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A multifluid magnetohydrodynamic (MHD) model based on an extended fluid dynamics descrip-

tion for each plasma species is proposed for the prediction of the flow and behaviour of fully and

partially ionized non-equilibrium anisotropic plasmas. Two-(electrons and ions) and three-fluid

(ions, electrons and neutrals) plasma models are described that both make use of a 10-moment

or Gaussian anisotropic moment closure of the Boltzmann equation. The moment equations for

each plasma species are fully coupled to the Maxwell’s equations which govern electromagnetic

wave propagation within the plasma and a Bhatnagar-Gross-Krook (BGK) relaxation time ap-

proximation is used to model non-equilibrium collisional processes between the plasma species.

Chemical kinetic models are included to represent the partially ionized plasma processes. Un-

like conventional MHD models, the proposed multi-species MHD model is capable of taking

into account large temperature anisotropies and temperature differences between the electrons

and ions, both of which can occur for low-density, high-temperature plasmas and/or strongly

magnetized plasmas. A second-order Godunov-type finite-volume method is developed for the

solution of the one- and two-dimensional forms of the multifluid plasma models, which includes

temporal limiting in one-dimension and a parallel scheme utilizing a Newton-Krylov-Schwarz

(NKS) implicit algorithm for the two-dimensional solution procedure. The numerical fluxes

in the Godunov-type scheme are solved using HLLE and Godunov numerical flux functions.

The two-dimensional solution procedure includes Generalized Lagrange Multiplier (GLM) and

diffusive error correction schemes for the treatment of divergence errors associated with the

electromagnetic field. An accuracy assessment is performed for the two-dimensional numerical

solution procedure, demonstrating good convergence of solutions for a range of problems. The

iii



validated two-dimensional solution procedure for the multifluid MHD model is then applied to

the solution of the well-known Geospace Environmental Modelling (GEM) challenge problem

involving magnetic field reconnection and numerical results are compared to established solu-

tions in the literature. Results of grid refinement and parametric studies for the GEM case

are also described. The proposed multifluid MHD model is shown to recover known published

results with relatively small computational effort and the potential of the proposed treatment

for describing a range of non-equilibrium anisotropic plasma flows is demonstrated.
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Chapter 1

Introduction

1.1 Overview

The theoretical study and numerical modelling of plasmas have many applications in the fields

of physics and aerospace engineering. Current applications of numerical plasma modelling

include problems in flow control [9–12], hypersonics [13–17], space electric propulsion (EP)

systems [18–26] and space plasmas [4,27,28]. A particular area of interest for this thesis is the

behaviour of space plasmas associated with the Earth’s magnetosphere [29] as depicted in the

schematic diagram of Figure 1.1. The magnetosphere is a magnetic field that encloses the planet

earth and exists as close as 40,000 km and extends as far as several million kilometres at the

magnetotail. Understanding plasma dynamics in the magnetosphere is important to reducing

the interference of communications and satellite operations in the environment of space as well

as understanding how the magnetosphere protects the earth from high energy solar winds,

radiation and electromagnetic disruptions [30, 31].

Collectively, the study of flows and interactions of plasmas with electromagnetic forces is re-

ferred to as magnetohydrodynamics (MHD) [32–34]. The modelling of plasmas can be consid-

erably more complicated than regular fluid dynamic flows as there is the added complexity of

the electro-magnetic interactions (such as the Lorentz force) combined with the widely varying

physical characteristics of the plasma species (i.e., the electrons and ions). One of the many

unique properties of charged particles in plasmas is the ability to be influenced by, and to influ-

ence, the electric and magnetic fields. This property also gives rise to plasma anisotropies as ion

and electron temperatures along magnetic field lines can differ from temperatures perpendicular

to the field lines. This is key in understanding the behaviour of plasmas when the magnetic

fields are strong or in rarefied conditions, such as those found in space. Further, control of

1
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Figure 1.1: Schematic of Magnetosphere by Crochot [1].

the plasma particles can be achieved by taking advantage of these unique properties and is the

source of interest from the flow control and hypersonics communities, where applications in

these fields often involve partially, as opposed to fully, ionized plasmas. Harnessing the unique

anisotropic properties of plasmas can also aid in the design of innovative propulsion systems,

as plasmas can be heated and controlled in ways that isotropic fluids and gases cannot [35].

1.2 Motivation

A common model used in the simulation of plasmas [36,37] is traditional MHD, which includes

three variants: ideal, Hall, and resistive MHD [32–34, 38–43]. These are essentially single-

fluid, 5-moment, formulations of the plasma, assuming isotropic temperatures and pressures

and do not differentiate between the electron and ion temperatures. They also do not directly

solve the full set of Maxwell’s equations governing the electro-magnetic fields. Instead, the

electro-magnetic fields are often incorporated by assuming a strong magnetic field or by taking

the magnetic flux frozen in with the fluid. The electric field is often not explicitly solved

for and represented by a generalized Ohm’s law [15], whose validity and applicability can be

a concern [13, 44]. Lastly, the single fluid description of the plasma adopted in traditional

MHD descriptions is unable to model partially ionized and non-quasi-neutral plasmas, or the

associated chemistry. These characteristics of traditional MHD gives rise to limitations which

have been recognized repeatedly in the literature [13, 16, 25, 45] where in many instances the

approach has been applied to situations and/or regimes beyond its true applicability [46]. In

fact, the regime in which ideal MHD is formally valid is rather non-physical [47, 48].
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On the other extreme end of the plasma modelling spectrum from ideal MHD descriptions are

the so-called particle simulation methods [49–52]. In particle simulations, individual particles

and/or groupings of particles are tracked and their collisions/interactions can be directly simu-

lated, as required, using Monte Carlo based approaches [52]. Although particle simulations can

provide the full solution information that is desired in terms of anisotropic and non-equilibrium

effects, tracking and simulating the individual interactions of particles can be extremely com-

putationally expensive and can be difficult to apply to large-scale or complicated problems.

Near-equilibrium or high-density regimes are also very challenging to treat accurately if parti-

cle simulations are used for the entire or even portions of the problem [53]. For example, when

applied to the simulation of space plasmas and the GEM challenge described in the next sec-

tion, many simplifications are made to the governing set of equations as well as to the problem

definition and how particles are distributed. Spatial and particle count resolutions for such

simulations are also quite low for many of these applications so that the computations remain

tractable [3, 54].

In order to overcome the deficiencies of traditional MHD without resorting to full particle

simulations, many extensions to traditional MHD have been proposed. Recognizing the need

for a tensorial treatment of the temperature and pressures, the most common extension of

the MHD model is to use a Navier Stokes-type fluid dynamics model in conjunction with a

treatment of Maxwell’s equations which includes the electric field, where coupling between the

two sets of equations occurs in the diffusive source terms [13,16,23,55]. A charge conservation

equation is also added. This modelling approach is sometimes called the full magnetofluid

dynamics equations (FMFD) or real magnetogasdynamics equations. However, the anisotropic

pressure effects are only possible in the presence of gradients with such models. A large range

of plasma models fall into a range lying somewhere between the FMFD equations and ideal

MHD descriptions [10, 12, 56, 57]. It should also be noted that the FMFD models are still not

a fully anisotropic description of the plasma and do not include a full treatment of Maxwell’s

equations.

Particle simulations can be combined with traditional MHD descriptions to recover the non-

equilibrium and anisotropic kinetic collision behaviour [21, 22, 58]. Hybrid methods which in-

clude fluid equations to simplify certain computational regions of the flow [5] or parts of the

system of equations, such as the electron fluid, have also been proposed [2, 25, 54]. However,

once again this can dramatically increase the costs of the simulation. Note that a good overview

of the range of models discussed up to this point in the introduction can be found in the reviews

by Shang [59, 60].

From the preceding discussion, it would seem that accurate modelling of space plasmas is not
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possible using traditional MHD models due to the presence of plasma anisotropies, the require-

ment for a full modelling of Maxwell’s equations, and the ability to handle non-quasi-neutral

and multi-temperature plasmas. On the other hand, as noted above, particle simulations, while

dealing with these issues, are very expensive. Models that can predict such plasma flows with

more modest computational costs could potentially allow significant advancement of plasma

modelling in all areas and, in particular, help in the understanding of magnetosphere and solar

wind interactions [30,31], as well as fill the need in the simulation and design of efficient, reliable

and cheap space propulsion systems [23, 25, 26, 60, 61] and other practical plasma applications.

Comprehensive and computationally tractable models for realistic anisotropic plasmas are not

readily available in the literature, however several recent studies have made notable attempts

to arrive at suitable descriptions. An example of how the multi-temperature problem has been

addressed in previous studies is provided by the Shumlak and Loverich two-fluid model [62,63],

which treats the electron and ion species as well as the Maxwell’s equations separately, coupled

only through source terms. However, this model is based on an isotropic fluid model, and

therefore cannot model anisotropic plasmas. An updated version of this two-fluid model was

more recently proposed by Hakim et al. [64, 65], which includes some anisotropic pressures

through a 10-moment formulation of the fluid equations. However, the latter does not take

into account collisional effects, which is important for high density equilibrium conditions, as

well as for rarefied gas conditions such as those encountered in the modelling of space plasmas.

The model of Hakim et al. therefore also suffers from oscillations and the requirement of very

high grid resolutions to resolve these oscillations. To address these issues, during the course

of this thesis, a fully 10-moment, anisotropic two-fluid plasma model with a full modelling

of Maxwell’s equations, with particle collisions that is capable of describing non-quasi-neutral

plasmas ranging from the equilibrium to the collisionless regimes [47] was developed. This was

developed in parallel to the subsequent work by Hakim and Loverich et al. [66] and prior to

the recent model of Johnson et al. [7], which can be viewed as the most comprehensive of the

multi-fluid models to date.

There is one further property of plasmas absent from most traditional MHD descriptions, which

is the fact that plasmas are not always fully ionized, and that neutral particles exist in the

plasma as well. Taking into account the influences of the neutral particles, and the consequent

interparticle reactions, is important for the modelling of flow control devices and EP devices,

such as ion thrusters, which require a neutralizer in order to operate efficiently [58]. Though

partially ionized plasmas have been often simulated using traditional MHD [67] and direct

numerical simulation, a model with the capabilities of particle simulations, but based on fluid

equations is thus far absent. It is clear that, due to the complexity of the problem, there
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are many open issues that need to be addressed going forward for the accurate modelling of

plasmas.

1.3 Geospace Environmental Modelling (GEM) Magnetic

Reconnection Challenge

A standard representative problem very often considered in the numerical modelling of space

plasmas is the Geospace Environmental Modelling (GEM) magnetic reconnection challenge.

Although examined for some time, more recent observations from studies of the ESA Cluster

mission data [68] and the successfully launched NASA MMS [69] has renewed interest in the

modelling and exploration of this problem.

In this thesis, the GEM magnetic reconnection challenge is used in the evaluation and vali-

dation of a proposed new multifluid MHD model and companion solution method developed

herein. The original problem was posed by Birn et al. [27] to investigate the role of mag-

netic reconnection in the dynamics of energy and particle transfers in the magnetosphere,

particularly the magnetotail region during high solar activity. The problem has since been

investigated by a large number of researchers using a variety of models and numerical meth-

ods [2–4, 7, 27, 38, 54, 63, 65, 66, 70–73]. The GEM challenge exists in a regime which is virtu-

ally collisionless [74], giving rise to large temperature and pressure anisotropies [4], as well as

two-fluid currents. Traditional MHD models are not strictly valid for this regime due to the

simplifying assumptions. Accurate, fast, reconnection has also been shown to require electric

and magnetic fields that are not frozen to the fluid [3]. The simulation results that are thought

to be most accurate for the GEM problem are obtained using hybrid particle and collisionless,

kinetic, particle-in-cell (PIC) simulation methods [2,3,54,70]; however, significant inroads have

been made in simulating this problem using extended fluid models [7,65,66]. Though significant

research has been carried out related to the GEM problem, a very high resolution simulation

using multiple species, both electron and ion, utilizing fully anisotropic fluid models, along

with a full simulation of Maxwell’s equations with divergence error cleaning formulated in a

Godunov-type finite-volume scheme has not been performed to this date. Furthermore, a grid

convergence resolution study is rare, particularly for the GEM problem. This is due to compu-

tational and stability considerations which usually require a modification of the GEM problem

such as a reduction, or simplification, in the governing system of equations compromising the

largely decoupled, anisotropic nature of the system.

Often, the GEM challenge problem has been solved using ideal, resistive and Hall MHD mod-
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els [27,38,71,72]. The problems with these plasma descriptions is that they treat the plasma as

a single fluid with combinations of infinite conductivity, an artificial resistivity and a general-

ized or simplified Ohm’s law, which does not reflect the true behaviour of an electro-magnetic

plasma system. These MHD models couple, to a degree, the fluid with the electric and magnetic

fields as intrinsic to the fluid instead of as a standalone field. This is the so called frozen-in mag-

netic flux condition of traditional MHD methods [27]. Further, the fluids are usually isotropic

as opposed to truly collisionless plasmas, as specified in the GEM challenge, which as a con-

sequence have anisotropic features. As such, results with traditional, frozen-in magnetic flux

condition, MHD models have been inconsistent and very dependent on the tuning parameters

and changes in models and numerical solution methods. For instance, Otto [38] compared

MHD and Hall MHD with resistivity models and found that the reconnection rates doubled

when moving from ideal MHD to the Hall MHD model, but found the reconnection changed

greatly with the resistivity parameters used. The reconnection rate was, however, significantly

lower than that expected from particle codes unless a non-physical value for the resistivity was

used. Ma and Bhattacharjee [72] utilized a Hall MHD code with a more accurate Ohm’s law,

but still utilized an isotropic single fluid description of the plasma with no discrete electric field.

Ma and Bhattacharjee state that the ion pressure gradient can be neglected, which is counter

to the findings discussed by Schmitz and Grauer [4]. They go on to say that while the electron

pressure gradient should not be neglected, it is a common assumption in the literature and also

neglect it anyway. The results of Ma and Bhattacharjee do not align with any other results,

except qualitatively, with times and reconnection rates differing from those predicted by other

simulation results. Birn and Hesse [71] brought anisotropic effects into the resistive MHD equa-

tions. Like all other traditional MHD results, the reconnection takes much longer (hundreds of

non-dimensionalized time), but it was noted in their study that with added anisotropies, the

reconnection rate was reduced, and as the rate of isotropization increased, the reconnection

rate increased. As will be shown, these findings are also observed in the present study.

As mentioned previously, the perceived benchmark methods for the solution of the GEM prob-

lem are the PIC and hybrid codes. Shay et al. [2] have compared a PIC and hybrid code with

Hall MHD. The hybrid model treats ions as particles, but treats the electrons as an isotropic

fluid, an assumption that is not valid as stated before [4]. Further, the PIC and hybrid code

uses a restricted form of the governing equations, with additional constraints and assumptions

which eliminates several variables and also assumes that equilibrium quantities are only a func-

tion of z while perturbed variables have no x component. The differences between the various

schemes, including changing the mass ratio by orders of magnitude, was found not to greatly

affect reconnection, but did affect the fluid dynamics. Hesse et al. [70] explored the PIC model
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further and Kuznetsova et al. [54] explored the differences between PIC and hybrid models,

where the hybrid model is found to be more stable with no magnetic island forming due to the

isotropic nature of the electron fluid equations. Note that in all of the simulations listed above,

not all of the particles are simulated. Instead, a background distribution of particles is created

that have different properties than the simulating particles and which are not affected by the

fluid and electromagnetic forces.

More recently, other advanced non-PIC schemes allowing non-equilibrium treatment of the

plasma have been used to simulate the GEM problem. The most successful of these has

been those based on the Darwin-Vlasov model and various two-fluid formulations. Schmitz

et al. [4, 75] presents a fully anisotropic two-fluid plasma model in which the particle distribu-

tion functions are directly computed. However the major deficiency in this formulation is that it

is still quite computationally expensive, does not incorporate plasma particle collisions and does

not provide a full modelling of Maxwell’s equations. In the Darwin-Vlasov model, the ‘vacuum’

wave modes are eliminated, which is to say all speed of light waves of Maxwell’s equations are

not considered by splitting the electric field into longitudinal and tangential components, where

the tangential components are not evolved. Further, not all electric and magnetic field compo-

nents are considered for the charge displacement correction. A more recent Vlasov-BGK model

has been proposed by Liu et al. [73], which incorporates BGK particle collision modelling to the

Darwin-Vlasov system. However, the Vlasov-BGK model comes with its own complications in

the solution procedure and an extremely high computational cost, requiring the use of simpli-

fied problems and low mesh resolution simulations. Hakim [65] and Loverich et al. [63,66] have

tackled the GEM problem with a two-fluid approach using various levels of modelling for colli-

sional effects and temperature anisotropies. However, a fully anisotropic code is not used, with

either 5-moment fluid descriptions used for both plasma components, or having a 5-moment

formulation for the electrons. Further, the actual reconnection problem studied by Hakim was

not the same as the original GEM problem. Johnson et al. [6,7] presents a fully anisotropic two-

fluid simulation for the GEM problem using the original GEM challenge definition in his thesis.

The results of the latter are however of relatively lower spatial resolution to those considered

herein and required a constant collision ‘isotropization’ pressure equation to remain stable for

the duration of the simulations. Hybrid models which include both the Darwin-Vlasov model

and the two-fluid model have also been proposed to address the computational difficulty of the

Darwin-Vlasov model while providing fully anisotropic simulation capabilities [5]. Despite these

advancements, the two-fluid Darwin-Vlasov model still remains computationally expensive and

is limited to tailor-made problems such as the GEM challenge where the domain can be split

into regions where the respective plasma models can be reasonably applied.
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1.4 Research Goals of Thesis

The goal of this thesis is then to develop a practical multifluid MHD (MMHD) model, which is

capable of resolving non-equilibrium, anisotropic, multi-temperature, partially ionized plasma

effects without resorting to the complexity and numerical difficulty of direct particle simulations.

A set of transport equations are sought that include temperature and pressure anisotropies, as

well as a full modelling of Maxwell’s equations, eliminating the need for a generalized Ohm’s law

constitutive relation, with multispecies capabilities taking into account neutral particles as well

as the ions and electrons, along with interspecies reactions such as ionization, recombination and

charge exchange. The MMHD formulation follows what was developed previously in the thesis

research of Ohsawa [48], which includes the key elements of anisotropic plasma modelling, as well

as capabilities for modelling rarefied, near equilibrium, partially ionized plasmas. An effective

numerical solution strategy for the solution of the MMHD model in two space dimensions is then

developed. The proposed MMHDmodel is thus equipped to simulate a range of non-equilibrium,

multispecies, anisotropic, partially ionized, plasmas as well as near equilibrium plasmas in two

dimensions (2D), and be computationally tractable for performing space plasma simulations.

In order to demonstrate the potential of the proposed MMHD model and companion solution

method, they are applied here to the GEM magnetic reconnection problem as described above

and the results of this application are discussed.

1.5 Outline of Thesis

Following this introduction, the remainder of the thesis continues first with a brief review of

relevant gaskinetic theory, which provides the basis of the proposed MMHD model. The pro-

posed MMHD model is then described, which is based on the 10-moment Gaussian moment

closure with BGK collision terms, with various formulations for the Maxwell’s equations. The

models for the collisions and reactions are presented as well. A dispersion analysis is then

presented for the linearized system of equations in which the behaviour of the MMHD eigen

system is explored and the hyperbolicity for the moment system is demonstrated. A one-

dimensional (1D), temporally limited, dual-time implicit, second-order finite-volume Godunov

upwind numerical solution procedure with a Harten-Lax-van Leer-Einfeldt (HLLE) numerical

flux function is then developed and studied for the 1D form of the proposed MMHD model. The

recovery of the ideal MHD limit is demonstrated and explored, along with the computational

advantages of the implicit dual-time scheme. The proposed solution method is then extended

to the two-dimensional case in which a parallel scheme with a Newton Krylov Schwarz (NKS)



1.5. Outline of Thesis 9

implicit algorithm is developed and validated through a rigorous accuracy assessment study

showing robust convergence. The two-dimensional solution method is also validated through

direct comparison with a Gaussian moment closure solution method for various flow regimes.

Finally, the numerical results for the GEM challenge are presented as obtained using the pro-

posed MMHD solution procedure. The numerical results are compared to established solutions

in the literature. Numerical predictions for more realistic plasma cases are also considered. The

last chapter of the thesis provides a summary of the thesis achievements and conclusions as well

as a discussion of directions for future research.
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Chapter 2

Gaskinetic Theory

2.1 Overview

A brief overview of gaskinetic theory, which is used as a basis for the development of the pro-

posed transport equations for the MMHD model, is presented in this chapter. The underlying

kinetic equations for the charged and neutral particles are presented, beginning with a definition

of the velocity distribution function. Moment closure techniques for obtaining approximate so-

lutions to the governing kinetic equations are also briefly reviewed. In particular, a 10-moment

or Gaussian moment closure based on the Gaussian distribution function is presented that is es-

sential for representing the anisotropic behaviour of plasmas. The basic form of the 10-moment

equations for plasmas is then presented, along with the corresponding BGK approximations for

relevant elastic collisional processes.

2.2 Kinetic Theory and the Velocity Distribution Function

Kinetic theory seeks to describe the time evolution of a system of often numerous discrete

objects via a statistical or probabilistic approach. The objects and system being modelled

can be anything from vehicles and traffic [76, 77], to stellar bodies and galaxies [78]. Partial

integro-differential equations, known as kinetic equations, can be developed for the study of

these systems and used to predict their behaviour. The behaviour of gases and plasmas is one

such system that can be described using the statistical description provided by kinetic theory

and is known collectively as gaskinetic theory [79]. Gaskinetic theory seeks to represent the

probabilistic behaviour of gases and plasmas by making use of a distribution function for the

11
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motion of the individual particles. The velocity distribution function, Fs(x,vs, t), is related to

the probability density of the particles in a 6-dimensional phase space where x is the position

vector, vs is the velocity vector for species s, and t is the time. By definition, integrating the

distribution function over all velocity space for a given volume or position will result in the

number density for the given volume or position given by1

ns(x, t) =

∫ ∞

−∞
dvs,x

∫ ∞

−∞
dvs,y

∫ ∞

−∞
dvs,z Fs(vs,x, vs,y, vs,z,x, t) = 〈Fs(x,vs, t)〉 , (2.1)

where ns is the number density of species s. Put another way, for any infinitesimal volume in

space defined by dx, there are dns particles that have a velocity contained within the infinites-

imal velocity space defined by dvs such that

dns = Fs(x,vs, t) dx dvs. (2.2)

The integral operator on the right of Equation (2.1), 〈·〉, is used here to represent integration

over the entire velocity space and in the general case can be expressed as

〈M(vs)Fs(x,vs, t)〉 =
∫ ∞

−∞
dvs,x

∫ ∞

−∞
dvs,y

∫ ∞

−∞
dvs,zM(vs)Fs(vs,x, vs,y, vs,z,x, t) (2.3)

where M(vs) is the moment function. Taking various velocity dependent moment functions

for M(vs) and integrating over all velocity space is known as taking velocity moments of a

distribution function and is a way of determining relevant macroscopic properties of gases which

are then functions of regular three-dimensional physical space, a subset of the six-dimensional

phase space of the distribution functions. The integral of Equation (2.1) is in fact known as

taking the zeroth-degree velocity moment as the moment function, M(vs), is of order 0 in vs.

Further details of the macroscopic properties of a gas are to follow.

2.3 Boltzmann Kinetic Equation for Plasmas

The Boltzmann equation [79] is a non-linear integro-partial differential equation that is capable

of describing the evolution of a non-equilibrium velocity distribution function in space and time,

as well as velocity space. It is an approximation to the Liouville equation [80] and is part of

the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [81, 82] and is given by

∂Fs(x,vs, t)

∂t
+ vs,k

∂Fs(x,vs, t)

∂xk
+ as,k

∂Fs(x,vs, t)

∂vs,k
=
δFs(x,vs, t)

δt
. (2.4)

The term on the right hand side, δFs(x,vs, t)/δt, is the collision term (or collision integral)

that accounts for the influence of interparticle collisions on the time rate of change of the

1In this work, vector notation is used where ever possible, however, tensor notation is used when required
and when expression in tensor notation is easier to interpret.
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distribution function and in general requires the evaluation of a five-dimensional integral. The

acceleration term, ask, takes into account external forces that may act on the gas and is taken

to be divergence free with respect to velocity [79]. For plasmas, the external force is the Lorentz

force, which represents the influence of electromagnetic fields on the charged particles and is

given by

as,k =
qs
ms

(Ek + ǫklmvs,lBm) . (2.5)

Here, qs and ms is the charge and mass of species s, and E and B are the electric and magnetic

field density vectors, respectively. With the Lorentz force, Equation (2.5), substituted into

Equation (2.4), the resulting equation is known as the Boltzmann equation for plasmas.

2.4 Maxwell’s Equation of Change

In order to move from the phase space of the Boltzmann equation to transport equations for

the macroscopic fluid dynamics quantities in physical space, Maxwell’s equations of change can

be derived by taking the Boltzmann equation, Equation (2.4), and multiplying by a moment

function of vs, M(vs), as appearing in Equation (2.3). The result is

∂

∂t
〈Ms Fs〉+

∂

∂xi
〈vs,iMs Fs〉+

〈

as,i
∂Ms Fs
∂vs,i

〉

=

〈

Ms
δFs
δt

〉

, (2.6)

which is regarded as Maxwell’s equation of change in conservative form [79] and describes the

transport of the macroscopic quantity or moment, 〈Ms Fs〉.

2.5 Velocity Moments and Moment Closures

By taking Maxwell’s equation of change, Equation (2.6), and selecting a suitable representation

for the distribution function, it is possible to derive various macroscopic descriptions for systems

of fluids and gases. Many such distributions can exist, but a common and useful distribution

is the Maxwell-Boltzmann distribution or Maxwellian describing equilibrium solutions of the

Boltzmann equation above given by

Ms = ns

(

ms

2πkTs

)3/2

exp

[

−ms(vs − us)
2

2kTs

]

, (2.7)

where k is the Boltzmann’s constant, Ts is the temperature for species s, and us is the bulk

velocity vector for species s. It is also useful to introduce the random velocity here given by

cs = vs − us, (2.8)
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which is the velocity of a particle minus the bulk velocity, meaning that the statistical average

of such a velocity vector for all particles is zero. The Maxwellian is a particularly useful

distribution function as it represents a normal statistical, local thermodynamic equilibrium

distribution. Any real world monatomic gas tends to evolve towards a Maxwellian distribution

under the action of collisional processes [79].

The moment function, Ms, in Equation (2.6) is commonly a monomial in some degree of the

total velocity, vs, or random velocity, cs. One problem encountered when taking the velocity

moments of Equation (2.6) is that the resulting equations always introduce an additional term in

the flux of the macroscopic quantity requiring the evaluation of the next higher velocity moment.

One solution to this is to select the distribution function in a way that results in the higher

order moment being defined entirely in terms of only the lower order moments or macroscopic

quantities of interest. This is the basic idea behind most moment closure techniques.

The closure of moment equations has been studied for some time with classic closures being de-

fined by taking perturbative expansions around the Maxwellian first described by Grad [80,83].

Modern closures include the popular hierarchy of maximum entropy closures of Levermore [84].

The most straight forward and lowest order member of both the Grad and Levermore closures

is represented by taking the Maxwellian distribution of Equation (2.7) for the distribution func-

tion, Fs, in Equation (2.6) and taking the subsequent velocity moments for the set of moment

functions given by

Ms (vs) =
{

ms,msvs,msv
2
s

}

, (2.9)

which are associated with the zeroth, first and second velocity moments of Maxwell’s equation of

change. When performing the integration, it is useful to make the substitution for the velocity

and bulk velocity vector in Equations (2.7), (2.6) and (2.9) with the random velocity vector

of Equation (2.8). The high-order moments are closed with the second-order moment being a

function the lower order moments and with the third order moment being zero:

ps(x, t) =
1

3

〈

msc
2
s Fs(x, cst)

〉

= nskTs, (2.10)

hs(x, t) =

〈

1

2
msc

2
scs Fs(x, cs, t)

〉

= 0, (2.11)

meaning there is no heat flux. One characteristic for most moment closures is that under

equilibrium conditions, the moment equations reduce to the well-established Euler equations

describing flows in local thermodynamic equilibrium. Performing the velocity moment inte-

gration using the equilibrium Maxwellian distribution function, and setting as = 0, it can be
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shown that the Euler equations are recovered as given by

∂ρs
∂t

+
∂

∂xi
(ρsus,i) =

(

δρs
δt

)

c
,

∂

∂t
(ρsus,k) +

∂

∂xi
(ρsus,ius,k + ps δik) =

(

δ(ρsus,k)

δt

)

c
, (2.12)

∂

∂t

(

3

2
ps +

1

2
ρsu

2
s

)

+
∂

∂xi

[(

3

2
ps +

1

2
ρsu

2
s

)

us,i + psui

]

=

(

δEs
δt

)

c
.

which govern the transport of mass, momentum and energy for the gas. This is also known

as the 5-moment equations in the Levermore hierarchy [84]. Please refer to the textbook

by Gombosi [79] for more details Maxwell’s equation of change and derivation of the Euler

equations. Other references for velocity moments of higher order closures and the derivation

of governing equations for fluid dynamics can be found in the papers by Groth [85], Brown et

al. [86] and Levermore [84]. The evaluation of the collision terms appearing in the preceding

equations is addressed later in Section 2.7 of this chapter.

2.6 10-moment Gaussian Closure

An important property of charged particles, is the ability to have different, anisotropic, tem-

peratures in different directions that result from plasmas coupling with Maxwell’s equations

through the Lorentz force of Equation (2.5). As can be seen from the Lorentz force, charged

particles can be directly influenced by the electric field in a preferred direction and will also

spiral around magnetic field lines. This results in movement, energy, and pressures in direc-

tions parallel and perpendicular to magnetic field lines. This occurs in both equilibrium and

non-equilibrium conditions. The local Maxwellian distribution, Equation (2.7), is incapable of

capturing this behaviour, so a different distribution function is sought.

A distribution function that results in a hyperbolic set of closed moment equations and is

capable of allowing for anisotropic pressures and temperatures would be desired for many

plasma applications. One such closure is the so-called Gaussian distribution of the 10-moment

Gaussian closure. In the Gaussian closure, the species phase space distribution function is

approximated as follows:

Gs(x,vs, t) =
ns(x, t)

(2π)3/2(detΘs)1/2
exp

(

−1

2
Θ−1
s,ijcs,ics,j

)

(2.13)

where Θsij = Psij/ρs. The 10-moment Gaussian closure was studied by Levermore [84] and

is a second-order member of the Levermore maximum entropy hierarchy. It was however first

considered by others such as Maxwell [87] and Holway [88–90]. As a member of the Levermore
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maximum entropy hierarchy, it represents the most likely distribution function that maximizes

the entropy generated by the Maxwell’s equation of change for the given finite set of moments

associated with the Gaussian distribution [91]. It is not a perturbative function like Grad

closures making it elegantly simple. It is strictly positive and closes the moment in the same

way as the Maxwellian distribution function; with the third-order moment vanishing. The

Gaussian closure has been extensively studied and has been applied successfully to the numerical

prediction of a range of non-magnetized gaseous flows by Levermore [92], McDonald et al. [93–

97] and Groth et al. [91].

The transport equations of the 10-moment Gaussian closure can be derived by approximating

the distribution function Fs(x,vs, t) with the Gaussian distribution function, Equation (2.13),

and then taking appropriate velocity moments of the Boltzmann equation, Equation (2.4) as

defined by Maxwell’s equation of change [84–86]. For the plasma applications of interest here,

the Lorentz force of Equation (2.5) is considered when evaluating the velocity moments for

Maxwell’s equation of change, Equation (2.6), using the following moment functions:

Ms = [ms,msvs,i,msvs,jvs,k] (2.14)

the following 10-moment multispecies transport equations for plasmas can be derived and ex-

pressed in weak conservative form as:

Multispecies Conservative Continuity Equation

∂msns
∂t

+
∂msnsus,i

∂xi
=

(

δ(msns)

δt

)

c
, (2.15)

Multispecies Conservative Momentum Equation

∂msnsus,k
∂t

+
∂msnsus,ius,k

∂xi
+
∂Ps,ik
∂xi

− ns(Gk + qsEk)

−nsqsεkαγus,αBγ =

(

δ(msnsvs,k)

δt

)

c
,

(2.16)

Multispecies Conservative Energy Equation

∂

∂t
(msnsus,jus,k + Ps,jk) +

∂

∂xi
(msnsus,ius,jus,k + Ps,jkus,i + Ps,ikus,j + Ps,ijus,k)

−nsus,j(Gk + qsEk)− nsus,k(Gj + qsEj)− nsqs(εjαγus,αus,k + εkαγus,αus,j)Bγ

− qs
ms

(εjαγPs,αk + εkαγPs,αj)Bγ =

(

δ(msnsvs,jvs,k)

δt

)

c
.

(2.17)

It should be noted that when taking the velocity moments to arrive at the species transport

equations, the third-order velocity moments of Gs are all identically equal to zero corresponding

to the situation where the heat flux for each species is zero. Besides the ability to model

anisotropic pressures and energies, the above set of equations is desirable because it is hyperbolic
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and is suitable for numerical solution using well-established Godunov-type upwind finite-volume

methods [83, 98].

For completeness, to obtain the primitive form of the equations, the moment functions,

Ms = [ms,mscs,i,mscs,jcs,k] , (2.18)

and the random velocity definition, Equation (2.8), are substituted into Equation (2.6) to obtain

the following set of moment equations:

Multispecies Primitive Continuity Equation

∂msns
∂t

+ us,i
∂msns
∂xi

+msns
∂us,i
∂xi

=

(

δ(msns)

δt

)

c
, (2.19)

Multispecies Primitive Velocity Equation

∂us,k
∂t

+ us,i
∂us,k
∂xi

+
1

msns

∂Ps,ki
∂xi

− qs
ms

(Ek + ǫkαγus,αBγ) =

(

δus,k
δt

)

c
, (2.20)

Multispecies Primitive Pressure Equation

∂Ps,jk
∂t

+ us,i
∂Ps,jk
∂xi

+ Ps,jk
∂us,i
∂xi

+ Ps,ij
∂us,k
∂xi

+ Ps,ik
∂us,j
∂xi

− qs
ms

(ǫjαγPs,αk + ǫkαγPs,αj)Bγ =

(

δPs,jk
δt

)

c
.

(2.21)

2.7 Bhatnagar-Gross-Krook Collision Operators

The right hand side collision integrals appearing in Equation (2.4) are now considered. Mod-

elling exactly the behaviour of the particles undergoing collisions can be both theoretically

challenging and computationally expensive, so an often-used and convenient mathematical ap-

proximation for the effects of inter-particle collisions, the Bhatnagar-Gross-Krook (BGK) colli-

sion model [99], is deemed to be sufficient for the present study and is adopted here. The BGK

model uses a relaxation time approximation of the form
(

δFs
δt

)

c

=

(

δFs
δt

)

el

≡
∑

t

Ms(st) − Fs

θst
(2.22)

where

Ms(st) = ns

(

ms

2πkTs(st)

)3/2

exp

(

−
ms(vs − us(st))

2

2kTs(st)

)

, (2.23)

us(st) =
msus +mtut

ms +mt
, (2.24)

Ts(st) = Ts + 2
msmt

(ms +mt)2
(Tt − Ts) +

mt

3k

msmt

(ms +mt)2
(ut − us)

2, (2.25)
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and where the subscript s(st) refers to the species s for the interaction between s and t. There-

fore, Ms(st) is the Maxwellian distribution function for species s about the mass weighted av-

erage bulk velocity, us(st), and 1/θst = νst is the collision frequency of the interaction between

species s and t. The BGK collision operator is used to model elastic collisions herein.

2.8 Elastic Collisions

In order to derive the elastic collision terms utilizing the BGK approximation above, a few

relations must be discussed. First, the random velocity can be written so that

cs(st) = vs − us(st) = cs +
mt

ms +mt
(us − ut) . (2.26)

This implies that
〈

ms

(

δFs
δt

)

c

〉

= 0 (2.27)

for the continuity collision term and
〈

msvs

(

δFs
δt

)

c

〉

=
∑

t

nsmsν̃st(ut − us) (2.28)

for the momentum collision terms. Also note that
〈

mscs(st)kcs(st)lFs(st)
〉

= nskBTs(st)δkl

= psδkl + 2 nsmsmt

(ms+mt)2
(Tt − Ts)δkl +

nsmt

3k
msmt

(ms+mt)2
(ut − us)

2δkl
(2.29)

and

ν̃st =
mt

ms +mt
νst. (2.30)

Therefore the second-order random velocity moment is given by

〈

mscskcslFs(st)
〉

= nskBTs(st)δkl + nsms

(

mt

msmt

)2
(usk − utk) (usl − utl)

= psδkl + 2 nsmsmt

(ms+mt)2
(Tt − Ts)δkl +

nsmt

3k
msmt

(ms+mt)2
(ut − us)

2δkl

+nsms

(

mt

msmt

)2
(usk − utk) (usl − utl)

(2.31)

such that
〈(

δ (mscsjcskFs)

δt

)

c

〉

= νs (psδjk − Psjk) +
∑

t

2
msnsν̃st

(ms +mt)
kB(Tt − Ts)δjk

+
∑

t

msmtnsν̃st
ms +mt

[

1

3
δjk(ut − us)

2 + (utj − usj)(utk − usk)

] (2.32)

and
〈(

δ(msnsvsjvskFs)

δt

)〉

= νs (psδjk − Psjk) +
∑

t

2
msnsν̃st

(ms +mt)
kB(Tt − Ts)δjk

+
∑

t

msmtnsν̃st
ms +mt

[

1

3
δjk(ut − us)

2 + (ut,jut,k − us,jus,k) +
ms

mt
((ut,j − us,j)us,k + (ut,k − us,k)us,j)

]

(2.33)
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are the collision terms for the macroscopic quantities representing energy.

With the BGK elastic collision terms, the basic form of the 10-moment fluid dynamics equations

for plasma modelling is complete. In the next chapter, these equations are utilized to form the

MMHD model which will include multiple species of gases, reactive and non-reactive collisions,

and the Maxwell’s equations with divergence cleaning.
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Chapter 3

Multifluid Magnetohydrodynamics

Model

3.1 Overview

This chapter presents the proposed MMHD model along with Generalized Lagrange Multi-

plier (GLM) method used here for divergence cleaning. Included in the chapter is the full

MMHD model description, with elastic and inelastic collision terms involving charge exchange

and ionization-recombination for the ions and electrons. Several subsets of the model are also

presented including the 10-moment two-fluid magnetohydrodynamics (10TFMHD) model and

different proposed divergence cleaning methods for the numerical treatment of Maxwell’s equa-

tions.

3.2 Maxwell’s Equations

In order to have a complete description of a plasma, the electro-magnetic fields must be de-

scribed in addition to the fluid properties of each component of the plasma. This is done through

the solution of Maxwell’s equations [100], presented here in vector notation as reformulated by

Heaviside [101] as follows:
∂B

∂t
+∇×E = 0, (3.1)

∂D

∂t
−∇×H = −j, (3.2)

∇ ·B = 0, (3.3)

21
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∇ ·E =
ρq
ǫ0
, (3.4)

which in turn represent Faraday’s law, Ampère’s law, Gauss’s law for magnetism (also known

as the solenoidal condition) and Gauss’s law, respectively. In the above equations, B is the

magnetic flux density vector, E is the electric field intensity vector, H is the magnetic field

intensity vector, D is the electric displacement vector, j is the current density vector, ρq is the

charge density, and ǫ0 is the electrical permittivity of free space. The vectors B and H, and E

and D are related by

B = µ0H, (3.5)

ǫ0E = D, (3.6)

where µ0 is the magnetic permeability of vacuum. The charge density for the plasma is given

by

ρq =
∑

s

qsns, (3.7)

which involves a sum over all species in the plasma. In the MMHD model described in the

section to follow, only Equations (3.1), and (3.2) are solved through numerical methods and the

solenoidal condition, and Gauss’s law, Equations (3.3) and (3.4), which are in fact constraints

on the solutions of the other two equations, are not directly enforced. The treatment of these

equations is addressed in Section 3.8.

3.3 Multifluid MHD Governing Equations

The MMHD model with no divergence cleaning is presented first. This model is used extensively

for analysis, especially for 1D problems an analyses, as there is no need to correct for ∇·B = 0

when only the evaluation of one-dimensional fluxes is required and initial jumps in the normal

component of the magnetic field are not admissible. The governing equations for the MMHD

model presented here are a follow on to the two-fluid model of Shumlak and Loverich [62]. The

model is extended to include the 10-moment fluid dynamics equations from Chapter 2 in a

similar fashion to Hakim et al. [64–66]. It is generalized to include a neutral third species with

elastic and inelastic collision effects between the three species.

When the 10-moment fluid dynamics equations for plasmas, Equations (2.15)-(2.17), are taken

to represent each component of a three-species plasma consisting of neutrals, ions and electrons,

and coupled with Faraday’s law, Equation (3.1), and Ampère’s law, Equation (3.2), to prescribe

the electromagnetic forces, the resulting coupled set of governing equations can be expressed in
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weak conservation form as

∂U

∂t
+∇·−→F =

∂U

∂t
+
∂Fi
∂xi

= S+ Scol (3.8)

with

U =















Uion

Ue

Un

UM















, Fi =















Fion,i

Fe,i

Fn,i

FM,i















, S =















Sion

Se

Sn

SM















, Scol =















Scolion

Scole

Scoln

ScolM















, (3.9)

where

Us =





















ρs

ρsus,k

ρsus,jus,k + Ps,jk





















, Fs,i =

























ρsus,i

ρsus,ius,k + Ps,ik

ρsus,ius,jus,k + Ps,jkus,i

+Ps,ikus,j + Ps,ijus,k

























, (3.10)

Ss =

























0

qs
ρs
ms

(Ek + ǫkαγusαBγ)

qs
ρs
ms

(us,jEk + us,kEj) + qs
ρs
ms

(ǫjαγus,αus,k + ǫkαγus,αus,j)Bγ

+ qs
ms

(ǫjαγPs,αk + ǫkαγPs,αj)Bγ

























, (3.11)

and where s ∈ {ion, e, n}. Maxwell’s equations are represented as

UM =

(

Bj

ε0Ej

)

, FM,i =

(

ǫjiαEα

−ε0c2ǫjiαBα

)

, SM =





0

e
(

ρe
me
ue,j − ρion

mion
uion,j

)



 .

