. However, for angular distributions

reconstructed with angular moments up to only first order, a net radiative flux of zero

can only be associated with an isotropic distribution of the radiative intensity, given the
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(a) (b)

(c) (d)

Figure 6.10: Predicted distribution of the radiative energy density using (a) the DOM &

(b) the interpolative-based M2 moment closure; and of the distribution of the magnitude

of the radiative flux as obtained using (c) the DOM & (d) our interpolative-based M2

moment closure, on a (160×160)-node mesh. Results are shown for test problem involving

radiative transfer throughout an absorbing, non-emitting and non-scattering medium

confined within a square enclosure with wall temperatures of T = 500K.

fact that the first-order angular moment is the only available angular information for

describing departures from the isotropic limit. This explains the fact that both the M1

and P1 closures fail to properly predict the distributions of the radiative energy density

and radiative source term in the vicinity of the centre of the enclosure. As is evident

from the results shown here, these limitations of the aforementioned first-order moment

closure techniques can be overcome by providing additional angular information, via
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(a) (b)

(c)

Figure 6.11: Numerical predictions of (a) the radiative energy, E; (b) magnitude of the

radiative flux, ||F ||, (right top panel); and (c) the source of radiative energy transfer,

Sr, along the centre line (y = 0.5 m) of the square enclosure, obtained using the M2

interpolative-based closure using a (160×160)-node mesh compared to the predictions

of the M1 maximum-entropy closure, P1 and P3 spherical harmonic closures and DOM.

Results are shown for test problem involving radiative transfer throughout an absorbing,

non-emitting and non-scattering medium confined within a square enclosure with wall

temperatures of T = 500K.

consideration of higher-order angular moments, in the reconstruction of the assumed

form of the radiative intensity distribution, thereby allowing the capture of more of the

features of the true distribution. It is readily apparent from the comparisons that the

predictions of both the newly proposed M2 interpolative-based closure and the P3 model
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are superior to those of the M1 and P1 closures and virtually equivalent to those of the

DOM. Furthermore, it should be noted that there is some indication of ray effects in the

DOM T4 results of Figs. 6.10(a) and these effects are clearly absent in the corresponding

M2 closure results. The lack of ray effects in the predictions of moment closure techniques

is an obviously desirable feature.

(a) (b)

(c) (d)

Figure 6.12: Predicted contours of the radiative energy density, I(0), obtained using the

(a) P1, (b) P3, (c) M1, and (d) M2 moment closures with a (400×400)-node mesh. Results

are shown for test problem involving identical beams of photons crossing at a 90◦ angle

in a radiatively non-participating medium.
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6.3 Crossing Beams in 2D Domain

The final gray-radiation test problem considered in this thesis involves two identical

beams of radiative particles (photons) crossing at a 90◦ angle. It is considered herein

for the purpose of illustrating the superiority of the MN closures over the PN models

for radiative transfer problems involving highly anisotropic distributions of the radia-

tive intensity. The present case also demonstrates again the importance of considering

higher-order angular moments (N > 1) for certain types of radiative transfer problems.

The computational domain consists of a square enclosure with side of 0.5 m in length.

The medium within the enclosure is non-participating, i.e., no absorption, emission, or

scattering of radiation. Two identical beams of photons, at a temperature of 4000K

each, emanate from the boundaries associated with x = 0 m (Beam 1) and y = 0 m

(Beam 2), respectively. Beam 1 at x = 0 m emanates between y = 0.1 m and y = 0.15

m whereas Beam 2 at y = 0 m penetrates the computational domain between x = 0.1 m

and x = 0.15 m. A (400×400)-node computational mesh was used to obtain solutions for

the crossing beams problem, and no grid convergence study was performed in this case.

Contours of the predicted solutions, obtained using the P1, P3, M1, and M2 moment

closures, are illustrated in Fig. 6.12 for the radiative energy density and in Fig. 6.13 for

the magnitude of the radiative flux. It is evident from the two sets of results in the

figures that both the P1 and P3 closures fail to capture the propagation of the two beams

within the non-participating medium under consideration for the present test problem.

This is due to the fact that these low-order closures are associated with polynomial-like

distributions of the radiative intensity and as such cannot properly capture Dirac-delta-

like distributions of the type encountered in this test case. It can however be observed that

the P3 closure predicts a deeper penetration of the beams that its lower-order counterpart,

which can be attributed to the fact that the former closure can handle more anisotropy

than the latter given the additional angular moments involved in the reconstruction of

the assumed form of the distribution. The M1 closure performs better than either one of

the P1 and P3 closures and seems to properly predict the penetration and propagation of

the two beams towards the crossing point, but however fails at capturing the crossing of

the two beams. More specifically, at the point where the two incoming beams meet, the

M1 closure predicts a single beam propagating in the direction (e⃗1 + e⃗2), where e⃗1 and

e⃗2 are the unit vectors characterizing the original directions of propagation of Beam 1
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(a) (b)

(c) (d)

Figure 6.13: Predicted contours of the magnitude of the radiative flux, ∥I(1)∥, obtained
using the (a) P1, (b) P3, (c) M1, and (d) M2 moment closures with a (400×400)-node

mesh. Results are shown for test problem involving identical beams of photons crossing

at a 90◦ angle in a radiatively non-participating medium.

and Beam 2, respectively. Finally, out of all of the radiation models considered here for

the beam crossing problem, only the M2 closure is able to predict in an accurate manner

both the propagation and crossing of the two beams of radiative energy.



Chapter 7

Numerical Results: Assessment in

Non-Gray Participating Media

In this section, the predictive capabilities of the proposed interpolative-based non-gray

first-order, M1, and second-order, M2, maximum-entropy moment closures are assessed.

As for the gray-radiation results of the previous Chapter 6, the assessments consist of

comparing their solutions to those of the more commonly adopted first- and third-order

spherical harmonic moment closures, P1 and P3, respectively, as well as those of the

DOM, for a range of test cases involving non-gray radiative heat transfer in isotropically

scattering (Φη(s⃗
′, s⃗) = 1) real gases. In addition to the total (spectrally integrated) radia-

tive energy density, I(0) =
∫∞
0
I
(0)
η dη, and the total radiative heat flux, I(1) =

∫∞
0
I
(1)
η dη,

comparisons are also performed in terms of the total radiative source term, SR, as de-

fined by Eq. (2.13) of Chapter 2, which contributes to the source term in the conservation

of energy equation of Eq (2.3). In all of the cases studied, the spectral dependence of

the radiative properties of participating (absorbing, emitting and/or scattering) gases

is treated using the statistical narrow-band correlated-k model. Moreover, similar to

the case of gray radiation, steady-state numerical solutions for the non-gray M1, M2,

P1, and P3 closures are obtained using the Godunov-type finite volume scheme and the

NKS iterative procedure described earlier in Chapter 5. In all of the simulations, the

method of characteristics is again used to provide boundary conditions to the systems of

equations arising from the aforementioned moment closures. Furthermore, solutions of

the set of ODEs resulting from the DOM are obtained using a space-marching iterative

139
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technique [29], and quadrature rules based on the T4 scheme of Thurgood et al. [92] are

used for the discretization of the angular variables in the DOM.

The first set of test problems again involves radiative heat transfer between two parallel

plates with various separation distances, medium temperature distributions, and gas

mixture compositions, similar to those studied Sarr and Groth [124], which were inspired

from the cases studied by Liu et al. [31]. For such test cases, exact analytical solutions of

the RTE are available, and are therefore used as additional references for the comparisons,

similar to the work by Sarr and Groth [124]. The newly-developed non-gray M1 and

M2 closures are also applied to multi-dimensional radiative heat transfer problems by

considering non-gray radiation within a rectangular enclosure, with specified distributions

of the temperature and gas mixture compositions.

For all the radiation problems considered, solution comparisons are made based on grid-

independent results for the M1, M2, P1, and P3 moment closures, as well as the DOM.

The grid-independent solutions were obtained by comparing predictions of each of the

radiation models on a sequence of increasingly refined grids and subsequently selecting

the mesh size for which no significant change in the solution is observed as the mesh is

further refined. The relative computational costs of each solution method in terms of

the total computational time to obtain a solution in each case was also recorded and is

reported along with the results of the mesh convergence study.

For the one- and two-dimensional canonical problems examined herein, the storage re-

quirements for the M1 and P1 moment closures are such that three transport equations

are solved for each quadrature point of each narrow band for a total of 3× 9× 4 = 108

unknowns at each location within the computational grid. The M2 closure involves the

solution of 6 moment equations at each quadrature point for a total of 6 × 9 × 4 = 216

unknowns. For the P3 closure, 10 moment equations are solved at each quadrature point

for a total of 10 × 9 × 4 = 360 unknowns and, for the DOM simulations, the T4 an-

gular quadrature scheme [92] is used with 64 angular directions requiring the solutions

for 64 × 9 × 4 = 2, 304 unknowns at each point within the grid. It is also important to

note that the relative numbers of unknowns at each grid point would change for fully

three-dimensional problems with the M1 and P1 closures involving 4 × 9 × 4 = 144 un-

knowns, the M2 closure resulting in 10× 9× 4 = 360 unknowns, the P3 closure involving

20× 9× 4 = 720 unknowns, and the DOM requiring the solution of 128× 9× 4 = 4, 608
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Figure 7.1: Illustration of parallel plate test case for non-gray radiation.

unknowns per grid point. Similar to the case of gray radiation of Chapter 6, the low-order

M1 and P1 moment closures quite clearly offer significant savings in storage relative to

the other methods. Moreover, for all of the canonical-type non-gray radiation problems

considered here having either one-dimensional or rectangular two-dimensional compu-

tational domains, the space marching solution method used here to obtain the DOM

solutions [29] is again extremely efficient and therefore the DOM solutions reported here

generally require considerably less computational effort in terms of computational time

compared to the moment closure techniques. However, as noted previously, for practical

applications involving more complex three-dimensional geometries combined with more

realistic physics, space marching techniques can lose their effectiveness and the moment

closures are expected to be far more competitive.

Table 7.1: Computational Conditions for Parallel Plate Test Cases.

Case L (m) Temperature Distribution Mixture

1 0.1 and 1.0 T = 300 + 500
[
1− cos

(
2πx
L

)]
Pure H2O

2 1.0 T = 300 + 500
[
1− cos

(
2πx
L

)]
N2 and H2O with fH2O = 4

(
1− x

L

)
x
L

3 0.2 T = 1300 + 350 cos
(
πx
L

)
− 650

[
cos

(
πx
L

)]2
Pure H2O

4 0.5 T = 1300 + 350 cos
(
πx
L

)
− 650

[
cos

(
πx
L

)]2
10% CO2, 20% H2O, and 70% N2 (mole basis)
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7.1 Non-Gray Radiative Heat Transfer Between

Parallel Plates

The geometry for the parallel plate test problems, considered in the present study for

the assessment of the proposed interpolative-based non-gray M1 and M2 closures, is

illustrated in Fig. 7.1. The bounding wall surfaces are assumed to be black, i.e., with

emissivities ϵL = ϵU = 1, and the medium between the two plates is non-scattering

at a uniform pressure of 1 atm. The computational parameters, specific to each of

the test cases related to this geometry, are summarized in Table 7.1. Furthermore, for

a non-scattering medium confined between two black, parallel plates, there exists an

exact analytical solution to the radiative transfer equation [23], Eq. (2.9), the derivation

of which is presented below. Similar to the gray radiation problems, grid convergence

analyses for the parallel plate test problems considered herein are performed on a sequence

of increasingly uniformly refined grids, characterized by Ncells = {20, 40, 80, 160, 320}
cells in the direction perpendicular to the plates. The accuracy of the predictions of

the radiative source term associated with each of the grids in the sequence was assessed

via the L1 error with respect to computed solutions obtained on a reference grid with

Ncells = 640 cells.

At any location between the two plates, the spectral incoming and outgoing angular

distributions of the radiative intensity, I+η and I−η , respectively, are given by

I+η (τη, µ) = Iw,L,ηe
−τη/µ + 1

µ

∫ τη
0
Ibη(τ ′η)e−(τη−τ ′η)/µdτ ′η, 0 < µ < 1,

I−η (τη, µ) = Iw,U,ηe
(τL−τη)/µ + 1

µ

∫ τη
0
Ibη(τ ′η)e(τ ′η−τη)/µdτ ′η, −1 < µ < 0,

(7.1)

where τη =
∫ L

0
κη(s)ds is the optical thickness (or optical depth), L is the separation

distance between the two plates, Iw,L,η and Iw,U,η are the spectral intensities leaving the

lower and upper plates respectively, Ibη(τ ′η) is the spectral blackbody radiative inten-

sity associated with optical depth τ ′η. The spectrally-dependent incoming and outgoing

intensities, respectively, given in Eq. (7.1), can be integrated over the full spectrum of

frequencies by means of the SNBCK model yielding the following expressions

I+(τ, µ) =
∑Nb

j=1

∑Ng

i=1wiI
+
gi
(τgi , µ)∆ηj,

I−(τ, µ) =
∑Nb

j=1

∑Ng

i=1wiI
−
gi
(τgi , µ)∆ηj,

(7.2)



7.1. Non-Gray Radiative Transfer Between Parallel Plates 143

where

I+gi(τgi , µ) = Iw,L,gie
−τgi/µ + 1

µ

∫ τgi
0

Ibηcj(τ ′gi)e−(τgi−τ ′gi )/µdτ ′gi ,
I−gi(τgi , µ) = Iw,U,gie

(τgi,L−τgi )/µ + 1
µ

∫ τgi
0

Ibηcj(τ ′gi)e(τ ′gi−τgi )/µdτ ′gi .
(7.3)

The total radiative energy density, I(0), and total radiative heat flux, I(1), then follow

from the above expressions for the total radiative intensities by application of a Gauss-

Legendre quadrature rule along with the appropriate angular weights for the moments

of interest, i.e.,

I(0)± = ±2π

∫ ±1

0

I±(τ, µ)dµ = 2π
N∑

n=1

wnI
±(τ, µn), (7.4)

I(1)± = ±2π

∫ ±1

0

µI±(τ, µ)dµ = 2π
N∑

n=1

wnµnI
±(τ, µn), (7.5)

where µn and wn, respectively, correspond to the abscissas and weights determined by

the Gauss-Legendre quadrature in the appropriate domains (i.e. µn ∈ [0, 1] for the

outgoing radiation and µn ∈ [−1, 0] for the incoming radiation). The overall radiative

energy density, at any optical distance between the two plates, corresponds to the sum

of both incoming and outgoing contributions of radiative energy, i.e., I(0) = I(0)+ +

I(0)−. The same also holds for the overall radiative flux, i.e., I(1) = I(1)+ + I(1)−. Very

accurate estimates of both the zeroth- and first-order moments of the exact solutions of

the radiative intensities can be achieved by using a 20-point Gauss-Legendre quadrature

rule, i.e., N = 20. It is also worth pointing out that the expressions given in Eqs. (7.2)

and (7.3) are exact up to the accuracy of the SNBCK treatment of the spectral absorption

coefficient, κη. Since the same treatment is also used for the M1, M2, P1, and P3 moment

closures, as well as for the DOM, it is therefore expected that any difference between the

exact solutions and the predictions of the approximate radiation models, considered in

the present study, would be entirely due to the approximate treatment of the directional

dependence of the radiative intensity distribution.

7.1.1 Parallel Plate Case 1

The first parallel plate test problem is considered here to assess the ability of the proposed

interpolative-based non-gray M1 and M2 closures to accurately capture radiative transfer

for various optical conditions. The medium between the two plates consists of pure H2O
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Figure 7.2: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for the small plate separation of Case 1 (L = 0.1

m) and, (b) computational costs associated with each of the radiation models for the

different mesh resolutions.

with a temperature distribution of the form

T = 300 + 500

[
1− cos

(
2πx

L

)]
, (7.6)
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Figure 7.3: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for the larger plate separation of Case 1 (L = 1

m) and, (b) computational costs associated with each of the radiation models for the

different mesh resolutions.



