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An anisotropic output-based adaptive mesh refinement (AMR) scheme is proposed and

developed for the numerical prediction of ideal magnetohydrodynamic (MHD) flows on

three-dimensional multi-block meshes using parallel distributed memory computer archi-

tecture. A finite-volume discretization procedure with limited piecewise linear reconstruc-

tion is used to solve the governing system of partial-differential equations on multi-block

body-fitted hexahedral meshes. An inexact Newton’s method is used to obtain steady

state solutions of the discretized governing equations. The anisotropic block-based re-

finement technique provides significant reductions in the size of the computational mesh

by locally refining the grid only in certain directions as dictated by the flow physics

and numerical solution. A flexible binary tree data structure facilitates efficient parallel

AMR via domain decomposition. An output-based error estimation procedure enables

formal evaluation of a posteriori estimates of the errors of solution-dependent engineer-

ing functionals of interest in terms of local estimates of the truncation error as measured

by the solution residual error. These errors are calculated by solving an adjoint problem

related to the functional of interest and using the adjoint solution to appropriately weigh

primal flow quantity residual errors evaluated on a finer mesh using an h-refinement strat-

egy. The resulting dual-weighted error estimate is used to direct the local anisotropic

mesh adaptation and the output-based refinement strategy generates meshes which are

customized for the accurate calculation of functionals of interest. The performance of

the output-based mesh refinement scheme is first demonstrated for several representa-
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tive steady time-invariant aerodynamic flows governed by the Euler and Navier-Stokes

equations and finally for several space physics flows governed by the equations of ideal

MHD. Comparisons are made between the output-based mesh refinement technique and

more traditional gradient-based and uniform refinement approaches in terms of efficient

reduction in error and number of cells required to obtain a certain accuracy level. A

solar wind-MHD model employing photospheric magnetic field maps obtained from solar

magnetograms as inputs is also developed as a test case for the proposed output-based

anisotropic mesh refinement scheme.
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Chapter 1

Introduction and Motivation

1.1 Space Weather

With the advent of the space age, the study of space weather and its impact on human

activity and life on Earth has gained in significance. The development of novel space and

ground-based technologies for communication, Earth observation and space exploration

will continue to play a significant role in the advancement of human life in the foreseeable

future. “Space Weather” [2, 3] is a term that is used to refer to conditions on the Sun

and in the solar wind and geospace environment, which includes the lithosphere, hydro-

sphere, atmosphere, ionosphere, and magnetosphere, that can influence the performance

and reliability of both space-borne and ground-based technological systems or can ad-

versely affect human life or health on Earth. Adverse changes in space weather can cause

disruptions to ground-based electric power transmission grids. Geomagnetically induced

currents can lead to increased corrosion of pipeline systems for oil, natural gas and water

supply. Space weather can also disrupt the operations of satellites in near-Earth orbits

and communication and GPS navigation systems. Astronauts are also vulnerable to the

energetic radiation from the Sun.

The Sun and the resulting plasma environment within the heliosphere are the key

drivers of space weather. With the continual depletion of Earth’s natural resources and

man’s possible dependence on space as a potential frontier of industrial growth, space

weather is now considered a natural hazard as the risk it poses to human activity and

even health cannot be ignored. There is a current need for a significantly improved

fundamental understanding of the solar-related physical processes affecting space weather

in order to be able to both forecast and assess the impact of events in an analogous fashion

to that now possible for atmospheric weather prediction.

1
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1.2 Numerical Simulation of Space Plasmas

Numerical simulations offer a convenient path to understanding the behaviour of space

plasmas, as they circumvent what can be the enormous costs of performing in situ and

even remote measurements in outer space. Numerical techniques can be used to study

phenomena covering distances of interplanetary scales that are otherwise impossible to

capture with the current technological resources. However, the development of numerical

techniques for the study and realistic prediction of space weather is extremely challeng-

ing. For instance, the solar wind contains electrons, protons, α-particles and traces of

heavier ions, requiring multiple species equations for realistic and meaningful solutions.

In addition, the expansion of the solar wind as it propagates outward from the Sun

into interplanetary space leads to a large variation in length and time scales that pose

a challenge to capture accurately by numerical methods. Due to the current capabili-

ties of available computational resources, numerical studies of space plasmas heavily rely

on global modelling techniques based on the equations of ideal magnetohydrodynamics

(MHD) [4,5], wherein the underlying physics is accounted for in an approximate manner

depending on the degree of sophistication of the particular MHD model.

Theoretical and numerical modelling of the solar wind and heliospheric flows has a

long history and it is beyond the scope of this thesis to provide a complete review of

previous research in this area. Nevertheless, a brief summary of previous research efforts

relevant to the thesis are provided in what follows. In the last 30-40 years, various

attempts have been made to model space weather using the equations of MHD. Pizzo [6]

studied the structure of the solar wind between 35RSun and 1 AU using an idealized

model of the inner heliosphere. Usmanov [7] subsequently developed a fully 3D steady

state model of the solar corona and heliosphere using magnetic field observations for

Carrington rotation CR 1682 and made comparisons with spacecraft observations at

1 AU. Lionello et al. [8] also solved the equations of MHD to study the propagation

of the solar wind on a cylindrical mesh. Linker et al. [9] modelled the solar corona

during Whole Sun Month1 from 1RSun to 30RSun using photospheric field observations as

boundary conditions and compared results with SOHO, Ulysses and WIND data. BATS-

R-US, a parallel block-adaptive numerical framework was developed at the University of

Michigan for the global MHD simulation of space weather [10–17]. This global MHD

model was used by Powell et al. [10] to simulate the interaction between the solar wind

1Whole Sun Month was a two-year collaborative effort of the Inter-Agency Consultative Group
(IACG) and the Solar and Heliospheric Observatory (SOHO) Working Group in which an international
and interdisciplinary group of scientists studied the Sun from August 8 to September 10, 1996, a period
known as solar minimum.
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and a planetary magnetosphere. Moreover, Groth et al. [11] studied the propagation of a

coronal mass ejection (CME) in a steady background solar wind, using an octupole model

for the Sun’s magnetic field, a pressure pulse for modelling the CME and source terms for

the solar wind acceleration and heating effects. The latter represented the first-in-the-

world global MHD simulation of a complete fully three-dimensional space weather event,

spanning the initiation of a solar wind disturbance at the Sun’s surface to its interaction

with the Earth’s magnetosphere.

In subsequent follow-on studies by the Michigan group, Roussev et al. [12] modelled

the corona-heliosphere system by implementing a continuous variation in the polytropic

index in a radially outward direction from the Sun. Manchester et al. [13, 14] used an

idealized model of the steady state solar wind conditions near solar minimum, studied

the three-dimensional propagation of a flux rope-driven CME and made comparisons

with coronagraph observations of CMEs. Tóth et al. [15] and Manchester et al. [16]

used synoptic magnetograms to model the CME event of October 28, 2003 and made

comparisons with observations. The Michigan BATS-R-US global MHD model was even-

tually extended to solve other forms of the MHD equations, including the Hall MHD,

multi-fluid MHD, and radiative MHD models [17]. Van der Holst et al. [18] imple-

mented a two-temperature MHD model wherein low-frequency Alfvén wave turbulence

was modelled to account for coronal heating and solar wind acceleration. They simulated

extreme ultraviolet (EUV) images of Carrington rotation CR2107 and made comparisons

with STEREO and SDO observations.

In other MHD modelling efforts, Riley et al. [19] decoupled the MHD simulation in the

corona and heliosphere using suitable polytropic indices for each model and subsequently

used the coronal simulation as a driver for the heliospheric calculation. The combined

model was used to generate the heliospheric structure during Carrington rotations CR

1913, CR 1892 and CR 1947. Similarly, Odstrčil et al. [20] studied CME propagation

using a resistive MHD model with a ratio of specific heats, γ = 1.05 for the coronal

calculation upto 20RSun and an ideal MHD model with a ratio of specific heats, γ =

5/3 for the heliospheric calculation. Lionello et al. [21] performed MHD simulations of

the corona using various coronal heating models and reproduced observed multispectral

properties of the corona. More recently, Feng et al. [22] employed a six-component

overset grid to study the background solar wind from Sun to Earth during Carrington

rotation CR 1911 using line-of-sight photospheric field observations and validated their

MHD model using SOHO and WIND observations. Feng et al. [23] later added isotropic

block-based AMR capabilities to this model. Merkin et al. [24] applied an ideal MHD

model for the heliosphere and a more realistic MHD model for the corona that contained
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terms to account for radiative losses, coronal heating, thermal conduction and magnetic

resistivity.

Lastly, the MPI-AMRVAC software is an open source toolkit for parallel, block-

adaptive MHD simulations of solar and non-relativistic astrophysical plasmas [25, 26].

MPI-AMRVAC also has a relativistic counterpart, BHAC [27], for solving the equations

of ideal general-relativistic magnetohydrodynamics (GRMHD) for studying astrophys-

ical phenomena such as black holes. The MPI-AMRVAC software has also been used

for studying the formation of prominences in the solar corona using magnetic flux rope

models of various levels of complexity [28–32]. Most recently, MPI-AMRVAC source

has been used for the study of magnetic reconnection of solar flares and to simulate the

trans-Alfvénic solar wind from the Sun to the Earth using a solar wind model replicating

solar minimum conditions and artificial heating/cooling source terms [33].

In many of the global MHD models described above, rather sophisticated numerical

simulation techniques have been adopted and applied to the solution of the governing

equations, including both adaptive mesh refinement strategies and high-order discretiza-

tion schemes. Nevertheless, the computational costs associated with performing such

global MHD simulations are still significantly high and improved and more efficient nu-

merical solution techniques are required in order to make such simulations more routine

for the prediction of space weather and solar wind phenomena.

1.2.1 Adaptive Mesh Refinement (AMR)

Adaptive mesh refinement (AMR) [34–39] is one of the ways to make more optimal use

of the available degrees of freedom in order to maximize the solution accuracy when

used in combination with numerical methods. AMR involves an increase in the number

of grid cells in regions having relatively smaller length scales and conversely a decrease

in number of grid cells in regions having relatively larger length scales. In this way,

AMR is extremely beneficial for the treatment of problems with a wide range of length

scales, since the mesh can coarsen or refine automatically as dictated by the length scales

prevalent in a particular region of the flow field. For fixed computational resources,

AMR also provides a way to capture more of the essential flow physics without having

to resort to simplified flow models. Additionally, automatic adaption of meshes also

reduces the need for human intervention. Currently, a significant amount of effort is

spent on the initial mesh generation for a given flow problem. For instance, the mesh

near the surface of an airfoil must be sufficiently resolved in order to capture the boundary

layer for accurate prediction of the viscous drag force. An initial mesh with inadequate
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resolution of the boundary layer can give inaccurate or even completely wrong solutions.

However, effective automatic adaptation of meshes would be able to recognize the need

for increased resolution in the boundary layer, thus increasing the number of cells in

that region. Hence, an initially coarse mesh that requires a relatively shorter amount of

human time and effort to generate would be all that is needed, as long as it automatically

refines during runtime, as per the requirements for the desired quality of the solution.

To date, a number of hierarchical-type AMR techniques have been developed and they

can be broadly categorized into four major types: patch-based AMR, cell-based AMR,

block-based AMR and hybrid AMR. These different categories of AMR are depicted

in Figure 1.1. Figure 1.1(a) shows the starting mesh with cells flagged for refinement.

Figures 1.1(b)-1.1(d) indicate the consecutive mesh obtained after employing the patch-

based, cell-based and block-based AMR techniques, respectively. In the patch-based

AMR, originally proposed by Berger and Oliger [36] and Collela [34], individual cells are

first flagged for refinement. Flagged cells that are close to each other are grouped together

using a sophisticated algorithm to form rectangular patches as shown in Figure 1.1(b).

These patches can be further refined to form nested patches having a higher refinement

level. Patch-based AMR has been considered by a number of researchers to study a

variety of fluid flows [34,36,37,40,41].

In cell-based AMR [38, 42–45], the flagged cells are individually refined as shown in

Figure 1.1(c). Each flagged cell forms four new cells in two dimensions and eight new cells

in three dimensions. The connectivity between individual cells is stored using a flexible

tree data structure. In block-based AMR [1, 17, 25, 26, 33, 35, 46–55], the computational

domain is subdivided into clusters of grid cells that are called blocks. These blocks are

composed of a pre-defined, generally fixed, number of cells. Entire blocks, that contain

cells flagged for refinement, are refined to form multiple blocks containing the same

number of cells, as shown in Figure 1.1(d). Tree-based data structures are again used

to store the connectivity between individual blocks. It should be noted that Holst and

Keppens [56] have developed a hybrid AMR approach which combines aspects of the

patch-based and block-based AMR strategies.

1.2.2 Block-Based AMR

Typically, for the same number of individual cells flagged on a given mesh, the subse-

quent refined mesh created by a block-based AMR approach is generally larger in terms

of the total number of cells than that created by a similar cell-based AMR method,

due to the application of the refinement and coarsening procedures to the entire original
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(a) (b) (c) (d)

Figure 1.1: Mesh refinement categories: (a) cells flagged, (b) patch-based, (c) cell-based,
(d) block-based.

grid block. In block-based AMR, each block also contains additional layers of “ghost”

cells that overlap with neighbouring blocks. These “ghost” cells are used to share and

exchange solution information between neighbouring blocks, allowing independent up-

dates of solution quantities on each block. In this sense, the block-based methods are

therefore sub-optimal. Nevertheless, in block-based AMR, the blocks can be self-similar

and load-balancing is then almost trivial to achieve in a parallel setting [1,47–50]. Also,

in block-based AMR, the tree structure is much lighter than that in cell-based AMR

in terms of storage as it must only account for connectivity between entire blocks and

not individual cells. Therefore, due to the self-similar nature of blocks, easily attainable

load-balancing, and lighter data structure and connectivity, block-based AMR strategies

are highly scalable and suitable for implementation on today’s parallel high-performance

computers, as has been demonstrated in various previous studies [1, 47–50,57,58].

Block-based AMR methods [1,47–50] can be further classified as being either isotropic

or anisotropic in nature. The isotropic block-based AMR approach, as originally pro-

posed by Gao and Groth [47–49], employs an 8-membered octree data structure, used to

keep track of the connectivity between neighbouring blocks and between a block and its

“parent” and “children” blocks. In a 3D simulation, each block undergoing refinement

is divided into 8 blocks. Conversely, in case of coarsening, eight flagged blocks combine

together to form one coarsened “parent” block. Isotropic block-based AMR has been

applied to the numerical prediction of 3D non-equilibrium gaseous flows [59] and 2D com-

pressible gaseous flows [60]. Isotropic block-based mesh refinement has also been exten-

sively applied to combustion problems by Groth and co-workers. For example, Northrup

and Groth [57, 61, 62] used the 3D isotropic block-based AMR for simulation of laminar

steady and unsteady premixed and non-premixed flames. Gao and Groth [47–49,58,63,64]

and Jha [65, 66] applied isotropic block-based AMR to turbulent diffusion flames. Ivan
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et al. [67–70] and Susanto et al. [71] have also used block-based AMR for magnetohydro-

dynamic simulations. Finally, the block-based AMR approach has also been combined

with higher-order discretization methods by Groth and co-workers [67, 72–77] with the

goal of further reducing computational costs.

In isotropic block-based AMR, each block marked for refinement is refined equally in

each coordinate direction, although the solution quantities such as gradients may favour

refinement in certain directions more than others, leading to unnecessary refinement of

the mesh. In the anisotropic block-based AMR strategy, as recently proposed by Zhang

and Groth [76], Williamschen and Groth [50] and Freret and Groth [1], a “parent” block

undergoing refinement is always divided into just two blocks, in one of the three coordi-

nate directions as dictated by the refinement criteria. For this anisotropic approach, a

binary tree data structure is then used to keep track of the connectivity and the sequence

of splitting of a block. Use of anisotropic AMR [50,76] can potentially reduce unnecessary

refinement and subsequent CPU time and memory. Zhang and Groth [76] developed a

block-based anisotropic AMR approach and applied it to 2D convection-diffusion prob-

lems and inviscid supersonic flows governed by the Euler equations. They found a 50%

reduction in mesh size after using anisotropic AMR. Williamschen and Groth [50] sub-

sequently extended this block-based anisotropic AMR approach and applied it to 3D

inviscid supersonic flow solutions governed by the Euler equations. The latter found a

75% reduction in mesh size for equivalent mesh resolution and solution accuracy. Most

recently, Freret and Groth [1] developed a non-uniform block-based anisotropic AMR

approach and applied it to 3D inviscid and viscous flows and found similar reductions in

mesh size. This non-uniform block-based anisotropic AMR approach was then extended

for use with high-order central essentially non-oscillatory (CENO) finite-volume schemes

in a follow-on study by Freret et al. [78, 79].

1.2.3 Output-Based Error Estimation for AMR

Traditionally, the goal of AMR has been to adapt the mesh to capture dominant physical

features of a flow problem, such as discontinuities like shocks, flame fronts and current

sheets or other characteristics like rarefactions and boundary layers. Heuristic or physics-

based measures such as gradient, divergence or curl of key flow properties such as pressure,

Mach number, species fraction, magnetic field, etc., are typical error indicators employed

by such AMR strategies. In all of the AMR research and development carried out so far

by Groth and co-workers [1,47–49,57,80,81], heuristic physics-based criteria of this type

were used to direct the mesh refinement. As observed by Williamschen and Groth [50]
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and Freret and Groth [1], gradient-based or physics-based methods do not necessarily

directly respond to errors in the numerical solution, hampering grid convergence and

error control as the mesh refinement proceeds. This phenomenon can be observed in

an example flow problem described in the study by Freret and Groth [1], wherein a

supersonic flow of air at density ρi = 10 kg/m3, radial velocity Vr,i = 4.5 m/s, and

pressure pi = 26 Pa enters through the inner boundary of a concentric spherical shell,

expands and exits supersonically through the outer boundary. A spherical inflow radius

of Ri = 1 m and a spherical outflow radius of Ro = 4 m were considered. An analytical

solution to this outflow problem is available as described by Ivan et al. [69]. The L1 and

L2 norms of the density solution errors were computed on a sequence of adaptively refined

meshes as directed by the gradient in the solution density and are shown in Figure 1.2.

It was observed that the solution error ceases to reduce after a number of gradient-based

mesh adaptations. Clearly, the regions of high solution gradients were not associated

with high solution error resulting in ineffective mesh refinement. The choice of adaption

criteria for adaptive mesh refinement is therefore an important factor to be considered

when the goal is to achieve efficient reductions in the solution error. It is expected that

mesh refinement criteria based on solution error would make the AMR significantly more

effective.

In particular, the application of output-based or adjoint-based error estimation tech-

niques would enable the use of a formal error estimate for directing mesh adaptation and

providing sensitivities of engineering functionals to this error. Engineering functionals

are typically integrated quantities such as aerodynamic forces or moments, that are cal-

culated by integrating solution variables over portions of the computational domain or

the domain boundaries. Adjoint-based error estimation techniques allow calculation of

adjoint variables that effectively represent sensitivities of the functionals to the solution

error. The adjoint, coupled with the solution error can thus be used to calculate formal

error estimates of the functionals. The distributions of these errors over the computa-

tional domain can be used to direct the mesh adaptation, generating customized meshes

for accurately calculating functionals. Output-based methods that utilize functional er-

ror estimates for driving the AMR have been implemented in combination with various

mesh refinement techniques by previous researchers for the purpose of efficiently studying

a variety of fluid flows [82–90]. These methods have shown significant promise in obtain-

ing accurate predictions of functionals, while at the same time overcoming the need to

perform expensive computations on very large meshes.

As noted above, output-based methods have been used extensively for simulating

fluid flow phenomena such as diffusion, heat transfer, advection, inviscid and viscous
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Figure 1.2: Solution error does not drop below a certain accuracy level for supersonic
spherical outflow problem studied by Freret and Groth [1].

aerodynamic flows and also turbulent aerodynamic flows. For example, Heuveline and

Rannacher [83] applied adjoint-based error estimation in combination with AMR to the

solution of second-order elliptic equations. They used hp-adaptation on structured Carte-

sian finite-element meshes, wherein the mesh is adapted by increasing the mesh refine-

ment level, h, and/or increasing the polynomial degree, p. Maier and Rannacher [91] also

developed an adjoint-based isotropic AMR method with separate quantification of mod-

eling and discretization errors for elliptic diffusion problems on Cartesian finite-element

meshes. Becker et al. [84] applied an output-based adaptive finite-element technique to

viscous flow problems involving computation of aerodynamic forces. This research was

followed by the work of Venditti and Darmofal [85–87] who used error estimation strate-

gies to adapt unstructured finite-volume triangular meshes for computing quasi-1D and

2D inviscid and viscous flows over airfoils. Nemec and Aftosmis [88, 89] also used the

solution of the discrete adjoint for performing mesh refinement on 3D polyhedral meshes
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for compressible inviscid flows using cell-based AMR.

More recently, Ceze and Fidkowski [90] studied 2D and 3D Navier-Stokes and RANS

flows using adjoint methods to direct hp-adaptation on body-fitted, cell-based finite-

element meshes (coarsening was not permitted in their study). Yano and Darmofal [92]

have also used adjoint methods for performing anisotropic h-adaptation on simplex

meshes for high-order solutions of advection-diffusion problems, arriving at a very ef-

fective approach for optimized mesh adaptation on simplexes. Copeland et al. [93] con-

sidered adjoint-based goal-oriented mesh adaptation on a 2D mesh containing triangu-

lar and rectangular cells for studying the nonequilibrium hypersonic flow surrounding a

blunt body during re-entry. Leicht and Hartmann [94] developed an error estimation and

anisotropic mesh refinement framework for accurate calculation of force coefficients for

3D laminar aerodynamic flows using a discontinuous Galerkin discretization.

In other work, Hartmann et al. [95] further developed this framework for turbulent

flows as well. Estep et al. [96] applied adjoint-based adaptation techniques to fluid-

solid heat transfer problems on unstructured triangular grids. Dunne [97] developed a

goal-oriented approach for modelling fluid-structure interaction on h-adapted Cartesian

finite-element meshes. Power et al. [98] used adjoint-based error estimation to drive the

anisotropic mesh adaptation on unstructured tetrahedral finite-element meshes to study

3D diffusion problems. More recently, Ahrabi et al. [99] developed h- and hp-adaptive

finite-element methods for aerodynamic flows governed by the Euler and RANS equa-

tions. Output-based methods have also been used for sonic boom prediction for 3D

supersonic inviscid flows governed by the Euler equations, wherein the functional is a

pressure differential integrated across a predefined region in the computational domain.

For example, Wintzer and Nemec [100] obtained sonic boom predictions for various air-

craft configurations on Cartesian hexahedral finite-volume meshes with cut-cell bound-

aries and compared the obtained pressure signatures with experimental data. Similarly,

Park and Darmofal [101] and Jones et al. [102] performed sonic boom prediction studies

on 3D tetrahedral finite-volume meshes using output-based error estimation. Loseille et

al. [103, 104] developed a 3D anisotropic goal-oriented adaptive scheme for steady Euler

flows on unstructured tetrahedral finite-element meshes. Belme et al. [105] developed a

time-accurate anisotropic goal-oriented mesh adaptation algorithm for unsteady 2D and

3D Euler flows on unstructured finite-volume meshes. Dwight [106] established a novel

adjoint-based adaptive method for 2D steady Euler flows on unstructured finite-volume

meshes wherein only the component of the functional error arising from the numeri-

cal diffusion present in the flux scheme was used to drive the mesh adaptation. Peter

et al. [107] used gradients of aerodynamic forces with respect to mesh coordinates to
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drive the goal-oriented mesh adaptation through insertion and displacement of mesh

nodes for studying 2D and 3D Euler flows. Wang and Mavriplis [108] implemented a

goal-oriented hp-adaptive discontinuous Galerkin method for the 2D compressible Euler

equations and compared its performance with pure h-refinement and pure p-refinement

algorithms in terms of mesh savings obtained for a certain accuracy level. Georgoulis

et al. [109] developed an anisotropic goal-oriented hp-adaptive discontinuous Galerkin

method for hyperbolic-elliptic problems and made comparisons with isotropic hp- and

h-anisotropic/p-isotropic refinement schemes.

Output-based error estimation for mesh adaptation has also been applied to reactive

flows pertaining to problems such as combustion. Sun and Wheeler [110] used a posteriori

error estimation to drive 2D isotropic cell-based h-adaptation on discontinuous Galerkin

finite-element grids for solving the linear advection-diffusion-reaction equations. Becker

et al. [111,112] applied a posteriori error estimation to mesh adaptation for the estimation

of Arrhenius parameters and diffusion coefficients in steady hydrogen and ozone flames.

Becker et al. [113] employed adjoint-based error estimation to drive patch-based AMR on

structured finite-element meshes for studying low Mach number laminar flames. Braack

et al. [114] also used adjoint methods for adaptive chemical transport modelling for

studying pollutant formation on structured finite-element meshes. For the latter, in

certain regions of the computational domain a more complex chemical model was used

whereas in other regions a simpler model was used for accuracy reasons. Hence, the

error estimates were not used for adapting the mesh but for assigning different chemical

models to different regions of the computational domain. Bourlouix et al. [115] used a

similar approach to study non-premixed flames using subgrid flamelet models. Burman et

al. [116] used a posteriori error estimation to drive unstructured finite-element Delaunay

mesh adaptation for low Mach, steady, laminar combustion of a methane/air Bunsen

flame. Braack and Ern [117] applied these methods for the control of modeling and

discretization errors on structured finite-element meshes for the study of convection-

diffusion-reaction equations. Finally, Formaggia et al. [118] have also applied adjoint-

based error estimation to drive the mesh adaptation involving refinement as well as

stretching of individual elements of an unstructured finite-element mesh to study the

convection-diffusion-reaction equations.

Adjoint methods have also been used to drive mesh adaptation in many other areas

of research. Power et al. [119] developed an unsteady adjoint-based AMR strategy for

studying time-varying flow problems relating to ocean modelling on unstructured tetra-

hedral finite-element meshes. Similarly, Davis and LeVeque [120] used adjoint methods

for time-varying flows relating to tsunami modelling on adaptive block-structured finite-
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volume meshes. Zdunek et al. [121] developed an adjoint-based hp-adaptive finite-element

approach for 3D electromagnetic scattering problems. Gomez-Revuelto et al. [122] also

developed a goal-oriented hp-adaptive finite-element strategy for electromagnetic scat-

tering and radiation problems. Pardo et al. [123,124] developed a 2D goal-oriented adap-

tive finite-element strategy for electrostatics [123] and electrodynamics [124]. Lathouw-

ers [125] applied goal-oriented adaptivity to the SN equations to study neutron diffusion

on unstructured triangular finite-element meshes. Ju and Mahnken [126] developed an

adjoint-based adaptive finite-element method for problems related to microscopic elas-

ticity in solids. Hart et al. [127] developed an adaptive adjoint-based error estimation

strategy for the accurate calculation of frictional forces in elastohydrodynamic lubrication

problems. Joshi et al. [128] employed an adjoint-based adaptive finite-element method

for developing a 3D optical tomography scheme. Burstedde et al. [129] developed a par-

allel, adjoint-based, 2D isotropic adaptive strategy for studying variable-viscosity Stokes

flow problems on structured finite-element meshes. Mathelin and De Mâıtre [130] imple-

mented an adaptive a posteriori error estimation algorithm for stochastic finite-element

methods and investigated the uncertain Burger’s equation. Li and Key [131] developed

a 2D adjoint-based adaptive finite-element algorithm for marine controlled-source elec-

tromagnetic modelling.

The use of solution errors to guide mesh adaptation has also been explored in the

numerical study of electrically conducting flows such as those governed by the equations

of MHD. For example, Ervin and Layton [132] considered a posteriori error estimation

for finite-element methods for incompressible magnetohydrodynamic flows with a small

magnetic Reynolds number. They used local error estimates of velocity, electric poten-

tial and pressure fields to adaptively refine the mesh based on the equidistribution of

these errors. Zhao et al. [133] developed an anisotropic adaptive finite-element method

using a posteriori error estimates of velocity and magnetic field for incompressible, high

Hartmann number 2D magnetohydrodynamic flows on unstructured triangular meshes.

Lankalapalli et al. [134] devised an h-adaptive finite-element method for the equations of

2D single-fluid incompressible ideal magnetohydrodynamics on unstructured triangular

meshes. The latter used a posteriori temporal and spatial error estimates of the mag-

netic field to drive the mesh adaptation. Baty [135] developed an adaptive finite-element

method for studying magnetic reconnection using the equations of resistive MHD on 2D

unstructured triangular meshes. The Hessian matrix of the electric current density was

used for anisotropic adaptation in order to obtain an equidistribution of errors in the

computed current density solution. None of these researchers, however, used adjoint-

based error estimates of integrated target functionals to direct the mesh adaptation for
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compressible MHD flows. Furthermore, hierarchical AMR methods were not considered.

It must also be noted that adjoint-based techniques have been used extensively for

multidisciplinary design optimization due to their ability to estimate gradients and sensi-

tivities of target quantities with respect to design parameters. See, for example, the work

by Pironneau [136], Jameson [137], Nemec and Zingg [138], Truong et al. [139], and Hicken

and Zingg [140]. Moreover, for conducting gaseous flows, Marta and Alonso [141,142] de-

veloped 3D discrete adjoint MHD solvers for the ideal MHD and low magnetic Reynolds

number regimes with the goal of optimizing hypersonic vehicle designs while taking into

account the magnetic effects of locally ionized hypersonic flow. They calculated sensitiv-

ities of lift, drag and pitching moment coefficients with respect to vehicle attitude angles,

magnetic field as well as electrical conductivity. The discrete adjoint calculation was

performed with the help of a methodology developed by Marta et al. [143] that made the

use of automatic differentiation tools. Marta and Alonso [144] also used a discrete adjoint

MHD approach for drag minimization and maximization of blunt bodies in a hypersonic

magnetized flow. However, this adjoint approach was used only to perform sensitivity

analysis and was not used for mesh adaptation purposes. This thesis seeks to address the

scarcity of available literature on output-based error estimation used to direct the mesh

adaptation for MHD flows.

