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Abstract
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2019

A multifluid magnetohydrodynamic (MHD) model based on an extended fluid dynamics descrip-
tion for each plasma species is proposed for the prediction of the flow and behaviour of fully and
partially ionized non-equilibrium anisotropic plasmas. Two-(electrons and ions) and three-fluid
(ions, electrons and neutrals) plasma models are described that both make use of a 10-moment
or Gaussian anisotropic moment closure of the Boltzmann equation. The moment equations for
each plasma species are fully coupled to the Maxwell’s equations which govern electromagnetic
wave propagation within the plasma and a Bhatnagar-Gross-Krook (BGK) relaxation time ap-
proximation is used to model non-equilibrium collisional processes between the plasma species.
Chemical kinetic models are included to represent the partially ionized plasma processes. Un-
like conventional MHD models, the proposed multi-species MHD model is capable of taking
into account large temperature anisotropies and temperature differences between the electrons
and ions, both of which can occur for low-density, high-temperature plasmas and/or strongly
magnetized plasmas. A second-order Godunov-type finite-volume method is developed for the
solution of the one- and two-dimensional forms of the multifluid plasma models, which includes
temporal limiting in one-dimension and a parallel scheme utilizing a Newton-Krylov-Schwarz
(NKS) implicit algorithm for the two-dimensional solution procedure. The numerical fluxes
in the Godunov-type scheme are solved using HLLE and Godunov numerical flux functions.
The two-dimensional solution procedure includes Generalized Lagrange Multiplier (GLM) and
diffusive error correction schemes for the treatment of divergence errors associated with the
electromagnetic field. An accuracy assessment is performed for the two-dimensional numerical

solution procedure, demonstrating good convergence of solutions for a range of problems. The

iii



validated two-dimensional solution procedure for the multifluid MHD model is then applied to
the solution of the well-known Geospace Environmental Modelling (GEM) challenge problem
involving magnetic field reconnection and numerical results are compared to established solu-
tions in the literature. Results of grid refinement and parametric studies for the GEM case
are also described. The proposed multifluid MHD model is shown to recover known published
results with relatively small computational effort and the potential of the proposed treatment

for describing a range of non-equilibrium anisotropic plasma flows is demonstrated.
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Chapter 1

Introduction

1.1 Overview

The theoretical study and numerical modelling of plasmas have many applications in the fields
of physics and aerospace engineering. Current applications of numerical plasma modelling
include problems in flow control [9-12], hypersonics [13-17], space electric propulsion (EP)
systems [18-26] and space plasmas [4,27,28]. A particular area of interest for this thesis is the
behaviour of space plasmas associated with the Earth’s magnetosphere [29] as depicted in the
schematic diagram of Figure 1.1. The magnetosphere is a magnetic field that encloses the planet
earth and exists as close as 40,000 km and extends as far as several million kilometres at the
magnetotail. Understanding plasma dynamics in the magnetosphere is important to reducing
the interference of communications and satellite operations in the environment of space as well
as understanding how the magnetosphere protects the earth from high energy solar winds,

radiation and electromagnetic disruptions [30,31].

Collectively, the study of flows and interactions of plasmas with electromagnetic forces is re-
ferred to as magnetohydrodynamics (MHD) [32-34]. The modelling of plasmas can be consid-
erably more complicated than regular fluid dynamic flows as there is the added complexity of
the electro-magnetic interactions (such as the Lorentz force) combined with the widely varying
physical characteristics of the plasma species (i.e., the electrons and ions). One of the many
unique properties of charged particles in plasmas is the ability to be influenced by, and to influ-
ence, the electric and magnetic fields. This property also gives rise to plasma anisotropies as ion
and electron temperatures along magnetic field lines can differ from temperatures perpendicular
to the field lines. This is key in understanding the behaviour of plasmas when the magnetic

fields are strong or in rarefied conditions, such as those found in space. Further, control of
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Figure 1.1: Schematic of Magnetosphere by Crochot [1].

the plasma particles can be achieved by taking advantage of these unique properties and is the
source of interest from the flow control and hypersonics communities, where applications in
these fields often involve partially, as opposed to fully, ionized plasmas. Harnessing the unique
anisotropic properties of plasmas can also aid in the design of innovative propulsion systems,

as plasmas can be heated and controlled in ways that isotropic fluids and gases cannot [35].

1.2 Motivation

A common model used in the simulation of plasmas [36,37] is traditional MHD, which includes
three variants: ideal, Hall, and resistive MHD [32-34, 38-43]. These are essentially single-
fluid, 5-moment, formulations of the plasma, assuming isotropic temperatures and pressures
and do not differentiate between the electron and ion temperatures. They also do not directly
solve the full set of Maxwell’s equations governing the electro-magnetic fields. Instead, the
electro-magnetic fields are often incorporated by assuming a strong magnetic field or by taking
the magnetic flux frozen in with the fluid. The electric field is often not explicitly solved
for and represented by a generalized Ohm’s law [15], whose validity and applicability can be
a concern [13,44]. Lastly, the single fluid description of the plasma adopted in traditional
MHD descriptions is unable to model partially ionized and non-quasi-neutral plasmas, or the
associated chemistry. These characteristics of traditional MHD gives rise to limitations which
have been recognized repeatedly in the literature [13, 16,25, 45] where in many instances the
approach has been applied to situations and/or regimes beyond its true applicability [46]. In
fact, the regime in which ideal MHD is formally valid is rather non-physical [47,48].
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On the other extreme end of the plasma modelling spectrum from ideal MHD descriptions are
the so-called particle simulation methods [49-52]. In particle simulations, individual particles
and/or groupings of particles are tracked and their collisions/interactions can be directly simu-
lated, as required, using Monte Carlo based approaches [52]. Although particle simulations can
provide the full solution information that is desired in terms of anisotropic and non-equilibrium
effects, tracking and simulating the individual interactions of particles can be extremely com-
putationally expensive and can be difficult to apply to large-scale or complicated problems.
Near-equilibrium or high-density regimes are also very challenging to treat accurately if parti-
cle simulations are used for the entire or even portions of the problem [53]. For example, when
applied to the simulation of space plasmas and the GEM challenge described in the next sec-
tion, many simplifications are made to the governing set of equations as well as to the problem
definition and how particles are distributed. Spatial and particle count resolutions for such
simulations are also quite low for many of these applications so that the computations remain

tractable [3,54].

In order to overcome the deficiencies of traditional MHD without resorting to full particle
simulations, many extensions to traditional MHD have been proposed. Recognizing the need
for a tensorial treatment of the temperature and pressures, the most common extension of
the MHD model is to use a Navier Stokes-type fluid dynamics model in conjunction with a
treatment of Maxwell’s equations which includes the electric field, where coupling between the
two sets of equations occurs in the diffusive source terms [13,16,23,55]. A charge conservation
equation is also added. This modelling approach is sometimes called the full magnetofluid
dynamics equations (FMFD) or real magnetogasdynamics equations. However, the anisotropic
pressure effects are only possible in the presence of gradients with such models. A large range
of plasma models fall into a range lying somewhere between the FMFD equations and ideal
MHD descriptions [10,12,56,57]. It should also be noted that the FMFD models are still not
a fully anisotropic description of the plasma and do not include a full treatment of Maxwell’s

equations.

Particle simulations can be combined with traditional MHD descriptions to recover the non-
equilibrium and anisotropic kinetic collision behaviour [21,22,58]. Hybrid methods which in-
clude fluid equations to simplify certain computational regions of the flow [5] or parts of the
system of equations, such as the electron fluid, have also been proposed (2,25, 54]. However,
once again this can dramatically increase the costs of the simulation. Note that a good overview
of the range of models discussed up to this point in the introduction can be found in the reviews

by Shang [59, 60].