7.1. Non-Gray Radiative Transfer Between Parallel Plates 145

(a) (b)

(c)

Figure 7.4: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for the small plate separation of Case 1 (L = 0.1 m) with a 160-

node mesh obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact

solution to the RTE used as reference for comparisons.

where x is the distance from the lower plate, and L represents distance between the

bounding plates. Two plate separation distances are considered, i.e., L = 0.1 m and

L = 1 m. Results of the grid convergence analysis, as well as comparisons of compu-

tational costs, are presented in Fig. 7.2 for the small plate separation and Fig. 7.3 for

the larger plate separation. In addition, comparisons of the predictions of the radia-

tive energy density, the radiative heat flux, and the radiative source term, for this test
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(a) (b)

(c)

Figure 7.5: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for the larger plate separation of Case 1 (L = 1 m) with a 160-node

mesh obtained using the DOM, the M1, M2, P1 and P3 moment closures, with exact

solution to the RTE used as reference for comparisons.

problem, are also illustrated in Figs. 7.4 and 7.5, for the small and larger plate separa-

tions, respectively. For all the radiation models considered in this study, the solutions

obtained on the second-finest grid, with Ncells = 160 cells, are used for the comparisons

of spectrally integrated radiative quantities. This mesh resolution can be observed to

fall well within the asymptotic range of convergence for both plate separations and has

sufficient accuracy to ensure that numerical errors do not influence the comparisons of
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the predicted solutions.

For the small plate separation, Fig. 7.4 reveals that the non-gray M1 closure yields im-

proved predictions of the radiative quantities under consideration relative to its spherical

harmonic counterpart, i.e., the P1 moment closure, and is even of comparable accuracy

to the third-order spherical harmonic, P3, moment closure as far as the radiative source

term. However, as either one of the bounding walls is approached, the radiative energy

density predicted by the non-gray M1 closure seems to noticeably deviate from the pre-

dictions of the P1 and P3 moment closures which are in better agreement with the DOM

and the exact solution. As can be expected, the non-gray M2 closure yields improved

predictions of the radiative solutions compared to its lower-order counterpart, i.e., the

non-gray M1 closure, and is even superior to the P3 closure, while being of comparable

accuracy to the DOM. Near the bounding walls however, predictions of the radiative

energy density obtained using the M2 closure deteriorate somewhat relative to those of

the DOM, but are of comparable accuracy to those of the P3 closure.

As the plate separation is increased, observations similar to those for the smaller plate

separation can be made. In particular, the M1 closure is observed to yield better solutions

than the P1 closure and provides predictions of the radiative energy density and of the

radiative source term that are of comparable accuracy to those of the P3 moment closure,

as shown in Fig. 7.5. Moreover, the radiative energy density predicted by the M1 closure

is observed to deteriorate as either one of the bounding walls is approached and is less

accurate than the predictions of both the P1 and P3 closures. The M2 closure again

outperforms all the other three moment closure techniques under consideration and is

in very good agreement with both the DOM and the exact solutions. However, near

the bounding plates, the radiative energy density predicted by the M2 closure seems to

slightly deteriorate compared to the DOM and is even less accurate than the P1 and P3,

though still superior to its lower-order counterpart.

7.1.2 Parallel Plate Case 2

The next parallel plate problem is considered to assess the predictive capabilities of the

non-gray M1 and M2 closures in the case of radiative transfer in non-homogeneous media

with spatially varying species concentrations. More specifically, for this problem, the
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medium between the two plates, with separation distance L = 1 m, is now a mixture of

N2 and H2O, and the distribution of the mole fraction of H2O in the mixture is given by

fH2O = 4
(
1− x

L

) x
L
, (7.7)

where x represents the distance from the lower plate and L = 1m is the separation

distance between the two plates. Similar to Case 1, the gas mixture follows a temperature

distribution of the form

T = 300 + 500

[
1− cos

(
2πx

L

)]
, (7.8)

where again x is the distance from the lower plate, and L represents distance between

the bounding plates. A grid convergence analysis, as well as comparisons of compu-

tational costs, have again been performed, the results of which, for this test problem,

are illustrated in Fig. 7.6. It can be seen that again the solutions corresponding to the

second-finest mesh, associated with Ncells = 160 cells, for all five of the radiation models,

are indeed grid independent and are therefore used for the comparisons of total radiative

quantities of interest illustrated in Fig. 7.7.

The numerical results of Fig. 7.7 show that the predictions of the M1 closure are superior

to those of the P1 closure, the only exception being that the former yields less accurate
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Figure 7.6: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for Case 2 (L = 1 m) and, (b) computational costs

associated with each of the radiation models for the different mesh resolutions.
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(a) (b)

(c)

Figure 7.7: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for Case 2 (L = 1 m) with a 160-node mesh obtained using the

DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used as

reference for comparisons.

predictions of the radiative energy density than the latter near the bounding walls. The

M1 closure is also observed to yield solutions of the radiative energy density and of the

radiative source term of comparable accuracy to those obtained using the P3 closure,

especially away from the bounding walls. The M2 closure on the other hand generally

outperforms the M1, P1, and P3 closures in terms of solution accuracy and is in close

agreement with the DOM. However, as either one of the bounding plates is approached,
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the radiative energy density predicted by the M2 closure deviates from the predictions of

the DOM and is even less accurate than the P1 and P3 solutions, though still superior

to the M1 solutions.

7.1.3 Parallel Plate Case 3

The parallel plate test case examined next, i.e., Case 3, aims at assessing the predictive

capabilities of the M1 and M2 closures in problems involving strongly emitting wall sur-

faces. More specifically, radiative transfer between two parallel plates with a separation

distance L = 0.2m is considered. The medium between the plates consists of pure H2O,

with a temperature distribution of the form

T = 1300 + 350 cos
(πx
L

)
− 650

[
cos
(πx
L

)]2
, (7.9)

where again x represents the distance from the lower plate. Similar to the previous

test cases, i.e., Case 1 and 2, grid convergence studies are performed on the solutions

of the DOM, M1, M2, P1, and P3 radiation models, in particular on the predicted total

radiative source term, as can be depicted in Fig. 7.8, which also illustrates comparisons of

computational costs for the different radiation models. Moreover, numerical predictions
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Figure 7.8: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for Case 3 (L = 0.2 m) and, (b) computational costs

associated with each of the radiation models for the different mesh resolutions.
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(a) (b)

(c)

Figure 7.9: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for Case 3 (L = 0.2 m) with a 160-node mesh obtained using the

DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used as

reference for comparisons.

of total radiative energy density, total radiative heat flux, and total radiative source term

for Case 3 are also illustrated in Fig. 7.9.

The results shown in the latter figure were again obtained on the second finest mesh,

corresponding to Ncells = 160 cells, which, as can be seen in Fig. 7.8(a), corresponds to

grid-converged solutions well within the asymptotic range of convergence. The numerical

results show that the radiative energy density predicted by the M1 closure, though more
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accurate than the P1 predictions near the hotter plate, quickly deteriorates away from

the latter and yields much less accurate solutions than the P1 closure as the colder wall

is approached. On the other hand, the radiative heat flux obtained using the M1 closure,

though seemingly equal in accuracy to the predictions of the P1 closure near the hotter

plate, improves further away from the latter and is even of comparable accuracy to the

P3 solutions. As far as the predictions of the radiative source term, the M1 closure is

generally superior to the P1 closure. Improvements in the predictions of the radiative

quantities, relative to the M1 closure, can be achieved, as can be expected, by considering

higher-order members of the hierarchy of MN closures, in particular the M2 closure.

The latter closure is observed to provide substantial improvements in solution accuracy

relative to its lower-order counterpart. Moreover, the M2 closure generally yields more

accurate predictions of the radiative quantities of interest compared to the P1 and P3

closures, despite yielding inferior predictions of the radiative energy density near the

colder wall (relative to P1 and P3) and of the radiative heat flux near the hotter wall

(relative to P3).

7.1.4 Parallel Plate Case 4

The last test problem involving radiative transfer between parallel plates is similar to

Case 3, except that the radiatively participating gas mixture now consists of 10% CO2,

20% H2O, and 70% N2, where the percentages are given on a mole basis, and the plate

separation is L = 0.5m. The results of the corresponding grid convergence analysis,

based on the predicted radiative source term, for all the approximate radiation models of

interest in the present study, are presented in Fig. 7.10. Comparisons of computational

costs associated with the solutions of each of the radiation models, for the different mesh

resolutions considered in the grid convergence study, are also reported in the same figure.

Furthermore, numerical predictions of total radiative energy density, total radiative heat

flux, and total radiative source term, obtained on the second-finest mesh, for which

Ncells = 160 cells, are illustrated in Fig. 7.11.

The numerical results for this last parallel-plate test problem show trends somewhat

similar to those of Case 3. This is expected since the only differences between the two

cases, i.e., Case 3 and Case 4, are the composition of the radiatively participating gas

mixture and the separation distance between the two plates. In particular, the M1 closure
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Figure 7.10: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for Case 4 (L = 0.5 m) and, (b) computational costs

associated with each of the radiation models for the different mesh resolutions.

yields poor predictions of the radiative energy density near the colder wall, though it is

of comparable accuracy to the P1 closure near the hotter plate. The M2 closure predicts

radiative energy density solutions of comparable accuracy to the P3 closure near the

hotter wall but is less accurate than the P1 and P3 closures in the vicinity of the opposite

plate. As far as the radiative heat flux, the M1 closure provides better predictions than

the P1 approximation near the colder plate and is even of comparable accuracy to the

M2 and P3 solutions, whereas its predictions near the hotter wall, while being at least as

accurate as those of the P1 closure, are somewhat less accurate than those of the M2 and

P3 closures. The M2 closure is also observed to be less accurate than the P3 closure near

the hotter plate. With respect to the radiative source term, the M1 solutions are superior

to the P1 solutions but not as accurate as the P3 solutions. On the other hand, the M2

solutions outperform those of all the other three moment closures in terms of accuracy

and are in close agreement with the DOM solutions.
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(a) (b)

(c)

Figure 7.11: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for Case 4 (L = 0.5 m) with a 160-node mesh obtained using the

DOM, the M1, M2, P1 and P3 moment closures, with exact solution to the RTE used as

reference for comparisons.

7.2 Non-Gray Radiative Heat Transfer within

Rectangular Enclosures

Radiative heat transfer within a rectangular enclosure is now considered with conditions

similar to that which would be expected to occur in a typical hydrocarbon fuel combustor.

The geometry of the latter, which is 4 m long and has a width of 2 m, is illustrated in Fig.
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Figure 7.12: Illustration of rectangular enclosure test case for non-gray radiation.

7.12. The surrounding walls are black and cold at 400 K, while the gas mixture within

the enclosure, which consists of 20% H2O, 10% CO2, and 70% N2, where the percentages

are expressed on a mole basis, is maintained at atmospheric pressure. The temperature

of the gas inside the enclosure is not uniform but instead follows a distribution that

is symmetric with respect to the centreline of the enclosure, and is taken to have the

following form:

T = Tw + (Tc − Tw)
(
1− 3|y|2 + 2|y|3

)
, (7.10)
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Figure 7.13: Illustration of (a) grid convergence analysis on the predicted radiative source

term for DOM, M1, M2, P1, and P3, for Case 5, involving radiative heat transfer in a

rectangular enclosure and, (b) computational costs associated with each of the radiation

models for the different mesh resolutions.



156 Chapter 7. Assessment in Non-Gray Participating Media

(a)

(b)

Figure 7.14: Contours of radiative energy density predicted by (a) the DOM, and (b) the

non-gray M2 closure for the rectangular enclosure test problem with a (160×160)-node

mesh.

where the coordinate, y, corresponds to the radial distance from the centreline, Tw = 400

K represents the walls temperature, and Tc is the centreline temperature. The latter is

taken to increase quadratically from Ti = 400 K at the inlet (x = 0 m) to 1, 800 K at

x = 0.5 m, then decreases quadratically to To = 800 K at the exit (x = 4 m) via the

following distribution

Tc =

−5, 600x2 + 5, 600x+ 400, x < 0.5,

−1,000
12.25

x2 + 1,000
12.25

x+ 21,800
12.25

, x ≥ 0.5.
(7.11)
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Results of grid convergence analysis on the total radiative source term, for the DOM, as

well as the M1, M2, P1, and P3 moment closure techniques, are illustrated in Fig. 7.13(a).

The latter analysis is performed on a sequence of increasingly uniformly refined two-

dimensional grids, with Ncells = {20× 20, 40× 40, 80× 80, 160× 160, 320× 320} cells.

Moreover, the accuracy of the predictions of the radiative source term obtained on each

of the grids in the sequence was assessed via the L1 error with respect to solutions obtained

(a) (b)

(c)

Figure 7.15: Predictions of (a) radiative energy density, (b) radiative heat flux, and (c)

radiative source term for the rectangular enclosure test case with a (160×160)-node mesh

obtained using the DOM, the M1, M2, P1 and P3 moment closures, with the DOM used

as a benchmark for comparisons.
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on a reference grid with Ncells = 640×640 cells. The grid with Ncells = 160×160 cells can

be observed to fall well within the asymptotic range of convergence for all the radiation

models considered in the present analysis and is therefore used for the comparisons of

the solutions so as to ensure that the latter are not influenced by numerical errors.

Comparisons of computational costs associated with each of the approximate radiation

models, for the mesh resolutions considered in the grid convergence study, are presented

in Fig. 7.13(b). Moreover, predicted contours of total radiative energy density, I(0),

within the rectangular enclosure are shown in Figs. 7.14(a) and (b) for the DOM and our

non-gray M2 closure, respectively. As can be expected, the radiative energy density takes

its maximum values near the location of maximum temperature along the centreline, and

then decreases towards either the inlet or the outlet, or radially towards the relatively

cold walls, and such a behaviour is well captured by both the DOM and our non-gray

M2 closure.

Numerical predictions of the total radiative energy density, total radiative heat flux, and

total radiative source term, along the centreline of the rectangular enclosure, obtained

using our non-gray M1 and M2 closures, are now compared to those of the P1 and P3

moment closures, as well as those of the DOM, as shown in Fig. 7.15. It is worth

mentioning that, due to the lack of exact analytical solutions to the equation of radiative

transfer for this particular problem, solutions of the DOM are used as benchmark for

the comparisons. The numerical results presented here show that even the non-gray M1

closure provides solutions of the radiative energy density and the radiative source term at

least as accurate as those of the P3 moment closure, while being superior to the predictions

of the P1 moment closure technique. Furthermore, the proposed interpolative non-gray

M2 closure again yields improved predictions of the radiation solutions compared to its

lower-order counterpart and is in better agreement with the DOM, when compared to

the M1, P1, and P3 radiation models.



Chapter 8

Numerical Results: Assessment in

Laminar Non-Premixed Flames

In an effort to further assess the predictive capabilities of the proposed interpolative-based

non-gray first-order, M1, and second-order, M2, maximum-entropy moment closures, nu-

merical simulations of sooting laminar co-flow diffusion flames at elevated pressures are

now considered. The assessment is again performed via comparisons of the predictions

of the M1 and M2 closures to those of the first-order, P1, and third-order, P3, spherical

harmonic moment closures, as well as those of the DOM. Methane-air co-flow diffusion

flames for pressures ranging from standard atmospheric conditions up to 20 atm are con-

sidered in this assessment. For the range of pressures considered, the co-flow flames range

from optically thin flames to flames for which radiation absorption is substantial. The

computational framework used here for predicting soot formation in the laminar reactive

flows of interest was originally developed by Charest et al. [17]. The latter was developed

for the numerical prediction of laminar reactive flows with complex chemistry, non-gray

radiative heat transfer, and soot formation and was specifically developed for use with

large multi-processor parallel computers. The capabilities of the framework have been

previously demonstrated in an extensive number of studies of laminar co-flow diffusion

flames under both high pressure and low gravity conditions [17, 19–22] as well as in the

prediction of flame extinction in laminar counter-flow diffusion flames [198, 199]. Addi-

tionally, this computational framework was more recently extended by Xing et al. [73] to

allow for the treatment and solution of fractional-order quadrature-based moment clo-

159
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sures for describing the soot aerosol dynamics and by Sarr et al [74] for the description of

radiative heat transfer via moment approaches. A further extension of the framework for

the prediction of turbulent sooting flames has also been developed by Xing [75]. For the

laminar flames considered in this thesis, the semi-empirical two-equation model of Liu

et al. [78] with an acetylene-based nucleation model is used to describe the soot particle

transport and formation.