A key advantage of the preceding output-based refinement methods is that, unlike

gradient-based strategies, they can respond directly to estimates of the solution error and

therefore can be used for isolating only those regions of the flow which are sensitive to

the functional or output of interest. This results in specially tuned AMR meshes that are

customized for minimizing errors and accurately evaluating the engineering functionals

of particular interest. With this in mind, the present thesis seeks to combine the ben-

efits of output-based error estimation and block-based anisotropic AMR. The proposed

combined approach of parallel anisotropic block-based adaptive mesh refinement coupled

with a posteriori output-based error estimation has already been studied by Narechania

et al. [145] and Ngigi et al. [146] and compared with traditional gradient-based refine-

ment schemes for aerodynamic flows. This combination has proven to be very beneficial

in terms of savings in the computational mesh size and efficient reduction of functional

error. The main focus of this thesis then pertains to further application of these ideas to

the solution of flow cases governed by the ideal MHD equations.
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1.3 Thesis Objectives

The primary objective of this thesis is the development of a parallel output-based mesh

refinement algorithm that will lead to significant reductions in the size of the computa-

tional mesh required to achieve accurate predictions of engineering functionals of interest

for steady two and three-dimensional ideal MHD flows. Applications of the proposed

method will focus on problems of relevance to space plasmas and space weather simula-

tion.

The thesis focuses only on output-based AMR for steady MHD simulations and un-

steady flows are deemed beyond the scope of the study. Converged steady state solutions

will be obtained on consecutive meshes using the parallel, implicit, inexact Newton solver

developed by Northrup and Groth [57,60,61]. The proposed scheme will extend the par-

allel, body-fitted, anisotropic block-based AMR scheme previously developed by Freret

and Groth [1] to employ criteria based on a posteriori error estimates of engineering

functionals to direct the mesh adaptation. The output-based error estimation scheme

and the anisotropic block-based AMR scheme will be combined to form a highly scalable

parallel framework with the ability to compute in parallel functional error estimates on

three-dimensional adapted meshes of varying levels of refinement, and also use them for

driving the mesh adaptation. The proposed scheme will first be tested on steady aerody-

namic flow cases governed by the Euler and Navier-Stokes equations. Finally, steady flow

cases governed by the equations of ideal MHD will be considered to demonstrate the per-

formance of the proposed algorithm. The performance of the algorithm will be assessed

based on the reduction in the size of the computational mesh achieved by the output-

based refinement method for a certain level of accuracy in the value of the functional. The

error in the functional is given by the absolute value of the difference between, Fnumerical,

a numerically calculated value of the functional using a converged steady state solution

on a given computational mesh, and, Freference, a reference value of the functional. The

value, Freference, is calculated using analytical means for cases where an analytical solution

is available. For cases where analytical solutions are not possible to obtain and functional

values from literature are unavailable, Freference is evaluated using steady state solutions

obtained on very fine uniformly refined meshes with a refinement level higher than the

highest level of refinement achieved using adaptive methods. For cases where a fine mesh

calculation is infeasible due to limitations in the available computational resources, the

functional error is simply estimated using a posteriori adjoint-based error estimation. A

data-driven solar wind-MHD model is also developed using photospheric magnetic field

maps obtained from solar magnetograms as inputs to the MHD simulation, and is used
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as a test case for the proposed output-based anisotropic mesh refinement scheme.

The focus of this thesis is the development and testing of the proposed output-based

AMR algorithm and not the study of physical flow features or the comparison between

various flow models in terms of their abilities to reproduce particular characteristics

of the flow field. As such, most of the cases investigated here are relatively simple

standardized test cases that are easy to find in previous literature. These cases, however,

still require significant computational time and resources for obtaining accurate solutions

using traditional mesh refinement techniques, thus providing ample opportunities for

demonstrating the computational performance improvements offered by the proposed

output-based, anisotropic AMR solution strategy in terms of mesh size.

1.4 Thesis Organization

The thesis is organized as follows. The introduction and motivation has been provided

above here in Chapter 1. This is followed by descriptions of the governing equations,

the finite-volume scheme and the parallel block-based adaptive mesh refinement scheme

that are provided in Chapter 2. Chapter 3 focuses on the a posteriori output-based error

estimation scheme applied herein for the calculation of functional error estimates that

are used to drive the mesh refinement. The performance of the proposed output-based

mesh refinement scheme for electrically neutral or non-conducting aerodynamic flows is

demonstrated in Chapter 4. The details of the solar wind-MHD model later employed

as a final test case for the proposed output-based mesh refinement scheme are described

in Chapter 5. Chapter 6 discusses the performance of the proposed output-based mesh

refinement scheme for electrically conducting plasma flows governed by the equations of

ideal MHD. Finally, Chapter 7 concludes the thesis with a summary of major research

contributions and possible avenues for future study.



Chapter 2

Parallel Adaptive Mesh Refinement

Finite-Volume Scheme

This chapter describes the details of the proposed parallel adaptive mesh refinement

(AMR) finite-volume method used to solve numerically the set of governing equations.

Section 2.1 describes the finite-volume scheme comprising the conservative form of the

various systems of governing equations considered here, the finite-volume method, the

semi-discrete formulation and the evaluation of fluxes and source terms. The inexact

Newton’s method adopted to solve the semi-discrete form of the governing equations is

described in Section 2.2 for steady flows and Section 2.3 for unsteady flows. Section 2.4

describes the second-order explicit time-stepping scheme used for unsteady flows. Sec-

tion 2.5 describes the parallel anisotropic block-based AMR technique comprising the

refinement procedure, solution block connectivity, information exchange using ghost cells

and parallel implementation of the AMR scheme.

2.1 Finite-Volume Method

2.1.1 Conservative Form of Governing Equations

The three systems of governing equations considered in this thesis are the Euler and

Navier-Stokes equations governing inviscid and viscous flows of a compressible gas and

the ideal MHD equations governing the behaviour of a perfectly conducting compressible

plasma. A summary of these equation sets now follows.

16
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Euler Equations

The Euler equations describe the behaviour of an inviscid, compressible gas. An inviscid

fluid is assumed to have zero viscosity and zero thermal conductivity. Hence, processes

such as diffusion, heat transfer and viscous dissipation are neglected. Energy dissipation

only occurs through phenomena such as shock waves. Although various aspects of the

underlying physics of the fluid flow are neglected, the Euler equations provide an accurate

description of many relevant aerodynamic flows.

The Euler equations in conservative form are given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂ (ρu)

∂t
+∇ · (ρuu + pI) = 0, (2.2)

∂e

∂t
+∇ · ((e+ p)u) = 0. (2.3)

Equations (2.1), (2.2) and (2.3) are the differential forms of the equations representing

the conservation of mass, momentum and energy for the gas, respectively. Here, ρ, u

and e are the gas density, velocity and specific total energy, respectively. The divergence

operator in the equations above is associated with the physical coordinate vector, x.

Also, t is the time and p is the gas thermal pressure. Assuming the gas is calorically

perfect, the specific total energy e is given by

e =
ρ|u|2

2
+

p

γ − 1
, (2.4)

where γ = Cp/Cv is the ratio of specific heats, which is taken to be constant. The terms

Cp and Cv are the specific heat capacities at constant pressure and volume, respectively.

Equations (2.1)–(2.3) can be expressed in a convenient vector form as

∂U

∂t
+∇ · F = 0, (2.5)

where the vector of conserved variables, U, and the flux tensor, F, are then given by

U =

 ρρu
e

 , F =

 ρu

ρuu + pI

(e+ p)u

 . (2.6)
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Navier-Stokes Equations

The Navier-Stokes equations account for aspects of real fluids that are neglected by

the description offered by the Euler equations. They account for diffusive transport

phenomena such as viscous stresses and heat conduction, thus providing a more complete

description of real gases and fluids in general. For aerodynamic flows where the viscous

forces become important, solution of the Navier-Stokes equations is generally required.

The Reynolds number is an important parameter that characterizes viscous flow regimes

and is defined as the ratio of inertial to viscous forces. It is given by

Re =
ρ0V0D

µ
, (2.7)

where ρ0, V0, D and µ are the characteristic density, characteristic velocity, characteristic

length scale and dynamic viscosity of the fluid, respectively. For the laminar viscous

aerodynamic flows considered in this thesis, these characteristic values are taken to be

free-stream values and the characteristic length is taken to be the airfoil chord length.

For laminar flows, the Navier-Stokes equations in conservative form can be expressed

as
∂ρ

∂t
+∇ · (ρu) = 0, (2.8)

∂ (ρu)

∂t
+∇ · (ρuu + pI− τττ) = 0, (2.9)

∂e

∂t
+∇ · ((e+ p)u− u · τττ − q) = 0. (2.10)

Again, Equations (2.8), (2.9) and (2.10) are the differential forms of the laws reflecting

the conservation of mass, momentum and energy, respectively. Here, ρ, u and e are again

the gas density, velocity and specific total energy, respectively. The heat flux vector, q,

and viscous stress tensor, τττ , are given by

q =

qxqy
qz

 , τττ =

τxx τyx τzx

τxy τyy τzy

τxz τyz τzz

 . (2.11)

Here, qx, qy, qz are the heat flux components and τxx, τxy, τxz, τyy, τyz, τzz are components

of the viscous stress tensor. The former can be expressed in terms of the gradient of the

temperature, T , and the latter can be expressed in terms of the strain rates of the

gas [147, 148]. Also, t is again the time and p is the gas thermal pressure. As for the
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Euler equations assuming a calorically perfect gas, the specific total energy e is given by

e =
ρ|u|2

2
+

p

γ − 1
, (2.12)

where γ = Cp/Cv is again the ratio of specific heats. Equations (2.8)–(2.10) can be

expressed in vector form as

∂U

∂t
+∇ · (FI − FV) = 0, (2.13)

where the vector of conserved variables U, the inviscid flux tensor FI and the viscous

flux tensor FV are given by

U =

 ρρu
e

 , FI =

 ρu

ρuu + pI

(e+ p)u

 , FV =

 0

τττ

u · τττ − q

 . (2.14)

Ideal MHD Equations

The ideal MHD equations describe the behaviour of a perfectly electrically conducting,

fully ionized, quasi-neutral, inviscid, ideal gas. In the ideal MHD approximation, the

various species in the plasma are treated as a single fluid of thermally perfect gases.

It is assumed that enough collisions occur so as to make the pressure isotropic. The

plasma is treated as quasi-neutral. If we consider any small volume of the plasma, the

net charge density is zero, i.e., the total amount of negative charge is equal to the total

amount of positive charge. However, in spite of quasi-neutrality of the plasma, electric

currents are possible and the opposite charges do not necessarily move together. The

plasma is treated as a perfect conductor with zero resistivity, thus, approaching the limit

of an infinitely high magnetic Reynolds number. Therefore, the study of micro-scale

phenomena such as reconnection is beyond the scope of the present study. Due to the

assumption of zero resistivity, the magnetic field is assumed to be frozen in the fluid. All

velocities are assumed to be much smaller than the speed of light and relativistic effects

are ignored. In spite of all these what may seem rather limiting assumptions in some

cases, the ideal MHD model can provide a good approximation to the behaviour of a

large variety of space plasmas.

The equations of ideal MHD in conservative form, for a rotating frame, are given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.15)
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∂ (ρu)

∂t
+∇ · (ρuu−BB + pT I) = −ρ [ΩΩΩ× (ΩΩΩ× x)]− 2ρ (ΩΩΩ× u) , (2.16)

∂e

∂t
+∇ · ((e+ pT )u− (u ·B)B) = −ρu · [ΩΩΩ× (ΩΩΩ× x)] , (2.17)

∂B

∂t
+∇ · (Bu− uB) = 0. (2.18)

Here, Equations (2.15), (2.16), (2.17) and (2.18) are the differential forms of the equations

representing conservation of mass, momentum, energy and magnetic flux for the plasma,

respectively. Equation (2.18) describes the time-evolution of the magnetic field given by

Faraday’s law expressed in divergence form. Equations (2.15)–(2.18) are supplemented

by the solenoidality condition for the magnetic field, which is given by

∇ ·B = 0. (2.19)

Here, ρ, u, e and B are the plasma density, velocity, specific total energy and magnetic

field, respectively. For calculations performed in a non-inertial rotating frame, ΩΩΩ is the

angular velocity of the reference frame. Again, the time is denoted by t and x is the

position vector. The total pressure, pT , is given by

pT = p+
|B|2

2
, (2.20)

where p is the thermal pressure of the plasma. Again assuming a calorically perfect gas,

the specific total plasma energy, e, is given by

e =
ρ|u|2

2
+

p

γ − 1
+
|B|2

2
, (2.21)

where γ = Cp/Cv is the ratio of specific heats. The units adopted for the ideal MHD

system above are such that the magnetic permeability of vacuum, µ0, is taken to be equal

to unity, as is done in many other previous studies [67,68,71,78,149,150].

As for the Euler and Navier-Stokes equation sets, Equations (2.15)–(2.18) can be

expressed in vector form as
∂U

∂t
+∇ · F = Q, (2.22)
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where the vector of conserved variables U and the flux tensor F are given by

U =


ρ

ρu

e

B

 , F =


ρu

ρuu−BB + pT I

(e+ pT )u− (u ·B)B

Bu− uB

 . (2.23)

The source term for rotational effects Q is given by

Q =


0

−ρ [ΩΩΩ× (ΩΩΩ× x)]− 2ρ (ΩΩΩ× u)

−ρu · [ΩΩΩ× (ΩΩΩ× x)]

0

 . (2.24)

Here, ΩΩΩ× (ΩΩΩ× x) is the centrifugal force and 2 ΩΩΩ× u is the Coriolis force.

2.1.2 Treatment of the Divergence Constraint for Ideal MHD

For 1D MHD problems, the solenoidality condition given in Equation (2.19) simply re-

duces to the constraint Bx = constant, where the x−direction is normal to the cell

interface. Hence, in this case, no evolution equation is required for the magnetic field

component in the direction perpendicular to the cell interface, i.e., Bx. It is relatively

straightforward to develop a numerical solver for 1D problems in MHD. However, con-

structing a numerical method that is capable of solving 2D or 3D ideal MHD problems

is unfortunately not as straightforward as simply applying 1D Riemann solvers in a di-

rection normal to the face as is the case for Euler and Navier-Stokes solvers. For 2D and

3D MHD problems, the finite-volume discretized form of the divergence constraint given

in Equation (2.19) becomes

Nf∑
f=1

(Bface · nface∆Aface) = 0, (2.25)

and must be satisfied where Bface, nface and ∆Aface denote the magnetic field vector,

outward pointing unit normal vector and the area of a cell face, respectively, and Nf

represents the number of faces for a generic hexahedral cell. Hence, a variation in the

component of the magnetic field normal to the cell interface is allowed and must be

balanced by the variations in the other components of the magnetic field. In general, a

separate procedure is required in order to maintain this constraint on the discrete MHD
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solution and various divergence control techniques have been developed to tackle this

issue.

One technique for magnetic field divergence control is the constrained transport (CT)

approach by Evans and Hawley [151], wherein a particular finite-difference discretization

of the divergence ∇ ·B, is maintained to be equal to zero to machine accuracy. Such an

approach usually requires a staggered mesh wherein the magnetic field variable is stored

at the faces of the cells instead of at the cell centroids. More recently, variants of the

constrained transport scheme that do not require a staggered magnetic field represen-

tation have also been developed by Dai and Woodward [152, 153], Ryu et al. [154] and

Balsara and Spicer [155]. There have also been various successful attempts to develop

projection schemes, wherein the Poisson equation is solved in addition to the governing

equations in order to subtract the portion of the magnetic field that leads to a non-zero

divergence. One such scheme is the “Hodge projection” scheme [156, 157]. Divergence

cleaning schemes, such as generalized Lagrange multiplier (GLM) scheme wherein the

divergence is convected out of the computational domain through the introduction of

a new transport variable [158], have also been proposed. Comparisons between various

techniques can be found in the work by Teunissen and Keppens [159] and the work by

Tóth [160]. Divergence cleaning schemes such as GLM are also available in the framework

used for this study, but have not been considered here. For this study, the approach orig-

inally proposed by Powell [161] has been used exclusively, wherein the divergence form

of Faraday’s law is used to modify the system of Equations (2.15)–(2.18) to yield a new

system to be numerically solved. This approach is described next.

Powell’s Approach

The governing partial-differential equations for ideal MHD given previously as Equa-

tions (2.15)–(2.18) can be re-expressed in weak conservation form as

∂ρ

∂t
+∇ · (ρu) = 0, (2.26)

∂ (ρu)

∂t
+∇ · (ρuu−BB + pT I) = −ρ [ΩΩΩ× (ΩΩΩ× x)]− 2ρ (ΩΩΩ× u)− (∇ ·B) B, (2.27)

∂e

∂t
+∇ · ((e+ pT )u− (u ·B)B) = −ρu · [ΩΩΩ× (ΩΩΩ× x)]− (∇ ·B) u ·B, (2.28)
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∂B

∂t
+∇ · (Bu− uB) = − (∇ ·B) u. (2.29)

This new set of Equations (2.26)–(2.29) can be derived in a similar manner to that used

for Equations (2.15)–(2.18), i.e., using the equations of hydrodynamics, Ohm’s law, the

Lorentz force and Maxwell’s laws of electromagnetism. However, the ∇·B = 0 constraint

is not enforced. The terms on the right hand side, that are proportional to ∇ · B are

terms arising from expressing Faraday’s law in divergence form. These terms are retained

in the new set of equations as the ∇ ·B = 0 constraint is not applied. This modified set

of equations can be expressed in vector form as

∂U

∂t
+∇ · F = Q + S, (2.30)

where the vector of conserved variables, U, and the flux tensor, F, are given by

U =


ρ

ρu

e

B

 , F =


ρu

ρuu−BB + pT I

(e+ pT )u− (u ·B)B

Bu− uB

 . (2.31)

The source term for rotational effects, Q, is the same as that in Equation (2.24). The

new column vector contains terms arising from the new formulation of the equations and

contains terms that cannot be expressed in divergence form. This vector is given by

S = −


0

B

u ·B
u

∇ ·B = S1∇ ·B. (2.32)

Note that enforcing ∇ · B = 0 in the modified system of Equations (2.30) would sim-

ply yield the Equations (2.15)–(2.18). However, as we saw earlier, the discrete form of

the divergence does not automatically become zero in a finite-volume numerical solu-

tion procedure applied to the MHD equations. It can be shown that the original MHD

system of Equations (2.15)–(2.18) with ∇ · B = 0 is not symmetrizable and also not

Galilean-invariant [162–164]. The original system of equations also possesses a degen-

erate eigensystem, i.e., has only seven identifiable characteristic fields. The system of

Equations (2.26)–(2.29), on the other hand, has a non-degenerate eigenstructure and is

symmetrizable as well as Galilean-invariant [162–164]. Powell [161] first advocated solu-
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tion of this system containing the column vector S, which permits the construction of a

finite-volume Riemann solver, that satisfies the discrete divergence constraint shown in

Equation (2.25) to the order of the truncation error of the solver. The key advantages

of Powell’s approach are the symmetrizability and Galilean-invariance of this system of

equations and an eigenstructure that is not degenerate. The evaluation of the discrete

divergence source term within the proposed finite-volume method is described in Sec-

tion 2.1.7 below.

It should be noted however that Tóth [160] has shown that for problems containing

strong shocks, Powell’s approach can in some cases produce incorrect Rankine Hugoniot

jump conditions, which can also generate incorrect results away from the discontinuity.

Furthermore, such errors have been shown to not decrease with grid resolution. This

problem arises due to the non-conservative nature of the source terms in Powell’s 8-wave

Riemann solver.

2.1.3 Finite-Volume Method

In a finite-volume approach [165], the computational domain is first discretized into

many small contiguous control volumes. The governing partial-differential equations are

integrated over each of these volumes to enforce local and global conservation of conserved

flow quantities. In the case of ideal MHD, these quantities are mass, momentum, energy

and magnetic induction. Similar sets of equations are treated for non-conducting gases

governed by the Euler and Navier-Stokes equations also described above. Integrating

the system of Equations (2.5), (2.13) or (2.30) over a three-dimensional control volume

in physical space, and applying the divergence theorem to the conservation form, one

arrives at the integral form of the governing equations that can be written as

d

dt

∫
V

U dV +

∮
Ω

F · n dΩ =

∫
V

S dV +

∫
V

Q dV. (2.33)

where V is the control volume, Ω is the closed surface of the control volume and n is

the outward unit normal to the closed surface. The flux dyad, F, represents the flux of

solution quantities through the boundaries of the control volume. For a time-invariant

three-dimensional control volume as shown in Figure 2.1, the cell-averaged solution and

the Powell and rotational source term vectors can be defined as

Ū =
1

V

∫
V

U dV, (2.34)
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n
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cell (i,j,k)

∆Α
face

Figure 2.1: Hexahedral cell at grid location i, j, k showing face normals.

S̄ =
1

V

∫
V

S dV, (2.35)

Q̄ =
1

V

∫
V

Q dV, (2.36)

where V refers to the control volume of interest.

2.1.4 Semi-Discrete Form of Governing Equations

If one considers the hexahedral computational cell, (i, j, k), shown in Figure 2.1, and

substitutes the definitions given in Equations (2.34), (2.35) and (2.36) in the integral

form of the governing equations shown in Equation (2.33), one arrives at the semi-discrete

form of the governing equations given by

dŪi,j,k

dt
= −Ri,j,k(Ū) =− 1

Vi,j,k

Nfi,j,k∑
f=1

(Fface · nface∆Aface)i,j,k

+
S̄1,i,j,k

Vi,j,k

Nfi,j,k∑
f=1

(Bface · nface∆Aface)i,j,k

+ Q̄i,j,k,

(2.37)

where Ūi,j,k is the cell-averaged conserved solution for cell (i, j, k), and Ri,j,k is the

discrete residual representing the summation of the face fluxes and source terms for cell

(i, j, k). The variables Vi,j,k, Fface, Q̄i,j,k, Bface, nface and ∆Aface denote the cell volume,

flux vector, rotational effect source term, magnetic field vector, outward pointing unit
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normal vector and the area of the shaded cell face, respectively, and Nfi,j,k represents the

number of faces for cell (i, j, k). The term, S̄1,i,j,k, associated with the divergence of the

magnetic field is given by

S̄1,i,j,k = −[0 B̄i,j,k (ū · B̄)i,j,k ūi,j,k]
T . (2.38)

2.1.5 Inviscid (Hyperbolic) Flux Evaluation

The inviscid or hyperbolic fluxes at the volume or cell boundaries represent the net rate of

solution flux of conserved quantities and the effect of thermal and magnetic pressure forces

across cell interfaces between neighbouring cells. In the current work, these forces are

evaluated using a Godunov-type upwind finite-volume method. A second-order limited

piecewise linear reconstruction using a least-squares curve fit is first used for calculating

primitive flow variables such as density, velocity, pressure and magnetic field. Using these

reconstructed variables at either side of the cell interface, the inviscid flux is calculated

by use of a Riemann-solver-based flux function, namely the HLLE approximate Riemann

solver.

The Riemann Problem

Godunov’s method employs the solution of a localized one-dimensional Riemann problem

for calculating the hyperbolic fluxes at cell boundaries. A Riemann problem is a one-

dimensional initial value problem consisting of an interface with two different solution

states on either side of the interface. This is depicted in Figure 2.2 for the ideal MHD

equations, where UL and UR are the two states on the left and right sides of the interface,

respectively. The vertical line at the center is the time axis while the solid horizontal

line is the space axis. The slanted lines or rays emanating from the origin represent

waves generated at time t = 0 as a result of the discontinuity between the two solution

states. For the ideal MHD equations, a total of eight waves are generated, as can be seen

in Figure 2.2. These are the contact discontinuity or entropy wave combined with the

∇ · B = 0 convective wave (C), two slow magnetosonic waves (SW), two Alfvén waves

(AW), and two fast magnetosonic waves (FW) all of which are shown in Figure 2.2.

For gas dynamical systems represented by the Euler and Navier-Stokes equations, the

Riemann problem for a three-dimensional flow only consists of five waves, namely the

contact discontinuity and shear waves and a shock or rarefaction on either side of the

contact discontinuity.

In the current work, the fluxes are calculated by constructing a Riemann problem
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Figure 2.2: The Riemann problem for ideal MHD.

at every cell interface, with UL and UR being the conserved states in the neighbouring

cells sharing the interface, and the normal to the cell interface being the x-axis shown

in Figure 2.2. After solving the Riemann problem, the solution on the t-axis is used

to calculate the flux. For a polytropic gas, the exact solution of the Riemann problem

can be obtained as described by Gottlieb and Groth [166]. However, an exact solution

to the Riemann problem for MHD in the general case is not available in the general

case. Moreover, several computationally less expensive approximate solvers have also

been developed over the years, such as those by Roe [167], Harten-Lax-van Leer-Einfeldt

(HLLE) [168], Toro et al. [169], Linde [170], Liou [171,172] and Osher and Solomon [173].

The reader is referred to the textbook by Toro [165] for a detailed description of such

solvers for gas dynamical flows. Several MHD variants of such solvers have also been

developed, such as the non-linear solver of Dai and Woodward [174], linearized Roe-type

solvers by Powell et al. [10], Zachary and Collela [175] and Brio and Wu [176], HLLC-

type solvers developed by Li [177], Gurski [178] and Miyoshi and Kusano [179], and the

HLLE solver by Linde [170]. For the purpose of the current work, the Harten-Lax-van

Leer-Einfeldt (HLLE) [168, 170] flux function has been exclusively used for hyperbolic

flux evaluation. The HLLE flux function will be described in a later section to follow.

The second-order reconstruction scheme used to calculate UL and UR at either side of

the cell interface is now described, followed by a description of the HLLE flux.
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Limited Piecewise Linear Least-Squares Reconstruction

Solving the Riemann problem using the cell-averaged values, UL and UR, as described

in the previous section produces first-order spatial accuracy. The accuracy and resolu-

tion of the solution can be improved by spatially reconstructing the solution inside the

computational cell. For second-order accuracy, a linear reconstruction is used wherein

the solution inside the cell is represented by a linear function. The reconstructed values

obtained at the cell interfaces are then used to solve the Riemann problem for better

accuracy and resolution. Higher-order reconstructions, such as the CENO method [72],

have also been developed by various researchers, but are not considered in the current

work.

Second- and higher-order spatial reconstructions can often lead to solutions show-

ing non-monotonic oscillatory behaviour in regions containing discontinuities in the flow

variables. To ensure monotonicity in the solution near discontinuities, while at the same

time maintaining the correct order of accuracy in smooth regions, spatial reconstruction

techniques are implemented in combination with slope limiters that ensure monotonicity

in reconstruction. This ensures that the reconstructed values are bounded by the max-

imum and minimum values in the cell under consideration and its neighbours. It also

ensures that the solution is physically realizable and takes on meaningful values devoid

of any unwanted oscillations. Thus, for a scalar component, U , of the solution vector,

U, the limited second-order piecewise linear reconstructed solution in the computational

cell is given by

Ui,j,k(x, y, z) = Ūi,j,k + φi,j,k

[
∂U

∂x

∣∣∣
ijk

(x− xi,j,k) +
∂U

∂y

∣∣∣
ijk

(y − yi,j,k) +
∂U

∂z

∣∣∣
ijk

(z − zi,j,k)
]
,

(2.39)

where Ūi,j,k is the cell-averaged value of the solution variable U in the cell (i, j, k) and

∂U/∂x|ijk, ∂U/∂y|ijk and ∂U/∂z|ijk are gradients of this solution variable in the x-, y-

and z-directions, respectively. The vector, xi,j,k = (xi,j,k, yi,j,k, zi,j,k), is the location of

the centroid of the cell and φi,j,k is the slope limiter.

The solution gradients, ∂U/∂x|ijk, ∂U/∂y|ijk and ∂U/∂z|ijk, are calculated by ap-

plying a least-squares approach that entails the minimization of the error defined by

ε2 =
N∑
n=1

ε2n =
N∑
n=1

[
∆Ūn −∇Ui,j,k · (xn − xi,j,k)

]
, (2.40)
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where ∆Ūn = Ūn − Ūi,j,k for Ūn being the cell-averaged value of the solution variable in

the neighbouring cell n, ∇Ui,j,k is the gradient vector (∂U/∂x|ijk, ∂U/∂y|ijk, ∂U/∂z|ijk)
and xn is the location of the centroid of the neighbouring cell n. Differentiating Equa-

tion (2.40) with respect to the gradients ∂U/∂x|ijk, ∂U/∂y|ijk and ∂U/∂z|ijk to minimize

the error, ε, results in a linear system given by
(∆x)2

i,j,k (∆x∆y)i,j,k (∆x∆z)i,j,k

(∆x∆y)i,j,k (∆y)2
i,j,k (∆y∆z)i,j,k

(∆x∆z)i,j,k (∆y∆z)i,j,k (∆z)2
i,j,k




∂U/∂x|ijk

∂U/∂y|ijk

∂U/∂z|ijk

 =


(∆U∆x)i,j,k

(∆U∆y)i,j,k

(∆U∆z)i,j,k

 , (2.41)

where

(∆x)2
i,j,k =

1

N

N∑
n=1

(xn − xi,j,k)2,

(∆y)2
i,j,k =

1

N

N∑
n=1

(yn − yi,j,k)2,

(∆z)2
i,j,k =

1

N

N∑
n=1

(zn − zi,j,k)2,

(∆x∆y)i,j,k =
1

N

N∑
n=1

(xn − xi,j,k)(yn − yi,j,k),

(∆x∆z)i,j,k =
1

N

N∑
n=1

(xn − xi,j,k)(zn − zi,j,k),

(∆y∆z)i,j,k =
1

N

N∑
n=1

(yn − yi,j,k)(zn − zi,j,k),

(∆U∆x)i,j,k =
1

N

N∑
n=1

∆Ūn(xn − xi,j,k),

(∆U∆y)i,j,k =
1

N

N∑
n=1

∆Ūn(yn − yi,j,k),

(∆U∆z)i,j,k =
1

N

N∑
n=1

∆Ūn(zn − zi,j,k).