(3.12)

The individual species solution, flux and source vectors of Equations (3.10) and (3.11) are

ordered starting with the continuity equation, then the momentum equations, and finally the

energy equations, where ρs is the density, us is the bulk velocity, Ps,jk is the three dimensional

pressure tensor, qs is the charge, and ms is the mass for species s. Going from the vector

notation in Equation (3.8) to the tensor representations in Equations (3.10) and (3.11), it

should be noted that the index i is associated with the derivative with respect to x in the flux

terms.

Maxwell’s equations given in Equation (3.12) include both Faraday’s and Ampére’s laws for the

electric field E, and the magnetic field B, respectively, ε0 is the permittivity of free space and c
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is the speed of light. As mentioned previously, the solenoidal condition, Equation (3.3), and the

charge displacement, Equation (3.4) are not strictly enforced. In 1D simulations, the solenoidal

condition is automatically satisfied, however there can be charge displacement errors, but for

the 1D simulations considered here they are assumed to be negligible. The solenoidal condition,

however, does play a role when extending the model to the 2D case and the treatments of both

constraints, Equations (3.3) and (3.4), are discussed in Section 3.8 to follow. The source vector

of Equation (3.11) only includes the non-collision source terms with the collision source terms,

Scols , defined and addressed in the next section.

3.4 Collision Source Terms

The collision source terms of Equations (3.8) and (3.9) are comprised of several individual

collision terms representing different particle interactions and can be expanded as follows:

Scole =

(

δFe
δt

)col
=

∑

σ∈{ion,e,n}

(

δFe
δt

)el

eσ

+

(

δFe
δt

)iz-rc
,

Scolion =

(

δFion
δt

)col
=

∑

σ∈{ion,e,n}

(

δFion
δt

)el

ionσ

+

(

δFion
δt

)iz-rc
+

(

δFion
δt

)cx
,

Scoln =

(

δFn
δt

)col
=

∑

σ∈{ion,e,n}

(

δFn
δt

)el

nσ

+

(

δFn
δt

)iz-rc
+

(

δFn
δt

)cx
,

(3.13)

where the superscripts el, iz-rc, and cx represent elastic, ionization-recombination, and charge

exchange collisions, respectively. Note that the electron collision terms do not include a charge

exchange term since only ions and neutrals are involved in charge exchange. There are obviously

no collision terms related to Maxwell’s equations in the MMHD model and therefore

ScolM = 0. (3.14)

The following sections summarize and provide expressions for each of the collision source terms

appearing in Equation (3.13) above. For terms where the collision or reaction models require

specific gas species, singly ionized argon and monatomic hydrogen gases are considered in this

thesis.

3.5 Elastic Collision Source Terms

Non-equilibrium elastic collisional processes between the plasma species are represented using

the BGK relaxation time approximation as presented in Section 2.7. The various terms are

summarized below:
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Continuity Collision Term
∑

t∈{ion,e,n}

(

δρs
δt

)el

st

= 0, (3.15)

Momentum Collision Terms

∑

t∈{ion,e,n}

(

δρsvs,k
δt

)el

st

=

〈

(

δ(ρsvs,k)

δt

)el
〉

=
∑

t

ρsν̃st(ut,k − us,k), (3.16)

Energy Collision Terms

∑

t∈{ion,e,n}

(

δρsvs,jvs,k
δt

)el

st

=

〈

(

δ(ρsvs,jvs,k)

δt

)el
〉

=

νs (psδjk − Ps,jk) +
∑

t 2
ρsν̃st

(ms+mt)
kB(Tt − Ts)δjk

+
∑

t

mtρsν̃st
ms +mt

[

1

3
δjk(ut − us)

2 + (ut,jut,k − us,jus,k) +
ms

mt
((ut,j − us,j)us,k + (ut,k − us,k)us,j)

]

(3.17)

where ν̃st and temperature Tsis given by

ν̃st =
mt

ms +mt
νst, Ts =

Ps
ρsRs

, (3.18)

νst is the collision frequency for collisions between species s and t [79], and where νs is the self-

collision frequency. Mathematical expressions are required to determine the collision frequencies

for the elastic collisions and are discussed next.

3.5.1 Coulomb Collisions

The collisions between charged particles are governed by Coulomb forces, Fst, which can be

expressed as

Fst(rts) = ke
qsqt
r2ts

r̂ts, (3.19)

where ke is Coulomb’s constant and rts is the vectorial distance going from particle t to s. It

can be shown that the Coulomb collision frequency [102,103] in this case is given by

νst =
ntq

2
sq

2
t

3π3/2 ε20m
2
st ḡst

ln Λst, (3.20)

with

Λst =
12πε0 kTstλD

|qs qt|
. (3.21)

The weighted average for mass and temperature and the average velocity are

mst =
msmt

ms+mt
, Tst =

mtTs+msTt
ms+mt

, ḡst =
√

2kTst
mst

. (3.22)
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The Debye length is given by

λD =
1

√

1

ε0

∑

σ∈{ion,e,n}
nσ q

2
σ

kTσ

. (3.23)

These expressions govern the interactions between electrons and ions only, and include self

collisions.

3.5.2 Non-Coulomb Elastic Collisions

For partially ionized plasmas, a neutral species may be present in addition to the charged ions

and electrons, and an appropriate non-Coulomb collision model is required to determine the

collision frequencies for each of the possible interactions with the different gas types (argon

and monatomic hydrogen). This is accomplished by examining the definition of the collision

frequency in the BGK model which can be written formally as

νst = nt

∫

vs∈R3

dvs

∫

vt∈R3

dvt gstσst(gst) fs(vs) ft(vt), (3.24)

with gst = |vs − vt| and fs is the normalized form of the distribution function, Fs/ns. The

collision cross-section σst is a function of the relative velocity of the two interacting particles

s and t, where s = t for self collisions. The collision cross-section is what is needed or must

be defined for the various particle interactions; however, performing the integration over phase

space is often not done for most practical applications. The integral is simplified by defining

an average relative speed and this value is used to determine the collision cross-section and

ultimately the collision frequency [104, 105]. Therefore Equation (3.24) can be simplified and

approximated as

νst ≃ nt ḡst σst(ḡst), (3.25)

where the average velocity is defined as

ḡst =

(∫

vs∈R3

dvs

∫

vt∈R3

dvt |vs − vt|2 fs(vs)ft(vt)
) 1

2

. (3.26)

After performing the integration using local Maxwellian distribution functions for fs and ft, it

can be shown that

ḡst =

√

3k

(

Ts
ms

+
Tt
mt

)

+ |us − ut|2. (3.27)

Please refer to the previous thesis by Ohsawa [106] for more details. What follows are the various

collision cross-section models and formula utilized in the MMHD model to simulate non-reactive
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elastic collisions that do not involve pure charged particle interactions. As mentioned, for this

study, the plasma species considered are singly ionized, monatomic, argon and hydrogen.

Neutral Hydrogen Elastic Collisions

For the electron-hydrogen collision frequency, a linear interpolation of experimental data ob-

tained by de Heer et al. [107] is used while for proton-hydrogen collisions, a curve fit to experi-

mental data is used from Franco and Thomas [108] given by

σ
H
+–H(EeV) =

5.80× 104

EeV
πa0

2 [m2], (3.28)

with EeV being the thermal energy of the proton in eV, and a0 = 5.2918×10−11 [m] is the Bohr

radius. The hydrogen self collision is modelled simply as a hard sphere collision given by:

σH–H = 4πa0
2, (3.29)

where πa20 = 8.7974× 10−21m2 is the atomic collision cross-section.

Neutral Argon Elastic Collisions

For all neutral argon collisions, experimental tabulated data is linearly interpolated. Specifically,

the electron-argon cross-sections are obtained from de Heer et al. [109], and ion-argon collision

cross-sections are obtained from data from Cramer [110]. Finally, for neutral argon-argon self

collision cross-sections, the data is obtained from Phelps et al. [111].

3.6 Inelastic Collision Source Terms

Though there are several different inelastic collision reactions, for this work, only the elec-

tron impact collision reactions will be considered. These are commonly single ion ionization-

recombination and charge exchange reactions. For detailed derivations of the inelastic collision

terms, please refer to Chapter 3 of Ohsawa’s thesis [48].

3.6.1 Baum-Fang Ionization-Recombination Kinetic Reaction Equations

The Baum-Fang [112] kinetic reaction equations can be used to model the plasma reaction

A+ e−
α
⇀↽
β
A+ + 2e− (3.30)

which represents electron collision ionization where A represents the singly ionizable plasma

species considered (argon or monatomic hydrogen). This is the dominant reaction for ionization-

recombination when the plasmas are not weakly ionized. The rate constants α and β are for
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ionization and recombination, respectively, and are determined from curve fit models or analytic

models presented in Section 3.6.2.

Examining the reaction, the basic rate equations have the form

(

δnion
δt

)

iz−rc
= αnenn − βnionn

2
e,

(

δne
δt

)

iz−rc
= αnenn − βnionn

2
e,

(

δnn
δt

)

iz−rc
= βnionn

2
e − αnenn.

(3.31)

It follows that,
δnion
δt

=
δne
δt
,

δnn
δt

= −δne
δt
, (3.32)

which means that for every ion that is created, an electron must be created, and when a neutral

disappears, an ion and electron will be created. The model adopted here assumes a collision

term of the form
(

δFs
δt

)

iz−rc
≡ as(Φ

iz−rc
s − Fs), (3.33)

where Φiz−rcs has the form

Φiz−rcs = n′s
( ms

2πkT ′

)3/2
exp

[

−ms(vs − u′)2

2kT ′

]

. (3.34)

This is very similar to the BGK collision term and corresponds to a local Maxwellian with new

post reaction equilibrium temperatures, T ′, bulk velocity, u′, and number densities, n′s, with

collision coefficient as. These quantities are determined as described by Baum et al. [112].

Taking the zeroth-order velocity moment with the Gaussian distribution, Equation (2.13), for

Fs, the model results in the species collisions integrals

(

δns
t

)iz-rc
= νiz-rcs

(

n′s − ns
)

s ∈ {e, ion, n} . (3.35)

The collision frequencies are

νiz-rcion = βn2e, νiz-rce = βnionne, νiz-rcn = αne. (3.36)

By comparing the rate equations, Equation (3.31), to the collision term above, along with

basic conservation laws for plasmas, and using the definition of the Saha’s equation for the

equilibrium temperature T ′ which is

κ(T ′) =
n′en

′
i

n′a

=
2gion
gn

[2π(memi/mn)kT
′]3/2

h3
exp

(

−eEiz
kT ′

)

,

(3.37)
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where h is Planck’s constant and eEiz is the ionization potential energy, the equilibrium number

densities are

n′e =
κ(T ′)ne
2αnion







−βnion +
[

(

βnion +
2αnion
κ(T ′)

)2

+ 4
α2nion
κ(T ′)

(

nn
ne

− nion
κ(T ′)

)

]1/2






, (3.38)

n′ion =
nion
ne

n′e, (3.39)

n′n = nn −
(

βnionne
α

)[

n′e
ne

− 1

]

. (3.40)

The factors gion and gn are the quantum degeneracy of the ions and neutral atoms, respectively.

In equilibrium, the relationship

κ(T ′) =
α

β
(3.41)

also holds.

For the total equilibrium velocity vector, u′, the collision integrals for the conservation of

momentum were solved by taking the first-order velocity moment of Equation (3.33) to give

u′ =
βn2enion(mionuion +meue) + αnennmnun

mn(αnenn + βn2enion)
. (3.42)

To determine the equilibrium temperature, T ′, the ionization energy must be included along

with the sum of the second-order velocity moments of Equation (3.33) to enforce the con-

servation of energy as this energy is stored within the binding energy of the electron’s orbit.

Therefore,

∑

s

〈(

δ 12msv
2Fs

δt

)

iz−rc

〉

+ Eiz

〈(

δFi
δt

)

iz−rc

〉

i

= 0. (3.43)

The result of the integration is

(αnenn + βn2enion + βnionnen
′
e)

3
2kT

′ + 1
2mn(αnenn + βnionn

2
e)u

′2 + eEizβn2e(n′ion − nion)

= βn2e
(

3
2nionkTi +

1
2nionmionu

2
ion

)

+ βnionne
(

3
2nekTe +

1
2nemeu

2
e

)

+αne
(

3
2nnkTn +

1
2nnmnu

2
n

)

.

(3.44)

It should be noted that in the work by Baum et al. [112], the n′ term on the LHS is incor-

rectly written to be the neutral species but is in fact supposed to be the electron species as

verified by doing the conservation of energy integrals. Although κ(T ′) uses the equilibrium

temperature, it was shown by Hoffert and Lien [113] that it is possible to substitute the current

electron temperature Te for the total equilibrium temperature T ′ for when the ionization is

non-negligible.
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Taking the preceding model and using the 10-moment Gaussian to approximate the distribution

function, the appropriate velocity moments are taken to arrive at the ionization-recombination

collision terms in conservative form:

(

δFs
δt

)iz-rc
=





























〈

(

δFs
δt

)iz−rc
〉

= νiz-rcs (n′s − ns)

〈

(

δ (msvsFs)

δt

)iz−rc
〉

= msν
iz-rc
s (n′su

′ − nsus)

〈

(

δ (msvs,ivs,jFs)

δt

)iz−rc
〉

= νiz-rcs [(n′skT
′δij − Ps,ij)

+ms

(

n′su
′
iu

′
j − nsus,ius,j

)]





























. (3.45)

The above model was used for the one-dimensional solution procedure. However, it was found

with the extension of the model to two-dimensions, a strict enforcement of Equation (3.32) was

required to maintain conservation of mass. To enforce Equation (3.32), only the value of n′e from

Equation (3.38) is calculated, and then the source term from Equation (3.35) is determined for

the electrons. Using the Equation (3.32) and Equation (3.39), all other reaction source terms

were determined without calculating n′n, or other reaction source term from Equation (3.35).

3.6.2 Ionization Reaction Rates

To fully determine the ionization-reaction collision terms, either the ionization or recombination

rate of Equation (3.41) requires the evaluation. This is accomplished here through either a curve

fit to experimental data, or an analytic model depending on the plasma species. For this thesis

a model is used to determine the ionization rate, α, and then the value of β is computed directly.

Hydrogen Ionization Reaction Rate

For monatomic hydrogen, a curve fit to the experimental data of Scholz and Walters [114] is

used and is given by

α = κiz(T ) = 10−6 exp

(

6
∑

k=0

ak ln(T )
k

)

[
m3

s
], (3.46)

where T is the plasma temperature defined by

T =
meTn +mnTe
me +mn

. (3.47)
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The coefficients are:
a0 = −9.61443× 101,

a1 = 3.79523× 101,

a2 = −7.96885,

a3 = 8.83922× 10−1,

a4 = −5.34513× 10−2,

a5 = 1.66344× 10−3,

a6 = −2.08888× 10−5.

(3.48)

Argon Ionization Reaction Rate

For argon, an analytic model proposed by Hoffert and Lien [113] is used of the form

α = κiz(Te) = 3.75× 10−22T 3/2
e

(

Θ∗
A,1
Te

+ 2

)

exp

(

−
Θ∗
A,1
Te

)

[
m3

s
]. (3.49)

The characteristic temperature for excitation to the first excited state, Θ∗
A,1, for argon is

135, 300 [K].

3.7 Charge Exchange Collision Source Terms

Lastly, for the treatment of the charge exchange collision terms and for simplicity, it is assumed

that the following process dominates:

A(v1) +A+(v2) → A+(v1) +A(v2). (3.50)

The above reaction represents an exchange of charge for the plasma species, A. The pre-collision

velocities and states are preserved. Further, it is assumed these collisions are elastic in energy

and velocity in that no energy is lost to particle excitation [102].

As proposed by Ripken and Fahr [105, 115], the collision terms are assumed to be made up of

gain and loss terms as follows:

(

δFion
δt

)

cx

=

(

δFion
δt

)(+)

−
(

δFion
δt

)(−)

(3.51)

= 〈|v − vion|σcx (|v − vion|)〉ion Fn(v)

−〈|v − vn|σcx (|v − vn|)〉n Fion(v), (3.52)
(

δFn
δt

)

cx

=

(

δFn
δt

)(+)

−
(

δFn
δt

)(−)

(3.53)

= 〈|v − vn|σcx (|v − vn|)〉n Fion(v)

−〈|v − vion|σcx (|v − vion|)〉ion Fn(v), (3.54)
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where (+) and (−) superscripts represent gain and loss terms, respectively. The collision

integrals 〈|v − vs|σcx (|v − vs|)〉s are very complicated and challenging to integrate directly, so

several approximations and assumptions are made. The velocity dependence of the collision

cross-section, σcx, is removed and the approximate collision frequency is defined as in Section

3.5.2 with the average relative velocity equation, Equation (3.27), so that

〈|v − vs|σcx (|v − vs|)〉s ≃ ntḡstσcx(ḡst) ≡ νcxst , (3.55)

which results from the averaging of velocity

nt
∫

vt∈R3 dvt |vs − vt|σcx(|vs − vt|) ft(vt)
≃ nt

∫

vs∈R3 dvs
∫

vt∈R3 dvt |vs − vt|σcx(|vs − vt|) ft(vt) fs(vs).
(3.56)

Refer to the textbook by Gombosi [79]. Only one collision cross-section, σcx, is required since

there are only two species which can collide.

It therefore follows that the approximate collision terms for charge exchange [104,105,115] are

approximated as

(

δFi
δt

)

cx

(vi) ≡ νicx(nn, v̄i)

[

ni
nn
Fn(vi)− Fi(vi)

]

, (3.57)

(

δFn
δt

)

cx

(vn) ≡ νncx(ni, v̄i)

[

nn
ni
Fi(vn)− Fn(vn)

]

, (3.58)

where

νicx(nn, v̄i) ≡ nnḡinσcx(v̄i), (3.59)

νncx(ni, v̄i) ≡ niḡniσcx(v̄i), (3.60)

with

ḡin = ḡni =

[

3kB

(

Ts
ms

+
Tt
mt

)

+ (us − ut)
2

]

. (3.61)

Again taking velocity moments with the Gaussian approximation for the distribution function,

the charge exchange collision terms are as follows:

(

δFion
δt

)cx
=



























〈

(

δFion
δt

)cx
〉

= 0

〈

(

δ (mionvionFion)

δt

)cx
〉

= nionmionν
cx
ion (un − uion)

〈

(

δ (mionvion,jvion,kFion)

δt

)cx
〉

= νcxionmionnion

[(

Pn,jk

mnnn
− Pion,jk

mionnion

)

+(un,jun,k − uion,juion,k)]



























(3.62)
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and

(

δFn
δt

)cx
=



























〈

(

δFn
δt

)cx
〉

= 0

〈

(

δ (mnvnFn)

δt

)cx
〉

= nnmnν
cx
n (uion − un)

〈

(

δ (mnvn,jvn,kFn)

δt

)cx
〉

= νcxionmnnn

[(

Pion,jk

mionnion
− Pn,jk

mnnn

)

+(uion,juion,k − un,jun,k)]



























. (3.63)

3.7.1 Collision Cross-Sections for Charge Exchange Interaction

To determine the collision cross-sections in Equations (3.59) and (3.60), experimental results

are used here. The sources and form for the data are presented briefly below for both the

monatomic hydrogen and argon plasmas.

Hydrogen Charge Exchange Collision Cross-Section

A curve fit to experimental data by Fite et al. [116] is used for the collision cross-section for

monatomic hydrogen charge exchange. It has the form of a common collision cross-section with

σcx
H
+–H = (c1 − c2 ln EeV)1/2 [m2], (3.64)

where c1 = 7.6× 10−10, c2 = 4.60× 10−11, and EeV is the proton energy in eV.

Argon Charge Exchange Collision Cross-Section

For argon charge exchange, experimental data entered into a table obtained from Cramer [110]

is employed. As with the ionization recombination cross-section tables, linear interpolation is

used to obtain values from the table.

3.8 Divergence Cleaning Strategies for Maxwell’s Equations

When the Maxwell’s equations from the MMHD model, Equation (3.12), are discretized and

solved numerically in two dimensions, depending on the spatial discretion procedure the diver-

gence conditions associated with the electric and magnetic fields can no longer be guaranteed

to hold. Among these are the ∇ · B = 0, solenoidal condition, Equation (3.3) and also the

charge displacement condition of Equation (3.4). In order to correct for these possible errors, a

divergence correction technique known as the Generalized Lagrange Multiplier (GLM) method

is adopted [117, 118]. GLM treatments for both the magnetic field equations and electric field
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equations are presented to effectively convect and disperse the errors associated with the non-

satisfaction of these constraints away. The GLM technique was proposed and described by

Munz et al. [117] and Dedner et al. [118]. A second technique is also considered for correcting

errors associated with the electric field and is an adaptation of the error diffusion technique

considered by Langdon and Marder [119,120].

3.8.1 GLM Equations for the Electric Field

The basic procedure proposed by Munz et al. [117] is followed to modify the electric field

equations of Maxwell’s equations. These equations are Ampère’s law, Equation (3.2), and

Gauss’s law, Equation (3.4). A generalized Lagrange multiplier is added to both equations to

arrive at the following modified expressions:

∂D

∂t
−∇×H+∇ Φ

µ0
= −j, (3.65)

D(Φ) +∇ ·E =
ρq
ǫ0
. (3.66)

A hyperbolic set of differential equations can be formulated by defining

D(Φ) =
1

χ2

∂Φ

∂t
, (3.67)

where Φ is the Lagrange multiplier for the electric field and χ is a non-dimensional parameter

that controls the advection velocity of Φ. It is desirable for χ to have a value that is at least

as large the speed of light which is the fastest propagation speed for Maxwell’s equations.

However, it can also be seen that as χ → ∞ the equations becomes elliptic. The final form of

the GLM-corrected equations for the electric field are given by

∂D

∂t
−∇×H+∇ Φ

µ0
= −j, (3.68)

∂Φ

∂t
+ χ2∇ ·E = χ2 ρq

ǫ0
. (3.69)

3.8.2 GLM Equations for the Magnetic Field

The magnetic field equations (Faraday’s law and the solenoidal condition, Equations (3.1) and

(3.3), respectively) are also modified to include GLM divergence cleaning. Following the same

procedure as for the electric field and as proposed by Dedner et al. [118], the following GLM

equations result:
∂B

∂t
+∇×E+∇Ψ = 0, (3.70)
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D(Ψ) +∇ ·B = 0. (3.71)

A mixed correction is chosen this time which has a hyperbolic and parabolic component, and

is given by

D(Ψ) =
1

c2h

∂Ψ

∂t
+

1

c2p
Ψ, (3.72)

where Ψ is the Lagrange multiplier for the magnetic field equations and the constants ch and

cp are the advection speed and dissipation speed for Ψ. These choices of D(Ψ) result in

∂B

∂t
+∇×E+∇Ψ = 0, (3.73)

∂Ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
Ψ, (3.74)

where there is now a new source term for dissipation of Ψ in the modified solenoidal condition

for B.

3.8.3 Telegraph Equations

It is possible to reduce the GLM equations to two telegraph equations by taking the derivative

of Equations (3.69) and (3.74) with respect to time and substituting the respective equations,

Equations (3.68) and (3.73). Using the fact that the divergence of a curl is always 0, it can be

shown that
∂2Ψ

∂t2
− c2h∇2Ψ = −c

2
h

c2p

∂Ψ

∂t
(3.75)

and
∂2Φ

∂t2
− (χc)2∇2Φ =

χ2

ǫ0

(

∂ρq
∂t

+∇ · j
)

. (3.76)

This shows that the two GLM equation sets developed for E and B are not in fact coupled.

3.8.4 Maxwell’s Equations with GLM Divergence Cleaning

By adopting the GLM approach outlined above in this work, what is referred to as the full

GLM (FGLM) Maxwell’s equations can then be summarized as follows:

∂B

∂t
+∇×E+∇Ψ = 0, (3.73)

∂D

∂t
−∇×H+∇ Φ

µ0
= −j, (3.68)

∂Ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
Ψ, (3.74)
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∂Φ

∂t
+ χ2∇ ·E = χ2 ρq

ǫ0
. (3.69)

These equations replace Maxwell’s equations in the MMHD model, Equation (3.12), and are

referred to as the multifluid magnetohydrodynamic model with GLM divergence cleaning. An-

other variation of Maxwell’s equations, where only the divergence cleaning for the magnetic

field is also considered throughout this thesis. This second approach is referred to as Maxwell’s

equations with magnetic field divergence cleaning (MGLM) and does not include the evolution

of the electric field Lagrange variable Φ.

3.8.5 Divergence Cleaning via Diffusion for the Electric Field

Finally, alternate methods for correcting the electric field and charge separation errors that

are commonly used in Particle In Cell (PIC) simulations are the Marder and Langdon-Marder

schemes [119, 120]. The correction to the electric field is accomplished by adding a term that

diffuses the errors associated with charge separation. In the implicit Langdon-Marder scheme,

this correction takes the form

En+1

corrected
= En+1 +∆t∇

[

d

(

∇ ·En+1 −
ρn+1
q

ǫ0

)]

. (3.77)

In the original Marder scheme, the variables in the diffusion term used values from the previous

update instead of the current values (lagged update), namely

En+1

corrected
= En+1 +∆t∇

[

d

(

∇ ·En −
ρnq
ǫ0

)]

. (3.78)

The diffusion coefficient d is chosen to be a function of a time scale and grid resolution specified

according to

d ≤ 1

2∆t

[

∆x∆y

∆x2 +∆y2

]

(3.79)

for 2D problems. This choice ensures that the von Neumann stability condition for diffusion is

satisfied. As investigated in Langdon’s paper [119], a lagged update results in less of a correction

and a larger charge separation error.

The error diffusion is extended to the finite-volume schemes considered herein by simply adding

a diffusion term on the left of Equation (3.78) for the electric field equations as a diffusive source

term as suggested by Loverich et al. [66] so that the transport equation for E becomes

∂E

∂t
− c2∇×B = − 1

ǫ0
j+ λE∇

(

∇ ·E− ρq
ǫ0

)

. (3.80)

The new term on the left is non-zero when there are errors in the electric field and the resulting

error is then diffused away at the rate governed by the electric diffusion coefficient λE . As
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recommended by Loverich et al. [66], the diffusion coefficient is specified using

λE = c∆x (3.81)

where ∆x is chosen to be either the average, or the smallest grid spacing of the mesh. This

results in a time scale of the same order as the speed of light. Solutions obtained using this

method of error cleaning for the electric field are referred to as MGLMED solutions and include

a GLM treatment for divergence cleaning of the magnetic field.

3.8.6 MMHD Summary

The preceding set of coupled partial differential equations describes the time evolution of par-

tially ionized non-equilibrium anisotropic plasmas, consisting of a single ion species, in the

absence of heat flux. It is important to note that the coupling of the four sets of equations for

the ions, electrons, neutrals and electromagnetic fields occurs only through the source terms.

Otherwise, each equation set may be treated in isolation.

3.9 The 10-Moment Two-Fluid MHD Model

In order to develop an efficient and accurate numerical solution procedure, it is useful to have

a simpler subset of the MMHD equations to test. For this purpose, the 10-moment two-fluid

MHD (10TFMHD) model was also formulated. The 10TFMHD model was used for many of

the 1D analyses and simulations presented herein and is based on the MMHD model with no

Maxwell’s equations divergence cleaning.

In order to obtain the 10TFMHD model, a fully ionized plasma is assumed, eliminating the

neutral species in the MMHD equations. This reduces the fluid dynamics equations to include

only ions and electrons. Further, the interparticle collision terms reduce to include only the

elastic collision terms of Section 3.5 (superscript el), since there are no longer any ionization or

charge exchange reactions.

The above simplifications applied to the MMHD governing equations results in the following

set of governing equations known as the 10-moment two-fluid MHD model (10TFMHD) in the

weak conservative form, Equation (3.8) with

U =









Uion

Ue

UM









, Fi =









Fion,i

Fe,i

FM,i









, S =









Sion

Se

SM









, Scol =









Scolion

Scole

ScolM









, (3.82)
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where

Us =





















ρs

ρsus,k

ρsus,jus,k + Ps,jk





















, Fs,i =

























ρsus,i

ρsus,ius,k + Ps,ik

ρsus,ius,jus,k + Ps,jkus,i

+Ps,ikus,j + Ps,ijus,k

























, (3.83)

Ss =

























0

qs
ρs
ms

(Ek + ǫkαγusαBγ)

qs
ρs
ms

(us,jEk + us,kEj) + qs
ρs
ms

(ǫjαγus,αus,k + ǫkαγus,αus,j)Bγ

+ qs
ms

(ǫjαγPs,αk + ǫkαγPs,αj)Bγ

























, (3.84)

and where s ∈ {ion, e}. Maxwell’s equations are represented as

UM =

(

Bj

ε0Ej

)

, FM,i =

(

ǫjiαEα

−ε0c2ǫjiαBα

)

, SM =





0

e
(

ρe
me
ue,j − ρion

mion
uion,j

)



 .

(3.85)

The collision terms simplify to

Scols =

































0

ρsν̃st (ut,k − us,k)

νs (psδjk − Ps,jk) + 2 ρsν̃st
(ms+mt)

kB(Tt − Ts)δjk

+
mtρsν̃st
ms +mt

[

1

3
δjk(ut − us)

2 + (ut,j − us,j)(ut,k − us,k)

]

+ρsν̃st [us,k(ut,j − us,j) + us,j(ut,k − us,k)]

































, (s, t) ∈ {(e, ion), (ion, e)}.

(3.86)

It is remembered that

ScolM = 0. (3.87)



Chapter 4

Dispersion Analysis of Multifluid

MHD Models

4.1 Overview

Contained in this chapter are dispersion analyses performed on the subset of the MMHD model,

the 10TFMHD model described in the previous chapter. Various analyses have also been per-

formed on the 5-moment two-fluid model of Shumlak and Loverich which includes an analytical

and a numerical analysis of the non-discrete and discrete equations. The full dispersion analy-

ses of the Shumlak and Loverich two-fluid model can be found in Appendix A. The results of

the dispersion analysis on the 10TFMHD model indicate that the system of equations, while

hyperbolic, also contain a wide range of disparate wave speeds and time scales. A numerical

solution framework is proposed based on the results of the dispersion analysis and a discrete

dispersion analysis is then applied to the resulting one-dimensional linearized equations of the

framework. The results of the discrete dispersion analysis indicate that the system is compati-

ble for solution by an appropriately selected combination of upwind finite-volume and implicit

time marching methods.

4.2 Dispersion Analysis of the Two-Fluid MHD Model

In order to better understand the physical and mathematical behaviour represented by the

system of equations given by Equations (3.8)–(3.13), and to aid in the development of an ap-

propriate numerical solution procedure, a dispersion analysis of the MMHD subset, 10TFMHD,

39
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was first carried out as part of this thesis. The dispersion analysis proceeded along the same

lines as the 5-moment dispersion analysis that is included in the Appendix A for completeness;

however, notable deviations included the 10-moment fluid description and inclusion of the in-

fluences of interparticle collision terms. Similar dispersion analyses have been carried out by

Brown et al. [86], Groth et al. [121], and Hittinger [122] for the 10- and 35-moment closures of

neutral, non-magnetized, gases. A description of the results of this dispersion analysis are now

summarized below.

4.2.1 Non-Dimensional Linearized Transport Equations

The dispersion analysis is applied to the linearized form of the equations. In order to linearize

the equations of the two-fluid MHD model of Section 3.9, it is first rearranged into a non-

conservative form given by

∂W

∂t
+A∂W

∂x
+ B∂W

∂y
+ C ∂W

∂z
= SW (4.1)

where the primitive solution vector is

W =









Wion

We

WM









, Ws =















































ρs

us,x

us,y

us,z

Ps,xx

Ps,xy

Ps,xz

Ps,yy

Ps,yz

Ps,zz















































, WM =

























Bx

By

Bz

Ex

Ey

Ez

























, (4.2)

and s ∈ {ion, e}. The equations are then non-dimensionalized with respect to the following

quantities:

ν, ρref , pref , mref , µ0, (4.3)

which correspond to the interspecies collision frequency, the reference density, the reference

isotropic pressure, the reference mass, and the magnetic permeability of free space, respectively.

A reference sound speed can also be defined as aref =
√

γpref/(ρref ). Using the preceding
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quantities, the following transformations to non-dimensional variables is adopted:

t = t̄
1

ν
, x = x̄

aref
ν
,

mion = m̄ionmref , me = m̄emref , ρion = ρ̄ionρref , ρe = ρ̄eρref ,

uion = ūionaref , ue = ūearef , pion = p̄ionγpref , pe = p̄eγpref ,

E = Ēγpref

√

µ0
ρref

, B = B̄
√
µ0γpref , T = T̄

γpref
ρrefRion

,

(4.4)

where the bar indicates the appropriate non-dimensional quantity. Please note that in the

remainder of this section, the bars have been dropped for simplicity.

The corresponding non-dimensional and non-conservative form of the governing equations are

then linearized about an equilibrium solution state, W0, defined by

W0 =









W0,ion

W0,e

W0,M









, W0,s =















































ρ0,s

0

0

0

p0,s

0

0

p0,s

0

p0,s















































, W0,M =

























B0,x

B0,y

B0,z

0

0

0

























, (4.5)

for which the average velocity, off diagonal pressure terms, and background electric field are

assumed to be zero, which are all valid assumptions for quiescent plasmas under equilibrium

conditions. The linearization is then achieved by assuming that the solution vector can be

approximated by the perturbed solution vector defined by

W∗ = W0 + W̃, (4.6)

with

W̃ =









W̃ion

W̃e

W̃M









, W̃s =









ρ̃s

ũs,k

P̃s,jk









, W̃M =

(

B̃k

Ẽk

)

, (4.7)

and where W̃ is the perturbation of the solution from the equilibrium state. The resulting

linearized non-conservative equations for W̃ are then as follows:

Non-Dimensional Linearized Multispecies Non-Conservative Continuity

∂ρ̃s
∂t

+ ρ0,s
∂ũsi
∂xi

= 0 s ∈ {e, ion}, (4.8)



42 Chapter 4. Dispersion Analysis of Multifluid MHD Models

Non-Dimensional Linearized Multispecies Non-Conservative Momentum

∂ũsk
∂t

+
1

ρ0,s

∂P̃sik
∂xi

= Ke
qs
ms

(

Ẽk + εkαγ ũsαB0,γ

)

+ ν̃st (ũtk − ũsk) ,

(s, t) ∈ {(e, ion), (ion, e)},
(4.9)

Non-Dimensional Linearized Multispecies Non-Conservative Energy

∂P̃sjk
∂t

+ δjkp0,s
∂ũsi
∂xi

+ δijp0,s
∂ũsk
∂xi

+ δikp0,s
∂ũsj
∂xi

= Ke
qs
ms

(εjαγP̃sαk + εkαγP̃sαj)B0,γ

+νs

(

1

3

(

P̃s,xx + P̃s,yy + P̃s,zz

)

δjk − P̃sjk

)

+ 2

(

1

γmrefRref

)

+2

(

1

mrefRref

)

ρ0,sν̃st
(ms +mt)

kB

[

− p0,t
ρ20,tRt

ρ̃t +
1

3ρ0,tRt

(

P̃t,xx + P̃t,yy + P̃t,zz

)

+
p0,s
ρ20,sRs

ρ̃s −
1

3ρ0,sRs

(

P̃s,xx + P̃s,yy + P̃s,zz

)

]

δjk, (s, t) ∈ {(e, ion), (ion, e)},

(4.10)

where the non-dimensional quantity Ke is defined by

Ke =
e

νmref

√
γµ0pref . (4.11)

Maxwell’s equations become:

Faraday’s Law

∂B̃

∂t
+

(

∂Ẽz
∂y

− ∂Ẽy
∂z

)

x

−
(

∂Ẽz
∂x

− ∂Ẽx
∂z

)

y

+

(

∂Ẽy
∂x

− ∂Ẽx
∂y

)

z

= 0, (4.12)

Ampére’s Law

∂Ẽ

∂t
− c2

a2ref





(

∂B̃z
∂y

− ∂B̃y
∂z

)

x

−
(

∂B̃z
∂x

− ∂B̃x
∂z

)

y

+

(

∂B̃y
∂x

− ∂B̃x
∂y

)

z





= − c2

a2ref
Ke nionũion +

c2

a2ref
Ke neũe.

(4.13)

For the dispersion analysis, the following physical values were used to determine the various

constants and reference values:

e = 1.602189246× 10−19C

c = 299792458 m
s

µ0 = 0.000001256637
m kg
s2A2

γ = 5
3

mref = mion = 1.6736× 10−27 kg

nref = n0 = 7.31955× 1023 1
m3

pref = p0 = 101325Pa

(4.14)
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and the reference collision frequency was calculated from the ion-electron collision frequency

based on the Coulomb collision model so that [103,123]

νs,t =
4
√
2πe4◦
3k

3
2

nionZ
2
sZ

2
t ln Λ

(

ms +mt

msmt

) 1
2
(

ms +mt

msTt +mtTs

) 3
2

(4.15)

where e◦ is the elementary charge constant and Zs, Zt is the charge number for the species s

and t, respectively, and where the Coulomb logarithm is given by

lnΛ = 23 +
3

2
ln

(

Te
106

)

− 1

2
ln
( ne
1012

)

. (4.16)

The collision frequency is determined by using the following conversions to CGS from SI units:

CGS SI

e0 = e0,SI ∗ 2.9979× 109 statCC
k = kSI ∗ 1.0× 107

erg
J

n0 = n0,SI ∗ 1.0× 10−6 m3

cm3

me = me,SI ∗ 1.0× 103
g
kg

mI = mI,SI ∗ 1.0× 103
g
kg

e0,SI = 1.602189246× 10−19C

kSI = 1.380658× 10−23 J
K

n0,SI = 7.31955× 1023 1
m3

me,SI = 9.1093897× 10−31 kg

mI,SI = 1.6736× 10−27 kg

(4.17)

4.2.2 Eigenvalue Analysis

For initial value problems (IVP) with planar wave propagation in the x-direction only, the

perturbative solution vector, W̃, in Equations (4.8)–(4.13) can be assumed to have the form

W̃ = Ŵexp [i (ωt̄∗ − kx̄∗)] , (4.18)

where ω is the temporal frequency, and k is the spatial wavenumber. For the initial value

problem, ω is generally complex and k is strictly real valued. This results in the following

eigenvalue problem:

(iωI− ikA∗ − S∗)W̃ = 0. (4.19)

The form of the matricies are large and are not included here, but the procedure is outlined in

more detail in Appendix A for the 5-moment model. A number of simplifications are now made

which include assuming equal pressures, p0,ion = p0,e, that the plasma is a fully ionized quasi

neutral plasma so that n0 = n0,ion = n0,e or ρ0,e = (me/mion)ρ0,ion, and that the background

magnetic field is aligned with the x-direction, B0 = (B0, 0, 0). The standard right eigenvalue

problem can then be formed such that

HŴ = ωŴ, (4.20)



44 Chapter 4. Dispersion Analysis of Multifluid MHD Models

where ω corresponds to the eigenvalue of the eigenvector Ŵ and

H = kA∗ − iS∗, (4.21)

and kA∗ and S∗ are the linearized, non-dimensional x-direction coefficient and source term

matrices, respectively.

4.3 Results of the Dispersion Analysis

4.3.1 Wavespeeds of Fundamental Solution Modes

The eigenvalue problem of Equation (4.20) is solved numerically for ω for a range of values of k.

The wave phase speeds are given by the real part of ω divided by the spatial wavenumber k, and

the figures in this section provide the phase speed, ωR/k, as a function of k. In what follows, the

various characteristics of the two-fluid MHD model are shown in the Figures 4.2–4.11, where

the fastest waves will be depicted first, and more of the eigenstructure will be revealed as we

telescope or zoom in to investigate the slower wave modes. In addition, the computed wave

structure is compared to the dispersive wave behaviour calculated for an isotropic 5-moment

version of the two-fluid MHD model. The latter is equivalent to the two-fluid model of Shumlak

and Loverich with the addition of modelling for interspecies collisions. The comparison with

the 5-moment version of the two-fluid MHD equations is instructive as the high frequency

wavespeeds of the 5-moment model correspond to accepted wavespeeds for the various modes

present in ideal MHD descriptions [33, 62].

Figure 4.1 depicts the dispersive wave nature of the 10-moment two-fluid model showing the

full range of wave modes including those with the fastest wavespeeds. Unfortunately, the only

waves that can be really seen for this range of velocities and wavenumber are the L- and R-

waves, which are the left and right circularly polarized plasma waves, respectively [33]. The fast

L- and R-mode waves are composed of a total of four waves at order 104 for non-equilibrium

conditions or for large values of k, which is equivalent to the speed of light following the

non-dimensionalization. For small k, equilibrium conditions, these waves approach infinite

wavespeeds. These waves also agree with the phase speeds of the L- and R-modes of the 5-

moment analysis. The infinite wavespeeds may appear to pose some problems; however, the

infinite wavespeeds encountered in this analysis all originate from the electron plasma frequency,

which is associated with the plasma cut off frequency. For changes in charge density less than the

plasma cut off frequency, the charges will realign to cause Debye shielding. The Debye shielding

will stop the propagation of these infinite wavespeeds at equilibrium conditions. Moreover, it
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Figure 4.1: Phase speed as a function of non-dimensional wavenumber for the parallel direction,

indicating behaviour of the L- and R-mode waves.

should also be noted that it is permissible for an unterminated wave phase speed to exceed c

and, despite an infinite phase speed, the group velocity of these waves are in fact zero [33].