For all the cases studied, the SNBCK spectral radiation model [31], described in Chap-

ter 4, is used for the treatment of the spectral absorption coefficient of participating

gases. Additionally, absorption properties of the soot particulates are estimated using

the Rayleigh approximation as described in Chapter 4. Finally, the GRI 3.0 mecha-

nism [200] (53 species and 325 reactions) was used to represent the gas-phase reactions.

In what follows, the configuration of the high-pressure co-flow burner used for the flame

simulations is first described. A summary of the parameters and details relevant to the

computations is then given, and, finally, numerical results for the methane-air laminar

flames under consideration are presented and analyzed.

8.1 Computational Domain and Boundary

Conditions

The laboratory-scale, high-pressure axisymmetric burner for laminar methane co-flow

flames [22] considered in this study consists of a central fuel tube with 3 mm inner

diameter and a concentric tube of 25.4 mm inner diameter that supplies the co-flow

air. The fuel tube wall has a thickness of 0.4 mm. Although experimental data is

available for some of the flames considered, the focus here is on a direct comparison of

the predictive capabilities of the interpolative-based closures relative to those of the DOM

and comparisons to experimental measurements of quantities, such as temperature and

soot volume fraction, were not considered here. For the computations performed as part

of this study, the temperature of the fuel and air supplied to the burner are assumed to

be equal to 473K and the air mass flow rate is kept constant at 340 mg/s. Furthermore,

the methane mass flow rate is held at 1.221 mg/s in order to maintain a carbon mass

flow rate of 0.914 mg/s.
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(a) Schematic Diagram (b) Computational grid

Figure 8.1: Schematic diagram and 2D axisymmetric computational grid for the co-flow

laminar methane diffusion flame.

The two-dimensional computational domain used for the purpose of modelling the burner

described above in the numerical simulations of methane-air co-flow diffusion flames is

shown schematically in Fig. 8.1(a), along with the boundary conditions used for the

computations. The domain extends radially outwards 12.7 mm to the walls of the chimney

and 40 mm downstream. It also extends 5 mm upstream into the fuel and air tubes to

account for the effects of fuel preheating [99] and better represent the inflow velocity

distribution. The three surfaces that lie along the tube wall were modelled as fixed-

temperature walls at 473K with zero-slip conditions on velocity. Reflection boundary

conditions were applied along the centreline. The far-field boundary was treated using

a free-slip condition, which neglects any shear imparted by the chimney walls to the

co-flow air. At the outlet, temperature, velocity, species mass fractions, and soot number

density are extrapolated while pressure is held fixed. The gas/soot mixture is specified at

the inlet along with its velocity and temperature while pressure is extrapolated. For the

radiation solvers, all boundaries except for the axis of symmetry (for which axisymmetric
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boundary conditions are prescribed) are assumed to be black. More specifically, for the

moment closure techniques, boundary conditions based on the method of characteristics

were used for black surfaces, whereas the axisymmetric boundary conditions based on

incoming partial moments were used for the axis of symmetry.

The computational domain depicted in Fig. 8.1(a) was subdivided into 192 cells and 16

blocks in the radial direction and 320 cells and 32 blocks in the axial direction to form a

structured, non-uniformly-spaced mesh of 60, 000 cells. The cells were clustered towards

the burner exit plane to capture interactions near the fuel tube walls and also towards the

centreline to capture the core flow and main features of the flame. The resulting mesh,

which was employed for all calculations in the present study, is illustrated in Fig. 8.1(b).

This level of mesh resolution, which was used previously by Charest et al. [22], has been

shown to be more than sufficient in order to capture the essential features of the methane-

air laminar co-flow diffusion flames associated with the high-pressure burner of interest

here.

8.2 Methane-Air Co-flow Flames

The predictive capabilities of the proposed interpolative-based non-gray M1 and M2 clo-

sures are now assessed in the context of numerical simulations of methane-air laminar

co-flow diffusion flames for pressures of 1, 5, and 20 atm. The set of pressures considered

herein allow to assess the M1 and M2 closures for a wide range of optical thicknesses, with

the latter being an increasing function of pressure. The higher the optical thickness, the

more important the heat losses due to radiative transfer. The assessment is performed

via comparisons of the solutions of the M1 and M2 closures to those of the P1 and P3

closures, as well as those of the DOM. The first set of comparisons are concerned with the

predicted distributions of temperature and soot volume fraction. Such comparisons also

include flame solutions obtained in the absence of radiative transfer (i.e., the radiative

heat transfer is set to zero in the simulations) in order to illustrate the importance of

taking into account radiative heat losses for accurate predictions of both temperature dis-

tribution and soot volume fraction, among other quantities. The next set of comparisons

involves the predicted distributions of radiative quantities such as the radiative heat flux

and the radiative source term, obtained based on frozen field simulations of the radia-
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(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.2: Contours of temperature predicted by (a) the case where radiation is

neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 1 atm.

tive heat transfer inside the burner. For such simulations, the converged flame solutions

based on the DOM are used to specify the thermochemical properties of the background
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(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.3: Contours of soot volume fraction predicted by (a) the case where radiation

is neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 1 atm.

medium for all the radiation models. This ensures that differences in the predicted ra-

diative quantities are solely due to the different procedures used to solve the RTE. All of



8.2. Methane-Air Co-flow Flames 165

(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.4: Contours of temperature predicted by (a) the case where radiation is

neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 5 atm.

the numerical simulations were performed using the computational conditions described

previously in Section 8.1.
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(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.5: Contours of soot volume fraction predicted by (a) the case where radiation

is neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 5 atm.

The predicted two-dimensional distributions of temperature and soot volume fraction, ob-

tained in the absence of radiative transfer, as well as those obtained using the DOM, the
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(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.6: Contours of temperature predicted by (a) the case where radiation is

neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 20 atm.

proposed interpolative-based non-gray M1 and M2 maximum-entropy moment closures,

and the P1 and P3 closures, are respectively depicted in Figs. 8.2 and 8.3 for atmospheric
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(a) No Rad (b) DOM (c) M1

(d) M2 (e) P1 (f) P3

Figure 8.7: Contours of soot volume fraction predicted by (a) the case where radiation

is neglected, (b) the DOM, (c) the interpolative-based non-gray M1 closure, (d) the

interpolative-based non-gray M2 closure, (e) the P1 closure, and (f) the P3 closure for

methane at 20 atm.

pressure, Figs. 8.4 and 8.5 for 5 atm, and Figs. 8.6 and 8.7 for 20 atm. The correspond-

ing predicted radial profiles of temperature and soot volume fraction at different axial
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(a) Temperature (b) Soot volume fraction

Figure 8.8: Radial profiles of (a) temperature and (b) soot volume fraction at different

axial locations for methane at 1 atm.

(a) Temperature (b) Soot volume fraction

Figure 8.9: Radial profiles of (a) temperature error and (b) soot volume fraction error

for the M1, M2, P1, and P3 closures, computed with respect to the DOM solutions, at

different axial locations for methane at 1 atm.

locations above the burner, are presented in Figs. 8.8, 8.10, and 8.12 for pressures of 1,

5, and 20 atm, respectively. While the latter figures clearly show differences between the

solutions obtained in the absence of radiation and those for which radiative heat losses

are accounted for, the differences in the predictions of the different radiation models are

not as obvious. In order to gain more insight into the predictive capabilities of the M1,

M2, P1, and P3 closures for the present cases, the predicted solution error associated with
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(a) Temperature (b) Soot volume fraction

Figure 8.10: Radial profiles of (a) temperature and (b) soot volume fraction at different

axial locations for methane at 5 atm.

(a) Temperature (b) Soot volume fraction

Figure 8.11: Radial profiles of (a) temperature error and (b) soot volume fraction error

for the M1, M2, P1, and P3 closures, computed with respect to the DOM solutions, at

different axial locations for methane at 5 atm.

each of these closure techniques, as determined with respect to the DOM solutions, at

the different axial locations, are compared and shown in Figs. 8.9, 8.11, and 8.13 for

pressures of 1, 5, and 20 atm, respectively.

From the simulation results of Figs. 8.2–8.7, it is evident that the simulated flames repro-

duce the established expected structure of the laminar co-flow flames. The narrowing of
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(a) Temperature (b) Soot volume fraction

Figure 8.12: Radial profiles of (a) temperature and (b) soot volume fraction at different

axial locations for methane at 20 atm.

(a) Temperature (b) Soot volume fraction

Figure 8.13: Radial profiles of (a) temperature error and (b) soot volume fraction error

for the M1, M2, P1, and P3 closures, computed with respect to the DOM solutions, at

different axial locations for methane at 20 atm.

the flame with increasing pressure is clearly observed. This is also observed in related ex-

perimental flames. Moreover, the flame height remains essentially constant as expected

for constant carbon mass flow associated with each flame. With increasing pressure,

it can also be seen that the initial onset of soot formation begins earlier and that the

annular structure becomes thinner and more pronounced.
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Several observation can be made from the radial profiles of temperature and soot volume

fraction shown in Figs. 8.8, 8.10, and 8.12 for pressures of 1, 5 and 20 atm, respectively.

Soot is formed in an annulus downstream of the fuel tube rim and an increase in soot

volume fraction is initially observed with height. Higher up in the flame, oxidative pro-

cesses, which convert soot to gaseous species, cause soot levels to drop. In particular,

soot is fully oxidized before leaving the flame resulting in non-smoking flames in each

case. Peak values of soot concentration also converge towards the centerline as a result

of the inward force exerted by inner accelerating core flow on soot particles. The tem-

perature has an annular structure similar to soot volume fraction except that the radial

locations of temperature peaks are at a slightly larger radius. As pressure is increased,

the radial profiles of temperature and soot volume fraction contract radially inwards.

Soot production also increases with pressure since the higher pressures and contracting

flame result in higher gaseous species concentrations, larger mixture densities and faster

reaction rates.

In the absence of radiation, the predicted temperature field is systematically overes-

timated compared to when radiation is accounted for, and this trend becomes more

pronounced as pressure increases. This can be expected since radiation contributes to

heat losses from the flame zone towards the colder surroundings, thereby yielding overall

lower temperatures than cases where such heat losses are not accounted for. Moreover,

the predicted soot volume fraction in the case where radiation is neglected is overesti-

Table 8.1: Maximum absolute errors for radial profiles of temperature.

M1 M2 P1 P3 No Rad

1 atm 0.204621 0.102311 0.341383 0.0660993 17.951

3 mm 5 atm 0.86057 0.430285 1.98548 0.413941 35.6047

20 atm 2.11498 1.05749 9.2265 3.10011 59.5373

1 atm 0.232521 0.116261 0.47436 0.0962005 19.2703

5 mm 5 atm 0.881601 0.4408 2.68747 0.728858 45.9169

20 atm 2.77332 1.38666 11.3553 4.15822 82.4383

1 atm 0.3286 0.1643 0.820466 0.245465 31.955

7 mm 5 atm 1.27834 0.63917 3.22358 0.958682 65.351

20 atm 3.36182 1.68091 13.1546 5.03871 114.788
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Table 8.2: Maximum absolute errors for radial profiles of soot.

M1 M2 P1 P3 No Rad

1 atm 4.00E-06 2.00E-06 1.03E-05 5.58E-07 0.000620058

3 mm 5 atm 0.00187349 0.000936745 0.0100533 0.00170855 0.203877

20 atm 0.174664 0.0873321 0.869935 0.247861 5.30354

1 atm 2.96E-05 1.48E-05 7.49E-05 7.78E-06 0.00387876

5 mm 5 atm 0.00838957 0.00419479 0.0322178 0.0062462 0.584235

20 atm 0.172135 0.0860673 0.998472 0.297881 5.48135

1 atm 5.31E-05 2.66E-05 0.000118337 2.64E-05 0.00502766

7 mm 5 atm 0.00894599 0.00447299 0.0235779 0.00700928 0.526559

20 atm 0.340546 0.170273 1.35959 0.543783 12.3037

mated within the flame zone and correspondingly underestimated away from the latter.

On the other hand, predicted peak soot concentrations in the absence of radiation are

observed to be higher than cases involving radiative heat losses. This can be attributed

to the higher temperature encountered in the case where radiation is not accounted for,

which result in more soot production. Peak temperature in cases where radiation is ac-

counted for increases with pressure at a slower rate than when it is neglected since any

increase in heat release is counter-acted by radiative heat losses.

It is also evident from the results of Figs. 8.9, 8.11, and 8.13 that the radial profiles of

temperature and soot volume fraction predicted by the interpolative-based M1 closure

are more accurate than those of the P1 closure for all pressures studied and at all axial

locations. For the lower pressures of 1 and 5 atm, the predictions of the P3 closure

are observed to be at least as accurate as those of the M1 closure and of comparable

accuracy to the M2 closure. However, at higher pressures, the M1 closure yields improved

predictions compared to the P3 closure at all axial locations. In all cases, the M2 closure

yields improved predictions compared to the M1 closure and is generally at least as

accurate as the P3 closure. The maximum absolute errors for the M1, M2, P1 and P3

closures, as well as for the case where radiation is neglected, compared to the DOM at the

different axial locations and for all the pressures considered, are summarized in Tables 8.1

and 8.2 for temperature and soot volume fraction, respectively. The maximum absolute

errors associated with the radial profiles of temperature and soot volume fraction, for all

the moment closures considered, at the axial location at 7 mm above the burner rim, are
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illustrated in Fig. 8.14 with respect to pressure. It can be easily observed that the M1 and

M2 closures yield better predictions of the temperature and soot volume fraction than

the P1 and P3 closures as pressure increases, and these trends also become increasingly

more significant as the pressure increases.

In addition to temperature and soot volume fraction, comparisons of the radiation models

are also performed in terms of the radiative heat flux and the radiative source term.

More specifically, predicted contours of the latter two radiative quantities are respectively

presented in Figs. 8.15 and 8.16 for atmospheric pressure (1 atm), Figs. 8.17 and 8.18

for 5 atm, and Figs. 8.19 and 8.20 for a pressure of 20 atm. The aforementioned figures

depict contours of the radiative heat flux and radiative source term for all five radiation

models considered in the present study, i.e., the DOM and the M1, M2. P1 and P3

closures. The solutions for each of the five radiation models are obtained by freezing

the flow field based on the DOM solutions and consequently performing steady-state

simulations of the radiative heat transfer inside the burner. For each of the pressures

considered in this study, the thermochemical properties associated with the radiatively

participating background medium are chosen to be the same for all five radiation models

and are based on converged flame solutions obtained with the DOM as the radiation

model. As such, differences in the predicted solutions are solely due to the choice of
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Figure 8.14: Maximum absolute errors for radial profiles of (a) temperature and (b) soot

volume fraction with respect to pressure for the axial location at 7 mm above burner rim.

Results are shown for the M1, M2, P1, and P3 closures and the errors are computed with

respect to the DOM solutions,.
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.15: Contours of radiative heat flux predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 1 atm.

radiation model for solving the RTE.

Prior to discussing the results of Figs 8.15–8.20, it is useful to consider estimates of

the optical depth for each flame. This will assist in and provide more insight into the
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.16: Contours of radiative source term predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 1 atm.

comparisons of the predictions of radiative heat transfer in the laminar diffusion flames of

interest here at the three different values of pressure shown in the figures. An approximate

estimate of the non-dimensional optical depth or thickness of flames can be obtained in
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.17: Contours of radiative heat flux predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 5 atm.

terms of a representative value for the Planck-mean absorption coefficient, κP , and a

measure of the flame width [201]. For the three co-flow flames of interest, the diameter

of the burner fuel nozzle, d = 3 mm, is taken as an estimate of the flame thickness and
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.18: Contours of radiative source term predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 5 atm.

the maximum of the Planck-mean absorption coefficient within the flame was obtained

from the flame simulations using the DOM. The product, τ = κPd, is then taken as an

estimate of the non-dimensional optical depth. For values of τ ≪ 1, the flame can be
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.19: Contours of radiative heat flux predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 20 atm.

assumed to be optically thin and, for τ ≫ 1, the flame is taken to be optically thick.