From the preceding discussion, it would seem that accurate modelling of space plasmas is not
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possible using traditional MHD models due to the presence of plasma anisotropies, the require-
ment for a full modelling of Maxwell’s equations, and the ability to handle non-quasi-neutral
and multi-temperature plasmas. On the other hand, as noted above, particle simulations, while
dealing with these issues, are very expensive. Models that can predict such plasma flows with
more modest computational costs could potentially allow significant advancement of plasma
modelling in all areas and, in particular, help in the understanding of magnetosphere and solar
wind interactions [30,31], as well as fill the need in the simulation and design of efficient, reliable

and cheap space propulsion systems [23,25,26,60,61] and other practical plasma applications.

Comprehensive and computationally tractable models for realistic anisotropic plasmas are not
readily available in the literature, however several recent studies have made notable attempts
to arrive at suitable descriptions. An example of how the multi-temperature problem has been
addressed in previous studies is provided by the Shumlak and Loverich two-fluid model [62,63],
which treats the electron and ion species as well as the Maxwell’s equations separately, coupled
only through source terms. However, this model is based on an isotropic fluid model, and
therefore cannot model anisotropic plasmas. An updated version of this two-fluid model was
more recently proposed by Hakim et al. [64,65], which includes some anisotropic pressures
through a 10-moment formulation of the fluid equations. However, the latter does not take
into account collisional effects, which is important for high density equilibrium conditions, as
well as for rarefied gas conditions such as those encountered in the modelling of space plasmas.
The model of Hakim et al. therefore also suffers from oscillations and the requirement of very
high grid resolutions to resolve these oscillations. To address these issues, during the course
of this thesis, a fully 10-moment, anisotropic two-fluid plasma model with a full modelling
of Maxwell’s equations, with particle collisions that is capable of describing non-quasi-neutral
plasmas ranging from the equilibrium to the collisionless regimes [47] was developed. This was
developed in parallel to the subsequent work by Hakim and Loverich et al. [66] and prior to
the recent model of Johnson et al. [7], which can be viewed as the most comprehensive of the

multi-fluid models to date.

There is one further property of plasmas absent from most traditional MHD descriptions, which
is the fact that plasmas are not always fully ionized, and that neutral particles exist in the
plasma as well. Taking into account the influences of the neutral particles, and the consequent
interparticle reactions, is important for the modelling of flow control devices and EP devices,
such as ion thrusters, which require a neutralizer in order to operate efficiently [58]. Though
partially ionized plasmas have been often simulated using traditional MHD [67] and direct
numerical simulation, a model with the capabilities of particle simulations, but based on fluid

equations is thus far absent. It is clear that, due to the complexity of the problem, there
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are many open issues that need to be addressed going forward for the accurate modelling of

plasmas.

1.3 Geospace Environmental Modelling (GEM) Magnetic

Reconnection Challenge

A standard representative problem very often considered in the numerical modelling of space
plasmas is the Geospace Environmental Modelling (GEM) magnetic reconnection challenge.
Although examined for some time, more recent observations from studies of the ESA Cluster
mission data [68] and the successfully launched NASA MMS [69] has renewed interest in the

modelling and exploration of this problem.

In this thesis, the GEM magnetic reconnection challenge is used in the evaluation and vali-
dation of a proposed new multifluid MHD model and companion solution method developed
herein. The original problem was posed by Birn et al. [27] to investigate the role of mag-
netic reconnection in the dynamics of energy and particle transfers in the magnetosphere,
particularly the magnetotail region during high solar activity. The problem has since been
investigated by a large number of researchers using a variety of models and numerical meth-
ods [2-4,7,27,38,54,63,65,66,70-73]. The GEM challenge exists in a regime which is virtu-
ally collisionless [74], giving rise to large temperature and pressure anisotropies [4], as well as
two-fluid currents. Traditional MHD models are not strictly valid for this regime due to the
simplifying assumptions. Accurate, fast, reconnection has also been shown to require electric
and magnetic fields that are not frozen to the fluid [3]. The simulation results that are thought
to be most accurate for the GEM problem are obtained using hybrid particle and collisionless,
kinetic, particle-in-cell (PIC) simulation methods [2,3,54,70]; however, significant inroads have
been made in simulating this problem using extended fluid models [7,65,66]. Though significant
research has been carried out related to the GEM problem, a very high resolution simulation
using multiple species, both electron and ion, utilizing fully anisotropic fluid models, along
with a full simulation of Maxwell’s equations with divergence error cleaning formulated in a
Godunov-type finite-volume scheme has not been performed to this date. Furthermore, a grid
convergence resolution study is rare, particularly for the GEM problem. This is due to compu-
tational and stability considerations which usually require a modification of the GEM problem
such as a reduction, or simplification, in the governing system of equations compromising the

largely decoupled, anisotropic nature of the system.

Often, the GEM challenge problem has been solved using ideal, resistive and Hall MHD mod-
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els [27,38,71,72]. The problems with these plasma descriptions is that they treat the plasma as
a single fluid with combinations of infinite conductivity, an artificial resistivity and a general-
ized or simplified Ohm’s law, which does not reflect the true behaviour of an electro-magnetic
plasma system. These MHD models couple, to a degree, the fluid with the electric and magnetic
fields as intrinsic to the fluid instead of as a standalone field. This is the so called frozen-in mag-
netic flux condition of traditional MHD methods [27]. Further, the fluids are usually isotropic
as opposed to truly collisionless plasmas, as specified in the GEM challenge, which as a con-
sequence have anisotropic features. As such, results with traditional, frozen-in magnetic flux
condition, MHD models have been inconsistent and very dependent on the tuning parameters
and changes in models and numerical solution methods. For instance, Otto [38] compared
MHD and Hall MHD with resistivity models and found that the reconnection rates doubled
when moving from ideal MHD to the Hall MHD model, but found the reconnection changed
greatly with the resistivity parameters used. The reconnection rate was, however, significantly
lower than that expected from particle codes unless a non-physical value for the resistivity was
used. Ma and Bhattacharjee [72] utilized a Hall MHD code with a more accurate Ohm'’s law,
but still utilized an isotropic single fluid description of the plasma with no discrete electric field.
Ma and Bhattacharjee state that the ion pressure gradient can be neglected, which is counter
to the findings discussed by Schmitz and Grauer [4]. They go on to say that while the electron
pressure gradient should not be neglected, it is a common assumption in the literature and also
neglect it anyway. The results of Ma and Bhattacharjee do not align with any other results,
except qualitatively, with times and reconnection rates differing from those predicted by other
simulation results. Birn and Hesse [71] brought anisotropic effects into the resistive MHD equa-
tions. Like all other traditional MHD results, the reconnection takes much longer (hundreds of
non-dimensionalized time), but it was noted in their study that with added anisotropies, the
reconnection rate was reduced, and as the rate of isotropization increased, the reconnection

rate increased. As will be shown, these findings are also observed in the present study.