Figures 4.2 and 4.3 depict the dispersive behaviour for the next lower magnitude waves. These

waves are the electron plasma waves which are the same magnitude as those in the 5-moment

dispersion analysis. However, the dispersive wave behaviour of the 10-moment solution is not

the same as that of the 5-moment case as can be seen in Figure 4.2. The phase speeds of the

electron plasma waves are of order 10 for large values of k, which is about a thousand times

slower than the L- and R-mode waves.

The next wave at about the same magnitude that can be seen in Figure 4.2 is the electron

shear wave. A closer view of the high k behaviour of this wave can be seen in Figure 4.3. The

behaviour of these waves for very small values of k are shown in Figure 4.4 and it can be seen

that there is a pair of waves that, at this resolution, appear to be abruptly cut off. This is in

fact the equilibrium behaviour of the electron shear waves, which can be seen in greater detail

in Figures 4.5 and 4.7. The electron shear waves have two positive and two negatives waves

that have the same phase speeds at high k as in Figure 4.3. As k decreases for conditions

nearing equilibrium, the two sets of waves (one positive pair and one negative pair) approach

the ωR/k = 0 axis, as seen in Figure 4.5. The waves then diverge from each other where one

positive and one negative wave mode changes direction and cuts across the zero axis, while
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Figure 4.2: Phase speed as a function of non-dimensional wavenumber for the parallel direction

showing electron plasma waves.

the other waves do not change direction, as seen in Figure 4.7. The resulting behavior of the

electron shear waves can be seen in Figure 4.5 for equilibrium conditions when k is small.

For very small values of k, some interesting behaviour can be seen from the eight shear waves

present in the two-fluid 10-moment solutions, which include not only the electron waves, but

also the ion waves which are discussed later in this section. As can be seen in Figure 4.6, for

very small values of k, some of the shear wave modes approach a phase speed of unity. There is

some fairly complex structure that can be seen in the behaviour of the shear waves. Looking to

the non-equilibrium region at high k, the waves that do not reverse direction when k decreases,

diverge to infinity for very small values of k. This behaviour is the same for both the electron

and ion plasma shear waves. The other wave, the one that cuts across the ωR/k = 0 axis then

does an arc that returns towards the ωR/k = 0 axis as k becomes small, as seen in Figure 4.5,

approaches plus or minus unity for equilibrium conditions. Once again, this is true for both

electron and ion plasma waves, even though their phase speeds greatly differ in magnitude in

the non-equilibrium regime. One positive and one negative wave from the electron and ion

shear waves approaches ±1 for very small values of k as illustrated in Figure 4.6. It shows a

strong coupling between the ions and electrons since unity here corresponds to the ion acoustic

speed.
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Figure 4.3: Phase speed as a function of non-dimensional wavenumber for the parallel direction

showing electron shear waves.

In Figures 4.8 and 4.9, the dispersive behaviour of the Alfvén waves, which are one set of

waves that do not have infinite speeds for very small values of k, can be seen. Figure 4.9

shows only the positive moving Alfvén wave compared to the 5-moment solution. At larger

values of k, the behaviours of these waves depart. Remember that a value of unity here implies

a value equal to the ion acoustic velocities, however, we approach ion acoustic velocities due

to the non-dimensionalization which defined the magnetic field such that the Alfvén velocity

val = (cB0
√
ǫ0)/(

√
ρref ) is equal to the ion acoustic velocity. In the 10-moment formulation,

perturbations actually propagate faster than the Alfvén velocity, unlike in the isotropic formu-

lation. This is perhaps due to the fact that the Alfvén phase speed is coupled to perpendicular

plasma oscillations and the plasma is freer to vary in the 10-moment description as opposed

to the ideal MHD limit where pressures are coupled in all directions. This is especially true

for non-equilibrium conditions, which is why the Alfvén wavespeed diverges rapidly from the

5-moment isotropic result as k increases from zero, and then remains faster, and continues to

diverge from the isotropic, near-equilibrium values.

There are two other major waves of interest that can be seen in Figure 4.8. One set is the

ion shear waves which have been observed in previous figures. In Figure 4.10, the behaviour

of the four ion shear waves can be seen bracketed within the lower hybrid wave in the small k

regime. As was seen in the case of the electron shear waves, the ion shear waves exhibit complex

behaviour at about k = 0.02. This is because the phase speeds shown in Figure 4.8 decrease
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Figure 4.4: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behavior of the electron shear waves for small k.

and approach the ωR/k = 0 axis, where one pair of waves reverse direction and cross the zero

axis as the electron shear waves did between k = 0.006 and k = 0.007. Note that the electron

shear waves are much faster than the ion shear waves and asymptote to a constant value at

smaller k than the ion shear waves. This means that electrons are much more sensitive to

perturbations, and propagate for a wider range of k than the ion shear wave. This makes sense

due to their relative mass differences. As in the case of the electron shear waves, the ion shear

wave that reverses direction will go through a small arc, that passes very close to the ωR/k = 0

axis before approaching a phase speed of unity for very small values of k. The ion shear wave

that does not reverse direction going from non-equilibrium conditions to equilibrium conditions

will approach infinity for very small values of k. The ion shear waves are generally much slower

than the electron shear waves for the entire domain being about two orders of magnitude slower

than the electron shear waves for non-equilibrium conditions. This can be attributed to the

fact that characteristic speeds tied to movement of particles are usually proportional to 1/
√
m

and the ions are four orders of magnitude heavier than electrons.

The next waves encountered are the slow L- and R-mode waves (LR waves), which can both

be seen in Figure 4.11. These waves can be seen along with the ion shear waves and are also

compared to the 5-moment isotropic result. The two sets of slow LR waves do not agree

exactly, however, this can be partially attributed to the fact that the LR waves for the 10-



4.3. Results of the Dispersion Analysis 49

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-30

-20

-10

0

10

20

30

k

w
R

/k

Electron Shear Wave

Slow LR Wave

Figure 4.5: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behavior of the electron shear waves for very small k.

moment formulation now have a large imaginary component to them. The damping behaviour

of these waves will be discussed in the next section. The temporal frequency of the slow LR

waves are constant and not a function of k and hence the wavespeed will approach zero for very

large values of k.

The last non-zero wave discussed is the lower hybrid wave. The variation of the phase speed

of this wave can be seen in Figure 4.10. It is the wave that brackets the small k behaviour of

the ion shear waves. The waves are relatively slow and it should be noted that the temporal

frequency is constant and not a function of the spatial wavenumber, the phase speed goes to

zero for very large values of k.

There are several zero magnitude waves (eight to be exact). These are waves that simply

advect with the flow. These waves include electron and ion entropy, electron and ion transverse

pressure waves, and magnetic and electric flux waves.

As can be seen in the dispersion analysis, the range of speeds over which the various wave

modes propagate is very wide. There are large differences in phase speeds between the EM

waves and the fluid dynamics waves, as well as between the propagation speeds of the ion

and electron waves. These disparate speeds will present some numerical stiffness issues which

need to be resolved or mitigated in any solution scheme developed for the MMHD model
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Figure 4.6: Phase speed as a function of non-dimensional wavenumber showing very small k

behaviour for electron and ion shear waves for the parallel direction.

equations. Possible techniques for dealing with the stiffness would include local preconditioning

methods [124–128] and the use of implicit time marching schemes [129–131].

4.3.2 Damping of Fundamental Solution Modes

In order to explore the damping behaviour of the system, the imaginary part of the eigenvalue,

ω, has been analyzed. The damping behaviour is dictated by the imaginary part of Equation

(4.18). Figures 4.12 and 4.13 illustrates the variation of the wave damping as a function of the

wavenumber for wavenumbers in the range of 0 to 1. Figure 4.13 provides a closer look at the

wave modes with lower damping rates. The number in the brackets indicate the number of

waves represented by each line.

The high-speed LR waves appear to have no damping for this range. In actual fact, for very

small values of k, or equilibrium conditions, when the LR wavespeeds approach infinity, there

is very large damping of the waves as can be seen in Figure 4.15. This behaviour helps explain

why we do not observe infinite waves in physical plasmas.

The Alfvén waves are less damped at near equilibrium conditions. At very small values of k

it is not damped at all. Similarly, the electron plasma waves are also less damped nearer to
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Figure 4.7: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behaviour of the electron shear waves near the ωR/k = 0 axis for small k.

equilibrium, but still remains damped for small values of k. This means perturbations and non-

equilibrium disturbances are more strongly damped than equilibrium waves as can be expected

of magneto-acoustic phenomenon.

There is an interesting phenomenon associated with both the ion and electron shear waves.

For non-equilibrium values at large k, both sets of waves have a constant damping, where the

electron shear waves have a much higher damping than the ions. This is likely due to the fact

that electrons are much faster and lighter than the ions and thus, travel faster and exhibit

higher damping when encountering other particles. For near equilibrium conditions, i.e., small

k, both sets of the four shear waves split-off into two sets of two waves which can be seen in

Figure 4.14. The split-off point for the electron shear waves coincides with the phenomenon

observed in Figure 4.4. The ion shear waves exhibit a similar divergence which occurs at higher

wavenumbers. This is the same point at which one set diverges to infinite phase speeds while

the other set of waves cross the zero axis and eventually approaches a phase speed of unity.

The labels “ESW uni” and “ISW uni” indicate the two waves that approach unity and “ESW

inf” and “ISW inf” indicate the waves that approach infinity. The modes that approach unity

actually end up as undamped waves for very small values of k. The “ESW uni” waves become

undamped in Figure 4.15. This indicates that these ion acoustic speed waves (both electrons
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Figure 4.8: Phase speed as a function of non-dimensional wavenumber showing Alfvén and ion

shear waves for the parallel direction.

and ions travelling at this speed) that propagate pressure shears are undamped at equilibrium.

As mentioned before, at equilibrium conditions, there is a strong coupling between the ions and

electrons, through the electric fields, causing them to propagate together at the ion acoustic

velocity. The ion behaviour predominates because the larger mass of the ions over the electrons.

Conversely, at non-equilibrium conditions, there is no coupling between the ions and electrons

because there is insufficient time to compensate for local perturbations. For the waves that

approach infinite wavespeeds, it can be seen that they are heavily damped. Once again, this

helps mitigate the very fast wave speeds encountered. For the waves that approach infinity for

small values of k, the electron waves are much more damped compared to the ions. Again, this

is probably due to their relative masses. It should be noted that the shear waves for the ions

and electrons have a similar structure to the shear waves of the 10-moment analysis for non-

magnetized non-equilibrium gases [122]. The differences come from the non-dimensionalization

used as well as the presence of two fluids coupled through electromagnetic forces.

The electron plasma waves exhibit less damping at equilibrium than at high k. Since the

electron plasma waves are associated with thermal movements of electrons transmitting electron

cyclotron information, the electron shielding at equilibrium masks strong charges while at high

frequency spatial wave numbers there is less shielding resulting in strong charges and thus large

damping due to coulomb collisions with other particles including the large ions impeding the
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Figure 4.9: Phase speed as a function of non-dimensional wavenumber showing Alfvén waves

for the parallel direction compared to the 5-moment dispersion analysis.

motion of thermal electrons. On the other hand, the lower hybrid waves, which are ion waves

related to the ion plasma frequency, exhibits a constant damping rate for the full range of k

considered.

The slow LR waves have the highest damping of all waves for the entire range of k. Some other

waves that are present are the ion and electron transverse pressure waves which are zero velocity

waves. Again the electron waves are more highly damped than the ions. There are also three

undamped zero waves and one slightly damped wave. They appear to be linear combinations

of transverse pressure, entropy, and parallel E and B flux waves, as determined from numerical

evaluation of the corresponding eigenvectors.

4.4 Discrete Dispersion Analysis Based on Godunov

Finite-Volume Scheme

In order to gain a better understanding of what sort of numerical solution scheme would be

appropriate for solution of the 10TFMHD and ultimately the MMHD model, a dispersion

analysis of the discretized form of the 10TFMHD equations was performed. A basic framework

for the proposed numerical scheme was used to discretize the one-dimensional form of the
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Figure 4.10: Phase speed as a function of non-dimensional wavenumber showing the lower

hybrid and ion shear waves for the parallel direction.

10TFMHD equations. The proposed numerical scheme is a Godunov type finite-volume upwind

scheme and is detailed in Section 5.2.1 of Chapter 5 to follow. Godunov type finite-volume

schemes require a solution to a Riemann problem, and the proposed framework uses a Harten-

Lax-van Leer-Einfeldt (HLLE) numerical flux function [132] and a piecewise constant spatial

reconstruction. The proposed scheme considered here is a very basic first-order scheme from

which a higher-order multi-dimensional numerical scheme can be developed. A summary of the

results of the discrete dispersion analysis now follows.

4.4.1 Linearized Solution Scheme

Following the procedure outlined in the preceding dispersion analysis, a linearized non-dimensional

form of the conservative transport equations, Equation (3.8), can be written as

∂U∗

∂t
+
∂F∗

x

∂x
= S∗, (4.22)

where the equilibrium state used in the linearization process, U0, is the conservative version

of Equation (4.5). The source term vector remains the same as for the non-discrete dispersion
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Figure 4.11: Phase speed as a function of non-dimensional wavenumber showing the slow LR

waves for the parallel direction.

analysis. Therefore U∗ and F∗
x is now
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Figure 4.12: Damping factor as a function of non-dimensional wavenumber for each wave mode

for the parallel direction.
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, (4.24)

4.4.2 Finite-Volume Spatial Discretization and HLLE Flux Function

The proposed numerical scheme (see Chapter 5) is a Godunov-type upwind finite-volume scheme

which requires a Riemann solver. The Riemann solver applied here is the HLLE approximate

Riemann solver (see Chapter 5 for the rational for this choice and Appendix B.2 for a detailed

description). The intermediate state F∗ (Equation (5.12)) is used since for current purposes

(x/t) = 0 and also because the slowest and fastest signal velocities are ±c with the equilibrium
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Figure 4.13: Damping factor as a function of non-dimensional wavenumber for the parallel

direction showing those modes that exhibit reduced damping.

velocity being zero. The finite-volume solution of the linearized equation is considered for a

uniform mesh with xj = x0 + j∆x and ∆x = xj+1 −∆xj = constant. For the current analysis

a piecewise constant spatial reconstruction was used as the values for the left and right states

used to calculate the flux function. Therefore, for the j+1/2 cell division, L = j, and R = j+1,

while for j − 1/2, L = j − 1, and R = j where j is the cell index. Therefore, Equation (5.12) is

taken and noting λ+I = A and λ−I = −A, where A is a diagonal matrix with the characteristic

velocities of each set of equations such that

A =









Aion · · · 0

... Ae
...

0 · · · AMaxwell









and

Aion =
√
3aionI

Ae =
√
3aeI

AMaxwell = c I

(4.25)

where

aion = aref =

√

γpion
nionmion

, ae =

√

γpe
neme

, (4.26)

and c is the speed of light, the following sets of equations for the two fluxes involved in this

formulation are finally obtained:

Fj+ 1
2
=

1

2

(

Fj + Fj+1 −AT (Uj+1 −Uj)
)

, (4.27)

Fj− 1
2
=

1

2

(

Fj−1 + Fj −AT (Uj −Uj−1)
)

. (4.28)
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k for the parallel direction.

4.4.3 Time Marching Discretization

Two representative time marching schemes are used in order to discretize the equations. These

are the rather simple first-order explicit and implicit Euler time marching schemes, respectively,

which take the forms

Un+1
j = Un

j −
∆t

∆xj

(

Fn
j+ 1

2

−Fn
j− 1

2

)

+∆tSnj , (4.29)

and

Un+1
j = Un

j −
∆t

∆xj

(

Fn+1
j+ 1

2

−Fn+1
j− 1

2

)

+∆tSn+1
j . (4.30)

Using the reconstructed flux functions of Equations (4.27) and (4.28) and substituting them

into Equations (4.29) and (4.30), the following fully discrete update schemes for the solution,

U, are obtained:

Un+1
j −Un

j =
∆t

∆xj

(

1

2

)

[

Fnj−1 − Fnj+1 +AT
(

Un
j−1 − 2Un

j +Un
j+1

)]

+∆tSnj , (4.31)

and

Un+1
j −Un

j =
∆t

∆xj

(

1

2

)

[

Fn+1
j−1 − Fn+1

j+1 +AT
(

Un+1
j−1 − 2Un+1

j +Un+1
j+1

)]

+∆tSn+1
j , (4.32)
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Figure 4.15: Damping factor as a function of non-dimensional wavenumber for very small values

of k for the parallel direction.

for both the explicit and implicit Euler schemes, respectively. Following substitution of U =

U∗,F = F∗
x, and S = S∗, the equilibrium values cancel, leaving only the perturbative terms

involving equilibrium constants. The linearized non-dimensional form of the two-fluid MHD

model equations results in the following fully discrete solution update scheme

(

W̃n+1
j − W̃n

j

)

=
∆t

2∆x

[

Fco

(

W̃n
j−1 − W̃n

j+1

)

+A
(

W̃n
j−1 − 2W̃n

j + W̃n
j+1

)]

+∆tScoW̃
n
j

(4.33)

for the explicit Euler and

(

W̃n+1
j − W̃n

j

)

=
∆t

2∆x

[

Fco

(

W̃n+1
j−1 − W̃n+1

j+1

)

+A
(

W̃n+1
j−1 − 2W̃n+1

j + W̃n+1
j+1

)]

+∆tScoW̃
n+1
j

(4.34)

for the implicit Euler where W̃n
j is simply the perturbative primitive solution state vector

Equation (4.6) for time level n and cell j, F∗ = FcoW̃ and S∗ = ScoW̃ which relate the flux

and source terms to the perturbative solution vector through coefficient matrices. The time

step is ∆t. The diagonal matrix A contains the local numerical maximum wavespeeds of the

system as a result of the HLLE Riemann flux function.
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4.4.4 Discrete Eigenvalue Analysis

For the discrete eigenstructure, the trial solution for W̃ in Equations (4.33) and (4.34) is

W̃n
j = Znexp (i (jk∆x))Ŵ. (4.35)

Also,

Z = (exp [i ω∆t]) = e−ωI∆t (cosωR∆t+ i sinωR∆t) (4.36)

where ωR and ωI are the real and imaginary parts of ω, respectively. Substitution of Equation

(4.35) into Equations (4.33) and (4.34) results in a set of linear equations that can be expressed

as an eigenvalue problem of the form

HŴ = ZŴ (4.37)

where

H = I+
∆t

∆x

1

2

[

Fco

(

e−ik∆x − eik∆x
)

+A
(

e−ik∆x − 2 + eik∆x
)]

+∆tSco, (4.38)

and

H =

[

I− ∆t

∆x

1

2

[

Fco

(

e−ik∆x − eik∆x
)

+A
(

e−ik∆x − 2 + eik∆x
)]

−∆tSco

]−1

, (4.39)

for the explicit and implicit Euler time marching schemes, respectively. The time step, ∆t, is

determined in the same manner as the physical time step defined by Equation (5.25) through

the TSCF parameter. The implicit scheme is unconditionally stable, at least for the linearized

problem of interest here.

4.5 Results of Discrete Dispersion Analysis

The eigenvalue problems of Equation (4.38) and (4.39) were solved numerically for Z for a

range of k values. Results for both the explicit and implicit schemes now will be presented,

and the recovery of the analytic dispersive behaviour and the stability of the discrete system

of equations are both examined.

4.5.1 Dispersion of the Finite-Volume Discretization with Explicit Time

Marching Scheme

The dispersion of the discrete system with explicit time marching has been explored by plotting

the eigenvalues of the eigen problem for four separate values of ∆x ranging from ∆x = 1.0 to
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Figure 4.16: Phase speed as a function of non-dimensional wavenumber for various ∆x for the

parallel direction (L- and R-mode waves visible).

∆x = 0.001. The value of the TSCF parameter in all cases is 0.1. The discretized scheme is

valid for k values up to kmax = π/∆x, and a range of k up to 314 is shown to give a better

illustration of the phase speed behaviour showing the full range of validity for the ∆x = 0.01

case with the other cases for comparison. It should be noted that all of the following figures

were stable in the imaginary plane as ∆t satisfies the stability criteria of Equation (5.26). The

results of the eigensystem analysis are shown in Figures 4.16 and 4.17.

As can be seen in the figures, as the ∆x value becomes smaller, the wavespeeds approach the

expected analytical wavespeeds described and discussed earlier in this chapter. Figure 4.16

shows the fastest L- and R-mode waves. In Figure 4.17, the scale of k is reduced to something

closer to the previous analysis and the behaviour of the Alfvén waves can be seen as well as

those of the ion shear wave and the slow L- and R-mode waves. Once again, the phase speeds

approach the analytical values as ∆x becomes small.
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Figure 4.17: Phase speed as a function of non-dimensional wavenumber for various ∆x for the

parallel direction.

4.5.2 Stability of the Finite-Volume Discretization with Explicit Time

Marching Scheme

Next, the stability of the finite-volume discretization with the explicit time marching scheme

is examined. The stability of the solution scheme is dictated by the imaginary component of

the eigenvalues. To view the unstable regions with greater ease, −ωI as a function of non-

dimensional wavenumber k is considered.

Figure 4.18 depicts the stability of the proposed solution method for when the condition of

Equation (5.26) is not satisfied. A value of unity is used for ∆x. and the analysis is performed

for various TSCF values ranging from 100.0 to 0.1. As can be seen in Figure 4.18, the discrete

equations become unstable when the TSCF is greater than unity, for which the time steps violate

the stability condition of Equation (5.26). As the TSCF number becomes smaller, bringing the

time step into the stable region, the imaginary component of ω moves to the stable region (i.e.,

−ωI ≤ 0). The time step used for a TSCF of 1.0 is ∆t = 3.9 × 10−5. Note that the time

is non-dimensionalized according to t = t̄/ν where ν is of order 1012 s−1. This would require

∆t of order 10−17 s to be stable. This is much smaller than other time scales associated with

convection, acoustical propagation and collisional processes. This is where the stiffness arises.

The electron plasma frequency dictates the numerical time step that can be taken, which is
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Figure 4.18: Stability of the explicit scheme for various TSCF for the parallel direction

usually much smaller than the time scales of the phenomenon that are often of primary interest.

In summary, it has been shown that an accurate numerical solution procedure for the 10TFMHD

model can be achieved as ∆x becomes small. This result has been found by other researchers

such as Hakim et al. [64,65] for the two-fluid model and by Loverich et al. [63,133] and others [39,

43,134] for traditional MHD models. However, stability of the explicit time marching scheme is

subject to the stability condition of Equation (5.26). This stability condition can result in a very

stiff solution scheme if one is interested in only accurately resolving solution content associated

with plasma convection, acoustical, and particle collisional processes, as is commonly the case.

4.5.3 Stability of the Finite-Volume Discretization with Implicit Time

Marching Scheme

For the implicit time marching scheme, as in the explicit discrete dispersion analysis, Figure

4.19 depicts −ωI as a function of non-dimensional wavenumber k using a ∆x of unity for

various values of TSCF ranging from 100.0 to 0.1. All eigenvalues in Figure 4.19 are now in the

stable region (−ωI ≤ 0) whereas in Figure 4.18 many of the waves were unstable when using the

explicit method. It is clear that a stable and accurate solution scheme can be constructed for the

10TFMHD model using an implicit time marching scheme. The wavespeeds for the dispersion

analysis of the discrete system with implicit time marching also approach the wavespeeds of
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Figure 4.19: Stability of the implicit scheme for various TSCF for the parallel direction

the analytic dispersion analysis as ∆x approaches zero.

4.5.4 Summary of the Results of the Discrete Dispersion Analysis

A first-order Godunov-type upwind finite-volume scheme with HLLE numerical flux functions,

applied to a 10-moment description of a plasma with charged particles and a full modelling of

Maxwell’s equations, will produce realizable and stable, hyperbolic numerical solutions. The

system has a large number of very disparate waves and time scales which must be considered

and dealt with. An implicit method for the 10TFMHD system of equations can produce a

stable and accurate solution. The results of the discrete dispersion analysis shows that the

proposed numerical scheme produces a somewhat desirable eigensystem and suggests how to

develop a full numerical scheme for the non-linear equations. The latter is the subject of the

next chapter.



Chapter 5

Application of MMHD Models to

One-Dimensional Plasma Flow

Problems

5.1 Overview

This chapter is concerned with the development of a one-dimensional (1D) numerical scheme

for the MMHD model, which was the forerunner to the fully two-dimensional (2D) scheme also

developed herein. The one-dimensional study was first carried out to aid in understanding the

behaviour of the MMHD system and inform the development of the proposed two-dimensional

solution method. The proposed numerical scheme for the 1D case is a Godunov-type upwind

finite-volume scheme using temporal limited, implicit dual-time stepping time marching. The

first section of the chapter outlines the numerical solution procedure applied herein, while the

second deals with results obtained from the developed numerical solution procedure for several

1D plasma flow IVPs.

5.2 Temporal Limited Implicit Dual-Time Stepping High-Order

Time Marching Godunov Finite-Volume Scheme

Based on the results of the dispersion analysis of Chapter 4, a Godunov-type finite-volume up-

wind scheme [135] is proposed here for the solution of the MMHD equations in one space dimen-

sion, with the numerical fluxes evaluated using the HLLE approximate Riemann solver [132].

65
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Schemes of this type are appropriate for hyperbolic systems of equations. The proposed scheme

is extended to second-order spatial accuracy by way of a piecewise linear reconstruction for

second-order accuracy in conjunction with a Barth-Jespersen slope limiter [136] to aid in the

control of numerical oscillations. A second-order backwards difference (BDF) time marching

scheme with a dual-time stepping procedure [137] along with additional temporal limiting [130]

is used to compute second-order unsteady solutions. The fully implicit time marching scheme

is used to integrate the resulting coupled system of ordinary differential equations that results

from the finite-volume spatial discretization procedure. The combined scheme is used to solve

the 10TFMHD equations for several one-dimensional problems.

5.2.1 Godunov Finite-Volume Scheme

The Godunov finite-volume upwind scheme is a monotonicity preserving scheme which is capa-

ble of capturing solution discontinuities without introducing oscillations. Originally proposed

by Godunov in 1959 [135], the scheme can be derived by applying Green’s theorem to Equation

(3.8) to express the equations in integral form. For the one-dimensional case, Equation (3.8)

reduces to
∂U

∂t
+
∂F

∂x
= S (5.1)

whereU is the conservative solution vector, F is the conservative flux vector in the x-coordinate,

and S is the non-conservative source terms. The integral form of this equation can be written

as
∫∫ (

∂U

∂t
+
∂F

∂x

)

dxdt =

∮

(Udx− Fdt) =

∫∫

Sdxdt. (5.2)

A discrete finite-volume scheme is created by evaluating the above integral around the surface

of a control volume representing a computational cell such as the one depicted in Figure 5.1.

Integrating along the boundaries of the control surface in a counter-clockwise direction results

in

∫ xi+
∆x
2

xi−∆x
2

U (x, tn) dx−
∫ tn+∆t
tn

F
(

xi +
∆x
2 , t

)

dt

−
∫ xi−∆x

2

xi+
∆x
2

U (x, tn +∆t) dx+
∫ tn
tn+∆tF

(

xi − ∆x
2 , t

)

dt =
∫ tn+∆t
tn

∫ xi+
∆x
2

xi−∆x
2

S(x, t)dxdt
(5.3)

noting that the cell average for U is

Un
i =

1

∆x

∫ xi+
∆x
2

xi−∆x
2

U (x, tn) dx (5.4)

and for S is

Sni ≈ 1

∆t

∫ tn+∆t

tn

Si(t)dt, with Si(t) =
1

∆x

∫ xi+
∆x
2

xi−∆x
2

S(x, t)dx. (5.5)
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Figure 5.1: 1-D Finite-Volume Godunov’s Method

The solution fluxes can be written as

Fn
i± 1

2

=
1

∆t

∫ tn+∆t

tn

F

(

xi ±
∆x

2
, t

)

dt = F
(

R
(

Un
L,i± 1

2

,Un
R,i± 1

2

))

(5.6)

where the right hand side of the above equation can be thought of as the flux function which

requires the solution of a Riemann IVP whose arguments are the states to the left and right of

the interface located at i± 1
2 , which is Un

L,i± 1
2

and Un
R,i± 1

2

, respectively. These solution values

are obtained using a spatial reconstruction discussed in the next section. It therefore follows

that Equation (5.3) can be re-expressed as

Un+1
i = Un

i − ∆t
∆x

(

Fn
i+ 1

2

−Fn
i− 1

2

)

+∆tSni (5.7)

which is the original form of Godunov’s finite-volume scheme with a first-order explicit Eu-

ler time-marching scheme. The spatial accuracy of the scheme depends on the order of the

reconstruction used to evaluate the left and right solution states in Equation (5.6).

5.2.2 Spatial Reconstruction

In order to achieve second-order spatial accuracy, the cell-averaged state, along with a cell aver-

aged gradient calculated using a least squares approach similar to that proposed by Barth [138],

is used to determine the left and right states, Un
L,i+ 1

2

and Un
R,i+ 1

2

, where the i + 1
2 interface

is considered. In the one-dimensional case, the least-squares computation of the cell gradient

reduces to the solution slope based on the cell centered values of the two adjacent cells given

by
∂Un

∂x

∣

∣

∣

∣

i

=
Un
i+1 −Un

i−1

2∆x
. (5.8)
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The piecewise linear spatial reconstruction is then given by

Un
L,i+ 1

2

= Un
i +

∆x

2
φ
∂Un

∂x

∣

∣

∣

∣

i

, (5.9)

Un
R,i+ 1

2

= Un
i+1 −

∆x

2
φ
∂Un

∂x

∣

∣

∣

∣

i+1

. (5.10)

A monotonicity preserving scheme is sought; however, the second-order scheme with linear

reconstruction above does not guarantee monotonicity, only first-order schemes are strictly

monotonic (See Hirsch [98]). To ensure a monotonic solution using piecewise linear reconstruc-

tion, the slope limiter, φ, is introduced, which switches the influence of the solution gradient

on or off, giving linear, or piecewise constant reconstruction where needed. To evaluate φ, the

limiter functions suggested by Barth-Jespersen [136] is considered:

φk =























min

(

1,
µmax − µ̄

µk − µ̄

)

for µk − µ̄ > 0,

min

(

1,
µmin − µ̄

µk − µ̄

)

for µk − µ̄ < 0,

1 otherwise ,

(5.11)

where µ̄ is the cell centered value of a component of the solution vector of interest for each cell,

and µmax and µmin are the maximum and minimum values of the solution component being

reconstructed of the cell centered values of the cell in question and all of its neighbours. Finally,

µk is the unlimited spatially reconstructed value of µ(xk) at the interface position k, which in

this case is µi± 1
2
.

5.2.3 Harten-Lax-van Leer-Einfeldt (HLLE) Flux Function

In order to evaluate the numerical flux in Equations (5.6), the interface between the two adjacent

computational cells is treated as a one-dimensional Riemann IVP assuming a short time interval

allowing the source terms to be neglected. The approximate HLLE Riemann solver [132] is

adopted due to its relative simplicity, low computational cost and number of operations, and

the ability to be implemented in a straightforward way for the MMHD system. It was also

found to be very robust for most of the systems of equations and problems considered in this

thesis. A simple general derivation of this flux function can be found in the Appendix B. The

HLLE flux function results in the intermediate flux state

F∗ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL) , (5.12)

where UL and UR are the left and right solution states, FL and FR are the left and right

fluxes. The largest and smallest signal velocities are λ+ and λ−, respectively. The final form
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of the approximate flux function for the right hand side of Equation (5.6) is

F =















FL for
(

x
t

)

< λ−,

F∗ for λ− ≤
(

x
t

)

≤ λ+,

FR for
(

x
t

)

> λ+.

(5.13)

For the MMHD model, λ+ and λ− are different for each species and for the Maxwell’s equations.

This is to prevent a very dissipative scheme which would come about from using the slowest

and fastest wavespeed for the whole system, which includes the speed of light.

5.2.4 Temporal Limited Second Order Backwards Time Marching

Unconditionally stable implicit schemes were considered to allow large time steps and possibly

reduce computational costs. Temporal limiting was required in this case to ensure monotonicity

of the proposed fully-discrete TVD scheme. A temporal limited implicit second-order backwards

differencing discretization (TLBDF) scheme is described by Wuilbaut et al. [130]. The BDF

scheme is modified with a blending coefficient, θ, which can change the order from a second- to

first-order in time scheme depending on the value of θ:
(

1 +
1

2
θ

)

Un+1 − (1 + θ)Un +
1

2
θUn−1 = ∆t

[

Rn+1
]

. (5.14)

When θ = 1, the BDF scheme is recovered while when θ = 0 the first-order implicit Euler time

integration scheme is recovered.

In order to determine θ, the minmod limiter of Roe [139] is used here given by

minmod(r) =















1 if 1 < |r| and r > 0,

r if |r| < 1 and r > 0,

0 if r < 0,

(5.15)

where r in this case is defined by

r =

Un+1
i −Un

i

∆tn+1
2

Un

i −U
n−1
i

∆tn−

1
2

. (5.16)

The blending coefficient described by Wuilbaut et al. [130] is thus

θi =

√

minmod(ri)

max(1, |ri|)
. (5.17)

Another blending parameter that will be used is the square of the above parameter. Namely,

θi =
minmod(ri)

max(1, |ri|)
, (5.18)

which is a stronger, more sensitive blending parameter.
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5.2.5 Dual-Time Stepping

In order to solve the semi-discrete form of the governing equations, a dual-time stepping for-

mulation was adopted here of the form

dU

dt
+

dU

dτ
= R (U) , (5.19)

where t is the physical time, τ is a pseudo-time, U is the conservative solution state vector and

R (U) is the solution residual. The equation is arranged so that

dU

dτ
= R (U)− dU

dt
= R∗ (U) = 0. (5.20)

The TLBDF scheme above is adapted to the dual time formulation with a few slight modifica-

tions. The TLBDF scheme is used for the derivative with respect to t, and an implicit Euler

discretization is used for τ . Linearizing the right side implicit terms, it can be shown that
[(

1 +
2 + θ

2

∆τ

∆t

)

I−∆τ
∂R(Un+k)

∂Un+k

]

∆Un+k

∆τ

= R(Un+k)−
[

(2 + θ)Un+k − (2 + 2θ)Un + θUn−1

2∆t

] (5.21)

for time level n with ∆Un+k = Un+k+1 −Un+k, and ∆t and ∆τ are the physical and pseudo

time steps respectively. The blending coefficient is calculated for each cell at each subiteration

using the transition Un+k solution state. The solution residual R (Un) is obtained by using

a discrete finite-volume scheme on a uniform spatial mesh with xi = x0 + i∆x and ∆x =

xi+1 −∆xi = constant, resulting in

R (Un
i ) =

(

− 1

∆x

(

Fn
i+ 1

2

−Fn
i− 1

2

)

+∆tSni

)

, (5.22)

and ∂R (Un)/∂Un is a banded block tridiagonal matrix of the form

∂R (Un
i )

∂Un
i

= B

(

1

∆x

∂Fn
i− 1

2

∂Ui−1
,

(

1

∆x

∂Fn
i− 1

2

∂Ui
− 1

∆x

∂Fn
i+ 1

2

∂Ui
+
∂Sni
∂Ui

)

,− 1

∆x

∂Fn
i+ 1

2

∂Ui+1

)

, (5.23)

for cell i. The term Fn
i± 1

2

is the interface flux at time level n and at interface i± 1
2 , and Sni is

the source term. The banded tridiagonal matrix is a result of a first-order linearization for the

implicit terms of the numerical scheme. The details of this derivation can be found in Appendix

B.

Although the left side of Equation (5.23) is first-order, the dual-time formulation allows one to

iterate and converge to a higher-order solution. Convergence is determined by comparing the

norms of the residuals when
∥

∥

∥R
∗(Un+k+1)

∥

∥

∥

1
< ε ‖R∗(Un)‖1 (5.24)

where ε is chosen to be 0.001.
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5.2.6 Time Step Control Factor (TSCF)

The time step, ∆t, is determined through a Time Step Control Factor (TSCF) relation where

the TSCF number is a non-dimensional parameter that controls the size of the time step as

follows:

TSCF =
∆t

min
(

∆x
c ,

1
ωpe

) , (5.25)

where c is the speed of light and ωpe is the electron plasma frequency, ωpe =
√

(nee2)/(meǫ◦).

The inclusion of the plasma frequency in the definition of the TSCF parameter is a common

limiting time scale in the numerical simulation of plasmas [140], which was verified in the

dispersion analysis of Chapter 4 as one of the higher frequencies. For a typical conditionally

stable explicit scheme, the stability condition,

∆t ≤ min

(

∆x

c
,

1

ωpe

)

, (5.26)

should be satisfied. This means a TSCF of unity represents the boundary between a typical

unstable (TSCF > 1.0) and stable (TSCF ≤ 1.0) explicit scheme. The pseudo-time step, ∆τ , is

determined using a pseudo or sub iteration TSCF which is defined by the same relation, but for

the pseudo time step. For the BDF scheme, the pseudo TSCF is set two orders of magnitude

higher than the physical TSCF.

5.3 Numerical Results for One-Dimensional MMHD Model

The numerical scheme outlined in Section 5.2 above was applied to the solution of the 10TFMHD

model described in Section 3.9. The method of manufactured solutions (MMS) was first used to

verify the implementation of the numerical solution scheme in 1D. Numerical results for a one-

dimensional plasma flow were then considered and discussed in what follows. A validation of the

10TFMHD model was sought by considering its application to a well-known one-dimensional

problem: the IVP of the Brio-Wu test case [141]. Computational time and the requirements

for converged solutions for this test case are also examined.

5.3.1 Verification Using the Method of Manufactured Solutions

The method of manufactured solutions, or MMS [142,143], was used here as a way to verify the

order of accuracy of the spatial discretization scheme developed above. MMS is a mathematical

approach useful for verifying that the numerical method, as implemented, produces the expected
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theoretical spatial accuracy. It uses an analytical continuum solution which is of high enough

degree in all variables to exercise all the terms and derivatives in the code. This analytical

solution is independent of the numerical code and does not necessarily have to resemble an

actual physical solution. The method works by adding a new source term along with boundary

conditions, which forces the code to converge to a known steady state function. The modified

governing equations in the MMS for the case of the 10TFMHD model are

∂U

∂t
+
∂F

∂x
= S+ Scol +QMMS . (5.27)

The new term QMMS is the source term associated with the MMS.

Two functions were examined, where all primitive variables were equal to the spatial variable

x and 1/x (The linear and inverse case, respectively) so that

ρ, u, v, w, Pxx, Pxy, Pxz, Pyy, Pyz, Pzz, Bx, By, Bz, Ex, Ey, Ez = x or
1

x
. (5.28)

Substituting the functions into the governing equations results in the QMMS for the MMS,

∂UMMS

∂t
+
∂FMMS

∂xi
− SMMS − ScolMMS = QMMS , (5.29)

which was determined using a symbolic math program.

The resulting numerical simulations were performed for various TSCF and also on different

numerical solution procedures versus grid resolution. The error to the exact solution was

calculated. In Figure 5.2, the errors obtained for the linear case is plotted against the number

of points. Note this case is non-linear since the fluxes and source terms are non-linear in the

primitive variables. Looking at this figure, it can be seen that the asymptotic regime is achieved

almost immediately. The results are the same for several TSCF as well as for several different

schemes showing second-order accuracy.

The numerical results for the inverse case were examined next due to the non-linear nature of

the function which can be illustrated by the infinite number of terms that are contained in a

Taylor expansion of the function. Figure 5.3 shows the solution error for various variables, grid

resolutions and schemes. For smaller N , there can be seen a non-asymptotic region before 200

points, which is likely due to the now more complex function. After 200 points the method

converges to second-order as expected. The different variables have different profiles, and all

eventually converge to the expected second-order error. The profiles for each variable in the

non-asymptotic region agree for all numerical schemes and TSCF.

In summary, it has been shown that the 1D numerical solution procedure converges to the

expected second-order accuracy for smooth continuous solution content. Although the MMS
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Figure 5.2: Spatial solution error as a function of N grid resolution points for various TSCF

and numerical solution schemes for the linear test case.

procedure does not provide any information on the validity of the equations being solved, it

does prove that the equations thus presented and developed are integrated correctly into a

working and accurate solution procedure. As was shown in the work by Salari and Knupp on

the MMS [144], even the smallest error would produce drastically reduced order of accuracy

and the procedure was found to be extremely sensitive to any errors or tolerances.

5.3.2 Brio-Wu Shock-Tube Initial Value Problem

The Brio-Wu test case is a MHD shock-tube problem that gives rise to some rather complex un-

steady wave structure due to the interaction of the plasma with the electromagnetic fields [141].

The simple discontinuous initial conditions for this problem are

W =

{

WL for 0 ≤ x < L/2,

WR for L/2 < x ≤ L,
(5.30)
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Figure 5.3: Spatial solution error as a function of N grid resolution points for various TSCF

and numerical solution schemes for the inverse test case.

for {x |x ∈ [0, L]}, and where, in the case of the 10TFMHD equations

WL =









WL
e

WL
ion

WL
M









, WR =









WR
e

WR
ion

WR
M









, (5.31)

with

WL
e =









men0

0

p0
2 δjk









, WL
ion =









mionn0

0

p0
2 δjk









, WL
M =

























3
4B0

B0

0

0

0

0

























, (5.32)
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Figure 5.4: Density profile of the ideal MHD Brio-Wu solution.
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, (5.33)

and

Ws =









ρs

us

Ps,jk









, s ∈ {ion, e} and WM =

























Bx

By

Bz

Ex

Ey

Ez

























. (5.34)

The quantities n0, p0, and B0 are the reference number density, pressure, and magnetic field,

respectively. The termination time for the Brio-Wu test case is defined by:

τ =
1

10

L

aref
. (5.35)

The ideal MHD solution to the Brio-Wu IVP is illustrated in Figure 5.4 and has received con-

siderable study [39–43, 63, 145]. The plasma waves that are present in the ideal MHD solution

are a left moving fast rarefaction wave (FR), the slow compound (SC) wave, a contact discon-

tinuity (CD), a slow shock (SS), and a right moving fast rarefaction wave (FR) as indicated in

the figure.
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Figure 5.5: Density, ρ, as a function of x in the MHD limit.