(2.42)

The linear system in Equation (2.41) can be easily solved using Cramer’s rule.

The limiter proposed by Venkatakrishnan [180] has been used in the current work to

ensure solution monotonicity. For a given scalar solution variable, U , this limiter is given
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by

φi,j,k =


φ
(
Umax−Ūi,j,k
Uk−Ūi,j,k

)
for Uk − Ūi,j,k < 0

φ
(
Umin−Ūi,j,k
Uk−Ūi,j,k

)
for Uk − Ūi,j,k > 0

1 otherwise

, (2.43)

where φ(y) is given by

φ(y) =
y2 + 2y

y2 + y + 2
. (2.44)

Here, Umax = max(Ūi,j,k, Ūneighbours), Umin = min(Ūi,j,k, Ūneighbours), Uk is the unlimited re-

constructed value at the kth reconstructed flux quadrature point and Ūi,j,k and Ūneighbours

are the cell-averaged values of U for the cell (i, j, k) and its neighbours, respectively.

The HLLE Flux Function

The HLLE flux function calculation is now described for the system of ideal MHD equa-

tions. For the Euler and Navier-Stokes equations, this procedure is further simplified

by the fact that the magnetic field is zero for these systems. Hence, for the Euler and

Navier-Stokes equations, the fast magnetosonic speed, cf , shown below in Equation (2.52)

simplifies to the speed of sound, a =
√
γp/ρ, for a zero magnetic field. The remaining

steps are the same for the calculation of the flux. The left and right states obtained

at the cell face using the reconstruction described in the previous section are rotated to

align with the coordinate system wherein the x-axis points along the unit normal of the

face. A localized Riemann problem is set up where the two initial states are prescribed

as

U(x, t = 0) =

UL for x > 0

UR for x < 0
, (2.45)

with UL and UR being the left and right states, respectively. The HLLE solver assumes

a self-similar solution U∗ for all time t > 0, such that

U
(x
t

= 0
)

=


UL for x

t
≤ λ−

U∗ for λ− < x
t
< λ+

UR for λ+ ≤ x
t

, (2.46)

where λ− and λ+ are the speeds of the leftward- and rightward-moving characteristic

waves. This is depicted in Figure 2.3, where the intermediate state, U∗, occupies the
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Figure 2.3: The HLLE solver.

shaded region. Correspondingly, the inviscid flux vector is given by

F
(
UL,UR,

x

t
= 0
)

=


FL for x

t
≤ λ−

F∗ for λ− < x
t
< λ+

FR for λ+ ≤ x
t

, (2.47)

where FL = F(UL), FR = F(UR) and F∗ = F(U∗). Using jump conditions, the inter-

mediate state, U∗, is given by

U∗ =
λ+UR − λ−UL

λ+ − λ−
− FR − FL

λ+ − λ−
, (2.48)

and the corresponding flux is given by

F∗ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL). (2.49)

The speeds λ− and λ+ are given by

λ− = max(λmin
L , λ̂min) = min(uL − cf,L, û− ĉf ), (2.50)

λ+ = max(λmax
R , λ̂max) = max(uR + cf,R, û+ ĉf ). (2.51)
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Here, uL and uR are the velocities along the face normal for the left and right states,

respectively. The fast magnetosonic speed, cf , is given by

c2
f =

1

2

γp+ |B|2

ρ
+

√(
γp+ |B|2

ρ

)2

− 4γpB2
x

ρ2

 . (2.52)

The speeds indicated using overhats are calculated using Roe-averaged quantities for den-

sity, velocity, enthalpy and magnetic field [10,161]. For the density, velocity or enthalpy

variables denoted by ω, the Roe-averaged quantity, ω̂, is calculated by mass-weighting

the left and right states as

ω̂ =
ωL
√
ρL + ωR

√
ρR√

ρL +
√
ρR

. (2.53)

Here, ωL represents the density, velocity or enthalpy values for the left state while ωR

represents the density, velocity or enthalpy values for the right state. The Roe-averaged

density simplifies to ρ̂ =
√
ρLρR. However, the Roe-averaged magnetic field is calculated

as

B̂ =
BL
√
ρR + BR

√
ρL√

ρL +
√
ρR

, (2.54)

where the mass-weightings are interchanged [176,181]. These Roe-averaged quantities are

then used to calculate ĉf . Finally, the solution on the line (x/t = 0) is used to calculate

the flux. As mentioned earlier, the fast magnetosonic speed, cf , shown in Equation (2.52)

simplifies to the speed of sound, a =
√
γp/ρ, for the Euler and Navier-Stokes equations.

It must be noted that the above Roe-average for ideal MHD exists only for the special

case where γ = 2 [176, 181]. For this special case, The Roe matrix can be expressed as

a flux Jacobian of the Roe-averaged state. At this value of γ, the ideal MHD system

decouples into two systems. The first system looks like the Euler equations of non-

conducting gas dynamical flows and the second system is a set of advection equations

describing the evolution of the transverse components of the magnetic field. In this

case, the Roe-averages for density, velocity and enthalpy correspond to those for the gas

dynamical Euler equations whereas the Roe-average for the magnetic field is given by

Equation (2.54). For the general case where γ 6= 2, it is not possible to express the Roe

matrix as a flux Jacobian of an averaged state and therefore, a general result for the

Roe-averaged state is difficult to obtain [176,181].
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2.1.6 Viscous (Elliptic) Flux Evaluation

The viscous or elliptic fluxes at cell boundaries represent the net rate of diffusion of

various conserved quantities across interfaces between neighbouring cells. As the Euler

and ideal MHD equations do not contain such terms, the numerical evaluation of these

fluxes applies only to the Navier-Stokes equations. Unlike the hyperbolic fluxes, the

viscous forces depend not only on the values of the solution at the cell faces but also on

their gradients and can be expressed as

FV = FV (Wi+1/2,j,k,∇Wi+1/2,j,k), (2.55)

where Wi+1/2,j,k is the value of the solution at the face (i+ 1/2, j, k) shared by the cells

(i, j, k) and (i + 1, j, k). Here, Wi+1/2,j,k, is calculated by averaging the left and right

reconstructed values as

Wi+1/2,j,k =
WL + WR

2
. (2.56)

In the current work, the cell face gradients are evaluated using the formula proposed by

Mathur and Murthy [48,49,182] given by

∇W|i+1/2,j,k =
Wi+1,j,k −Wi,j,k

∆s

n

n · es
+

(
∇W−∇W · es

n

n · es

)
, (2.57)

where Wi,j,k and Wi+1,j,k are values at the centroids of the cells (i+ 1, j, k) and (i, j, k),

respectively, and ∇W is the weighted average of the cell centered gradient at the cell

interface given by

∇W = α∇Wi,j,k + (1− α)∇Wi+1,j,k. (2.58)

Here, α is a weighting factor based on cell volume ratios and is given by

α =
Vi,j,k

Vi,j,k + Vi+1,j,k

, (2.59)

n is the unit normal vector at the cell interface, ∆s is the distance between the centroids

and es is the unit normal vector between the centroids. This is depicted in the Figure 2.4.

2.1.7 Source Term Evaluation

The ideal MHD equations contain the source term, Q, that takes into account the effects

of performing the calculation in a rotating frame of reference and also the so-called

“Powell source term”, S, arising from the divergence constraint on the magnetic field,
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(i,j,k) (i+1,j,k)

es

n

∆ s

Figure 2.4: Gradient calculation for a hexahedral cell face.

as given previously in Equation (2.24). The former contains terms depending on the

values of the primitive flow variables and the position vector x. The latter contains

terms depending on the values of the primitive flow variables and on the divergence of

the magnetic field, ∇ · B. In the evaluation of Q and S, the primal flow variables are

simply taken to be the cell-averaged values of these quantities stored in the cell while x

is taken to be the cell centroid. The term, ∇ ·B, is evaluated by the application of the

divergence theorem applied to the volume of the computational cell as∫
V

∇ ·B dV =

∮
Ω

B · n dΩ, (2.60)

where V is the control volume, Ω is the closed surface of the control volume and n is

the outward unit normal to the closed surface. Hence, the divergence of a vector field

integrated over a volume equals the net flux of the field through the outer surface of

the volume. The second-order discretization of the right-hand side of Equation (2.60) is

given by ∮
Ω

B · n dΩ =

Nfi,j,k∑
f=1

(Bface · nface∆Aface)i,j,k , (2.61)

where Bface, nface and ∆Aface denote the magnetic field vector, outward pointing unit

normal vector and the area of the shaded cell face, respectively, and Nfi,j,k represents the

number of faces for cell (i, j, k). Here, Bface is calculated as

Bface =
BL + BR

2
, (2.62)
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where BL and BR are values of the magnetic field obtained at the centroid of the cell

face using the reconstructed profiles from the two adjacent cells sharing the face.

2.1.8 Accuracy of Spatial Discretization Scheme

The unlimited form of the proposed finite-volume spatial discretization procedure is nom-

inally second-order accurate with discretization errors of O(∆x2), where ∆x is the spatial

discretization step size. The accuracy of the scheme drops to first-order when the limiter

is applied. The second-order spatial accuracy of this finite-volume scheme used in combi-

nation with AMR method has been previously verified by Sachdev et al. [183], Gao and

Groth [64], Gao et al. [58], Ivan et al. [69], and McDonald et al. [184] for both 2D and

3D inviscid and laminar compressible flows, as well as ideal MHD plasma flows. While a

limited number of similar verification studies were also performed as part of the present

study which confirm the accuracy of the scheme, they are not reported herein due to

concerns associated with thesis length.

2.2 Inexact Newton’s Method for Steady Flows

The parallel inexact Newton’s method previously developed by Northrup and Groth for

multi-block hexahedral meshes with AMR [57,60,61] is used to solve the system given in

Equation (2.37). The system of algebraic equations describing steady state solutions of

the semi-discrete form of the governing equations given in Equation (2.37) for all cells in

the computational domain is given by

dŪ

dt
= −R(Ū) = 0, (2.63)

where Ū represents the cell-averaged conserved state in all the computational cells. This

is a large coupled system of non-linear algebraic equations that can be solved using

iterative techniques. The solution to Equation (2.63) is obtained using a dual-time-

stepping approach, wherein a pseudo-temporal derivative with an additive Schwarz global

preconditioner, ΓΓΓ, is introduced in Equation (2.63) as given by

ΓΓΓ
dŪ

dτ
= −R(Ū), (2.64)
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where τ is the pseudo-time-step. Applying the implicit Euler time-marching method to

the pseudo-time derivative yields[
− ΓΓΓ

∆τn
+

(
∂R

∂Ū

)(n)
]

∆Ū
(n)

= −R(Ū
(n)

), (2.65)

where ∆τn is the pseudo-time-step for the nth iteration. As ∆τn →∞, Equation (2.65)

reduces to [
∂R

∂Ū

](n)

∆Ū
(n)

= J(n)∆Ū
(n)

= −R(Ū
(n)

), (2.66)

where J(n) = [∂R/∂Ū](n) is the Jacobian of the residual with respect to the conserved

solution vector. Equation (2.66) can also be obtained by simply applying Newton’s

iterative method to Equation (2.63). An initial guess, Ū
(n=0)

, of the solution is used to

calculate the vector R(Ū
(n)

) and the matrix J(n) and the system in Equation (2.65) is

solved to obtain the vector ∆Ū
(n)

. An improved estimate of the solution, Ū
(n+1)

, is then

obtained as

Ū
(n+1)

= Ū
(n)

+ ∆Ū
(n)
. (2.67)

For the purpose of obtaining steady state solutions to Equation (2.63), the switched

evolution/relaxation (SER) approach, as proposed by van Leer and Mulder [185], has

been used here. In this approach, the pseudo-time-step, ∆τn, is varied, starting from a

finite value, and gradually increased to very large values as the steady state solution is

obtained. A time-step multiplier, νn, is introduced that increases as the L2 norm of the

solution residual ||R||2 decreases, and is given by

νn = νmin max

(
1,

1

||R||2

)
, (2.68)

where νmin is the minimum or initial multiplier. The pseudo-time-step, ∆τn, is then

calculated according to the Courant-Friedrichs-Lewy (CFL) and von Neumann stability

criteria [186] for inviscid and viscous compressible non-conducting flows, respectively, as

∆τn = νn min

(
∆xref
|u|+ a

,
ρ∆x2

ref

µ

)
. (2.69)

Here, u, a, ∆xref , ρ and µ are the flow velocity, speed of sound, reference grid cell size,

density and dynamic viscosity of the fluid, respectively. Similarly, for ideal MHD flows,

∆τn is calculated as

∆τn = νn min

(
∆xref
|u|+ cf

)
, (2.70)
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where cf is the fast magnetosonic speed. The Equation (2.65) is solved to obtain ∆Ū
(n)

and the solution is subsequently updated using Equation (2.67). These steps are subse-

quently repeated within an iterative procedure until an appropriate norm of the solution

residual is reduced below a predefined threshold, i.e. ||R(Ū
(n)

)||2 < ε||R(Ū
(0)

)||2. A

user-defined tolerance level of ε = 10−8 has been typically used in this work. Due to

issues with equation scaling, in practice, it is generally sufficient for the residual norms

of just one or two of the solution variables to be monitored for convergence. As all of

the flow problems considered in this thesis involve a compressible fluid and the density

variations are significant, the L2 norm of the density residual was used here and proved

very effective in assessing the convergence of the Newton scheme.

Equation (2.65) is a large, sparse, non-symmetric, banded linear system of the form

Ax = b, where A is the residual Jacobian and b is the residual, and needs to be

solved in every iteration, n, of Newton’s method. For such systems, iterative Krylov

subspace methods have proven to be quite efficient. In the present work, a class of Krylov

subspace methods known as the Generalized Minimum Residual (GMRES) method, is

used. This method was originally developed by Saad and Schultz [187]. A useful feature

of the GMRES algorithm is that it does not require explicit calculation of the global

Jacobian matrix A, permitting the use of a “matrix-free” or “Jacobian-free” approach

in which numerical differentiation based on Fréchet derivatives is used. For the GMRES

method to be effective, an additive Schwarz global preconditioner is used in conjunction

with block incomplete lower-upper (BILU) local preconditioning. The application of

GMRES within each step of Newton’s method results in a nested iterative procedure

where the inner iterations determine the solution of the linear system in Equation (2.66)

at each step of Newton’s method while the outer iterations solve the non-linear system,

R(Ū) = 0, using Newton’s method. Convergence of the linear system at every Newton

step is not necessarily required to obtain a converged solution to the system, R(Ū) =

0. Hence, for efficient performance, the GMRES is only partially converged at each

step of Newton’s method. Accordingly, the inner GMRES iterations are stopped when

||R(Ū
(n)

) + J(n)∆Ū
(n)||2 < ζ||R(Ū

(n)
)||2, where ζ is a nominal tolerance value. A value

of ζ ≈ 0.01− 0.05 was used for the purpose of this work.
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2.3 Implicit Time-Marching for Unsteady Flows

Unsteady time-varying flows can be described by the semi-discrete form of the governing

equations given in Equation (2.37) by not equating the residual to zero, i.e., by solving

dŪ

dt
= −R(Ū). (2.71)

In order to solve this system via an implicit time-marching scheme, a dual time-stepping

approach is adopted for which a pseudo-temporal derivative with an additive Schwarz

global preconditioner, Γ, is also introduced resulting in a modified residual, R∗(Ū), given

by

Γ
∂Ū

∂τ
= −∂Ū

∂t
−R(Ū) = −R∗(Ū), (2.72)

where τ is the pseudo-time-step. The modified residual, R∗(Ū), includes not only the

temporal derivative but also the actual residual, R(Ū). The system, R∗(Ū) = 0, can

be solved at each physical time-step using Newton’s iterative method. In order to do

this, Equation (2.72) is first discretized in time using an implicit second-order backward

time-marching scheme (BDF2) which gives

R∗(Ū
n+1

) =
3Ū

n+1 − 4Ū
n

+ Ū
n−1

2∆t
+ R(Ū

n+1
), (2.73)

where ∆t is the physical time-step.

The system of Equation (2.73) is a large coupled system of non-linear equations similar

to those in Equation (2.63) that can again be solved using an iterative technique. Given

the values of the solution, Ū
n−1

, at time level (n − 1) and solution, Ū
n
, at time level

n, the solution at time level (n+ 1), Ū
n+1

, can be obtained by solving Equation (2.73).

This system is first linearized through the application of Newton’s method to yield[
2

3∆t
I +

∂R

∂Ū

](n+1,k)

∆Ū
(n+1,k)

= J∗(n+1,k)∆Ū
(n+1,k)

= −R∗(Ū
(n+1,k)

). (2.74)

Here, Ū
(n+1,k+1)

= Ū
(n+1,k)

+ ∆Ū
(n+1,k)

. Thus, Ū
(n+1,k=0)

is an initial guess for the solu-

tion Ū
n+1

at time level (n+ 1), while Ū
(n+1,k+1)

is an improved approximation obtained

by solving Equation (2.74) at every step, k, of Newton’s method. The earlier solution,

Ū
n
, at time level n is an obvious candidate for the initial guess, Ū

(n+1,k=0)
, since it is

readily available. Hence, Equation (2.73) is a non-linear system of equations to be solved

iteratively (outer loop) at each physical time-step, n, while Equation (2.74) is a linearized
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equation obtained from Newton’s inexact method which is solved iteratively (inner loop)

at each iteration, k, of the outer loop. This is similar to the nested procedure from Sec-

tion 2.2. Correspondingly, Equation (2.74) is the large, sparse, non-symmetric, banded

linear system of the form Ax = b, solved using GMRES with an additive Schwartz global

preconditioner used in conjunction with local BILU preconditioning. The linear system

in Equation (2.74) is easier to solve as compared to that in Equation (2.65) on account

of the temporal term, 2/3∆t, which causes the linear system to be diagonally dominant.

It should be noted that although this formulation of the second-order BDF2 implicit

time-marching scheme for the solution of time-variant unsteady flows is also available

in the current framework used for this work, it has not been used for any of the cases

presented herein.

2.4 Explicit Time-Marching for Unsteady Flows

Unsteady time-dependent solutions of the solar wind are considered in Chapter 5. These

are obtained by using a standard explicit, second-order accurate, Runge-Kutta time-

marching scheme [188] which can be described as follows. Given the initial value problem

defined by
dŪ

dt
= −R(Ū), (2.75)

Ū(t0) = Ū0, (2.76)

where Ū0 is the initial value of the cell-averaged solution variable Ū at time t = 0 and

its rate of change with respect to time is given by the residual, -R(Ū). The solution, Ū
n
,

at time tn, can be advanced to the solution, Ū
n+1

, at time tn+1 = tn + h, through a time

step, h, as follows. First, an intermediate value of the solution, Ū
n+1/2

, is calculated by

considering a half time-step

Ū
n+1/2

= Ū
n −R(Ū

n
)
h

2
. (2.77)

This intermediate value is then used to calculate the corresponding residual R(Ū
n+1/2

).

The final value for Ū
n+1

is obtained as

Ū
n+1

= Ū
n −R(Ū

n+1/2
)h. (2.78)
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2.5 Block-Based Adaptive Mesh Refinement

The anisotropic block-based AMR scheme adopted here has been found to be highly

efficient in terms of reducing the overall mesh size for a given flow problem [1,50,76,79].

A brief summary of this approach is now given in what follows.

2.5.1 Refinement and Coarsening of Individual Blocks

In the proposed block-based AMR approach, the computational domain is divided into

subdomains called ‘blocks’ with each block containing a fixed predetermined number of

cells. Each block consists of Ni × Nj × Nk cells, with Ni, Nj and Nk being the number

of cells in the logical i-, j- and k-directions, respectively. The cell counts in each logical

direction, Ni, Nj and Nk, must be even numbers greater than or equal to four, but do

not necessarily have to be the same. An example of such a body-fitted multi-block mesh

generated using block-based AMR is illustrated in Figure 2.5. Here, a portion of an initial

mesh is shown in Figure 2.5(a) and an adapted mesh obtained after 4 adaptive anisotropic

refinements on the initial mesh is shown in Figure 2.5(b). As the type of AMR technique

used here is anisotropic, a block flagged for refinement is always divided into two, four

or eight smaller blocks depending on the number of directions the block is flagged to

refine along. The cell resolution is therefore increased only in selected directions, as

opposed to all directions as in an isotropic refinement procedure. These new ‘children’

blocks each contain the same predetermined number of cells. Conversely, two, four or

eight neighbouring blocks flagged for coarsening can combine to form a single block.

The linear reconstruction procedure described in Section 2.1.5 is used to prolong coarse

mesh solution variables from the ‘parent’ block to its ‘children’ blocks during refinement.

During coarsening, the fine mesh solution variables are restricted back to the ‘parent’

block. The AMR procedure is restricted such that adjacent blocks having different levels

of refinement can differ by a maximum of one refinement level in a particular logical

direction.

In this thesis, output-based mesh refinement techniques have been developed and

compared with traditional gradient-based refinement techniques for directing the adap-

tation of the mesh. For output-based refinement techniques, the refinement criteria used

to determine the flagging of blocks are based on a posteriori error estimates of inte-

grated engineering functionals. The evaluation of these criteria is the focus of Chapter 3.

For gradient-based refinement techniques, the refinement criteria used for flagging blocks

are gradients of primal flow quantities such as density, pressure, velocity and magnetic

field [49, 58, 64]. Blocks with refinement criteria higher than a predetermined refine-
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(a) (b)

Figure 2.5: (a) An example of an initial bodyfitted mesh. (b) Adapted mesh obtained
after 4 adaptive refinements on the initial mesh. The thicker black lines are the block
edges while the thinner red lines are the cell edges.

ment threshold are flagged for refinement in the corresponding directions while those

with refinement criteria lower than a predetermined coarsening threshold are flagged for

coarsening. During AMR, the refinement approach also preserves the primary stretching

of the initial mesh required for better capturing of flow features such as boundary layers.

2.5.2 Solution Block Connectivity

In order to update the solution in a computational cell by solving the discretized gov-

erning equations, information about the neighbouring cells is required for the purpose

of solution reconstruction and flux calculation. In structured cell-based mesh refinement

methods, the connectivity between cells is inherent in the indexing of cells using the

coordinates i, j, and k representing the position of the cell with respect to the logical

directions. For unstructured meshes, the connectivities between all cells must be stored

in an appropriate data structure. As the mesh is refined, updated connectivities for the

new mesh must be tracked for individual cells for cell-based refinement methods. This

makes the connectivity data structure rather memory-intensive for cell-based methods

and even more so for unstructured cell-based methods. In the proposed block-based

AMR method, the inherent indexing of cells is retained inside individual blocks. Hence,

during AMR, only the connectivity between blocks must be maintained and updated,
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Figure 2.6: 3D binary tree and the corresponding blocks after several refinements.

significantly reducing the memory requirement as compared to that of a cell-based mesh

containing the same number of cells.

For the anisotropic block-based AMR technique used here, a hierarchical binary tree

structure is used to store and track connectivities between individual blocks. Being

lightweight in terms of memory requirements, it is stored on all processors participating

in the simulation. This also reduces the time spent in communication between various

processors, as they do not need to receive information from other processors to access

the binary tree. The binary tree data structure not only keeps track of the connectivity

between blocks but also the direction in which a block is refined into two new blocks. A

root is assigned to each of the blocks formed during initial mesh generation. As blocks are

refined, branches are formed out of each refined block and the leaves of the tree represent

blocks in active use, that have no ‘children’. Every branch also stores the logical direction

of refinement, while the ‘children’ blocks are assigned a sector, i.e., east or west, north or

south, top or bottom, corresponding to the specific half of the ‘parent’ block the ‘children’

occupy. Figure 2.6 shows the resulting binary tree after several refinements of an initial

mesh consisting of a single block.

2.5.3 Information Exchange Between Blocks

Each computational block contains two additional layers of ghost cells that overlap with

neighbouring blocks. These ghost cells are used to share and exchange solution informa-

tion between adjacent blocks sharing a common interface. For adjacent blocks belonging

to different processors, this information is exchanged through the Message Passing Inter-

face (MPI). These ghost cells are also essential for the solution reconstruction required for
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(a) (b)

Figure 2.7: (a) Block under consideration (marked ID) surrounding by neighbouring
blocks. (b) Ghost cells for the ID block taken directly from the neighbouring blocks.

second order spatial accuracy. For blocks situated at the boundary of the computational

domain, ghost cells are also used for imposing appropriate boundary conditions.

For the purpose of this work, the heterogenous block approach developed by Freret

and Groth [1,79] is used here. In this approach, the ghost cells for a block have the same

refinement level as the neighbouring blocks overlapping the ghost cells. This is illustrated

in Figure 2.7 for clarity. The domain in Figure 2.7 consists of 11 blocks adjacent to each

other as shown in Figure 2.7(a). The ghost cells for the block of interest at the centre

(ID) are shown in Figure 2.7(b). The ghost cells and their solution values are directly

provided by the neighbouring blocks. This eliminates the need for prolongation of cell-

averaged values from coarser to finer cells and restriction from finer to coarser cells,

when exchanging information between blocks. When there are non-confirming cells or

so-called “hanging nodes” where neighbouring blocks meet, the fluxes through the non-

conforming faces are calculated in a systematic way, the same for neighbouring blocks, so

as to maintain the conservation properties of the finite-volume scheme [1,79]. In this way,

the need for flux correction strategies to ensure the conservation properties of the scheme

at block interfaces with resolution changes are also completely eliminated. Eliminating

the need for prolongation, restriction and flux corrections also simplifies the construction

of the matrix for the adjoint problem. For all of these reasons, the heterogeneous block

approach, with ghost cells having the same refinement levels as the neighbouring blocks

overlapping them, is used and exploited here.
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2.5.4 Parallel Implementation

All the blocks constituting the computational domain are distributed using domain de-

composition equally among the processors participating in the simulation. This paral-

lel implementation is carried out using the C++ programming language and the Mes-

sage Passing Interface (MPI) library of subroutines [189,190]. The self-similar nature of

the proposed block-based AMR approach makes the parallel implementation and load-

balancing trivial. Most of the simulations presented in this thesis were performed on

an IBM iDataPlex General Purpose Cluster (GPC), built using 3,780 nodes, with each

node containing eight 2.53 GHz Intel Xeon E5540 processors and 16 GB of memory per

node. More recent simulations were performed on the Niagara supercomputer, built us-

ing 1,500 nodes, with each node containing forty 2.4 GHz Intel Skylake cores and 202

GB of memory per node.



Chapter 3

Output-Based Error Estimation for

Steady Flows

This chapter focuses on the a posteriori output-based error estimation algorithm devel-

oped and applied herein for calculating functional error estimates that drive the mesh

adaptation. Section 3.1 describes the discrete adjoint formulation, the system of equa-

tions required to calculate the adjoint solution and the numerical techniques used to solve

this system. Section 3.2 describes the calculation of Jacobians of various residual terms

required to construct the linear system for solving the adjoint equation. Section 3.3 dis-

cusses the influence of primal boundary conditions on the adjoint solution. Section 3.4

describes the two different kinds of functional error estimates that can be used for driv-

ing the mesh adaptation using output-based error estimation. Finally, a summary of

the output-based error estimation algorithm used in conjunction with the h-refinement

procedure is given in Section 3.5.

3.1 Calculation of the Discrete Adjoint Solution

Evaluation of the solution adjoint combined with local solution error estimates enables

calculation of an error estimate for the engineering functionals as well as the determi-

nation of sensitivities of the functional to the solution error. These quantities can then

be used to direct the mesh adaption. Adjoint methods have been extensively used for

aerodynamic shape optimization [191–195] and mesh refinement [83–89,196] due to their

ability to single out regions of the flow that are more relevant for the accurate calculation

of certain quantities of interest.

The adjoint problem can be broadly classified into the continuous and discrete adjoint

formulations. The continuous adjoint equation is directly obtained from the differential

45
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form of the fluid dynamical conservation equations, and then discretized and solved using

a numerical technique.

For this reason, the continuous adjoint approach automatically leads to a discretiza-

tion that is a consistent approximation of the corresponding adjoint or dual partial-

differential equations [197,198]. In the discrete adjoint formulation [191–195], the adjoint

equations are derived directly from the spatial discretization of the conservation equations

through differentiation with respect to the conserved or primal variables. As discussed

by Hicken and Zingg [198], the resulting discrete adjoint equations are typically easier

to implement, since they amount to an exercise in differentiation and techniques such

as automatic differentiation [199, 200] or the complex-step method [201] can be used to

evaluate the Jacobian. Furthermore, as pointed out by Nadarajah [192], the discrete for-

mulation is more consistent with the computed functional as the functional is evaluated

numerically using the discretized solution. It is also possible to discretize the governing

conservation or primal equations in such a manner that the resulting discrete adjoint

is consistent with the continuous dual problem. These so-called adjoint or dual consis-

tent methods have additional beneficial properties associated with the convergence of the

functional as the mesh is refined, such as superconvergence [197, 198]. While it is possi-

ble to demonstrate dual consistency for many variational-based discretization schemes,

for non-variational-based discretizations such as the finite-volume approach considered

herein, proof of dual consistency can be more difficult to show. Nevertheless, in this

thesis, the discrete adjoint formulation is considered.