As mentioned previously, the perceived benchmark methods for the solution of the GEM prob-
lem are the PIC and hybrid codes. Shay et al. [2] have compared a PIC and hybrid code with
Hall MHD. The hybrid model treats ions as particles, but treats the electrons as an isotropic
fluid, an assumption that is not valid as stated before [4]. Further, the PIC and hybrid code
uses a restricted form of the governing equations, with additional constraints and assumptions
which eliminates several variables and also assumes that equilibrium quantities are only a func-
tion of z while perturbed variables have no = component. The differences between the various
schemes, including changing the mass ratio by orders of magnitude, was found not to greatly

affect reconnection, but did affect the fluid dynamics. Hesse et al. [70] explored the PIC model
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further and Kuznetsova et al. [54] explored the differences between PIC and hybrid models,
where the hybrid model is found to be more stable with no magnetic island forming due to the
isotropic nature of the electron fluid equations. Note that in all of the simulations listed above,
not all of the particles are simulated. Instead, a background distribution of particles is created
that have different properties than the simulating particles and which are not affected by the

fluid and electromagnetic forces.

More recently, other advanced non-PIC schemes allowing non-equilibrium treatment of the
plasma have been used to simulate the GEM problem. The most successful of these has
been those based on the Darwin-Vlasov model and various two-fluid formulations. Schmitz
et al. [4,75] presents a fully anisotropic two-fluid plasma model in which the particle distribu-
tion functions are directly computed. However the major deficiency in this formulation is that it
is still quite computationally expensive, does not incorporate plasma particle collisions and does
not provide a full modelling of Maxwell’s equations. In the Darwin-Vlasov model, the ‘vacuum’
wave modes are eliminated, which is to say all speed of light waves of Maxwell’s equations are
not considered by splitting the electric field into longitudinal and tangential components, where
the tangential components are not evolved. Further, not all electric and magnetic field compo-
nents are considered for the charge displacement correction. A more recent Vlasov-BGK model
has been proposed by Liu et al. [73], which incorporates BGK particle collision modelling to the
Darwin-Vlasov system. However, the Vlasov-BGK model comes with its own complications in
the solution procedure and an extremely high computational cost, requiring the use of simpli-
fied problems and low mesh resolution simulations. Hakim [65] and Loverich et al. [63,66] have
tackled the GEM problem with a two-fluid approach using various levels of modelling for colli-
sional effects and temperature anisotropies. However, a fully anisotropic code is not used, with
either 5-moment fluid descriptions used for both plasma components, or having a 5-moment
formulation for the electrons. Further, the actual reconnection problem studied by Hakim was
not the same as the original GEM problem. Johnson et al. [6,7] presents a fully anisotropic two-
fluid simulation for the GEM problem using the original GEM challenge definition in his thesis.
The results of the latter are however of relatively lower spatial resolution to those considered
herein and required a constant collision ‘isotropization’ pressure equation to remain stable for
the duration of the simulations. Hybrid models which include both the Darwin-Vlasov model
and the two-fluid model have also been proposed to address the computational difficulty of the
Darwin-Vlasov model while providing fully anisotropic simulation capabilities [5]. Despite these
advancements, the two-fluid Darwin-Vlasov model still remains computationally expensive and
is limited to tailor-made problems such as the GEM challenge where the domain can be split

into regions where the respective plasma models can be reasonably applied.
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1.4 Research Goals of Thesis

The goal of this thesis is then to develop a practical multifluid MHD (MMHD) model, which is
capable of resolving non-equilibrium, anisotropic, multi-temperature, partially ionized plasma
effects without resorting to the complexity and numerical difficulty of direct particle simulations.
A set of transport equations are sought that include temperature and pressure anisotropies, as
well as a full modelling of Maxwell’s equations, eliminating the need for a generalized Ohm’s law
constitutive relation, with multispecies capabilities taking into account neutral particles as well
as the ions and electrons, along with interspecies reactions such as ionization, recombination and
charge exchange. The MMHD formulation follows what was developed previously in the thesis
research of Ohsawa [48], which includes the key elements of anisotropic plasma modelling, as well
as capabilities for modelling rarefied, near equilibrium, partially ionized plasmas. An effective
numerical solution strategy for the solution of the MMHD model in two space dimensions is then
developed. The proposed MMHD model is thus equipped to simulate a range of non-equilibrium,
multispecies, anisotropic, partially ionized, plasmas as well as near equilibrium plasmas in two
dimensions (2D), and be computationally tractable for performing space plasma simulations.
In order to demonstrate the potential of the proposed MMHD model and companion solution
method, they are applied here to the GEM magnetic reconnection problem as described above

and the results of this application are discussed.

1.5 Outline of Thesis

Following this introduction, the remainder of the thesis continues first with a brief review of
relevant gaskinetic theory, which provides the basis of the proposed MMHD model. The pro-
posed MMHD model is then described, which is based on the 10-moment Gaussian moment
closure with BGK collision terms, with various formulations for the Maxwell’s equations. The
models for the collisions and reactions are presented as well. A dispersion analysis is then
presented for the linearized system of equations in which the behaviour of the MMHD eigen
system is explored and the hyperbolicity for the moment system is demonstrated. A one-
dimensional (1D), temporally limited, dual-time implicit, second-order finite-volume Godunov
upwind numerical solution procedure with a Harten-Lax-van Leer-Einfeldt (HLLE) numerical
flux function is then developed and studied for the 1D form of the proposed MMHD model. The
recovery of the ideal MHD limit is demonstrated and explored, along with the computational
advantages of the implicit dual-time scheme. The proposed solution method is then extended

to the two-dimensional case in which a parallel scheme with a Newton Krylov Schwarz (NKS)
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implicit algorithm is developed and validated through a rigorous accuracy assessment study
showing robust convergence. The two-dimensional solution method is also validated through
direct comparison with a Gaussian moment closure solution method for various flow regimes.
Finally, the numerical results for the GEM challenge are presented as obtained using the pro-
posed MMHD solution procedure. The numerical results are compared to established solutions
in the literature. Numerical predictions for more realistic plasma cases are also considered. The
last chapter of the thesis provides a summary of the thesis achievements and conclusions as well

as a discussion of directions for future research.
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Chapter 2

Gaskinetic Theory

2.1 Overview

A brief overview of gaskinetic theory, which is used as a basis for the development of the pro-
posed transport equations for the MMHD model, is presented in this chapter. The underlying
kinetic equations for the charged and neutral particles are presented, beginning with a definition
of the velocity distribution function. Moment closure techniques for obtaining approximate so-
lutions to the governing kinetic equations are also briefly reviewed. In particular, a 10-moment
or Gaussian moment closure based on the Gaussian distribution function is presented that is es-
sential for representing the anisotropic behaviour of plasmas. The basic form of the 10-moment
equations for plasmas is then presented, along with the corresponding BGK approximations for

relevant elastic collisional processes.

2.2 Kinetic Theory and the Velocity Distribution Function

Kinetic theory seeks to describe the time evolution of a system of often numerous discrete
objects via a statistical or probabilistic approach. The objects and system being modelled
can be anything from vehicles and traffic [76,77], to stellar bodies and galaxies [78]. Partial
integro-differential equations, known as kinetic equations, can be developed for the study of
these systems and used to predict their behaviour. The behaviour of gases and plasmas is one
such system that can be described using the statistical description provided by kinetic theory
and is known collectively as gaskinetic theory [79]. Gaskinetic theory seeks to represent the

probabilistic behaviour of gases and plasmas by making use of a distribution function for the

11
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motion of the individual particles. The velocity distribution function, F4(x,vg,t), is related to
the probability density of the particles in a 6-dimensional phase space where x is the position
vector, vy is the velocity vector for species s, and ¢ is the time. By definition, integrating the
distribution function over all velocity space for a given volume or position will result in the

number density for the given volume or position given by!

oo oo [oe)
ns(x,t) = / dv&m/ dv&y/ dvs > Fs(Vs,2, Vs gy Vs 2, X, 1) = (Fs(x, Ve, 1)), (2.1)
—0o0 —0o0 —00

where ng is the number density of species s. Put another way, for any infinitesimal volume in
space defined by dx, there are dng particles that have a velocity contained within the infinites-

imal velocity space defined by dv; such that
dngs = Fs(x, vs, t) dx dvs. (2.2)

The integral operator on the right of Equation (2.1), (-), is used here to represent integration

over the entire velocity space and in the general case can be expressed as
o0 (o) oo
(M(vs)Fs(x,vs,t)) :/ dvs,x/ dvs,y/ dvs » M (vs)Fs(Vs 2, Vs y, Us 2, X, ) (2.3)
—00 — 00 —0oQ

where M (vy) is the moment function. Taking various velocity dependent moment functions
for M(vs) and integrating over all velocity space is known as taking velocity moments of a
distribution function and is a way of determining relevant macroscopic properties of gases which
are then functions of regular three-dimensional physical space, a subset of the six-dimensional
phase space of the distribution functions. The integral of Equation (2.1) is in fact known as
taking the zeroth-degree velocity moment as the moment function, M (vy), is of order 0 in vg.