5.3.3 Ideal MHD Limit Parameters for 10-moment Two Fluid MHD Model

In order to explore the recovery of the equilibrium ideal MHD limit by the 10TFMHD model,

the Brio-Wu IVP was considered with the following parameters:

n0 = 5.76× 1039m−3, B0 = 1010T, aref = 3.0× 106
m

s
, t = 3.33× 10−16 s. (5.36)

A modified electron to ion mass ratio of 0.01 was adopted to reduce the computational cost

of the simulation by making the two plasma species wave speeds less disparate. It should

be noted that the ideal MHD solution to the Brio-Wu test case is not strictly physical and

arises from mathematical peculiarities inherent in the ideal MHD equations and assumptions.

This is the reason why the parameters chosen are not physically common. They were chosen

to approximate the conditions that satisfy the assumptions of ideal MHD. See Chapter 5 of

Ohsawa’s Thesis [48] for more details. See also Torrilhon [134] for discussion of intermediate,

non physical waves in the ideal MHD equations.

5.3.4 Non-Temporal Limited Dual-Time Stepping BDF Scheme Results

The results in this section were generated from a numerical solution scheme which did not

make use of the temporal limiting of Wuilbaut et al. [130]. The numerical results of this section
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Figure 5.6: Close up of density, ρ, as a function of x for the compound shock in the MHD limit.

are important as they show the presence of numerical oscillations in the predicted solution,

for which the temporal limiting was subsequently implemented in order to mitigate. The

results from the non-temporal limited dual-time BDF scheme are compared with an explicit

Hancock time marching scheme [146] for accuracy. The effect of TSCF and grid resolution on

the predicted solutions are explored as well as the effect of collisions on the recovery of the

equilibrium solution.

5.3.5 Ideal MHD Limit Results

Figure 5.5 shows the resulting density profile using an explicit Hancock scheme with a TSCF of

0.8 and 4000 cells along with profiles made with the implicit dual-time stepping scheme with a

physical, outer, TSCF of 500, 1000 and 5000 with pseudo-time sub-iteration TSCFs of 50000,

100000 and 500000, respectively. Figure 5.6 provides a close up view of the compound shock

in the ideal MHD limit. As can be seen in the two figures, the 10TFMHD model recovers the

ideal MHD solution fairly well with only a few differences in terms of minor solution oscillations.

Further, the explicit and implicit methods agree quite closely with each other for the physical

TSCF of 500 and 1000 for the dual-time step method. However, when the TSCF is increased

further, there is a clear degradation in accuracy and loss of solution monotonicity as ∆t becomes
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Table 5.1: Computational time for solving the Brio-Wu test case using the explicit Hancock

scheme and an implicit dual-time stepping scheme

Scheme Physical TSCF Time (minutes)

Hancock 0.8 1093

Dual Step Implicit Euler 500 154

Dual Step Implicit Euler 1000 80

Dual Step Implicit Euler 5000 52

large. The loss of monotonicity here is due to the fact that monotonicity is not strictly enforced

within the dual-time stepping scheme.

There is a significant computational advantage to using the implicit dual-time stepping method

as illustrated in Table 5.1. As can be seen in the table, there is an order of magnitude increase

in speed using the implicit dual-time stepping scheme. Referring back to Figures 5.5 and 5.6,

it can be seen that a physical TSCF of about 1000 provides a satisfactory increase in speed

without significantly degrading the quality of the predicted solution for this Brio-Wu case.

5.3.6 Comparison of Collisionless and Collisional Results

To investigate the effects of interspecies collisions, the IVP of Brio and Wu was computed with

the 10TFMHD model and compared to the result with no interspecies collisions. Note that

the two-fluid MHD 10-moment result with no interspecies collisions, but with self collisions, is

virtually equivalent to a 5-moment isotropic result with no interspecies collisions when there is

sufficient self collisions to maintain an isotropic pressure. The present interspecies collisionless

results are expected to be similar to the previous results of Shumlak and Loverich [62].

In Figure 5.7, the resulting density profiles of the ideal MHD and collisionless 10TFMHD

solutions are compared using 4000 cells, a physical TSCF of 1000 and with an electron/ion

mass ratio of 0.01. In order to obtain a stable solution, the TSCF of the explicit Hancock

method was set to 0.1. It can be seen that the fully collisional solution presented in the previous

set of results is much closer to the ideal MHD result, eliminating, or minimizing many of the

oscillations that are present in the interspecies collisionless solution. The reduction of many

of the oscillations can be seen by looking more carefully at the slow compound wave as seen

in Figure 5.8 compared to the density profiles of the collisional result in Figure 5.6. Further,

the slow shock is resolved more accurately as compared to the ideal MHD result in the fully

collisional solution as illustrated in Figure 5.9. Evidently, interparticle collisions are essential
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Figure 5.7: Density, ρ, as a function of x of the MHD limit of the two-fluid model comparing

collisionless flows solved with the explicit Hancock and implicit dual-time stepping scheme.

Table 5.2: Computational time for solving the non-collisional Brio-Wu test case using the

explicit Hancock scheme and an implicit dual-time stepping scheme

Scheme Physical TSCF Number of Cells Time (minutes)

Hancock 0.1 4000 6229

Dual Step Implicit Euler 1000 4000 93

in order to properly recover the ideal MHD limit. The computational cost of generating the

collisionless solutions using the explicit Hancock and the implicit dual-time stepping method

for the 10TFMHD model were also measured and are included in Table 5.2. A nearly 70 fold

decrease in computational cost is achieved by using the implicit dual-time step over the explicit

Hancock method.

5.3.7 Grid Convergence Investigation Results

The effects of mesh resolution on the solution of the Brio-Wu test case using the two-fluid MHD

model with the implicit dual-time stepping were studied. The Brio-Wu test case was solved

using 4000, 6000, 8000, 10000 and 20000 cells using the implicit dual-time stepping scheme with
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Figure 5.8: Close up density, ρ, as a function of x for the compound shock of the MHD limit

comparing collisionless flows solved with the explicit Hancock and implicit dual-time stepping

scheme.

a TSCF of 1000 and compared with the results of the Hancock explicit scheme for 4000 cells

and a TSCF of 0.8, as well as the ideal MHD limit. The density profile results are presented in

Figure 5.10 with a close up view of the slow compound wave given in Figure 5.11.

The oscillations that appear in the 4000 cell explicit method become smaller in amplitude

when solved using the dissipative implicit dual-time step method, with several of the waves

disappearing at high grid resolutions. The wavelength of the oscillations also decrease. The

wavelength attenuation is most dramatic when going from 4000 to 6000 cells, with a smaller

change going from 6000 to 8000 cells and when moving from 8000 to 10000 cells, the wavelength

remains largely the same. Therefore, it is argued that the solution appears to converge for the

most part at about 8000 cells. Unfortunately, an increase in grid resolution also causes new

oscillations to appear and grow such as those in the contact discontinuity which can be seen

on the right side of the slow compound wave in Figure 5.11. At 20000 cells there are now

more oscillations. Once again, there is a loss of monotonicity brought about by the large time

steps. Note, even though the time step taken by the implicit method defined by the TSCF

remains the same, the time step is very large with respect to the cell size, as a characteristic

wave can travel across many more cells in the same time step as ∆x decreases. Table 5.3 lists
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Figure 5.9: Close up density ρ as a function of x for the slow shock of the MHD limit comparing

collisional and collisionless flows solved with the implicit dual-time stepping scheme.

the computational time for each solution. As can be seen, even with a grid resolution of 20000

cells, the computational cost is still significantly less than that of the explicit method with only

4000 cells.

5.3.8 Real Electron/Ion Mass Ratio Results

The artificial mass ratio, me/mion = 0.01, was then dropped and the physical ratio, me/mion =

1836, was adopted when considering solutions of the Brio-Wu IVP. Figure 5.12 compares the

density profiles of the realistic Brio-Wu case using the explicit method with 4000 cells and a

TSCF of 0.7 for stability, and several implicit dual-time step profiles with a TSCF of 1000

and cell resolutions of 4000, 6000, 8000 and 10000 to illustrate the spatial convergence with

a close up of the slow compound shock presented in Figure 5.13. It is readily apparent from

the predicted solutions that adopting a realistic electron/ion mass ratio introduces additional

oscillatory behaviour in the predicted solutions since the system is now farther away from the

equilibrium conditions required to produce a well defined Brio-Wu solution, due to the faster

electrons. This behaviour is expected as similar oscillatory behaviour is observed in realistic

mass ratio solutions by Liu et al. [73]. Further, the problem is now less stable, and as a
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Figure 5.10: Density, ρ, as a function of x for the MHD limit of the two-fluid model for 4000,

6000, 8000, 10000, and 20000 cells solved with the implicit dual-time stepping scheme.

result, the explicit method must be run at a lower TSCF. The allowable time step is smaller

as well due to an increase in the electron plasma frequency causing the computational cost to

increase as illustrated in Table 5.4, which lists the computational times for the various solutions

presented. Once again, the implicit dual-time step method yields an order of magnitude decrease

in computational cost over the explicit Hancock method. At higher grid resolutions made

possible by the implicit dual-time step method, a solution much closer in agreement to the

ideal MHD case can be obtained.

5.3.9 Temporal Limited Results

The ideal MHD limit is considered using the temporal limited implicit dual-time BDF scheme

described earlier in Section 5.2.4. The two blending coefficient were examined: the full theta

condition as defined by Equation (5.18); and the relaxed square root theta condition as defined

by Equation (5.17). The effect of temporal limiting was examined by comparing results to

the previously obtained solutions with the non-temporal limited solution procedures of the

10TFMHD equations. The calculations were carried out on similar grid resolutions and TSCFs.

Figure 5.14 shows the predicted density profiles of the Brio-Wu solution using the non-temporal
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Figure 5.11: Close up density, ρ, as a function of x for the compound shock of the MHD limit

4000, 6000, 8000, 10000 and 20000 cells solved with the implicit dual-time stepping scheme.

limited BDF dual-time step scheme, and the explicit Hancock scheme, along with solutions from

the temporal-limited schemes using the two blending coefficients. The grid resolution is 4000

cells and a TSCF of 1000 and 5000 is used. Some interesting observations to note from the

figure are that the compound shock, a close-up view is provided in Figure 5.15, is well formed

and some major oscillations that are present in the non-temporal limited case are now absent

or severely reduced in the temporally limited results. The well formed compound shock is

important, as this is a characteristic of a second-order solution. The first-order solution of

the Brio-Wu test case results in a severely distorted compound shock as can be seen in Figure

5.14. Therefore, the temporal limiting does in fact generally preserve second-order accuracy

for interesting structures such as the compound shock. However, at the same time, some

oscillations, particularly the small bump at the front of the contact discontinuity, is reduced with

the weaker blending coefficient, and completely absent with the full blending coefficient. Other

oscillations are reduced as well, as can be seen in Figure 5.16 which shows that the oscillations

on the forward shock are lessened, again, more with the full theta blending coefficient. Further,

with a TSCF of 1000, there is a much better agreement with the ideal MHD limit compared

to the explicit scheme, while at the same time reducing the oscillations that are present in the

other numerical schemes. Figure 5.17 compares the explicit Hancock scheme to the time limited



84 Chapter 5. Application of MMHD Models to 1D Plasma Flow Problems

Table 5.3: Computational time for solving the Brio-Wu test case using the explicit Hancock

scheme and an implicit dual-time stepping scheme for various grid resolutions.

Scheme Physical TSCF Number of Cells Time (minutes)

Hancock 0.8 4000 1093

Dual Step Implicit Euler 1000 4000 80

Dual Step Implicit Euler 1000 6000 152

Dual Step Implicit Euler 1000 8000 202

Dual Step Implicit Euler 1000 10000 267

Dual Step Implicit Euler 1000 20000 385

Table 5.4: Computational time for solving the Brio-Wu test case using the explicit Hancock

scheme and an implicit dual-time stepping scheme for various grid resolutions and a physical

electron/ion mass ratio.

Scheme Physical TSCF Number of Cells Time (minutes)

Hancock 0.7 4000 4898

Dual Step Implicit Euler 1000 4000 323

Dual Step Implicit Euler 1000 6000 523

Dual Step Implicit Euler 1000 8000 660

Dual Step Implicit Euler 1000 10000 855

BDF schemes at the foot of the compound shock and once again, there is excellent agreement,

especially with the full theta version, however, at the same time there is significant reductions

in oscillations with the temporal limited schemes.

5.3.10 Effect of TSCF on the Temporal Limited Results

Next the role of the TSCF is examined. Taking a look at Figure 5.15, which depicts the density

profiles of the Brio-Wu test case obtained using several TSCFs, it is evident that although the

oscillations at the foot of the compound shock are lessened with increased TSCF, this is mainly

due to the dissipative nature of a large time step. Nevertheless, the temporally limited result is

a large improvement over the non-temporal limited scheme which has large oscillations at this

TSCF (see Figures 5.5 and 5.6).

The TSCF was altered for other grid resolutions and it was found that at higher grid resolutions,

a high TSCF resulted in unstable solutions. A TSCF of 5000 was not sustainable for higher grid
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Figure 5.12: Density, ρ, as a function of x for the Brio-Wu test case with me/mion = 1/1836

of the two-fluid model for 4000, 6000, 8000, and 10000 cells solved with the implicit dual-time

stepping scheme.

resolutions and TSCFs higher than 1000 were fairly washed out. As before, a TSCF of 1000

seems to be a good balance between solution accuracy and computational time. At this time,

the temporal limiting makes the code about 120% slower than the scheme without temporal

limiting. This results in a run time for the TSCF of 1000 and 4000 points to be approximately

180 minutes on an Intel Core2 E6750 2.66 GHz computer, which is still nearly an order of

magnitude faster than the explicit Hancock scheme as seen in Table 5.3.

5.3.11 Effect of Grid Resolution on the Temporal Limited Results

The grid resolution was increased to observe its effects on the predicted temporally-limited

solutions. Figure 5.18 shows the predicted solutions near the top of the contact discontinuity

for the Brio-Wu test case obtained using 50,000 and 75,000 computational cells and a TSCF

of 1000 for the two blending coefficients and also compares the results with the non-temporal

limited and ideal MHD solutions. There is a dramatic difference between the limited and non-

temporal limited solutions. The oscillations that plagued the non-limited scheme have vanished
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Figure 5.13: Close up density, ρ, as a function of x for the compound shock of the Brio-Wu

test case with me/mion = 1/1836 of the two-fluid model for 4000, 6000, 8000, and 10000 cells

solved with the implicit dual-time stepping scheme.

completely with the 50,000 point, full theta solution. Next the forward shock is examined

in Figure 5.19. Once again, the oscillations present in the non-temporal limited scheme are

reduced significantly.

5.3.12 Grid Independent Solution

An attempt to obtain a grid independent solution was made with the temporal limited numerical

solution scheme. In Figure 5.21, which shows the predicted solution at the base of the compound

shock, the oscillations are significantly reduced from the non-time limited case. Further, the

phase of the oscillations are reversed from the non-time limited case. This suggests that the

oscillations are numerical in nature. However, even at 75,000 points resolution, the oscillations

are changing from the previous grid resolution of 50,000 points, although very slightly. It should

be emphasized that these oscillations are small at these resolutions as seen in Figure 5.20, which

shows the whole solution.

To verify the numerical origin of the oscillations seen in Figure 5.21, a comparison plot was

made of the explicit Hancock solution at a TSCF of 0.7 and the temporal limited and non-
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Figure 5.14: Density, ρ, for the Brio-Wu test case comparing temporal limited and non-limited

schemes.

limited BDF scheme at a TSCF of 1000. The grid resolution examined was 30,000 points. As

can be seen in Figure 5.22 the oscillations at this high resolution are completely eliminated

by the temporal limiting. This suggests that the increased numerical frequency content of the

solution generated by higher grid resolutions and large time steps can be effectively managed

by temporal limiting.

At this time, computer memory requirements have prevented further investigation at higher grid

resolutions. It should be stated that the need for extremely high grid resolutions when comput-

ing multi-fluid MHD solutions of this type has been encountered by other researchers. Hakim et

al. [64, 65] observed similar findings when using a collisionless version of the 10TFMHD model

and indicated that grid resolutions of at least 50,000 points were required to resolve the complex

oscillations observed, especially at the base of the compound wave and also at the top of the

forward shock. The solutions were also still changing at this resolution. Grid resolution issues

have also been identified in other simpler MHD models [133, 134]. However, as was demon-

strated here, some of these effects are numerical in origin and can be reduced by implementing

temporal limiting to obtain reasonable solutions without increased grid resolutions.
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Figure 5.15: Density, ρ, for the Brio-Wu test case comparing temporal limited and non-limited

schemes with a close up of compound shock.

5.3.13 Summary of 1D Plasma Flow Simulation Results

It has been shown in this section that the MMHD model for one-dimensional plasma flows can

recover, reasonably well, the ideal MHD limit, however high grid resolutions are required and

the presence of particle collisions are essential. It is clear that with the higher grid resolutions

required to resolve small scale content and time scales such as the plasma frequency, numeri-

cal and physical oscillations start to become a problem, as will be seen when predicting GEM

plasma flows in Chapter 8. It has been shown that implicit time-stepping reduces computa-

tional costs greatly. Further, it is clear that temporal limiting is beneficial to the solution of

the implicit numerical procedure, resulting in a more stable and accurate solution. However,

the particular blending coefficient used affects the accuracy and stability of the resulting so-

lution. Comparing the two blending coefficients examined, it is concluded that the full theta

blending coefficient given by Equation (5.18) would seem optimal. Although, more first-order

and dissipative effects are introduced, the conservative nature of the limiting, which effectively

eliminates some oscillations, outweighs these negative effects. It should also be noted that the

1D plasma flow solutions examined in this chapter are also used later in this thesis to verify

the 2D MMHD model and numerical solution method described in the next chapter.
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Figure 5.16: Density, ρ, for the Brio-Wu test case comparing temporal limited and non-limited

schemes with a close up of shock.
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Figure 5.17: Density, ρ, for the Brio-Wu test case comparing temporal limited, and non-limited

schemes showing a close up of the compound shock.
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Figure 5.18: Density, ρ, for the high resolution Brio-Wu test case comparing 50000 and 75000

resolution solutions showing a close up of the top of contact discontinuity.
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Figure 5.19: Density, ρ, for the high resolution Brio-Wu test case comparing temporal limited,

and non-limited schemes showing the close up of the shock.
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Figure 5.20: Density, ρ, for the high resolution Brio-Wu test case.
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Figure 5.21: Density, ρ, for the high resolution Brio-Wu test case showing a close up of com-

pound shock oscillations.
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Figure 5.22: Density, ρ, for the high resolution Brio-Wu test case comparing explicit and implicit

solutions showing a close up of compound shock oscillations.



Chapter 6

Two-Dimensional Numerical

Solution Procedure

6.1 Overview of Parallel, Newton-Krylov-Schwarz Finite-Volume

Scheme

The proposed two-dimensional numerical solution procedure that is used to solve the MMHD

model with the FGLM and MGLM/MGLMED divergence cleaning procedures as presented in

Chapter 3 is now described. The method has been constructed based on the findings of the

previous one-dimensional studies and follows the one-dimensional scheme of Chapter 5 with the

associated extensions to the two-dimensional case. The proposed scheme for two-dimensional

plasma flow simulation makes use of a multi-block body-fitted quadrilateral mesh and a domain

decomposition approach to parallel implementations as described by Groth et al. [36,37,91,147]

and which has been applied to a wide range of applications including reacting [148–153], soot

formation [154–157], multi-phase [158,159] and micron-scale [93,97] flows. The implicit temporal

limited scheme used for the one-dimensional solution procedure is replaced with a Newton-

Krylov-Schwarz (NKS) scheme [131,154,157] for solution of both steady and unsteady problems.

6.2 Godunov Finite-Volume Scheme

The Godunov finite-volume spatial discretization scheme of Section 5.2.1 is extended here to

two-dimensional domains. In this case, Equation (3.8) becomes

93
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∂U

∂t
+ (∇ · −→F ) =

∂U

∂t
+
∂Fx
∂x

+
∂Fy
∂y

= S, (6.1)

where U is the conservative solution vector,
−→
F = [Fx,Fy] is the conservative flux dyad, and S is

the non-conservative source terms combining the collision and non-collision terms. Integrating

the equation above over a control surface in 2D and using the divergence theorem [98, 129], it

follows that

∫∫

A

(

∂U

∂t
+∇ · −→F

)

dA =
d

dt

∫∫

A
U dA+

∮

Ω

−→
F · n dΩ =

∫∫

A
S dA. (6.2)

The semi-discrete form of the conservation equations can be obtained by considering Equation

(6.2) applied to a 2D control area, Aij , representing cell (i, j), and thereby obtaining coupled

non-linear ODEs for the cell averaged values for U. Performing the integration for polygonal

cell (i, j), using mid-point rule quadrature, contained by a series of k straight line segments of

length ∆lk and unit normals n̂k, the resulting semi-discrete equations can be written as

dUij

dt
= − 1

Aij

∑

k

(−→
F k · n̂k∆lk

)

ij
+ Sij ≡ −R(Uij), (6.3)

where Uij = 1/Aij
∫∫

Aij
U dA and Sij = 1/Aij

∫∫

Aij
S dA are the cell averaged values for the

solution state and the source term vectors, respectively. We also take the flux dyad,
−→
F k, to

be evaluated at the mid-point of the kth face representing the cell boundary. The right hand

side of Equation (6.3) is defined to be the residual. For the current work, a Cartesian mesh,

with rectangular cells is assumed. This reduces the numerical fluxes to only those in the x- and

y-directions, though the scheme can be extended to non-rectangular quadrilaterals, as shown

in Section 7.4.

6.3 HLLE/Godunov Approximate Riemann Numerical Flux

The numerical fluxes,
(−→
F k · n̂k∆lk

)n

ijk
, of Equations (6.19) and (6.3), through each cell face

with unit normal n̂k and length of face ∆lk, are determined from the solution to an approximate

Riemann problem. The Riemann problem can be viewed as a one-dimensional Riemann problem

at the cell interface for each face, k, oriented in a direction normal to that face.

6.3.1 HLLE Numerical Flux for Fluid Equations

Due to the nature of being able to express the flux calculations across a boundary as a one-

dimensional problem, the HLLE flux function from Section 5.2.3 can be used, as is, for the fluid
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equations. The only modification in the previous procedure is in how the left and right solution

values are determined, as will be outlined in Section 6.3.3.

6.3.2 Godunov Exact Flux Function for the Maxwell’s Equations with GLM

Divergence Cleaning

When the MMHD equations were extended to two-dimensions, it was found that there was

a significant loss of accuracy due to round-off/cancellation errors in the HLLE numerical flux

formulation for the Maxwell’s and the GLM divergence cleaning equations. Due to the decou-

pled nature of Maxwell’s equations, the flux calculations for the EM system could be separately

calculated and an exact solver was developed for the system, replacing the HLLE numerical

flux function described in Section 5.2.3 for the EM equations. The spatial reconstruction is

performed in the same way as for the ion, electron and neutral fluid equations.

When the flux is linear, as in the case of Maxwell’s equations, it is possible to evaluate the flux

exactly. For detailed derivations of the solution procedure adopted here, please refer to the

Appendix C. The Riemann problem at the cell interface corresponds to an IVP of the form

∂U

∂t
+ C ∂U

∂x
= 0, (6.4)

U(x, 0) =

{

Ul for x < 0,

Ur for x > 0,
(6.5)

for one space dimension. Here, C is equal to ∂F/∂U. The method of characteristics is used to

solve the IVP. For the non-GLM Maxwell’s equations, there are three characteristics separating

4 solution states as shown in Figure 6.1. For the Maxwell’s equations with GLM divergence

cleaning, there are only two characteristic lines when χ = 1 and ch = c, separating 3 regions

as depicted in Figure 6.2. The derivation for the case of the non-GLM equations can be found

in Section C.4 of the Appendix, but here the flux function with GLM will be derived. In this

case, there are three regions

Ul,U
∗,Ur. (6.6)

where Ul, Ur, and U∗ are the ‘left’, ‘right’ and intermediate conservative solution states ob-

tained from the primitive solutions states Wi, Wo and W, respectively from Figure 6.2. The

intermediate state, U∗ can be found using

U∗ = Ul +Σ3
i=1αir

i
GLM = Ur − Σ2

i=0α6−ir
6−i
GLM (6.7)

where

αi = liGLM (Ur −Ul). (6.8)
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Figure 6.2: Riemann problem for Maxwell

GLM equations with characteristic lines

The left and right conservative GLM eigenvectors liGLM and riGLM , respectively, in matrix form

are listed in Appendix C.3, as Equations (C.29) and (C.30). The intermediate flux is then

Fx = CU1 = CU2. (6.9)

Exact Maxwell GLM Flux Function

Because of the stationary wave pattern, the intermediate flux is always used. Therefore, the

analytical solution for the exact Godunov flux for both the non-GLM and GLM version of

Maxwell’s equations are as follows:

Fx,MF =



























0

1
2 (c (Bl,y −Br,y)− El,z − Er,z)

1
2 (c (Bl,z −Brz) + El,y + Er,y)

0

1
2

(

Hl,z +Hr,z +
√

ε0
µ0

(El,y − Er,y)
)

−1
2

(

Hl,y +Hr,y +
√

ε0
µ0

(Er,z − El,z)
)



























, (6.10)

Fx,GLM =







































1
2 (ψl + ψr −Br,x ch +Bl,x ch)

1
2 (c (Bl,y −Br,y)− El,z − Er,z)

1
2 (c (Bl,z −Br,z) + El,y + Er,y)

1
2

(

1
µ0

(φl + φr) +
√

ε0
µ0
χ (El,x − Er,x)

)

1
2

(

Hl,z +Hr,z +
√

ε0
µ0

(El,y − Er,y)
)

−1
2

(

Hl,y +Hr,y +
√

ε0
µ0

(Er,z − El,z)
)

1
2ch (chBl,x + chBr,x − ψr + ψl)

1
2 χ (χEl,x + χEr,x − c φr + c φl)







































. (6.11)
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Neglecting the terms with particular GLM coefficients will result in the elimination of the asso-

ciated divergence cleaning algorithm. Setting ψ, ch, φ, and χ to 0 will reduce the GLM version

of Maxwell’s equations to the non-GLM Maxwell’s equations. A common set of equations used

in this work is the magnetic field divergence cleaning model with no electric field error cleaning

(MGLM), which is achieved by setting ψ = ch = 0. Use of the exact Godunov flux for Maxwell’s

equations was found to reduce both computational costs and round-off errors.

6.3.3 Least-Squares Piecewise Linear Limited Spatial Reconstruction

The left and right solution values appearing in Equation (5.12) are obtained by using a least-

squares piecewise linear spatial reconstruction for higher-order spatial resolution very similar

to that described in Section 5.2.2, but extended to two-dimensions. For the two-dimensional

solution procedure, the primitive solution states are the basis for calculating the HLLE flux.

The piecewise linear spatial reconstruction for the left and right primitive solution states are

given by

WL
i+ 1

2
,j

= Wi,j + φi,j∇Wi,j ·∆xL, (6.12)

WR
i+ 1

2
,j

= Wi+1,j + φi+1,j∇Wi+1,j ·∆xR, (6.13)

for the interface between cells (i, j) and (i + 1, j), defined as (i + 1
2 , j), and where ∆xL, ∆xR

are the distance vectors defined from the centroid of the left and right cells to the interface in

question, respectively. This procedure can be repeated for all interfaces by using the appropriate

indices. Since the flux problem reduces to a one-dimensional Riemann problem, the same Barth-

Jespersen, Equation (5.11), slope limiter can be used to calculate φ and limit the left and right

reconstructed solution states using primitive solution state vectors.

The gradients in Equations (6.12) and (6.13) were evaluated using a least-squares method [136]

which minimizes the least-squares error,

k=N
∑

k=1

((Wij −Wk)−∇Wij · (xij − xk))
2 (6.14)

for each cell ij using information from the neighbouring cells k, which for the 2D case is 8 cells

(N = 8). The vector x is the location of the centroid of the cell. The problem is solved as a

linear system of equations which can be written as

[

(∆x)2 ∆x∆y

∆x∆y (∆y)2

][

∂W
∂x
∂W
∂y

]

=

[

∆W∆x

∆W∆y

]

, (6.15)
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with the averaged errors

(∆x)2 =
1

N

N
∑

k=1

∆x2k, (6.16)

∆x∆y =
1

N

N
∑

k=1

∆xk∆yk, (6.17)

∆W∆y =
1

N

N
∑

k=1

∆Wk∆xk, (6.18)

where ∆xk = xij − xk and ∆Wk = Wij −Wk.

6.4 Parallel Implementation

The 2D numerical scheme was parallelized using a block based domain decomposition algo-

rithm [160] with Morton ordering [161] and follows the procedure outlined in [37, 162] for par-

allelization. The basics of this method is to break up the domain of the problem into smaller

sub-domains, which is possible for the block based meshes used, and solve each sub-problem on

a separate process for each physical time step. To maintain solution continuity, the sub-divided

meshes communicate through boundary ghost cells for each mesh where the ghost cells for one

interior domain were the interior cells of the neighbouring mesh that shares the domain in-

terface. This solution information was communicated via the message passing interface (MPI)

library [163].

6.5 Explicit Predictor-Corrector Time Stepping Scheme

The explicit time marching method employed here was an explicit predictor-corrector Runge-

Kutta scheme with second-order time accuracy as proposed by MacCormack [129, 164]. This

two-stage, second-order, explicit scheme applied to the semi-discrete form of the governing

equations, Equation (6.3), can be written as

Ũn+1
ij = Un

ij −
∆t

Aij

(

∑

k

(−→
F k · n̂k∆lk

)n

ijk

)

+∆tSnij , (6.19)

Un+1
ij = Un

ij −
∆t

2Aij

(

∑

k

(−→
F k · n̂k∆lk

)n

ijk
+
∑

k

(−̃→
F k · n̂k∆lk

)n+1

ijk

)

+
∆t

2

(

Snij + S̃n+1
ij

)

,

(6.20)
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which integrates the solution forward from time level n to n+ 1 with a time step of ∆t for cell

(i, j). Here, the cell averaged conservative solution state vector and source vector is Un
ij and

Snij , respectively and Ũn+1
ij represents an intermediate solution state.

6.6 Implicit Newton-Krylov-Schwarz Algorithm

The implicit temporal scheme that was adopted for the 2D procedure is based on a NKS algo-

rithm used in conjunction with a dual-time stepping scheme. For the most part, the procedure

and algorithm of Northrup [131] and Charest et al. [154, 157] is adopted. Currently, the NKS

solution method is formulated for the full GLM (FGLM) and non-GLM (NGLM) equations,

but can be used with all other divergence error correction schemes.

6.6.1 Newton’s Method

In the NKS method, Newton’s method is used to solve simultaneously a coupled system of non-

linear algebraic equations. The system of algebraic equations of interest arises from the semi-

discrete form of the governing equations, Equation (6.3), following the spatial discretization

procedure. Using the notation of the RHS being the residual R(U), results in

dU

dt
= −R(U) (6.21)

where the cell indices ij have been dropped, with the understanding that the equation applies

for all cells simultaneously. For steady state solutions, the residual is zero and solutions, U,

satisfying the non-linear algebraic equations

R(U) = 0, (6.22)

are sought. Applying Newton’s method to the solution of Equation (6.22) with Jacobian,

J = ∂R/∂U, requires the solution of the linear system of equations

J∆Uk = −R(Uk) −→ Ax = b (6.23)

with A = J, x = ∆Uk and b = −R(Uk) at each step of Newton’s method, k. The solution is

then updated at the next step using x = ∆Uk with Uk+1 = Uk +∆Uk.

6.6.2 GMRES Iterative Procedure

In the NKS scheme, it is not necessary to solve the system of linear equations defined by Equa-

tion (6.23) exactly at each step in order to converge the solution of the non-linear problem
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defined by Equation (6.22). The linear problem in the NKS scheme of this thesis is solved

using an iterative solution procedure known as the Generalized Minimal RESidual (GMRES)

method [165, 166]. The GMRES method solves the linear problem of Equation (6.23) approx-

imately, which can be very effective for the solution of large, sparse, non-symmetric linear

equations. Please refer to Northup’s thesis [131] for more details on the GMRES procedure

applied here.

6.6.3 Normalization and Preconditioning

As was observed by Saad [167] and others such as Northrup [131], effective normalization and

preconditioning is required for the GMRES iterative scheme to be efficient. A linear scaling is

applied here using a diagonal matrix Γ so that a linearized system is formed and solved such

that
J∆Uk = −R(Uk)

ΓRJ (I)∆Uk = −ΓRR(Uk)
(

ΓRJΓ−1
U

) (

ΓU∆Uk
)

= −ΓRR(Uk)

J′∆Uk′ = −R′(Uk)

(6.24)

The diagonal matrix is created by

ΓR = (IRnorm)
−1, ΓU = (IUnorm)

−1. (6.25)

The scaling vectors, Rnorm and Unorm, were formed by scaling the system where each set of

equations has a tailored scaling vector that attempts to make the order of magnitudes of the

terms in each equation to be similar.

The row scaling that is used for the fluid equations is based on reference densities, ρ0,s, and

acoustic velocities, a0,s, of the 10-moment system. For each species s, the scaling vectors are

Us =















































ρs
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ρsus,y
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ρsu
2
s,x + Ps,xx

ρsus,xus,y + Ps,xy
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ρsu
2
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ρsu
2
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, Unorm,s =
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, Rnorm,s =
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(6.26)
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where the solution state vector is provided for reference. The scaling for the electro-magnetic

Maxwell GLM equations is based on reference magnetic and electric field values, |B0| and |E0|,
along with the associated magnetic field strength and electric displacement field, |H0| and |D0|,
respectively. The magnitude of the magnetic field due to the fluid pressure is also considered,

given by

Bp =
√

2pµ. (6.27)

The largest values are chosen for the normalization such that

BN = max(|B0|, Bp),
DN = max(|D0|, εcBN ), EN = max(|E0|, cBN ), HN = max(|H0|, BN

µ ),
(6.28)

where BN is evaluated first. The row scaling vectors are then given by

UGLM =





































Bx

By

Bz

Dx

Dy

Dz

ψ

φ





































, Unorm,GLM =
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, Rnorm,GLM =
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, (6.29)

with the conservative solution state vector provided for reference. The normalization vectors

are then combined, for Equation (6.25), such that

Rnorm =















Rnorm,e

Rnorm,ion

Rnorm,n

Rnorm,GLM















, Unorm =















Unorm,e

Unorm,ion

Unorm,n

Unorm,GLM















. (6.30)

Further preconditioning is performed on the Jacobian of Equations (6.23) and (6.24) by em-

ploying right preconditioning which does not affect the right side residual [166, 167]. With

preconditioning matrix M, the preconditioning takes the form

(

JM−1
)

(M∆U) = −R. (6.31)

Though there are many different preconditioning options possible [168], the best preconditioner

would be an easily invertible approximation to the Jacobian of the system. The preconditioners

used here are the Schwarz global additive preconditioner [169] and a local Block Incomplete

Lower-Upper (BILU) preconditioner.



102 Chapter 6. Two-Dimensional Numerical Solution Procedure

The Schwarz preconditioner allows for easier computation of the implicit problem through do-

main decomposition and by solving the problem, using the Newton-Krylov scheme, on each

subdomain separately. This decreases the memory and computational resources required sig-

nificantly for large problems, despite an increase in the number of GMRES iterations needed

for a converged solution. The inverted preconditioning matrix, M−1, for each sub-domain is de-

termined through the local BILU factorization which makes use of the incomplete lower-upper

(ILU) factorization [166] to approximate the approximate block Jacobian, which is discussed in

the next section, such that

M = L(f)U(f) ≈ J̃ (6.32)

where f is the level of fill for the ILU matricies. A level of fill of 2 is used for the results obtained

in this thesis. Please refer to Northrup’s work for more details on the preceding preconditioning

strategies [131].

6.6.4 Approximate Jacobians of the MMHD GLM 2D Equations

As was mentioned in the previous section, the preconditioning matrix formed through BILU

factorization is based on an approximation to the Jacobian of the system of Equations (6.23),

J̃ ≈ J =
∂R

∂U
. (6.33)

The approximate Jacobians are based on the first-order terms of the discretization scheme

employed to solve Equation (6.3).

For the fluxes in the Godunov-type finite-volume upwind scheme, the approximate flux solver of

Section 6.3 is implemented by first rotating the solution state vectors, WL,WR, on either side

of the interface into a common local frame (a positive x-direction). The 1D Riemann problem is

then solved numerically using either the HLLE flux function for the fluid case, or the Godunov

flux function, for the Maxwell-GLM case. The resulting conservative fluxes are then rotated

back to the global frame. The resulting operation can be described as

−→
F k · n̂k = A−1F

(

AWL,AWR
)

(6.34)

where A is the rotation matrix and F is the numerical flux function. Keeping the left state as

the cell in the center, (i, j),

∂Rij

∂Uij
= − 1

Aij

∑

k

(

A−1∂F(AWL,AWR)

∂AUL
A∆l

)

ijk

+
∂Sij
∂Uij

(6.35)

for every face k, where the chain rule was used noting ∂F/∂U = ∂F/∂(AU)A. The scalar Aij

is the area of the cell. All of the flux Jacobian terms, ∂F(AUL,AUR)/∂(AUL) both for the

fluid and Maxwell-GLM, can be calculated from analytic equations.
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For the source terms, ∂Sij/∂Uij , the calculation of the Jacobian is simpler as the source terms

only required information from the local cell in question. Most of the Jacobian can be ana-

lytically determined. However, due to the complexity of the collision frequency models, the

particle collision frequencies were assumed constant. Further, for the ionization-recombination

and charge exchange terms, it was found that taking a first-order approximation, or dropping

some small parameter terms, resulted in a severely reduced GMRES convergence. Therefore,

the ionization-recombination and charge exchange Jacobian terms were determined using a fi-

nite difference approximation, which is quite costly, but resulted overall in a faster convergence

and computational time within the NKS scheme.

6.6.5 Jacobian-Free GMRES Procedure

As detailed in the work by Northrup [131], the GMRES procedure requires a Krylov space

orthogonalization which requires the evaluation of the matrix-vector product, Av, where A is

defined in Equation (6.23) and v is an arbitrary solution change vector. In the Jacobian-free

GMRES procedure used by Northrup [131], this product is evaluated numerically by using

Fréchet derivatives [170,171], which is simply derived from an approximation for the first-order

derivative and can be written as

Av ≈ R(U+ εv)−R(U)

ε
, (6.36)

where the perturbation parameter is given by ε = ε0/‖v‖1/22 as suggested by Nielsen et al. [170].

For the simulations given in this thesis, ε0 = 10−6. However, with the numerical stiffness issues

of the MMHD GLM 2D equations, the perturbation of the solution state vector resulted in

acute round off/cancellation errors. To mitigate this issue, a hybrid procedure is proposed.

The cancellation errors were found to mostly occur in the source terms involving the electro-

magnetic forces. Because it occurred in the source terms, it is possible to evaluate Av using

the analytic source term Jacobian for the EM terms only. Therefore the modified matrix-vector

product of Equation (6.36) is given by

Av ≈ Q(U+ εv)−Q(U)

ε
+
∂SEM
∂U

v, (6.37)

where Q(U) is the modified residual, which is calculated in the same way as R(U), but with all

source terms associated with the electromagnetic equations excluded. Likewise, ∂SEM/∂U is

the analytic Jacobian of all the source terms excluded fromQ(U). When the above modification

is applied, the convergence rates of the GMRES method are significantly improved to the point

where convergence could be achieved for previously non-converging problems.
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6.7 Dual-Time Stepping-Like NKS

In addition to the steady state implicit solver outlined in the previous section, a dual-time

formulation was also implemented, which can provide time accurate solutions to the MMHD

GLM model [172,173]. This was easily accomplished by adding a pseudo-time term to Equation

(6.21) such that
dU

dτ
+
dU

dt
= −R(U). (6.38)

This can be arranged so that the pseudo-time replaces the physical time in all the calculations

in the steady NKS scheme in Section 6.6 making each physical time step a steady problem in

the pseudo-time τ so that

dU

dτ
= −dU

dt
−R(U) = −R∗(U) = 0. (6.39)

Equation (6.39) is the equivalent of Equation (6.22) in this regard. The physical time derivative

of Equation (6.39) is discretized using the second-order BDF scheme given by

R∗ (Un+1
)

=
3
2U

n+1 − 2Un +Un−1

∆t
+R

(

Un+1
)

(6.40)

where the index n now represents the physical time level. Therefore, the approximate residual

Jacobian of Equation (6.33) can be extended to include the dual-time formulation to give

J̃ → J̃∗ ≈ J∗ =

(

3

2∆t

)

I+
∂R

∂U
, (6.41)

to solve the pseudo-time steady system of non-linear equations given by Equation (6.39). This

then requires the solution of a corresponding linear system of equations at each Newton step

of the form
[(

3

2∆t

)

I+
∂R

∂U

]

∆Un+1
k = J∗∆Un+1

k = −R∗ (Un+1
k

)

, (6.42)

for each Newton iteration k in pseudo-time τ . Each Newton iteration updates the pseudo-time

steady problem solution in k (with physical step n+ 1 being solved for) with

Un+1
k+1 = Un+1

k +∆Un+1
k (6.43)

where a natural choice for k = 0 is the previous physical time solution such that

Un+1
0 = Un. (6.44)

The GMRES procedure also needs to incorporate the dual-time element. The Fréchet derivative

expression of Equation (6.37) is also modified to incorporate the dual-time BDF2 scheme by

adding a physical time term resulting in

Av ≈ Q(U+ εv)−Q(U)

ε
+

[

∂SEM
∂U

+
3

2∆t

]

v. (6.45)
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6.7.1 Switched Evolution and Relaxation Procedure

For both the steady state and dual-time NKS schemes, a Switched Evolution/Relaxation

(SER) [174] procedure is employed to discretize the dual-time or steady-state Jacobian (Equa-

tions (6.41) and (6.33)) and steady-state Newton problem (Equation (6.39)) in Section 6.7. The

pseudo-time derivative of Equation (6.39) is discretized using an implicit Euler formulation, ul-

timately resulting in the SER version of the dual-time Equation (6.42) which is

[[

1

∆τ
+

(

3

2∆t

)]

I+
∂R

∂U

]

∆Un+1
k = J∗∆Un+1

k = −R∗ (Un+1
k

)

, (6.46)

noting that the index k is associated with the pseudo time τ . This allows for a slow ramp up

towards full Newton for stability purposes by increasing the ∆τ . This is particularly useful

when the initial guess is far off from the solution. When ∆τ → ∞, the full Newton method

is recovered. Further, the steady state NKS solution is achieved with an arbitrarily large time

step and seeking a zero residual so that ∂U/∂t = 0 ≈ ∆Un+1
k /∆t. This is achieved when the

residual norm becomes sufficiently small.