Table 8.3 provides a summary of estimates of the maximum Planck-mean absorption

coefficients and non-dimensional optical depths for the three laminar co-flow flames at
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(a) DOM (b) M1 (c) M2

(d) P1 (e) P3

Figure 8.20: Contours of radiative source term predicted by (a) the DOM, (b) the

interpolative-based non-gray M1 closure, (c) the interpolative-based non-gray M2 clo-

sure, (d) the P1 closure and, (e) the P3 closure for methane at 20 atm.

pressures of 1, 5, and 20 atm, respectively. The value of τ for the 1 atm flame is such that

the flame is quite clearly optically thin and absorption of radiation is not expected to be

significant in this case. As the pressure is increased the optical thickness of the flames
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Table 8.3: Optical thickness and maximum Planck-mean absorption coefficient associated

with the methane-air flame for pressures of 1, 5, and 20 atm.

Non-dimensional

Optical Depth, τ

Maximum Planck-Mean

Absorption Coefficient, κP (m−1)

1 atm 0.008 2.63

5 atm 0.076 25.01

20 atm 0.320 106.31

increases substantially and, for the 20 atm flame, the non-dimensional optical thickness

of 0.32 suggests that radiation absorption is significant within the flame.

Returning to Figs 8.15–8.20, as suggested by the results for the optical depths of each

flame, radiation transport becomes more important with increasing pressure due to re-

sulting increases in radiation absorption, which translate into higher peak radiative heat

flux and radiative source term. The profiles of these latter two quantities are also ob-

served to be more contracted toward the centreline as pressure increases. For the lower

pressure of 1 atm, the P1 and P3 closure predict contours of the radiative heat flux that

seem to be in better agreement with the DOM compared to the M1 and M2 closures.

At higher pressures, the radiative heat flux predicted by the M1 and M2 closures be-

come more accurate than the predictions of the P1 closure, which generally tends to

over-predict the radiative heat flux. The P3 closure on the other hand still yields overall

good predictions of the radiative heat flux compared to the DOM and is of comparable

accuracy to the M1 and M2 closures. As far as the radiative source term, the M1 and

M2 closures generally yield better predictions than the P1 closure and are at least of

comparable accuracy to the P3 closure. It should also be pointed out that, as can be

expected, the proposed interpolative-based M2 closure yields improved predictions of the

radiative quantities compared to its lower-order counterpart, i.e, the interpolative-based

M1 closure, for all the pressures studied.





Chapter 9

Conclusions and Future Work

9.1 Conclusions

Robust and computationally efficient interpolative-based maximum entropy moment clo-

sures have been proposed and developed as part of this thesis. In particular, new for-

mulations of the second-order M2 closure for gray radiation, as well as the first-order M1

and second-order M2 closures for non-gray radiation, were derived. These newly devel-

oped interpolative-based maximum entropy closures result in substantial computational

savings compared to an approach that makes use of the direct numerical solution of the

optimization problem for entropy maximization, while closely mimicking the solution

quality and desirable properties of the original MN closures. A new procedure has also

been proposed for the implementation and coupling of the non-gray MN closures with

realistic absorption models, in particular the SNBCK spectral radiation model. Further-

more, new boundary conditions have been developed for use with the hyperbolic systems

of equations arising from the new interpolative-based M1 and M2 closures, whether be it

for gray or non-gray radiation.

An extensive investigation of the predictive capabilities of the newly proposed interpolative-

based M1 and M2 closures, in terms of both accuracy and computational costs, was then

carried out by considering various test problems involving radiative heat transfer. The

first set of test cases was concerned with radiative heat transfer within gray participat-

ing media confined between parallel plates as well as within rectangular enclosures, and

was considered for the assessment of the new interpolative gray M2 closure. The next

183
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set of test problems assessed the predictive capabilities of the new non-gray M1 and M2

closures in the context radiative transfer in non-gray participating media with realistic

absorption models, whereby both parallel plates configurations and rectangular domains

were also considered. For both of the aforementioned sets of test problems, radiatively

participating/non-participating media with prescribed thermochemical quantities were

considered. The final part of the assessment of the moment closures involved more prac-

tical numerical simulations of laminar reactive flows in burner-like configurations. In

particular, sooting methane-air laminar co-flow diffusion flames at elevated pressures

were investigated having a range of optical depths.

The numerical results obtained as part of the analysis for non-reactive flows revealed

that the M1 closure generally provides more accurate and more robust predictions of

the radiative energy density, radiative heat flux, and radiative source term compared to

the P1 spherical harmonic closure. The only exception to the above statement are cases

involving crossing streams of photons. In such cases, the M1 closure generally yielded less

accurate predictions of the radiative quantities of interest compared to the P1 closure.

Nevertheless, some of our findings illustrate than the M1 closure can yield solutions of

comparable accuracy to those of the P3 closure, especially in terms of the radiative source

term, the latter being the quantity of interest when the radiation solver is to be coupled

with a reactive flow solver. The inability of the M1 closure to properly capture crossing

streams of photons travelling in different directions can be tackled by considering the next

higher-order maximum entropy moment closure, namely the second-order, M2, closure.

The latter was observed to yield predictions of the radiative quantities at least as accurate

as those of the P3 closure. Furthermore, in many of the cases studied, the M2 closure

outperformed the P3 closure in terms of solution accuracy and was even in very close

agreement with the DOM. As can be expected, the interpolative-based M2 closure was

also observed to yield more accurate predictions of the radiative quantities compared to

its lower-order counterpart, i.e., the M1 closure, for all the cases considered.

As far as comparisons of computational costs are concerned, the M1 closure for gray

radiation and the interpolative-based non-gray M1 closure were observed to result in

rather minor or modest increases in computational expenses (storage and computing

time) compared to the P1 closure, while yielding appreciable improvement in computa-

tional efficiency relative to the P3 closure. Moreover, the computational costs associated

with the proposed interpolative-based M2 closures for both gray and non-gray radiation,
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though substantially lower than those associated with an approach making repeated use

of the direct numerical solution of the entropy optimization problem, were more involved

than those of the M1, P1 and P3 closures for all the cases considered.

The reactive flow simulations performed as part of this thesis showed that the M1 and

M2 closures yield better predictions of temperature distribution and soot concentration

compared to the P1 closure for all pressures considered, and these improvements become

more substantial as the pressure increases. Furthermore, while the predictions of the

P3 closure were observed to be at least as accurate as those of the M1 closure and of

comparable accuracy to those of the M2 closure at low pressures, for the higher pressures,

the M1 and M2 closure yielded improved predictions compared to the P3 closure at all

axial locations. In all cases, the M2 closure yielded improved predictions compared to

the M1 closure and was generally at least as accurate as the P3 closure. The observed

trends indicate that, relative to the P1 and P3 closures, the M1 and M2 closures would

yield increasingly more accurate predictions of temperature and soot volume fraction

with pressure. These improvements in solution accuracy would be expected to be even

more significant for large-scale practical devices operating in turbulent regimes as the

associated optical depths would thus be much larger than those corresponding to the

smaller laboratory-scale burner for laminar flames studied as part of this thesis.

The findings of this thesis are of particular significance for applications related to trans-

portation (automotive and aeronautical) systems as well as for industrial energy produc-

tion, where mechanical energy is generally produced from the combustion of hydrocarbons

at elevated pressures. The design phase of such engines often relies on numerical mod-

elling, which generally involves solving transport equations for a wide range of coupled

underlying physical phenomena in relatively complex geometries. In such cases, using

the DOM for the solution of the RTE may become prohibitively expensive due to the

relatively large number of unknowns involved as well as the large number ot iterations

that may be required by the space marching iterative technique. The numerical results

suggest that the proposed interpolative-based non-gray M1 and M2 moment closures

would represent competitive alternatives to the DOM, in comparison to the P1 and P3

closures, for providing accurate and efficient approximate solutions to the equation of

radiative transfer for such practical applications. In particular, a more attractive choice

of radiation model for such applications would be the M1 closure, as a result of its good

balance between accuracy and computational costs. However, if better solution accuracy
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is desired, the M2 closure may be more suitable, though this may incur some increases

in computational expenses compared to the M1 closure.

While the main focus of the thesis was the development and assessment of radiative

transfer models, using entropy-based closures, for applications relevant to transportation

systems as well as industrial energy production, the above findings are also relevant

to many other applications involving radiation transport. In the healthcare industry,

radiation is used extensively whether be it for diagnosis (body imaging) or treatment of

patients. Such medical procedures generally involve the passage of high-energy beams

of radiation through a patients’ body, and require accurate computations of the dose

administered. In other applications related to active remote sensing, concentrated beams

of radiation are emitted onto the target and the energy reflected back to the emitter is

measured so as to determine the characteristics of the target.

As far as the development of climate models or for the purpose of weather forecasting,

an important factor to consider is the incident radiation from the sun at the top of the

atmosphere. The latter is beam-like as the photons emanating from the sun towards

the earth travel through vacuum and are therefore unaffected as they travel towards the

earth’s atmosphere. Most of the incident radiation enters the earth’s atmosphere where a

portion of it (the incident radiation) is attenuated (via absorption, emission, scattering,

reflection), while the most part reaches the earth’s surface without attenuation.

The findings of the present thesis also suggest that the M1 and M2 closures, as a result of

their ability to handle beam-like distributions, would represent better alternatives over

the P1 and P3 closures for dose simulations in radiation-based therapy, for weather fore-

casting and climate modelling, as well as for remote sensing applications. Furthermore,

in the case where crossing beams of radiation may arise in any of these applications, in

particular for bimodal beams, the M2 closure would represent a better choice over its

lower-order counterpart as the latter cannot properly capture such phenomena.

9.2 Summary of Contributions

The contributions resulting from the research carried out as part of this thesis can be

summarized as follows:
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• A new formulation of the dual entropy optimization problem for non-gray radiation

was proposed in order to facilitate the interpolation of maximum-entropy-based

solutions over the full spectrum of frequencies. In particular, a parameterization

was proposed, which allowed to combine the frequency variable and the radiative

energy density into one parameter, instead of two separate parameters;

• A new, realizable and hyperbolic interpolative-based non-gray first-order maximum-

entropy, M1, moment closure was developed in order to accurately and efficiently re-

produce the original maximum-entropy solutions for the second-order closing fluxes

at a fraction of the computational costs associated with the numerical solution of

the highly non-linear maximum entropy problem;

• New interpolation procedures for accurately and efficiently computing the third-

order closing fluxes arising from both the gray and non-gray second-order maximum

entropy, M2, closures were also proposed. The new interpolative-based approaches

for both gray and non-gray radiation allowed to accurately compute maximum

entropy solutions for the third-order closing fluxes while allowing for substantial

reductions in computational costs when compared to an approach which makes use

of the direct numerical solution of the entropy optimization problem;

• New boundary conditions were developed for use with the governing equation aris-

ing from the M1 and M2 closures in the context of both gray and non-gray radiation

in two-dimensional physical space;

• A new procedure for the incorporation of the maximum-entropy MN closures with

the state-of-the-art SNBCK spectral radiation model has been proposed;

• Finally, the thesis represents the first study involving application and assessment of

non-gray maximum-entropy closures for the prediction of radiative heat transfer in

real gases with realistic absorption models, for non-reactive flows as well as laminar

reactive flows with soot formation.

9.3 Recommendations for Future Work

The analysis carried out as part of this thesis represents one step forward in the inves-

tigation and assessment of the predictive capabilities of maximum-entropy-based, MN ,
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moment closures and has shown rather promising results. This thesis has also illustrated

the potential of interpolative-based procedures to accurately mimic maximum-entropy

based solutions for the closing fluxes while only requiring a fraction of the computational

costs associated with the numerical solution of the original maximum entropy problem.

These findings are rather promising and provide a solid foundation for future research

related to the application and assessment of the M1 and M2 closures, as well as their

higher-order extensions (N ≥ 3).

Turbulence-Radiation Interactions (TRI)

As a follow-up for the assessment of the M1 and M2 closures in laminar flames with

soot formation, it would seem natural to extend the investigations of the predictive

capabilities of the latter closures to the case of sooting turbulent non-premixed flames at

elevated pressures. In such types of reactive flows, time averaging or spatial filtering of

the system of moment equations for either one of the interpolative M1 and M2 closures

will result in an additional closure problem due to the non-linearity of the resulting

higher-order closing fluxes in terms of the lower-order moments. A special treatment of

the latter will be required in order to obtain closed description of the resulting system of

moment equations. To our knowledge, the only study involving the development of TRI

models for maximum-entropy-based moment closures is due to Ripoll [63]. The author

of this previous study proposed a framework for providing closure to the RANS-based

formulation of the system of moment equations arising from the M1 moment closure

technique for gray radiation. The original formulation was however rather complicated

and very expensive for coupling with a reactive flow solver and further simplifications

were subsequently proposed by Ripoll and Pitsch [64].

Incorporation with Full-Spectrum Correlated-k Spectral Technique

It would also be worthwhile to consider the implementation of the interpolative non-

gray M1 and M2 closures in the context of the FSCK [34] spectral radiation model

for further potential reductions in computational expenses compared to the SNBCK

treatment. The FSCK is in fact expected to provide more efficient approximate radiation

solutions, relative to the SNBCK model, as the reordering procedure for the spectral

absorption coefficient is directly applied to the full spectrum of frequencies, such that
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the total number of quadrature points required for integration over the full range of

wavenumbers is reduced, compared to the SNBCK treatment.

Assessment of Different Types of Boundary Conditions

The proper prescription of boundary conditions is still an open problem for moment

closure techniques applied to the RTE. While there has been a number of studies [67–

69] dedicated to the assessment of boundary conditions for the PN closures owing to

their relative simplicity and the existence of closed form expressions, a very limited

number of studies have been devoted to boundary data prescriptions for the MN closures

[51]. More specifically, to the author’s knowledge to date, the only study aimed at

systematically comparing different types of boundary conditions for the MN closures is

due to Brunner and Holloway [51] and this study was only concerned with the M1 closure

in one-dimensional physical space. In an effort to further improve our understanding

of boundary data prescriptions on the MN closures, it would be crucial to extend the

analysis of Brunner and Holloway [51] to multi-dimensional physical space and also to

higher-order entropy-based moment closures, i.e., N ≥ 2.





Appendix A

Undetermined Forms of the

Polynomial Expression for the

Interpolative-Based Non-Gray M1

Closure

The weighting function, gχ2 , defined as a polynomial expansion in Eq. (3.22) can be

directly computed from Eqs. (3.20) and (3.21), for sets of angular moments up to first-

order away from both the isotropic and anisotropic limits, as follows

gχ2 =
fχ2 − ∥N (1)∥2

∥N (1)∥2(1− ∥N (1)∥2)
, (A.1)

where

fχ2 =
3χ2 − 1

2
. (A.2)

For either the isotropic or the free-streaming limits, the expression given in Eq. (A.1)

cannot be used directly to compute gχ2 , and some mathematical manipulations must be

carried out in order to obtain a computable expression. More specifically, in the isotropic

limit, characterized by ∥N (1)∥ = 0, we can write gχ2 as follows

gχ2 = lim
∥N(1)∥→0

fχ2 − ∥N (1)∥2

∥N (1)∥2(1− ∥N (1)∥2)
.

The latter expression can be reformulated as follows

gχ2 = lim
∥N(1)∥→0

fχ2 − ∥N (1)∥2

∥N (1)∥2
lim

∥N(1)∥→0

1

1− ∥N (1)∥2
,
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which can be further simplified into the form

gχ2 = lim
∥N(1)∥→0

(
fχ2

∥N (1)∥2

)
− 1.

Since fχ2 → 0 as ∥N (1)∥ → 0, the limit in the latter equation can be computed by

applying l’Hopital’s rule, yielding

gχ2 = lim
∥N(1)∥→0

(
1

2∥N (1)∥
∂fχ2

∂∥N (1)∥

)
− 1.