Further details of the macroscopic properties of a gas are to follow.

2.3 Boltzmann Kinetic Equation for Plasmas

The Boltzmann equation [79] is a non-linear integro-partial differential equation that is capable
of describing the evolution of a non-equilibrium velocity distribution function in space and time,
as well as velocity space. It is an approximation to the Liouville equation [80] and is part of
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [81,82] and is given by

OFs(x, v, t) . OFs(x, vs, t) N OFs(x,vs,t)  O0F4(x,vg, 1)
T S g g = :
ot R Oak R vk 5t

(2.4)

The term on the right hand side, 0F4(x, vy, t)/dt, is the collision term (or collision integral)

that accounts for the influence of interparticle collisions on the time rate of change of the

In this work, vector notation is used where ever possible, however, tensor notation is used when required
and when expression in tensor notation is easier to interpret.
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distribution function and in general requires the evaluation of a five-dimensional integral. The
acceleration term, agp, takes into account external forces that may act on the gas and is taken
to be divergence free with respect to velocity [79]. For plasmas, the external force is the Lorentz
force, which represents the influence of electromagnetic fields on the charged particles and is
given by

q
Qs = m—s (Ek + Eklm'Us,ZBm) . (2.5)

s

Here, ¢s and my is the charge and mass of species s, and E and B are the electric and magnetic
field density vectors, respectively. With the Lorentz force, Equation (2.5), substituted into

Equation (2.4), the resulting equation is known as the Boltzmann equation for plasmas.

2.4 Maxwell’s Equation of Change

In order to move from the phase space of the Boltzmann equation to transport equations for
the macroscopic fluid dynamics quantities in physical space, Maxwell’s equations of change can
be derived by taking the Boltzmann equation, Equation (2.4), and multiplying by a moment

function of vs, M(v;), as appearing in Equation (2.3). The result is

0 0 OM, F OF
v Mst a siMst 8,0 = Msi ) 2.
gt (M ) + 5 (v >+<a’ 8v57i> < 5t> (26)

which is regarded as Maxwell’s equation of change in conservative form [79] and describes the

transport of the macroscopic quantity or moment, (Mj Fy).

2.5 Velocity Moments and Moment Closures

By taking Maxwell’s equation of change, Equation (2.6), and selecting a suitable representation
for the distribution function, it is possible to derive various macroscopic descriptions for systems
of fluids and gases. Many such distributions can exist, but a common and useful distribution
is the Maxwell-Boltzmann distribution or Maxwellian describing equilibrium solutions of the

Boltzmann equation above given by

M, = s 3/2e _ma(vs —uy)* (2.7)
s = s\ onkT, P 2T, ’ '

where k is the Boltzmann’s constant, T is the temperature for species s, and ug is the bulk

velocity vector for species s. It is also useful to introduce the random velocity here given by

Cs = Vg — Uy, (2.8)
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which is the velocity of a particle minus the bulk velocity, meaning that the statistical average
of such a velocity vector for all particles is zero. The Maxwellian is a particularly useful
distribution function as it represents a normal statistical, local thermodynamic equilibrium
distribution. Any real world monatomic gas tends to evolve towards a Maxwellian distribution

under the action of collisional processes [79].

The moment function, My, in Equation (2.6) is commonly a monomial in some degree of the
total velocity, vg, or random velocity, cs. One problem encountered when taking the velocity
moments of Equation (2.6) is that the resulting equations always introduce an additional term in
the flux of the macroscopic quantity requiring the evaluation of the next higher velocity moment.
One solution to this is to select the distribution function in a way that results in the higher
order moment being defined entirely in terms of only the lower order moments or macroscopic

quantities of interest. This is the basic idea behind most moment closure techniques.

The closure of moment equations has been studied for some time with classic closures being de-
fined by taking perturbative expansions around the Maxwellian first described by Grad [80,83].
Modern closures include the popular hierarchy of maximum entropy closures of Levermore [84].
The most straight forward and lowest order member of both the Grad and Levermore closures
is represented by taking the Maxwellian distribution of Equation (2.7) for the distribution func-
tion, Fy, in Equation (2.6) and taking the subsequent velocity moments for the set of moment

functions given by

MS (Vs) - {m57 msVs, msvg} ; (29)

which are associated with the zeroth, first and second velocity moments of Maxwell’s equation of
change. When performing the integration, it is useful to make the substitution for the velocity
and bulk velocity vector in Equations (2.7), (2.6) and (2.9) with the random velocity vector
of Equation (2.8). The high-order moments are closed with the second-order moment being a

function the lower order moments and with the third order moment being zero:

1
ps(x,t) = 3 <msc§ Fi(x, cst)> = ngkTs, (2.10)

1
hy(x,t) = <2msc§cS Fy(x, cs,t)> =0, (2.11)

meaning there is no heat flux. One characteristic for most moment closures is that under
equilibrium conditions, the moment equations reduce to the well-established Euler equations
describing flows in local thermodynamic equilibrium. Performing the velocity moment inte-

gration using the equilibrium Maxwellian distribution function, and setting a; = 0, it can be



2.6. 10-MOMENT GAUSSIAN CLOSURE 15

shown that the Euler equations are recovered as given by

aps 0 N (0ps
8t + 8xi(p8us,z) - < 5t >C7

0 0 O(pstts
7(psus,k) + — (Psus,ius,k + s 5zk) = <M) 9 (212)
C

8t 8%1 ot
Q § + 1 2 + 0 § + 1 2 4+ = 0Es
ot 2ps 298“5 O 2ps 2psu5 Usi T PsUi| = St . .

which govern the transport of mass, momentum and energy for the gas. This is also known

as the 5-moment equations in the Levermore hierarchy [84]. Please refer to the textbook
by Gombosi [79] for more details Maxwell’s equation of change and derivation of the Euler
equations. Other references for velocity moments of higher order closures and the derivation
of governing equations for fluid dynamics can be found in the papers by Groth [85], Brown et
al. [86] and Levermore [84]. The evaluation of the collision terms appearing in the preceding

equations is addressed later in Section 2.7 of this chapter.

2.6 10-moment Gaussian Closure

An important property of charged particles, is the ability to have different, anisotropic, tem-
peratures in different directions that result from plasmas coupling with Maxwell’s equations
through the Lorentz force of Equation (2.5). As can be seen from the Lorentz force, charged
particles can be directly influenced by the electric field in a preferred direction and will also
spiral around magnetic field lines. This results in movement, energy, and pressures in direc-
tions parallel and perpendicular to magnetic field lines. This occurs in both equilibrium and
non-equilibrium conditions. The local Maxwellian distribution, Equation (2.7), is incapable of

capturing this behaviour, so a different distribution function is sought.