Returning to Equation (2.37), the semi-discrete form of the spatially discretized dif-

ferential equations of interest is given by

dŪ

dt
= −R(Ū), (3.1)

where R(Ū) represents the discretized residual and Ū represents the cell-averaged con-

served solution. For a steady flow, the solution satisfies R(Ū) = 0. The discretized gov-

erning equations are solved on the coarse grid denoted by ΩH , where H is the grid spacing

on the coarse grid. The discrete residual on this coarse grid is given by RH(ŪH) = 0,

where ŪH is the discrete flow solution on the coarse grid. The so-called primal solution

vector, U, is used to estimate the functional of interest, f(U). The approximation of

the functional on the coarse grid using the coarse grid solution, is denoted as fH(ŪH).

The coarse grid solution is readily available and the functional is cheap to compute, but

may not be accurate enough for the desired purpose. Hence, a solution of the problem

on a finer grid, Ωh, with a grid spacing, h, is considered. The cost of computing the fine
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grid solution, Ūh, is naturally much higher than that of the coarse grid solution, ŪH .

Calculation of the functional, fh(Ūh), by first evaluating the actual fine mesh solution,

Ūh, in order to aid in guiding the mesh adaptation would not be desirable since the

expensive computations would have been already performed.

The output-based refinement strategy considered here therefore instead makes use of

an estimate for the fine grid solution in order to be able to produce a more accurate

estimated value of the functional with respect to the observed integrated quantity on

the original mesh. For the method to be effective, this estimate of the fine grid solution

must be much less expensive than simply performing a uniform mesh refinement and

solving the problem on a fine grid. This can be accomplished as follows. The coarse grid

solution, ŪH , is first prolonged to the fine grid as

Ū
H
h = IHh ŪH , (3.2)

where IHh is a prolongation operator representing a limited piecewise linear least-squares

reconstruction and Ū
H
h is the fine grid solution which has been prolonged from the coarse

grid. The functional on the fine grid, fh(Ūh), can be approximated using a Taylor

expansion on the prolonged solution, Ū
H
h . Neglecting higher-order terms, one obtains

fh(Ūh) = fh(Ū
H
h ) +

∂fh(Ū
H
h )

∂Ūh

(Ūh − Ū
H
h ) +O((Ūh − Ū

H
h )2) . (3.3)

For the steady problem, the residual on the fine grid is Rh(Ūh) = 0. This residual can

also then be expanded using a Taylor expansion based on the prolonged solution, Ū
H
h ,

as

Rh(Ūh) = Rh(Ū
H
h ) +

∂Rh(Ū
H
h )

∂Ūh

(Ūh − Ū
H
h ) +O((Ūh − Ū

H
h )2) . (3.4)

Note that Rh(Ū
H
h ) 6= 0 on the fine grid because Ū

H
h is the coarse grid prolonged solution

and not the actual fine grid solution, Ūh, obtained by solving the governing equations

on the fine grid. Using Rh(Ūh) = 0, the difference between the fine and prolonged grid

solutions can be expressed as

(Ūh − Ū
H
h ) ≈ −

[
∂Rh(Ū

H
h )

∂Ūh

]−1

Rh(Ū
H
h ) . (3.5)

Neglecting higher-order terms and using Equation (3.5), Equation (3.3) can be then

re-written as

fh(Ūh) ≈ fh(Ū
H
h )−

(
ψψψh(Ū

H
h )
)T

Rh(Ū
H
h ), (3.6)
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where ψψψh(Ū
H
h ) is defined as the discrete adjoint solution on the fine grid. As can

be seen from Equation (3.6), this term can also be viewed as the sensitivity of the

functional for the residual error on the fine grid. The second term in Equation (3.6),(
ψψψh(Ū

H
h )
)T

Rh(Ū
H
h ), is the error estimate required to drive the mesh adaptation. The

fine grid discrete adjoint, ψψψh(Ū
H
h ), or so-called dual solution, satisfies the discrete adjoint

equation (
∂Rh

∂Ūh

)T
ψψψh =

(
∂fh
∂Ūh

)T
, (3.7)

on the fine grid.

Equation (3.7) is not solved due to its high computational expense. The fine grid

discrete adjoint, ψψψh(Ū
H
h ), is instead approximated by an interpolated value, ψψψHh , given

by

ψψψHh = JHh ψψψH , (3.8)

where ψψψH is the discrete adjoint on the coarse grid and the solution of the coarse grid

discrete adjoint equation given by(
∂RH

∂ŪH

)T
ψψψH =

(
∂fH
∂ŪH

)T
. (3.9)

Here, JHh is also a prolongation operator similar to IHh . Note that a finer mesh is used

here to evaluate the primal residual error, Rh(Ū
H
h ). An alternate approach to explicit

refinement of the mesh would be to estimate the residual error on the coarse grid itself

by using a higher-order spatial discretization or reconstruction procedure for the primal

flow solution quantities as considered in other studies [83,92,146,196]. However, such an

approach was not considered as part of this thesis.

3.1.1 Extensive Nature of Discrete Adjoint Variables

The discrete finite-volume residual for the conserved solution variables, Ri,j,k, as defined

by Equation (2.37), involves division by the cell volume, Vi,j,k. A consequence of this

formulation is that the resulting discrete adjoint variables as defined by Equation (3.9)

are extensive-like solution quantities that are proportional to the cell size. Moreover,

the adjoint variables approach zero as the cell size approaches zero. This behaviour is

somewhat different from other previous formulations of adjoint-based methods by other

authors where, due to the definition of the discrete residual, the adjoint variables are

intensive-like solution quantities that converge to a finite value as the mesh is refined.

However, a simple division of the current adjoint variables as defined by Equation (3.9)
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results in an intensive quantity that converges to a finite value as the mesh in refined.

Hence, for visualization, plotting, and comparison purposes, the adjoint variables have

been divided by the local cell volume in all plots and figures given in this thesis.

3.1.2 Solving the Linear System

Equation (3.9) is a linear system of the form Ax = b. As in the Newton iterative

scheme considered in Chapter 2, this system is a large sparse linear system distributed

across the processors participating in the simulations and is solved using preconditioned

GMRES. The Trilinos software package is used in combination with MPI for this purpose.

Trilinos [202–206] contains subpackages like Epetra [207] for the various matrix and vector

classes for data distribution over multiple processors and AztecOO [208] for routines like

GMRES and preconditioning for faster convergence of linear systems. The incomplete

LU and multilevel [209] preconditioners have been used exclusively for this work.

Although the preceding iterative procedures proved very effective for solution of the

linear system of Equation (3.9) for all of the gaseous and MHD flow cases presented in

this thesis, in some other cases not reported here, the linear system could end up being

poorly conditioned and not diagonally dominant. For instance, this situation could arise

due to large non-diagonal source terms occuring in the linear system associated with

rotational terms arising from solving the governing equations in a rotating frame of

reference. For such cases, an implicit pseudo-time-marching scheme was developed and

employed here wherein the linear system Ax = b was re-cast as an unsteady system of

ordinary differential equations of the form

dx

dτ
= −(Ax− b), (3.10)

where τ is a pseudo-time variable. Applying a first-order implicit Euler time discretiza-

tion, the solution for x can be written as(
A +

I

∆τ

)
xf = b +

xi
∆τ

, (3.11)

where I is an identity matrix, ∆τ is the pseudo-time-step, and xi and xf are solutions

at the beginning and end of the time-step, respectively. The adjoint solution is then

obtained by iteratively solving Equation (3.11) until the norm ||Ax− b||∞ converges to

a predetermined tolerance level. In order to obtain the adjoint solution efficiently, the

linear system shown in Equation (3.11) need not be solved until convergence at each

iteration. Accordingly, a modest tolerance of 10−4 could be used here. For more rapid
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convergence, the time-step is increased after every iteration as

∆τ k+1 = ∆τ 0

(
||Ax0 − b||∞
||Axk − b||∞

)1/2

, (3.12)

where ∆τk+1 is the time-step for the (k + 1)th iteration, ∆τ0 is an initially prescribed

time-step, xk is the solution at the end of the kth iteration and x0 is an initial guess

for the solution vector x. Typically, 100 to 200 iterations are needed for large meshes

to obtain an accurate adjoint solution, using the proposed modified technique. While

possibly not optimal, the procedure above ensured a diagonal dominant form for the

linear equations for x and provided a relatively straightforward approach to obtaining

converged solutions for problematic cases. However, it should again be emphasized that

this implicit time marching technique was not required and has not been used for any of

the cases reported in the thesis.

3.2 Evaluation of the Residual Jacobian

Solving Equation (3.9) requires evaluating the matrix (∂RH/∂ŪH)T and this requires

the calculation of Jacobians of residuals of each grid cell with respect to its own con-

served state as well as conserved states of neighbouring cells. The semi-discrete form of

the residual shown in Equation (3.1) for a generic cell (i, j, k) contains inviscid (hyper-

bolic) fluxes for all sets of governing equations considered in this thesis. Additionally,

the Navier-Stokes equations also contain viscous (elliptic) fluxes while the ideal MHD

equations contain source terms. Analytical approximations of the Jacobian matrix, J,

defined by

J ≈
(
∂RH

∂ŪH

)T
, (3.13)

are used here for calculating the adjoint solution. The exact second-order Jacobian ma-

trices, (∂RH/∂ŪH)T , are in general difficult and computationally expensive to evaluate,

particularly when the limiter is applied, and thus, only a first-order approximation is

used here. A finite-difference Jacobian calculation method has also been implemented,

wherein, in every cell, a small perturbation is given to each of the conserved quantities

and the perturbed residual is used to obtain the residual Jacobian. For the purpose of

the current work, a second-order central-difference scheme has been implemented. Due

to its high computational cost, the finite-difference method was only used for validating

the analytical Jacobian calculation method.

More accurate evaluation of the Jacobian can be obtained by using the complex-



Chapter 3. Output-Based Error Estimation for Steady Flows 51

step method [201], wherein a complex perturbation is given to calculate the residual

perturbation. Automatic differentiation libraries [199,200] can also be used for obtaining

highly accurate values of the residual Jacobian. Such approaches, however, were deemed

beyond the scope of this thesis. It was felt that, while the approximate expressions for

the residual Jacobian would somewhat reduce the accuracy of the adjoint solution, the

approach would be sufficient for use in guiding mesh adaptation in the block-based AMR

method considered here. The following sections describe the approximations used to

evaluate analytically each of the components that constitute the residual Jacobian.

3.2.1 Approximate Inviscid Flux Jacobian

The inviscid fluxes are calculated using an upwind Godunov-type scheme and make use of

a Riemann-solver based flux function, namely the HLLE scheme. The reference frame is

first rotated to a local reference coordinate frame wherein the x-direction is aligned with

the normal to the cell face across which the flux is being calculated. After evaluating the

flux, the frame is rotated back to the original orientation. This process can be written

as

F · n = F(UL,UR,n) = A−1F(AUL,AUR), (3.14)

where A is a rotation matrix that rotates the momentum and magnetic field vectors to

the local frame, leaving mass and energy unchanged. The solution quantities, UL and

UR, are the left and right states, respectively while F is a flux function calculating the

x-direction flux for the left and right conserved states passed to it in that order. As per

convention, the left state UL is Ūijk, the cell-averaged conserved state in the cell (i, j, k)

and the face normal points away from (i, j, k) in the local x-direction.

We first consider the Jacobian of the inviscid component, RI , of the residual of the

cell (i, j, k) with respect to the conserved variables in the cell given by

RI = − 1

Vi,j,k

Nfi,j,k∑
f=1

(Fface · nface∆Aface)i,j,k . (3.15)

Hence, the Jacobian is

(
∂RI,ijk

∂Uijk

)
=
−1

Vi,j,k

Nfi,j,k∑
f=1

(
A−1∂F(AUL,AUR)

∂(AUL)
A∆Aface

)
i,j,k

, (3.16)
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where the chain rule is used to write

∂F(AUL,AUR)

∂(UL)
=
∂F(AUL,AUR)

∂(AUL)

∂(AUL)

∂UL

=
∂F(AUL,AUR)

∂(AUL)
A. (3.17)

Here, ∂F(UL,UR)/∂UL is the Jacobian of the flux function, F , with respect to the first

argument, UL, or Ūijk, i.e. the “left” state of the Riemann problem. Since the finite-

volume method is conservative, the flux leaving the cell (i, j, k) through the face under

consideration is equal to the flux entering the neighbour sharing the same face. Hence,

the Jacobians on the right-hand side of Equation (3.16) also give the residual Jacobians

of the corresponding neighbouring cells with respect to Uijk after reversing the sign. In

this way, the Jacobians of the residual of any cell with respect to the conserved variables

in the same cell as well as its neighbours can be found, and the entire matrix can be

constructed. Thus, the first-order approximate Jacobian of the HLLE flux function given

in Equation (2.47) becomes

∂FHLLE(AUL,AUR)

∂UL

≈


∂FL

∂UL
for x

t
≤ λ−

λ+

λ+−λ−
∂FL

∂UL
− λ+λ−

λ+−λ− I for λ− < x
t
< λ+

0 for λ+ ≤ x
t

, (3.18)

where ∂FL/∂UL is a standard Jacobian of the x-direction flux vector with respect to the

conserved solution vector and is readily available and I is an identity matrix.

3.2.2 Approximate Viscous Flux Jacobian

The Navier-Stokes equations contain viscous fluxes as shown in Equation (2.11). These

fluxes depend not only on the values of the solution at the faces but also on their gradients.

as shown in Equation (2.55). For a viscous flux, FV , calculated at a face (i + 1/2, j, k),

its Jacobian with respect to the cell-averaged conserved vector, Ūijk, in cell (i, j, k) can

be calculated using a three-step process. Using the chain rule for differentiation, this

process is written as

∂FV,ijk

∂Ūijk

=
∂FV,ijk

∂Ei+1/2,j,k

∂Ei+1/2,j,k

∂Wijk

∂Wijk

∂Ūijk

, (3.19)

where Wijk is the vector of primitive variables for the cell (i, j, k) and Ei+1/2,j,k is the

extended solution vector containing primitive variables and their gradients at the face
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(i+ 1/2, j, k). The vector, Ei+1/2,j,k, is given by

Ei+1/2,j,k =

[
ρ, u, v, w, p,

∂ρ

∂x
,
∂u

∂x
,
∂v

∂x
,
∂w

∂x
,
∂p

∂x
,
∂ρ

∂y
,
∂u

∂y
,
∂v

∂y
,
∂w

∂y
,
∂p

∂y
,
∂ρ

∂z
,
∂u

∂z
,
∂v

∂z
,
∂w

∂z
,
∂p

∂z

]T
.

(3.20)

Here, ∂Wijk/∂Ūijk is a standard Jacobian of the primitive solution vector with respect

to the conserved solution vector for the cell (i, j, k) and is readily available. Similarly,

∂FV,ijk/∂Ei+1/2,j,k can also be easily calculated from Equation (3.20) and the definition

of viscous fluxes in terms of primitive variables and their gradients shown in the function

in Equation (2.55). The calculation of the term, ∂Ei+1/2,j,k/∂Wijk, can be obtained by

differentiating the individual components of Ei+1/2,j,k as follows. The vector, Ei+1/2,j,k,

is composed of the primitive variables, Wi+1/2,j,k, and their gradients, ∇W|i+1/2,j,k, at

the face (i+ 1/2, j, k). As shown in Equation (2.56), Wi+1/2,j,k is given by

Wi+1/2,j,k =
WL + WR

2
. (3.21)

where, as per convention, WL is Wijk, i.e. the “left” primitive state and WR is the

“right” primitive state. Thus, the first-order approximation for ∂Wi+1/2,j,k/∂Wijk is

given by
∂Wi+1/2,j,k

∂Wijk

≈ 1

2
I, (3.22)

where I is an identity matrix. As shown in Equation (2.57), ∇W|i+1/2,j,k is given by

∇W|i+1/2,j,k =
Wi+1,j,k −Wi,j,k

∆s

n

n · es
+

(
∇W−∇W · es

n

n · es

)
, (3.23)

where ∇W is the weighted average of the cell centered gradient at the face (i+1/2, j, k),

n is the unit normal vector at the cell interface, ∆s is the distance between the centroids

of the cells sharing the face and es is the unit normal vector between the centroids. Hence,

neglecting higher-order terms, the first-order approximation for ∂∇W|i+1/2,j,k/∂Wijk is

given by
∂∇W|i+1/2,j,k

∂Wijk

≈ − 1

∆s

n

n · es
I, (3.24)

where I is an identity matrix. Values for ∂Ei+1/2,j,k/∂Wijk can be calculated using

Equations (3.22) and (3.24).
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3.2.3 Approximate Source Term Jacobian

The ideal MHD equations contain the rotational source term, Q, and the Powell source

term, S, as shown in Equation (2.24). The term, Q, for a cell (i, j, k) depends only on

the solution variables in the cell (i, j, k). Hence, its Jacobian with respect to Ūijk can be

simply calculated as
∂Qijk

∂Ūijk

. (3.25)

The Jacobian for the Powell source term can be simplified using differentiation by parts

and written as

∂Sijk
∂Ūijk

= −(∇ ·B)ijk
∂

∂Ūijk


0

B

u ·B
u


ijk

−


0

B

u ·B
u


ijk

∂

∂Ūijk

(∇ ·B)ijk. (3.26)

Here, (∇·B)ijk is the discrete divergence of the magnetic field which should be zero upto

machine accuracy for steady ideal MHD flows. Hence, the Jacobian for the Powell source

term given in Equation (3.26) further simplifies as

∂Sijk
∂Ūijk

= −


0

B

u ·B
u


ijk

∂

∂Ūijk

(∇ ·B)ijk

= −


0

B

u ·B
u


ijk

1

Vi,j,k

∂

∂Ūijk

Nfi,j,k∑
f=1

(Bface · nface∆Aface)i,j,k ,

(3.27)

where Vi,j,k, Bface, nface and ∆Aface denote the cell volume, magnetic field vector at

the face centroid, outward pointing unit normal vector and the area of the cell face,

respectively, and Nfi,j,k represents the number of faces for cell (i, j, k). The magnetic

field vector at the face, Bface, is evaluated as

Bface =
BL + BR

2
, (3.28)

where BL and BR are reconstructed magnetic fields at the face obtained from the two

cells sharing the face. Again, the “left” state is Ūijk. A first-order approximation for the
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above Jacobian can be simply obtained by using the relation

∂Bface

∂Ūijk

≈ 1

2

∂BL

∂UL

, (3.29)

where ∂BL/∂UL is a standard Jacobian and is readily available. Similarly, the residual

with respect to the neighbouring state can be calculated by differentiating Bface with

respect to UR instead of UL.

3.3 Influence of Boundary Conditions on the Adjoint

Solution

The matrix A = [∂RH/∂ŪH ]T in Equation (3.9) contains the Jacobians of residuals of

cells adjacent to the boundaries of the computational domain. The associated residuals

contain fluxes evaluated at the cell faces lying on the boundaries of the computational

domain. In general, these boundary fluxes depend on the conserved solution in the

interior cell adjacent to the boundary as well the conserved solution in the boundary

ghost cell sharing a face with the interior cell. The boundary flux can be denoted by

F(UL,UR) where UL = Ūijk is the conserved solution in the interior cell (i, j, k) and

UR = ŪB,ijk is the conserved solution in the boundary ghost cell sharing a face with the

interior cell (i, j, k). The calculation of the Jacobians of such fluxes is not as simple as

described in the previous section and requires some special treatment.

The Jacobian of the boundary flux with respect to UL does not simply involve the

differentiation of the flux with respect to its first argument, UL, because the second

argument, UR, may also be a function of UL depending on how the boundary condition is

imposed. Using differentiation by parts and the chain rule, the Jacobian can be calculated

as
∂F(UL,UR)

∂(UL)
=
∂F(UL,UR)

∂(UL)

∣∣∣∣∣
UR

+
∂F(UL,UR)

∂(UR)

∣∣∣∣∣
UL

∂UR

∂UL︸ ︷︷ ︸
D

. (3.30)

The Jacobians ∂F(UL,UR)/∂UL and ∂F(UL,UR)/∂UR can be evaluated as described

in the previous section. The matrix D = ∂UR/∂UL depends on the specific condition

that is imposed at the boundary. The calculation of such matrices will now be discussed

for the various boundary conditions that have been used in this thesis.

For a fixed or constant flow boundary condition, such as for an incoming supersonic

flow, UR is independent of UL and the matrix D is a null matrix with zero values

throughout. For a boundary where constant extrapolation is imposed, such as for an
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outgoing supersonic flow, UR is equal to UL and the matrix D is an identity matrix,

D = I. For more complex boundary conditions, the vector UL is first expressed in terms

of the primitive variables and written as

UL =



U1,L

U2,L

U3,L

U4,L

U5,L

U6,L

U7,L

U8,L


=



ρL

ρLuL

ρLvL

ρLwL

eL

Bx,L

By,L

Bz,L


, (3.31)

where ρL is the density, uL, vL, wL are the x-, y-, z-components of the velocity uL and

Bx,L, By,L, Bz,L are the x-, y-, z-components of the magnetic field BL. The specific total

energy is given by

eL =
ρL|uL|2

2
+

pL
γ − 1

+
|BL|2

2
, (3.32)

where pL is the thermal pressure. For the non-conducting solutions of the Euler and

Navier-Stokes equations, B can be taken to be zero.

At a reflective or symmetry plane boundary condition, the density and thermal pres-

sure from the interior cell are extrapolated such that the gradient of these quantities is

zero in a direction normal to the boundary while the velocity and magnetic field vectors

in the ghost cell are reflections of the corresponding interior cell quantities across the

plane containing the boundary face such that the normal components of the two vectors

are zero at the boundary. For a unit normal of the face given by k̂ = (k̂x, k̂y, k̂z), the

reflection of uL is given by uR = uL − 2(uL · k̂)k̂. Similarly, reflection of BL is given by

BR = BL− 2(BL · k̂)k̂. The magnitudes of the velocity and magnetic field vectors do not

change after reflection, keeping the total energy in the boundary ghost cell the same as
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that in the interior cell. Thus, UR is given by

UR =



ρL

ρL(uL − 2(uL · k̂)k̂x)

ρL(vL − 2(uL · k̂)k̂y)

ρL(wL − 2(uL · k̂)k̂z)

eL

Bx,L − 2(BL · k̂)k̂x

By,L − 2(BL · k̂)k̂y

Bz,L − 2(BL · k̂)k̂z


=



U1,L

U2,L − 2(U2,Lk̂x + U3,Lk̂y + U4,Lk̂z)k̂x

U3,L − 2(U2,Lk̂x + U3,Lk̂y + U4,Lk̂z)k̂y

U4,L − 2(U2,Lk̂x + U3,Lk̂y + U4,Lk̂z)k̂z

U5,L

U6,L − 2(U6,Lk̂x + U7,Lk̂y + U8,Lk̂z)k̂x

U7,L − 2(U6,Lk̂x + U7,Lk̂y + U8,Lk̂z)k̂y

U8,L − 2(U6,Lk̂x + U7,Lk̂y + U8,Lk̂z)k̂z


. (3.33)

Thus, D = ∂UR/∂UL for a reflective boundary condition can be obtained by differenti-

ating Equation (3.33) with respect to UL to obtain

D =



1 0 0 0 0 0 0 0

0 1− 2k̂2
x −2k̂xk̂y −2k̂xk̂z 0 0 0 0

0 −2k̂yk̂x 1− 2k̂2
y −2k̂yk̂z 0 0 0 0

0 −2k̂zk̂x −2k̂zk̂y 1− 2k̂2
z 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1− 2k̂2
x −2k̂xk̂y −2k̂xk̂z

0 0 0 0 0 −2k̂yk̂x 1− 2k̂2
y −2k̂yk̂z

0 0 0 0 0 −2k̂zk̂x −2k̂zk̂y 1− 2k̂2
z


. (3.34)

The corresponding matrices for reflective, fixed and constant extrapolation boundary con-

ditions for Euler and Navier-Stokes types of flows can be obtained by simply disregarding

the magnetic field in the above procedure.

For an adiabatic, no-slip boundary condition encountered in viscous aerodynamic

flows, the flow velocity is assumed to be zero at the wall. For a first-order approximation,

the velocity vector in the boundary ghost cell is taken to be equal in magnitude and

opposite in direction to the velocity vector in the corresponding interior cell. The density

and pressure in the ghost cell are assumed to be equal to those in the interior cell, again

corresponding to zero gradients for these quantities in the boundary normal direction.



Chapter 3. Output-Based Error Estimation for Steady Flows 58

Hence, UR and D = ∂UR/∂UL are given by

UR =


U1,L

−U2,L

−U3,L

−U4,L

U5,L

 , D =


1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1

 . (3.35)

For an incoming subsonic flow, the thermal pressure in the boundary ghost cell is

assigned to be equal to the thermal pressure pL in the interior cell, whereas the density

and velocity are held constant. For a constant density ρ0 and constant velocity u0 =

(u0, v0, w0), UR is given by

UR =


ρ0

ρ0u0

ρ0v0

ρ0w0

pL
γ−1

+ ρ0
2
|u0|2

 =



ρ0

ρ0u0

ρ0v0

ρ0w0

U5,L −
U2
2,L+U2

3,L+U2
4,L

2U1
+ ρ0

2
|u0|2


. (3.36)

Hence, D = ∂UR/∂UL is given by

D =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
U2
2 +U2

3 +U2
4

2U2
1

−U2

U1
−U3

U1
−U4

U1
1


=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
|uL|2

2
−uL −vL −wL 1

 . (3.37)

For an outgoing subsonic flow, the thermal pressure in the boundary ghost cell is kept

fixed whereas the density and velocity are assigned to be equal to those in the interior

cell. For a constant pressure p0, UR is given by

UR =


ρL

ρLuL

ρLvL

ρLwL
p0
γ−1

+ ρL
2

(u2
L + v2

L + w2
L)

 =



U1,L

U2,L

U3,L

U4,L

p0
γ−1

+
U2
2,L+U2

3,L+U2
4,L

2U1,L


, (3.38)
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and in this case, D = ∂UR/∂UL is given by

D =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−U2
2 +U2

3 +U2
4

2U2
1

U2

U1

U3

U1

U4

U1
0


=


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− |uL|2
2

uL vL wL 0

 . (3.39)

It should be noted that accounting for the influence of primal boundary conditions

is essential for accurate values of computable corrections, especially for functionals cal-

culated by integrating primitive solution variables over sections of domain boundaries.

This is usually the case for engineering functionals such as forces and moments over

airfoil configurations. Incorrect implementation of boundary conditions can lead to less

accurate and also incorrect values of computable corrections. This would also lead to

incorrect values of the calculated adjoint solution, which can cause the solution method

to refine in unwanted regions when applying output-based refinement methods.

3.4 Output-Based Criteria for Mesh Adaptation

One way to drive the grid refinement in output-based adaptive methods is to directly use

the local contribution of the computable correction in the functional,
(
ψψψHh
)T

Rh(Ū
H
h ),

calculated as described in Section 3.1, as the refinement criterion. The interpolated

adjoint described in Equation (3.8) is used for this purpose. As described by Venditti and

Darmofal [85–87], this approach can however lead to unnecessary refinement in regions

where the adjoint solution is not sufficiently resolved. Hence, Venditti and Darmofal

proposed a more conservative criterion for adaptation that takes into account not only

primal but also dual (adjoint) residual errors. In the current work, both choices of

adaptation parameters have been explored. In order to understand these two variants,

the higher-order terms neglected in Equation (3.6) must be reconsidered. Equation (3.6)

can be written as

fh(Ūh)− fh(Ū
H
h ) ≈ −

(
ψψψHh
)T

Rh(Ū
H
h )︸ ︷︷ ︸

Computable Correction

−
(
ψψψh(Ū

H
h )−ψψψHh

)T
Rh(Ū

H
h )︸ ︷︷ ︸

Error in Computable Correction

, (3.40)

whereψψψHh is the interpolated coarse-grid adjoint shown in Equation (3.8) whereasψψψh(Ū
H
h )

is the more accurate value of the adjoint calculated on the fine grid. As mentioned
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earlier, values for ψψψh(Ū
H
h ) are not calculated due to the relatively high computational

cost. Hence, the term
(
ψψψh(Ū

H
h )−ψψψHh

)T
Rh(Ū

H
h ) can be identified as the error in the

computable correction. Equation (3.40) can also be written as

fh(Ūh)− fh(Ū
H
h ) ≈ −

(
ψψψHh
)T

Rh(Ū
H
h )︸ ︷︷ ︸

Computable Correction

+ Rψψψ
h (ψψψHh )

T

[
∂Rh(Ū

H
h )

∂Ūh

]−1

Rh(Ū
H
h )︸ ︷︷ ︸

Error in Computable Correction

, (3.41)

where Rψψψ
h is the adjoint residual operator defined as

Rψψψ
h (ψψψ) =

[
∂Rh(Ū

H
h )

∂Ūh

]T
ψψψ −

(
∂fh(Ū

H
h )

∂Ūh

)T

. (3.42)

Since ψψψh(Ū
H
h ) is the value of the adjoint calculated by solving the adjoint problem on

the fine grid, it satisfies the equation[
∂Rh(Ū

H
h )

∂Ūh

]T
ψψψh(Ū

H
h ) =

(
∂fh(Ū

H
h )

∂Ūh

)T

, (3.43)

and its residual, Rψψψ
h (ψψψh(Ū

H
h )), is equal to zero. Nevertheless, the fine grid residual,

Rψψψ
h (ψψψHh ), of the interpolated coarse-grid adjoint, ψψψHh , is not necessarily zero. Calculation

of this residual requires the construction of the matrix [∂Rh(Ū
H
h )/∂Ūh]

T and vector

(∂fh(Ū
H
h )/∂Ūh)

T on the fine grid; however, solution of the linear system on the fine grid

is not required.