The latter expression can still not be used to compute gχ2 , due to the fact that ∂fχ2/∂∥N (1)∥ →
0 as ∥N (1)∥ → 0, thereby still yielding an undetermined expression. This can be overcome

by applying once again l’Hopital’s rule, which yields

gχ2 =
1

2

(
∂2fχ2

∂∥N (1)∥2

) ∣∣∣∣
∥N(1)∥=0

− 1. (A.3)

Substituting the expression for fχ2 in terms of χ2, given in Eq. (A.2), in the latter

expression yields

gχ2 =
3

4

(
∂2χ2

∂∥N (1)∥2

) ∣∣∣∣
∥N(1)∥=0

− 1. (A.4)

The procedure for computing second derivatives of the Eddington factor with respect to

the first-order normalized angular moment is summarized in D. In the case where the

free-streaming limit is encountered, i.e., in the case where ∥N (1)∥ = 1, gχ2 can be written

in the form

gχ2 = lim
∥N(1)∥→1

fχ2 − ∥N (1)∥2

∥N (1)∥2(1− ∥N (1)∥2)
,

which can be further simplified as follows

gχ2 = lim
∥N(1)∥→1

fχ2 − ∥N (1)∥2

1− ∥N (1)∥2
,

It is clear that the latter expression results in an undetermined form since fχ2 → 1

as ∥N (1)∥ → 1. To circumvent this issue, we apply l’Hopital’s rule, which yields the

following expression for gχ2

gχ2 = 1− 1

2

∂fχ2

∂∥N (1)∥

∣∣∣∣
∥N(1)∥=1

. (A.5)

Substituting the expression for fχ2 in terms of χ2, given in Eq. (A.2), in the latter allows

us to write

gχ2 = 1− 3

4

∂χ2

∂∥N (1)∥

∣∣∣∣
∥N(1)∥=1

. (A.6)
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Unlike the isotropic limit, the expression for gχ2 in the free-streaming limit, Eq. (A.6),

cannot be computed directly using a similar procedure as the one described in D, since

the matrix, H(1), of first derivatives of the lower-order angular moments with respect

to the Lagrange multipliers, required for such computations, becomes singular in such

limit. As such, a finite difference approach is used to calculate the derivative appearing

in Eq. (A.6).





Appendix B

Moment Realizability

B.1 Necessary and Sufficient Conditions for Realiz-

ability

Let us denote by Rdiag
M2

the rotation matrix which transforms the coordinates system such

that the second-order tensor N (2) −N (1)(N (1))T is diagonal. The necessary realizability

conditions for the moments in the new coordinate frame, with realizability domain R2
T ,

can then be derived from those for the moments in the original frame, characterized by

the realizability domain R2, by means of the transformation matrix, Rdiag
M2

, as follows

R2
T = {(I ′ (0), I ′ (1), I ′ (2)) ∈ R3 × R3×3, s.t. I ′ (0) ≥ 0, ∥N ′ (1)∥ ≤ 1,

N ′ (2) −N ′ (1)(N ′ (1))T ≥ 0, (Rdiag
M2

n⃗)TN ′ (2)(Rdiag
M2

)n⃗ ≤ 1 ∀ ∥n⃗∥ ≤ 1,

tr(N ′ (2)) = 1 and N
′ (2)
ij = N

′ (2)
ji }.

The transformation from one set of moments to the other is illustrated in Eq. (3.31).

Since (N
′ (2)
ij −N

′ (1)
i N

′ (1)
j ) is diagonal, one can write

N
′ (2)
ij −N

′ (1)
i N

′ (1)
j = λiδij

where λi correspond to the eigenvalues of (N
′ (2)
ij −N ′ (1)

i N
′ (1)
j ), with the associated eigen-

vector, η⃗i, coinciding with the unit vector along the coordinate axes with all entries

equal to 0 except for the ith entry which is equal to 1. Using the trace identity for the

195
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second-order moment, we can write

tr(N
′ (2)
ij −N

′ (1)
i N

′ (1)
j ) =

3∑
i=1

λi

tr(N
′ (2)
ij )− tr(N

′ (1)
i N

′ (1)
j ) =

3∑
i=1

λi

3∑
i=1

λi = 1− ∥N (1)∥2

The latter identity can be further normalized by introducing normalized parameters γi

such that

λi = (1− ∥N (1)∥2)γi

and hence
3∑

i=1

γi = 1. (B.1)

Furthermore, since η⃗i is an eigenvector of (N
′ (2)
ij − N

′ (1)
i N

′ (1)
j ) with eigenvalue λi =

(1− ∥N ′ (1)∥2)γi, it follows that

(N ′ (2) −N ′ (1)(N ′ (1))T )η⃗i = λiη⃗i

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = η⃗Ti λiη⃗i

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = λiη⃗

T
i η⃗i

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = λi∥η⃗i∥

Since η⃗i is a unit vector, we have ∥η⃗i∥, and,

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = λi

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = (1− ∥N ′ (1)∥2)γi

From the realizability conditions described above, we have

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i ≥ 0 and ∥N ′ (1)∥ ≤ 1

It therefore follows that

γi ≥ 0, i = 1, . . . , 3. (B.2)
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B.2 Form of the Closure Relation on the Boundaries

of the Realizability Domain

On the boundaries of the realizability domain for moments up to second-order, R2
T ,

in multiple space dimensions, which we denote ∂R2
T , the inequality constraints on the

normalized first- and second-order moments become sharp, and some or all of the higher-

order moments are uniquely determined in terms of the lower-order moments. More

specifically ∂R2
T can be written in the form

∂R2
T = {(I ′ (0), I ′ (1), I ′ (2)) ∈ R3 × R3×3, s.t. I ′ (0) ≥ 0,

tr(N ′ (2)) = 1, N
′ (2)
ij = N

′ (2)
ji and ∥N ′ (1)∥ = 1

or (Rdiag
M2

n⃗)T (N ′ (2) −N ′ (1)(N ′ (1))T )(Rdiag
M2

n⃗) = 0 ∀ n⃗ ∈ R3\0

or (Rdiag
M2

n⃗)TN ′ (2)(Rdiag
M2

n⃗) = 1 ∀ ∥n⃗∥ ≤ 1}.

(B.3)

We will now discuss the characteristics of each of the boundaries and also present the

form of the distribution in terms of the known finite of moments up to second-order.

In the case where ∥N ′ (1)∥ = 1, which corresponds to the so-called free-streaming limit,

we have

∥N ′ (1)∥2 = (N ′ (1))TN ′ (1) = 1

(N ′ (1))T
∥I ′ (1)∥
I ′ (0)

= 1

(N ′ (1))T I ′ (1) = I ′ (0)

(N ′ (1))T
∫
4π

s⃗IdΩ =

∫
4π

(N ′ (1))T s⃗IdΩ =

∫
4π

IdΩ∫
4π

(1− (N ′ (1))T s⃗)IdΩ = 0

Since radiative intensity distribution is non-negative, i.e, I ≥ 0, and by definition 1 −
(N ′ (1))T s⃗ ≥ 0, it therefore follows that the latter equality holds if and only if the intensity

distribution I is equal to 0 everywhere except on the line s⃗ = N ′ (1), in which case the

distribution takes the form

I = I(0)δ(s⃗−N ′ (1)) (B.4)

The form of the distribution in Eq. (B.4) can be integrated directly to obtain analytical

expression for N (3)

N
′ (3)
ijk = N

′ (1)
i N

′ (1)
j N

′ (1)
k . (B.5)
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Let us now consider the case where (Rdiag
M2

n⃗)T (N ′ (2)−N ′ (1)(N ′ (1))T )(Rdiag
M2

n⃗) = 0 ∀ n⃗ ∈
R3\0, and, in particular, the case where Rdiag

M2
n⃗ = η⃗i, we then have

η⃗Ti (N
′ (2) −N ′ (1)(N ′ (1))T )η⃗i = (1− ∥N ′ (1)∥2)γi = 0.

For such relationship to hold for all ∥N (1)∥ ≤ 1, we must have

γi = 0,

which corresponds to one of the edges of the triangle (P1P2P3) illustrated in Fig. 3.7;

more specifically the edge (PjPk), i ̸= j ̸= k. Along such an edge, we can write

N
′ (2)
ii −N

′ (1)
i N

′ (1)
i = 0 (B.6)

I
′ (2)
ii −N

′ (1)
i I

′ (1)
i = I

′ (2)
ii − 2N

′ (1)
i I

′ (1)
i +

(I
′ (1)
i )2

I ′ (0)
= 0 (B.7)∫

4π

s2i IdΩ− 2N
′ (1)
i

∫
4π

siIdΩ +

(
I
′ (1)
i

I ′ (0)

)2 ∫
4π

IdΩ = 0 (B.8)∫
4π

(s2i − 2N
′ (1)
i si + (N

′ (1)
i )2)IdΩ = 0 (B.9)∫

4π

(Ωi −N
′ (1)
i )2IdΩ = 0 (B.10)

Since I ≥ 0 and by definition (Ωi − N
′ (1)
i )2 ≥ 0, we can then conclude that the latter

equality holds if and only if the intensity distribution I is equal to 0 everywhere except

on the plane characterized by si = N
(1)
i . In the context of moment reconstruction using

the principle of maximization of entropy, the distribution then takes the form

I =
δ(si −N

′ (1)
i )

exp(αTm(s⃗))− 1
(B.11)

where the monomial basis for the angular moments, m(s⃗), reads as follows

• for i = 1

m(s⃗) =
[
1,Ω2,Ω3,Ω

2
2,Ω2Ω3

]
;

• for i = 2

m(s⃗) =
[
1,Ω1,Ω3,Ω

2
1,Ω1Ω3

]
;

• for i = 3

m(s⃗) =
[
1,Ω1,Ω2,Ω

2
1,Ω1Ω2

]
.
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In the case where one of γi, i = 1, . . . , 3, is equal to one as is the case at the vertices of

the triangle (P1 P2 P3), then γj = 0, j ∈ {1, 2, 3} and j ̸= i, and from the findings in

Eq. (B.6), combined with the fact that s⃗ is a unit vector, it follows that the distribution

is equal to zero everywhere except on the line

s⃗ =


(±
√

1− ∥N ′ (1)∥2 + (N
′ (1)
1 )2, N

′ (1)
2 , N

′ (1)
3 ) if γ1 = 1,

(N
′ (1)
1 ,±

√
1− ∥N ′ (1)∥2 + (N

′ (1)
2 )2, N

′ (1)
3 ) if γ2 = 1,

(N
′ (1)
1 , N

′ (1)
2 ,±

√
1− ∥N ′ (1)∥2 + (N

′ (1)
3 )2) if γ3 = 1,

(B.12)

and the distribution is then uniquely determined by a Dirac delta or a combination of

Dirac deltas of the form

IPi
= I ′ (0)

[
ρ+i δ(Ωi − x+i ) + ρ−i δ(Ωi − x−i )

]
δ(Ωj −N

′ (1)
j )δ(Ωk −N

′ (1)
k ), (B.13)

where (i, j, k) ∈ (1, 2, 3) with i ̸= j ̸= k and ρ+i , ρ
−
i , x

+
i and x−i are some parameters

which must be determined from the realizablity constraints for moments up to first-order

(since the second-order moments depend on the lower-order moments in this case), and

read as follows

x±i = ±
√

1− ∥N ′ (1)∥2 + (N
′ (1)
i )2, and ρ±i =

N
′ (1)
i − x∓i
2x±i

. (B.14)

B.3 Sufficiency of Realizability Conditions for Mo-

ments up to Second-Order

Let us consider a point P lying within the triangle (P1P2P3) (see Fig. 3.7) with cor-

responding set of moments (I ′ (0), I ′ (1).I ′ (2)), an reconstruct the distribution at at the

vertices of the triangle, given in Eq. (B.13), such that they exactly reproduce the zeroth

and first-order moments, I ′ (0) and I ′ (1), respectively. We may then write the distribution

at the point P as a convex combination of the distributions at the vertices of the triangle

using the barycentric coordinates, γi, of the latter, as

IP =
3∑

i=1

γiIPi
, (B.15)

From the above defined form of the distribution, it is clear, using Eq. (B.1), that IP

reproduces I ′ (0) and I ′ (1), since IPi
, i = 1, . . . , 3 reproduce such moments. For the
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second-order moment, I ′ (2), we have∫
4π

s⃗ 2IPdΩ =
3∑

i=1

γi

∫
4π

s⃗ 2IPi
dΩ.

Computing the second-order moments at the vertices yield∫
4π

ΩmΩnIPi
dΩ = I ′ (0)

∫
4π

ΩmΩn

[
ρ+i δ(Ωi − x+i ) + ρ−i δ(Ωi − x−i )

]
δ(Ωj −N

′ (1)
j )δ(Ωk −N

′ (1)
k )dΩ

∫
4π

ΩmΩnIPi
dΩ = I ′ (0)


ρ+i
(
x+i
)2

+ ρ−i
(
x−i
)2

if m = n = i,(
N

′ (1)
m

)2
if m = n ̸= i,

N
′ (1)
m N

′ (1)
n if m ̸= n,

For simplicity, we set I ′ (0) = 1 in the remainder of the derivation. We will now distinguish

two cases:

• Case 1: m ̸= n ∫
4π

ΩmΩnIPdΩ =
3∑

i=1

γiN
′ (1)
m N ′ (1)

n ,

∫
4π

ΩmΩnIPdΩ = N ′ (1)
m N ′ (1)

n

3∑
i=1

γi.

Using Eq. (B.1), we then obtain∫
4π

ΩmΩnIPdΩ = N ′ (1)
m N ′ (1)

n . (B.16)

• Case 2: m = n = i∫
4π

(Ωm)
2 IP rmdΩ = γi

[
ρ+m
(
x+m
)2

+ ρ−m
(
x−m
)2]

+ γj
(
N ′ (1)

m

)2
+ γk

(
N ′ (1)

m

)2
,∫

4π

(Ωm)
2 IPdΩ = γi

[
(ρ+m + ρ−m)

(
x+m
)2]

+ γj
(
N ′ (1)

m

)2
+ γk

(
N ′ (1)

m

)2
.

From Eq. (B.14), it is clear that ρ+m + ρ−m = 1, and therefore Using Eq. (B.1), we

then obtain ∫
4π

(Ωm)
2 IPdΩ = γi

(
x+m
)2

+ γj
(
N ′ (1)

m

)2
+ γk

(
N ′ (1)

m

)2
,∫

4π

(Ωm)
2 IPdΩ = γi

(
1− ∥N ′ (1)∥2 + (N ′ (1)

m )2
)
+ γj

(
N ′ (1)

m

)2
+ γk

(
N ′ (1)

m

)2
,∫

4π

(Ωm)
2 IPdΩ = (γi + γj + γk)

(
N ′ (1)

m

)2
+ γi

(
1− ∥N ′ (1)∥2

)
.
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Again using Eq. (B.1), we then obtain∫
4π

(Ωm)
2 IPdΩ =

(
N ′ (1)

m

)2
+ γi

(
1− ∥N ′ (1)∥2

)
(B.17)

From the results given in Eq. (B.16) and (B.17), it is clear that IP (with P ∈ R2
T ), given

in Eq. (B.15) also reproduces I ′ (2).





Appendix C

Undetermined Forms of the

Polynomial Expressions for the

Interpolative-Based Gray and

Non-Gray M2 Closures

The weighting functions, g
N

′(3)
111

, g
N

′(3)
122

, and g
N

′(3)
123

, defined, in the present study, as polyno-

mial expressions of the form given in Eq. (3.51) for gray radiative transfer and Eq. (3.53)

for non-gray radiation, can be directly computed from Eqs. (3.44) and (3.47), for g
N

′(3)
111

,

Eqs. (3.45) and (3.48), for g
N

′(3)
122

, and Eqs. (3.46) and (3.49), for g
N

′(3)
123

, for sets of angular

moments up to second order away from both the isotropic and anisotropic limits, as well

as away from the edges of the triangle (P1, P2, P3), as follows

g
N

′(3)
111

=
f
N

′(3)
111

− γ1

γ1(1− γ1)
, f

N
′(3)
111

=
N

′(3)
111 − (N

′(1)
1 )3

N
′(1)
1 (1− ∥N ′(1)∥2)

, (C.1)

g
N

′(3)
122

=
f
N

′(3)
122

− γ2

γ2(1− γ2)
, f

N
′(3)
122

=
N

′(3)
122 −N

′(1)
1 (N

′(1)
2 )2

N
′(1)
1 (1− ∥N ′(1)∥2)

, (C.2)

g
N

′(3)
123

=
f
N

′(3)
123

− 1

γ1γ2γ3
, f

N
′(3)
123

=
N

′(3)
123

N
′(1)
1 N

′(1)
2 N

′(1)
3

. (C.3)

In situations where the regime of radiation falls within one of the aforementioned limits,

the expressions given in the above equations, i.e., Eqs. (C.1), (C.2), and (C.3), cannot

be used directly to compute the weighting functions, g
N

′(3)
111

, g
N

′(3)
122

, and g
N

′(3)
123

, and some

203
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mathematical manipulations must be carried out in order to obtain computable expres-

sions. The latter are obtained by suitably applying l’Hopital’s rule, thereby resulting

in expressions in terms of derivatives of the third-order closing fluxes with respect to

the lower-order angular moments, and the procedure to compute these derivatives is

presented in D. As a first step in the derivation of the expressions for computing the

weighting functions, g
N

′(3)
111

, g
N

′(3)
122

, and g
N

′(3)
123

, we advocate the following conversion from

Cartesian to spherical coordinates

N
′(1)
1 = cos θ∥N ′(1)∥, N

′(1)
2 = sin θ cosϕ∥N ′(1)∥, N

′(1)
3 = sin θ sinϕ∥N ′(1)∥, (C.4)

where θ and ϕ represent the polar and azimuthal angles describing the direction of the

vector of first-order angular moments (see Eq. (3.50)).