A distribution function that results in a hyperbolic set of closed moment equations and is
capable of allowing for anisotropic pressures and temperatures would be desired for many
plasma applications. One such closure is the so-called Gaussian distribution of the 10-moment
Gaussian closure. In the Gaussian closure, the species phase space distribution function is

approximated as follows:

ns(x,t) 1
Gs(x, v, t) = 2r 2 (de10,) 12 exp <_265,i1jcs,ics,j> (2.13)

where Oy = Psij/ps. The 10-moment Gaussian closure was studied by Levermore [84] and
is a second-order member of the Levermore maximum entropy hierarchy. It was however first

considered by others such as Maxwell [87] and Holway [88-90]. As a member of the Levermore
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maximum entropy hierarchy, it represents the most likely distribution function that maximizes
the entropy generated by the Maxwell’s equation of change for the given finite set of moments
associated with the Gaussian distribution [91]. It is not a perturbative function like Grad
closures making it elegantly simple. It is strictly positive and closes the moment in the same
way as the Maxwellian distribution function; with the third-order moment vanishing. The
Gaussian closure has been extensively studied and has been applied successfully to the numerical
prediction of a range of non-magnetized gaseous flows by Levermore [92], McDonald et al. [93—
97] and Groth et al. [91].

The transport equations of the 10-moment Gaussian closure can be derived by approximating
the distribution function F4(x, v, t) with the Gaussian distribution function, Equation (2.13),
and then taking appropriate velocity moments of the Boltzmann equation, Equation (2.4) as
defined by Maxwell’s equation of change [84-86]. For the plasma applications of interest here,
the Lorentz force of Equation (2.5) is considered when evaluating the velocity moments for

Maxwell’s equation of change, Equation (2.6), using the following moment functions:
M, = [msvmsvs,i,msvs,jvs,k] (2.14)

the following 10-moment multispecies transport equations for plasmas can be derived and ex-

pressed in weak conservative form as:

Multispecies Conservative Continuity FEquation

Omsng  OMmgngis; 0(msng)
~ = , 2.15
ot T o 5t ). (2.15)
Multispecies Conservative Momentum Equation
0 0 ; 0P, ;
MsNsUs + MsNsUs iUs k sik ns(Gk + quk)
d(msnsvg i) :
_nSQSEkawus,an = T >
c

Multispecies Conservative Energy Equation

0
a (msnsus,jus,k; + Ps,jk) + % (msnsus,ius,jus,k + Ps,jkus,i + Ps,ikus,j + Ps,ijus,k)
i

_nsus,j(Gk: + QSEk) - nsus,k(Gj + QSEj) - nst(gja'yus,aus,k + 5ka'yus,aus,j)Bv (217)

qs 5(msnsvs,jvs,k)
= (ejar Po.ak + Ekary Ps,as) By = <5t ¢

S
It should be noted that when taking the velocity moments to arrive at the species transport
equations, the third-order velocity moments of G are all identically equal to zero corresponding
to the situation where the heat flux for each species is zero. Besides the ability to model

anisotropic pressures and energies, the above set of equations is desirable because it is hyperbolic
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and is suitable for numerical solution using well-established Godunov-type upwind finite-volume
methods [83,98].
For completeness, to obtain the primitive form of the equations, the moment functions,

M = [msa MsCs. i, mscs,jcs,k] s (2.18)

and the random velocity definition, Equation (2.8), are substituted into Equation (2.6) to obtain

the following set of moment equations:

Multispecies Primitive Continuity Equation

Omsng Omgsng Ougs; 0(msns)
. L 2.19
ot " T an T 5t ). (2.19)
Multispecies Primitive Velocity Equation
Oug i, Oug 1, 1 0P qs O
: ; 2 — — —(F B.) = . 2.20
ot T+ Us,i 0x; + msns Ox; ms( b+ €kanlsaBy) 6t )¢’ ( )
Multispecies Primitive Pressure Equation
OP; ; P, ; O g ou ou
i T e e e R
ot Ox; dz; oz, O (2.21)
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2.7 Bhatnagar-Gross-Krook Collision Operators

The right hand side collision integrals appearing in Equation (2.4) are now considered. Mod-
elling exactly the behaviour of the particles undergoing collisions can be both theoretically
challenging and computationally expensive, so an often-used and convenient mathematical ap-
proximation for the effects of inter-particle collisions, the Bhatnagar-Gross-Krook (BGK) colli-
sion model [99], is deemed to be sufficient for the present study and is adopted here. The BGK
model uses a relaxation time approximation of the form

(). (), -t

t

where
3/2 _ 2
UE ms (Vs us(st))
i) "o e
27TkTs(st) 2kiTs(st)

MsUg + MUy
Us(st) = s + 1 (224)

msimg mg msimg 2
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and where the subscript s(st) refers to the species s for the interaction between s and ¢. There-
fore, M) is the Maxwellian distribution function for species s about the mass weighted av-
erage bulk velocity, uy(y), and 1/0s = vg is the collision frequency of the interaction between

species s and t. The BGK collision operator is used to model elastic collisions herein.

2.8 Elastic Collisions

In order to derive the elastic collision terms utilizing the BGK approximation above, a few

relations must be discussed. First, the random velocity can be written so that

m
Cs(st) = Vg — us(st) =Cs+ m (us - ut) . (226)

() )

for the continuity collision term and

<msvs <5£S>C> = zt: nsmsUst (Uy — ) (2.28)

for the momentum collision terms. Also note that

This implies that

<mscs(st)kcs(st)lFs(st)> = nskBTs(st)(Skl

(2.29)
= ps(skl -+ 2%(1} )6kl + n.smt %(ut — uS)Q(Skl
and
- my
= ——— vy 2.30
Vst e + Vst ( )
Therefore the second-order random velocity moment is given by
2
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<<<53t)> > = v (psOjk — Paji +Z m+mtt) kp(Ty — o)
¢
(2.32)
MesMiNslst | 1 9
+ Z nzs n ;n: [35jk(ut —us)” + (uj — tsj) (wak — usk)]
and

d(mgngvsjvep F) B MsNsVst
<< 5t = Vs (pségk Psgk) + Zt: 2mk3(ﬂ Ts)éjk

m
=0ik(uy = ug)? + (g juep — s jtis ) + — ((uej — s j)ts o + (Ue e — Us ) Us,;)

msmtnsﬁst 1
+Y = s ) +

ms + my
(2.33)
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are the collision terms for the macroscopic quantities representing energy.

With the BGK elastic collision terms, the basic form of the 10-moment fluid dynamics equations
for plasma modelling is complete. In the next chapter, these equations are utilized to form the
MMHD model which will include multiple species of gases, reactive and non-reactive collisions,

and the Maxwell’s equations with divergence cleaning.
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Chapter 3

Multifluid Magnetohydrodynamics
Model

3.1 Overview

This chapter presents the proposed MMHD model along with Generalized Lagrange Multi-
plier (GLM) method used here for divergence cleaning. Included in the chapter is the full
MMHD model description, with elastic and inelastic collision terms involving charge exchange
and ionization-recombination for the ions and electrons. Several subsets of the model are also
presented including the 10-moment two-fluid magnetohydrodynamics (I0TFMHD) model and
different proposed divergence cleaning methods for the numerical treatment of Maxwell’s equa-

tions.