Hence, as indicated by Equation (3.41), the error in the computable correction can

be written in terms of the primal as well as adjoint residuals on the fine mesh level.

Consequently, reducing the primal and dual residuals simultaneously can reduce the

error in the computable correction. Thus, Venditti and Darmofal [85–87] proposed using

a combination of the two residuals into a single adaptation parameter for each cell, also

taking into account the fact that the primal and dual variables have different units and

magnitudes and hence need to be assigned weights appropriately. The criterion defined

by Venditti and Darmofal [85–87] for a particular coarse grid cell, i, is given by

εεεi =
1

2

∑
l(i)

(∣∣∣[QH
h ψψψH − LHh ψψψH ]Tl(i)[Rh(L

H
h ŪH)]l(i)

∣∣∣
+
∣∣∣[QH

h ŪH − LHh ŪH ]Tl(k)[R
ψψψ
h (LHh ψψψH)]l(i)

∣∣∣). (3.44)
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Here, QH
h and LHh are quadratic and linear interpolation operators respectively, used for

prolonging coarse grid variables into the fine grid using reconstruction. The summation

is performed over all fine grid cells l(i) contained within the coarse grid cell i.

Henceforth, the output-based adaptation parameters used for flagging blocks are ei-

ther the computable correction (CC), as represented by Equation (3.6), or the approxi-

mate error in the computable correction (ECC), as given by Equation (3.44). Appropriate

norms of these error estimate contributions from each cell of the block are calculated and

used to flag individual blocks for mesh adaptation. In order to provide a more linear scale

for the resulting grid refinement criteria when flagging the grid blocks for refinement and

coarsening, logarithmic values of the error estimates were used.

3.5 Error Estimation and h-Refinement Procedure

The proposed adjoint-based error estimation procedure and its use for driving the anisotropic

mesh refinement can be summarized by the following steps:

1) An initially coarse body-fitted mesh consisting of one or more blocks is generated

and the appropriate initial and boundary conditions are imposed.

2) The governing equations are solved on this base mesh using the inexact Newton’s

method for steady flows described in Section 2.2. The L2 norm of the residual of one

of the conserved quantities is monitored to determine whether a converged solution has

been obtained. Once a solution is determined with a norm of the residual below a very

small predefined tolerance level, a steady state solution is available on the current mesh

and the value of the functional can then be calculated.

3) At this point, the mesh can be adapted in order to obtain a more accurate value of

the functional. At first, the adjoint solution is calculated on the current mesh by solving

Equation (3.9) using the GMRES algorithm. A limited least-squares piecewise linear

reconstruction is performed on the coarse mesh in order to calculate profiles of both the

primal and dual/adjoint solutions in each computational cell.

4) The entire mesh is isotropically and uniformly refined and the solution residuals are

evaluated on this fine mesh. The total computable correction, as given in Equation (3.6),

is then calculated by weighting these residuals with the prolonged adjoint solution. The

mesh is coarsened back to the original mesh after obtaining the computable correction.

5) The entire mesh is uniformly refined in each of the three logical directions and

the primal, conserved and adjoint variables are prolonged to the fine mesh using the

second-order reconstruction performed earlier in step 3. These finer meshes are required

in order to calculate the solution residual errors required for the estimation of the errors
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in the functional considered.

6) The solution residuals are evaluated on the finer meshes. These residuals, as

expected, are generally non-zero within the defined tolerance as the prolonged solution

on the finer mesh does not correspond to the converged steady state solution. It is this

difference between the fine and coarse grid residuals that is multiplied with the adjoint

as shown in Equation (3.6), which acts as the sensitivity of the functional to the residual

error.

7) The coarse computational mesh is then recovered and the primal flow quantities

and the functional errors corresponding to the logical direction of refinement are projected

back to the coarse grid. In this way, the error estimates in the value of the functional,

associated with each grid cell for refinement in each of the preferred directions of the

computational domain, are obtained.

8) Output-based error measures for each computational block are then obtained by

calculating either the L1, L2 or L∞ norm of the functional error contributions from the

grid cells comprising the block. Note that these error measures for the block are just for

the logical direction under consideration and measures for each of the three directions

must be calculated similarly before the blocks can be flagged for refinement/coarsening.

9) For three-dimensional anisotropic refinement, steps 5-8 are carried out sequentially

for all three logical directions to obtain error measures for all directions within each

computational block. At this point, we have all the required information required to

perform mesh adaptation on the base mesh. The blocks with error measures above a

predefined threshold are flagged for refinement in the corresponding logical direction.

Conversely, the blocks with error measures below a predefined threshold are flagged for

coarsening in the corresponding logical direction. The mesh is adapted accordingly and

a new mesh with a higher refinement level is generated.

10) This newly created mesh then becomes the base mesh and the entire process

from steps 2-9 is carried out repeatedly until the desired maximum level of refinement is

reached or the error estimate is reduced below a user-specified threshold.

The preceding procedure for the output-based anisotropic AMR is also illustrated in

the form of a flowchart given in Figure 3.1.
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Start with
coarse

base mesh.

Impose initial
and boundary

conditions.

Obtain steady state
solution on base mesh.

Maximum
refinement

level
reached?

Stop simulation.

Calculate adjoint on
base mesh and perform
reconstruction for pri-

mal and dual variables.
Assign DIR = 1.

Perform uniform
isotropic refinement to
calculate computable

correction and coarsen
back to base mesh

Perform uniform refine-
ment in logical direction
DIR and prolong primal

and dual variables.

Calculate solution resid-
ual on fine mesh and
multiply with adjoint

to calculate func-
tional error estimates.

Coarsen back to base
mesh and restrict

error onto base mesh.

Calculate error norms
for computational blocks

Update DIR = DIR + 1

Is DIR
equal to 3?

Flag blocks for
anisotropic refinement

according to error norms
for various directions.

Refine base mesh to ob-
tain new refined mesh.
This is new base mesh.

yes

no

yes

no

Figure 3.1: Flowchart depicting procedure used for output-based error estimation and
h-refinement.



Chapter 4

Output-Based AMR for Steady

Non-Conducting Aerodynamic Flows

In this chapter, the application of the proposed output-based anisotropic AMR scheme to

several steady non-conducting aerodynamic flows is considered. Comparisons are made

between the results obtained using the proposed output-based refinement approach to

those obtained using both uniform mesh refinement and traditional gradient-based AMR

approaches. The mesh savings obtained using the proposed output-based scheme for

given levels of accuracy are investigated. The qualitative differences in the meshes ob-

tained using the various approaches are also noted. Section 4.1 describes the application

of the proposed scheme to inviscid flows governed by the Euler equations. Section 4.2

describes the application of the proposed scheme to viscous flows governed by the Navier-

Stokes equations.

4.1 Inviscid Flows

Prior to investigating non-conducting viscous laminar flow cases, the application of the

proposed output-based strategy to a number of inviscid cases is considered. The cases

considered include inviscid supersonic flow past a wedge, inviscid supersonic flow past

a diamond-shaped airfoil, inviscid supersonic flow over a smooth sinusoidal bump in a

channel, and inviscid supersonic spherical outflow. The flow problems considered present

a range of challenges for the proposed output-based AMR scheme ranging from the

treatment of continuous supersonic outflows to supersonic flows with both isolated and

complex interacting shock structures.

64
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(a) (b)

Figure 4.1: (a) Initial computational mesh for steady inviscid M = 3 supersonic flow
past a wedge. The thicker black lines are the block edges and the thinner red lines are
the cell edges. The total number of blocks is 2, the total number of cells per block is
8×8×4=256 and the total number of cells is 512. (b) Predicted density contours for this
case after 6 uniform refinements. Blocks: 8,192. Cells: 2,097,152.

4.1.1 Supersonic Flow Past a Wedge

The first inviscid flow case considered here is that studied previously by Hartmann and

Houston [210]. In particular, prediction of an oblique shock that forms when an inviscid

supersonic flow of air enters a channel and is subsequently deflected by an inclined wedge

is examined. An incoming supersonic flow of air with Mach number M = 3, standard

atmospheric density ρ = 1.225 kg/m3 and standard atmospheric pressure p = 101, 325

Pa is considered. The length of the wedge is l = 1 m, the width is w = 0.25 m and

the wedge angle α is taken to be 9.5◦. The initial mesh, as shown in Figure 4.1(a), is

composed of just two blocks along the length of the channel and the number of cells per

block is 8× 8× 4 = 256, with 4 cells in the out-of-plane direction. Reflective boundary

conditions are imposed at the top and bottom boundaries. At the inlet of the channel,

the flow variables for the incoming supersonic flow are kept fixed whereas at the outlet,

constant extrapolation is imposed for the outgoing supersonic flow. The ratio of specific

heats, γ, is assumed to be 1.4. Using the Rankine-Hugoniot relations, the angle of the

shock and the analytical solution can be determined for a given wedge angle, α, and

Mach number, M . For α = 9.5◦, the angle of the shock is given by β = 26.9308◦. The

analytical solution at the upstream and downstream sides of the shock in terms of ρ, p
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(a) (b)

(c) (d)

Figure 4.2: Density residual convergence history on the complete set of adaptive refined
AMR meshes for steady inviscid M = 3 supersonic flow past a wedge: (a) uniform
refinement; (b) gradient-based refinement; (c) output-based refinement using CC; (d)
output-based refinement using ECC.
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(a)

(b)

Figure 4.3: Energy adjoint distribution for steady inviscid M = 3 supersonic flow past
a wedge : (a) after 7 uniform refinements. Blocks: 32,768. Cells: 8,388,608 (b) after
10 output-based refinements using CC as refinement criterion. Blocks: 1,323. Cells:
823,808.

and M is given by ρp
M


left

=

1.225 kg/m3

101325 Pa

3

 ,
 ρp
M


right

=

 1.98 kg/m3

201354.51 Pa

2.53

 . (4.1)
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Figure 4.1(b) shows the predicted density distribution for this case after a converged

solution has been obtained after 6 uniform refinements on the initial mesh. The conver-

gence of the steady-state solution residual for this case for density is shown in Figure 4.2

for the complete set of refined meshes for the four refinement techniques considered

(i.e., uniform, gradient-based, as well as CC and ECC output-based refinement of the

mesh). From Figure 4.2, it is evident that rapid convergence of the steady-state solution

is achieved using the proposed NKS scheme in less than 40 Newton steps on all grids

with a residual reduction of more than eight orders of magnitude. Similar convergence

behaviour was achieved for all of the non-conducting flow cases considered in the thesis.

The functional used here for this oblique shock case is the pressure drag force on

the inclined wedge in the direction of the incoming flow. For a wedge of length l = 1

m and width w = 0.25 m, the analytical value of the drag force is given by Da =

pright ·w · l · sin(α) = 8308.27 N. Figure 4.3 shows the distribution for the 5th component

of the adjoint solution vector after a converged solution has been obtained after 7 uniform

refinements on the initial mesh and after 10 refinements using CC as refinement criterion.

Additionally, Figure 4.4 shows a comparison between meshes having approximately the

same functional error, obtained after several adaptive refinements on the initial mesh,

using various mesh refinement criteria. For comparison purposes, Figure 4.4(a) shows

the mesh obtained using density gradients to drive the mesh adaptation whereas Fig-

ures 4.4(b) and 4.4(c) show the meshes obtained using the two proposed output-based

refinement criteria considered here, the CC and ECC methods, respectively.

It is evident from Figure 4.4 that the gradient-based method refines the entire region

containing the oblique shock from the start of the ramp all the way to the outflow

boundary where the flow exits the domain. In contrast, the output-based method using

the CC as the refinement criteria refines only the portion of the shock lying in the region

where the adjoint-variable has a non-zero value. The output-based method using the

ECC approach as the refinement criteria also refines the portion of the shock lying in

the region where the adjoint-variable has a non-zero value. However, as can be seen in

Figure 4.4(c), the shock is not highly refined for the latter as compared to the CC results

of Figure 4.4(b), with the highest refinement level only observed in a very few blocks

located in the vicinity of the compression corner where the shock originates and where

the functional of interest is evaluated.

The difference between the numerically computed value of the drag force on the

wedge and the analytical value calculated above provides the error in the drag force.

Figures 4.5(a) and 4.5(b) show plots of this percentage error and the actual value of

the drag force against the number of degrees of freedom per direction for this effectively
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(a)

(b)

(c)

Figure 4.4: Adapted meshes showing the grid block boundaries (not individual cells)
having almost the same functional error, for steady inviscid M = 3 supersonic flow past
a wedge: (a) After 10 refinements using density gradient as refinement criterion. Blocks:
5,171. Cells: 1,323,776. (b) After 10 refinements using CC as refinement criterion.
Blocks: 3,218. Cells: 823,808. (c) After 11 refinements using ECC as refinement criterion.
Blocks: 743. Cells: 190,208.
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(a)

(b)

Figure 4.5: (a) Convergence of the percentage error in the predicted drag force and
(b) convergence of the predicted drag force, as a function of the mesh size (number of
degrees of freedom per direction) for various refinement techniques for steady inviscid
M = 3 supersonic flow past a wedge.
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(a)

(b)

Figure 4.6: Convergence of the actual error, the error after adding the computable cor-
rection and the error estimate (absolute computable correction) as a function of the mesh
size (number of degrees of freedom per direction) (a) for the CC method and (b) for the
ECC method, for steady inviscid M = 3 supersonic flow past a wedge.
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two-dimensional flow problem, i.e.
√
Ncells/4, where Ncells is the total number of grid

cells in the computational mesh, respectively. The convergence of the error is shown

for uniform as well as the gradient-based and both forms of the output-based mesh

refinement techniques. For the output-based techniques, the error obtained after adding

the computable correction to the functional is also shown in Figure 4.5(a) whereas the

solid horizontal line in the closeup of Figure 4.5(b) represents the exact value of the

functional. From these figures it is evident that the output-based method using CC

achieves a mesh size reduction of 38% in terms of the total number of computational

cells at the finest refinement level as compared to the gradient-based method for the

same accuracy level (∼0.006%). A mesh size reduction of 86% is achieved by using the

ECC to drive the mesh refinement. Adding the computable correction, as illustrated

in Figure 4.5(a), further reduces the error in the functional. While the gradient-based

approach provides a more accurate global flow solution compared to uniform refinement

for the same mesh density, it focuses too much attention to the reflected shock, excessively

refining the upper shock which does not improve the calculation of the pressure drag on

the wedge as efficiently as the output-based approaches. This behaviour clearly illustrates

the benefits of the output-based AMR.

In order to illustrate more clearly the convergence and behaviour of the output-based

methods, the actual error in the functional, the corrected error, and the estimated error

(computable correction) are all shown in Figure 4.6 as a function of the number of degrees

of freedom for both the CC and ECC methods. For both these output-based refinement

strategies, the error measures all continuously decrease as the mesh is refined and the

estimated error after the computable correction is applied is significantly smaller than

the uncorrected result. For both the CC and ECC methods, it can also be observed that

the values of the actual error and estimated error based on the computable correction

approach each other as the mesh is refined, as should be expected.

4.1.2 Supersonic Flow Past a Diamond-Shaped Airfoil

In the second inviscid flow example case considered here, inviscid supersonic flow is inter-

cepted by a symmetrical diamond-shaped airfoil at a non-zero angle of attack. A Mach

number M = 2 flow of air at standard atmospheric density ρ = 1.225 kg/m3 and stan-

dard atmospheric pressure p = 101, 325 Pa is considered. The chord length of the airfoil

is assumed to be unity and the far-field boundary is located 32 chord lengths away from

the airfoil in a radially outward direction. The initial mesh, as shown in Figure 4.7(a),

is composed of 8 blocks and the number of cells per block is 10× 10× 4 = 400, with 10
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(a) (b)

Figure 4.7: (a) Initial computational mesh for steady inviscid M = 2 supersonic flow
past a diamond-shaped airfoil showing: (a) entire view of the mesh and (b) close-up view
of the mesh. The thicker black lines are the block edges and the thinner red lines are
the cell edges. The total number of blocks is 8, the total number of cells per block is
10×10×4=400 and the total number of cells is 3,200.

cells in the direction along the airfoil surface, 10 cells in the direction radially outward

from the airfoil surface and 4 cells in the out-of-plane direction. Mesh stretching in the

radial direction is used such that the grid cells are more clustered near the airfoil surface,

as shown in a close-up view of the initial mesh in Figure 4.7(b). The angle of attack of

the airfoil is given by α = 10◦. Each of the flat sections of the airfoil makes an angle

Γ = 5◦ with the chord line of the airfoil. Reflective boundary conditions are imposed at

the airfoil surface. At the outer boundary, fixed boundary conditions are imposed on the

left half of the boundary for the incoming supersonic flow while constant extrapolation

is imposed on the right half. The ratio of specific heats, γ, is assumed to be 1.4. Oblique

shocks are formed at the bottom leading edge and the upper trailing edge of the airfoil.

Prandtl-Meyer expansion fans are also generated at the upper leading edge and bottom

trailing edge of the airfoil. In addition, expansion fans are generated at the intersection of

the flat sections of the airfoil where the airfoil thickness is the greatest. Figure 4.8 shows

the predicted density distribution around the diamond-shaped airfoil after a converged

solution has been obtained after 6 uniform refinements on the initial mesh.

The functional used in this case is the pressure drag force on the airfoil in the direction

of the free-stream flow. The flow solution at the airfoil surface can be calculated using
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Figure 4.8: Predicted density contours for steady inviscid M = 2 supersonic flow past a
diamond-shaped airfoil after 6 uniform refinements. Blocks: 32,768. Cells: 13,107,200.

the Rankine-Hugoniot relations across the oblique shocks and isentropic flow relations

across the Prandtl-Meyer expansion fans. Thus, an analytical value of the drag force can

be calculated. For a unit chord length, the drag coefficient is given by

CD =
2D

ρ∞V 2
∞
, (4.2)

where D is the drag force per unit width, ρ∞ is the free-stream density and V∞ is the

free-stream velocity. The analytical value of the drag coefficient is found analytically to

be 0.0926.

Figure 4.9 illustrates the distributions of the 1st component of the adjoint solution

vector after converged solutions have been obtained after 6 uniform refinements of the

initial mesh as well as following 8 refinements based on the CC refinement criterion, re-

spectively. Additionally, Figure 4.10 shows the resulting computational meshes obtained

after several adaptive refinements on the initial mesh, using the various mesh refine-
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(a) (b)

Figure 4.9: Density adjoint distribution for steady inviscid M = 2 supersonic flow past
a diamond-shaped airfoil : (a) after 6 uniform refinements. Blocks: 32,768. Cells:
13,107,200. (b) after 8 refinements using CC as refinement criterion. Blocks: 2,324.
Cells: 929,600.

ment strategies considered herein. In particular, Figures 4.10(a) and 4.10(b) show the

meshes obtained after 7 and 8 refinements using the density gradient to drive the mesh

adaptation, respectively. Figures 4.10(c) and 4.10(d) show the meshes obtained after 8

refinements using the CC refinement criteria and after 7 refinements using ECC crite-

ria, respectively. As for the previous wedge flow case examined having a strong shock,

the gradient-based method can be seen to produce extensive refinement of the mesh in

the vicinities of the leading and trailing edge shocks. Additionally, the gradient-based

method also refines the regions containing the four expansion fans just above the leading

edge, just below the trailing edge and at the central portion of the airfoil just above and

below the surface near the sharp corners of the diamond airfoil. Since the airfoil surfaces

abruptly change direction as opposed to a smooth airfoil, the flow properties also change

abruptly across the expansion fans, leading to very sharp gradients. The output-based

refinement method employing the CC strategy as the refinement criteria generously re-

fines the expansion fans formed at the leading edge and above and below the airfoil.

The leading edge shock is also refined but only in the region where the adjoint variable

has a non-zero value. The output-based refinement method employing the ECC as the

refinement criteria refines in the same regions, however, in a relatively milder manner.

Also, the refinement in the direction along the airfoil surface is similar to that using the
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(a) (b)

(c) (d)

Figure 4.10: Adapted meshes showing the grid block boundaries (not individual cells) for
steady inviscid M = 2 supersonic flow past a diamond-shaped airfoil: (a) After 7 refine-
ments using density gradient as refinement criterion. Blocks: 4,012. Cells: 1,604,800. (b)
After 8 refinements using density gradient as refinement criterion. Blocks: 7,774. Cells:
3,109,600. (c) After 8 refinements using CC as refinement criterion. Blocks: 2,324. Cells:
929,600. (d) After 7 refinements using ECC as refinement criterion. Blocks: 661. Cells:
264,400. Meshes shown in (a), (c) and (d) have approximately the same functional error.

CC method, but the refinement in the outward direction normal to the airfoil is more

sparse.

The difference between the numerically computed value of the drag coefficient and the
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(a)

(b)

Figure 4.11: (a) Convergence of the percentage error in the predicted drag force and
(b) convergence of the predicted drag force, as a function of the mesh size (number of
degrees of freedom per direction) for various refinement techniques for steady inviscid
M = 2 supersonic flow past a diamond-shaped airfoil.



Chapter 4. Output-Based AMR for Aerodynamic Flows 78

analytical value, 0.0926, is the error in the drag coefficient. Figures 4.11(a) and 4.11(b)

show plots of this error as a function of the total number of degrees of freedom per

direction for this two-dimensional flow problem, i.e.
√
Ncells/4, where Ncells is the total

number of grid cells in the computational mesh, respectively. The convergence of the

functional error is shown for uniform as well as the gradient-based and both output-

based mesh refinement techniques. As for the previous wedge flow case, it is evident

that all four of these approaches tend to an almost constant rate of convergence in the

error after the first few refinements, with the output-based methods showing the steepest

descent. While it is clear that the density gradient-based method performs better than

the uniform approach, use of the CC refinement criterion achieves a 42% reduction in the

size of the computational mesh as compared to the density gradient-based approach for

the same accuracy (∼0.07%), whereas with the ECC approach provides an 83% reduction

in mesh size for the same accuracy, both of which are quite considerable.

4.1.3 Supersonic Flow Over a Bump in a Channel

In the next inviscid flow problem, a Mach number M = 1.4 supersonic flow of air with

standard atmospheric density ρ = 1.225 kg/m3 and standard atmospheric pressure p =

101, 325 Pa enters a rectangular channel and is intercepted by a sinusoidal bump. The

profile equation of the sinusoidal bump is y1(x) = 0.042 sin2(πx) m for x ∈ [0, 1] m, the

height of the bump thus being 4.2 cm. The length of the channel is 5.5 m and its height

is 2 m. The bump is located at a distance of 1 m from the inlet along the length of the

channel. The initial mesh, as shown in Figure 4.12(a), is composed of 4 blocks along the

length of the channel and 2 blocks along its height and the number of cells per block is

8× 8× 4 = 256, with 4 cells in the out-of-plane direction. Reflective boundary conditions

are imposed on the top and bottom boundaries of the channel including the bump. At

the inlet, flow variables for the incoming supersonic flow are kept fixed whereas at the

outlet, constant extrapolation is imposed for the outgoing supersonic flow. The ratio of

specific heats, γ, is assumed to be 1.4. The presence of the bump results in the formation

of compression waves in front of the bump that coalesce to form a strong oblique shock.

Similarly, a strong oblique shock is also formed near the trailing edge of the bump. These

shocks subsequently reflect from both the upper and lower boundaries. This case was

studied previously by Freret and Groth [1]. Figure 4.12(b) shows the predicted density

distribution for this case after a converged solution has been obtained after 6 uniform

refinements were applied to the initial mesh.

The functional used here is the pressure-induced drag force on the bump in the di-
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(a)

(b)

Figure 4.12: (a) Initial computational mesh for steady inviscid M = 1.4 supersonic flow
over a bump. The thicker black lines are the block edges and the thinner red lines are
the cell edges. The total number of blocks is 8, the total number of cells per block is
8×8×4=256 and the total number of cells is 2,048. (b) Predicted density contours for
this case after 6 uniform refinements. Blocks: 32,768. Cells: 8,388,608.

rection of the incoming flow. Figure 4.13 shows the computed distributions for the 5th

component of the adjoint solution vector for this functional after a converged solution

has been obtained following 6 uniform refinements of the initial mesh and after 7 refine-

ments baed on the CC refinement criterion. Again for comparison purposes, Figure 4.14

depicts the meshes obtained after 7 adaptive refinements of the initial mesh, using the

various mesh refinement criteria. Figure 4.14(a) shows the mesh obtained using density

gradients to drive the mesh adaptation. Figures 4.14(b) and 4.14(c) show the meshes
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(a)

(b)

Figure 4.13: Energy adjoint distribution for steady inviscid M = 1.4 supersonic flow over
a bump : (a) after 6 uniform refinements. Blocks: 32,768. Cells: 8,388,608. (b) after 7
refinements using CC as refinement criterion. Blocks: 971. Cells: 248,576.

obtained using the two output-based refinement criteria, the CC and ECC approaches,

respectively. The gradient-based method refines both the shocks emanating from the

leading edge as well as the trailing edge of the bump, as well as their reflections from the

top and bottom boundaries of the channel. The output-based method employing the CC

method as the refinement criteria refines only a small portion of the leading shock lying in
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(a)

(b)

(c)

Figure 4.14: Adapted meshes showing the grid block boundaries (not individual cells)
for steady inviscid M = 1.4 supersonic flow over a bump: (a) After 7 refinements using
density gradient as refinement criterion. Blocks: 6,392. Cells: 1,636,352. (b) After 7
refinements using CC as refinement criterion. Blocks: 971. Cells: 248,576. (c) After 7
refinements using ECC as refinement criterion. Blocks: 1,038. Cells: 265,728.
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(a)

(b)

Figure 4.15: (a) Convergence of the estimated percentage error in the predicted drag
force as a function of the mesh size (number of degrees of freedom per direction) for
steady inviscid M = 1.4 supersonic flow over a bump. (b) Convergence of the value of
the predicted drag force for various refinement techniques for the bump flow.
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the region where the adjoint variable has a non-zero value. None of the shock reflections

or the shock formed near the trailing edge of the bump undergo any refinement. The

output-based method using the ECC criteria also exhibits a similar behaviour, although

the amount of refinement is relatively more sparse.

An analytical value for the drag force is unavailable for this case. Thus, a value of the

functional calculated on a uniformly refined mesh to one level higher than the highest

mesh refinement level considered here is taken as the reference value of the pressure drag

for the purposes of evaluating directly the solution error. Figure 4.15(a) shows a plot

of the corresponding error in the predicted drag force value again as a function of the

total number of degrees of freedom per direction, i.e.
√
Ncells/4, where Ncells is the total

number of grid cells in the computational mesh. For the output-based techniques, the

corrected functional obtained after adding the computable correction to the functional is

also shown. Additionally, a closeup of the convergence of the predicted drag force value

for the various mesh refinement techniques is shown in Figure 4.15(b). For the latter, the

solid horizontal line indicates the converged reference fine mesh value of the functional.

The gradient-based refinement strategy initially outperforms the uniform refinement

strategy by continuously reducing the functional error, but after 4 refinements, it reaches

a plateau and the uniform refinement strategy produces more accurate results. This is

because this technique focuses on refining the shocks and their reflections, mostly in the

region downstream from the bump. This region has no influence on the accuracy of the

force on the bump, as can be seen from the distribution for the adjoint variable shown in

Figure 4.13. Thus, the gradient-based approach converged to a rather inaccurate value of

the functional, as can be seen in Figure 4.15(a). However, as for the supersonic wedge and

diamond airfoil flow cases, the output-based refinement approaches continue to produce

more accurate predictions of the functional as the mesh is further refined. In terms of

mesh savings, these represent a more than 95% reduction in mesh size, as compared to

a uniformly refined mesh having equivalent accuracy (∼0.01%).

4.1.4 Supersonic Spherical Outflow

The last inviscid flow case of interest here is that of steady supersonic spherical outflow.

Air at a supersonic speed with flow density ρi = 10 kg/m3, radial velocity Vr,i = 4.5 m/s,

and pressure pi = 26 Pa enters through the inner sphere with a velocity vector pointing

in the radially outward direction. The air subsequently expands and exits supersonically

through the outflow sphere. A spherical computational domain is used for this case with

a cubed-sphere multi-block mesh as described by Ivan et al. [67,69]. The initial mesh, as
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(a) (b)

Figure 4.16: (a) A portion of the initial computational mesh for steady spherical super-
sonic outflow. The thicker black lines are the block edges and the thinner red lines are
the cell edges. The shaded green surface is the inner boundary. The total number of
blocks is 18, the total number of cells per block is 10×10×10=1,000 and the total number
of cells is 18,000. (b) Predicted density contours for this case on a sliced cross-section
after 3 uniform refinements. Blocks: 9,216. Cells: 9,216,000.

partially shown in Figure 4.16(a), consists of eighteen blocks connected, forming an inner

hollow sphere of radius Ri = 1 m and an outer spherical shell of radius Ro = 4 m. The

number of cells per block is 10× 10× 10 = 1, 000. The flow variables for the incoming

supersonic flow are fixed at the inner boundary with radius, Ri. At the outer boundary

with radius, Ro, constant extrapolation is imposed for the exiting supersonic flow. The

ratio of specific heats, γ, is assumed to be 1.4.