As suggested by Mulder et al. [174] and modified slightly herein, the method of determining

the ramp up for the pseudo-time step is defined by the time step multiplication factor

νn = νminmax

(

1,
1

‖R‖2

)

, (6.47)

which multiplies the pseudo-time TSCF. This increases as the residual decreases.

This procedure has been used for both steady and time dependent calculations. In the time

dependent calculations it was used for each sub-problem in the pseudo-time Newton steps when

convergence stability was an issue. Constant pseudo-time TSCFs can be utilized as well when

stability is an issue.

6.7.2 Problems with the Maxwell-GLM Preconditioning Approximate

Jacobians

It should be noted here that the residual Jacobian, and therefore the right block preconditioning

matrix, for the Maxwell-GLM subsystem is ill conditioned, and in fact singular for a Godunov

upwind scheme. While numerical inversion was possible, using the preconditioning matrix

for most of the problems presented in this thesis resulted in significantly poorer convergence

rates. Some variations on the preconditioning matrix were examined, including other flux

function approximations, and regularization techniques. One that seemed to work particularly

well with respect to convergence was arbitrarily making the diagonal of the preconditioning
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matrix dominant by multiplying the off diagonal terms of the preconditioning matrix by a

small constant. However, it was found that while this significantly accelerated convergence

(on the order of 10 to 100 times), it introduced some strange numerical oscillation modes in

solutions, particularly for DTS NKS solutions such as the plane wave sinusoidal case of Section

7.2.8. Unless otherwise stated, the approximation to the Jacobian, ∂R/∂U, in Equation (6.33)

and in the dual-time formulation, Equation (6.41), for the Maxwell-GLM equations only, is

set to 0. Since the SER procedure of Section 6.7.1 is used this results in a diagonal right

preconditioning matrix for the NKS scheme, but a Fréchet derivative for the actual residual

Jacobian.

The Jacobian for the fluid equations were still computed as described in Section 6.6.4. This

generally provided a superior convergence to the block preconditioning procedure outlined in

Section 6.6.4 for when applied to the Maxwell-GLM subsystem, though there were exceptions

such as for the LEO GEM case in Section 8.7. Strategies for improved preconditioning of the

Maxwell subsystem should certainly be the subject of future follow-on studies.

6.8 Implementation of Electric Diffusion

The inclusion of the electric error diffusion terms described in Section 3.8.5 requires the com-

putation of a second order diffusion term as seen in Equation (3.80). This was accomplished

by first calculating the divergence of the electric field in Equation (3.80) using the diamond

path stencil, and assuming a linear variation in the solution at the four points of the diamond.

Gauss’s law is used to approximate the solution gradient at the middle of the diamond to

calculate the divergence components [175,176].

The electric diffusion coefficient λE is chosen to be

λE = c∆x, (6.48)

where ∆x is the average, or the smallest grid spacing of the mesh. The von Neumann stability

requirements for a 2D diffusion scheme, requires that the limiting time scale associated with

the diffusion coefficient is 1/4 that of an explicit inviscid time scale. Therefore, the limiting

time scale for the electric error diffusion equations is 1/4 c.
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6.9 Time Step Control Factor (TSCF)

The time step, ∆t, is determined as before through the non-dimensional TSCF relation to

control the size of the time step. A greater number of time step restrictions are checked for the

2D MMHDGLM model than in the 1D MMHD model. To facilitate the ability to simulate non

magnetized flows the 10-moment fluid dynamics acoustic time scales given by

τ10m = min

(

∆dk√
3as,k + |vs,k|

)

, (6.49)

which results from the eigenvalues of the 10-moment system, are checked. In the equation, s is

for the ion, electron and neutral species, and k is the direction normal to the interface examined.

The acoustic and bulk velocity in the k direction is as,k and vs,k, respectively. The quantity dk

is an approximate distance to the face. The approximation used results in the exact distance

for a Cartesian grid. Next, all EM time scales are examined and given by

τEM = min

(

dk
max(c, χc, ch)

,
1

ωUH

)

, (6.50)

where c, χc, ch are the speed of light and the electric and magnetic GLM wavespeeds, respec-

tively. The electron plasma, cyclotron and upper hybrid frequencies are defined as follows,

respectively:

ωpe =

√

nee2

meε0
, ωce =

|eB|
me

, ωUH =
√

ω2
pe + ω2

ce. (6.51)

In general, the ion hybrid, cyclotron or plasma frequencies are not checked as the ion mass

makes these time scales orders of magnitude larger.

As discussed in Section 6.8, when the electric diffusion equations are enabled, Equation (6.50)

must be replaced with

τEMEdiff = min

(

dk
max(4c, ch)

,
1

ωUH

)

. (6.52)

The definition of the TSCF is therefore

TSCF =
∆t

min (τ10m, τEM )
, (6.53)

for a time step ∆t. The stability condition used here is

∆t ≤ min (τ10m, τEM ) , (6.54)

where a TSCF of unity represents the boundary between unstable (TSCF > 1.0) and stable

(TSCF ≤ 1.0) explicit schemes.
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6.10 Boundary Conditions for the GLM Version of Maxwell’s

Equations

The boundary relations for the GLM version of Maxwell’s equations are presented here. For

a more complete derivation of the characteristics, please refer to Appendix C. The boundary

conditions were calculated by using the method of characteristics to solve for the intermediate

solution state, Equation (6.7), using the influence of the solution states on either side of the

boundary. It can be shown that the following relations hold at the the boundary:

B∗
x = 1

2

(

(Bi,x +Bo,x) +
1
ch

(ψi − ψo)
)

,

B∗
y = 1

2

(

(Bi,y +Bo,y) +
1
c (Eo,z − Ei,z)

)

,

B∗
z = 1

2

(

(Bi,z +Bo,z) +
1
c (Ei,y − Eo,y)

)

,

E∗
x = 1

2

(

(Ei,x + Eo,x) +
c
χ (φi − φo)

)

,

E∗
y = 1

2 (c (Bi,z −Bo,z) + (Ei,y + Eo,y)) ,

E∗
z = 1

2 (c (Bo,y −Bi,y) + (Eo,z + Ei,z)) ,

ψ∗ = 1
2 (ch (Bi,x −Bo,x) + (ψi + ψo)) ,

φ∗ = 1
2

(χ
c (Ei,x − Eo,x) + (φo + φi)

)

,

(6.55)

where ()∗ is the intermediate boundary state, ()i is the internal domain state, and ()o is the

outside of the domain state. Because of the linear nature of the equations, an exact Riemann

solution for the hyperbolic part of the equations for the intermediate state can be obtained.

Also, because the characteristics are constant, if one of the variables in the characteristic is

fixed, the other must be allowed to float to prevent the Riemann problem from becoming ill

posed. For the x-direction and GLM variables, either the GLM variable, or the x-direction

component of E or B may be held constant. For the remainder of the variables, only the

magnetic or the electric field component can be held constant. For example, if the magnetic

field is held constant on a boundary, ψ and E must float. However, φ should be held constant

and set to zero so that the electric field error on the boundary is enforced to be zero.



Chapter 7

Evaluation and Verification of the

Two-Dimensional MMHD GLM

Model

7.1 Overview

Prior to considering the two-dimensional plasma flows associated with the GEM magnetic re-

connection challenge, which are of primary interest here, verification of the proposed numerical

solution procedure and GLM divergence cleaning algorithm was sought. This chapter summa-

rizes efforts carried out as part of this thesis to verify the accuracy of the proposed finite-volume

scheme as well as assess the performance of the various divergence cleaning algorithms. The pre-

dictions of the 2D solution procedure are also compared to those of the previously described 1D

solution method (See Chapter 5). Finally, the predictions of the 2D MMHD solution procedure

are compared to results obtained by a previously developed solution scheme for the single-fluid

Gaussian moment equations describing non-conducting gaseous flows. In particular, supersonic

flow past a circular cylinder is considered for various flow regimes.

7.2 Assessment of Spatial and Temporal Accuracy

The spatial and temporal accuracy of the MMHD numerical solution procedure was first verified

by examining several simple test cases for which the predicted solutions could be compared

directly to known analytical solutions. Each system of equations were considered separately. For

109
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the 10-moment fluid model, a sinusoidal periodic test case was considered with grid refinement.

For the magnetic field, a magnetostatic test case was assessed, and a static line charge problem

was assessed for electrostatics. Planar electro-magnetic wave propagation was also considered

for the full Maxwell’s equations.

7.2.1 Non-Dimensional Parameters and Reference State

For all the test cases considered, reference states were calculated as suggested by Ohsawa [48]

using the non-dimensional parameters

r̂c,i =
rc,i
L

=
vth,i
Lωc,i

=

√

2kT0/mi

eB0L/mi
=

√
2mikT0
eB0L

, (7.1)

λ̂D =
λD
rc,i

=
1

L r̂c,i

(

2ε0kT0
e2n0

) 1
2

, (7.2)

ĉ =
c

vth,i
=

c
√

2kT0/mi

, (7.3)

which define the non-dimensional ion cyclotron (Larmour) radius, Debye length, and speed of

light, respectively. Also, rc,i is the dimensional Larmour radius, L is the characteristic length,

vth,i is the thermal ion velocity, ωc,i is the ion cyclotron frequency, λD is the dimensional Debye

length. Solving for the reference number density, n0, temperature, T0, and magnetic field, B0,

from above results in

n0 =
2ε0kT0
e2

· 1

L2
· 1

r̂2c,iλ̂
2
D

, (7.4)

T0 =
mic

2

2k
· 1

ĉ2
, (7.5)

P0 = n0kT0, (7.6)

B0 =

√
2mikT0
e

· 1
L

· 1

r̂c,i
. (7.7)

In general, the following values for the preceding non-dimensional parameters were employed,

which correspond to a two-fluid, nearly fully ionized limit:

L = 1.0× 102, r̂c,i = 1.0, λ̂D = 0.01, ĉ = 100.0. (7.8)

For divergence cleaning, the following values for the GLM parameters were adopted:

ch = c (ch,ratio = 1.0), χ = 1.0, cr = 0.18, (7.9)

which correspond to all GLM divergence cleaning waves propagating at the speed of light.

The value of cr above is what is recommended by Dedner [118]. Unless otherwise indicated,

the physical electron-ion mass ratio is used. The second-order, unlimited, explicit predictor

corrector and implicit NKS schemes were both assessed.
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7.2.2 Periodic Sinusoidal Fluid Wave Propagation

The first computational test performed was to assess the accuracy of the implementation of the

fluid equations of the MMHD solution procedure. For this test, the electromagnetic equations

were decoupled from the equation set and not solved. Further, the three sets of fluid equations

(representing ions, electrons and neutrals) were uncoupled and solved separately. The simula-

tion was carried out for variations in both the x- and y-directions where the number of cells in

the direction of wave propagation were varied from 10 or 25 cells (10 cells proved too coarse

for the electrons) and up to 200 cells while the number of cells perpendicular to the direction

of propagation was 10. The domain used was a rectangular box where −50 ≤ d ≤ 50 for the

direction of propagation and −5 ≤ p ≤ 5, for the perpendicular direction.

The reference state from Section 7.2.1 was used, but in the interest of speeding up computation

and stability, the electron-ion mass ratio was artificially set to 0.01. The various fluid solution

values were initialized according to

Ws = [msn0, v0, 0, 0, P0, 0, 0, P0, 0, P0] , Wm = [0, 0, 0, 0, 0, 0] , (7.10)

where s ∈ {electron, ions, neutrals} and the direction of propagation is in the x-direction.

These vectors represent the uniform state populating the domain. A sinusoidal variation is

then applied to the density field according to

ρs = ρref,s ·
(

2 + sin

(

2 ·
(

x

L
+

1

2

)

· π
))

(7.11)

where x is the direction of propagation and the reference density is simply ρref,s = msn0 from

above. An additional propagation velocity for the density variation was also imposed given by

v0 = 1.0× 106
m

s
. (7.12)

This means for the domain used, a time of t = 1.0 × 104 s corresponds to the propagation of

the density wave by one period.

In Figure 7.1, the initial condition for the sinusoidal test case in density is plotted alongside the

solution after one period. The result corresponds to the particular case of the the x-direction

variation with 20 points in the direction of propagation. The grid convergence plot is shown

in Figure 7.2 which provides the L1- and L2-norms of the errors for both the electron and ion

densities in both the x- and y-directions versus number of points in the direction of propagation

on a logarithmic scale. The right angle triangle in the plots shows a second-order slope. It can

be seen that both the L1- and L2-norms of the errors converge with second-order accuracy.
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Figure 7.1: Sinusoidal fluid wave propagation test case initial (ρ) and after one period (ρf ) for

the x-direction with 20 cells.

7.2.3 Sinusoidal Fluid Wave Propagation with Dual-Time Stepping NKS

Next, the periodic sinusoidal test case was examined using the dual-time NKS solution proce-

dure of Section 6.7. The sinusoidal base function considered was

ρs = ρref,s ·
(

200 + sin

(

2 ·
(

x

L
+

1

2

)

· π
))

. (7.13)

For a comparison between explicit and implicit time steps, the 100×10 cell case was considered

using both the explicit predictor-corrector and the dual-time NKS schemes. The explicit TSCF

was set at 0.5 while the dual-time physical TSCF was set to 10. Figure 7.3 compares the

sinusoidal wave after one period using the explicit predictor corrector and the dual-time NKS

scheme using second-order BDF for the physical time step. As can be seen, the two solutions

are very similar, however the dual-time solution has a slight temporal lag, along with a slight

loss of amplitude. This is expected for the dissipative implicit time accurate solution. However,

at these resolutions, the variations are very slight. A higher TSCF, for such a coarse mesh was

not possible as the number of time steps were too low to produce a stable solution. For the

above case, only 37 physical time steps were performed with a TSCF of 10. A higher mesh

resolution 500×10 case was also examined which allowed a larger physical time step due to the

stiffer problem. For the 500×10 mesh periodic sinusoidal case, a physical TSCF of 100 was
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Figure 7.2: Grid convergence error plots for the sinusoidal fluid wave propagation test case

with electron and ion density for the x- and y-directions showing L1 and L2 error norms versus

number of points. Triangle represents a second-order slope.

able to be used. The results of accuracy and computational costs of the dual-time NKS scheme

compared with the explicit predictor corrector scheme are included in Table 7.1. The dual-time

NKS scheme clearly has a computational advantage at the cost of some accuracy. The dual-time

NKS scheme has a higher advantage for stiff problems in the purely fluid dynamic cases. In

contrast, for the 100×10 case, which was less stiff and had a lower TSCF, the computational

cost was approximately the same. Additional computational tests using the fluid dynamics

portion of the MMHD model with the dual-time NKS scheme are explored in Section 7.4.

7.2.4 Priest Magnetostatic Test Case

To assess the accuracy of the magnetic error correction scheme, the irrotational magnetic field

(∇ · B = 0) 2D test case proposed by Priest [177] is examined. The domain for this problem

was a 1.0m by 1.0m box with exact fluxes for the boundaries. The fluid equations are not

Table 7.1: Periodic sinusoidal wave propagation accuracy comparison

Scheme Resolution CFL(TSCF) CPU Time L1 Norm L2 Norm

Explicit 500× 10 0.5 21.46 4.7596× 10−21 5.2866× 10−21

NKS 500× 10 100 8.2 7.6117× 10−18 8.4595× 10−18
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Figure 7.3: Sinusoidal fluid wave propagation test case explicit and dual-time NKS comparison

after one period for the x-direction with 100 cells.

simulated.

The reference solution values were set as in Section 7.2.1 where the B0 reference value is used

to scale the 2-D magnetostatic test case whose dimensional equations are given by

Wi =
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. (7.14)

The domain is −0.5m ≤ x ≤ 0.5m and 0.5m ≤ y ≤ 0.5m and exact flux (Dirichlet) boundary

conditions were imposed at the domain boundaries based on the exact solution. This eliminated

errors associated with the imposition of boundary data.
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Figure 7.4: Initial conditions (Exact) for the 2-D magnetostatic test case of Priest showing Bx

and By with streamlines showing 2-D magnetic field lines for a 100×100 mesh.

The contour plots of the initial conditions for the components of the magnetic fields given

in Figure 7.4, correspond to the solution on a 100×100 cell mesh where the exact solution is

assigned to Bx and By. In Figure 7.5, the L1 and L2 error norms in both Bx and By are plotted

versus the number of total cells on a logarithmic scale. The total number of cells was varied

from 100 to 10,000 (100, 625, 2500, 10000 for this case). The triangle on the plot represents a

second-order slope. Once again second-order accuracy is demonstrated for the proposed scheme.

It should be noted that a small amount of Ez error results from the small ∇ ·B errors due to

the transverse components associated with the Ez conservation equations. The errors result in

a cumulative Ez field which reaches a steady state as the ∇ ·B error approaches machine zero.

The plot of the Ez component for the 50×50 (2500 cells) case is shown in Figure 7.6. Note

that in this regime the electric flux density is scaled equivalent to the speed of light over the

magnetic flux density, which makes the relative values negligible.

7.2.5 Priest Magnetostatic Test Case Results with NKS

The Priest magnetostatic case was also examined using the steady state NKS scheme. It was

found that in order to arrive at a converged solution as fast as possible, the block diagonal

preconditioner of Section 6.6.4 had to be neglected for the Maxwell’s equations subsystem as

discussed in Section 7.2.12. The order for grid convergence is second-order as can be seen in

Figure 7.7 where the L1 and L2 error norms for Bx is plotted versus the square root of the total
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Figure 7.5: Grid convergence error plots for Bx, By magnetic field showing L1 and L2 error

norms versus number of cells. Triangle represents a second-order slope.

Table 7.2: Magnetostatic test case accuracy comparison

Scheme Resolution CFL(TSCF) CPU Time L1 Norm L2 Norm

Explicit 100× 100 0.7 833 6.5679× 10−7 1.0410× 10−6

NKS 100× 100 1.0× 105 40.6 9.8428× 10−7 1.2849× 10−6

number of cells on a logarithmic scale. The number of cells considered were 625, 2500, 10,000,

40,000 (mesh varied from 25×25 to 200×200). The TSCF was limited to 1.0× 105 for stability

and the residual was driven down more than 10 orders of magnitude.

The computational advantage of using the NKS steady state scheme is again quite evident for

this problem when solving only the Maxwell’s equations with GLM based divergence cleaning.

In Table 7.2, the various parameters, accuracy, and computational costs are compared between

the NKS and explicit solutions. It can be seen that at the cost of a very small increase in error,

a CPU time speed up of around 20 times is achieved. The explicit scheme required around

140,000 time steps while the NKS scheme required around 195 newton steps with a total of

5840 GMRES iterations.
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Figure 7.6: Plot of Ez component for 50×50 mesh for the magnetostatic test case.

7.2.6 Modified Priest Test Case to Explore Divergence Cleaning

The mechanism by which divergence errors are cleaned from the solution of Maxwell’s equations

with GLM divergence cleaning is briefly examined here by introducing a defect in the magnetic

field of the Priest test case. The effect of the divergence cleaning was observed by how the

defect error was advected away and removed from the computational domain. The Priest test

case outlined in Section 7.2.4 was modified with a point defect in the magnetic field near the

center of the domain. The defect takes the form of a 50% increase in the x-direction magnetic

field intensity and a reduction of the y-direction magnetic field by 50% at the exact center of the

computational domain. Using this as the initial data, the test case was then run on a 200×200

grid of length and width 1m and fixed Dirichlet boundary conditions for the magnetic field.

The GLM variable, ψ, was allowed to flow out of the domain. Time-accurate simulations were

then carried out for time up to 1.0× 10−8 and 1.0× 10−6 seconds, respectively, and the errors

were compared to the simulation of the non-GLM equations for the same time periods. Figures

7.8 and 7.9 compare the ∇ ·B error between the non-error corrected and GLM error corrected

simulations of the modified Priest test case for the time scale 1.0×10−9 and 1.0×10−6 seconds,

respectively. As can be seen, the ∇ · B error slowly numerically dissipates in the non-GLM

simulation along the Cartesian axis, but propagates outward as a wave in the GLM simulation.
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Figure 7.7: Grid convergence error plots for the Priest magnetostatic test case with Bx magnetic

field showing L1 and L2 error norms versus number of cells using the NKS scheme.
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Figure 7.8: Modified Priest test case comparing ∇·B for the non-GLM (left) and GLM (right)

equations at t=1.0× 10−9s.
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Figure 7.9: Modified Priest test case comparing ∇·B for the non-GLM (left) and GLM (right)

equations at t=1.0× 10−6s.

7.2.7 Electrostatic Line Charge Test Case

To assess the accuracy of the electric field equations, a simple infinite line charge which results in

a radial electric field was examined. Specifically, a box of width 1.5m by 1.0m whose centroid is

located 0.7m below the point at which the infinite line charge intersects the 2D computational

plane was considered. The charge is set to equal 5% of the background electrons per meter.

The resulting electric field exact solution is given by

E =
q

2πε

x

r2
i+

q

2πε

y

r2
j (7.15)

where q is the charge per unit length of the line charge, and x and y is the x and y distance

from the line charge with r2 = x2 + y2. Once again, only the Maxwell’s equations with GLM

divergence cleaning were simulated. The boundaries of the test case are the exact fluxes (while

constant extrapolation is used for the GLM variable) for the problem and the exact solution is

used as the initial conditions. The reference state is as described in Section 7.2.1.

Figure 7.10 shows the exact initial solution showing Ex and Ey with streamlines depicting the

electric field lines. The mesh for this result is 70 cells wide and 50 cells high. For the grid

convergence test considered here, numerical results ovtained using 14×10, 21×15, 35×25, and

70×50 grids were compared. In Figure 7.11, the L1 and L2 grid convergence error norms for Ex

and Ey are plotted versus number of cells on a logarithmic scale. A second-order convergence

rate is achieved as can be seen by comparing the slopes to the triangle which represents a

second-order slope.
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Figure 7.10: Initial conditions (Exact) for the 2-D electrostatic line charge test case showing

Ex and Ey with streamlines showing 2-D electric field lines for 70×50 cells.

As a counterpart to the magnetostatic case, there is a small level of Bz error that results from

∇ · E errors due to the transverse components associated with the Bz conservation equations.

These approach steady-state as the residual converges to machine zero. The plot of the Bz

component for the 70×50 cells case is shown in Figure 7.12. It is similarly negligible.

7.2.8 Sinusoidal Electromagnetic Plane Wave Case Examining Magnetic Field

with Explicit Time Stepping

The last set of accuracy assessment test cases considered for the proposed solution scheme for

Maxwell’s equations involved electromagnetic plane wave propagation. The problems examined

consisted of a sinusoidal wave that exists in both the electric and magnetic field equations which

can be represented by the following equations:

B =









E0
c cos(θ) cos(2πkr− ωt) sin(φ)

−E0
c cos(θ) cos(2πkr− ωt) cos(φ)
E0
c sin(θ) cos(2πkr− ωt+ αy)









, E =









−E0 sin(θ) cos(2πkr− ωt+ αy) sin(φ)

E0 sin(θ) cos(2πkr− ωt+ αy) cos(φ)

E0 cos(θ) cos(2πkr− ωt)









,

(7.16)

with the initial conditions corresponding to t = 0. The initial data results in a wave propagating

at the speed of light, alternating between the electric and magnetic fields in the perpendicular

directions [178]. The above expressions have been formulated such that the plane wave can be

rotated to exercise the numerical scheme in various directions, and also to specifically exercise
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Figure 7.11: Grid convergence error plots for Ex, Ey electric flux density for the electrostatic

line charge test case showing L1 and L2 error norms versus number of cells. Triangle represents

a second-order slope.

and assess the magnetic or electric error cleaning algorithms. The parameter θ controls the

projection of the sinusoidal function into the magnetic or electric field plane while φ represents

a rotation in the x-y plane which allows us to assess accuracy in various directions. In Equation

(7.16), the parameter E0, is the amplitude, k is the wavenumber, ω is the wave frequency, t is

time and αy is the phase shift. Also

r = x cos (φ) + y sin (φ) (7.17)

to be consistent with the rotation.

The sinusoidal electromagnetic plane wave case was first examined by selecting the following

solution parameters:

E0 = 1.0× 107, θ = 0◦, k = 1.0, ω = 2πc, αy = 0, tf =
k

c
, (7.18)

with φ = 0◦ for the x-direction case and φ = 90◦ for the y-direction case on a domain of

−0.5m ≤ d ≤ 0.5m on the axis of the direction of propagation and −0.05m ≤ p ≤ 0.05m in

the perpendicular direction. To exercise the magnetic error cleaning algorithm, θ was set to

0◦, which projects the sinusoidal function in the magnetic x-y plane, and places the electric
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Figure 7.12: Plot of Bz component for a 70×50 mesh for the electrostatic line charge test case.

field in the z-direction. The final time, tf , was chosen so that the wave propagated one full

cycle. Periodic boundary conditions were used throughout, and the resolutions considered in

the direction of propagation, were 100, 250, 500, and 750 cells, while 20 cells were used in the

perpendicular direction for the x- and y-direction cases.

The errors in By and Bx, for the x and y cases, respectively, versus the propagation direction

grid resolution on a logarithmic scale are plotted in Figure 7.13. There is no error in the other

magnetic field directions. As can be seen, the x- and y-direction cases have identical errors, as

expected, and have second-order convergence in the L1 error norm.

With the 1D case verified in the x- and y-directions, the above case was then modified so the

plane wave propagated at a 45◦ angle. This exercises the full 2D error cleaning for the magnetic

field. The parameters of Equation (7.18) were used again, but with

k =
√
2, φ = 45◦, (7.19)

and an associated change in tf as in Equation (7.18). Periodic boundary conditions were used

throughout and the domain was square, using grid resolutions of 100×100, 250×250, 400×400,

and 500×500 cells. The resulting convergence plot is included in Figure 7.14 which plots the

errors in Bx and By versus the square root of the resolution on a logarithmic scale. Both

Bx and By are plotted together since there is solution content, and thus error, in both these
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Figure 7.13: Error in By and Bx versus 1D grid resolution for the sinusoidal EM plane wave

case for the x- and y-direction, respectively using the MGLM error correction scheme.

variables. As expected, the errors are identical in the x- and y-direction due to the symmetry

of the problem, and is second-order in the L1 error norm.

Note that only the convergence for the magnetic error cleaning, MGLM, equations are presented

here, but all the variations of the error correction schemes for the MMHD equations (FGLM,

MGLM, MGLMED) were examined. There were no differences in the error inB as was expected

since there is no solution content in the x-y plane for the electric field.

7.2.9 Sinusoidal Electromagnetic Plane Wave Case Examining Electric Field

with Explicit Time Stepping

The electromagnetic sinusoidal plane wave case of Equation (7.16) was considered for the electric

field errors. The parameters are mostly the same as for Section 7.2.8, Equation (7.18), along

with the angles, domain and times, however, in order to project the plane wave into the x-y

plane of the electric field, θ was set to 90◦.

The grid convergence study errors in Ey and Ex, for the x and y cases respectively, versus 1D

resolution on a logarithmic scale are plotted together in Figures 7.15 and 7.16, which are for the

two divergence cleaning algorithms: the full GLM and the electric error diffusion (FGLM and
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Figure 7.14: Error in Bx and By versus square root of resolution for the sinusoidal EM plane

wave case for the 45◦ direction using the MGLM error correction scheme.

MGLMED), respectively. There are no errors in the other electric field directions for each case

in the 1D case. The x- and y-direction errors agree well and the L1 error norms are second-order

for both schemes. The absolute errors for both the schemes are also quite similar.

To exercise the full 2D divergence cleaning equations, the 45◦ case was simulated for the electric

field similar to the magnetic field using

k =
√
2, φ = 45◦, θ = 90◦. (7.20)

The errors in Ex and Ey versus the square root of the 1D resolution on a logarithmic scale

for the FGLM scheme is plotted in Figure 7.17. The error plot provides a nice second-order

convergence for the L1 error, with both the Ex and Ey errors matching.

7.2.10 Sinusoidal Electromagnetic Plane Wave Case Examining Magnetic

Field with Dual-Time Stepping NKS

The electromagnetic sinusoidal plane wave test case examining error cleaning for the magnetic

field was also considered using the DTS NKS scheme from Section 6.7. The parameters used

were identical to the explicit scheme test cases of Section 7.2.8. For accuracy assessment
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Figure 7.15: Error in Ey and Ex versus 1D resolution for the sinusoidal plane wave case for the

x- and y-direction respectively using the FGLM error correction scheme.

purposes, the physical time step chosen was set to 10 and GMRES iterations driven down at

least two orders of magnitude. NKS did not result in a computationally advantageous simulation

for this case. As shown in Section 7.2.3, for sufficiently stiff problems, usually arising from an

increase in resolution compared to the explicit case, a computational advantage does often

evolve when making use of the NKS scheme. However, because the time accurate solutions

here were designed to be solved in a reasonable amount of time with an explicit scheme, the

resolutions examined did not result in a computationally advantageous simulation.

The results for the convergence of the x and y cases are presented in Figure 7.18. In the coarser

mesh regime, where the DTS scheme does not converge per iteration as well, the errors are

larger and do not converge to second-order. However, as the grid refines, the errors approach

second-order and also agree nicely when comparing with the results in the x- and y-directions.

7.2.11 Sinusoidal Electromagnetic Plane Wave Case Examining Electric Field

with Dual-Time Stepping NKS

The sinusoidal electric field case of Section 7.2.9 was simulated using the DTS NKS scheme with

a TSCF of 10 with all other parameters the same as in Section 7.2.10. Figure 7.19 shows the
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Figure 7.16: Error in Ey and Ex versus 1D resolution for the sinusoidal plane wave case for the

x- and y-direction respectively using the MGLMED error correction scheme.

Ey and Ex error against the square root of the 1D mesh resolution on a logarithmic scale. As

in the magnetic field case, the coarse mesh solutions did not result in a good error convergence.

However, as the resolution increased, the errors converged to second-order for both the L1 and

L2 error norms in both the x- and y-direction cases.

7.2.12 NKS Accuracy Assessment Conclusions

Preliminary results are very encouraging for the steady and dual-time NKS schemes. Note that,

as mentioned in Section 6.7.2, due to the poor performance of the approximate Jacobian for the

Maxwell GLM equations based on the exact Godunov flux function, the residual Jacobian was

neglected in all cases in this chapter. While cases could be identified for which the approximate

Jacobian would provide superior performance when included, these cases were quite specific

and tended to be extremely stiff. As shown in Section 7.2.3, the steady-state and dual-time

NKS algorithms can perform significantly faster than the explicit scheme while still providing

comparable solution accuracy.
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Figure 7.17: Error in Ex and Ey versus square root of 1D resolution for the sinusoidal EM

plane wave case for the 45◦ case using the FGLM error correction scheme.

7.3 Comparison to One-Dimensional MMHD Results

Validation of the two-dimensional numerical solution procedure was also considered by compar-

ing predicted solutions to those of the one-dimensional scheme previously described in Chapter

5. This was accomplished by solving a shock-tube type problem using both the 1D and 2D

versions of the multi-fluid MHD models and comparing the solutions obtained using various

solving methods in the x- and y-directions for the 2D procedure.

7.3.1 Two-Fluid Limit One-Dimensional Test Case

The two-fluid limit test case was a test case originally proposed by Ohsawa [48] and was used

to compare 1D solutions between the two-fluid and three-fluid MHD models as the conditions

produced a nearly fully ionized plasma. The two-fluid limit test case is used to compare the

1D and 2D schemes using the multi-fluid MHD model. This IVP results in some complex

interactions between the two plasma species and the Maxwell’s equations. It is loosely based

on the classic Brio-Wu test case outlined in Section 5.3.2 of Chapter 5. The conditions of the



128 Chapter 7. Evaluation and Verification of the 2D MMHD GLM Model

N
1/2

, 

100 200 300 400 500 600 700

0.001

0.002

0.003

0.004

0.005 L1 Xdir GLM By
L2 Xdir GLM By

L1 Ydir GLM Bx
L2 Ydir GLM Bx

L2 Xdir order =-1.959

L1 Xdir order = -1.959

L1 Ydir order = -1.961

L2 Ydir order = -1.961
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for the x- and y-direction respectively using the DTS NKS MGLM solution procedure.

Brio-Wu test case of Section 5.3.2 were modified by using the following parameters:

L = 1.0, r̂c,i = 1.0, λ̂D = 0.01, ĉ = 100.0, (7.21)

with GLM parameters

ch = c (ch,ratio = 1.0), χ = 1.0, cr = 0.18. (7.22)

The above set of parameters dimensionalize the Brio-Wu problem as described in Section 7.2.1

and is referred to as the two-fluid limit. The IVP was then set using the following conditions:

W =

{

WL for 0 ≤ d < L/2,

WR for L/2 < d ≤ L,
(7.23)

for {d | d ∈ [0, L]}, and d is the axis of the 1D problem, with

WL =
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, (7.24)
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and
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The Maxwell’s equations primitive solution vector is ordered with the magnetic flux density,

then electric field density. The reference values were calculated according to Equations (7.4) to
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(7.7) using hydrogen gas, except for the neutral species, which was evaluated according to

nn,0 =
n20

κ(Te,0)
, pn,0 = nn,0kTi,0, (7.27)

noting Te,0 = Ti,0 = T0 for the left side and

nn,R =
n2e,R
κTe,R

, pn,R = nn,RkTn,R, (7.28)

for the right. The right side values for the electron equations above are simply

ne,R =
n0
8
, pe,R =

p0
10
, Te,R =

pe,R
ne,Rk

, (7.29)

with the Saha’s equilibrium relation κ as defined in Eq. (3.37) in order to preserve the ionization-

recombination equilibrium state.

The preceding one-dimensional problem was used to validate the two-dimensional solution pro-

cedure by simulating the IVP in both the x- and y-directions and comparing the resulting so-

lutions to those obtained by the 1D three-fluid MHD model. For the 2D simulations, 500 cells

were used for the direction of propagation, and 10 cells were used for the perpendicular direction

with constant extrapolation boundary conditions all around. For the 1D simulations, 500 nodes

were used. The simulations were performed for a simulated time up to t = 3.33564× 10−8 s in

a domain of 1.0m in the direction of propagation (0.1m in the perpendicular direction for the

two-dimensional cases).

7.3.2 Comparisons of Explicit Time Stepping Two-Fluid Limit Results

The first results that were examined were obtained using the explicit schemes. The 1D model

used a Hancock scheme while the 2D model used an explicit predictor corrector with no diver-

gence cleaning (NGLM). The TSCF for both methods was 0.7. Neither solution method (1D

or 2D) made use of divergence cleaning. The comparisons of the 1D and 2D predicted results

can be seen in Figure 7.20 which depicts the total density ρ, showing the predicted profiles

of the x- and y-directions of the 2D simulated solutions compared to the 1D solution. The

solutions agree quite well with a small deviation at around x = −0.225. This can be explained

by the slightly different 2-stage explicit schemes as well as the fact that a different numerical

flux was used for the Maxwell’s equations. The HLLE numerical flux function was used for the

1D method and the exact numerical flux function was used for the 2D results. The 2D solution

procedure was found to be sensitive to cancellation errors and using the HLLE numerical flux

function for the Maxwell’s equation in 2D resulted in large deviations from the 1D results. Use

of the exact flux function greatly reduced these errors.
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Figure 7.20: Comparison of 1D explicit three fluid model versus 2D x- and y-direction multifluid

MHD model solutions to the two fluid limit Brio-Wu IVP showing predicted density distribution

obtained using 500 points/cells in the 1D direction.

7.3.3 Comparisons of NKS Two-Fluid Limit Results

Next the NKS solutions to the two-fluid limit problem were examined. The dual-time NKS

implicit time marching scheme of Section 6.6 was used. The two-fluid limit problem was sim-

ulated using a physical TSCF of 5 and 10 and compared to the explicit result which can be

seen in Figure 7.21. The explicit result used a TSCF of 0.7 and an explicit predictor corrector

scheme. All of the three simulations had a spatial resolution of 500×10 cells with 500 cells in

the x-direction. The 1D three-fluid model solution is also included for comparison and has a

500 cell resolution.

The four sets of predicted results all agree very well despite a physical TSCF speed up of over

10 times. It should be noted that while the NKS dual-time solutions ended up taking about

the same or longer than using the explicit predictor corrector scheme, they are presented here

for validation of the numerical results. Additionally, it was found that the NKS solutions were

unstable past a TSCF of 10.
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tions to the two-fluid limit Brio-Wu IVP showing predicted density profiles obtained using 500

points/cells with various TSCF.

7.4 Application to Non-Conducting Gases in Two Dimensions

As a last set of assessments, the non-equilibrium fluid portion of the MMHD numerical method

and steady-state NKS scheme have been validated in this thesis by comparing predicted steady-

state solutions of the fluid equation to those obtained using a two-dimensional NKS solution

method developed separately for the solution of the 10-moment Gaussian closure for non-

conducting gases by Mcdonald et al. [93, 96] and Tensuda et al. [179–181]. A simple blunt

body problem was examined using various collision regimes and the convergence of the NKS

implicit time marching scheme was compared.

7.4.1 Gaussian Based Fluid Dynamics Model

In order to validate the fluid portion of the MMHD solver, solutions were generated and com-

pared with predicted numerical solutions of the Gaussian model developed by McDonald et

al. [93, 96] and extended with the NKS method by Tensuda et al. [179–181].
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Table 7.3: Flow regimes

Continuum Transition Free-Molecular

Kn < 0.01 0.01 ≤ Kn < 10 10 ≤ Kn

For the case considered, all reactions were neglected and the intra-species collisions were

held constant to a common time scale or frequency. Only one species was examined in the

MMHDGLM solver and the NKS preconditioner, for the fluid case, was based on the first-order

approximation for the numerical flux function.

7.4.2 Knudsen Number and Flow Regimes

Specifying intra-species collision frequencies allowed for the examination of various flow regimes

as defined by the Knudsen number,

Kn =
λ

L
, (7.30)

where λ is the mean free path between collisions and L is the characteristic length scale of the

problem being examined. This ratio between the mean free path and problem scale describes

how dominant the molecular phenomenon is versus the macroscopic flow effects. For larger

Knudsen numbers, the free-molecular effects dominate and like-wise macroscopic fluid effects

dominate for smaller Knudsen numbers. Generally, there are three regimes defined by the

Knudsen number. They are listed in Table 7.3.

7.4.3 Supersonic Flow Past a Blunt Body Cylinder Test Case

The test case examined was a blunt body where the computational domain consisted of a curved

quadrant in front of a circular cylinder with a radius of 1.0m. This case is similar to the one

examined by Groth et al. [147], but with a free stream Mach number of 3.0 and a different

working fluid. The mesh shown in Figure 7.22 defines the geometry where the boundary on

the lower right is the cylinder front. The boundary on the axis at the bottom used reflection

conditions, while the left curved boundary used constant free stream conditions, and constant

extrapolation was used for the straight boundary on the right. A free stream uniform flow with

a working gas of argon was imposed having the following conditions

ρAr = 1.225 kg/m3, pAr = 101325Pa, Mx = 3.0, (7.31)

where the number Mx defines the velocity in the positive x-direction impacting the face of

the cylinder. All sheer pressures and non x-direction velocities were taken to be zero. For
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Table 7.4: Examined flow regimes for the supersonic flow past a blunt body test case

Case ν Kn

Collisionless 0 ∞
Transitional 5.0× 103 ∼ 0.03

Continuum 5.0× 1012 ∼ 0

the case examined here, for which the main interest is the solution agreement between the two

implementations of the Gaussian closure, a somewhat coarse computational mesh of 16×16 cells

was considered. For the two models, the mean free path used to calculate the Knudsen number

is

λ =
vth
ν

(7.32)

where vth is the thermal velocity and ν is the fixed collision frequency. The length scale L is

equal to the diameter of the cylinder.

7.4.4 Results of the Supersonic Flow Past a Blunt Body Test Case Using

Steady-State NKS

The blunt body problem described in the last section was simulated using various collision

frequencies associated with the free-molecular, transitional, and continuum regimes. The three

cases considered are presented in Table 7.4. For the transitional, and continuum cases, a

second-order spatial reconstruction was used with Barth-Jespersen slope limiting [136]. For the

collisionless case, only first-order spatial reconstruction could be used due to the instabilities of

running a supersonic flow collisionlessly.

The steady state solutions for the three cases are presented in Figures 7.23, 7.24 and 7.25. The

figures matched exactly those obtained from the previous solution method developed for the

Gaussian closure by Tensuda et al. [179–181]. This was verified by examining the predicted

solution profiles throughout the domain. A sample comparison of the predicted profiles is

included in Figure 7.26. The NKS convergence plots for the three cases for both the MMHD

and Gaussian models are included in Figures 7.27 to 7.32. The convergence histories match

very well, though it should be noted that the TSCF is calculated differently for both methods

so an exact match was not possible. Further, it should be noted that when simulating only the

gasdynamic portion of the MMHDGLM solution procedure, the NKS performance is excellent.
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Figure 7.23: Supersonic blunt body

test case, collisionless, using NKS and

1st order reconstruction on a 16×16

mesh.

x

y

-4 -2 0 2
0

2

4

6

8

10

12

14

16

rho

10
9.5
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4

Figure 7.24: Supersonic blunt body

test case, transitional constant colli-

sion frequency 5.0 × 103, using NKS

and 2nd order reconstruction on a

16×16 mesh.
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Figure 7.25: Supersonic blunt body

test case, continuum constant collision

frequency 5.0 × 1012, using NKS and

2nd order reconstruction on a 16×16

mesh.