C.1 Computations for g
N

(3)
111

In the case of the weighting function, g
N

′(3)
111

, undetermined expressions are encountered

for either µ = cos θ = 0, ∥N ′(1)∥ = 0, ∥N ′(1)∥ = 1, γ1 = 0, γ1 = 1, or a combination of

the latter regimes. In such situations, l’Hopital’s rule can be used to derive expressions

from which the weighting function can be directly computed.

For ∥N ′(1)∥ = 0, the expression for f
N

′(3)
111

, given in Eq. (C.1), is undetermined, in which

case f
N

′(3)
111

can be computed as follows

f
N

′(3)
111

= lim
∥N ′(1)∥→0

N
′(3)
111 − (µ∥N ′(1)∥)3

µ∥N ′(1)∥(1− ∥N ′(1)∥2)
,

which can be rewritten in the form

f
N

′(3)
111

=
1

µ
lim

∥N ′(1)∥→0

N
′(3)
111

∥N ′(1)∥
.

Applying l’Hopital’s rule then yields the following

f
N

′(3)
111

=
1

µ

(
∂N

′(3)
111

∂∥N ′(1)∥

)∣∣∣∣
∥N ′(1)∥=0

.

Since the third-order closing flux, N
′(3)
111 , is an even function of both N

′(1)
2 and N

′(1)
3 , it

therefore follows that
∂N

′(3)
111

∂N
′(1)
2

=
∂N

′(3)
111

∂N
′(1)
3

= 0,
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which allows us to further rewrite f
N

′(3)
111

in the following form

f
N

′(3)
111

=

(
∂N

′(3)
111

∂N
′(1)
1

)∣∣∣∣
∥N ′(1)∥=0

. (C.5)

The case ∥N ′(1)∥ = 1 also yields an undetermined form for f
N

′(3)
111

, which can then be

computed as follows

f
N

′(3)
111

= lim
∥N ′(1)∥→1

N
′(3)
111 − (µ∥N ′(1)∥)3

µ∥N ′(1)∥(1− ∥N ′(1)∥2)
.

Further manipulations of the latter expression yield

f
N

′(3)
111

=
1

µ
lim

∥N ′(1)∥→1

N
′(3)
111 − (µ∥N ′(1)∥)3

(1− ∥N ′(1)∥2)
,

The limit in the last equation can be evaluated using again l’Hopital’s rule, thereby

yielding the following expression

f
N

′(3)
111

= − 1

2µ

[
1

∥N ′(1)∥
∂N

′(3)
111

∂∥N ′(1)∥
− 3µ3∥N ′(1)∥2

] ∣∣∣∣
∥N ′(1)∥=1

,

The last equation can be further simplified as follows

f
N

′(3)
111

=
3

2
µ2 − 1

2µ

(
∂N

′(3)
111

∂∥N ′(1)∥

)∣∣∣∣
∥N ′(1)∥=1

. (C.6)

For µ = 0, f
N

′(3)
111

cannot be computed directly from Eq. (C.1), but can be formulated as

follows

f
N

′(3)
111

= lim
µ→0

N
′(3)
111 − (µ∥N ′(1)∥)3

µ∥N ′(1)∥(1− ∥N ′(1)∥2)
,

Rearranging the terms in the latter expression allows us to write

f
N

′(3)
111

=
1

∥N ′(1)∥(1− ∥N ′(1)∥2)
lim
µ→0

N
′(3)
111 − (µ∥N ′(1)∥)3

µ
,

Applying again l’Hopital’s rule to limit in the latter equation yields

f
N

′(3)
111

=
1

∥N ′(1)∥(1− ∥N ′(1)∥2)

(
∂N

′(3)
111

∂µ

)∣∣∣∣
µ=0

. (C.7)

In situations where the last two cases occur simultaneously, i.e., for µ = 0 and ∥N ′(1)∥ = 1,

the expressions given in Eqs. (C.6) and (C.7), cannot be used to compute f
N

′(3)
111

, as they
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yield undetermined expressions. This problem can be circumvented by using the fact

that, in such a case, f
N

′(3)
111

can be written in the following form

f
N

′(3)
111

= lim
∥N ′(1)∥→1

1

∥N ′(1)∥(1− ∥N ′(1)∥2)

(
∂N

′(3)
111

∂µ

)∣∣∣∣
µ=0

.

Applying l’Hopital’s rule then allows us to write

f
N

′(3)
111

= −1

2

(
∂2N

′(3)
111

∂∥N ′(1)∥∂µ

)∣∣∣∣ µ=0
∥N ′(1)∥→1

. (C.8)

The expression for g
N

′(3)
111

, given in Eq. (C.1), also yield undetermined forms on some of the

boundaries of the realizable space for angular moments up to second-order, or, in other

words, on some of the edges and or vertices of the triangle (P1 P2 P3). In particular, for

γ1 = 0, g
N

′(3)
111

is computed as follows

g
N

(3)
111

= lim
γ1→0

f
N

(3)
111

− γ1

γ1(1− γ1)
,

g
N

(3)
111

= lim
γ1→0

1

(1− γ1)
lim
γ1→0

f
N

(3)
111

− γ1

γ1
,

g
N

(3)
111

=
∂f

N
(3)
111

∂γ1

∣∣∣∣
γ1=0

− 1, (C.9)

On the other hand, for γ1 = 1, g
N

′(3)
111

is computed as follows

g
N

(3)
111

= lim
γ1→1

f
N

(3)
111

− γ1

γ1(1− γ1)
,

g
N

(3)
111

= lim
γ1→1

1

γ1
lim
γ1→1

f
N

(3)
111

− γ1

(1− γ1)
,

g
N

(3)
111

= 1−
∂f

N
(3)
111

∂γ1

∣∣∣∣
γ1=1

, (C.10)

The expressions derived above can be summarized as follows

f
N

′(3)
111

=



(
∂N

′(3)
111

∂N
′(1)
1

)
, if ∥N ′(1)∥ = 0,

3
2
µ2 − 1

2µ

(
∂N

′(3)
111

∂∥N ′(1)∥

)
, if ∥N ′(1)∥ = 1,

1
∥N ′(1)∥(1−∥N ′(1)∥2)

(
∂N

′(3)
111

∂µ

)
, if µ = 0,

−1
2

(
∂2N

′(3)
111

∂∥N ′(1)∥∂µ

)
, if N

′(1)
1 = 0 and ∥N ′(1)∥ = 1,

(C.11)
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and

g
N

′(3)
111

=


∂f

N
′(3)
111

∂γ1
− 1, if γ1 = 0,

1−
∂f

N
′(3)
111

∂γ1
, if γ1 = 1.

(C.12)

C.2 Computations for g
N

(3)
122

For the weighting function, g
N

′(3)
122

, undetermined expressions are encountered for either

N
′(1)
1 = 0, ∥N ′(1)∥ = 1, γ1 = 0, γ2 = 0, or a combination of the latter regimes. Once

again, l’Hopital’s rule can be used to derive the following expressions from which the

weighting function can be directly computed in such situations

f
N

′(3)
122

=



(
∂N

′(3)
122

∂N
′(1)
1

)
, if ∥N ′(1)∥ = 0,

3
2

(
N

(1)
2

)2
− 1

2µ

(
∂N

′(3)
122

∂∥N ′(1)∥

)
, if ∥N ′(1)∥ = 1,

1
(1−∥N ′(1)∥2)

[
1

∥N ′(1)∥

(
∂N

′(3)
122

∂µ

)
−
(
N

′(1)
2

)2]
, if µ = 0,

3
2

(
N

′(1)
2

)2
− 1

2

(
∂2N

′(3)
122

∂∥N ′(1)∥∂µ

)
, if µ = 0 and ∥N ′(1)∥ = 1,

(C.13)

and

g
N

′(3)
122

=


∂f

N
′(3)
122

∂γ2
− 1, if γ2 = 0,

1−
∂f

N
′(3)
122

∂γ2
, if γ2 = 1.

(C.14)

C.3 Computations for g
N

(3)
123

In order to compute the weighting function, g
N

′(3)
123

, for either N
′(1)
1 = 0, N

′(1)
2 = 0,

N
′(1)
3 = 0, γ1 = 0, γ2 = 0, γ3 = 0, or a combination of the latter regimes, where

undetermined expressions are encountered, the following expressions, which are derived
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by means of l’Hopital’s rule, are employed

f
N

′(3)
123

=



1

N
′(1)
2 N

′(1)
3

(
∂N

′(3)
123

∂N
′(1)
1

)
, if N

′(1)
1 = 0,

1

N
′(1)
1 N

′(1)
3

(
∂N

′(3)
123

∂N
′(1)
2

)
, if N

′(1)
2 = 0,

1

N
′(1)
1 N

′(1)
2

(
∂N

′(3)
123

∂N
′(1)
3

)
, if N

′(1)
3 = 0,

1

N
′(1)
3

(
∂2N

′(3)
123

∂N
′(1)
1 ∂N

′(1)
2

)
, if N

′(1)
1 = N

′(1)
2 = 0,

1

N
′(1)
2

(
∂2N

′(3)
123

∂N
′(1)
1 ∂N

′(1)
3

)
, if N

′(1)
1 = N

′(1)
3 = 0,

1

N
′(1)
1

(
∂2N

′(3)
123

∂N
′(1)
2 ∂N

′(1)
3

)
, if N

′(1)
2 = N

′(1)
3 = 0,(

∂3N
′(3)
123

∂N
′(1)
1 ∂N

′(1)
2 ∂N

′(1)
3

)
, if N

′(1)
1 = N

′(1)
2 = N

′(1)
3 = 0,

(C.15)

and

g
N

′(3)
123

=



1
γ2γ3

(
∂f

N
′(3)
123

∂γ1

)
, if γ1 = 0,

1
γ1γ3

(
∂f

N
′(3)
123

∂γ2

)
, if γ2 = 0,

1
γ1γ2

(
∂f

N
′(3)
123

∂γ3

)
, if γ3 = 0,

1
γ3

(
∂2f

N
′(3)
123

∂γ1∂γ2

)
, if γ1 = γ2 = 0,

1
γ2

(
∂2f

N
′(3)
123

∂γ1∂γ3

)
, if γ1 = γ3 = 0,

1
γ1

(
∂2f

N
′(3)
123

∂γ2∂γ3

)
, if γ2 = γ3 = 0.

(C.16)



Appendix D

Procedure for Computing

Derivatives of the Angular Moments

In our proposed interpolations for the non-gray first-order maximum-entropy, M1, closure,

as well as for the closing relations for both the gray and non-gray second-order maximum-

entropy, M2, moment closures, direct computations of the weighting functions, gχ2 for the

M1 closure (see Eq. (A.1)), and gN(3)
111
, g

N
(3)
122
, and g

N
(3)
123
, for the M2 closure (see Eqs. (C.1),

(C.2), and (C.3)), from the numerical solutions of the optimization problem for entropy

maximization yield undetermined expressions in the isotropic limit as well as on the

boundaries of the realizable domain, denoted by ∂R(1) for the M1 closure and ∂R(2) for

the M2 closure. Applying l’Hopital’s rule is such cases results in expressions involving

derivatives of the highest-order moments in terms of the lower-order moments. In this

section, the procedure adopted in the present study for computing such derivatives is

presented.

Let us start by denoting by N the order of the highest angular moment in the unclosed

system of moment equations, i.e., N = 2 for the M1 closure and N = 3 for the M2

closure. We also define the vector, E, containing all independent entries for the lower-

209
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order angular moments as follows

E = {I(0), I(1)}, for the M1 closure in 1D,

E = {I(0), I
(1)
1 , I

(1)
2 , I

(1)
3 }, for the M1 closure in 3D,

E = {I(0), I
(1)
1 , I

(1)
2 , I

(1)
3 , I

(2)
11 , I

(2)
12 , I

(2)
12 , I

(2)
22 , I

(2)
23 }, for the M2 closure.

(D.1)

First-derivatives of the highest-order angular moments with respect to the lower-order

angular moments can be expanded, using the chain rule of derivatives, as follows

∂I(N)

∂Ei

=
∂I(N)

∂αp

∂αp

∂Ei

, (D.2)

where αp are the Lagrange multipliers associated with the moment constraints.

Expressions for the second-derivatives of the closing fluxes with respect to the lower-

order angular moments can be derived from the latter equation, Eq. (D.2), by taking its

first-derivative and consequently applying the chain rule of derivatives, yielding

∂2I(N)

∂Ej∂Ei

=
∂

∂Ej

(
∂I(N)

∂αp

∂αp

∂Ei

)
,

Applying the product rule to the derivatives in the latter equation results in the following

expression

∂2I(N)

∂Ej∂Ei

=
∂

∂Ej

(
∂I(N)

∂αp

)
︸ ︷︷ ︸

termA

∂αp

∂Ei

+
∂I(N)

∂αp

∂

∂Ej

(
∂αp

∂Ei

)
︸ ︷︷ ︸

termB

. (D.3)

termB in the latter equation can be rewritten as

termB =
∂2αp

∂Ej∂Ei

. (D.4)

To further simplify termA, we may again use the chain rule of derivatives as follows

termA =
∂

∂αq

(
∂I(N)

∂αp

)
∂αq

∂Ej

=

(
∂2I(N)

∂αq∂αp

)
∂αq

∂Ej

, (D.5)

Plugging the resulting expressions for termA and termB in Eq. (D.3) then yields

∂2I(N)

∂Ej∂Ei

=
∂αp

∂Ei

∂αq

∂Ej

(
∂2I(N)

∂αq∂αp

)
+

(
∂2αp

∂Ej∂Ei

)
∂I(N)

∂αp

. (D.6)
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A similar procedure to that used to derive second-derivatives of the closing fluxes, I(N),

with respect to the lower-order angular moments can also be adopted to obtain third-

order derivatives of the latter. More specifically, we again take the first-derivative of the

expression given in Eq. (D.6) as follows

∂3I(N)

∂Ek∂Ej∂Ei

=
∂

∂Ek

[
∂αp

∂Ei

∂αq

∂Ej

(
∂2I(N)

∂αq∂αp

)
+

(
∂2αp

∂Ej∂Ei

)
∂I(N)

∂αp

]
.

Expanding the latter expression and apply the product rule for derivatives yields

∂3I(N)

∂Ek∂Ej∂Ei

=

(
∂2αp

∂Ek∂Ei

∂αq

∂Ej

+
∂αp

∂Ei

∂2αq

∂Ek∂Ej

)
∂2I(N)

∂αq∂αp

+
∂αp

∂Ei

∂αq

∂Ej

∂

∂Ek

(
∂2I(N)

∂αq∂αp

)
︸ ︷︷ ︸

termC

+
∂3αp

∂Ek∂Ej∂Ei

∂I(N)

∂αp

+
∂2αp

∂Ej∂Ei

∂

∂Ek

(
∂I(N)

∂αp

)
︸ ︷︷ ︸

termD

.