The analytical solution to the preceding supersonic outflow problem, which is also

described by Ivan et al. [69], can be defined at any radial location, r, using

C3 −
1

r2Vr

[
(C2 − V 2

r )
1

γ−1

] = 0, (4.3)

and

C3 =
1(

2γ
γ−1

pi
ρi

1
γ−1

)
R2
iVr,i

, C2 =
2γ

γ − 1

pi
ρi

+ V 2
r,i, (4.4)

where C2 and C3 are constants depending on the inflow conditions. Here, pi, ρi and Vr,i
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(a) (b)

(c) (d)

Figure 4.17: Density residual convergence history on the complete set of adaptive refined
AMR meshes for steady inviscid supersonic spherical outflow: (a) uniform refinement;
(b) gradient-based refinement; (c) output-based refinement using CC; (d) output-based
refinement using ECC.
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(a) (b)

(c) (d)

Figure 4.18: (a) The z-momentum and (b) density adjoint distributions for steady spher-
ical supersonic outflow on a sliced cross-section after 3 uniform refinements. Blocks:
9,216. Cells: 9,216,000. (c) The z-momentum and (d) density adjoint distributions for
steady spherical supersonic outflow on a sliced cross-section after 4 refinements using CC
as refinement criterion. Blocks: 12,126. Cells: 12,126,000.

are the pressure, density and radial velocity at the inner boundary while Vr is the velocity

at an arbitrary radius, r. For illustrative purposes, Figure 4.16(b) shows the predicted

density distribution for this case for a portion of the spherical domain after a converged

solution has been obtained following 3 uniform refinements on the initial mesh. As for

the wedge flow case, the convergence of the steady-state solution density residual for this
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(a) (b)

(c)

Figure 4.19: Sliced cross-sections of adapted meshes showing the grid block boundaries
(not individual cells) for steady spherical supersonic outflow: (a) After 4 refinements
using density gradient as refinement criterion. Blocks: 288. Cells: 288,000. (b) After
4 refinements using CC as refinement criterion. Blocks: 12,126. Cells: 12,126,000. (c)
After 4 refinements using ECC as refinement criterion. Blocks: 14,216. Cells: 14,216,000.
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(a)

(b)

Figure 4.20: (a) Convergence of the percentage error in the functional and (b) conver-
gence of the functional, as a function of the mesh size (number of degrees of freedom
per direction) for various refinement techniques for steady inviscid supersonic spherical
outflow.



Chapter 4. Output-Based AMR for Aerodynamic Flows 89

case is also given in Figure 4.17 for the complete set of refined meshes obtained using the

four refinement techniques considered herein. As for the wedge flow case, it is evident

from Figure 4.17 that rapid convergence of the steady-state solution is achieved using the

proposed NKS scheme in less than 20 Newton steps on all grids with a residual reduction

of more than eight orders of magnitude.

The functional adopted for the supersonic outflow problem is the volume-integrated

temperature of the air contained in the portion of the spherical domain contained between

the radii of 2 m and 3 m. The analytical value of the functional, i.e. the temperature

integrated over this volume can be calculated analytically and is 0.31560688 m3K. Fig-

ure 4.18 shows a cross-sectional view of the distributions of the 4th and 1st components

of the adjoint solution vector after a converged solution has been obtained after 3 uni-

form refinements on the initial mesh and following 4 output-based refinements using the

CC refinement criterion. Additionally, Figure 4.19 shows a comparison of meshes ob-

tained after several adaptive refinements on the initial mesh, using gradient-based and

output-based refinement criteria. Figure 4.19(a) shows a slice of the mesh obtained after

6 adaptive refinements using density gradients as the adaptation criteria. This technique

mainly detects gradients in the radial direction and hence the anisotropic refinement is

restricted to that direction. Figures 4.19(b) and 4.19(c) show a slice of the mesh obtained

after 4 output-based adaptive refinements using the CC and ECC strategies, respectively

as the adaptation criteria. These methods are able to detect the errors in the functional

arising in the azimuthal direction and therefore refine the mesh in both radial and az-

imuthal directions in the region of the functional calculation, including directions upwind

from this region.

The difference between the numerically computed value of the functional and the an-

alytical value, 0.31560688 m3K, provides the true error in the functional. Figures 4.20(a)

and 4.20(b) show a plot of this percentage error against the degrees of freedom per direc-

tion for this now three-dimensional problem, i.e. 3
√
Ncells, where Ncells is the total number

of grid cells in the computational mesh. In particular, Figure 4.20(b) shows a plot of

the convergence in the value of the functional to the analytical value. The convergence

of the error is shown for uniform as well as the gradient-based and both output-based

mesh refinement techniques. The uniform refinement approach leads to a constant rate

of reduction in error with a slope 2, as expected for smooth flows simulated with second-

order schemes. It is quite evident that the gradient-based approach is not able to detect

the dominant errors in the azimuthal directions and, thus, is not able to reduce the func-

tional error. However, significant reductions in mesh size (> 80%) are achieved using

the output-based methods, as compared to the uniform approach for the same order of
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(a) (b)

Figure 4.21: Initial computational mesh for steady subsonic viscous flow past a
NACA0012 airfoil showing: (a) entire view of the mesh and (b) close-up view of the mesh.
The thicker black lines are the block edges and the thinner red lines are the cell edges.
The total number of blocks is 4, the total number of cells per block is 10×10×4=400 and
the total number of cells is 1,600.

accuracy (∼0.03%). Among the two output-based techniques, the ECC method shows

more isotropic refinement near the inner boundary.

4.2 Viscous Flows

The application of the proposed output-based strategy to non-conducting viscous laminar

flow cases is considered next. The two cases considered are the subsonic and supersonic

laminar flows of air past a NACA0012 airfoil at a zero angle of attack. The solution for

the former is smooth and continuous whereas the latter has a bow shock that is detached

from the leading edge of the airfoil and will present additional challenges to the proposed

output-based AMR method.

4.2.1 Subsonic Flow Past a NACA0012 Airfoil

In the first viscous flow case considered here, a horizontal viscous subsonic flow with

a Mach number M = 0.5 and a Reynolds number Re = 5, 000 is intercepted by a

NACA0012 airfoil at an angle of attack given by α = 0◦. A C-shaped computational

grid with stretching initially composed of 4 blocks, as shown in Figure 4.21, is used here.

The stretching is required for efficient capturing of the viscous boundary layer formed
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Figure 4.22: Predicted Mach number contours for steady M = 0.5 subsonic viscous flow
past a NACA0012 airfoil after 5 uniform refinements. Blocks: 4,096. Cells: 1,638,400.

on the airfoil surface. The number of cells per block is 10× 10× 4 = 400, with 4 cells in

the out-of-plane direction. The chord length of the airfoil is taken to be unity and the

far-field boundary is located at a distance of 32 chord lengths from the airfoil boundary

in the radially outward direction. An adiabatic no-slip boundary condition is imposed at

the airfoil boundary. At the top, bottom and upstream/left farfield boundaries, the flow

variables except pressure are assumed to be fixed at subsonic inflow conditions, while

the pressure is linearly extrapolated from the interior domain. At the downstream/right

farfield boundary, the pressure is assumed to have a constant value while all other flow

variables are linearly extrapolated for the outgoing subsonic flow. The ratio of specific

heats, γ, is assumed to be 1.4. The main features of this subsonic flow are the formation

of the viscous boundary layer, the flow acceleration and subsequent deceleration over the

airfoil surface. This case has also been examined in several previous studies [72,211–214].

Figure 4.22 shows Mach number distribution for this case after a converged solution has

been obtained after 5 uniform refinements of the initial mesh. The convergence of the

steady-state density solution residual for this subsonic viscous flow case is shown in

Figure 4.23 for the complete set of refined meshes for the four refinement techniques

considered here (i.e., for uniform, gradient-based, CC-based, and ECC-based refinment

strategies), again confirming the fully-converged nature of the predicted steady-state
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(c) (d)

Figure 4.23: Density residual convergence history on the complete set of adaptive refined
AMR meshes for steady M = 0.5 subsonic viscous flow past a NACA0012 airfoil: (a)
uniform refinement; (b) gradient-based refinement; (c) output-based refinement using
CC; (d) output-based refinement using ECC.
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(a) (b)

Figure 4.24: Energy adjoint distribution for steady M = 0.5 subsonic viscous flow past
a NACA0012 airfoil : (a) after 5 uniform refinements. Blocks: 4,096. Cells: 1,638,400.
(b) after 7 refinements using CC as refinement criterion. Blocks: 2,126. Cells: 850,400.

solutions.

The functional used here is the total drag force on the airfoil in the direction of the

free-stream flow which comprises the pressure and viscous drag components. Figure 4.24

shows the distribution of the 5th component of the adjoint solution vector on a refined

mesh obtained after 5 uniform refinements of the initial mesh and after 7 anisotropic

refinements using the CC refinement criterion. Figure 4.25 shows a comparison between

meshes obtained after several adaptive refinements on the initial mesh, using various

gradient-based and output-based refinement criteria. In particular, Figure 4.25(a) shows

the mesh obtained after 7 refinements using density and velocity gradients to drive the

mesh adaptation. This approach leads to excessive refinement of the stagnation region

near the leading edge of the airfoil. This approach also leads to significant refinement in

the region very close to the airfoil surface where the velocity gradients are high due to

the presence of the viscous boundary layer. Alternatively, Figure 4.25(b) shows the mesh

obtained after 7 refinements using the CC method to drive the mesh adaptation. There

is substantial refinement near the leading edge of the airfoil where most of the pressure

drag comes from, as well as in the region containing the boundary layer. Substantial

refinement can also be observed in the viscous wake in the direction orthogonal to the

incoming flow, just as observed for the density gradient-based approach. Finally, the

mesh obtained after 7 refinements using the ECC criterion to drive the mesh adaptation,
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(a) (b)

(c)

Figure 4.25: Adapted meshes showing the grid block boundaries (not individual cells) for
steady M = 0.5 subsonic viscous flow past a NACA0012 airfoil: (a) After 7 refinements
using density and velocity gradients as refinement criteria. Blocks: 1,012. Cells: 404,800.
(b) After 7 refinements using CC as refinement criterion. Blocks: 2,126. Cells: 850,400.
(c) After 7 refinements using ECC as refinement criterion. Blocks: 1,042. Cells: 416,800.

as shown in Figure 4.25(c), shows a similar trend to that obtained with the CC refinement

strategy, however with a relatively sparser level of refinement.

Figures 4.26(a) and 4.26(b) show plots of the percentage error in the computed to-

tal drag coefficient and the actual value of the computed total drag coefficient against

the total number of degrees of freedom per direction for this two-dimensional problem,
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(a)

(b)

Figure 4.26: (a) Convergence of the percentage error in the predicted total drag coefficient
and (b) convergence of the predicted total drag coefficient, as a function of the mesh size
(number of degrees of freedom per direction) for steady viscous M = 0.5 subsonic flow
past a NACA0012 airfoil.
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(a)

(b)

Figure 4.27: Convergence of the actual error, the error after adding the computable
correction and the error estimate (absolute computable correction) as a function of the
mesh size (number of degrees of freedom per direction) (a) for the CC method and (b)
for the ECC method, for steady viscous M = 0.5 subsonic flow past a NACA0012 airfoil.
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i.e.
√
Ncells/4, where Ncells is the total number of grid cells in the computational mesh,

respectively. For the output-based techniques, the error in the corrected drag coefficient

obtained after adding the computable correction to the functional is also shown in Fig-

ure 4.26(a). A fine mesh value, from a converged flow solution obtained after 7 uniform

refinements on the initial mesh, is shown for reference in Figure 4.26(b). Values of the

drag coefficient calculated by previous researchers [72, 211, 212, 214] are also depicted in

Figure 4.26(b) for comparison with this fine mesh value. The latter is used as the refer-

ence value of the functional. From Figures 4.26(a) and 4.26(b), it is evident that all of

the adaptive methods are eventually able to reduce the error in the drag coefficient to

the same order. Among these, the output-based method employing CC as the refinement

criterion provides the worst performance. Employing the gradient-based approach leads

to 52% mesh savings as compared to the CC method for the same accuracy (∼0.3%).

However, employing the ECC method to drive the mesh refinement shows a similar per-

formance as the gradient-based approach. Adding the correction for the ECC method

shows the best performance with 61% mesh savings with respect to the the gradient-based

approach.

As for the supersonic inviscid wedge flow, the actual error in the functional, the

corrected error, and the estimated error (computable correction) are shown in Figure 4.27

for the CC and ECC output-based methods. As for the previous inviscid case, it can be

observed that the actual and estimated errors approach each other as the computational

mesh is refined as should be expected. Furthermore, the computable correction can be

applied to provide a significantly improved numerical estimate of the drag for the airfoil.

4.2.2 Supersonic Flow Past a NACA0012 Airfoil

In the second viscous flow case, horizontal viscous supersonic flow with a Mach number

M = 1.2 and a Reynolds Number Re = 1, 000 is intercepted by a NACA0012 airfoil at an

angle of attack given by α = 0◦. The stretched C-shaped grid shown in Figure 4.28 com-

prising 4 blocks is used for this case, with the stretching essential for efficiently capturing

the viscous boundary layer. The number of cells per block is 16× 16× 4 = 1, 024, with

4 cells in the out-of-plane direction. Again, the chord length is taken to be unity and the

far-field boundary is located 32 chord lengths away from the airfoil boundary in the radi-

ally outward direction. An adiabatic no-slip boundary condition is imposed on the airfoil

boundary. At the top, bottom and upstream/left farfield boundaries, the flow variables

are kept fixed at the supersonic flow conditions, whereas at the downstream/right farfield

boundary, constant extrapolation is imposed for the outgoing flow. The ratio of specific
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(a) (b)

Figure 4.28: Initial computational mesh for steady supersonic viscous flow past a
NACA0012 airfoil showing: (a) entire view of the mesh and (b) close-up view of the mesh.
The thicker black lines are the block edges and the thinner red lines are the cell edges.
The total number of blocks is 4, the total number of cells per block is 16×16×4=1,024
and the total number of cells is 4,096.

heats, γ, is assumed to be 1.4. A bow shock is formed in front of the leading edge of the

airfoil. Since the flow is just above supersonic, the bow shock is detached and located

at some distance upstream from the leading edge of the airfoil. There are also two weak

shocks emanating from the trailing edge. A viscous boundary layer is also formed on the

airfoil surface. This case has been previously studied by Hartmann [215]. Figure 4.29

shows the predicted density distribution for this case after a converged solution has been

obtained following 5 uniform refinements of the initial mesh.

The functional used for the viscous supersonic airfoil flow is again the total drag

force on the airfoil in the direction of the free-stream flow, which comprises both the

pressure and viscous drag components. Figure 4.30 shows the predicted distribution of

the 5th component of the adjoint solution vector corresponding to the energy for this

case after a converged solution has been obtained following 5 uniform refinements of

the initial mesh as well as following 6 anisotropic refinements using the CC refinement

criterion. Figure 4.31 shows a comparison between the meshes obtained after several

adaptive refinements on the initial mesh, using various gradient-based and output-based

refinement criteria. Figure 4.31(b) shows the mesh obtained after 9 refinements using the

density gradient to drive the mesh adaptation. The gradient-based approach extensively

refines the bow shock in front of the leading edge of the airfoil. The two weaker shocks
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Figure 4.29: Predicted density contours for steady M = 1.2 supersonic viscous flow past
a NACA0012 airfoil after 5 uniform refinements. Blocks: 4,096. Cells: 4,194,304.

originating from the trailing edge, the viscous boundary layer and the viscous wake also

receive a considerable amount of refinement. Figures 4.31(c) and 4.31(d) show the mesh

obtained after 6 output-based adaptive refinements using the CC and ECC methods as

the refinement criteria, respectively. On both of these, only a portion of the bow shock

directly in front of the leading edge is refined along with the viscous boundary layer. The

viscous wake region shows a small amount of refinement while the trailing edge shocks

are not captured at all. The mesh obtained using ECC also shows refinement in the

region upstream from the airfoil between the bow shock and the leading edge.

Figures 4.32(a) and 4.32(b) show plots of the percentage error in the computed to-

tal drag coefficient based on a fine mesh result and the actual value of the computed

total drag coefficient against the total number of degrees of freedom per direction, i.e.√
Ncells/4, where Ncells is the total number of grid cells in the computational mesh, respec-

tively. The reference fine mesh value for the drag coefficient of 0.21813 was obtained from

a converged flow solution following 7 uniform refinements of the initial mesh and is shown

in Figure 4.32(b) for reference. The value of the drag coefficient obtained previously by

Hartmann [215], 0.20882, is also shown in the figure for comparison with this fine mesh

result. It can be seen that all of the adaptive techniques can successfully converge to the

same order of error in the drag coefficient after a number of refinements. However, the
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(a) (b)

Figure 4.30: Energy adjoint distribution for steady M = 1.2 supersonic viscous flow past
a NACA0012 airfoil : (a) after 5 uniform refinements. Blocks: 4,096. Cells: 4,194,304.
(b) after 6 refinements using CC as refinement criterion. Blocks: 1,202. Cells: 1,230,848.

output-based approaches perform significantly better than the gradient-based approach

in terms of savings in the computational mesh for the same order of error. Employing the

ECC method as the refinement method achieves a 73% reduction in mesh size as com-

pared to the gradient-based method. Employing the CC to drive the refinement leads

to 82% reduction in mesh size with respect to the gradient-based method for the same

accuracy (∼0.04%), again showing the value of the proposed output-based anisotropic

AMR schemes.
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(a) (b)

(c) (d)

Figure 4.31: Adapted meshes showing the grid block boundaries (not individual cells) for
steady M = 1.2 supersonic viscous flow past a NACA0012 airfoil: (a) After 8 refinements
using density gradient as refinement criterion. Blocks: 6,602. Cells: 6,760,448. (b) After
9 refinements using density gradient as refinement criterion. Blocks: 14,520. Cells:
14,868,480. (c) After 6 refinements using CC as refinement criterion. Blocks: 1,202.
Cells: 1,230,848. (d) After 6 refinements using ECC as refinement criterion. Blocks:
1,772. Cells: 1,814,528. Meshes shown in (a), (c) and (d) have approximately the same
error in the functional.
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(a)

(b)

Figure 4.32: (a) Convergence of the percentage error in the predicted total drag coefficient
and (b) convergence of the predicted total drag force, as a function of the mesh size
(number of degrees of freedom per direction) for steady viscous M = 1.2 supersonic flow
past a NACA0012 airfoil.



Chapter 5

Integrated Solar Wind-MHD

Framework

This chapter describes the new integrated solar wind-MHD framework developed as part

of this thesis for possible eventual use in operational space-weather forecasting. An

overview of existing methods for numerical modelling of the solar wind is given in Sec-

tion 5.1. Section 5.2 discusses the combined model used in this work, comprising the

physics-based solar wind models employed for coronal calculations and the parallel adap-

tive finite-volume MHD framework for the heliospheric calculation. Section 5.3 discusses

numerical results obtained for a steady-state calculation of the ambient solar wind and

an unsteady calculation performed for forecasting solar-wind properties at the Earth.

5.1 Overview and Motivation

In the lower corona, the magnetic pressure, pB, is much higher than the plasma thermal

pressure pth, such that the plasma beta, β, given by

β =
pth
pB

=
nkbT

|B|2/(2µ0)
� 1, (5.1)

is low. Here, n is the particle number density, kb is the Boltzmann constant, T is the

temperature, B is the magnetic field and µ0 is the magnetic permeability of vacuum.

In the coronal region where the plasma beta is low (β � 1), the structure of the Sun’s

atmosphere and plasma dynamics are both defined by the topology of the magnetic field.

As a result, models based on various approximations have been proposed to predict and

determine the structure of the coronal magnetic field using solar magnetograms from

observations as inputs [216]. Most of the coronal magnetic field models used in the solar

103
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wind forecast community are simple models based on the potential-field theory [217–221].

Potential-field models, such as the Potential-Field Source Surface (PFSS) model and

the Schatten Current Sheet (SCS) model, offer significant advantages, as compared to

MHD models especially in the coronal region of the Sun, particularly for space weather

modelling. A summary of the primary advantages of such models is as follows:

1. Potential-field models are computationally less expensive than MHD models as

they only involve the solution for the magnetic field. MHD models, on the other

hand, also provide a solution for the plasma properties such as density, velocity

and pressure. Riley et al. [222] and Owens et al. [223] have found that potential-

field models can provide similar predictions of the global topology of the coronal

magnetic field as MHD models at a lower computational cost.

2. The solar wind does not attain its asymptotic super-Alfvénic speed until it covers a

radial distance of about 10-15RSun outward from the Sun’s surface where RSun is the

Sun’s radius. Hence, in order to ensure well-posedness of the problem, boundary

conditions at the Sun’s surface for MHD models need to respect the characteristic

equations of the governing PDEs. Thus, in MHD models, boundary conditions for

density, velocity and pressure can be very difficult to formulate at the Sun’s surface.

3. It is also difficult to model phenomena such as coronal heating and solar wind

acceleration in the corona. These difficulties are circumvented by the potential-

field models which only solve directly for the magnetic field.

4. In coronal MHD simulations, the length and time scales are much smaller as com-

pared to those for outer heliospheric MHD simulations, leading to a higher compu-

tational cost.

As such, a numerical simulation framework employing potential-field models to predict

the coronal magnetic field structure and also provide magnetic field and solar wind ve-

locity forecasts at the Earth has been developed by Nikolic [224]. Nevertheless, it is

recognized that for better understanding of the dynamic interactions between the he-

liospheric magnetic field and the solar wind plasma and transient phenomena such as

CMEs [225, 226], potential-field models are certainly not sufficient and more sophisti-

cated models are required. As described earlier in Chapter 1, various attempts have been

made to model the corona and the solar wind using the equations of MHD [6–17,19–22,

24–26,28–33].

More recently, combined data-driven approaches exploiting the simplicity of potential-

field models as well as the sophistication and more detailed physics of MHD models have
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been considered. In a combined approach, a potential-field model is used for the near-Sun

inner corona and acts as an input to the MHD model for the heliosphere. The boundary

conditions for the MHD model in this case would be very easy to implement as the solar

wind would have attained its asymptotic super-Alfvénic speed by the time it enters the

heliosphere. As such, all variables at the inner boundary of the heliosphere would have

to be specified as inputs to the MHD model. Also, the difficulty of modelling coronal

phenomena such as solar wind acceleration and coronal heating and implementing them

in MHD models is circumvented.

Detman et al. [227] employed a PFSS-SCS model for the coronal magnetic field struc-

ture and used it as a driver for the heliospheric MHD model. They used a spherical

coordinate grid covering 360◦ in φ and 90◦ in θ centered on the solar equatorial plane.

ENLIL [228, 229], an operational space weather prediction tool, uses MHD modelling

for the simulation of solar wind structures in a Cartesian or spherical geometry, using a

fixed or an isotropic block-based adaptive mesh. The ENLIL model covers a latitudinal

range of +60◦ to −60◦ and a full longitudinal range of 360◦ and uses the solar wind speed

obtained from the Wang-Sheeley-Arge (WSA) [230–236] model and the magnetic field

structure obtained from a PFSS model to represent the solar wind in the region 2.5RSun

to 5RSun. The WSA model correlates the solar wind speed to the photospheric magnetic

field and the magnetic flux tube the solar wind passes through as it emerged out of the

lower corona. If the flux tube widens, the solar wind is relatively slower, and if it remains

narrow, the solar wind speed is higher. The expansion factor for the flux tube can be

obtained by tracing the open magnetic field lines back to their origin in the photosphere.

A general mathematical formulation for the WSA model is provided in Section 5.2.4.

Baker et al. [237] employed the WSA-ENLIL code to reproduce solar wind observations

from the MESSENGER spacecraft in orbit around Mercury. The ENLIL prediction tool

also has the capability to model coronal mass ejections [238, 239]. EUHFORIA [240], a

European heliospheric forecasting tool, also uses a PFSS-SCS model for the corona ex-

tending from the photosphere up to 0.1 AU, and an MHD model from 0.1 AU extending

up to 2 AU so as to include the orbit of Mars. Like ENLIL, EUHFORIA also uses the

WSA model to obtain solar wind speed and a spherical mesh spanning 120◦ in latitude

and 360◦ in longitude. EUHFORIA also has the capability to model CMEs using a cone

model with an intrinsic spheromak magnetic field [241–243]. In other research, Nakamizo

et al. [244] used a PFSS model for the coronal calculation and performed the heliospheric

MHD calculation on an angular triangular unstructured grid. Shiota et al. [245, 246]

used a PFSS model for the coronal magnetic field calculation and used it to drive the

heliospheric MHD calculation from 25RSun onwards on a spherical Yin-Yang grid [247].
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Despite these efforts, the implementation based on global MHD models and simulation

tools into operational solar wind prediction models is still in its nascent stage.

5.2 Data-Driven Solar Wind-MHD Model

In the proposed new data-driven solar-wind model for space weather prediction, a coupled

coronal-heliospheric model is used in which PFSS, SCS and global ideal MHD models are

all combined. A schematic diagram showing the numerical models used in the various

regions of the Sun’s atmosphere and heliosphere is shown in Figure 5.1. The prescription

of the inner region of the corona and solar wind is provided by the PFSS-SCS model of

Nikolic et al. [224,248]. The global MHD model and numerical solution method described

in Chapter 2 is then coupled to this inner model and used to simulate and model the

plasma flows in the outer solar-wind and heliosphere. The latter makes use of the par-

allel block-based anisotropic AMR framework and Godunov-type finite-volume scheme

for multi-block hexahedral mesh [49, 50, 64, 68, 70] as well as the cubed-sphere meshing

capabilities of the framework [67, 68] to represent the spherical-shaped computational

domain of the solar outflows and heliosphere. The PFSS and SCS models are described

in Section 5.2.1 and Section 5.2.2, respectively. The global MHD model is again briefly

reviewed in Section 5.2.3 for completeness. Section 5.2.4 then describes the coupling of

the three models and boundary conditions used for the MHD model.

5.2.1 Potential-Field Source Surface (PFSS) Model for Coronal

Magnetic Field

A PFSS model [217–219] is used to derive the global 3D magnetic field in the solar

corona from photospheric field observations. Global Oscillation Network Group (GONG)

magnetograms [249] on a 180◦×360◦ solid angle grid are processed and used as the input

to the PFSS model. The PFSS model assumes the existence of a fixed spherical “source

surface” where the coronal magnetic field is purely radial. A radius of r = Rs = 2.5RSun

where Rs is the radius of the “source surface” and RSun is the Sun’s radius, is widely

accepted for modelling and is used here. The model is based on the assumption that

there are no currents in the coronal region RSun ≤ r ≤ Rs. A current-free approximation

of the magnetic field satisfies the condition that

∇×B = 0, (5.2)
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Figure 5.1: Schematic diagram showing the numerical models used in the various regions
of the Sun’s atmosphere.

which implies that the magnetic field can be expressed as the gradient of a scalar potential

ψ and written as

B = −∇ψ. (5.3)

Along with the solenoidal property of the magnetic field ∇ ·B = 0, Equation (5.3) can

be expressed as a Laplace equation for the magnetic field potential, ψ, given by

∇2ψ = 0. (5.4)

Using a separation of variables such that ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) in spherical coordi-

nates, where θ ∈ [0, π] and φ ∈ [0, 2π], and assuming that at the source surface, r = Rs,
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the magnetic field is purely radial, i.e. ψ(Rs, θ, φ) = constant, the solution of Equa-

tion (5.4) for the region RSun ≤ r ≤ Rs can be expressed in terms of spherical harmonics

and written as

ψ =
∞∑
n=1

n∑
m=0

Pm
n (cos(θ))(gnm cos(mφ) + hnm sin(mφ))

×

[
RSun

(
RSun

r

)n+1

−Rs

(
RSun

Rs

)n+2(
r

Rs

)n]
,

(5.5)

where Pm
n (cos(θ)) represents the associated Legendre polynomial and gnm and hnm are co-

efficients depending on the summation indices n and m. Using Equations (5.3) and (5.5)

and the orthogonality of Legendre polynomials, the magnetic field components can be

expressed as a function of the radial component of the photospheric magnetic field

Br(RSun, θ, φ). For a detailed analysis and derivation of the PFSS model used here,

the reader is referred to the previous work by Nikolic [224].

5.2.2 Schatten Current Sheet (SCS) Model for

Solar Wind Plasma Properties

The PFSS model does not take into account the effect of plasma transport on the solar

corona. Although the approximation works very well for the lower corona, the condition

β � 1 is violated at some distance from the Sun and the solution dictated by Equa-

tion (5.5) cannot represent the magnetic field and the solar outflows for all r ≥ RSun.

In order to include the effects of plasma currents on the structure of the solar corona,

Schatten [220] proposed the introduction of a new spherical source surface at r = Rcp,

which is called the cusp surface, where transverse currents are allowed [220]. These cur-

rents are assumed to be limited to thin sheets between regions of opposite polarity of the

magnetic field where the Lorentz force j × B is small. Whereas the PFSS model forces

the magnetic field lines to be radial at r = Rs, the SCS model allows a non-radial coronal

field structure for r ≥ Rs. The cusp surface is taken to be equal to Rs, i.e. Rcp = Rs,

the outer boundary for the PFSS model. In the SCS model, the coronal magnetic field

from the PFSS model at r = Rcp = Rs is first reoriented to point outwards, i.e., if

Br(Rcp) ≥ 0, no changes are needed, but if Br(Rcp) < 0, the signs of Br(Rcp), Bθ(Rcp)

and Bφ(Rcp) are changed, where Br(Rcp), Bθ(Rcp) and Bφ(Rcp) are the radial, latitudinal

and longitudinal components of the magnetic field, respectively. The field beyond Rcp is

obtained by matching the potential-field solution for r ≤ Rs, i.e., the solution obtained

using Equation (5.5) for r ≥ Rcp, with the magnetic field components of the reoriented
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field at r = Rcp. For the SCS model, the r/(Rs) terms in Equation (5.5) are discarded

as the SCS model solution is not bounded by an outer surface. The effect of this step

is to open the magnetic field lines, so that no closed magnetic field lines exist beyond

Rcp. Finally, proper polarity is assigned to the magnetic field lines in the region r ≥ Rcp

using the polarity before the field reorientation at Rcp. This polarity restoration ensures

that the divergence constraint, ∇ · B = 0, is not violated. Furthermore, it implies that

current sheets are introduced between the magnetic fields of opposite polarity.