136 Chapter 7. Evaluation and Verification of the 2D MMHD GLM Model

x

rh
o,

 r
ho

_n

-4 -3.5 -3 -2.5 -2 -1.5 -1
1

1.5

2

2.5

3

3.5

rho Gaussian
rho MMHD

Figure 7.26: Comparison of predicted density profiles, ρ, along the axial direction for the

supersonic blunt body test case obtained using the two implementations of the NKS solution

method for the Gaussian closure: the non-conducting gas and MMHD models.

7.5 Summary

In this chapter, it was verified that the numerical solution procedure is in fact second-order ac-

curate in both time and space in agreement with theoretical expectations and that the proposed

solution method for two-dimensional plasma flows can recover the 1D results of the previously

described 1D solution method. Additionally, the GLM divergence cleaning algorithm was found

to work well alleviating divergence errors associated with the magnetic field and charge separa-

tion. Also, it was shown that the MMHD model can recover the predicted solutions of the 2D

Gaussian non-conducting fluid equations, providing further confidence in the implementation

of the proposed finite-volume solution method.
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Figure 7.27: NKS convergence plot for the

MMHD model, collisionless test case.
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Figure 7.28: NKS convergence plot for the

Gaussian model, collisionless test case.
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Figure 7.29: NKS convergence plot for the

MMHD model, transitional test case.
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Figure 7.30: NKS convergence plot for the

Gaussian model, transitional test case.
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Figure 7.31: NKS convergence plot for the

MMHD model, continuum test case.
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Figure 7.32: NKS convergence plot for the

Gaussian model, continuum test case.
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Chapter 8

Numerical Results for

Two-Dimensional Plasma Flows

8.1 Overview

This chapter will describe the application of the proposed two-dimensional multifluid MHD

GLM plasma model and finite-volume solution procedure to a representative and relevant

plasma flow problem of interest within the space physics community: the GEM magnetic

reconnection challenge. In this chapter, the original GEM problem definition is first stated

in non-dimensional form. A dimensional equivalent of the problem is then presented, and a

grid convergence study is subsequently undertaken to establish some estimates of the resolution

requirements for the problem. The resulting numerical solutions for the GEM case are then

compared to similar numerical results obtained for modified versions of the problem in differ-

ent collision regimes and with the application of the different divergence cleaning techniques

considered herein. Numerical results associated with the exploration of the effectiveness of the

NKS implicit time marching scheme for the GEM case are also discussed. The present multi-

fluid MHD solutions are also compared to other published results from the literature. Finally,

two more realistic sets of conditions for the GEM reconnection problem, corresponding more

closely to the actual conditions occurring in the Earth’s magnetosphere, are proposed and the

numerical solutions for these additional cases are also described and discussed.

139
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8.2 Geospace Environmental Modeling Magnetic Reconnection

Challenge

The GEM challenge [2–4, 27, 38, 54, 70–72] has become a standard space plasma problem for

numerical validation studies and involves the interaction of magnetic fields and plasmas, ap-

proximating their behaviour in the magnetosphere. Please refer to Section 1.3 of Chapter 1 for

more background and history of the GEM challenge.

8.2.1 Definition of GEM Problem

As originally posed, the GEM problem is defined as a collisionless problem for a fully ionized

plasma comprised of a Harris current sheet with an imposed magnetic perturbation. The Harris

current sheet equilibrium solution is a widely known one-dimensional equilibrium solution to

the Maxwell-Vlasov equation [182] and is defined by the magnetic field and plasma number

density which are taken to have the form

BH = B0 tanh
(y

λ

)

êx, n = n0

(

0.2 + sech2
(y

λ

))

, (8.1)

where λ here is a scaling length. The Harris current sheet equilibrium solution is subsequently

perturbed so that

B = BH +BP , (8.2)

where

BP = ∇ψ × êz, (8.3)

and where ψ is given by

ψ = ψ0 cos

(

2πx

Lx

)

cos

(

πy

Ly

)

. (8.4)

The two-dimensional, rectangular, computational domain is taken to be defined by −Lx/2 ≤
x ≤ Lx/2 and −Ly/2 ≤ y ≤ Ly/2. The standard parameters defining the GEM problem are as

follows:

Lx = 8πδion, Ly = 4πδion, λ = 0.5δion,
Tion
Te

= 5, mion

me
= 25,

ψ0 =
1
10B0δion,

c
vA

= 20,
(8.5)

where δion is the ion inertial length and vA is the Alfvèn velocity.

Two reference values for the magnetic field and number density can be selected, which for this

study are taken to be

Bref = B0 = 0.972173605T, nref = n0 = 2.0× 1018m−3. (8.6)
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Using the reference values and assuming a fully ionized, two-fluid plasma with inter-species

reactions neglected, the GEM problem parameters are calculated using the following values for

the quantities:

δion =
vA
ωion

m, Ωion =
eB0

mion
s−1, vA =

B0√
µnomion

m

s
, (8.7)

where Ωion is the ion gyrofrequency and ωion is the ion plasma frequency. The above reference

values were selected so that a realistic value for the speed of light can be used in defining the

last parameter of Equation (8.5) and results in

δion = 0.161m, and vA = 1.5× 107
m

s
. (8.8)

In order to compare the dimensional solutions of the GEM case with the non-dimensional

solutions, it is useful to note that one unit of non-dimensional time is equivalent to

t =
1

Ωion
= 1.0745× 10−8 s (8.9)

in physical time and one unit of non-dimensional magnetic flux is

B · l = Brefδion = 0.156T ·m, (8.10)

in physical units. The latter is used in normalizing the computed values for the magnetic

reconnection fluxes. The revised definition of the Harris current sheet and perturbation is then

BH(y) = B0 tanh
(y

λ

)

êx, nion(y) = ne(y) = n(y) = n0

(

0.2 + sech2
(y

λ

))

, (8.11)

BP =











ψ0(− π
Ly

cos
(

2π x
Lx

)

sin
(

π y
Ly

)

ψ0(
2π
Lx

sin
(

2π x
Lx

)

cos
(

π y
Ly

)

0











. (8.12)

In addition, the other initial conditions that are implied can be determined using definitions for

magnetic pressure, total temperature, and solving Maxwell’s equation for initial current. They

are given by

p(y) =
B2

0

2µ

n(y)

n0
, pion(y) =

Tion
Tion + Te

p(y), pe(y) =
Te

Tion + Te
p(y), (8.13)

J =









0

0

−B0
λµ sech

2
( y
λ

)









, Je(y) = − m

emen(y)
J, Jion(y) =

m

emionn(y)
J, (8.14)

where

m =
memion

me +mion
. (8.15)
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The above initial total current is the same as that suggested by Hakim [65], but while Hakim let

the electrons carry the entire current, the current work splits the current between the ions and

electrons using a momentum balance as suggested by Johnson [6]. Further, the initial electric

field, which is zero for the original GEM problem due to the formulation within the context of

ideal MHD, is evaluated according to the solution of Ohm’s law derived from the momentum

equations and the definition of current. When the momentum equation defined in Section 3.9

is multiplied by qs/ms, the current equation for each species is given by

∂Js
∂t

+∇ ·
(

Jsus +
qs
ms

Ps

)

=
q2s
ms

(E+ us ×B) + Scolss . (8.16)

Assuming a fully ionized plasma in a two-fluid, quasi-neutral formulation, noting that the

collision terms vanish when summed over the two species and solving for the electric field while

focusing on the pressure balance as suggested by Johnson [6], the initial electric field can be

approximated as

Einitial ≈
m

en
∇ ·
(

Pion

mion
− Pe

me

)

, (8.17)

which results in the following expression for the y-component of the electric field:

Ey(y) =
mion − 5me

6e n(y) (mion +me)

B2
0

µλ
sech2

(y

λ

)

tanh
(y

λ

)

(8.18)

with the other two components of the electric field assumed to be initially zero.

8.2.2 Reconnected Magnetic Flux

There are various ways to calculate the total reconnected flux. By definition, the reconnected

flux is the amount of y-component magnetic flux that crosses the x-axis center line of the GEM

problem. The y-component of the magnetic flux density along the y = 0 line can be integrated

to arrive at the reconnected magnetic flux and is traditionally divided by two.

Another way to evaluate the reconnected magnetic flux, as described by Johnson et al. [7], is

to consider Ohm’s law at the origin of the domain for the problem. The electric field at the

origin represents the reconnection rate for the magnetic flux. Thus integrating this value over

time would give the total reconnected flux. However, the most common way to determine the

reconnected flux is to take the negative of the change of the x-component of the magnetic flux

across the center line y-axis between the top two quadrants. The magnetic flux is calculated

by integrating the x-component of the magnetic flux density along the x = 0 line which leads

to the definition for the total reconnected flux to be

ΦREC = Φinitial −
∫ y=Ly/2

y=0
Bx dy

∣

∣

∣

∣

∣

x=0

. (8.19)
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This is how the reconnected flux is calculated in the present study unless otherwise indicated. In

order to compare the predicted reconnected flux to the non-dimensional results in the literature,

ΦREC, which has the units of T · m, must be non-dimensionalized using the magnetic flux

normalization factor of

B · l = Brefδion. (8.20)

8.2.3 Boundary Conditions of Problem

The boundary conditions for the rectangular computational domain of the original GEM prob-

lem and other modified variants considered in this thesis consist of a periodic boundary on the

east (right) and west (left) boundaries, and conducting boundaries for the north (top) and south

(bottom) boundaries, respectively. At the conducting boundary, the fluid properties of the ions

and electrons are reflected, while the electric field is made perpendicular, and the magnetic

field is enforced to be parallel at the boundary. For the reflected fluid properties, the following

boundary conditions are imposed:

∂ρs
∂y

= 0,

∂us,x
∂y

= 0,

us,y = 0,

∂us,z
∂y

= 0,

∂Ps,xx
∂y

= 0,

∂Ps,yy
∂y

= 0,

∂Ps,zz
∂y

= 0,

Ps,xy = 0,

∂Ps,xz
∂y

= 0,

Ps,yz = 0.

(8.21)

For the electro-magnetic fields, the boundary data

∂Bx

∂y = 0, By = 0, ∂Bz

∂y = 0,

Ex = 0,
∂Ey

∂y = 0, Ez = 0,
(8.22)

is used and the GLM parameters, ψ and φ if used, are extrapolated to the boundary with

constant extrapolation.

8.3 Modified GEM Cases

Due to the capabilities of the multifluid GLM MHD model, and the fact that the original

GEM case has been redefined in dimensional form, two modified and more realistic GEM

cases were also examined here to explore more fully the predictive capabilities of the proposed

MMHDGLM2D solution procedure. To be realistic, the artificial values defining the electron-ion

mass ratio and the speed of light were replaced with the true values for the mass ratio and speed

of light. Additionally, more realistic values for the magnetosphere plasma parameters were used
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to dimensionalize the GEM problem. Further, real intra- and inter-species collisions and the

option for real charge-exchange and ionization-recombination reactions were also explored.

In order to approximate the original GEM conditions, the following inequality must be satisfied:

λD ≪ δion ≪ λ =

√
3a

ν0,max
(8.23)

or in other words, the Debye length should be much smaller than the ion inertial length, which

should be much smaller than the smallest mean free path of the initial conditions. The cases

described in the following subsections conform to this condition.

8.3.1 LEO Version of GEM Problem

As a first modified case, a set of established Low Earth Orbit (LEO) plasma and magnetic

field conditions were examined. The LEO conditions were initially chosen as the presence of

collisions at this density and energy should provide a more stable solution. Most authors infer

a totally collisionless plasma at the magnetopause, while many of the models and results in

the literature reviewed have included collisions or an isotropic pressure to stabilize the results.

Some characteristic plasma conditions were determined for this case using information from

Kelley [183] for the 1000 km altitude for plasma density and energy as well as the average

magnetic intensity of the earth’s ionosphere. The conditions are tabulated in Table 8.1, which

lists the conditions used for both the LEO and magnetopause plasmas.

Using the constants suggested in Table 8.1, the dimensional parameters defining the LEO

version of the GEM problem are

δion = 2.28× 103m, vA = 3.49× 106
m

s
, and t =

1

Ωion
= 6.529× 10−4 s. (8.24)

The magnetic flux normalization constant for the LEO case is

B · l = Brefδion = 0.0364T ·m. (8.25)

Table 8.1: Plasma properties for LEO and Magnetopause [183,184]

Region n+H (m−3) B0 (T) Tion(simulation)(J) Tion(J)

LEO 1.0× 1010 1.6× 10−5 8.49× 10−5 -

Magnetopause 1.0× 107 1.5× 10−8 7.4× 10−11 8.0× 10−17
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8.3.2 Magnetopause Version of GEM Problem

The magnetopause is typically located at a radial distance that is approximately ten times the

radius of the earth. It is not well understood or easily measured as observations via ground

based or space based instruments are exceedingly difficult to perform [185]. However, data

analysed from Cluster and the recently launched MMS have advanced the understanding of

the magnetopause considerably [68, 69]. Taking typical values found at the magnetotail and

magnetopause from readings of the Cluster mission [184,186,187], a set of conditions is obtained

for the reference values as presented in Table 8.1. It should be noted that the conditions reported

by Cluster state a lower energy than that which results from the modified dimensionalized GEM

case. However, for this study, and for some consistency, the values specified by the GEM case

with the magnetopause reference values and a true electron mass and true speed of light were

used. The dimensionalizing parameters for the so-called magnetopause GEM case considered

herein are

δion = 7.20× 104m, and vA = 1.03× 105
m

s
, t =

1

Ωion
= 6.964× 10−1 s, (8.26)

and the magnetic flux normalization constant is given by

B · l = Brefδion = 1.08× 10−3T ·m. (8.27)

8.4 Numerical Results for the Original GEM Case

In this section, the numerical results for the standard GEM case are presented. A grid conver-

gence study was first undertaken to determine the mesh requirements for a converged solution

of the GEM case. Several baseline grids were then selected for further consideration. Predicted

results obtained using the multifluid MHD model on these grids are then compared to other

known results from the literature. The effects of collisions on the GEM problem are examined

as well as the effects of various error cleaning algorithms for the Maxwell’s equations. Finally,

the performance of the proposed implicit time marching method is examined and discussed.

8.4.1 Computational Domain and Initial Conditions

The grids considered were all uniform Cartesian meshes with square cells. The horizontal

cell resolution is twice the vertical cell resolution. A typical mesh is shown in Figure 8.1

which corresponds to a very coarse 100×50 grid. The sequence of meshes considered here is

summarized in Table 8.2.
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Figure 8.1: GEM test case example mesh (100×50).

Table 8.2: Meshes considered for GEM problem.

Dimensions Number of Cells

400×200 80,000

512×256 131,072

800×400 320,000

1600×800 1,280,000

3200×1600 5,120,000

Contour plots of the initial conditions for the original GEM case plotted on a 1600×800 uniform

grid are presented in Figures 8.2 and 8.3, showing the initial distribution of the magnitude

of the y-component of the magnetic field, |By|, along with the magnetic field lines and the

corresponding electron pressure in the x-direction, respectively. The initial normalized magnetic

reconnected flux is 0.2 in this case.

8.4.2 Grid Convergence Study with Magnetic GLM Error Cleaning

A grid convergence study was undertaken for the original GEM case as outlined above by

considering the sequence of meshes with increasing resolution defined in Table 8.2. For the study,

a constant collision frequency was assumed as suggested by Johnson [6]. The elastic collision
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Figure 8.2: GEM test case solution showing |By| and magnetic field lines at t = 0Ω−1
ion and

mesh resolution 1600×800. Normalized magnetic reconnected flux is 0.2.

Figure 8.3: GEM test case solution showing Pe,xx at t = 0Ω−1
ion and mesh resolution 1600×800.

Normalized magnetic reconnected flux is 0.2.
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terms outlined in Section 3.5 were modified and the collision frequencies defined in Equation

(3.17) were held constant. The inter-species collisions were neglected and the intra-species (self)

collision terms were modified by assigning a fixed value to the self collision frequency, νs, such

that

ν̃st = 0, and νs = 107 s−1. (8.28)

This value for νs was found to produce solutions similar to the results obtained by Johnson [6].

Figures 8.4 to 8.11 show the predicted distributions of the magnitude of the y-component of the

magnetic field, |By|, along with the magnetic field lines and the corresponding electron pressure

in the x-direction, for the GEM case obtained for a succession of uniform Cartesian meshes wih

increasing resolution as summarized in Table 8.2. The predicted, instantaneous, normalized

magnetic reconnected flux is included in the caption for each figure. The time index for the

plots is at t = 18Ω−1
ion, which corresponds approximately to an instance for which one unit of

magnetic flux (see Equation (8.10)) has reconnected in many of the previous results found in

the literature not based on PIC simulations. PIC simulations predicted an earlier time for one

unit of magnetic flux to reconnect, which was generally found to be around t = 15Ω−1
ion.

As can be seen in Figures 8.4 to 8.11, the reconnected magnetic flux increases with increasing

mesh resolution. At mesh resolutions higher than 800×400, a magnetic island appears in the

vicinity of the origin. The formation of a magnetic island was found previously by other authors

and is quite common place in many simulations [3,28,54,63,66,70,71,188]. The magnetic island

is composed of opposite direction magnetic field lines so that the integration of the y-direction

magnetic field does not accurately reflect the total reconnected magnetic flux, hence the absolute

value of the By component is used in the integration. The reconnected flux converges to a value

of approximately 1.93 at high mesh resolutions as shown in Figure 8.12, which shows the

normalized magnetic reconnection versus the x-direction grid resolution. As was mentioned,

though the time index t = 18Ω−1
ion was chosen based on when most fluid based results had a

normalized magnetic reconnected flux of unity, it was later found that there was an error in the

flux reported by Johnson et al. [6, 7] and the test case used for the various two-fluid solvers of

Hakim et al. [64,65], and Loverich et al. [66], were not exactly the original GEM problem, while

most Hall MHD results had to be tuned to obtain the reconnection results desired. However,

reconnection information for this time index is still readily available for other simulations and

several are included in Figure 8.12. A special test case with a grid resolution of 512×256 and

no collisions is examined later in this chapter and is also included in the convergence plot

as a separate data point and results in the desired reconnection value of approximately one

normalized unit of magnetic flux; however, it was quite unstable and these results are discussed

in Section 8.4.3. At high mesh resolutions, the reconnected magnetic flux is approximately
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double the value found by other researchers using fluid based models. Nevertheless, this high

value for the reconnected magnetic flux was found to be closer in line with the values obtained

using either the PIC or hybrid PIC simulations, such as those reported by Pritchett [3], Shay et

al. [2], and Kuznetsova et al. [54]. It should be also noted that a similar doubling of reconnection

was encountered by Johnson [6] while investigating the so called ‘pair plasma’ case.

Referring again to Figure 8.12, at grid resolutions close to those used by many researchers [2,4,5]

using PIC (512×256) and Vlasov equation (512×256) modelling approaches, approximately

one unit of normalize reconnected flux is obtained by the MMHDGLM2D model. As can

be seen, the Darwin-Vlasov simulations are closest to the MMHDGLM2D results for similar

mesh resolutions, while the pure PIC simulations and the hybrid simulations result in non-

dimensional values for the reconnected flux closest to the converged MMHDGLM2D results

found here, albeit at lower mesh resolutions (but also at much higher computational cost). The

higher reconnection values reported in some PIC simulations [3, 54, 70] are often attributed

to the formation of magnetic islands, such as those found at higher mesh resolutions in the

current study. This can explain the better agreement of the reconnected flux with the PIC

simulations at higher mesh resolutions, while at the same time agreeing with the Darwin-

Vlasov simulations [4, 5] at lower mesh resolutions, when there are no magnetic islands, as the

Darwin-Vlasov simulations also do not exhibit the magnetic islands at mesh resolutions similar

to those used in this study.

The effect of the magnetic island on reconnection rate is also illustrated by Hesse et al. [70].

Their results show a dramatic drop in reconnection rate when going from the PIC simulations

to the Hall MHD simulations which lack a magnetic island. A more recent result from Rieke

et al. [5] shows that using Hakim et al.’s two-fluid 5-moment scheme for the original GEM

problem and not the modified version from [64, 65] agrees with a lower reconnection value

as would be predicted when going to a fully collisional plasma as will be examined in Section

8.4.6. It can be seen that most results are reasonably close to the results of the current study for

similar resolutions. However, the predicted rate is also very sensitive to the numerical scheme

employed [2–6, 54, 70]. Therefore, based on the current mesh refinement study, The current

results shown here and those of other researchers are thought not to be fully converged for the

lower mesh resolutions considered.

8.4.3 Baseline Solutions on Nominal Grids

Due to the observed sensitivity of the reconnection value to mesh resolution, several base cases

were chosen as standard results to compare with other results in the literature. Examining
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Figure 8.4: GEM test case solution with MGLM error cleaning showing |By| and magnetic field

lines at t = 18Ω−1
ion and mesh resolution 400×200 with collision frequency 107 s−1. Normalized

magnetic reconnected flux is 0.82.

Figure 8.5: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 18Ω−1
ion and

mesh resolution 400×200 with collision frequency 107 s−1. Normalized magnetic reconnected

flux is 0.82.



8.4. Numerical Results for the Original GEM Case 151

Figure 8.6: GEM test case solution with MGLM error cleaning showing |By| and magnetic field

lines at t = 18Ω−1
ion and mesh resolution 800×400 with collision frequency 107 s−1. Normalized

magnetic reconnected flux is 1.32.

Figure 8.7: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 18Ω−1
ion and

mesh resolution 800×400 with collision frequency 107 s−1. Normalized magnetic reconnected

flux is 1.32.



152 Chapter 8. Numerical Results for Two-Dimensional Plasma Flows

Figure 8.8: GEM test case solution with MGLM error cleaning showing |By| and magnetic field

lines at t = 18Ω−1
ion and mesh resolution 1600×800 with collision frequency 107 s−1. Normalized

magnetic reconnected flux is 1.77.

Figure 8.9: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 18Ω−1
ion and

mesh resolution 1600×800 with collision frequency 107 s−1. Normalized magnetic reconnected

flux is 1.77.
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Figure 8.10: GEM test case solution with MGLM error cleaning showing |By| and magnetic field

lines at t = 18Ω−1
ion and mesh resolution 3200×1600 with collision frequency 107 s−1. Normalized

magnetic reconnected flux is 1.93.

Figure 8.11: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 18Ω−1
ion and

mesh resolution 3200×1600 with collision frequency 107 s−1. Normalized magnetic reconnected

flux is 1.93.
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Figure 8.12: Convergence plot of normalized magnetic reconnected flux versus x-direction res-

olution for GEM test case at t = 18Ω−1
ion for the MGLM error correction scheme. Results from

Shay et al. [2], Pritchett et al. [3], Schmitz et al. [4], Rieke et al. [5], and Johnson [6] are also

included.
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Figure 8.12, a reasonably converged solution for the original GEM case, balancing computa-

tional considerations, was identified to be the results obtained using a uniform Cartesian mesh

containing 1600×800 cells. This is the grid used for most of the comparisons herein and explo-

ration of the effect of various parameters and properties. A lower resolution grid of 400×200

cells was also used for a few of the comparisons and is stated clearly when used.

One additional grid resolution was examined in order to see how the MMHDGLM2D solution

result compared specifically to the Darwin-Vlasov results examined in Section 8.4.5. In order

to compare to the Darwin-Vlasov simulations, completely collisionless MGLM simulations were

carried out. As was expected, with collisionless fluid equations, the results were less stable than

the base case solutions. Figures 8.13 and 8.14 shows the predicted y-direction magnetic field

magnitude with magnetic field lines and the electron pressure in the x-direction, respectively,

for the collisionless case at the standard time, t = 18Ω−1
ion obtained using a 512×256 grid. The

normalized magnetic reconnection was 1.04 at this time for this case as is predicted by Schmitz

et al. [4, 75] and Johnson [6] for the original GEM case. This simulation proved to be fairly

unstable, and was very unstable past the standard 18Ω−1
ion time. The final result that was used

to study the temporal evolution of the magnetic reconnected flux of Figure 8.17 for this case is

at t = 48Ω−1
ion and is included in Figures 8.15 and 8.16. As can be seen at longer time, there

is considerable instability and asymmetry in the predicted solutions for this collisionless case.

The instability of the results is to be expected as will be shown later in Section 8.4.6 of this

chapter. Note that there was no instance of magnetic island formation, at least for the lower

mesh resolution considered here.

8.4.4 Time Evolution of Normalized Magnetic Reconnected Flux

The time evolution of the magnetic reconnected flux is examined here. The normalized magnetic

reconnected flux versus time for the base case is plotted in Figure 8.17 along with the results

of Pritchett et al. [3] and a collisionless GEM case at a mesh resolution of 512×256 that is

examined in Sections 8.4.3 and 8.4.5. As can be seen, the predicted reconnected flux initially

starts off at a low value and quickly ramps up and then continues to increase, levelling off at a

value of around 3.85. It should be noted that at times after 18Ω−1
ion, the magnetic island seen in

Figure 8.8 moves to the left and eventually merges, which reduces the rate of reconnection as

the opposing magnetic field lines eliminate each other. Due to the asymmetric movement of the

magnetic island, the reconnected flux value was determined by the integration of |By| across
the entire domain divided by 2 to be consistent with the definition of magnetic reconnected flux

in the literature.
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Figure 8.13: GEM test case solution with MGLM error cleaning showing |By| and magnetic

field lines at t = 18Ω−1
ion and mesh resolution 512×256 with no collisions. Normalized magnetic

reconnected flux is 1.04.

Figure 8.14: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 18Ω−1
ion

and mesh resolution 512×256 with no collisions. Normalized magnetic reconnected flux is 1.04.
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Figure 8.15: GEM test case solution with MGLM error cleaning showing |By| and magnetic

field lines at t = 48Ω−1
ion and mesh resolution 512×256 with no collisions. Normalized magnetic

reconnected flux is 3.14.

Figure 8.16: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 48Ω−1
ion

and mesh resolution 512×256 with no collisions. Normalized magnetic reconnected flux is 3.14.
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Figure 8.17: Normalized magnetic reconnected flux versus time for GEM test case at a mesh

resolution of 1600×800 and a collisionless GEM test case at a mesh resolution of 512×256 for

the MGLM error correction scheme. Also includes data from PIC simulations of Pritchett et

al. [3].
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The movement of the magnetic island can be seen in Figures 8.18 and 8.19, which show plots of

|By| with the magnetic field lines and the electron pressure, Pe,xx, respectively, for time 24Ω−1
ion

obtained using the base grid resolution of 1600×800. The movement and eventual merger has

also been observed in the literature [28, 63, 66, 70, 71], though the direction the island moves

is not consistent and differs with the scheme used. However, the leftward direction is often

documented [28, 71]. Taking a look at the slope of the time evolution plot, the maximum

normalized magnetic reconnection rate is approximately 0.2 which is also in good agreement

with values reported in the literature [2, 3, 6, 27, 71, 189]. The agreement of the time evolution

of the predicted reconnected flux with the PIC simulations of Pritchett et al. [3] is in fact quite

good and this behaviour is typical of most PIC and hybrid simulations. Though the resolution

of the base case is much higher than the PIC grid resolution of 512×256, the computational

resources required are much less. It should also be noted that the reconnected flux generally

converges to around 3.3 in the literature, but the increased value observed here can be attributed

to the higher resolution employed, which is evidenced by the lower final reconnected flux of the

lower (collisionless) mesh resolution case of 512×256 cells. The collisionless 512×256 case has

a slightly different profile, agreeing well to around t = 12Ω−1
ion for all solutions compared, but

then the reconnected value goes lower until the peak near 30Ω−1
ion where it once again agrees

with the other simulations. However, the reconnected flux then suddenly drops down and then

recovers to a value of approximately 3.27 as is expected for this lower mesh resolution case.

The drop in reconnected flux before reaching a final value has also been observed by other

researchers [2, 4, 5, 27, 66, 189,190].

8.4.5 Comparison of Predicted Solutions to Other Results

Examining further the results for the base grid of 1600×800 computational cells, the predicted

distributions of the out of plane magnetic field are presented in Figure 8.20, and Figures 8.26 and

8.27 show the diagonal and off diagonal components of the electron pressure tensor, respectively.

The plots of the out of plane variables, namely Bz, Pe,xz, Pe,yz, are shown using the negative

of the values obtained as done by Johnson [6]. This is to be consistent with the original GEM

results which were defined to be in the x-z plane. This made the out of plane results positive

into the plane, while the results obtained with the x-y plane definition of the GEM problem

has the out of plane axis positive out of the plane.

Significant instabilities can be seen in the pressure tensors of Figures 8.26 and 8.27. How-

ever, the quadrupole structure of of the out of plane magnetic field in Figure 8.20 shows very

good agreement with the literature [2–4, 6–8, 54]. For comparison, the out of plane magnetic
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Figure 8.18: GEM test case solution with MGLM error cleaning showing |By| and magnetic field

lines at t = 24Ω−1
ion and mesh resolution 1600×800 with collision frequency 107 s−1. Normalized

magnetic reconnected flux is 2.53.

Figure 8.19: GEM test case solution with MGLM error cleaning showing Pe,xx at t = 24Ω−1
ion and

mesh resolution 1600×800 with collision frequency 107 s−1. Normalized magnetic reconnected

flux is 2.53.
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Figure 8.20: GEM test case solution with

MGLM error cleaning showing negative

out of plane magnetic field −Bz and mag-

netic field lines at t = 18Ω−1
ion and mesh res-

olution 1600×800 with collision frequency

107 s−1. Normalized magnetic reconnected

flux is 1.77.

Figure 8.21: GEM test case solution with

MGLM error cleaning showing negative

out of plane magnetic field −Bz and mag-

netic field lines at t = 18Ω−1
ion and mesh res-

olution 400×200 with collision frequency

107 s−1. Normalized magnetic reconnected

flux is 0.82.

Figure 8.22: Results from PIC simulations

by Pritchett et al. [3] showing magnetic

field lines (a) and out of plane magnetic

field (b) at a grid resolution of 512×256 at

t = 15.7Ω−1
ion. Normalized magnetic recon-

nected flux is 1.0.

Figure 8.23: Results from Darwin-Vlasov

simulations by Schmitz et al. [4] showing

out of plane magnetic field at a total grid

resolution of 512×256 at t = 17.7Ω−1
ion.

Normalized magnetic reconnected flux is

1.0.
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Figure 8.24: Results from 10-moment two-

fluid simulations by Johnson et al. [7] show-

ing out of plane magnetic field at t =

17.25Ω−1
ion. Normalized magnetic recon-

nected flux is 1.2.

Figure 8.25: Results from 20-moment two-

fluid simulations by Johnson et al. [8] show-

ing out of plane magnetic field at t =

18Ω−1
ion.

quadrupole results of Pritchett et al. [3], Schmitz et al. [4], and Johnson et al. [7,8] are included

in Figures 8.22, 8.23 and 8.24-8.25, respectively. This illustrates the somewhat decoupled nature

of the fluid dynamic behaviour of the electrons and ions with the behaviour of the magnetic

field. As can be seen by comparing the results, the fine detail found in the PIC and Vlasov

solutions between the quadrupoles close to the x-axis is recreated with the current high res-

olution base grid solution using the MMHDGLM2D model. The predicted solution is more

stable than the PIC code and the agreement is better than that obtained by Johnson’s 10- and

20-moment two-fluid results. Note that the scales are approximately correct as the magnitude

of the dimensionalization constant for the magnetic field is approximately one.

The predicted distribution of the pressure tensor of Figures 8.26 and 8.27 exhibit the major

elements which agree with the results in the literature; however, with a concentration of electron

pressure at the center coinciding with the existence of a magnetic island. For comparison, the

electron pressure tensor results from the Darwin-Vlasov simulation of Schmitz et al. [4] is

included in Figure 8.28 and the 10- and 20-moment two-fluid results of Johnson et al. [7] are

included in Figures 8.29 and 8.30. The results presented in Figures 8.26 and 8.27 have better

agreement than the two-fluid formulation of Johnson et al. [7] when compared to the Darwin-

Vlasov solutions, with the main difference being the effect of the magnetic island on the pressure

profile at the center of the domain.

It should be stated that the results for the base case are at a higher grid resolution than those

of Johnson et al. [6–8], so a lower mesh resolution of 400×200 is also examined, which is more
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(a) Electron pressure Pe,xx.

(b) Electron pressure Pe,yy.

(c) Electron pressure Pe,zz.

Figure 8.26: GEM test case solution with MGLM error cleaning showing diagonals of the

electron pressure tensor at t = 18Ω−1
ion and mesh resolution 1600×800 with collision frequency

107 s−1. Normalized magnetic reconnected flux is 1.77.
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(a) Electron pressure Pe,xy.

(b) Negative electron pressure −Pe,xz.

(c) Negative electron pressure −Pe,yz.

Figure 8.27: GEM test case solution with MGLM error cleaning showing off-diagonals of the

electron pressure tensor at t = 18Ω−1
ion and mesh resolution 1600×800 with collision frequency

107 s−1. Normalized magnetic reconnected flux is 1.77.
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(a) Electron pressure Pe,xx. (b) Electron pressure Pe,xy.

(c) Electron pressure Pe,yy. (d) Electron pressure Pe,xz.

(e) Electron pressure Pe,zz. (f) Electron pressure Pe,yz.

Figure 8.28: Results from Darwin-Vlasov simulations by Schmitz et al. [4] showing electron

pressure tensor at t = 17.7Ω−1
ion and total grid resolution 512×256. Normalized magnetic

reconnected flux is 1.0.

(a) Electron pressure Pe,xx. (b) Electron pressure Pe,xy.

(c) Electron pressure Pe,yy. (d) Electron pressure −Pe,xz.

(e) Electron pressure Pe,zz. (f) Electron pressure −Pe,yz.

Figure 8.29: Results from 10-moment two-fluid simulations by Johnson et al. [7] showing elec-

tron pressure tensor at t = 18Ω−1
ion. Normalized magnetic reconnected flux is 1.28.
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(a) Electron pressure Pe,xx. (b) Electron pressure Pe,xy.

(c) Electron pressure Pe,yy. (d) Electron pressure −Pe,xz.

(e) Electron pressure Pe,zz. (f) Electron pressure −Pe,yz.

Figure 8.30: Results from 20-moment two-fluid simulations by Johnson et al. showing electron

pressure tensor at t = 16Ω−1
ion.
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stable than the high mesh resolution case for the predicted fluid results. Returning to the

results previously shown in Figure 8.21, it is evident that the predicted distribution of the out

of plane magnetic field now resembles very closely the 10- and 20-moment out of plane magnetic

quadrupole results of Johnson et al., which are shown in Figures 8.24 and 8.25. The predicted

electron pressure tensor for the 400×200 coarse mesh was also examined, and the predicted

distribution of these quantities are presented in Figures 8.31 and 8.32 for the diagonal and off

diagonal terms, respectively. The pressure plots at the coarser mesh also agree very well with

the Vlasov simulations of Schmitz et al. [4], particularly the off-diagonal terms which play a

large role in the evolution of the magnetic field through the Ohm’s law as noted by Schmitz et

al. The present results also agree fairly well with Johnson’s 10-moment results, but captures the

results of the Vlasov simulation more closely, though it should be mentioned at the resolutions

being used, the results are not converged and may simply agree better because the resolutions

of the results are similar. Johnson et al.’s 20-moment results for the off-diagonal pressures now

agrees very well with the results of the current study. The only major difference between the

results presented here and those of Schmitz et al. and Johnson et al.’s results is the y-direction

electron pressure. A rectangular region of high anisotropic pressure exists in the center here

which makes sense since the electrons would want to spiral along the field lines.

Next, three sets of results were examined to compare the reconnected flux values and the out

of plane currents to the coupled Vlasov solutions of Rieke et al. [5]. The three cases were a col-

lisionless 512×256 mesh resolution case, and a case with mesh resolution of 400×200 with both

physical collisions and no collisions. All cases made use of the proposed MGLM error cleaning

algorithm. The results at a time of t = 32Ω−1
ion showing the negative out of plane current,

−Jz, for the three cases considered are presented in Figures 8.33(b), 8.33(d) and 8.33(c) for

the collisionless 512×256 mesh, the physical 400×200 mesh and the collisionless 400×200 mesh

cases, respectively. The 400×200 grid solutions at a time of t = 32Ω−1
ion resulted in a normalized

reconnected flux of 3.34 and 3.37 for the physical collisions and completely collisionless solu-

tions respectively, while the 512×256 grid collisionless case resulted in a normalized magnetic

reconnected flux of 3.32.

All three of the numerical solutions summarized in Figure 8.33 are very similar, with the

collisionless and higher grid resolution solutions exhibiting more oscillations in the plasma.

The reconnected flux value agrees with the majority of the literature for long time runs past

t = 30Ω−1
ion using a variety of solution procedures [2, 4, 54, 65, 66, 70, 71]. When compared with

the coupled Darwin-Vlasov two-fluid results obtained by Rieke et al. [5], which is included in

Figure 8.33(a), it can be seen that the results agree extremely well, both for the normalized

magnetic reconnected flux value and also for the predicted form of the out of plane current.



168 Chapter 8. Numerical Results for Two-Dimensional Plasma Flows

(a) Electron pressure Pe,xx.

(b) Electron pressure Pe,yy.

(c) Electron pressure Pe,zz.

Figure 8.31: GEM test case solution with MGLM error cleaning showing diagonals of the

electron pressure tensor at t = 18Ω−1
ion and mesh resolution 400×200 with collision frequency

107 s−1. Normalized magnetic reconnected flux is 0.82.



8.4. Numerical Results for the Original GEM Case 169

(a) Electron pressure Pe,xy.

(b) Negative electron pressure −Pe,xz.

(c) Negative electron pressure −Pe,yz.

Figure 8.32: GEM test case solution with MGLM error cleaning showing off-diagonals of the

electron pressure tensor at t = 18Ω−1
ion and mesh resolution 400×200 with collision frequency

107 s−1. Normalized magnetic reconnected flux is 0.82.
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The peaks and outline of the current regions occur in the same place and the values also agree

(note that the results must be non-dimensionalized by e nref vA).

8.4.6 Collisional Effects on Reconnection

The collision frequency for the base, 1600×800, grid with MGLM error correction was altered

to explore the effects of collisions on the solution and values of the reconnected magnetic flux.

Three different collision regimes were examined: the collisionless (νs = 0 s−1), transitional

(νs = 107 s−1), and fully collisional (νs = 1012 s−1) regimes. Figures 8.34 and 8.35 provide

comparisons showing |By| with magnetic field lines and Pe,xx for t = 18Ω−1
ion for the cases

examined. In general, with less collisions, the solution becomes less stable, with the rate

of reconnection increasing when going from collisional to collisionless. As mentioned before,

this trend has also been found in the literature [71]; however, the actual predicted differences

in the reconnected flux between the transitional and collisionless regimes are not large here.

Also, as can be seen in Figures 8.34(a) and 8.35(a), which shows the base case with magnetic

divergence cleaning at t = 18Ω−1
ion, with no collisions, the solution is asymmetric with the

magnetic island having moved already towards the left along with other asymmetries that can

be seen in the solution. However, when the regime moves towards an isotropic 5-moment fluid

description, with fully collisional inter- and intra-species collision terms, results such as those

plotted in Figures 8.34(c) and 8.35(c) are obtained. The magnetic island has been eliminated

and the region where the magnetic field lines have reconnected is much larger; however, the

total magnetic reconnected flux is lower due to the absence of the magnetic island. This finding

is to be expected as shown in Figure 8.12, which depicts the 5-moment result of Rieke et al. [5]

as being much lower in reconnected flux than the anisotropic models.

Results for Modified Johnson’s Case

In a 2013 presentation for the SIAM Conference on Computational Science and Engineering [8],

Johnson and Rossmanith revealed the collision relationship used to obtain Johnson’s thesis

results. These ultimately were slightly different than the constant collision frequencies used

for the results presented in this chapter. To compare how the results differed for the modified

collisional rates, the collision frequencies of Johnson and Rossmanith were reproduced and the

base case was examined with these new collision frequencies. The collision frequencies were

separate for the electron and ion species and determined to be approximately 2.0 × 105 s−1

and 2.0 × 106 s−1 for the ions and electrons, respectively. Figures 8.36(b) and 8.37(b) present

predicted values of |By| along with magnetic field lines and Pe,xx, respectively at t = 18Ω−1
ion for
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(a) Coupled Darwin-Vlasov two-fluid results, Rieke et al. [5]. Normalized magnetic reconnected flux is 3.2.

(b) Collisionless MGLM results with a 512×256 mesh. Normalized magnetic reconnected flux is 3.32.

(c) Collisionless MGLM results with a 400×200 mesh. Normalized magnetic reconnected flux is 3.37.

(d) Physical collisions MGLM results with a 400×200 mesh. Normalized magnetic reconnected flux is 3.34

Figure 8.33: Out of plane current results comparison for the GEM problem at t = 32Ω−1
ion.
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(a) Collisionless. Normalized magnetic reconnected flux is 1.822.

(b) Collision frequency 107 s−1. Normalized magnetic reconnected flux is 1.77.

(c) Collision frequency 1012 s−1. Normalized magnetic reconnected flux is 1.433.

Figure 8.34: GEM test case solution comparison with MGLM error cleaning showing |By| and
magnetic field lines at t = 18Ω−1

ion and a mesh resolution of 1600×800 for various collision

frequencies.
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(a) Collisionless. Normalized magnetic reconnected flux is 1.822.

(b) Collision frequency 107 s−1. Normalized magnetic reconnected flux is 1.77.

(c) Collision frequency 1012 s−1. Normalized magnetic reconnected flux is 1.433.

Figure 8.35: GEM test case solution comparison with MGLM error cleaning showing Pe,xx at

t = 18Ω−1
ion and a mesh resolution of 1600×800 for various collision frequencies.
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the base mesh resolution of 1600×800 using the modified, Johnson and Rossmanith, collision

frequencies. Predictably, the results are slightly less stable, but do not differ greatly from the

results in the rest of this section both qualitatively and also for total magnetic reconnected flux.