(D.7)

termC can be further simplified using the chain rule for derivatives as follows

termC =
∂

∂αr

(
∂2I(N)

∂αq∂αp

)
∂αr

∂Ek

=
∂αr

∂Ek

∂3I(N)

∂αr∂αq∂αp

. (D.8)

Similarly, for termD, application of the chain rule of derivatives allows us to rewrite the

latter as follows

termD =
∂

∂αq

(
∂I(N)

∂αp

)
∂αq

∂Ek

=
∂αq

∂Ek

∂2I(N)

∂αq∂αp

. (D.9)

Now, plugging the resulting expressions for termC and termD in Eq. (D.7) result in

the following expression for the third-derivatives of the closing fluxes with respect to the

lower-order angular moments

∂3I(N)

∂Ek∂Ej∂Ei

=
∂αp

∂Ei

∂αq

∂Ej

∂αr

∂Ek

∂3I(N)

∂αr∂αq∂αp

+
∂3αp

∂Ek∂Ej∂Ei

∂I(N)

∂αp

+

(
∂2αp

∂Ek∂Ei

∂αq

∂Ej

+
∂αp

∂Ei

∂2αq

∂Ek∂Ej

+
∂2αp

∂Ej∂Ei

∂αq

∂Ek

)
∂2I(N)

∂αq∂αp

.

(D.10)

The expressions given in Eqs. (D.2), (D.6), and (D.10), provide means to compute

the first-, second-, and third-derivatives of the closing fluxes (highest-order angular mo-

ments in the unclosed system of moment equations) in terms of the lower-order angular

moments. However, while the derivatives up to third-order of the lower-order angular
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moments with respect to the Lagrange multipliers, involved in such expression, can be

computed directly from the known set of Lagrange multipliers, the calculations of the

derivatives up to third-order of the Lagrange multipliers with respect to the lower-order

angular moments, which are also required for our computations, is not as straightforward

and somewhat requires extra mathematical derivations, which are shown below.

To obtain expressions for the first-derivatives of the Lagrange multipliers with respect

to the lower-order moments, ∂αi/∂E(j), we exploit the fact that the lower-order angular

moments are independent from one another, thereby yielding the following relationships

for the first-derivatives of the latter

∂Ei

∂Ej

=
∂Ei

∂αp

∂αp

∂Ej

= δij, (D.11)

where the chain rule for derivatives has been employed, and the vector of independent

lower-order angular moments, E, is given in Eq. (D.1). The latter relationship can be

rewritten in tensor form as follows

H
(1)
ip A

(1)
pj = δij, (D.12)

where H(1) is the Hessian matrix of first-derivatives, which reads as follows

H
(1)
ij =

∂Ei

∂αj

, (D.13)

and A(1) is the matrix of first-derivatives of the Lagrange multipliers with respect to the

lower-order moments, of the form

A
(1)
ij =

∂αi

∂Ej

, (D.14)

and its entries can be readily computed via inversion of the system of equations given

in Eq. (D.12), since the entries of H(1) can be calculated directly, via integration of the

second-derivatives of the objective function of the associated dual optimization problem,

once the Lagrange multipliers are known.

To obtain expressions for the second-derivatives of the Lagrange multipliers with respect

to lower-order angular moments, we can directly take the first-derivative of Eq. (D.11)

as follows
∂2Ei

∂Ek∂Ej

=
∂

∂Ek

(
∂Ei

∂αp

∂αp

∂Ej

)
︸ ︷︷ ︸

termE

= 0. (D.15)
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Applying the product rule of derivatives to termE in the latter expression yields

termE =
∂

∂Ek

(
∂Ei

∂αp

)
∂αp

∂Ej

+
∂Ei

∂αp

∂2αp

∂Ek∂Ej

. (D.16)

Using the chain rule of derivatives on the first term on the right hand side of the latter

expression allows to further simplify termE as follows

termE =
∂

∂αq

(
∂Ei

∂αp

)
∂αq

∂Ek

∂αp

∂Ej

+
∂Ei

∂αp

∂2αp

∂Ek∂Ej

, (D.17)

or

termE =
∂2Ei

∂αq∂αp

∂αq

∂Ek

∂αp

∂Ej

+
∂Ei

∂αp

∂2αp

∂Ek∂Ej

. (D.18)

Plugging the resulting expressions for termE in Eq. (D.15), then yields

∂2Ei

∂αq∂αp

∂αq

∂Ek

∂αp

∂Ej

+
∂Ei

∂αp

∂2αp

∂Ek∂Ej

= 0. (D.19)

Rearranging the latter equations then allows us to write

∂Ei

∂αp

∂2αp

∂Ek∂Ej

= − ∂2Ei

∂αq∂αp

∂αq

∂Ek

∂αp

∂Ej

, (D.20)

or, in tensor form,

H
(1)
ip A

(2)
pjk = −H(2)

ipqA
(1)
qk A

(1)
pj , (D.21)

where the matrices, H(1) and A(1), are defined in Eqs. (D.13) and (D.14), respectively,

and H(2) and A(2) are third-order tensors, whose respective entries correspond the second-

derivatives of the lower-order moments with respect to the Lagrange multipliers and the

second-derivatives of the Lagrange multipliers with respect to the lower-order angular

moments, an can be written, respectively, in tensor notation as follows

H
(2)
ijk =

∂2Ei

∂αk∂αj

, (D.22)

and

A
(2)
ijk =

∂2αi

∂Ek∂Ej

. (D.23)

In Eq. (D.21), entries of both H(1) and H(2) can be computed directly from the known set

of Lagrange multipliers associated with the moment constraints, and the matrix A(1) can

be solved for via inversion of the system of equations given in Eq. (D.12). Consequently,

once the matrices A(1), H(1) and H(2) are determined, the system of equations given in

Eq. (D.21) can be readily inverted, for A(2), thereby providing second-derivatives of the

Lagrange multipliers with respect to the lower-order angular moments.
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For the purpose of deriving expressions for the third-derivatives of the Lagrange multi-

pliers with respect to the lower-order angular moments, one may take the first-derivative

of Eq. (D.21), yielding

∂

∂El

(
∂Ei

∂αp

∂2αp

∂Ek∂Ej

)
= − ∂

∂El

(
∂2Ei

∂αq∂αp

∂αq

∂Ek

∂αp

∂Ej

)
. (D.24)

The left hand side of Eq. (D.24) can be expanded using the product rule of derivatives,

yielding

∂

∂El

(
∂Ei

∂αp

∂2αp

∂Ek∂Ej

)
=

∂

∂El

(
∂Ei

∂αp

)
∂2αp

∂Ek∂Ej

+
∂Ei

∂αp

∂3αp

∂El∂Ek∂Ej

. (D.25)

Using the chain rule of derivatives on the first term on the right hand side of the latter

equation results in the following expression

∂

∂El

(
∂Ei

∂αp

∂2αp

∂Ek∂Ej

)
=

∂2Ei

∂αq∂αp

∂αq

∂El

∂2αp

∂Ek∂Ej

+
∂Ei

∂αp

∂3αp

∂El∂Ek∂Ej

. (D.26)

The right hand side of Eq. (D.24) can also be expanded, using the product rule of

derivatives, as follows

− ∂

∂El

[(
∂2Ei

∂αq∂αp

)
∂αq

∂Ek

∂αp

∂Ej

]
= − ∂

∂El

(
∂2Ei

∂αq∂αp

)
︸ ︷︷ ︸

termF

∂αq

∂Ek

∂αp

∂Ej

− ∂2Ei

∂αq∂αp

∂

∂El

(
∂αq

∂Ek

∂αp

∂Ej

)
︸ ︷︷ ︸

termG

.

(D.27)

termF in the latter expression can be simplified via the chain rule of derivatives, yielding

termF =
∂3Ei

∂αr∂αq∂αp

∂αr

∂El

. (D.28)

In order to simplify termG, on the other hand, one may employ the product rule of

derivatives, which yields

termG =
∂2αq

∂El∂Ek

∂αp

∂Ej

+
∂αq

∂Ek

∂2αp

∂El∂Ej

. (D.29)

Now, plugging the expressions for termF and termG, as well as the relationship given

in Eq. (D.26), in Eq. (D.24), results in the following relationship

∂2Ei

∂αq∂αp

∂αq

∂El

∂2αp

∂Ek∂Ej

+
∂Ei

∂αp

∂3αp

∂El∂Ek∂Ej

= − ∂3Ei

∂αr∂αq∂αp

∂αr

∂El

∂αq

∂Ek

∂αp

∂Ej

− ∂2Ei

∂αq∂αp

(
∂2αq

∂El∂Ek

∂αp

∂Ej

+
∂αq

∂Ek

∂2αp

∂El∂Ej

)
.

(D.30)
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Rearranging the latter equation yields an expression for the third-derivatives of the La-

grange multipliers with respect to the lower-order angular moments, of the form

∂Ei

∂αp

∂3αp

∂El∂Ek∂Ej

= − ∂3Ei

∂αr∂αq∂αp

∂αr

∂El

∂αq

∂Ek

∂αp

∂Ej

− ∂2Ei

∂αq∂αp

(
∂αp

∂Ej

∂2αq

∂El∂Ek

+
∂αq

∂Ek

∂2αp

∂El∂Ej

+
∂αq

∂El

∂2αp

∂Ek∂Ej

)
,

(D.31)

or, in tensor form

H
(1)
ip A

(3)
pjkl = −H(3)

ipqrA
(1)
pj A

(1)
qk A

(1)
rl −H

(2)
ipq(A

(1)
pj A

(2)
qkl + A

(1)
qk A

(2)
pjl + A

(1)
ql A

(2)
pjk), (D.32)

where the matrices, H(1) and A(1), are defined in Eqs. (D.13) and (D.14), respectively,

the third-order tensors, H(2) and A(2), respectively, are given in Eqs. (D.22) and (D.23),

and the fourth-order tensors, H(3) and A(3) respectively contain third-derivatives of the

lower-order moments with respect to the Lagrange multipliers and third-derivatives of

the Lagrange multipliers with respect to the lower-order angular moments, an can be

written respectively in tensor notation as follows

H
(3)
ijkl =

∂3Ei

∂αl∂αk∂αj

, (D.33)

and

A
(3)
ijkl =

∂3αi

∂El∂Ek∂Ej

. (D.34)

While H(1), H(2) and H(3) can be readily computed from the known set of Lagrange mul-

tipliers associated with the moment constraints, the second- and third-order tensors, A(1)

and A(2), respectively, can be calculated from Eqs. (D.12) and (D.21). Third-derivatives

of the Lagrange multipliers with respect to the lower-order angular moments can then

be readily obtained via inversion of the system of equations, given in Eq. (D.32).





Appendix E

Generalized Roe Matrices for the

M1 and M2 Closures

In this appendix, new generalized Roe matrices for the systems of nonlinear equations

arising from the M1 and M2 closures, for both gray and non-gray radiation, are proposed

and derived. For notational simplicity, the wavenumber/reordered wavenumber subscript

is dropped in the case of spectrally dependent quantities, though the expressions derived

herein apply to both gray and non-gray radiative transport.

The procedure for developing the approximate Roe matrices starts with a suitable choice

of a parameter vector, W, for simplifying the problem of finding a generalized Roe

matrix. Following the methodology originally proposed by Roe [157], the components of

W are chosen such that the entries of the solution vector of conserved variables, U, are

merely quadratic in the components of the former vector. Following the selection of the

parameter vector, W, the Jacobian matrix associated with the x-direction flux vector

can be expanded, using the chain rule of derivatives, as follows

A(U) = AF(W)A−1
U (W), (E.1)

where

AU(W) =
∂U

∂W
, AF(W) =

∂F

∂W
. (E.2)

The problem of determining the generalized Roe matrix then consists of solving the
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following set of equations

AU(W)(WR −WL) = UR −UL, (E.3a)

AF(W)(WR −WL) = FR − FL. (E.3b)

In the classical Roe approach, the components of W are considered as the unknowns of

the latter system. However, in the context of entropy-based, MN , closures, the strong non-

linearity of the resulting set of equations arising from Eq. (E.3) in the components of W,

combined with the fact that the number of equations involved in the latter system is much

larger than the number of components of W, would make the system under consideration

extremely difficult or even impossible to solve via the classical Roe approach. To overcome

this issue, the Multiple Averages (MAs) approach proposed by Rosatti and Begnudelli

[165] is adopted herein in order to derive solutions for the systems of equations, of the

form given in Eq. (E.3), arising from the M1 and M2 closures.

The first step of the MAs approach consists of evaluating the system of equations,

Eq. (E.3), at some averaged state, W̃, which, in the present study, is chosen to cor-

respond to an arithmetic average between the left and the right state, i.e.,

W̃ =
1

2
(WL +WR) . (E.4)

It is worth mentioning that the choice of this average state, W̃, is not unique, as pointed

out by Rosatti and Begnudelli [165].

The preceding produces a set of equalities, some of which are satisfied. For the remaining

relationships that are unsatisfied, the next step consists of considering some of the terms

involved as unknowns, while all the remaining terms are evaluated at the average state,

W̃. The number of unknowns is taken to be equal to the number of unsatisfied equations

so as to obtain a well-posed system. Solving for theses unknowns then yields a closed-form

expression for the Roe matrix of Eq. (E.1).

E.1 Generalized Roe Matrix for the M1 Closure

In the context of the M1 closure, the parameter vector, W, is chosen to be of the form

W = [w1, w2, w3]
T =

√
I(0)

[
1, N

(1)
1 , N

(1)
2

]T
. (E.5)
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With this choice of the parameter vector, W, the matrices AU(W) and AF(W) (see

Eq. (E.2)) can be respectively written as follows

AU(W) =


2w1 0 0

w2 w1 0

w3 0 w1

 , (E.6)

and

AF(W) =


w2 w1 0

b1 w1
∂I

(2)
11

∂I
(1)
1

w1
∂I

(2)
11

∂I
(1)
2

c1 w1
∂I

(2)
12

∂I
(1)
1

w1
∂I

(2)
12

∂I
(1)
2

 , (E.7)

where the parameters b1 and c1 respectively have the following forms

b1 = 2w1
∂I

(2)
11

∂I(0)
+ w2

∂I
(2)
11

∂I
(1)
1

+ w3
∂I

(2)
11

∂I
(1)
2

, (E.8)

c1 = 2w1
∂I

(2)
12

∂I(0)
+ w2

∂I
(2)
12

∂I
(1)
1

+ w3
∂I

(2)
12

∂I
(1)
2

. (E.9)

Evaluating the resulting system of equations, Eq. (E.3), at the average state produces 6

equalities. It is a simple exercise to show that all the relationships appearing in Eq. (E.3a)

are satisfied whereas, on the other hand, only the first equality of Eq. (E.3b) is verified,

which then leaves the last two equations unsatisfied. Following the procedure highlighted

above, the next step then consists of considering two of the terms appearing in the last

two equations as unknowns, while all the remaining terms are evaluated at the average

state, W̃. In the present derivation, the terms w2 =
√
I(0)N

(1)
1 and w3 =

√
I(0)N

(1)
2

are chosen as unknowns. Evaluating all the other terms in the last two equations of

Eq. (E.3b) in W̃ then yields the following system b̂1 w̃1
∂̃I

(2)
11

∂I
(1)
1

w̃1
∂̃I

(2)
11

∂I
(1)
2

ĉ1 w̃1
∂̃I

(2)
12

∂I
(1)
1

w̃1
∂̃I

(2)
12

∂I
(1)
2

∆W = ∆F′, (E.10)

where

∆W = [∆w1,∆w2,∆w3]
T = WR −WL, (E.11)

and

∆F′ = [∆F2,∆F3]
T = F′

R − F′
L, (E.12)
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and where F′
R and F′

L are reduced flux vectors in which the first components of the

associated original flux vectors are removed.