The SCS model described above is used to determine the magnetic field in the region

Rcp = 2.5RSun ≤ r ≤ 25RSun. The outer boundary of this SCS region, 25RSun, is then

taken as the inner boundary of the outer heliospheric region where the full set of ideal

MHD equations are solved to describe the solar wind behaviour.

5.2.3 3D Ideal MHD Model for Solar Wind Solution to 1 AU

The global ideal MHD model and parallel finite-volume scheme with anisotropic block-

based AMR as described in Chapter 2 are used here to simulate the solar-wind plasma in

the outer heliosphere. For the sake of completeness, the system of governing equations

for ideal MHD given in Chapter 2 are re-summarized here as follows:

∂ρ

∂t
+∇ · (ρu) = 0, (5.6)

∂ (ρu)

∂t
+∇ · (ρuu−BB + pT I) = −ρ [ΩΩΩ× (ΩΩΩ× x)]− 2ρ (ΩΩΩ× u)− (∇ ·B) B, (5.7)

∂e

∂t
+∇ · ((e+ pT )u− (u ·B)B) = −ρu · [ΩΩΩ× (ΩΩΩ× x)]− (∇ ·B) u ·B, (5.8)

∂B

∂t
+∇ · (Bu− uB) = − (∇ ·B) u, (5.9)

where the reader is reminded that ρ, u, e and B are the plasma density, velocity, specific

total energy and magnetic field, respectively. Also, ΩΩΩ is the angular velocity of the

reference frame if the equations are solved in a non-inertial rotating frame, t is the time

and x is the position vector. The total pressure, pT , is given by

pT = p+
|B|2

2
, (5.10)
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where p is the thermal pressure of the plasma. The total energy e is given by

e =
ρ|u|2

2
+

p

γ − 1
+
|B|2

2
, (5.11)

where γ = Cp/Cv is the ratio of specific heats. A value of γ = 5/3 was used for the

heliospheric model. As noted earlier in Chapter 2, Equations (5.6)–(5.9) can be expressed

in vector form as
∂U

∂t
+∇ · F = Q + S, (5.12)

where the vector of conserved variables, U, and the flux tensor, F, are given by

U =


ρ

ρu

e

B

 , F =


ρu

ρuu−BB + pT I

(e+ pT )u− (u ·B)B

Bu− uB

 . (5.13)

The source term for rotational effects, Q, and the vector containing terms arising from

expressing Faraday’s law in divergence form, S, are given by

Q =


0

−ρ [ΩΩΩ× (ΩΩΩ× x)]− 2ρ (ΩΩΩ× u)

−ρu · [ΩΩΩ× (ΩΩΩ× x)]

0

 , S = −


0

B

u ·B
u

∇ ·B. (5.14)

Here, ΩΩΩ × (ΩΩΩ× x) is the centrifugal force and 2 ΩΩΩ × u is the Coriolis force. The source

term, S, is associated with the divergence constraint as proposed by Powell [161].

The preceding MHD equations are solved in a non-dimensional form using the parallel

finite-volume block-based AMR framework described in Chapter 2. The non-dimensional

variables are related to their dimensional counterparts by

ρ = ρ̃/ρ0, (5.15)

u = ũ/a0, (5.16)

p = p̃/p0, (5.17)
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B = B̃/B0, (5.18)

ΩΩΩ = Ω̃ΩΩ(l0/a0), (5.19)

t = t̃/τ0, (5.20)

x = x̃/l0. (5.21)

Here, the variables ρ̃, ũ, p̃, B̃, Ω̃ΩΩ, t̃ and x̃ represent the dimensionalized values of density,

velocity, pressure, magnetic field, angular velocity, time and position vector in SI units

whereas ρ0, a0, p0, B0, τ0 and l0 are constants used for non-dimensionalizing them.

Additionally, ρ0 = 1 cm−3 mp where mp = 1.672 × 10−27 kg is the mass of a proton.

The length scale is given by l0 = 6.96 × 108 m, taken to be the radius of the Sun.

The velocity scale is given by a0 = l0/τ0 = 193.333 × 103 m/s where the time scale

is taken to be τ0 = 1 hr = 3600 s. The value used to normalize the magnetic field

is given by B0 =
√
µ0ρ0a0

2 = 8.8642 × 10−9 T where µ0 = 4π × 10−7 H/m is the

magnetic permeability of free space. The value used to normalize the pressure is given

by p0 = ρ0a0
2 = 6.252 × 10−11 Pa. The angular velocity of the Sun is taken to be

Ω̃ΩΩ = (2π/27.27) rad/day k̂ = 2.67 × 10−6 rad/s k̂. The xy-plane of the computational

domain is taken to be the Sun’s ecliptic plane. It must be noted that the above non-

dimensionalization follows that adopted previously by Shiota et al. [245,246] and is only

used for the solar wind framework and not for other MHD cases described in this thesis.

5.2.4 Model Coupling and Boundary Conditions

In order to determine the solar wind solution for the coupled data-driven model, the radial

component of the photospheric magnetic field Br(RSun, θ, φ) is obtained from actual solar

magnetograms and is used as the inner boundary condition for the coronal magnetic

field. The scalar potential from Equation (5.4) is taken to be a constant value at the

inner boundary r = RSun. The PFSS model is then used to obtain the 3D coronal

magnetic field in the region RSun ≤ r ≤ Rs = 2.5RSun. As noted earlier, the PFSS

model assumes a purely radial magnetic field at the source surface r = Rs. The radial

magnetic field obtained from the PFSS model is then used as the boundary condition

for the SCS model which is used to evaluate the coronal magnetic field in the region

Rs = Rcp = 2.5RSun ≤ r ≤ 25RSun. Finally, the coronal magnetic field obtained from the
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SCS model at r = 25RSun is used as the inner boundary condition for the ideal MHD

model and solution which is taken to extend over the region 25RSun ≤ r ≤ 225RSun.

At 25RSun, the solar wind speed is assumed to have already achieved its asymptotic

value and is supersonic and super-Alfvénic. Hence, a fixed boundary condition can be

used here for all variables required by the MHD model. The magnetic field is available

from the SCS model. However, the plasma density, velocity and pressure at this inner

boundary must be obtained using other appropriate models. The Wang-Sheeley-Arge

(WSA) [230–236] model is used here to correlate solar wind speed, VSW , to the magnetic

field. In the WSA model, VSW depends on the flux tube expansion factor given by

fs =
|B(RSun)|
|B(Rs)|

R2
Sun

R2
s

, (5.22)

and the angular separation, θb, between an open magnetic field line foot print and coronal

hole boundary at the photosphere. A general form of the relation between VSW , fs and

θb can be expressed as

VSW = a1 +
a2

(1 + fs)a3

[
a4 − a5 exp

{
−
(
θb
a6

)a7}]a8
, (5.23)

where a1-a8 are empirically evaluated coefficients. These coefficients are in general tun-

able parameters that depend on the magnetogram source used to derive the coronal

magnetic field and calculation parameters.

The boundary values for the plasma density and temperature are obtained similarly

using an empirical model derived from the Helios solar wind measurements [250, 251]

through a least-squares fitting process and given by

n(VSW ) = 4

{
62.98 + 866.4

(
VSW
100
− 1.549

)−3.402
}
cm−3, (5.24)

T (VSW ) = 4γ−1

{
−0.455 + 0.1943

VSW
100

}
106 K. (5.25)

Although Hayashi et al. [250] proposed the relations given in Equations (5.24) and (5.25)

for use at r = 50RSun, the same relations are used here at r = 25RSun. This is done

by assuming a constant solar wind speed from r = 25RSun to r = 50RSun, and thus

the density is multiplied by a factor of 4 = (50/25)2. The temperature is also modified

under the assumption of polytropic expansion of the plasma with increasing radius. The

mass density can be obtained from the number density by multiplying with the proton
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mass mp and the plasma thermal pressure can be obtained from the number density and

temperature using the ideal gas law, p = nkBT , where kB = 1.38 × 10−23 J K−1 is the

Boltzmann constant. EUHFORIA, on the other hand, also uses the WSA model for the

solar wind speed, but assumes constant values for kinetic energy density and plasma

thermal pressure at the inner boundary of the MHD model. As a result, the plasma

number density is inversely proportional to the square of the solar wind speed in this

model.

For the ideal MHD model, a suitable coordinate transformation and linear interpo-

lation is required to map the solution obtained from the inner PFSS-SCS model on a

(θ, φ, t) grid to the inner boundary mesh for the outer global MHD model. Addition-

ally, we must also take into account the Sun’s rotation for the boundary conditions at

r = Rinner = 25RSun. For a calculation performed in the Sun’s corotating frame, the

variables at the inner boundary of the MHD model are fixed. The latitudinal component

of the solar wind velocity is assumed to be zero, i.e., Vθ = 0 while the radial component

of the solar wind velocity Vr is obtained from Equation (5.23). In the corotating frame,

the longitudinal component is assumed to be zero, i.e., Vφ = 0. The radial component of

the magnetic field at the inner boundary of the MHD model is obtained from the SCS

model. The latitudinal and longitudinal components are assumed to be zero, i.e., Bθ = 0

and Bφ = 0.

5.3 Numerical Results for Representative

Solar Wind

The capabilities of the proposed data-driven solar-wind framework are now demonstrated

using a representative data set obtained from the GONG magnetograms. As a first exam-

ple described in Section 5.3.1 below, the predicted steady-state solution for the structure

of the ambient background solar wind is obtained using a single set of magnetogram data.

The inexact Newton’s method discussed in Section 2.2 is used to obtain the steady-state

solution. In the second example described in Section 5.3.2, multiple successive mag-

netogram data sets are used as a time-varying inner boundary condition to obtain an

unsteady solution for the resulting solar wind. Solar wind speed, density and magnetic

field predictions are obtained at the Earth and compared with satellite observations.

For this unsteady simulation, the second-order explicit Runge-Kutta scheme described

in Section 2.4 is used in the time-marching procedure.

The mesh used for both simulations is a cubed-sphere mesh [67,68] initially composed
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Figure 5.2: Portion of the initial mesh used for the steady state background solar wind
simulation and the time-accurate simulation used for solar wind prediction at the Earth.
The inner boundary is shaded in green. The thicker black lines are the block edges and
the thinner red lines are the cell edges. Each block contains 8 × 8 × 8 = 512 cells. The
total number of blocks is 144. The total number of cells is 144× 512 = 73, 728.

of 144 blocks with each block containing 8 × 8 × 8 = 512 cells. A portion of the initial

mesh is shown in Figure 5.2. The gradient of the magnetic field weighted with the square

of the radial outward distance from the center of the Sun, ∇(|B|r2), was used as the

criterion for mesh adaptation, in order to accurately capture the current sheet in both

cases. The weight r2 is to account for the fact that in a supersonic spherical outflow with

constant velocity, the magnetic field strength rapidly decreases in proportion to 1/r2 in

the radially outward direction. Blocks having gradients higher than a predefined refine-

ment threshold are flagged for refinement while those with gradients below a predefined

coarsening threshold are flagged for coarsening. A maximum refinement level of 7 is

imposed on both simulations, with level 0 corresponding to the initial mesh.
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(a) radial component of magnetic field (mGauss) (b) solar wind speed (km/s)

(c) density (count/m3) (d) pressure (Pa)

Figure 5.3: Boundary conditions at r = 25RSun for the ambient solar wind simulation
using the 12th February 2007 magnetogram data set.

5.3.1 Steady Background Solar Wind

For the steady-state background solar-wind simulation, a single GONG magnetogram

obtained on 12th February 2007 at 11 am was used as an input for the coronal model cal-

culation. Two-dimensional plots of the radial component of the magnetic field, solar wind

speed, plasma density and thermodynamic pressure for this case at the inner boundary,

r = 25RSun, are shown in Figure 5.3. The current sheet across which the magnetic field

rapidly changes direction can be distinctively seen in Figure 5.3(a). The higher density

plasma originates from the region of the current sheet as can be seen in Figure 5.3(c).

The fast high pressure solar wind originates from the higher latitudes closer to the poles

as can be seen in Figures 5.3(b) and 5.3(d).

Seven successive refinements are performed on the initial mesh and a converged so-

lution is calculated after each refinement using the inexact Newton’s method described

in Section 2.2. The final mesh after 7 refinements contains a total of 45,799 blocks and
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(a) 0 refinements: 73,728 cells (b) 3 refinements: 1,732,096 cells

(c) 5 refinements: 5,197,312 cells (d) 7 refinements: 23,449,088 cells

Figure 5.4: (|B|r2) contours at the outer boundary r = 225RSun of the computational
domain after 0, 3, 5 and 7 refinements, for the ambient solar wind simulation. The black
lines are the block boundaries.

correspondingly, 45, 799× 512 = 23, 449, 088 cells, ≈ 23.5 million cells. Figure 5.4 shows

the (|B|r2) contours at the outer boundary r = 225RSun of the computational domain

on intermediate meshes obtained after each successive adaptive mesh refinement. With

each level of mesh refinement, there is an increase in the number of blocks in the vicinity

of the current sheet. The proposed anisotropic AMR proves to be both very effective and

efficient in capturing the discontinuous nature and complex topology of the current sheet

by refining extensively only across the current sheet while keeping the grid resolution low



Chapter 5. Integrated Solar Wind-MHD Framework 117

(a) xz-slice on the initial mesh (b) xz-slice on the final mesh

(c) yz-slice on the initial mesh (d) yz-slice on the final mesh

(e) xy-slice on the initial mesh (f) xy-slice on the final mesh

Figure 5.5: (|B|r2) contours on xz− (top), yz− (middle) and xy− (bottom) slices on
initial (73,728 cells) (left) and final (23,449,088 cells) (right) meshes showing capturing
of the current sheet, for the ambient solar wind simulation. The black lines are the block
boundaries.
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(a) (b)

Figure 5.6: Portion of the xy- (ecliptic) plane showing (|B|r2) contours and magnetic
field lines on initial (73,728 cells) (left) and final (23,449,088 cells) (right) meshes, for the
ambient solar wind simulation using the 4th July 2017 magnetogram data set.

Figure 5.7: (|B|r2) contours on the xy- (ecliptic) plane and current sheet isosurfaces on
the final mesh (≈ 23.5 million cells) obtained after 7 successive anisotropic adaptive mesh
refinements, for the ambient solar wind simulation using the 4th July 2017 magnetogram
data set.
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Figure 5.8: Solar wind speed profile (km/s) for the ambient solar wind simulation on
the final mesh (≈ 23.5 million cells) obtained after 7 successive anisotropic adaptive
mesh refinements. The black lines are the block boundaries. The brown spot shows the
approximate location of the Earth.

along the current sheet surface. Figure 5.5 shows (|B|r2) contours and the comparison

between the structure of the current sheet on xz-, yz− and xy− slices of the compu-

tational domain on the initial and final meshes. This comparison shows qualitatively

how the current sheet is captured not only at the outer boundary but throughout the

entire computational domain. Figure 5.6 shows a comparison between (|B|r2) contours

and magnetic field lines on a portion of the xy- (ecliptic) plane on the initial and final

meshes. On the initial mesh, these oppositely directed lines across the current sheet arti-

ficially reconnect due to numerical diffusion, contaminating and disrupting the predicted

solar-wind solution. On the final mesh, these oppositely directed lines do not exhibit

reconnection and are predicted to lie very close together on either side of the narrow

current sheet, accurately capturing the magnetic field discontinuity across the current
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Figure 5.9: Density residual convergence history for the ambient solar wind simulation.

sheet. Without the anisotropic AMR approach, it would be extremely computationally

expensive to obtain such high quality ideal MHD solutions of the solar wind and a much

higher number of grid points would be required.

It must be noted that the plasma density, ρ, and magnetic field strength, |B|, decrease

with increasing radial distance from the Sun, being inversely proportional to the square

of the radial distance, r2. Hence, the quantities (|B|r2) and (ρr2) stay constant along the

spiral path the plasma follows from its point of origin at the inner boundary to its point

of exit at the outer boundary. Figure 5.7 shows (|B|r2) contours on the ecliptic plane on

the final mesh and also an isosurface of the current sheet lying on the northern side of

the plane. Solar wind velocity profiles obtained on the final mesh are shown on the three

Cartesian planes in Figure 5.8. The slow and fast components of the solar wind can be

distinctively seen here. The fast solar wind emerges mainly from the polar regions of the

Sun while the slow solar wind emerges mainly from the region near the solar equator,

for a period of low solar activity. The brown coloured spot in the figure depicts the

approximate location of the Earth. The flow is supersonic throughout the computational

domain and the magnitude of the solar wind speed remains constant along the spiral path

of the plasma. This is due to the fact that the thermal pressure and magnetic pressure
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gradients are too small to cause any observable acceleration of the solar wind plasma.

Additionally, the Parker Spiral [252, 253] can be clearly seen in the ecliptic xy-plane of

the Sun-Earth system in both Figure 5.8 and Figure 5.7.

The entire simulation for the steady-state solar wind was carried out using a total of

2,048 processors for a relatively short wall clock time of just 3 hours. The parallel cluster

used consisted of Intel Xeon E5540 cores operating at 2.53GHz, with 2 GB of memory

per core. The convergence of the steady-state ideal MHD solution residual for density

on the 8 successively refined meshes is given in Figure 5.9. The converged steady state

solution has been obtained on the final mesh comprising 23.5 million cells in a total of

1,200 outer NKS iterations over all 8 meshes with an average of about 150 outer NKS

iterations per mesh level. This NKS iteration count per mesh level is somewhat higher

than the 15-40 iterations typically required for the flow cases considered in Chapter 4 due

to the reduction in diagonal dominance of the system introduced by the rotating frame.

Nevertheless, robust convergence with a residual reduction of more than eight orders of

magnitude is achieved on each mesh in a relatively efficient manner.

5.3.2 Unsteady Solar Wind Driven by Solar Magnetic Field

As an example of an unsteady solar wind simulation, a sequence of 64 consecutive GONG

magnetogram data sets was used as input for the coronal model calculation. These

magnetograms were obtained over a span of 16 days starting from 18th January 2007 to

2nd February 2007. There are four magnetograms per day with a gap of typically 6 hours

between two consecutive magnetograms. The first magnetogram was dated 18th January,

5:54 am while the last magnetogram was dated 2nd February, 11:54 pm.

Several 2D plots of the radial component of the magnetic field obtained at r = 25RSun

using the PFSS-SCS model on various magnetogram data sets and the corresponding

solar wind speed obtained using the WSA model are shown in Figure 5.10. A lateral

shift in the location of the current sheet can be clearly observed between consecutive

magnetic field boundary conditions due to the Sun’s rotation. A steady-state ambient

solution corresponding to the first magnetogram was first obtained on the initial mesh

and 7 adaptive mesh refinements were subsequently applied to obtain the starting initial

background solar-wind solution. The proposed NKS solution was used to obtain this

initial steady-state solution as described in the previous subsection. After this, the

simulation was marched forward in time until the date of the last magnetogram. The

inner boundary condition was continuously updated using linear interpolation between

successive magnetograms. The explicit second-order Runge-Kutta scheme was used for
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(a) Br(25RSun) on 22/1/2007 5:54 am (b) V (25RSun) on 22/1/2007 5:54 am

(c) Br(25RSun) on 24/1/2007 5:54 am (d) V (25RSun) on 24/1/2007 5:54 am

(e) Br(25RSun) on 26/1/2007 5:54 am (f) V (25RSun) on 26/1/2007 5:54 am

(g) Br(25RSun) on 28/1/2007 5:54 am (h) V (25RSun) on 28/1/2007 5:54 am

Figure 5.10: 2D plots of the radial component of the magnetic field obtained at the inner
boundary r = 25RSun using the PFSS-SCS model on various magnetogram data sets and
the corresponding solar wind speed obtained using the WSA model.
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(a) (b)

Figure 5.11: (|B|r2) contours on the xy-, yz- and xz-slices and current sheet isosurfaces on
adapted meshes showing the grid block boundaries (not individual cells) at 26th January
5 pm (17,671,680 cells) and 31st January 11 pm (31,553,536 cells), respectively, for the
unsteady solar wind simulation. The black lines are the block boundaries.

time-marching the solution. Adaptive mesh refinement and coarsening was periodically

applied to the solution after every 60 time-steps. With a CFL criterion of 0.3 used

throughout the simulation, this would ensure that unsteady MHD waves should not

traverse a given computational grid block between each successive mesh refinement.

Figures 5.11(b) and 5.11(a) show (|B|r2) contours and current sheet isosurfaces on

intermediate adapted meshes at 26th January 5 pm and 31st January 11 pm, respectively.

Figure 5.12 shows the solar wind velocity profile on the ecliptic plane at various instances

in time. The brown spot again shows the position of the Earth at each time instance. In

the corotating reference frame, the Earth moves in a clockwise direction at the rate of

(2π/27.27) rad/day. The time-evolution of the solar wind velocity, density and magnetic

field strength at the Earth was obtained from the numerical MHD solution using the

Earth’s location and compared with ACE satellite data, as shown in Figure 5.13. The

sharp increase in the solar wind speed observed in Figure 5.13 agrees qualitatively well

with the ACE satellite observations and is also reflected in the snapshots shown in Fig-

ure 5.12 where the Earth is observed to move into the faster solar wind at a later time

during the simulation. The rapid increases and peaks in the temporal variations of the

plasma number density and magnetic field strength are in rather good agreement with

the ACE satellite observations.
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Figure 5.12: Solar wind speed contours on the ecliptic plane at various time instances.
The dates and approximate times are 1) 21st January 9 am (8,776,192 cells) 2) 23rd

January 12 pm (5,569,024 cells) 3) 25th January 1 pm (13,434,880 cells) 4) 27th January
10 am (9,246,720 cells) 5) 29th January 10 am (8,822,272 cells) 6) 31st January 12 pm
(9,663,552 cells). The brown spot indicates the approximate location of the Earth.
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(a)

(b)

(c)

Figure 5.13: Comparison between solar wind velocity, density and magnetic field forecasts
at the Earth obtained using the numerical framework and ACE satellite observations.



Chapter 6

Output-Based AMR for Steady

Ideal MHD Flows

This chapter discusses the application of the proposed output-based anisotropic AMR

scheme to several steady space physics-related flow simulations governed by the equations

of ideal MHD. As with previous results for previous non-conducting flows, comparisons

are made between the proposed output-based refinement approach and the uniform and

gradient-based refinement approaches in terms of the mesh savings obtained for a certain

accuracy level and the meshes obtained by the respective methods. Sections 6.1 to 6.3

consider the application of the scheme to standard test cases obtained from existing

literature and, like the non-conducting flow problems considered previously, the problems

considered include solutions that are smooth and continuous as well as those with complex

shock structure. Finally, Section 6.4 considers the application of the proposed scheme

to the steady-state solar wind obtained using the integrated solar wind-MHD framework

described in Chapter 5.

6.1 Superfast Magnetized Flow Around a Perfectly

Conducting Cylinder

In the first ideal plasma flow case considered herein, a uniform, planar, field-aligned and

superfast magnetized plasma is intercepted by a perfectly conducting circular cylinder.

This plasma flow problem was previously studied by De Sterck et al. [149] in their analysis

of field-aligned MHD flows. As indicated, the incoming flow is field-aligned (i.e., the By

and Bz components of the magnetic field are zero while only the Bx component is non-

zero). The x-direction component of the magnetic field is taken to be Bx = 0.1. The

126
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(a) (b)

Figure 6.1: (a) Initial computational mesh for superfast magnetized flow around a per-
fectly conducting cylinder. The thicker black lines are the block edges and the thinner
red lines are the cell edges. The total number of blocks is 4, the total number of cells per
block is 8×8×4=256 and the total number of cells is 1,024. (b) Predicted density con-
tours and magnetic field lines for this case after 5 uniform refinements. The single solid
black contour indicates the sonic Mach 1 contour separating the subsonic and supersonic
regions. Blocks: 4,096. Cells: 1,048,576.

thermodynamic pressure for the incoming flow is p = 0.2. The incoming flow density

is taken to be equal to unity. The Alfvén wave speed for the incoming flow is given by

cAx = |Bx|/ρ = 0.1. The inflow Alfvén Mach number is MA = 20 while the inflow sonic

Mach number is M = 2
√

3. Hence, the inflow velocity is given by ux = MAxcAx = 2, while

uy and uz are zero. The ratio of specific heats, γ, is assumed to be 5/3. The radius of the

cylinder is taken to be 0.125 and the center of the cylinder is placed at the origin of the

coordinate system. The initial mesh for this case, as shown in Figure 6.1(a), is composed

of four blocks and the number of cells per block is 8× 8× 4 = 256. A reflective boundary

condition is used at the surface of the cylinder. A symmetry plane is used at the lower

boundary of the computational domain. At the left boundary, the flow variables are held

constant at the supersonic inflow conditions whereas at the right boundary, constant

extrapolation is imposed for the outgoing flow.

A curved fast MHD bow shock is formed due to the obstruction of the uniform

incoming flow by the perfectly conducting cylinder. At the bow shock, the magnetic

field lines are refracted away from the shock normal as the plasma passes through the

shock. Figure 6.1(b) shows the predicted density field and magnetic field lines for this
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(a) (b)

(c) (d)

Figure 6.2: Density residual convergence history on the complete set of adaptive refined
AMR meshes for steady superfast magnetized flow around a perfectly conducting cylin-
der: (a) uniform refinement; (b) gradient-based refinement; (c) output-based refinement
using CC; (d) output-based refinement using ECC.
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(a) (b)

(c) (d)

Figure 6.3: (a) The density and (b) By adjoint distributions for superfast magnetized flow
around a perfectly conducting cylinder after 6 uniform refinements. Blocks: 16,384. Cells:
4,194,304. (c) The density and (d) By adjoint distributions for superfast magnetized
flow around a perfectly conducting cylinder after 6 refinements using CC as refinement
criterion. Blocks: 2,482. Cells: 635,392.

case obtained on a uniformly refined fine mesh. A single solid black line is also shown

which indicates the sonic line (M = 1 boundary) following the shock. The regions

downstream of the shock and above the sonic line and upstream of the shock are both

superfast. The region lying between the shock and and the sonic line is subfast. For

a detailed analysis of this MHD bow shock flow, the reader is referred to the previous
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(a) (b)

(c)

Figure 6.4: Adapted meshes showing the grid block boundaries (not individual cells) for
superfast magnetized flow around a perfectly conducting cylinder: (a) After 6 refinements
using density and magnetic field gradients as refinement criteria. Blocks: 2,731. Cells:
699,136. (b) After 6 refinements using CC as refinement criterion. Blocks: 2,482. Cells:
635,392. (c) After 6 refinements using ECC as refinement criterion. Blocks: 1,310. Cells:
335,360.

study by De Sterck et al. [150]. As for the non-conducting flow considered in this thesis,

the proposed NKS scheme is quite effective in obtaining the steady state solutions for

this case. The convergence of the steady-state solution density residual for this MHD
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(a)

(b)

Figure 6.5: (a) Convergence of the percentage error in the predicted value of the func-
tional and (b) convergence of the predicted value of the functional, as a function of the
mesh size (number of degrees of freedom per direction) for various refinement techniques
for the magnetized bow shock flow around a perfectly conducting circular cylinder.



Chapter 6. Output-Based AMR for Steady Ideal MHD Flows 132

(a)

(b)

Figure 6.6: Convergence of the actual error, the error after adding the computable cor-
rection and the error estimate (absolute computable correction) as a function of the mesh
size (number of degrees of freedom per direction) (a) for the CC method and (b) for the
ECC method, for the magnetized bow shock flow.
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bow-shock flow is given in Figure 6.2 for the complete set of four different refinement

strategies considered in the thesis. Similar convergence behaviour was achieved for all of

the conducting plasma flow cases considered here in this chapter.

The functional used for this field-aligned plasma flow is the total pressure drag which

comprises both the thermal and magnetic components of the plasma pressure on the

cylinder in the direction of the incoming flow. Figure 6.3 shows the predicted density and

By adjoint solutions for this case corresponding to converged solution obtained following

6 uniform refinements of the initial mesh and after 6 refinements using the CC refinement

criterion. Additionally, Figure 6.4 shows a comparison between meshes obtained after

several adaptive refinements on the initial mesh, using various gradient-based and output-

based refinement criteria. Figure 6.4(a) shows the mesh obtained after 6 gradient-based

refinements of the initial mesh, based on the magnitude of the gradients in the magnetic

field and density as refinement criteria. As for the non-conducting flow results of Chapter

4, the gradient-based approach focuses on refining the entire span of the fast MHD bow

shock extending from the lower boundary to the outflow boundary. However, this is

not required for an accurate value of the functional. Conversely, Figure 6.4(b) shows the

anisotropic mesh obtained after 6 CC-based refinements of the initial mesh. This output-

based method captures only a portion of the bow shock and regions downstream of the

shock close to the cylinder. Moreover, Figure 6.4(c) shows that the anisotropically refined

mesh obtained after 6 ECC-based refinements of the initial mesh has similar desirable

features in terms of obtaining an accurate functional.

As for other previous non-conducting cases, a reference value of the total drag force on

the cylinder was determined using a uniformly refined mesh, with a resolution finer than

the highest mesh refinement level achieved for both the gradient-based and output-based

adaptive mesh refinement techniques. The difference between the numerically computed

value of the total drag force and this reference fine mesh solution was used as the measure

of the error in the drag force. Figures 6.5(a) and 6.5(b) show plots of this percentage

error and the predicted total drag against the total number of degrees of freedom per

direction for this effectively two-dimensional plasma flow problem, i.e.,
√
Ncells/4, where

Ncells is the total number of grid cells, respectively. For the output-based techniques, the

error obtained after adding the computable correction to the functional is also shown in

Figure 6.5(a) whereas the solid horizontal line in the closeup of Figure 6.5(b) represents

the computed fine mesh reference value of the functional for this case (2.668961154). It

is evident from the two figures that the gradient-based method manages to reduce the

error up to a certain point and then fails to reduce it further, leading to a plateau in the

convergence of the error as the mesh is refined. The uniform and output-based methods,
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(a) (b)

Figure 6.7: (a) Initial computational mesh for steady plasma flow through an expanding
tube. The thicker black lines are the block edges and the thinner red lines are the cell
edges. The total number of blocks is 1, the total number of cells per block is 8×8×4=512
and the total number of cells is 512. (b) Predicted density contours and magnetic field
lines for this case after 5 uniform refinements. Blocks: 1,024. Cells: 262,144.

on the other hand, manage to continuously reduce the error by almost 2 orders of mag-

nitude. The output-based method employing CC as the refinement criterion achieves a

mesh size reduction of 85% as compared to the uniform refinement approach, while the

output-based method employing ECC achieves a reduction of almost 90%, at an accuracy

level of ∼0.03%.