3.2 Maxwell’s Equations

In order to have a complete description of a plasma, the electro-magnetic fields must be de-
scribed in addition to the fluid properties of each component of the plasma. This is done through
the solution of Maxwell’s equations [100], presented here in vector notation as reformulated by

Heaviside [101] as follows:
0B

o E-0 1
ot +V x , (3 )
oD
— H = —j 2
o V x 3, (3.2)
V-B=0, (3.3)

21
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v.E=" (3.4)

€0
which in turn represent Faraday’s law, Ampere’s law, Gauss’s law for magnetism (also known
as the solenoidal condition) and Gauss’s law, respectively. In the above equations, B is the
magnetic flux density vector, E is the electric field intensity vector, H is the magnetic field
intensity vector, D is the electric displacement vector, j is the current density vector, p, is the
charge density, and ¢g is the electrical permittivity of free space. The vectors B and H, and E

and D are related by
B = uoH, (3.5)

«E =D, (3.6)

where g is the magnetic permeability of vacuum. The charge density for the plasma is given
by

Py =D dsms, (3.7)

which involves a sum over all species in the plasma. In the MMHD model described in the
section to follow, only Equations (3.1), and (3.2) are solved through numerical methods and the
solenoidal condition, and Gauss’s law, Equations (3.3) and (3.4), which are in fact constraints
on the solutions of the other two equations, are not directly enforced. The treatment of these

equations is addressed in Section 3.8.

3.3 Multifluid MHD Governing Equations

The MMHD model with no divergence cleaning is presented first. This model is used extensively
for analysis, especially for 1D problems an analyses, as there is no need to correct for V.-B =0
when only the evaluation of one-dimensional fluxes is required and initial jumps in the normal
component of the magnetic field are not admissible. The governing equations for the MMHD
model presented here are a follow on to the two-fluid model of Shumlak and Loverich [62]. The
model is extended to include the 10-moment fluid dynamics equations from Chapter 2 in a
similar fashion to Hakim et al. [64-66]. It is generalized to include a neutral third species with

elastic and inelastic collision effects between the three species.

When the 10-moment fluid dynamics equations for plasmas, Equations (2.15)-(2.17), are taken
to represent each component of a three-species plasma consisting of neutrals, ions and electrons,
and coupled with Faraday’s law, Equation (3.1), and Ampere’s law, Equation (3.2), to prescribe

the electromagnetic forces, the resulting coupled set of governing equations can be expressed in
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weak conservation form as

ou ou OF;
L vF=2 & g g 3.8
ot ot Tom 0t (3.8)
with
Uion Fion,i Sion Szcgfl
U F. . S Scol
U= e ’ F,L _ €, 7 S _ € 7 Scol — e l , (39)
Un Fn,i Sn S%O
Un Far S Seo!
where
Psls,i
Ps
UgiUs . + P
U = PsUs k ) Fs,i = Patlaitiek sk s (310)

Psls iUs jUs f + Ps,jkus,i

+Ps,ikus,j + Ps,ijus,k

PsUs jUs k + Ps,jk

S, = qs ,ZSS (Ek + 6ka'yusch'y) 7 (311)

QS;,)TSS (us,jEk + us,kEj> + QS% (fjawus,aus,k + eka’yus,aus,j) B'y
+% (ejowps,ak + 6ka'yPs,0cj) B’y

and where s € {ion,e,n}. Maxwell’s equations are represented as

B; €jinE 0
UM = ( ! > 9 FM,i = ( ];a : ) ’ SM - Pe Pion
EOEj —&oC 6jio<B0c € (me Ued — muom uion,j)
(3.12)

The individual species solution, flux and source vectors of Equations (3.10) and (3.11) are

ordered starting with the continuity equation, then the momentum equations, and finally the
energy equations, where p; is the density, u, is the bulk velocity, P ;i is the three dimensional
pressure tensor, ¢s is the charge, and mg is the mass for species s. Going from the vector
notation in Equation (3.8) to the tensor representations in Equations (3.10) and (3.11), it
should be noted that the index 7 is associated with the derivative with respect to x in the flux

terms.

Maxwell’s equations given in Equation (3.12) include both Faraday’s and Ampére’s laws for the

electric field E, and the magnetic field B, respectively, ¢ is the permittivity of free space and ¢
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is the speed of light. As mentioned previously, the solenoidal condition, Equation (3.3), and the
charge displacement, Equation (3.4) are not strictly enforced. In 1D simulations, the solenoidal
condition is automatically satisfied, however there can be charge displacement errors, but for
the 1D simulations considered here they are assumed to be negligible. The solenoidal condition,
however, does play a role when extending the model to the 2D case and the treatments of both
constraints, Equations (3.3) and (3.4), are discussed in Section 3.8 to follow. The source vector
of Equation (3.11) only includes the non-collision source terms with the collision source terms,

S<ol | defined and addressed in the next section.

3.4 Collision Source Terms

The collision source terms of Equations (3.8) and (3.9) are comprised of several individual

collision terms representing different particle interactions and can be expanded as follows:

gl _ SF, col_ Z SF. el . SF, iz-rc
e\ ot N 5t 5t ’

o€{ion,e,n} €o

SF. col SF el SF iz-rc SF. \ X
col __ won o on 0n on
Si""_( ot ) = . < ot > +< ot ) +< ot ) ’ (3.13)

o€{ion,e,n} iono

SF. col SF. el SF. iz-rc SF.\ X
col __ n — n n n
S"‘(ét) 2 (c%) *(&) *(«%) ’

oc{ion,e,n} no

where the superscripts el, iz-rc, and cx represent elastic, ionization-recombination, and charge
exchange collisions, respectively. Note that the electron collision terms do not include a charge
exchange term since only ions and neutrals are involved in charge exchange. There are obviously

no collision terms related to Maxwell’s equations in the MMHD model and therefore
S5 = 0. (3.14)

The following sections summarize and provide expressions for each of the collision source terms
appearing in Equation (3.13) above. For terms where the collision or reaction models require
specific gas species, singly ionized argon and monatomic hydrogen gases are considered in this

thesis.

3.5 Elastic Collision Source Terms

Non-equilibrium elastic collisional processes between the plasma species are represented using
the BGK relaxation time approximation as presented in Section 2.7. The various terms are

summarized below:
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Continuity Collision Term

y (‘Z;S)el — 0, (3.15)

tef{ion,en} st

Momentum Collision Terms

)

te{ion,en} st

Energy Collision Terms

v (G [ (Bewgma) )T
ot st ot

te{ion,e,n}
Vs (PsOjk — Ps k) + 24 2(7,55157;)’63@ = T5)4;
MyPsl, 1 m
! Et: m:f ns”:t [35jk(ut - us)2 + (Ut,jut,kz - Us,jus,k) + Hj ((Ut,j - Us,j)u&k + (“tk - usvk)u&j)
(3.17)
where g and temperature Tiis given by

~ my Py
L T, = , 3.18
Vst Mg I my Vst, S PsRs ( )

vgt is the collision frequency for collisions between species s and ¢ [79], and where v is the self-
collision frequency. Mathematical expressions are required to determine the collision frequencies

for the elastic collisions and are discussed next.

3.5.1 Coulomb Collisions

The collisions between charged particles are governed by Coulomb forces, Fy;, which can be

expressed as
qsqt ..

Fst(rts) = keTrt& (319)

ts

where k. is Coulomb’s constant and rys is the vectorial distance going from particle ¢ to s. It

can be shown that the Coulomb collision frequency [102,103] in this case is given by

2 2
nqsqz
= ——2———InAgy, 3.20
Vst 3m3/2 e2m?2, g st ( )
with
12 KT\
Ay = M (3.21)

|QS Qt|
The weighted average for mass and temperature and the average velocity are

— Msmyt — muTs+msTy G — . [2kTs
Mgt = m:—‘rmt’ Tst = mz-l—m: ) Jst = Mat (322)
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The Debye length is given by

1

Ap = =
i Z ) nO’ qa
€0 oe{ion,e,n} kTo’

These expressions govern the interactions between electrons and ions only, and include self

(3.23)

collisions.