A set of alternate initial conditions were also examined, as outlined by Johnson [6], which

included second-order effects for initial current, usually left to evolve on their own. Equation

(8.14) is modified with an addition so that

J =
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which resulted in Figures 8.36(c) and 8.37(c). This was coupled with the separate collision

frequencies of Johnson and Rossmanith [8]. There is not much difference in the final solution as

compared with Figures 8.36(b) and 8.37(b), except that there is slightly less reconnection and

there is a curious move to the right for the magnetic island. Ultimately the magnetic island

merges with the right lobe in this case.

8.4.7 Comparison of the Effect of Mass Ratio on the Electron Diffusion

Thickness

The effect of the electron-ion mass ratio was briefly examined, by considering the low mesh

resolution 400×200 base case with a physical electron-ion mass ratio. It was found that using

a physical mass ratio resulted in a much stiffer and more unstable solution, requiring a smaller

time step as was expected and found by other researchers [189].

In order to compare the results obtained with the physical mass ratio, the out of plane electron

currents were plotted at t = 18Ω−1
ion for both mion/me = 25 and for the physical mass ratio,

mion/me = 1836, in Figures 8.38(a) and 8.38(b), respectively. The change in the mass ratio

causes an equivalent change in the electron diffusion region as found in the literature where the

diffusion region decreases with increasing ion-electron mass ratio [2, 70, 189]. Approximately

measuring the peak to peak distance of the diffusion region normalized by the respective ion

inertial length, δion, results in

d
(25)
xe

d
(Real)
xe

= 2.76. (8.30)

The theoretical value for this ratio as found by Ricci et al. [189] is 2.92, however, measured

values in simulations are often lower. The value obtained is close to the value obtained by Ricci

et al., which was 2.8.
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(a) Collision frequency 107 s−1. Normalized magnetic reconnected flux is 1.77.

(b) Johnson collision frequency. Normalized magnetic reconnected flux is 1.865.

(c) Johnson conditions. Normalized magnetic reconnected flux is 1.839.

Figure 8.36: GEM test case solution comparison with MGLM error cleaning showing |By| and
magnetic field lines at t = 18Ω−1

ion and mesh resolution 1600×800 with changes in collision

frequency and initial conditions.
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(a) Collision frequency 107 s−1. Normalized magnetic reconnected flux is 1.77.

(b) Johnson collision frequency. Normalized magnetic reconnected flux is 1.865.

(c) Johnson conditions. Normalized magnetic reconnected flux is 1.839.

Figure 8.37: GEM test case solution comparison with MGLM error cleaning showing Pe,xx at

t = 18Ω−1
ion and a mesh resolution of 1600×800 with changes in collision frequency and initial

conditions.



8.4. Numerical Results for the Original GEM Case 177

x

y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1
-J_ez: -8E+06 -5E+06 -2E+06

(a) GEM mass ratio mion/me = 25. Normalized magnetic reconnected flux is

0.82. Normalized peak to peak diffusion region distance d
(25)
xe = 1.37.
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(b) Physical mass ratio mion/me = 1836. Normalized magnetic reconnected flux

is 1.05. Normalized peak to peak diffusion region distance d
(Real)
xe = 0.497.

Figure 8.38: Comparison of GEM test case solutions with MGLM error cleaning showing −Je,z
at t = 18Ω−1

ion and a mesh resolution of 400×200.
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8.4.8 Effects of Divergence Cleaning Strategies on Numerical Solutions

To assess the quality of the solution obtained, predicted solutions for various combinations

of error correction schemes were examined and compared. The error correction combinations

examined were FGLM (refer to Section 3.8.4), MGLMED (refer to Section 3.8.5), and no error

correction (NGLM). The MGLM scheme (refer to Section 3.8.4) is the error correction used

for the base case and was examined in the previous section. Each error correction scheme was

examined using the GEM case for a mesh resolution of 1600×800 to a time of 18Ω−1
ion for the

three different constant collision regimes of collisionless (νs = 0 s−1), transitional (νs = 107 s−1),

and fully collisional (νs = 1012 s−1). Note that solution results could not be obtained in all cases

due to instabilities. All obtained results in this section are placed into figures showing either

|By| with magnetic field lines (Figures 8.39, 8.40 and 8.42) or the electron x-direction pressure

(Figures 8.41 and 8.43) and are discussed in the following sections.

FGLM Error Correction Results

As was found by other researchers [7, 65, 66, 73], utilizing a full GLM error correction on the

electric and magnetic fields resulted in very unstable results. The results for the collisionless

and transitional regimes could not be obtained due to negative energies or densities, however

the fully collisional regime could be obtained, but as can be seen from the results of Figure

8.39, the numerical simulation appears to be unstable with a large number of oscillations in the

predicted solutions.

MGLMED Error Correction Results

A less strict method of electric field divergence cleaning is achieved using the electric diffusion

method, MGLMED, as discussed in Section 3.8.5. Results obtained with this scheme were far

more stable than with the FGLM method. Despite this, solutions obtained using MGLMED

were less stable than with the MGLM scheme and only the transitional and fully collisional

simulations could be completed successfully.

The predicted transitional solutions, Figures 8.40(b) and 8.41(b), are very similar to the MGLM

counterparts (Figures 8.40(a) and 8.41(a)), which shows that the effect of charge separation

errors on the GEM problem are minimal. These findings agree with what other researchers

have found when examining alternate charge separation error cleaning methods related to the

Langdon-Marder corrections [7, 66, 70]. This was verified by examining the charge separation
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Figure 8.39: GEM test case solution with Full GLM cleaning showing |By| and magnetic field

lines at t = 18Ω−1
ion and a mesh resolution of 1600×800 with collision frequency 1012 s−1.

errors for the MGLM and MGLMED solutions, where in the MGLM solution the errors are

high, but concentrated, while in the MGLMED solutions, the errors are negligible. The variance

in the magnetic reconnected flux is around 4% between the two solutions. This is expected as

altering the error cleaning of the Maxwell’s equations may produce differences in the final

magnetic fields. Even so, the differences are fairly minor.

Figure 8.44 depicts the predicted magnetic reconnected flux versus x-direction grid resolution

for the MGLMED scheme based on the base case collision frequency of νs = 107 s−1. The

magnetic reconnected flux approaches a value of 2, like the MGLM case; however, at extremely

high resolutions, the MGLMED scheme becomes increasingly unstable and the results became

unreliable and is reflected in the final data point of the plot.

The fully collisional cases depicted in Figures 8.42(b) and 8.43(b) are nearly identical to the

MGLM versions. The magnetic reconnection value is also very close to the MGLM result and

reflects the disappearance of the magnetic island in the drastic reduction in reconnection as

compared with the NGLM results. The added stability of the fully collisional scheme contributes

to the convergence of both the MGLM and MGLMED solutions.

No Error Correction Results

As with the MGLMED solutions, when there is no error correction, the solution for the collision-

less regime could not be obtained due to the instabilities which caused non physical solutions.
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(a) MGLM error correction. Normalized magnetic reconnected flux is 1.77.

(b) MGLMED error cleaning. Normalized magnetic reconnected flux is 1.84.

(c) No error cleaning. Normalized magnetic reconnected flux is 1.722.

Figure 8.40: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

|By| and magnetic field lines at t = 18Ω−1
ion and a mesh resolution of 1600×800 with collision

frequency 107 s−1.
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(a) MGLM error correction. Normalized magnetic reconnected flux is 1.77.

(b) MGLMED error cleaning. Normalized magnetic reconnected flux is 1.84.

(c) No error cleaning. Normalized magnetic reconnected flux is 1.722.

Figure 8.41: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

Pe,xx at t = 18Ω−1
ion and a mesh resolution of 1600×800 with collision frequency 107 s−1.
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(a) MGLM error correction. Normalized magnetic reconnected flux is 1.433.

(b) MGLMED error cleaning (MGLMED). Normalized magnetic reconnected

flux is 1.436.

(c) No error cleaning. Normalized magnetic reconnected flux is 2.341.

Figure 8.42: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

|By| and magnetic field lines at t = 18Ω−1
ion and a mesh resolution of 1600×800 with a constant

collision frequency of 1012 s−1.
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(a) MGLM error correction. Normalized magnetic reconnected flux is 1.433.

(b) MGLMED error cleaning. Normalized magnetic reconnected flux is 1.436.

(c) No error cleaning. Normalized magnetic reconnected flux is 2.341.

Figure 8.43: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

Pe,xx at t = 18Ω−1
ion and a mesh resolution of 1600×800 with a constant collision frequency of

1012 s−1.
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Figure 8.44: Convergence plot of normalized magnetic reconnected flux versus x-direction res-

olution for GEM test case at t = 18Ω−1
ion for the MGLMED error correction.
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Solutions were obtained for the transitional and fully collisional regimes. Once again, the pre-

dicted transitional regime solutions for NGLM differs very little compared to the MGLMED

and MGLM counterparts as can be seen in Figures 8.40(c) and 8.41(c). The predicted mag-

netic reconnected flux is similar to that of the MGLM scheme, but is consistently lower, as can

be seen by the magnetic reconnected flux versus x-direction grid resolution convergence plot,

Figure 8.45, which approaches 1.7 instead of 2 as in the MGLM case. There is also additional

instability at higher mesh resolutions when there is no error cleaning.

A surprising development occurs when the fully collisional regime with no error correction is

examined. As can be seen in Figures 8.42(c) and 8.43(c), the magnetic island remains at the

center, instead of disappearing as in the other schemes. Despite the existence of the magnetic

island, other elements of the fully collisional case from the other schemes remain such as the

very large magnetic reconnection region. This, combined with the magnetic island results in a

very large value for the reconnection flux of 2.341. This finding indicates a few things. First, the

larger reconnection region and characteristic pressure profile (except at the magnetic island) is

largely driven by fluid mechanical factors instead of the form of Maxwell’s equations. Further,

the magnetic island tends to appear when the simulation is less stable. Exploring the origins

of the magnetic island would be of some interest and is discussed further in the future work

section of the next chapter.

8.4.9 Summary of Findings

The major conclusions arising from this section of the thesis dealing with the GEM case results

are summarized here. As was previously found by all researchers that have commented on

the matter, the magnetic reconnection does not seem to be affected greatly by the underlying

fluid dynamics. Varying fluid parameters, such as mass, isotropization and collisions, do not

contribute greatly to changes in the reconnected fluxes when the solution procedures are the

same [2, 3, 54, 65, 71, 189]. As was also found by most other researchers [7, 66], enforcing the

solenoidal condition through divergence cleaning of the magnetic field errors results in the most

stable solutions, while aggressive charge separation error cleaning results in generally unstable

solutions. Using a Langdon-Marder diffusive error cleaning scheme (MGLMED) [7,66,70] results

in a stable solution to the GEM case, but does not result in a significantly different solution

over the MGLM scheme and results in an overall less stable solution.

Collisions, though not strictly physical for the GEM conditions, results in solutions for the

GEM case which are more stable. Simulations with transitional collision frequencies results in

predictions that resemble closely those of the collisionless results, but exhibit greater stability.



186 Chapter 8. Numerical Results for Two-Dimensional Plasma Flows

Nx

|B
y|

/B
re

f
i

500 1000 1500 2000 2500 3000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8.45: Convergence plot of normalized magnetic reconnected flux versus x-direction res-

olution for GEM test case at t = 18Ω−1
ion for no error correction.
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It was found that the grid resolution has the greatest effect on the predicted values of the

magnetic reconnected flux. The influence of mesh resolution was observed to be greater than

other parameters and even divergence error correction schemes used. However, the reconnected

flux appears to show convergence at very high mesh resolutions. The results of the mesh

resolution study presented here also suggests that most solutions in the literature may not

be fully converged solutions. The requirements for high resolution meshes when simulating

plasmas in general has been noted by other researchers [3, 47, 65, 134].

Qualitatively, the solutions presented in this chapter agree well with the majority of the solutions

in the literature, and also reproduce the reconnected fluxes of PIC simulations [2, 54, 189]

for lower computational cost, but at higher mesh resolutions. A comparison of the temporal

evolution of the predicted magnetic reconnection between the MMHDGLM2D model and the

full PIC simulations [3] agree well for a low and high resolution mesh. The final reconnected

flux value is affected by mesh resolutions. The results from Darwin-Vlasov simulations [4, 5]

also agree well with the solutions obtained with the MMHDGLM2D numerical procedure for

similar resolutions and the out of plane currents match very well, while computationally the

MMHDGLM2D model is significantly cheaper. The relatively small computational effort of

the MMHDGLM2D model has allowed the generation of very high mesh resolution solutions

of the GEM test case. The differences that are seen in the reconnected fluxes and plasma

solutions could be a result of the set of equations used, as well as the numerical approached

employed, as many have commented that significant changes can and do result from these

differences [2, 4, 5, 38, 71].

It is up to debate whether the magnetic island observed in some results is a physical structure

or a result of mathematical or computational artefacts. Magnetic islands appear in solutions

with very little collisions, higher mesh resolutions, or from a lack of error cleaning, which all

characteristically results in less stable solutions. On the other hand, the MGLM scheme, which

seems to produce the most stable results, reduces the occurrence of the magnetic island. Note

that the divergence error cleaning has a dissipative effect on the overall scheme which contributes

to a reduction in the unstable oscillatory behaviour. Increasing the collision frequency also

generally reduces oscillatory behaviour and results in a reduction of the occurrence of the

magnetic island except when there is no error cleaning. The relationship between properties

that affect the stability of the simulations and the occurrence of the magnetic island has been

observed in other studies [28, 54, 63, 66, 188]. Further, Kuznetsova et al. [54] attributed the

magnetic island to PIC instabilities and observed they reduce with an increase in isotropic

effects. Others have studied the role of turbulence in the formation of magnetic islands [191]. A

higher-order time and space algorithm also eliminated a low mesh resolution magnetic island as
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found by Loverich et al. [63] which also illustrates the possible numerical origin of the magnetic

island. The seemingly random, asymmetric motion observed in this study and also by other

researchers above seems to indicate that many factors can cause the formation and evolutions

of the magnetic island.

8.5 Numerical Results for LEO GEM Case

An initial high resolution solution for the LEO GEM case of Section 8.3.1 was obtained at

1600×800 cells using realistic self collisions, but without reactions or inter-particle collisions.

The MGLM error correction scheme was used. The results of this simulation can be seen in

Figures 8.46 and 8.47, which shows |By| with magnetic field lines and the x-direction electron

pressure, respectively. This case was slightly unstable with some wave-like numerical instabili-

ties manifesting in the magnetic field. This case was also stiffer, resulting in a 2400% increase

in computational time over the base GEM case. The limiting time scale for this problem, and

also for the magnetopause GEM case, changed from the error advection (which is set to be 5%

faster than the set speed of light in the GEM case), to the upper hybrid frequency due to the

now significantly smaller electron mass. This is consistent with PIC simulations where plasma

frequencies are often the limiting time scales [140]. This case has very similar characteristics to

the base GEM case along with the formation of a magnetic island that is moving towards the

right lobe. The normalized magnetic reconnected flux, which is once again the integration of

the |By| magnetic field along the x-axis across the entire domain divided by 2, is close to that

expected at 1.238. Because of the instability, despite running at a TSCF of only 0.1, a lower

resolution case was examined for further investigations.

A second case was considered at a mesh resolution of 400×200 which was far more stable.

The results of this simulation are presented in Figures 8.48 and 8.49. Once again similar

structures are observed with a very small magnetic island forming. The reconnected flux is

quite low at 0.331, and a lower reconnection rate is expected as in the original GEM case.

In order to investigate the effect of interparticle collisions and reactions, this case was again

examined at the 400×200 grid resolution and MGLM correction, but with both inter- and intra-

particle collisions enabled as well as charge exchange and ionization-recombination reactions.

The results can be seen in Figures 8.50 and 8.51 which shows |By| with magnetic field lines

and the x-direction electron pressure, respectively. As was expected at these conditions, the

effects of the reactions and interparticle collisions were very small. The time scales for the

reactions are at least ten million times that of the limiting time scale due to the rarefied nature

of the plasma. Although the distribution of the magnetic field was slightly different, it was not
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Figure 8.46: LEO GEM test case solution with MGLM error cleaning showing |By| and magnetic

field lines at t = 18Ω−1
ion and a mesh resolution of 1600×800. Normalized magnetic reconnected

flux is 1.238.

Figure 8.47: LEO GEM test case solution with MGLM error cleaning showing Pe,xx at t =

18Ω−1
ion and a mesh resolution of 1600×800. Normalized magnetic reconnected flux is 1.238.
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enough to change the reconnected flux significantly, which is indicated slightly lower at 0.330.

The reduction in normalized magnetic reconnected flux, in general, is expected as was found

by others when moving towards the real electron mass [2, 70, 189]. Clearly, the conditions are

essentially collisionless in reaction and interparticle collisions as is expected [74]. The stiffness

of the problem was also expected as moving to the physical electron/ion mass ratio increases

the stiffness of the problem by an exponential factor [189].

8.6 Numerical Results for Magnetopause GEM Case

The magnetopause GEM case of Section 8.3.2 was found to be extremely stiff, resulting in

more than a three order magnitude increase in computational effort to perform the simulation

compared to the original and LEO GEM case. Once again, the TSCF had to be reduced to

0.1. The reduction in TSCF was due to increased instability from the more fully collisionless

and rarefied case. This resulted in not being able to obtain a high resolution solution due to

the added computational cost and instability. A test case with a resolution of 384×192 was

obtained, and the results for this case at the standard time of t = 18Ω−1
ion are shown in Figures

8.52 and 8.53 for |By| with magnetic fieldlines and the electron pressure in the x-direction,

respectively. Once again, the solution has many of the features of the GEM and LEO GEM

case though with a smaller normalized magnetic reconnected flux value. The even smaller

reconnected flux value over the LEO GEM case can be attributed to the fact that the speed of

light is not constant to the reference values. The domain for this problem is significantly larger

and so could change the expected behaviour of electromagnetic waves as travel times change

across the domain.

An even lower resolution case was examined to verify the unconverged nature of the solution.

A mesh resolution of 192×96 was examined for the magnetopause GEM case. The results are

presented in Figure 8.54 and 8.55 for |By| with magnetic fieldlines and the electron pressure in

the x-direction, respectively. The normalized magnetic reconnected flux is significantly lower

and it is clear that the results are not converged at this resolution.

8.7 LEO GEM Case Results with NKS Implicit Time Marching

Scheme

The LEO GEM case of Section 8.3.1 presented a problem that was significantly stiffer than

the original GEM case making it an ideal candidate for the NKS dual-time scheme. A small
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Figure 8.48: LEO GEM test case solution with MGLM error cleaning showing |By| and magnetic

field lines at t = 18Ω−1
ion and a mesh resolution of 400×200. Normalized magnetic reconnected

flux is 0.331.

Figure 8.49: LEO GEM test case solution with MGLM error cleaning showing Pe,xx at t =

18Ω−1
ion and a mesh resolution of 400×200. Normalized magnetic reconnected flux is 0.331.
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Figure 8.50: LEO GEM test case solution with MGLM error cleaning showing |By| and magnetic

field lines at t = 18Ω−1
ion and a mesh resolution of 400×200 including reactions and interparticle

collisions. Normalized magnetic reconnected flux is 0.330.

Figure 8.51: LEO GEM test case solution with MGLM error cleaning showing Pe,xx at

t = 18Ω−1
ion and a mesh resolution of 400×200 including reactions and interparticle collisions.

Normalized magnetic reconnected flux is 0.330.
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Figure 8.52: Magnetopause GEM test case solution with MGLM error cleaning showing |By|
and magnetic field lines at t = 18Ω−1

ion and a mesh resolution of 384×192. Normalized magnetic

reconnected flux is 0.232.

Figure 8.53: Magnetopause GEM test case solution with MGLM error cleaning showing Pe,xx

at t = 18Ω−1
ion and a mesh resolution of 384×192. Normalized magnetic reconnected flux is

0.232.
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Figure 8.54: Magnetopause GEM test case solution with MGLM error cleaning showing |By|
and magnetic field lines at t = 18Ω−1

ion and a mesh resolution of 192×96. Normalized magnetic

reconnected flux is 0.087.

Figure 8.55: Magnetopause GEM test case solution with MGLM error cleaning showing Pe,xx

at t = 18Ω−1
ion and a mesh resolution of 192×96. Normalized magnetic reconnected flux is 0.087.
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Table 8.3: Comparison of MGLM Realistic LEO GEM case at 128× 64 resolution

Scheme TSCF CPU Time |Brec| (T ·m)

Explicit 0.3 2732 1.264× 10−2

NKS Godunov 25 1125 1.264× 10−2

NKS Godunov 50 921.2 1.263× 10−2

NKS Neglected 25 5319 1.264× 10−2

NKS Neglected 50 - -

sample problem of 128× 64 cells was used in order to eliminate Schwarz preconditioning issues,

which was found to be a significant obstacle in simulating the GEM problem using the NKS

scheme. The Schwarz preconditioning issue is discussed further in the future work Section 9.2

of the last chapter of the thesis. Using MGLM error correction and particle collisions, the

computational times for the various simulations are included in Table 8.3. The system with no

residual Jacobian (neglected) on the block right preconditioner of the NKS Maxwell’s equations

as discussed in Section 6.7.2 did not converge at a TSCF of 50. As can be seen, the NKS

dual-time scheme with the Godunov approximate Jacobian for the Maxwell’s equations has a

significant advantage over both the non-preconditioned and explicit method with no degradation

in reconnected flux results. The NKS scheme did not perform as well with the original GEM

case. It is theorized that the stiffer LEO case gave an advantage to the preconditioned system,

since with the smaller time step needed for the LEO case, the LHS preconditioning matrix

becomes diagonally dominant and compensates for the singular nature of the preconditioning

matrix as mentioned in Section 6.7.2. NKS seems to excel at stiff systems when not heavily

Schwarz preconditioned as seen in Chapter 7. It was found that the optimal ratio of diagonal

dominance was approximately constant for the highest TSCF for a converging preconditioned

system regardless of the preconditioning type.

8.8 Discussion of Results for the Realistic GEM Cases

The findings from the two realistic GEM cases were somewhat to be expected with the increased

computational difficulty and lower reconnected flux when going to the real electron-ion mass

ratio and speed of light as was found in the literature [2, 70, 189]. These factors, and the more

collisionless regime using physical gas properties, resulted in significantly less stable solutions.

The computational difficulty and reduced stability made obtaining high mesh resolution solu-

tions difficult, and beyond the scope of this thesis. The realistic GEM cases examined here are
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deemed to be not fully grid converged. Obtaining a stable high mesh resolution solution would

be desirable in future studies, but a more effective implementation of the NKS scheme would

be essential. Adaptive mesh refinement may also be a way to obtain a converged high mesh

resolution solution and is recommended for future follow-on studies.



Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

In this thesis, a new model for predicting the flow and behaviour of multispecies, anisotropic,

non-equilibrium, multi-temperature, partially ionized, plasmas was proposed and developed

using extended fluid dynamics. Additionally, a finite-volume numerical solution procedure was

developed for the multifluid non-equilibrium plasma model. The combined approach was shown

to offer significant computational advantages over direct particle simulation techniques, while

recovering known solutions to the particle simulations and other published results.

The multifluid MHD model consisted of three plasma species (ion, electron, neutral) that takes

into consideration pressure and temperature anisotropies by making use of a 10-moment, Gaus-

sian moment closure. The non-equilibrium collisional processes are modelled using a BGK

collision approximation. A full set of Maxwell’s equations is included with GLM and Langdon-

Marder divergence error cleaning schemes for treating the electro-magnetic field errors and are

coupled to the plasma species equations through the source terms. Chemical kinetic mech-

anisms are used to model the plasma reactions, including charge exchange and ionization-

recombination. The separation of the plasma species equations and the Maxwell’s equations

with coupling through the source terms allows for flexibility in the problems that can be con-

sidered with the MMHD model and can include large temperature anisotropies and differences

in plasma species flows as well as being able to simulate very high to low density plasma species

and strong to weakly magnetized plasmas.

The numerical solution procedure made use of a Godunov-type upwind finite-volume discretiza-

tion scheme. The Godunov-type scheme used here is second-order in time and space and makes

197
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use of an HLLE and Godunov numerical flux function to solve the Riemann based fluxes for

the fluid and Maxwell’s equations, respectively. A block-based domain decomposition scheme is

used to partition the problem for large-scale parallel computation. Two time marching schemes

are considered: A standard explicit method and an implicit scheme. The explicit numerical

solution procedure is a second-order predictor-corrector scheme. The implicit scheme made use

of a NKS algorithm with GMRES to solve the system of equations for each Newton step. The

implicit numerical solution procedure is used for steady problems, or unsteady problems with

a second-order backwards difference time integration in a dual-time formulation making use of

the NKS algorithm to solve each physical time step sub-problem.

The mathematical properties of the multifluid MHD model were examined through a dispersion

analysis. The system of equations were shown to be hyperbolic, and the semi-discrete form of

the equations were found to be suitable for solution by Godunov-type finite volume schemes.

The numerical solution procedure for the multifluid MHD model was evaluated through various

accuracy assessment test cases for both steady and unsteady problems using both the explicit

and implicit solution procedures. The error correction schemes for the Maxwell’s equations

was found to effectively clean errors arising from the divergence of the electric and magnetic

fields. Further comparisons were made with 1D solutions from a 1D multifluid MHD model

and 2D non-magnetized flows. The scheme produced second-order solutions in time and space,

recovered known 1D multifluid MHD and 2D non-magnetized results, and the implicit scheme

provided significant computational performance improvements over the explicit scheme for the

cases considered during evaluation and validation.

To explore the computational capabilities of the proposed multifluid MHD model, the GEM

problem was examined along with various modified versions including the LEO and magne-

topause versions. It was shown that the multifluid MHD scheme is able to recover results from

the literature generated by PIC schemes and Darwin-Vlasov simulations with significantly less

computational cost. Simulated results were found to be close to other multi-fluid models. Due

to the relative low computational cost of the scheme, high mesh resolution results were able to

be obtained. A grid convergence study was also performed showing convergence of the magnetic

reconnected flux at high mesh resolutions. It was found that at unconverged mesh resolutions,

the greatest factor that affected the magnetic reconnection was the grid resolution, and not

other factors such as the collisions or electron-ion mass ratios. The GEM case was examined

using the implicit dual-time NKS scheme which shows promise, however the computational

advantages of the scheme were not consistent in all the GEM cases examined.

The original contributions of the thesis include:
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• A multifluid MHD model based on the 10-moment Gaussian closure capable of simulating

anisotropic temperatures and pressures, with a full modelling of Maxwell’s equations with

divergence error cleaning, along with collisional and reaction processes was developed.

• A computationally tractable, second-order, numerical solution procedure was developed

for one- and two-dimensions using a Godunov-type upwind finite-volume scheme with

HLLE and Godunov numerical flux functions.

• Dispersion analysis of the two-fluid plasma subset of the MMHD model.

• Application of implicit temporal limiting in mitigating numerical oscillations in the 1D

MMHD model.

• Development of an early two-dimensional implicit NKS scheme for the MMHD model and

application to sample test problems and the GEM challenge.

• The developed MMHD model and numerical solution procedure was applied to the GEM

challenge, with a grid convergence study and the effect of various error correction schemes

and collisional regimes was explored.

• Application of the MMHD model and numerical solution procedure to physical elec-

tron/ion masses and LEO and magnetopause plasma conditions.

9.2 Future work

9.2.1 Adaptive Mesh Refinement

One avenue of research that should be considered is adaptive mesh refinement or AMR [192].

AMR is a procedure by which a mesh can be refined in areas that require higher mesh resolutions

to resolve features of the simulation, while keeping the rest of the computational domain in a

coarser, lower computational load, mesh resolution. As was mentioned in various parts of this

work and by other researchers [3, 39, 43, 47, 63, 65, 65, 66, 134], high resolutions are required

to resolve many plasma flows. AMR can help alleviate the computational difficulties that

come with the need for high resolutions as well as reducing the number of total computational

domains to support the high resolutions. A good candidate for future research, is the block-

based AMR that uses physics-based refinement criteria similar to the schemes developed by

Groth et al. [147], Northrup et al. [131, 193, 194], Charest et al. [157, 195, 196] and Gao et

al. [153]. This type of AMR would be a good fit for the parallel block based implementation of

the MMHD numerical solution procedure. Further, an anisotropic AMR scheme has also been
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developed [197–199] which could prove useful particularly with magnetized, anisotropic flows.

There are also avenues for choosing physics-based refinement criteria for plasmas, such as those

proposed by Powell [200]. Additionally, more recent output- or error-based AMR methods such

as the methods developed by Narechania et al. [201] and Ngigi et al. [202] would also be worth

considering.

9.2.2 Physical Partially Ionized Transitional Test Cases

Though various parts of the multifluid MHD model were exercised in the current work, a test

case that challenges all aspects of the model, including reactions, and large species anisotropies

at once should be part of the future work going forward. Further, modelling shocks with

magnetized flows has been difficult and is a known issue, particularly when keeping errors in

the electric and magnetic fields low [66]. Solving test cases with the characteristics above would

be a notable challenge to tackle. Also, as noted in Section 8.3.2, the parameters used to generate

the magnetopause GEM case did not result in the correct energies. Formulating a GEM case

that would result in the correct conditions found at the magnetopause would be a problem of

interest.

A possible test case is a blunt body re-entry problem with a magnetic shield that holds the

potential to increase the plasma shock stand-off distance from the blunt body. This has gener-

ated interest due to possible applications in practical high speed transportation and spacecraft.

There have been experiments based around the Ziemer experiment [203–205] on the subject as

well as numerous numerical simulations attempting to recover the experimental results and to

prove the practicality of the various shielding [205,206], flow control [207], power [208] and drag

enhancement [209] techniques proposed. The models used to simulate the experiment assumed

strong magnetic fields, isotropic energies, or generalized Ohm’s laws. A simulation with the

multifluid MHD model would have none of these deficiencies. However, the existence of the

shock presents numerical difficulties that are beyond the scope of this thesis. Future work in

examining ways to treat shocks in the multifluid MHD scheme would be important in creating

a general magnetized flow solver.

9.2.3 Exploration of the Magnetic Island

As was reported in Chapter 8, the cause, formation, and evolution of the magnetic island should

be considered for extra study as it is not immediately clear whether it is a result of a physical

effect or a numerical artefact. There is inconsistency in the direction of the movement of the
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island, sometimes changing with the numerical scheme, and the magnetic island tends to occur

at higher, noisier, mesh resolutions, or when there are less stabilizing collisions, or when there is

less dissipative error cleaning. Higher-order schemes also seem to eliminate the magnetic island

for low mesh resolution solutions for 5-moment two-fluid models [63]. While the relationship

between the stability of a scheme and the formation of the magnetic island have been observed

[28, 54, 63, 66, 188] and studies of turbulence models on the formation of the magnetic island

have been performed [191], it would be an interesting avenue of research to determine the origin

of the magnetic island’s formation. The effect of temporal limiting would be a good start for

this study.

9.2.4 Further Study of Implicit Time Marching Scheme

While there is significant computational advantage to the MMHD model and numerical solution

procedure, problems with more fluid species, complex reactions and shocks will present signifi-

cant challenges in terms of stiffness and computational resources. An obvious avenue of future

work is through an implicit computational scheme. Preliminary investigation of the implicit

NKS scheme considered in this work shows potential in reducing computational costs as in the

evaluation and verification chapter, Chapter 7, where a speed up of several orders of magnitude

could be obtained over an explicit scheme. In Section 7.4 the NKS MMHD scheme is used to

predict non-magnetized flows and in this situation, the NKS scheme performs excellently. How-

ever, when applied to the GEM challenge, the results were inconsistent and dependent on the

problem and grid resolution being examined. Further study is required to produce a consistent,

robust, general implicit solution procedure.

In this work, two main problems were identified with the NKS MMHD scheme. One was the

degradation in computational performance due to the Schwarz preconditioning. As an example,

the base case GEM problem of Chapter 8, required the domain to be decomposed into 512

blocks in order to fit in the node memory, while splitting the GEM problem into just 8 domains

was found to cause a significant increase in computational time making it more expensive

than an explicit scheme. This issue is well known and a balance between the computational

advantage of solving smaller problems versus the increase in computational iterations due to

reduced global accuracy is an important consideration [131]. The observed rapid degradation

in iterative convergence and need for future improvements was also mentioned in Northrup’s

thesis [131]. The NKS MMHD scheme is particularly sensitive to the memory requirement,

not just because of the large number of governing equations, but due to the second issue

encountered which was the singular nature of the block right preconditioning matrix for the
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Maxwell’s equations as discussed in Section 6.7.2. The Maxwell’s equations are a degenerate

system, and if it were not for the temporal entries in the diagonal of the Maxwell’s equations

preconditioning matrix, a matrix inversion would be impossible. As discussed in Sections 8.7

and 7.2.12, the ill-posed nature of the Maxwell’s equations is such that for larger time steps,

the diagonal dominance of the preconditioning matrix is reduced and the singular nature of

the matrix takes over and increasingly poses a challenge to GMRES convergence. In general,

NKS MMHD GMRES iterations are at least an order of magnitude greater than the number of

iterations expected for a similar non-magnetized flow. The larger the GMRES iterations, the

higher the memory requirements, which aggravate the Schwarz preconditioning issue. Solving

the Maxwell’s equations preconditioning matrix issue would go a long way towards producing

an effective implicit algorithm for the MMHD model.

As mentioned, effective preconditioning is essential to an effective NKS GMRES scheme. As was

seen in Chapters 7 and 8, for certain problems, neglecting the approximate residual Jacobian

for the Maxwell’s equations can produce faster results than fully preconditioned simulations,

which indicate that an effective preconditioner has the potential to greatly accelerate solution

convergence. One area of study would be to identify what factors or entries in the precondition-

ing matrix most affects the convergence of the GMRES procedure. In Section 8.7 some studies

were undertaken to determine the diagonal dominance of the preconditioning matrix used and

it was found that the ratio between the absolute sum of the diagonal entries versus the absolute

sum of the off-diagonal entries of the preconditioning matrix was approximately the same for

the limit of converging solutions for the LEO GEM problem. This indicates a threshold for

numerical inversion of the preconditioning matrix.

There are other promising avenues of research that is suggested by the results of Chapter

5, where a temporal limiting implicit method was studied for the 1D version of the MMHD

model. The high resolutions needed for plasma simulations often result in numerical noise and

oscillations. As with the 1D case, temporal limiting has the potential to significantly reduce

these numerical oscillations. Temporal limiting should be applicable to the NKS scheme with

not too much difficulty and is one of the first things that should be considered for improving

the 2D numerical solution procedure.



Appendix A

Dispersion Analysis of the

5-Moment Two Fluid Model

A.1 Overview

To gain a better understanding of the Two-Fluid Model proposed by Shumlak and Loverich

[62] a dispersion analysis on the 16 equations is performed. The basic equations are slightly

modified from the form presented in Loverich’s paper. The equations are non-dimensionalized

and linearized about an equilibrium state, then the complex eigen equations are solved and

suitable parameters are chosen to create locus plots.

A.2 The Shumlak and Loverich Two-Fluid Model

The two-fluid model equations proposed by Shumlak and Loverich are based on a system of

collisionless 5-moment Eulerian transport equations; one set of equations for the ions and

electrons and also a set of equations to model the electromagnetic forces. The equations are

listed below.

Ion and Electron Conservative Continuity

∂nion
∂t

+∇ · nionuion = 0,

∂ne
∂t

+∇ · neue = 0,
(A.1)
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Ion and Electron Conservative Momentum

∂nionmionuion

∂t
+∇ · (nionmionuionuion + pionI) = nione (E+ uion ×B) ,

∂nemeue

∂t
+∇ · (nemeueue + peI) = −nee (E+ ue ×B) ,

(A.2)

Ion and Electron Conservative Energy

∂εion
∂t

+∇ · [(εion + pion)uion] = enionuion ·E,
∂εe
∂t

+∇ · [(εe + pe)ue] = −eneue ·E,
(A.3)

where

εion =
1

γ − 1
pion +

1

2
nionmionu

2
ion,

εe =
1

γ − 1
pe +

1

2
nemeu

2
e,

(A.4)

Faraday’s Law
∂B

∂t
= −∇×E, (A.5)

Ampère’s Law
∂E

∂t
= c2∇×B− 1

ǫ0
enionuion +

1

ǫ0
eneue. (A.6)

A.3 Non-Dimensional Two-Fluid Model Equations

The following basic quantities are used to non-dimensionalize the above equations:

ν, nref , pref , mref , µ0, γ. (A.7)

All variables are non-dimensionalized as follows:

t = t̄
1

ν
, x = x̄

√

γ
pref

nrefmref

1

ν
, mion = m̄ionmref , me = m̄emref ,

nion = n̄ionnref , ne = n̄enref , uion = ūion

√

γ
pref

nrefmref
, ue = ūe

√

γ
pref

nrefmref
,

pion = p̄ionγpref , pe = p̄eγpref , E = Ēγpref

√

µ0
nrefmref

, B = B̄
√
µ0γpref .

(A.8)

The following non-dimensionalized transport equation are obtained:

Non-Dimensional Ion and Electron Conservative Continuity

∂n̄ion
∂t̄

+ ∇̄ · n̄ionūion = 0,

∂n̄e
∂t̄

+ ∇̄ · n̄eūe = 0,
(A.9)
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Non-Dimensional Ion and Electron Conservative Momentum

∂n̄ionm̄ionūion

∂t̄
+ ∇̄ · (n̄ionm̄ionūionūion + p̄ionI) = Ke n̄ion

(

Ē+ ūion × B̄
)

,

∂n̄em̄eūe

∂t̄
+ ∇̄ · (n̄em̄eūeūe + p̄eI) = −Ke n̄e

(

Ē+ ūe × B̄
)

,
(A.10)

where

Ke =
e

νmref

√
γµ0pref , (A.11)

Non-Dimensional Ion and Electron Conservative Energy

∂ε̄ion
∂t̄

+ ∇̄ · [(ε̄ion + p̄ion) ūion] = Ke n̄ionūion · Ē,
∂ε̄e
∂t̄

+ ∇̄ · [(ε̄e + p̄e) ūe] = −Ke n̄eūe · Ē,
(A.12)

where

ε̄ion =
1

γ − 1
p̄ion +

1

2
n̄ionm̄ionū

2
ion,

ε̄e =
1

γ − 1
p̄e +

1

2
n̄em̄eū

2
e,

(A.13)

Non-Dimensional Ion and Electron Non-Conservative Pressure

∂p̄ion
∂t̄

+ ūion · ∇̄p̄ion +
5

3
p̄ion∇̄ · ūion = 0,

∂p̄e
∂t̄

+ ūe · ∇̄p̄e +
5

3
p̄e∇̄ · ūe = 0,

(A.14)

Non-Dimensional Faraday’s Law
∂B̄

∂t̄
= −∇̄ × Ē, (A.15)

Non-Dimensional Ampère’s Law

∂Ē

∂t̄
=

c2

a2ref
∇̄ × B̄− c2

a2ref
Ke n̄ionūion +

c2

a2ref
Ke n̄eūe, (A.16)

where a2ref = γpref/nrefmref , the reference speed of sound.

For the rest of this document we will drop the bar indicating non-dimensional terms.

A.4 Linearized Equations About the Equilibrium State

The system of equations is linearized by expanding around a constant equilibrium state with

small perturbations so that second-order terms in the perturbed solution are neglected. The
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primitive perturbative solution vector is

W∗ =
[

ñion, ñe, ũion,x, ũion,y, ũion,z, ũe,x, ũe,y, ũe,z, p̃ion, p̃e, Ẽx, Ẽy, Ẽz, B̃x, B̃y, B̃z

]T
(A.17)

and the equilibrium state is defined to be

W0 = [n0,ion, n0,e, 0, 0, 0, 0, 0, 0, p0,ion, p0,e, 0, 0, 0, B0,x, B0,y, B0,z]
T (A.18)

where the background electric field and bulk equilibrium velocities are set to zero.

Taking the non-dimensional two-fluid equations and substituting in for

W = W0 +W∗, (A.19)

and neglecting all higher order terms, the following linearized equations are obtained:

Linearized Ion and Electron Continuity

∂ñion
∂t

+ n0,ion (∇ · ũion) = 0, (A.20)

∂ñe
∂t

+ n0,e (∇ · ũe) = 0, (A.21)

Linearized Ion and Electron Momentum

∂ũion
∂t

+
1

n0,ionmion
∇p̃ion =

Ke

mion

(

Ẽ+ (B0,zũion,y −B0,yũion,z)x

− (B0,zũion,x −B0,xũion,z)y + (B0,yũion,x −B0,xũion,y)z

)

,

∂ũe
∂t

+
1

n0,eme
∇p̃e = −Ke

me

(

Ẽ+ (B0,zũe,y −B0,yũe,z)x

− (B0,zũe,x −B0,xũe,z)y + (B0,yũe,x −B0,xũe,y)z

)

,

(A.22)

(a power expansion is used to simplify the coefficient in front of the pressure term)

Linearized Ion and Electron Energy

∂p̃ion
∂t

+
5

3
pion∇ · ũion = 0,

∂p̃e
∂t

+
5

3
pe∇ · ũe = 0,

(A.23)

Ampère’s Law

∂Ẽ

∂t
− c2

a2ref





(

∂B̃z
∂y

− ∂B̃y
∂z

)

x

−
(

∂B̃z
∂x

− ∂B̃x
∂z

)

y

+

(

∂B̃y
∂x

− ∂B̃x
∂y

)

z





= − c2

a2ref
Ke nionũion +

c2

a2ref
Ke neũe,

(A.24)
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Faraday’s Law

∂B̃

∂t
+

(

∂Ẽz
∂y

− ∂Ẽy
∂z

)

x

−
(

∂Ẽz
∂x

− ∂Ẽx
∂z

)

y

+

(

∂Ẽy
∂x

− ∂Ẽx
∂y

)

z

= 0. (A.25)

A.4.1 The Coefficient Matricies

The above equations can be put into coefficient matrices in the following form:

∂W∗

∂t∗
+A∗∂W

∗

∂x∗
+ B∗∂W

∗

∂y∗
+ C∗∂W

∗

∂z∗
= S∗W∗ (A.26)

where as an example

A∗ =



















































































0 0 n0,ion 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 n0,e 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
n0,ionmion

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
n0,eme

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 5
3p0,ion 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5
3p0,e 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c2

a2
ref

0 0 0 0 0 0 0 0 0 0 0 0 0 0 − c2

a2
ref

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0



















































































.