As further evidence of the convergence of the output-based methods, computed values

of the actual error in the functional, corrected error, and estimated error or computable

correction are shown in Figure 6.6 for both the CC- and ECC-based methods. The actual

and estimated errors approach equality after several mesh adaptations. As expected, it

can be observed that the values of the actual error and estimated error based on the

computable correction approach each other as the mesh is refined for both the CC and

ECC methods. Moreover, the error in the total drag force is reduced significantly after

application of the computable correction to the value of the functional.
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(a) (b)

(c) (d)

Figure 6.8: Density residual convergence history on the complete set of adaptive refined
AMR meshes for steady plasma flow through an expanding tube: (a) uniform refinement;
(b) gradient-based refinement; (c) output-based refinement using CC; (d) output-based
refinement using ECC.
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(a) (b)

(c) (d)

Figure 6.9: (a) The y-momentum and (b) By adjoint distributions for steady plasma flow
through an expanding tube after 7 uniform refinements. Blocks: 16,384. Cells: 4,194,304.
(c) The y-momentum and (d) By adjoint distributions for steady plasma flow through
an expanding tube after 7 refinements using CC as refinement criterion. Blocks: 1,906.
Cells: 487,936.

6.2 Superfast Plasma Flow Through an Expanding

Tube

The second MHD case considered here is also taken from the previous field-aligned flow

study of De Sterck et al. [149] in which a uniform superfast flow with a horizontal magnetic
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(a) (b)

(c)

Figure 6.10: Adapted meshes showing the grid block boundaries (not individual cells)
for steady plasma flow through an expanding tube: (a) After 7 refinements using density
gradients as refinement criterion. Blocks: 3,420. Cells: 875,520. (b) After 7 refinements
using CC as refinement criterion. Blocks: 1,906. Cells: 487,936. (c) After 7 refinements
using ECC as refinement criterion. Blocks: 857. Cells: 219,392. Meshes shown in (a),
(b) and (c) have approximately the same functional error.

field encounters an expanding tube. The length and height of the tube are 1 unit each,

while the lower boundary of the tube has a partially sinusoidal profile. The computational

domain is thus given by (x ∈ [0, 1], y ∈ [y0(x), 1]), where y0(x) = 0 for x ∈ [0, 0.3] and

y0(x) = −1+cos(π/4(x−0.3)) for x ∈ [0.3, 1]. The initial mesh, as shown in Figure 6.7(a),
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was composed of a single block and the number of cells per block is 8× 8× 4 = 256, with

4 cells in the out-of-plane direction. At y = y0 and y = 1, reflective boundary conditions

were imposed. At the nozzle inlet, x = 0, the flow properties were held fixed with ρ = 1,

p = 1, vx = 8.0 and Bx = 4.0 for the supersonic and super-Alfvénic inflow. Thus, the

sonic and Alfvén inflow Mach numbers are M = 8
√

3/5 and MA = 2.0, respectively. At

the nozzle exit, constant extrapolation is imposed for the exiting flow, which remains

superfast. Figure 6.7(b) shows the predicted density contours and magnetic field lines

for this case obtained on a fine uniformly refined mesh. As long as the lower wall remains

straight, the flow stays uniform. When the tube wall starts to curve downward at x = 0.3,

the plasma flow expands as the characteristic waves propagate downstream in a superfast

flow. The flow is non-uniform only in a region downstream from the fast characteristics

originating from the lower boundary at the start of the wall curvature (x = 0.3). This

characteristic also coincides with the first density contour line emerging from the lower

boundary at (x = 0.3), as can be seen in Figure 6.7(b). In this downstream rarefaction

region, the density, pressure and magnetic strength continuously decrease. For reference

purposes, the effectiveness of the proposed NKS algorithm for this case is illustrated by

the convergence histories of the steady-state solution density residual given in Figure 6.8

for the complete set of refined meshes for all four refinement strategies considered.

As for the preceding superfast cylinder flow, the functional used for this case is again

the total pressure drag comprising the thermal and magnetic pressure components on

the curved lower boundary, in the direction of the incoming flow. Figure 6.9 shows the

predicted y-momentum and By adjoint solutions for this functional corresponding to a

converged solution obtained following 7 uniform refinements of the initial mesh as well as

after 7 refinements using CC as the refinement criterion. Figure 6.10 shows a comparison

between meshes obtained after several adaptive refinements on the initial mesh, using

various gradient-based and output-based refinement criteria. Figure 6.10(a) shows the

anisotropic mesh obtained after 7 gradient-based refinements on the initial mesh, based on

the magnetic field and density gradients as refinement criteria. This approach refines the

entire region downstream of the fast characteristic originating from the lower boundary

at the start of the flow turning. In contrast, Figure 6.10(b) shows the anisotropic mesh

obtained after 7 CC-based refinements of the initial mesh. As compared to the mesh of

the gradient-based method, the resulting CC-based mesh is largely refined only in the

lower half of the rarefaction region in regions near the tube wall expected to influence

the drag functional. The ECC-based mesh obtained after 7 levels of refinement of the

initial mesh exhibits shown in Figure 6.10(c) exhibits similar features.

As an exact analytical value of the drag functional is not available for the expanding
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(a)

(b)

Figure 6.11: (a) Convergence of the percentage error in the predicted value of the func-
tional and (b) convergence of the predicted value of the functional, as a function of the
mesh size (number of degrees of freedom per direction) for various refinement techniques
for the magnetized flow through an expanding tube.
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tube plasma flow, a reference value of the total drag force on the curved boundary was

determined here using a uniformly refined mesh, with a resolution finer than the highest

mesh refinement level achieved for both the gradient-based and output-based adaptive

mesh refinement techniques. The resulting computed value of the reference drag is -

0.951652. The difference between the numerically computed value of the total drag force

for a given mesh and this reference fine mesh solution was used as the measure of the error

in the drag force. Figures 6.11(a) and 6.11(b) show plots of this percentage error and

the predicted value of the total drag against the total number of degrees of freedom per

direction, i.e.,
√
Ncells/4, where Ncells is the total number of grid cells, respectively. The

horizontal solid line in the closeup of the convergence of the predicted drag force value for

the various mesh refinement techniques of Figure 6.11(b) indicates the converged reference

fine mesh value of the functional. For this case, all refinement methods considered here

manage to continuously reduce the functional error by more than two orders of magnitude.

Moreover, the standard gradient-based approach performs significantly better than the

uniform approach. However, as compared to the gradient-based method, the output-

based method employing CC as the refinement criterion achieves a mesh size reduction

of 44% while the output-based method employing ECC achieves a reduction of 75%.

These mesh savings have been recorded on the finest mesh refinement level, with an

error level of ∼0.1%.

6.3 Superfast Rotating Cylindrical Outflow

In the next MHD flow problem previously studied by Sakurai [254], numerical results

for the quasi-2D steady superfast expansion outflow of a magnetized plasma emanating

from a rotating cylindrical object are examined. The computational domain for this case

is an annular region between two concentric circles with inner radius Ri = 1.0 and outer

radius Ro = 6.0. The initial mesh, as shown in Figure 6.12(a), was composed of 4 blocks

and the number of cells per block is 8× 8× 4 = 256, with 4 cells in the out-of-plane

direction. At the inner boundary, Ri = 1, a uniform inflow with radial magnetic field is

imposed with inflow density ρ = 1, inflow pressure p = 1, inflow radial velocity ur = 3

and radial magnetic field given by Br = 1. The incoming flow also has a rotational

velocity component uθ = 1 in the counter-clockwise direction. Thus, the purely radial

magnetic field imposed at the inner boundary is not aligned with the inflow velocity. The

ratio of specific heats, γ, is taken to be 5/3. At the outer boundary, Ro = 6, the superfast

plasma is allowed to flow freely outwards and a constant extrapolation of all boundary

conditions is imposed accordingly.
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(a) (b)

Figure 6.12: (a) Initial computational mesh for rotating cylindrical outflow. The thicker
black lines are the block edges and the thinner red lines are the cell edges. The total
number of blocks is 4, the total number of cells per block is 8×8×4=512 and the total
number of cells is 2,048. (b) Predicted density contours and magnetic field lines for this
case after 5 uniform refinements. Blocks: 4,096. Cells: 1,048,576.

The resulting predicted plasma flow field is shown in Figure 6.12(b), with the curved

white rays representing the magnetic field lines and the colour contour field and solid

black lines representing the computed plasma density. The flow is superfast over the

entire computational domain. The magnetic field lines are clearly not aligned with the

streamlines in the inertial non-rotating frame of reference. However, it can be shown

that in the reference frame of the cylinder, rotating at an angular velocity Ω = −1, the

velocity streamlines and magnetic field lines are aligned everywhere. Such a field-aligned

radial outflow can be thought of and used as a simplified model for stellar winds.

The preceding quasi-2D rotating MHD outflow can be completely specified analyti-

cally in terms of six constants, s, fm, fB, Ω, rA and h, which are given by

s =
p

ργ
, (6.1)

fm = ρurr, (6.2)

fB = Brr, (6.3)
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Figure 6.13: Region shaded blue indicating region over which the enthalpy is integrated
for the functional for rotating cylindrical outflow.

(uθ − Ωr)Br − urBθ = 0, (6.4)

ΩrA
2 = r

(
uθ −

BrBθ

ρur

)
, (6.5)

h =
1

2
ur

2 +
1

2
(uθ − Ωr)2 +

γ

γ − 1

p

ρ
− 1

2
Ω2r2, (6.6)

where s is the entropy, fm and fB are the radial momentum flux and magnetic flux,

respectively, Ω is the angular velocity of the rotating cylindrical object, rA is the Alfvén

radius and h is the Bernoulli constant. These six flow invariants completely specify the

plasma outflow for the entire domain. As mentioned by Sakurai [254], the Bernoulli

function, H(r, ρ), can be derived and expressed as

H(r, ρ) =
f 2
m

2ρ2r2
+

1

2
rA

2Ω2

(
rA/r − r/rA
1− ρf 2

B/f
2
m

)2

+
γ

γ − 1
sργ−1 − 1

2
Ω2r2 (6.7)

Fixing the constants s, fm, fB, Ω and rA, the profile ρ(r) can be obtained as level curves

of the Bernoulli function H(r, ρ) = h for varying h, thus specifying the solution over the

entire domain as a function of the radial position, r. For a more detailed analysis of

this case, the reader is referred to the previous studies by Sakurai [254] and De Sterck et

al. [149].
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(a) Mesh I. Cells: 1,024. (b) Mesh II. Cells: 4,096.

(c) Mesh III. Cells: 16,384. (d) Mesh IV. Cells: 65,536.

(e) Mesh V. Cells: 262,144. (f) Mesh VI. Cells: 1,048,576.

Figure 6.14: Density adjoint distribution for rotating cylindrical outflow on successive
uniformly refined meshes.
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(a) Mesh II. Cells: 3,328. (b) Mesh III. Cells: 9,984.

(c) Mesh IV. Cells: 26,112. (d) Mesh V. Cells: 80,384.

(e) Mesh VI. Cells: 236,800. (f) Mesh VII. Cells: 691,200.

Figure 6.15: Density adjoint distribution for rotating cylindrical outflow on successive
adaptively refined meshes using CC as refinement criterion.
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(a) (b)

Figure 6.16: (a) Adapted meshes showing the grid block boundaries (not individual cells)
for rotating cylindrical outflow: (a) After 6 refinements using CC as refinement criterion.
Blocks: 2,700. Cells: 691,200. (b) After 6 refinements using ECC as refinement criterion.
Blocks: 2,016. Cells: 516,096.

The functional used for the plasma outflow case considered here is the total enthalpy of

the plasma integrated over the region (r ∈ [2.236, 6.0], θ ∈ [−π/8, π/8]), for a cylindrical

Figure 6.17: Adapted mesh showing the grid block boundaries (not individual cells) for
rotating cylindrical outflow after 7 refinements using velocity, density, and magnetic field
gradients as refinement criteria. Blocks: 1,124. Cells: 287,744.
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(a)

(b)

Figure 6.18: (a) Convergence of the percentage error in the predicted value of the first
functional and (b) convergence of the predicted value of the first functional, as a function
of the mesh size (number of degrees of freedom per direction) for various refinement
techniques for the rotating cylindrical outflow.
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coordinate system with its origin at the centre of the annulus and the positive x-axis as the

θ = 0◦ direction. This region is indicated in Figure 6.13. Using the flow solution, as given

in Equations (6.1)–(6.6), the analytical value of this proposed functional can be found

to be 212.098. The resulting predicted solution for the density adjoint for this case is

shown on successive uniformly refined meshes in Figure 6.14 and for successive adaptively

refined meshes obtained using the CC-method in Figure 6.15. Figures 6.16(a) and 6.16(b)

additionally show the corresponding meshes obtained after 6 adaptive refinements of the

initial mesh using the two output-based refinement criteria for this functional. As would

be desired for an accurate functional, both methods effectively concentrate the refinement

of the mesh along the spiral path of the outwardly flowing plasma that passes through

the region of integration of the functional, producing quite similar meshes. In contrast,

Figure 6.17 shows the mesh obtained after 7 gradient-based refinements of the initial

mesh for the plasma outflow problem. The velocity, density, and magnetic field gradients

were all used as criteria for the simulation with the gradient-based technique. Most of the

gradient-based refinement of the mesh occurs in an axisymmetric manner in the radial

direction. While not necessarily effective in reducing the functional of interest, this

behaviour is expected since all the solution variables exclusively depend on the radial

position r, as given by Equations (6.1)–(6.6).

The true error in the functional, i.e., the difference between the numerical value of

the functional and the analytical value, and the convergence of the predicted value of the

functional are plotted as a percentage against the total number of degrees of freedom per

direction, i.e.,
√
Ncells/4, where Ncells is the total number of grid cells in the computational

mesh, in Figures 6.18(a) and 6.18(b), respectively. From these convergence results it is

quite clear that the gradient-based approach fails to significantly reduce the functional

error, reducing it only by a factor of about one half after 7 refinements compared to the

initial mesh. This can be attributed to the inability of the gradient method to detect

errors in the azimuthal direction as well as those associated with the proposed functional

and therefore only refining in the radial direction where the highest solution gradients

exist. In contrast, the two output-based methods are able to reduce the error by more

than one order of magnitude after several mesh refinements. Moreover, the output-

based method employing the CC refinement criterion achieves a mesh size reduction

of approximately 34% as compared to that of the uniform refinement approach, while

the anisotropic AMR procedure based on the ECC output-base procedure achieves a

reduction of approximately 51% compared to the uniformly refined mesh results. The

corresponding error level is ∼0.01%.
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Figure 6.19: Initial mesh used for the steady state background solar wind simulation.
The thicker black lines are the block edges and the thinner red lines are the cell edges.
Each block contains 8 × 8 × 8 = 512 cells. The total number of blocks is 12. The total
number of cells is 12× 512 = 6, 144.

6.4 Steady Background Solar Wind Flow

As the final ideal MHD test case, the steady state background solar wind plasma flow

described previously in Chapter 5 is reconsidered, with an inner boundary at 25RSun and

the outer boundary at a radius of 225RSun. The computational domain is a spherical

shell with inner and outer radii as 25RSun and 225RSun, covering a longitudinal span

of 360◦ and a latitudinal span of 90◦ with 0◦ latitude being the equatorial plane. The

initial spherical mesh, as shown in Figure 6.19, is composed of 18 blocks and the number

of cells per block is 8× 8× 8 = 512. The magnetogram photospheric maps of the Sun

dated 25th June 2015 at 1 am were used to define the inflow conditions at 25RSun.

Two-dimensional plots of the radial component of the magnetic field, solar wind

speed, plasma density and thermodynamic pressure at the inner boundary, r = 25RSun,

are shown in Figure 6.20. At the inner boundary, the flow variables are kept fixed at

the superfast inflow conditions given in Figure 6.20. At the outer boundary, constant

extrapolation is imposed for the outgoing superfast flow. The ratio of specific heats, γ,

is assumed to be 5/3. The computations are performed in the non-inertial corotating
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(a) radial component of magnetic field (mGauss) (b) solar wind speed (km/s)

(c) density (count/m3) (d) pressure (Pa)

Figure 6.20: Boundary conditions at r = 25RSun for the ambient solar wind simulation
using the 25th June 2015 magnetogram data set.

frame of the Sun. As discussed in Chapter 5, the main features are the formation of

the current sheet across which the magnetic field is discontinuous, the Parker spiral and

the fast and slow components of the solar wind. The plasma density, ρ, and magnetic

field strength, |B|, decrease with increasing radial distance from the Sun, being inversely

proportional to the square of the radial distance, r2. The flow is superfast and therefore

supersonic throughout the computational domain. The quantities, (|B|r2), (ρr2), and the

magnitude of the solar wind velocity stay constant along the spiral path of the plasma.

Figure 6.21(a) shows contours of (ρ(r/214.9RSun)2) on the ecliptic plane of the Sun with

streamlines depicting the magnetic field lines. The magnetic field lines change sign across

the region where the current sheet intersects the ecliptic plane.

The functional used here for the present solar-wind simulation was the enthalpy

integrated over the region (r ∈ [170.351167RSun, 225.0RSun], θ ∈ [−π/16, π/16], φ ∈
[−π/16, π/16]) for a spherical coordinate system with its origin at the Sun’s centre, the
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(a) (b)

Figure 6.21: (a) Predicted contours of (ρ(r/214.9RSun)2) (count/m3) and magnetic field
lines for the steady background solar wind on the ecliptic xy-plane after 3 uniform re-
finements. Blocks: 6,144. Cells: 3,145,728 (b) Region shaded blue indicating region over
which the enthalpy is integrated.

(a) (b)

Figure 6.22: (a) Density adjoint distribution for the steady background solar wind on
the ecliptic xy-plane : (a) after 3 uniform refinements. Blocks: 6,144. Cells: 3,145,728.
(b) after 4 refinements using CC as refinement criterion. Blocks: 4,445. Cells: 2,275,840.

positive x-axis as the θ = 0◦ direction and the ecliptic plane represented by φ = 0◦. Such

a functional places an emphasis on the solution in the vicinity of Earth, which would be
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(a) (b)

(c)

Figure 6.23: Sliced ecliptic xy-plane cross-sections of adapted meshes showing the grid
block boundaries (not individual cells) for the ambient solar wind simulation using the
25th June 2015 magnetogram data set: (a) After 5 refinements using (|B|r2) gradient as
refinement criterion. Blocks: 27,466. Cells: 14,062,592. (b) After 5 refinements using
CC as refinement criterion. Blocks: 22,254. Cells: 11,394,048. (c) After 5 refinements
using ECC as refinement criterion. Blocks: 19,881. Cells: 10,179,072.

natural for many space weather simulations. Figure 6.21(b) depicts the proposed region
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(a)

(b)

Figure 6.24: (a) Convergence of the estimated percentage error in the predicted value of
the functional as a function of the mesh size (number of degrees of freedom per direction)
for ambient solar wind simulation using the 25th June 2015 magnetogram data set. (b)
Convergence of the value of the functional for various refinement techniques for this case.
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of interest for the functional evaluation. Figure 6.22 shows the corresponding predicted

distributions of the 1st component of the adjoint solution vector on the ecliptic xy-plane

after 3 uniform refinements of the initial mesh as well as after 4 refinements using the

CC refinement criterion. Additionally, Figure 6.23 shows a comparison of the resulting

meshes obtained after application of adaptive refinement strategies to the initial mesh,

for both the gradient-based and output-based refinement methods. Figure 6.23(a) shows

a slice of the mesh obtained after 5 adaptive refinements using the gradient of (|B|r2) as

the refinement criterion. The latter focuses on refining the region of the current sheet

across which the (|B|r2) gradients are high, as expected from the results described in

Section 5.3.1 of the previous chapter. Figures 6.23(b) and 6.23(c) show slices of the

computational mesh obtained after 5 output-based adaptive refinements obtained us-

ing the CC and ECC output-based approaches, respectively. It is very evident that the

output-based methods focus the mesh refinement along the spiral path of the plasma that

eventually reaches and flows through the volume over which the functional of interest is

defined.

An analytical value of the functional is not available for this last MHD case. Addi-

tionally, performing calculations on a uniformly refined mesh finer than the highest mesh

refinement level attained for any of the adaptive mesh refinement techniques is deemed

infeasible for this simulation due to limitations of the available computational resources.

Hence, estimated values of the functional error were calculated using the adjoint-based

error estimation procedure for all the meshes considered herein. Figure 6.24(a) shows a

plot of the estimated percentage error against the total number of degrees of freedom

per direction for this fully three-dimensional flow, i.e., 3
√
Ncells, where Ncells is the total

number of grid cells in the computational mesh, for the various refinement techniques

considered for this case. Additionally, Figure 6.24(b) shows a close-up of the conver-

gence of functional values for the various mesh refinement techniques. Here, the solid

horizontal line indicates the value of the functional obtained on the finest uniform mesh

considered in the study (i.e., the mesh obtained following 5 uniform refinements of the

initial mesh). For the gradient-based technique using (|B|r2) as the refinement criterion,

the estimated error is not greatly reduced as the computational mesh is refined and rather

inaccurate values of the functional are obtained even after several refinements. This can

be explained by the fact that the current sheet does not necessarily lie in the region that

influences the functional. The output-based refinement techniques are however shown to

provide significant improvements in the prediction of the functional compared to both

uniform and standard gradient-based refinement approaches. Depending on the desired

level of error in the funcitonal, it is estimated that mesh savings of at least 65% are
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achievable for the current solar-wind problem using output-based methods as compared

to the uniform refinement method. The preceding findings provide strong evidence for

the potential benefits of the proposed output-based AMR strategy for predicting space

weather phenomena.



Chapter 7

Conclusions

The key objective of this thesis was the development of a numerical technique to achieve

significant reductions in the computational mesh size required for accurate predictions

of integrated engineering quantities of interest for steady 2D and 3D ideal MHD plasma

flows. In order to achieve this, a parallel output-based mesh refinement algorithm was

developed and applied in conjunction with a block-based anisotropic AMR method, first

to the solution of steady, non-conducting aerodynamic flows governed by the Euler and

Navier-Stokes equations and subsequently extended to electrically conducting flows gov-

erned by the equations of ideal MHD. In the proposed approach, the governing system of

partial-differential equations was discretized using a finite-volume approach, represent-

ing the solution on body-fitted hexahedral meshes distributed parallely across a multiple

number of processors. An inexact variant of Newton’s iterative method was used to solve

this discretized system of governing equations in combination with a limited piecewise lin-

ear reconstruction procedure to obtain second-order accurate solutions. The anisotropic

block-based AMR technique allowed the economical generation of meshes by increasing

the mesh resolution only in directions as dictated by the solution content and refine-

ment criteria. A light, flexible binary tree data structure tracked connectivities between

blocks spread across multiple processors, enabling efficient, parallel AMR via domain

decomposition. The discrete adjoint formulation was used to calculate local sensitivities

of functionals to the flow variables. Primal flow quantity residual errors were evalu-

ated on a finer mesh using an h-refinement strategy and the adjoint solution was used

to weigh these residual errors to obtain error estimates of the functionals. These error

estimates were used to drive the mesh adaptation, resulting in anisotropically adapted

meshes customized for accurate functional evaluation.

The various flow cases studied using the proposed output-based anisotropic AMR

framework demonstrated substantial mesh size reductions as compared to more tra-

155
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ditional physics-based mesh adaptation strategies while efficiently reducing the target

functional error. Additionally, a novel space weather simulation framework was also de-

veloped that coupled a data-driven model of the inner solar wind with the anisotropic

block-based AMR finite-volume framework. The framework, where the solar wind model

was used as a driver for the heliosphere MHD simulation, showed remarkable success

in accurately capturing features of the solar wind and also predicting real-time space

weather and solar-wind plasma properties at the Earth. The latter also demonstrated

the capability of the parallel AMR framework to deal with more realistic flow problems

rather than just canonical, standardized test cases. In the sections to follow, the original

contributions made in this thesis and recommendations for future extensions of this work

are discussed.

7.1 Original Contributions

The original contributions of this thesis can be summarized as follows:

• An a posteriori, output-based, error estimation algorithm was combined with a par-

allel block-based anisotropic AMR framework for the numerical solution of steady

3D flows. The thesis represents the first application of this particular combina-

tion of refinement strategies. The performance of the proposed output-based AMR

strategy was demonstrated for various types of flows including inviscid aerodynamic

flows governed by the Euler equations, viscous aerodynamic flows governed by the

Navier-Stokes equations and electrically conducting gaseous flows governed by the

ideal MHD equations.

• The thesis also represents a first use of functional error estimates obtained using

adjoint-based error estimation to drive the mesh refinement framework to 3D MHD

flows. The benefits obtained by the proposed algorithm in terms of mesh savings

and efficient functional error reduction were demonstrated for a range of 3D ideal

MHD flows.

• A data-driven 3D integrated solar wind-MHD model that employs photospheric

magnetic field maps obtained from solar magnetograms and uses them as input

to drive the MHD simulation was developed. The capabilities of this framework

to accurately simulate the background solar wind structure as well as potentially

forecast solar wind properties at the Earth were demonstrated. This framework

includes capabilities that are not available together in any other available model:
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(1) the new model uses a cubed-sphere grid covering a longitudinal range of 360◦

in φ and a latitudinal range of 180◦ in θ, i.e., all directions in 3D space; (2) it has

parallel block-based anisotropic AMR capabilities; (3) it can perform calculations in

the inertial or the Sun’s corotating frame of reference, (4) it can perform simulations

of both the steady-state ambient or background solar wind as well as the fully

unsteady solar wind that could be used for space weather forecasting and possibly

the study of disturbances such as CMEs in a background solar wind.

7.2 Recommendations for Future Research

The parallel output-based anisotropic AMR framework discussed in this thesis provides

a means for accurate prediction of both aerodynamic and MHD flows. However, it is

also a solid foundation for building additional capabilities in areas which were considered

beyond the scope of this thesis. Brief descriptions for various possibilities for future

research are given below.

• The adjoint problem was formulated only for the Euler, Navier-Stokes and ideal

MHD equations. The parallel a posteriori output-based error estimation algorithm

presented here is rather generalizable and extending it to other systems of governing

equations should be a reasonably easy task. Adjoint-based error estimation has al-

ready been used to study reactive flow by various researchers in the past [110–118].

However, the use of a highly scalable parallel block-based AMR framework in com-

bination with adjoint-based error estimation to study steady solutions to reactive

flow problems has not been explored. Extensions to more sophisticated fluid sys-

tems such as the Reynolds-Averaged Navier-Stokes (RANS) equations would enable

accurate calculation of aerodynamic forces without neglecting some of the essential

physics.

• The output-based AMR framework for MHD could also be used for more practical

applications involving complex geometries, such as the accurate calculation of forces

and moments on outer space vehicles, especially propulsion technologies such as the

magnetic sail [255] and the electric sail [256] that harness the momentum of the

solar wind. The framework could also be extended to solve the equations of resistive

MHD in order to be able to simulate a wider range of space physics flows.

• The output-based error estimation algorithm in this thesis was limited to the study

of steady flows. However, many flows of practical interest involve unsteady phe-

nomena. Although time-accurate output-based mesh adaptation for unsteady flows
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have been the subject of research in the past by various researchers [105,119,120],

effective and practical strategies for time-dependent problems are still not read-

ily available. Such methods could also be used to study unsteady space weather

phenomena such as the propagation of coronal mass ejections (CMEs) [225,226].

• In the error estimation framework developed here, the residual errors are calculated

by prolonging the solution onto a finer mesh. These errors can also be calculated

by using a higher-order residual reconstruction on the same mesh, i.e., a p-derived

residual error [90, 92, 146]. Circumventing the creation of a new mesh every time

error indicators need to be calculated could potentially provide savings in time

required for the output-based AMR procedure.

• In the adjoint calculation algorithm used here, linearized approximations of the

residual Jacobians were used to construct the linear system for obtaining the adjoint

solution. A higher-order Jacobian calculation would require taking into account

the influence of neighbouring cells on the residual through the second-order limited

piecewise linear reconstruction used here. Differentiating the residual with respect

to the solution in these neighbouring cells is a tedious task. Libraries for automatic

differentiation [199, 200] could also be used for this purpose. This would result in

more accurate calculations of the adjoint variables and as a result, more accurate

values of functional error estimates.

• In the current block-based AMR framework, mesh resolution is increased locally

by refining individual blocks to form new blocks. Such a procedure is referred to

as h-refinement wherein new, smaller cells are created to increase the mesh res-

olution. Added benefits could be achieved by increasing the order of polynomial

reconstruction of the solution in the cell, i.e., by applying p-refinement. Such com-

bined hp-refinement techniques [83, 90, 99, 108, 109] would also be worth exploring

in the future.

• The proposed data-driven solar wind-MHD framework has been applied to the

prediction of the background solar wind and its evolution in response to changes

in the global solar magnetic field. It has the potential to be extended to include

unsteady phenomena and disturbances such as coronal mass ejections (CMEs) [225,

226].
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