3.5.2 Non-Coulomb Elastic Collisions

For partially ionized plasmas, a neutral species may be present in addition to the charged ions
and electrons, and an appropriate non-Coulomb collision model is required to determine the
collision frequencies for each of the possible interactions with the different gas types (argon
and monatomic hydrogen). This is accomplished by examining the definition of the collision

frequency in the BGK model which can be written formally as

Vgt = Ny / dvs / dvy 9stOst (gst) fs (Vs) ft (Vt)7 (3'24)
vs€ER3 v:ER3

with gg = |vs — v¢| and fs is the normalized form of the distribution function, Fs/ng. The
collision cross-section oy is a function of the relative velocity of the two interacting particles
s and t, where s = t for self collisions. The collision cross-section is what is needed or must
be defined for the various particle interactions; however, performing the integration over phase
space is often not done for most practical applications. The integral is simplified by defining
an average relative speed and this value is used to determine the collision cross-section and
ultimately the collision frequency [104, 105]. Therefore Equation (3.24) can be simplified and

approximated as

Vst ™ Nyt st Ust(gst)a (325)
where the average velocity is defined as

2

Gut = </VS€R3 dv, /WGRS dvy [vs — v, |? fs(vs)ft(vt)> . (3.26)

After performing the integration using local Maxwellian distribution functions for fs and fi, it

T T
gst = \/3]€ ( + t) + [ug — w*. (3.27)
mg me

Please refer to the previous thesis by Ohsawa [106] for more details. What follows are the various

can be shown that

collision cross-section models and formula utilized in the MMHD model to simulate non-reactive
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elastic collisions that do not involve pure charged particle interactions. As mentioned, for this

study, the plasma species considered are singly ionized, monatomic, argon and hydrogen.
Neutral Hydrogen Elastic Collisions

For the electron-hydrogen collision frequency, a linear interpolation of experimental data ob-
tained by de Heer et al. [107] is used while for proton-hydrogen collisions, a curve fit to experi-

mental data is used from Franco and Thomas [108] given by

5.80 x 104

mag® [m?], (3.28)
Eev

oyt py(&ev) =

with v being the thermal energy of the proton in eV, and ag = 5.2918 x 10~ [m] is the Bohr

radius. The hydrogen self collision is modelled simply as a hard sphere collision given by:
OH-n = 4mag?, (3.29)

where Ta3 = 8.7974 x 1072 m? is the atomic collision cross-section.

Neutral Argon FElastic Collisions

For all neutral argon collisions, experimental tabulated data is linearly interpolated. Specifically,
the electron-argon cross-sections are obtained from de Heer et al. [109], and ion-argon collision
cross-sections are obtained from data from Cramer [110]. Finally, for neutral argon-argon self

collision cross-sections, the data is obtained from Phelps et al. [111].

3.6 Inelastic Collision Source Terms

Though there are several different inelastic collision reactions, for this work, only the elec-
tron impact collision reactions will be considered. These are commonly single ion ionization-
recombination and charge exchange reactions. For detailed derivations of the inelastic collision

terms, please refer to Chapter 3 of Ohsawa’s thesis [48].

3.6.1 Baum-Fang Ionization-Recombination Kinetic Reaction Equations

The Baum-Fang [112] kinetic reaction equations can be used to model the plasma reaction
A+ e*%fﬁ +2e” (3.30)

which represents electron collision ionization where A represents the singly ionizable plasma
species considered (argon or monatomic hydrogen). This is the dominant reaction for ionization-

recombination when the plasmas are not weakly ionized. The rate constants « and § are for
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ionization and recombination, respectively, and are determined from curve fit models or analytic

models presented in Section 3.6.2.

FExamining the reaction, the basic rate equations have the form

OMion - 2
= QMNeNp — Bnionnea
1z—rc

ot
one = NNy — Bnionn? 3.31
St e = elln ion'les ( . )
<5;Ltn o = Bnionng — QNeNy,.
It follows that,
5nion 5”6 5nn 5ne
_ 9Me 2% _ Y% .32
ot ot ’ ot ot ’ (3.32)

which means that for every ion that is created, an electron must be created, and when a neutral
disappears, an ion and electron will be created. The model adopted here assumes a collision

term of the form

OF, ,
( S) = ag(PY " — Fy), (3.33)
ot 1z—rc
where ®°"¢ has the form
e ms \3/2 ms(vs —u')?
o=t () o [ 559

This is very similar to the BGK collision term and corresponds to a local Maxwellian with new
post reaction equilibrium temperatures, 7", bulk velocity, v/, and number densities, n/, with

collision coefficient ags. These quantities are determined as described by Baum et al. [112].

Taking the zeroth-order velocity moment with the Gaussian distribution, Equation (2.13), for

F, the model results in the species collisions integrals

on iz-rc .
< t8> e (n’s - ns) s € {e,ion,n} . (3.35)

The collision frequencies are

v

1z-rc __ 2 1z-1C 1z-rC
on - Bnev

Ve = BnionTte, 2 = Qne. (3.36)

By comparing the rate equations, Equation (3.31), to the collision term above, along with
basic conservation laws for plasmas, and using the definition of the Saha’s equation for the

equilibrium temperature 7" which is

/@(T’) = o
2Gion (21 (mem; /my, ) KT/ < 6giz> (3.37)
- exp | — ,

In B3 kT




3.6. INELASTIC COLLISION SOURCE TERMS 29

where h is Planck’s constant and e€;, is the ionization potential energy, the equilibrium number

densities are

1/2
/ K(T,)ne 2anion 2 QQnion Tin, Nion
- - ion on 4 - - ) .
e 20M0n, Brvion + | | Briion + k(T") + k(T \ne k(T (3.38)
1 Non 4

Nion = Ne Ne, (339)

) /
S <5> [ - 1] . (3.40)

o Ne

The factors g;on and g, are the quantum degeneracy of the ions and neutral atoms, respectively.

In equilibrium, the relationship

K(T') = % (3.41)

also holds.

For the total equilibrium velocity vector, u’, the collision integrals for the conservation of

momentum were solved by taking the first-order velocity moment of Equation (3.33) to give

o = Bngnion (mionuion + meue) + anenpmpuy, . (3.42)

mnp (anenn + Bngnion)

To determine the equilibrium temperature, 7", the ionization energy must be included along
with the sum of the second-order velocity moments of Equation (3.33) to enforce the con-

servation of energy as this energy is stored within the binding energy of the electron’s orbit.

S < <5§m;:2Fs)iz_m> + B, <<5£>_> ~0. (3.43)

s

Therefore,

The result of the integration is

(aneny + BnZnion + ﬁnionnen’e)%kT’ + %mn(anenn + ﬁnionng)u/z + e&i.Bn2(nl,, — Nion)
= BnZ (37ionkT; + §NionMionUspy,) + Briionne (3nckTe + snemeu?)
+ane (%nnan + %nnmnui) .