In Eq. (E.10), b̂1 and ĉ1 are entries which contain the unknowns, ŵ2 =
̂√
I(0)N

(1)
1 , and

ŵ3 =
̂√
I(0)N

(1)
2 , and have the following forms, respectively

b̂1 = 2w̃1
∂̃I

(2)
11

∂I(0)
+ ŵ2

∂̃I
(2)
11

∂I
(1)
1

+ ŵ3
∂̃I

(2)
11

∂I
(1)
2

, (E.13)

ĉ1 = 2w̃1
∂̃I

(2)
12

∂I(0)
+ ŵ2

∂̃I
(2)
12

∂I
(1)
1

+ ŵ3
∂̃I

(2)
12

∂I
(1)
2

, (E.14)

where the tilde symbol over any quantity indicates that the latter is evaluated in terms

of the averaged state, W̃, and the hat symbol over a given parameter signifies the latter

is considered as unknown in the system of equations of interest. Solving Eq. (E.10) for

the unknowns, ŵ2 and ŵ3, then yields the following expressions

ŵ2 =
1

det

f̃1 ∂̃I(2)12

∂I
(1)
2

− f̃2
∂̃I

(2)
11

∂I
(1)
2

 , (E.15)

ŵ3 =
1

det

f̃2 ∂̃I(2)11

∂I
(1)
1

− f̃1
∂̃I

(2)
12

∂I
(1)
1

 , (E.16)

where

det =
∂̃I

(2)
11

∂I
(1)
1

∂̃I
(2)
12

∂I
(1)
2

− ∂̃I
(2)
11

∂I
(1)
2

∂̃I
(2)
12

∂I
(1)
1

, (E.17)

and where

f̃1 =
1

∆w1

∆F2 − w̃1
∂̃I

(2)
11

∂I
(1)
1

∆w2 − w̃1
∂̃I

(2)
11

∂I
(1)
2

∆w3

− 2w̃1
∂̃I

(2)
11

∂I(0)
, (E.18)

f̃2 =
1

∆w1

∆F3 − w̃1
∂̃I

(2)
12

∂I
(1)
1

∆w2 − w̃1
∂̃I

(2)
12

∂I
(1)
2

∆w3

− 2w̃1
∂̃I

(2)
12

∂I(0)
. (E.19)

E.2 Generalized Roe Matrix for the M2 Closure

For the system of moment equations arising from the M2 closure, the parameter vector,

W, is taken to have the following form

W = [w1, w2, w3, w4, w5, w6]
T =

√
I(0)

[
1, N

(1)
1 , N

(1)
2 , N

(2)
11 , N

(2)
12 , N

(2)
22

]T
. (E.20)
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The matrices AU(W) and AF(W) (see Eq. (E.2)) associated with such a choice of a

parameter vector respectively take the following forms

AU(W) =



2w1 0 0 0 0 0

w2 w1 0 0 0 0

w3 0 w1 0 0 0

w4 0 0 w1 0 0

w5 0 0 0 w1 0

w6 0 0 0 0 w1


, (E.21)

and

AF(W) =



w2 w1 0 0 0 0

w4 0 0 w1 0 0

w5 0 0 0 w1 0

b1 w1
∂I

(3)
111

∂I
(1)
1

w1
∂I

(3)
111

∂I
(1)
2

w1
∂I

(3)
111

∂I
(2)
11

w1
∂I

(3)
111

∂I
(2)
12

w1
∂I

(3)
111

∂I
(2)
22

c1 w1
∂I

(3)
112

∂I
(1)
1

w1
∂I

(3)
112

∂I
(1)
2

w1
∂I

(3)
112

∂I
(2)
11

w1
∂I

(3)
112

∂I
(2)
12

w1
∂I

(3)
112

∂I
(2)
22

d1 w1
∂I

(3)
122

∂I
(1)
1

w1
∂I

(3)
122

∂I
(1)
2

w1
∂I

(3)
122

∂I
(2)
11

w1
∂I

(3)
122

∂I
(2)
12

w1
∂I

(3)
122

∂I
(2)
22


, (E.22)

where the parameters b1 and c1 respectively have the following forms

b1 = 2w1
∂I

(3)
111

∂I(0)
+ w2

∂I
(3)
111

∂I
(1)
1

+ w3
∂I

(3)
111

∂I
(1)
2

+ w4
∂I

(3)
111

∂I
(2)
11

+ w5
∂I

(3)
111

∂I
(2)
12

+ w6
∂I

(3)
111

∂I
(2)
22

, (E.23)

c1 = 2w1
∂I

(3)
112

∂I(0)
+ w2

∂I
(3)
112

∂I
(1)
1

+ w3
∂I

(3)
112

∂I
(1)
2

+ w4
∂I

(3)
112

∂I
(2)
11

+ w5
∂I

(3)
112

∂I
(2)
12

+ w6
∂I

(3)
112

∂I
(2)
22

, (E.24)

d1 = 2w1
∂I

(3)
122

∂I(0)
+ w2

∂I
(3)
122

∂I
(1)
1

+ w3
∂I

(3)
122

∂I
(1)
2

+ w4
∂I

(3)
122

∂I
(2)
11

+ w5
∂I

(3)
122

∂I
(2)
12

+ w6
∂I

(3)
122

∂I
(2)
22

. (E.25)

Following the evaluation of the resulting system of equations, Eq. (E.3), at the average

state, W̃, a set of 12 equalities are produced. Out of the resulting set equations, it can be

readily shown that all the relationships appearing in Eq. (E.3a) are satisfied whereas, on

the other hand, only the first three equalities of Eq. (E.3b) are verified, which then leaves

the last three equations unsatisfied. In the next step, the three terms, w4 =
√
I(0)N

(2)
11 ,

w5 =
√
I(0)N

(2)
12 , and w6 =

√
I(0)N

(2)
22 , are chosen as unknowns. Evaluating all the other

terms in the last three equations of Eq. (E.3b) in the average state, W̃, then yields the
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following system
b̂1 w̃1

∂̃I
(3)
111

∂I
(1)
1

w̃1
∂̃I

(3)
111

∂I
(1)
2

w̃1
∂̃I

(3)
111

∂I
(2)
11

w̃1
∂̃I

(3)
111

∂I
(2)
12

w̃1
∂̃I

(3)
111

∂I
(2)
22

ĉ1 w̃1
∂̃I

(3)
112

∂I
(1)
1

w̃1
∂̃I

(3)
112

∂I
(1)
2

w̃1
∂̃I

(3)
112

∂I
(2)
11

w̃1
∂̃I

(3)
112

∂I
(2)
12

w̃1
∂̃I

(3)
112

∂I
(2)
22

d̂1 w̃1
∂̃I

(3)
122

∂I
(1)
1

w̃1
∂̃I

(3)
122

∂I
(1)
2

w̃1
∂̃I

(3)
122

∂I
(2)
11

w̃1
∂̃I

(3)
122

∂I
(2)
12

w̃1
∂̃I

(3)
122

∂I
(2)
22

∆W = ∆F′, (E.26)

where

∆W = [∆w1,∆w2,∆w3,∆w4,∆w5,∆w6]
T = WR −WL, (E.27)

and

∆F′ = [∆F4,∆F5,∆F6]
T = F′

R − F′
L, (E.28)

and where F′
R and F′

L are reduced flux vectors in which the first three components of

the associated original flux vectors are removed.

In Eq. (E.26), b̂1, ĉ1 and d̂1 are entries which contain the unknowns, ŵ4 =
̂√
I(0)N

(2)
11 ,

ŵ5 =
̂√
I(0)N

(2)
12 , and ŵ6 =

̂√
I(0)N

(2)
22 , and have the following forms, respectively

b̂1 = 2w̃1
∂̃I

(3)
111

∂I(0)
+ w̃2

∂̃I
(3)
111

∂I
(1)
1

+ w̃3
∂̃I

(3)
111

∂I
(1)
2

+ ŵ4
∂̃I

(3)
111

∂I
(2)
11

+ ŵ5
∂̃I

(3)
111

∂I
(2)
12

+ ŵ6
∂̃I

(3)
111

∂I
(2)
22

, (E.29)

ĉ1 = 2w̃1
∂̃I

(3)
112

∂I(0)
+ w̃2

∂̃I
(3)
112

∂I
(1)
1

+ w̃3
∂̃I

(3)
112

∂I
(1)
2

+ ŵ4
∂̃I

(3)
112

∂I
(2)
11

+ ŵ5
∂̃I

(3)
112

∂I
(2)
12

+ ŵ6
∂̃I

(3)
112

∂I
(2)
22

, (E.30)

d̂1 = 2w̃1
∂̃I

(3)
122

∂I(0)
+ w̃2

∂̃I
(3)
122

∂I
(1)
1

+ w̃3
∂̃I

(3)
122

∂I
(1)
2

+ ŵ4
∂̃I

(3)
122

∂I
(2)
11

+ ŵ5
∂̃I

(3)
122

∂I
(2)
12

+ ŵ6
∂̃I

(3)
122

∂I
(2)
22

, (E.31)

where the tilde symbol over any quantity indicates that the latter is evaluated in the

averaged state, W̃, and the hat symbol over a given parameter signifies the latter is

considered as unknown in the system of equations of interest.

Substituting the expressions of Eqs. (E.29), (E.30), and (E.31) into the system of equa-

tions Eq. (E.26) yields a set of three equations for the three unknowns ŵ4, ŵ5, and ŵ6.

The latter can be directly expressed in terms of the known averages by solving the result-

ing system of equations, thereby yielding a solution to the system of equations, Eq. (E.3),

and consequently providing a generalized Roe matrix for the M2 closure for both gray

and non-gray radiation.



Appendix F

Axisymmetric Treatment

In the case where axisymmetric computational domains are of interest, the governing

moment equations arising from the M1, M2, P1 and P3 closures must be expressed in

cylindrical coordinates (r, θ, z). Expressing the weak conservation form of the governing

equations, Eq. (5.1), in such a coordinate frame yields

∂U

∂t
+
∂F

∂r
+
∂G

∂z
= −SA

r
+ S , (F.1)

where U is the vector of conserved moments, F and G are the flux vectors in the r-

and z-coordinate directions, respectively, S represents the source term vector, and SA

corresponds to the axisymmetric source term vector. The latter, i.e., the axisymmetric

source term vector, arises from taking the divergence of the flux vector in the cylindrical

coordinates basis. In fact, partial derivatives of tensors in cylindrical coordinates frames

have an added degree of complexity compared to similar derivatives in Cartesian coor-

dinates. This can be attributed to the fact that there can be non-zero derivatives of

the metric tensor for curvilinear coordinate frames, which in turn can lead to non-zero

connection coefficients, or Christoffel symbols, Γ. Expressing the systems of moment

equations arising from the M1, M2, P1, and P3 closures in cylindrical coordinates re-

quires the divergence of tensors up to fourth order, the expression of which can be found
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in most of the textbooks on the subject [147–150], and can be written as follows

∇ · I(1)i =
∂I

(1)
i

∂xi
+ Γi

riI
(1)
r ,

∇ · I(2)ij =
∂I

(2)
ij

∂xj
+ Γi

rjI
(2)
rj + Γj

rjI
(2)
ir ,

∇ · I(3)ijk =
∂I

(3)
ijk

∂xk
+ Γi

rkI
(3)
rjk + Γj

rkI
(3)
irk + Γk

rkI
(3)
ijr ,

∇ · I(4)ijkl =
∂I

(4)
ijkl

∂xl
+ Γi

rlI
(4)
rjkl + Γj

rlI
(4)
irkl + Γk

rlI
(4)
ijrl + Γl

rlI
(4)
ijkr,

(F.2)

where Γ denote the connection coefficients for the coordinate system. In the particular

case of cylindrical coordinates, the connection coefficients read as follows

Γr =


0 0 0

0 −1
r

0

0 0 0

 , Γθ =


0 1

r
0

0 0 0

0 0 0

 , Γz =


0 0 0

0 0 0

0 0 0

 . (F.3)

It should be pointed out that the subscript, g (or η), has been dropped from the expres-

sions given in Eq. (F.2) for notational simplicity, though the same relationships apply to

both gray (non-spectrally dependent) and non-gray (spectrally dependent) radiation.

For the M1 and P1 closures, for which angular moments up to only first order are solved

for, U, F and G are respectively given by

U =
[
I
(0)
g , I

(1)
g,r , I

(1)
g,z

]T
,

F = c
[
I
(1)
g,1 , I

(2)
g,rr, I

(2)
g,rz

]T
,

G = c
[
I
(1)
g,2 , I

(2)
g,rz, I

(2)
g,zz

]T
.

(F.4)

The unknown second-order closing fluxes can be related to the known lower-order mo-

ments using the closure relations of Eq. (2.20) for P1 or Eqs. (3.14), (3.17), and (3.20)–

(3.24) for M1. Furthermore, under the assumption of isotropic scattering, the source

term column vector for the system of angular moment equations arising from either the

M1 or the P1 closures, S, is given by

S = c


k(g)(4πIbηc − I

(0)
g )

−(k(g) + σs)I
(1)
g,r

−(k(g) + σs)I
(1)
g,z

 , SA = c


I
(1)
g,r

I
(2)
g,rr − I

(2)
g,θθ

I
(2)
g,rz

 . (F.5)
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In the context of the M2 closure, which involves the solution of angular moments up to

second order, U, F and G are respectively given by

U =
[
I
(0)
g , I

(1)
g,r , I

(1)
g,z , I

(2)
g,rr, I

(2)
g,rz, I

(2)
g,zz

]T
,

F = c
[
I
(1)
g,r , I

(2)
g,rr, I

(2)
g,rz, I

(3)
g,rrr, I

(3)
g,rrz, I

(3)
g,rzz

]T
,

G = c
[
I
(1)
g,z , I

(2)
g,rz, I

(2)
g,zz, I

(3)
g,zrr, I

(3)
g,zrz, I

(3)
g,zzz

]T
.

(F.6)

In the context of the proposed interpolative-based non-gray M2 closure, the unknown

third-order closing fluxes are expressed in terms of the lower-order moments via the

expressions given in Eqs. (3.41), (3.42), (3.44)–(3.50), (3.53)–(3.54) and (3.55). Under the

assumption of isotropic scattering, the source term vector associated with the resulting

system of angular moments up to second order can be written as follows

S = c



k(g)(4πIbηc − I
(0)
g )

−(k(g) + σs)I
(1)
g,r

−(k(g) + σs)I
(1)
g,z

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,rr

−(k(g) + σs)I
(2)
g,rz

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,zz


, SA = c



I
(1)
g,r

I
(2)
g,rr − I

(2)
g,θθ

I
(2)
g,rz

I
(3)
g,rrr − 2I

(3)
g,rθθ

I
(3)
g,rrz − I

(3)
g,θθz

I
(3)
g,rzz


.

(F.7)

The P3 closure results in a system of angular moment equations whose unknowns con-

sist of angular moments up to third order, and for which the vectors U, F and G are

respectively given by

U =
[
I
(0)
g , I

(1)
g,r , I

(1)
g,z , I

(2)
g,rr, I

(2)
g,rz, I

(2)
g,zz, I

(3)
g,rrr, I

(3)
g,rrz, I

(3)
g,rzz, I

(3)
g,zzz

]T
,

F = c
[
I
(1)
g,r , I

(2)
g,rr, I

(2)
g,rz, I

(3)
g,rrr, I

(3)
g,rrz, I

(3)
g,rzz, I

(4)
g,rrrr, I

(4)
g,rrrz, I

(4)
g,rrzz, I

(4)
g,rzzz

]T
,

G = c
[
I
(1)
g,z , I

(2)
g,rz, I

(2)
g,zz, I

(3)
g,zrr, I

(3)
g,zrz, I

(3)
g,zzz, I

(4)
g,zrrr, I

(4)
g,zrrz, I

(4)
g,zrzz, I

(4)
g,zzzz

]T
,

(F.8)

and the corresponding source term vector, S, based on the assumption of isotropic scat-
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tering, takes the form

S = c



k(g)(4πIbηc − I
(0)
g )

−(k(g) + σs)I
(1)
g,r

−(k(g) + σs)I
(1)
g,z

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,rr

−(k(g) + σs)I
(2)
g,rz

1
3
(4πk(g)Ibηc + σsI

(0)
g )− (k(g) + σs)I

(2)
g,zz

−(k(g) + σs)I
(3)
g,rrr

−(k(g) + σs)I
(3)
g,rrz

−(k(g) + σs)I
(3)
g,rzz

−(k(g) + σs)I
(3)
g,zzz



, SA = c



I
(1)
g,r

I
(2)
g,rr − I

(2)
g,θθ

I
(2)
g,rz

I
(3)
g,rrr − 2I

(3)
g,rθθ

I
(3)
g,rrz − I

(3)
g,θθz

I
(3)
g,rzz

I
(4)
g,rrrr − 3I

(4)
g,rrθθ

I
(4)
g,rrrz − 2I

(4)
g,rθθz

I
(4)
g,rrzz − I

(4)
g,θθzz

I
(4)
g,rzzz



.

(F.9)

The unknown fourth-order closing fluxes are expressed in terms of known lower-order

moments via the relationships given in Eq. (2.21), thereby resulting in the P3 closure.
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