(A.27)
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The source term matrix is

S∗(1−8) =



















































































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 Ke
mion

B0,z − Ke
mion

B0,y 0 0 0

0 0 − Ke
mion

B0,z 0 Ke
mion

B0,x 0 0 0

0 0 Ke
mion

B0,y − Ke
mion

B0,x 0 0 0 0

0 0 0 0 0 0 Ke
me
B0,z −Ke

me
B0,y

0 0 0 0 0 −Ke
me
B0,z 0 Ke

me
B0,x

0 0 0 0 0 Ke
me
B0,y −Ke

me
B0,x 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − c2Ke
a2
ref

n0,ion 0 0 c2Ke
a2
ref

n0,e 0 0

0 0 0 − c2Ke
a2
ref

n0,ion 0 0 c2Ke
a2
ref

n0,e 0

0 0 0 0 − c2Ke
a2
ref

n0,ion 0 0 c2Ke
a2
ref

n0,e

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



















































































,

(A.28)

S∗(9−16) =

















































































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 Ke
mion

0 0 0 0 0

0 0 0 Ke
mion

0 0 0 0

0 0 0 0 Ke
mion

0 0 0

0 0 −Ke
me

0 0 0 0 0

0 0 0 −Ke
me

0 0 0 0

0 0 0 0 −Ke
me

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

















































































. (A.29)
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A.4.2 Eigen Analysis

The perturbative primitive solution state W∗ is substituted in Equation (A.26) using

W∗ = W̃exp
[

i
(

ω̄t̄∗ + ᾱx̄∗ + β̄ȳ∗
)]

(A.30)

and neglecting the z-direction derivative in order to make a two-dimensional approximation,

the following eigen equation is obtained

(

iω̄I+ iᾱA∗ + iβ̄B∗ − S∗)W̃ = 0. (A.31)

It should be noted that all the above quantities are non-dimensional according to the following:

ω̄ =
ω

ν
, t̄ = tν, x̄ = x

ν

aref
, ᾱ = α

aref
ν
, β̄ = β

aref
ν
. (A.32)

Again, the bars are dropped for simplicity. The conversion for the α and β values of wave

number should be noted.

A number of simplifications are made which include assuming equal pressures p0,ion = p0,e,

which is perfectly reasonable for an equilibrium plasma. Also, ρ0,e = (me/mion)ρ0,ion is as-

sumed, which means that the fluid has the same background number density, n0 = n0,ion = n0,e.

Finally, it is assumed that the background magnetic field is aligned with the x-direction,

B0 = (B0, 0, 0). Therefore, the following eigen matrix is obtained:

A(1−8) =



















































































iω 0 iαn0 iβn0 0 0 0 0

0 iω 0 0 0 iαn0 iβn0 0

0 0 iω 0 0 0 0 0

0 0 0 iω − Ke
mion

B0 0 0 0

0 0 0 Ke
mion

B0 iω 0 0 0

0 0 0 0 0 iω 0 0

0 0 0 0 0 0 iω Ke
me
B0

0 0 0 0 0 0 −Ke
me
B0 iω

0 0 i53αp0 i53βp0 0 0 0 0

0 0 0 0 0 i53αp0 i53βp0 0

0 0 c2Ke
a2
ref

n0 0 0 − c2Ke
a2
ref

n0 0 0

0 0 0 c2Ke
a2
ref

n0 0 0 − c2Ke
a2
ref

n0 0

0 0 0 0 c2Ke
a2
ref

n0 0 0 − c2Ke
a2
ref

n0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



















































































, (A.33)
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A(9−16) =



















































































0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

iα
n0mion

0 − Ke
mion

0 0 0 0 0
iβ

n0mion
0 0 − Ke

mion
0 0 0 0

0 0 0 0 − Ke
mion

0 0 0

0 iα
n0me

Ke
me

0 0 0 0 0

0 iβ
n0me

0 Ke
me

0 0 0 0

0 0 0 0 Ke
me

0 0 0

iω 0 0 0 0 0 0 0

0 iω 0 0 0 0 0 0

0 0 iω 0 0 0 0 −iβ c2

a2
ref

0 0 0 iω 0 0 0 iα c2

a2
ref

0 0 0 0 iω iβ c2

a2
ref

−iα c2

a2
ref

0

0 0 0 0 iβ iω 0 0

0 0 0 0 −iα 0 iω 0

0 0 −iβ iα 0 0 0 iω



















































































, (A.34)

where AŴ = 0

A.5 Numerical Values

The following values were used to determine the constants and reference values:

e = 1.602189246× 10−19C,

c = 299792458ms ,

µ0 = 0.000001256637
m kg
s2A2 ,

γ = 5
3 ,

mref = mion = 1.6736× 10−27kg,

nref = n0 = 7.31955× 1023 1
m3 ,

pref = p0 = 101325Pa.

(A.35)

The typical collision frequency is calculated from the ion-electron collision frequency based on

the coulomb collision as follows [103,123]:

νe,ion =
4
√
2πe4◦
3k

3
2

nionZ
2
eZ

2
ion ln Λ

(

me +mion

memion

) 1
2
(

me +mion

meTion +mionTe

) 3
2

, (A.36)

where e◦ is the elementary charge constant in cgs and Ze, Zion is the charge number for the

electrons and ions respectively. This is just -1, and 1. This equation is in cgs units. Also,

lnΛ = 23 +
3

2
ln

(

Te
106

)

− 1

2
ln
( ne
1012

)

(A.37)
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where this equation is in SI. The typical collision frequency is determined by using the following

conversions to CGS from SI:

CGS SI

e0 = e0,SI ∗ 2.9979× 109 statCC ,

k = kSI ∗ 1.0× 107
erg
J ,

n0 = n0,SI ∗ 10−6 m3

cm3 ,

me = me,SI ∗ 1.0× 103
g
kg
,

mI = mI,SI ∗ 1.0× 103
g
kg
,

e0,SI = 1.602189246× 10−19C,

kSI = 1.380658× 10−23 J
K ,

n0,SI = 7.31955× 1023 1
m3 ,

me,SI = 9.1093897× 10−31kg,

mI,SI = 1.6736× 10−27kg.

(A.38)

Next the following substitutions are made in order to recover known results:

p0 =
3n0mev

2
ae

5
, n0 = ω2

pe

(ǫ0me

e2

)

, B0 = ωci
mion

e
, mion =

ωce
ωci

me. (A.39)

The determinant of matrix A is taken to obtain the dispersion equation. The equation is far

too long to include. One way of simplifying this equation even further is to take specific cases.

For instance, the high and low frequency plasma limits are taken.

A.5.1 R-mode, L-mode and Alfvén Waves

First the case for waves propagating parallel to the background magnetic field will be exam-

ined. Note that the magnetic field is aligned in the x-direction only. This simplification is

accomplished by setting β = 0 and α = k as the wave number for waves in the x-direction. The

equation simplifies to

(

ωpe
2ωciω

2 − ωciω
3ωce + ωcik

2ωc2ωce + ωciωce
2ω2 − ωcik

2ωce
2c2

+ωcek
2ω2c2 − ω4ωce + ωpe

2ωceω
2 − k2ωc2ωce

2 + ω3ωce
2
)

(

ωpe
2ωciω

2 + ωciω
3ωce − ωcik

2ωc2ωce + ωciωce
2ω2 − ωcik

2ωce
2c2

+ωcek
2ω2c2 − ω4ωce + ωpe

2ωceω
2 + k2ωc2ωce

2 − ω3ωce
2
)

(

−ωpe2ωciω2 + 2ωpe
2ωcik

2vae
2 − ωpe

2ωceω
2

−ωcik2vae2ω2 + ωcik
4vae

4 + ω4ωce − ωcek
2vae

2ω2
)

= 0.

(A.40)

A short time interval is assumed, otherwise known as the high frequency limit where ion fre-

quencies are negligible, ωci = 0, then the following relation holds:

(

k2ωc2 − ω3 + ωpe
2ω − c2k2ωce + ω2ωce

) (

k2ωc2 − ω3 + ωpe
2ω + c2k2ωce − ω2ωce

)

(

ωpe
2 − ω2 + k2vae

2
)

= 0.
(A.41)

By inspection it can be seen that there are three factors resulting in three relations which are

ω2 = v2ack
2 + ω2

pe (A.42)
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which is the electron plasma wave, and

ω2 = c2k2 +
ωω2

pe

ω + ωce
(A.43)

and

ω2 = c2k2 +
ωω2

pe

ω − ωce
(A.44)

which is the high frequency L-mode and R-mode plasma waves respectively. These match

Loverich’s results [133], which in turn match expected results from Chen [210]. In the course

of the investigations of the eigen systems of this model, the non dimensional versions of the

L-mode and R-mode equations were derived. They are provided here for reference:

ω3 ± KeB0

me
ω2 −

(

c2

a2ref
k2 +

nrefn0c
2µ0e

2

mrefmeν2

)

ω ∓ c2KeB0

a2refme
k2 = 0. (A.45)

The non dimensional version of the Electron plasma wave is

ω2 =
5

3

prefγp0

nrefmrefn0mea2ref
k2 +

n0nrefc
2µ0e

2

meν2mref
. (A.46)

When ω ≪ ωci ≪ ωce, this is the low frequency limit. The last factor in Equation (A.40)

becomes

ω2 = v2aek
2 + v2aek

2

(

ω2
pe

v2aek
2 + ω2

pe

)

. (A.47)

Taking the other two factors in Equation (A.40), the Alfvén wave becomes

ω2 = c2k2
ωceωci
ω2
pe

. (A.48)

The Alfvén speed is defined as v2al = c2 (ωci/ωpe)
2. The non-dimensional version of the low

frequency electron plasma wave and the Alfvén wave are respectively

ω2 =
5

3

prefγp0
mrefmea2ref

k2







1

nrefn0
+

c2µ0e
2

5
3
prefγp0ν2

nrefn0a2ref
k2 + n0nrefc2µ0e2






, (A.49)

ω2 =
B2

0γpref
a2refmrefmionn0nref

k2. (A.50)

A.5.2 X-mode, O-mode and Magnetosonic Waves

Now α = 0 and β = k is examined to find relations for the waves travelling perpendicular to

the background magnetic field. Again ωci = 0 is set for the high frequency limit to get
(

ωpe
2 + c2k2 − ω2

)

(

−ω2ωce
2 + k2ωce

2c2 − k2ω2c2 + c2k2ωpe
2 − 2ωpe

2ω2

+ωpe
4 − k2vae

2ω2 + ωpe
2k2vae

2 + ω4 + k4vae
2c2
)

= 0.

(A.51)
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Figure A.1: Large scale dispersion analysis

for the parallel direction
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Figure A.2: Positive, large magnitude L

and R-mode plasma waves for the parallel

direction

The first factor in this equation is the ordinary or the O-mode,

ω2 = c2k2 + ω2
pe. (A.52)

The second factor is the X-mode which can be given by

ω2 = c2k2 + ω2
pe

(

ω2 − ω2
pe

ω2 − ω2
ce

)

+ ω2
pe

(

ω2 − c2k2

ω2 − ω2
ce

)

(A.53)

if vae ≪ c which is quite valid. The magnetosonic wave can be obtained by a power expansion

on the dispersion relation.

A.6 Results of Dispersion Analysis

The characteristic equation is derived by taking the determinant of matrix A (Matrix (A.33)-

(A.34)) and numerically solving the resultant equations for temporal frequency ω for various

values of the spatial wave number k. To make the analysis easier to understand and conform

to results presented in Section A.5.1 and A.5.2 the analysis is split into two sections for parallel

and perpendicular wave propagation.

A.6.1 Parallel Dispersion Analysis

The values first considered is β = 0 and α = k to obtain the following dispersion plot Figure

A.1 for ωR/k vs. k (or wavespeed versus spatial wavenumber). Note that there is no imaginary
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eigenvalues for the regime being studied, and so there is no damping. All waves except for two,

and the four zero waves (associated with purely perpendicular waves) go to infinite values of

ωR/k for small values of k. This means that near uniform physical variations will disperse much

faster than more rapidly varying solutions of large values of k. In fact, for very large spatial

wavelength disturbances, the wave interaction associated with that disturbance must propagate

instantaneously.

There are four main wave regimes expressed in this analysis. The largest magnitude for

wavespeed ωR/k is the L and R-mode plasma waves. These waves consist of six waves. The

L and R-mode waves are unique in the sense that they contain both the highest magnitude

waves along with one of the smallest magnitude waves. Four of the waves (two positive and two

negative) are of order 104 for large values of k. The waves have the same absolute value. The

positive, large magnitude L and R-mode wave is shown in Figure A.2. The smallest magnitude

L and R-mode plasma wave is of order 10−2 for large values of k and can be seen in Figure A.3.

The next regime is where the electron plasma wave exists. For large values of k, the magnitude

is of order 10. The dispersion analysis can be seen in Figure A.4.

The next regime is for the Acoustic and Alfvén waves of order 1 for large values of k. The

Figure A.5 shows the Alfvén waves along with the small magnitude L and R-mode waves. As

can be seen in the figure, the Alfvén waves do not go off to infinity for small values of k but

approach ωR/k = 1.41. The Figure A.6 is a close up view of the Alfvén mode.

The final regime is for the ion plasma frequency. This mode can be seen in Figure A.7 and is
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of order 10−5 for large values of k. This mode does not show up in Shumlak and Loverich’s

analysis and is a result of keeping the ion frequencies in the analysis.

A.6.2 Perpendicular Dispersion Analysis

The dispersion plot for the perpendicular case, α = 0 and β = k can be seen in Figure A.8. For

the perpendicular direction, there are three main regimes with a total of six modes or waves.

All the waves in the perpendicular direction go to infinite values of wavespeed, ωR/k, for small

values of spatial wavenumber k. The largest magnitude modes are the O and X-modes, totalling

four waves with the same absolute value of order 105 for large values of k (one positive, and one

negative O-mode, and one positive and one negative X-mode). The X-mode waves, similar to

the L and R-mode waves of the parallel direction, have both large and small magnitude waves.

Figure A.9 shows the positive O-mode and large positive magnitude X-mode waves.

The next regime is the small magnitude X-mode waves. Figure A.10 and A.11 shows these

waves which are of order 103 for rapidly varying spatial solutions or large values of k.

The final mode is associated with the magnetosonic wave. This is the Acoustic/Alfvén wave in

the parallel direction. As can be seen in Figure A.12, the waves are of order 1 for large values

of k. In the non-dimensional formulation, 1 is representative of the acoustic velocity, which for

large values of k, the magnetoacoustic wave approaches exactly. This is as expected as acoustic

waves propagate in the real world in all directions at the same rate.
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A.6.3 Infinite Wavespeeds

The infinite wavespeeds associated with pure plasma waves for small values of k was found to

be due to the electron plasma frequency. This can be seen best when examining the analytical

solution for the electron plasma wave Equation (A.42) when the equation is divided by k and

then looking at the k = 0 case. However, it should be noted that the analytical solutions were

derived with several simplyfying assuptions and do not tell the whole story [33].

This infinite wavespeed is well documented to exist [32, 211] and there are two reasons why

this can exist in a physical model. First, the physical variations represented by these large

wavelength waves are associated with small gradients. These small gradient at large distances

do not effect much of a change in the solution state [33]. Second, the wavespeed is a phase

velocity and it is well known that an unterminated wave can have phase velocities that are

larger than the group velocity, which is associated with propagations of disturbances [32, 212].

Further, it can be shown that the group velocity becomes very small for large phase velocities

in the case of the electron plasma, such that

vg,pe =
dω

dk
=
k

ω
vac =

vac
vφ
, (A.54)

where vφ = ω/k. It can be seen that as the phase velocity vφ becomes larger, vg,pe ≈ 0.

A.7 Discrete Dispersion Analysis of the 5-Moment Collisionless

Two Fluid Model

A dispersion analysis on the discrete system of equations for the 5-moment two-fluid model is

undertaken. This is to understand where numerical difficulties may arise. The analysis proceeds

in a similar manner to the non-dimensional dispersion analysis, but with the discretized form

of the governing equations along with elastic collisions. In order to discretize the governing

equations, the numerical scheme of this thesis is implemented to first-order. The procedure is

identical to that described in Section 4.4.1. Equation 4.31 can be rearranged to give

I
(

Ũn+1
j − Ũn

j

)

=
∆t

∆xj

(

1

2

)

[

BŨn
j−1 +CŨn

j +DŨn
j+1

]

+∆tEŨn
j , (A.55)

where

B = F′ +
1

aref
AT I, C = −2

1

aref
AT I, D = −F′ +

1

aref
AT I (A.56)
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E(7−16) =
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and

F′ =
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The substitution for Ũ is made using

Ũn
j = Znexp [i (jk∆x)] Û (A.60)

to arrive at the eigen equation

A (Z − 1) =
∆t

∆x

1

2

(

Be−ik∆x +C+Deik∆x
)

+∆tE. (A.61)

All elements are substituted for numerical values. The collision frequency is calculated using

a coulomb collision model [103, 123]. Suitable ∆x and ∆t values are determined through the

CFL number such that

CFL =
∆t

∆x
(u+ a). (A.62)

A.8 Results of Dispersion Analysis

The characteristic equation is derived from taking the determinant of Equation (A.55) the

resultant equations are numerically solved for the complex variable Z for various values of the

spatial wave number k. The complex variable Z is defined by

Z = (exp [i ω∆t]) = eωI (cosωR + i sinωR) , (A.63)
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where ωR and ωI are the real and imaginary parts of ω, respectively. The following relations

are used in order to determine ωR and ωI :

ωR = arctan
Imag(Z)

Real(Z)
, ωI = ln

Real(Z)

cosωR
, (A.64)

with the following definition for CFL:

∆x = ∆t
(aref )

CFL
. (A.65)

There is also a theoretical maximum value for the spatial wavenumber defined by

kmax =
π

∆x
, (A.66)

however, plots do not have to be plotted up to this maximum value.

The system of equations was solved in matrix form as an eigenvalue problem defined by

IZ = I+
∆t

∆x

1

2

(

Be−ik∆x +C+Deik∆x
)

+∆tE. (A.67)

where the right hand side is the eigen matrix being solved for the eigenvalues Z. The following

figures are for CFL = 0.1 with ∆x varying from 0.1 to 0.0001 in orders of magnitude. The

solution from the analytic dispersion analysis is also included for comparison. In Figure A.13,

the phase speed is plotted against spatial wave number for various values of ∆x. As the spatial

resolution increases, the phase speeds better follow the behaviour of the analytic solution.

Figure A.14 shows the acoustic level scale showing the same behaviour. All waves exhibited

this behaviour.

Figure A.15 shows the behaviour of the imaginary component of ω associated with the stability

of the various eigenmodes. The plot is made for ∆x = 0.001 and for values of CFL ranging

from 0.1 to 0.0001. It can be seen that there are unstable growth modes (Associated with

positive values of ωI) up till when CFL=0.0001, at which point all eigenvalues become stable.

However, these small CFL and ∆x values are associated with very small time steps and high

computational costs.

A.9 Implicit Discrete Dispersion Analysis

Proceeding as in Chapter 4 an implicit method is used to discretize the equations. A dispersion

analysis is performed using the same procedure as in Section A.8, but with Equation 4.32 to

obtain

Ua

(

Ũn+1
j − Ũn

j

)

=

∆t
∆xj

(

1
2

)

[

Fa

(

Ũn+1
j−1 − Ũn+1

j+1

)

+ATUa

(

Ũn+1
j−1 − 2Ũn+1

j + Ũn+1
j+1

)]

+∆tSaŨ
n+1
j ,

(A.68)
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where Ua = I. Also,

Fa =
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and

S(7−16)
a =
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Then making the substitution of Equation (4.35) in Equation (A.68) and rearranging in eigen

problem form gives

IZ =

[

Ua −
∆t

∆xj

(

1

2

)

[

Fa

(

e−i k∆x − ei k∆x
)

+ATUa

(

e−i k∆x − 2 + ei k∆x
)]

+∆tSa

]−1

Ua

(A.72)

which is then solved for Z. Then Z is deconstructed as in Section A.8.

A.10 Results of Implicit Dispersion Analysis

The system of equations was solved for ∆x = 0.1 and CFL’s ranging from 1.0 to 0.001. This

was to show that there is stability even at course grid sizes and high CFL numbers. As can

be seen from Figure A.16 and A.17, it is indeed unconditionally stable, however, from Figure

A.18 it can be seen that at these course grid sizes and CFL’s the phase speed behaviour is not

very accurate. To show that accurate behaviour can be recovered, the ∆x value was reduced

to 0.001 and Figures A.19 and A.20 were obtained that shows the solutions approach analytic

values as the CFL value decreases and that the scheme is still stable.
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Appendix B

Additional Derivations Related to

the Numerical Solution Scheme

B.1 Overview

This section contains extra derivations used to develop the numerical solution procedure utilized

in this thesis. The HLLE approximate numerical Riemann solver and the banded tridiagonal

matrix for the implicit 1D scheme of Chapter 5 is derived.

B.2 Harten-Lax-van Leer-Einfeldt (HLLE) Flux Function

In order to determine the numerical flux in Equations (5.6), the interface flux between the two

adjacent computational cells is required. To determine this middle state flux, the interface

is treated as a one-dimensional Riemann initial value problem assuming a short time interval

allowing the source terms to be neglected. The approximate Riemann solver of Harten-Lax-van

Leer-Einfeldt (HLLE) [132] is used.

The HLLE approximate Riemann solver is derived by solving for the fluxes around a control

volume centered on the interface of the two cells (or rather at the interface for the Riemann

initial value problem) and a control volume where one side is coincident with the interface (see

Figures B.1 and B.2). The control volume in Figure B.1 is considered and the one-dimensional

integral form of the conservation equation, Equations (5.2), are taken and integrated around

225
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∆x

2
− λ+∆t

)

−U∗λ
+∆t

+U∗λ
−∆t−UL

(

∆x

2
+ λ−∆t

)

+ FL∆t
(B.1)

where UL and UR are the left and right solution states, FL and FR are the left and right

fluxes. The largest and smallest signal velocities are λ+ and λ− respectively. The intermediate

state U∗ is sought. Rearranging for U∗ gives

U∗ =
λ+UR − λ−UL

λ+ − λ−
− (FR − FL)

λ+ − λ−
. (B.2)

This gives the solution for U∗ and now the volume of Figure B.2 is considered and integrated

around to determine the flux at the interface such that

0 = UL

∆x

2
− F∗∆t+U∗λ

−∆t−UL

(

∆x

2
+ λ−∆t

)

+ FL∆t. (B.3)

Rearranging and substituting for U∗ from Equation (B.2) above results in

F∗ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL) . (B.4)

This is the HLLE flux function and is used if the value of x/t = 0 lies within the region defined

by the fast and slow signal velocities according to

F =















FL for
(

x
t

)

< λ−,

F∗ for λ− ≤
(

x
t

)

≤ λ+,

FR for
(

x
t

)

> λ+.

(B.5)
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B.3 Implicit Banded Tridiagonal Matrix System

In order to derive the banded tridiagonal matrix system used in the dual time formulation for

the numerical scheme in Chapter 5, the implicit Euler time marching method along with a

HLLE type flux function was used for the first-order numerical scheme along with piecewise

constant spatial reconstruction. A first-order scheme can be used for the left hand side matrix

because the dual time formulation is used to iterate to a higher-order solution. The interface

flux terms for the implicit Euler equation, Equation 4.30, are linearized as so that

Fn+1
i+ 1

2

= Fn
i+ 1

2
+
∂Fn

i+ 1
2

∂UL

∂UL

∂Ui

∂Ui

∂t
∆t+

∂Fn
i+ 1

2

∂UR

∂UR

∂Ui

∂Ui

∂t
∆t

+
∂Fn

i+ 1
2

∂UL

∂UL

∂Ui+1

∂Ui+1

∂t
∆t+

∂Fn
i+ 1

2

∂UR

∂UR

∂Ui+1

∂Ui+1

∂t
∆t,

(B.6)

Fn+1
i− 1

2

= Fn
i− 1

2

+
∂Fn

i− 1
2

∂UL

∂UL

∂Ui−1

∂Ui−1

∂t
∆t+

∂Fn
i− 1

2

∂UR

∂UR

∂Ui−1

∂Ui−1

∂t
∆t

+
∂Fn

i− 1
2

∂UL

∂UL

∂Ui

∂Ui

∂t
∆t+

∂Fn
i− 1

2

∂UR

∂UR

∂Ui

∂Ui

∂t
∆t.

(B.7)

Note that for piecewise constant reconstruction, the left and right states are just the cell centered

values of the left or right cells of the interface. Therefore the linearized terms simplify to

Fn+1
i+ 1

2

= Fn
i+ 1

2

+
∂Fn

i+ 1
2

∂Ui

∂Ui

∂t
∆t+

∂Fn
i+ 1

2

∂Ui+1

∂Ui+1

∂t
∆t, (B.8)

Fn+1
i− 1

2

= Fn
i− 1

2

+
∂Fn

i− 1
2

∂Ui−1

∂Ui−1

∂t
∆t+

∂Fn
i− 1

2

∂Ui

∂Ui

∂t
∆t. (B.9)

Further, by discretizing the time derivative it can be shown that

Fn+1
i+ 1

2

= Fn
i+ 1

2

+
∂Fn

i+ 1
2

∂Ui
∆Un

i +
∂Fn

i+ 1
2

∂Ui+1
∆Un

i+1, (B.10)

Fn+1
i− 1

2

= Fn
i− 1

2

+
∂Fn

i− 1
2

∂Ui−1
∆Un

i−1 +
∂Fn

i− 1
2

∂Ui
∆Un

i . (B.11)

Using the HLLE scheme, Equations B.5 and B.4, results in

Fi+ 1
2
=















Fi for
(

x
t

)

< λ−

F∗i+ 1
2

for λ− ≤
(

x
t

)

≤ λ+

Fi+1 for
(

x
t

)

> λ+

, Fi− 1
2
=















Fi−1 for
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x
t

)

< λ−

F∗i− 1
2

for λ− ≤
(

x
t

)

≤ λ+

Fi for
(

x
t

)

> λ+

,

(B.12)

and

F∗i+ 1
2
=
λ+Fi − λ−Fi+1

λ+ − λ−
+

λ+λ−

λ+ − λ−
(Ui+1 −Ui) , (B.13)

F∗i− 1
2
=
λ+Fi−1 − λ−Fi

λ+ − λ−
+

λ+λ−

λ+ − λ−
(Ui −Ui−1) . (B.14)
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This means that when forming the matrices for the implicit method, it can be written such that

(

I+
∆t

∆x

∂Fn
i+ 1

2

∂Ui
− ∆t

∆x

∂Fn
i− 1
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= −∆t

∆x

(

Fn
i+ 1

2

−Fn
i− 1

2

)

+∆tSni .

(B.15)

The terms on the left hand side form a tridiagonal matrix where the flux Jacobian terms are

determined as follows. Each flux Jacobian term has three cases:

∂Fn
i+ 1

2

∂Ui+1
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(
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I
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x
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∣
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n
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x
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(B.16)
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and
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(B.19)

It should be noted that the solution to the Maxwell’s equation is taken to be the left state since

the x/t = 0 line lies on a stationary characteristic and so could be either. The scheme solves

the HLLE flux function, and therefore the flux Jacobians separately for each of the species and

Maxwell’s equations at every step, so the combined flux Jacobian will be composed of three

blocks down the diagonal of the matrix. This is because the fluxes are not coupled to any of the

other equations so can therefore be calculated individually before forming the matrix. Because

of the lack of cross coupling, these blocks lie on the diagonal of the matrix for the entire system.

This characteristic may be used later to speed up the matrix inversion.



Appendix C

GLM Maxwell’s Equations

Eigenstructure and Numerical Flux

Function Derivations

C.1 Overview

This section contains a complete eigenstructure for the GLM Maxwell’s equations. There is

also a comparison between the HLLE flux function and the Godunov exact flux function for

the GLM Maxwell’s equations. The Maxwell’s equations with and without divergence cleaning

will be presented.

C.2 Eigenstructure of the Non-GLM Maxwell’s Equations

This section lists useful matricies and vectors for the Maxwell’s equations without divergence

cleaning. The equations for Faraday’s Law and Ampere’s Law can be rearranged into the

following weak conservative form in 1D:

∂U

∂t
+
∂F

∂x
= S, (C.1)
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where

U =
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By

Bz
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. V =
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By

Bz
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. F =
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−Ez
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0

Hz

−Hy
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0

0

−jx
−jy
−jz

























. (C.2)

Taking the hyperbolic part and rearranging for the primitive variables results in

∂U

∂V

∂V

∂t
+
∂F

∂V

∂V

∂x
= 0,

∂V

∂t
+A∂V

∂x
= 0, (C.3)

where

A =
∂V

∂U

∂F

∂V
=



































0 0 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1
ε0µ0

0 0 0

0 − 1
ε0µ0

0 0



































. (C.4)

The right eigenvectors are arranged in columns as follows:

R =



































0 0 0 1 0 0
√

µ0
ε0

0 0 0 −
√

µ0
ε0

0

0 −
√

µ0
ε0

0 0 0
√

µ0
ε0

0 0 1 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0



































, (C.5)

and are associated with the eigenvalues in order,

(−c,−c, 0, 0, c, c). (C.6)
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The left eigenvector matrix, R−1, is

L = R−1 =





































0 1/2
√

ε0
µ0

0 0 0 1/2

0 0 −1/2
√

ε0
µ0

0 1/2 0

0 0 0 1 0 0

1 0 0 0 0 0

0 −1/2
√

ε0
µ0

0 0 0 1/2

0 0 1/2
√

ε0
µ0

0 1/2 0





































(C.7)

where the rows are the left eigen vectors arranged in the same order. Characteristic variables

obtained from Lglm,pWglm = Lglm,cUglm = are
[

1

2

(

ε0Ez +

√

ε0
µ0
By

)

,
1

2

(

ε0Ey −
√

ε0
µ0
Bz

)

, ε0Ex, Bx,
1

2

(

ε0Ez −
√

ε0
µ0
By

)

,
1

2

(

ε0Ey +

√

ε0
µ0
Bz

)]

.

(C.8)

The method of characteristics state that the characteristic variables are constant along the

characteristic lines with slopes of the eigenvalues (for the linear Maxwell’s equations). Figure 6.1

represents an interface between two regions i and o with two intermediate states in the middle

separated by the stationary characteristic which represents the x-direction (normal) electric

and magnetic fields. An interesting note about the stationary state is that it is associated with

changes in Ex and Bx, however, the flux does not change across the state because it is stationary.

This can be seen when taking the 1D, line integral form of the hyperbolic conservation laws
∮

(Udx− Fdt) = 0 (C.9)

and integrating it counter-clockwise around the control volume integral around the stationary

state as seen in Figure C.1 such that

U1
dx

2
+U2

dx

2
− F2dt−U2

dx

2
−U1

dx

2
+ F1dt = 0 (C.10)

or

F1 = F2. (C.11)

More generally for linearized waves,

∆F = a∆U (C.12)

where a is the velocity of the characteristic wave splitting the control volume. Since the char-

acteristic only affects Ex and Bx, the other variables will remain continuous across the in-

terface. Each variable can be solved as follows where E1,y = E2,y = Ey, E1,z = E2,z = Ez,

B1,y = B2,y = By and B1,z = B2,z = Bz and

(Ez + cBy) = (Eo,z + cBo,y) , (C.13)
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Figure C.1: Finite Volume around stationary state

(Ez − cBy) = (Ei,z − cBi,y) , (C.14)

where Ez and By was solved for by adding and subtracting Equations (C.13) and (C.14) as an

example. Repeating the above calculations results in

By = 1
2

(

(Bi,y +Bo,y) +
1
c (Eo,z − Ei,z)

)

,

Bz = 1
2

(

(Bi,z +Bo,z) +
1
c (Ei,y − Eo,y)

)

,

Ey = 1
2 (c (Bi,z −Bo,z) + (Ei,y + Eo,y)) ,

Ez = 1
2 (c (Bo,y −Bi,y) + (Ei,z + Eo,z)) ,

, and

B1,x = Bi,x,

B2,x = Bo,x,

E1,x = Ei,x,

E2,x = Eo,x,

(C.15)

noting that it does not matter which side you take for Ex and Bx at the interface x/t = 0 due

to the stationary state.

C.3 Eigenstructure of GLM Maxwell’s Equations

The eigenstructure of the GLM Maxwell’s equation is now presented. The equations in Section

3.8.4 can be arranged into the weak conservative form in 1D, Equation (C.1), where

U =
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. (C.16)
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Taking the hyperbolic part and rearranging to get the coefficient matrices as before, produces

A =
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∂F

∂V
=
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. (C.17)

Also there are a few other Jacobians of interest including

∂F

∂U
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(C.18)

and

∂S

∂U
=
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. (C.19)

Note that 1/(ǫ0µ0) = c2, where c is the speed of light.
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The eigen problem of matrix (C.17) is solved to obtain the following eigenvalues and right

eigenvectors:

ch, [1, 0, 0, 0, 0, 0, ch, 0], (C.20)

− ch, [1, 0, 0, 0, 0, 0,−ch, 0], (C.21)

χ√
ǫ0µ0

, [0, 0, 0,
1

χ
√
ǫ0µ0

, 0, 0, 0, 1], (C.22)

− χ√
ǫ0µ0

, [0, 0, 0,− 1

χ
√
ǫ0µ0

, 0, 0, 0, 1], (C.23)

1√
ǫ0µ0

, [0, 0, 1, 0,
1√
ǫ0µ0

, 0, 0, 0], [0, 1, 0, 0, 0,− 1√
ǫ0µ0

, 0, 0], (C.24)

− 1√
ǫ0µ0

, [0, 0, 1, 0,− 1√
ǫ0µ0

, 0, 0, 0], [0, 1, 0, 0, 0,
1√
ǫ0µ0

, 0, 0]. (C.25)

Therefore the eigenvalues are

[

−χc, −ch, −c, −c, c, c, ch, χc
]

, (C.26)

and the right eigenvector matrix is

R =
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(C.27)
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with a left eigenvector matrix

L =
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. (C.28)

Adding the Lagrange multiplier to the Maxwell’s equations creates two new waves with signal

velocities ch and χc that advect Ψ and Φ as seen above. Also, the waves associated with Bx

and Ex are no longer stationary as in the original Maxwell’s equations. The left and right

eigenmatrices are scaled and normalized, to arrive at the GLM eigenvectors
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Lglm,c =
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and

Lglm,p =
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which are the right conservative, left conservative, and left primitive eigenvector matrices re-

spectively. The characteristic variables are obtained by Lglm,pWglm = Lglm,cUglm =
[

(

φ− χ

c
Ex

)

,

(

Bx −
ψ

ch

)

,

(

Bz −
Ey
c

)

,

(

By +
Ez
c

)

,

(

Bz +
Ey
c

)

,

(

By −
Ez
c

)

,

(

Bx +
ψ

c

)

,
(

φ+
χ

c
Ex

)

]

.

(C.32)

The above characteristics can be used to find an intermediate state using the method of char-

acteristics, as before, where the regions are split as in Figure 6.2 with an intermediate state in

the middle formed by the Riemann problem. This time there is only one intermediate region

(when χ = 1 and ch = c). Each variable can be solved for as follows:
(

φ− χ

c
Ex

)

=
(

φo −
χ

c
Eo,x

)

, (C.33)

(

φ+
χ

c
Ex

)

=
(

φi +
χ

c
Ei,x

)

, (C.34)
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where Ex and φ is solved for by adding and subtracting Equations (C.33) and (C.34) as an

example. Repeating the above calculations gives

Bx = 1
2

(

(Bi,x +Bo,x) +
1
ch

(ψi − ψo)
)

,

By = 1
2

(

(Bi,y +Bo,y) +
1
c (Eo,z − Ei,z)

)

,

Bz = 1
2

(

(Bi,z +Bo,z) +
1
c (Ei,y − Eo,y)

)

,

Ex = 1
2

(

(Ei,x + Eo,x) +
c
χ (φi − φo)

)

,

Ey = 1
2 (c (Bi,z −Bo,z) + (Ei,y + Eo,y)) ,

Ez = 1
2 (c (Bo,y −Bi,y) + (Eo,z + Ei,z)) ,

ψ = 1
2 (ch (Bi,x −Bo,x) + (ψi + ψo)) ,

φ = 1
2

(χ
c (Ei,x − Eo,x) + φo + φi

)

,

(C.35)

for all the variables.

Comparing the eigen matrices and eigenvalues, we can see that it is easy to arrive at the non-

GLM eigenstructure by simply setting the GLM coefficients to zero. In this way it is possible

to move from the GLM to the non-GLM Maxwell’s equations.

C.4 Godunov Numerical Flux for Maxwell’s Equations without

Divergence Cleaning

When the flux is linear, it is possible to solve the exact flux. The Riemann problem at the cell

interface is the initial value problem of the form

∂U

∂t
+ C ∂U

∂x
= 0, (C.36)

U(x, 0) =

{

Ul for x < 0,

Ur for x > 0,
(C.37)

in one-dimension. Here, C is equal to ∂F
∂U. The method of characteristics is used to solve the

IVP. There are three characteristics in this system separating 4 states:

Ul,U1,U2,Ur. (C.38)

The intermediate states can be found by

U1 = Ul +Σ2
i=1αir

i = Ur − Σ3
i=0α6−ir

6−i, (C.39)

U2 = Ul +Σ4
i=1αir

i = Ur − Σ1
i=0α6−ir

6−i, (C.40)
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where

αi = li(Ur −Ul). (C.41)

The flux is thus

F = CU1 = CU2, (C.42)

for the 1D case. It should be noted that whatever the values that U1 or U2 take, when operated

on by C, the term associated with Bx and Ex will always be zero.

C.5 HLLE Numerical Flux for Maxwell’s Equations without

Divergence Cleaning

The HLLE flux is determined by integrating around the linear (or linearized) Riemann problem

control volume, as in Figure B.1, and results in the following for the intermediate state:

0 = UL

∆x

2
− F∗∆t+U∗λ

−∆t−UL

(

∆x

2
+ λ−∆t

)

+ FL∆t. (C.43)

Applying the same integration for flux and substituting in for the intermediate state above, the

intermediate flux is

F∗ =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL) . (C.44)

As can be seen from above, using F∗ does not guarantee that the x-direction fluxes are zero.

In fact there will be a flux if there is a change in the x-direction magnetic field Bx.

For example, taking just the x-direction magnetic field equation for Bx the following is obtained

F∗(Bx) =
λ+FL(Bx)− λ−FR(Bx)

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR(Bx)− UL(Bx)) , (C.45)

where, F (Bx) = 0 for any solution state. Thus,

F∗(Bx) =
λ+λ−

λ+ − λ−
(Bx,r −Bx,l) , (C.46)

and likewise for Ex

F∗(Ex) =
λ+λ−

λ+ − λ−
(Ex,r − Ex,l) . (C.47)

When comparing the Godunov and HLLE fluxes, only the Bx and Ex terms are different as

above.
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C.6 HLLE and Godunov Exact Numerical Fluxes for the GLM

Maxwell’s Equations

Repeating the above process for the GLM equations and keeping the eigenvalues all equal to

±c, both the HLLE and Godunov fluxes are equivalent as it should be. Obviously the difference

between the HLLE and Godunov flux for the regular Maxwell’s equations comes from the fact

that there is a third, stationary wave, which is associated with the Bx and Ex wave.

It is interesting to note that even though the only term in the flux for the Bx and Ex (or Dx)

equations is in terms of ψ or φ, the flux is actually a function of Bx and Ex as well as ψ, and φ.

The terms are listed below, noting that it is equal for both HLLE and Godunov flux functions:

F ∗(Bx) =
1

2
(ψl + ψr − cBr,x + cBl,x) , (C.48)

F ∗(Dx) =
1

2
(ψl + ψr − cDr,x + cDl,x) . (C.49)

C.7 Exact Numerical Flux Function

Because the Maxwell’s equations have a stationary wave pattern, the intermediate flux is always

used. Therefore, an analytical solution for the exact flux can be derived. This actually reduces

both computation and round off errors, which can be very large with the GLM equations. Below

are the analytic exact flux functions for the regular and GLM Maxwell’s equations:

Fx,MF =



























0

1
2 (c (Bl,y −Br,y)− El,z − Er,z)

1
2 (c (Bl,z −Brz) + El,y + Er,y)

0

1
2

(

Hl,z +Hr,z +
√

ε0
µ0

(El,y − Er,y)
)

−1
2

(

Hl,y +Hr,y +
√

ε0
µ0

(Er,z − El,z)
)



























, (C.50)
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Fx,GLM =







































1
2 (ψl + ψr −Br,x ch +Bl,x ch)

1
2 (c (Bl,y −Br,y)− El,z − Er,z)

1
2 (c (Bl,z −Br,z) + El,y + Er,y)

1
2

(

1
µ0

(φl + φr) +
√

ε0
µ0
χ (El,x − Er,x)

)

1
2

(

Hl,z +Hr,z +
√

ε0
µ0

(El,y − Er,y)
)

−1
2

(

Hl,y +Hr,y +
√

ε0
µ0

(Er,z − El,z)
)

1
2ch (chBl,x + chBr,x − ψr + ψl)

1
2 χ (χEl,x + χEr,x − c φr + c φl)







































, (C.51)

which are the non-GLM (MF) and GLM fluxes respectively. As before, setting the GLM

coefficients and constants to 0 will result in shutting off the associated divergence cleaning

algorithm. Setting ψ, ch, φ, and χ all to 0 will reduce the GLM equations to the non-GLM

Maxwell’s equations.
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