(3.44)
It should be noted that in the work by Baum et al. [112], the n’ term on the LHS is incor-
rectly written to be the neutral species but is in fact supposed to be the electron species as
verified by doing the conservation of energy integrals. Although x(7”) uses the equilibrium
temperature, it was shown by Hoffert and Lien [113] that it is possible to substitute the current

electron temperature T, for the total equilibrium temperature 7’ for when the ionization is

non-negligible.
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Taking the preceding model and using the 10-moment Gaussian to approximate the distribution

function, the appropriate velocity moments are taken to arrive at the ionization-recombination

collision terms in conservative form:

ot

(

o (msvs,iU&st) e
ot

VT (WL kT"6;; — Py jj)

<5£)> vETC (n), — ny)
. 5 (msVst) 1Z—TrcC -
iz-rc O\MsVslis) iz-rc 1.1
(5F5> _ ( 50 ) > msvg” e (nju’ — nguy) (3.45)

!, 0,0
+my (nsuiuj — nsus,ius,j)}

The above model was used for the one-dimensional solution procedure. However, it was found
with the extension of the model to two-dimensions, a strict enforcement of Equation (3.32) was
required to maintain conservation of mass. To enforce Equation (3.32), only the value of n., from
Equation (3.38) is calculated, and then the source term from Equation (3.35) is determined for
the electrons. Using the Equation (3.32) and Equation (3.39), all other reaction source terms

were determined without calculating n/,, or other reaction source term from Equation (3.35).

3.6.2 Ionization Reaction Rates

To fully determine the ionization-reaction collision terms, either the ionization or recombination
rate of Equation (3.41) requires the evaluation. This is accomplished here through either a curve
fit to experimental data, or an analytic model depending on the plasma species. For this thesis

a model is used to determine the ionization rate, o, and then the value of 3 is computed directly.
Hydrogen Ionization Reaction Rate

For monatomic hydrogen, a curve fit to the experimental data of Scholz and Walters [114] is

used and is given by

6 3
-6 A
a = ki, (T) = 10 % exp <Z ar In(T) ) [, (3.46)
k=0
where T is the plasma temperature defined by
- Meln +mnle (3.47)

Me + My,



3.7. CHARGE EXCHANGE COLLISION SOURCE TERMS

The coeflicients are:

apg = —9.61443 x 10",
ap = 3.79523 x 10%,
as = —T7.96885,

az = 8.83922 x 1071,
ay = —5.34513 x 1072,
as = 1.66344 x 1073,
ag = —2.08888 x 107°.

Argon Ionization Reaction Rate

For argon, an analytic model proposed by Hoffert and Lien [113] is used of the form

o O’ 3
a = ki, (T.) = 3.75 x 10272/ (1{“ + 2) exp <—?’1) [m?]'

31

(3.48)

(3.49)

The characteristic temperature for excitation to the first excited state, @2 ¥ for argon is

135,300 [K].

3.7 Charge Exchange Collision Source Terms

Lastly, for the treatment of the charge exchange collision terms and for simplicity, it is assumed

that the following process dominates:

A(Vl) + A+(V2) — A+(V1) + A(Vg).

(3.50)

The above reaction represents an exchange of charge for the plasma species, A. The pre-collision

velocities and states are preserved. Further, it is assumed these collisions are elastic in energy

and velocity in that no energy is lost to particle excitation [102].

As proposed by Ripken and Fahr [105,115], the collision terms are assumed to be made up of

gain and loss terms as follows:
5E0n . 6Fion +) _ 5Fion =)

5t ). St St

= |V = Vion| ez (IV = Vion|))ion Fn(V)
— (v —=vnloe (I[v = val), Fion(v),

OR (0B (o

5t ). St St
= ([v—=valoe (v —=val)), Fion(v)

— (v = Vion| 0cx (|v — vi0n|)>ion Fu(v),

(3.51)

(3.52)

(3.53)

(3.54)
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where (+) and (—) superscripts represent gain and loss terms, respectively. The collision
integrals (|v — vg| 0cs (|[V — Vs|)), are very complicated and challenging to integrate directly, so
several approximations and assumptions are made. The velocity dependence of the collision
cross-section, oy, is removed and the approximate collision frequency is defined as in Section

3.5.2 with the average relative velocity equation, Equation (3.27), so that
(Vv =vs|oew ([v—Vs])) g = migstocs(9st) = vy (3.55)
which results from the averaging of velocity

nt Jy,ers AVe [Vs = Vil 0ca([vs = vi]) fi(ve)

(3.56)
=Mt )y eR3 dvs fvt€R3 dvy ’Vs - Vt| Ucac(|vs - Vt|) ft(vt) fs(vs)-

Refer to the textbook by Gombosi [79]. Only one collision cross-section, o, is required since

there are only two species which can collide.

It therefore follows that the approximate collision terms for charge exchange [104,105,115] are

approximated as

<5F) (Vi) = iy (. T) |:ZiFn(Vi) - Fi(vi)} , (3.57)

ot n
0 (vn) = v2.(ng, ;) n—nF(v ) — Fn(vn) (3.58)
5t Cmn—cxuznizn n\vn)| .
where
Vﬁx(nnaii) = nngino'cx(ﬁi)a (359)
V?x(nia@i) = nigm'gcz(@i), (3.60)
with
T, T,
Gin = Gni = [3kB ( + t) + (us — ut)z} : (3.61)
mg my

Again taking velocity moments with the Gaussian approximation for the distribution function,

the charge exchange collision terms are as follows:

N CX -
<5F> > o
ot
. . . CX
<5Fion ) cX ((5 (mzon;twanon)> > _ nionmionl/icg}é (un _ uion)

<5 (mionvion,jvion,kFion)> > Pn ik Pionjk )

_ CX X X
St = VionMionMion [(mnnn

MionMion

+ (Un,jtn ke — Uion,jWion,k)] |
(3.62)
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and

) |
<6Fn>cx B (‘W)CX> = MG (Wion — Up) (363)

ot ox
5 (mnvnvjvnkan) — V»me n Pion,jk: o Pn,jk:
5t ton TN MionMion MmnnNn

+ (Uion,juion,k - un,jun,k)]

3.7.1 Collision Cross-Sections for Charge Exchange Interaction

To determine the collision cross-sections in Equations (3.59) and (3.60), experimental results
are used here. The sources and form for the data are presented briefly below for both the

monatomic hydrogen and argon plasmas.
Hydrogen Charge Exchange Collision Cross-Section

A curve fit to experimental data by Fite et al. [116] is used for the collision cross-section for

monatomic hydrogen charge exchange. It has the form of a common collision cross-section with
iy = (a—c lné’ev)l/2 [m?], (3.64)
where ¢; = 7.6 x 10710, ¢5 = 4.60 x 107, and &.v is the proton energy in eV.

Argon Charge Exchange Collision Cross-Section

For argon charge exchange, experimental data entered into a table obtained from Cramer [110]
is employed. As with the ionization recombination cross-section tables, linear interpolation is

used to obtain values from the table.

3.8 Divergence Cleaning Strategies for Maxwell’s Equations

When the Maxwell’s equations from the MMHD model, Equation (3.12), are discretized and
solved numerically in two dimensions, depending on the spatial discretion procedure the diver-
gence conditions associated with the electric and magnetic fields can no longer be guaranteed
to hold. Among these are the V - B = 0, solenoidal condition, Equation (3.3) and also the
charge displacement condition of Equation (3.4). In order to correct for these possible errors, a
divergence correction technique known as the Generalized Lagrange Multiplier (GLM) method

is adopted [117,118]. GLM treatments for both the magnetic field equations and electric field
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equations are presented to effectively convect and disperse the errors associated with the non-
satisfaction of these constraints away. The GLM technique was proposed and described by
Munz et al. [117] and Dedner et al. [118]. A second technique is also considered for correcting
errors associated with the electric field and is an adaptation of the error diffusion technique

considered by Langdon and Marder [119,120].

3.8.1 GLM Equations for the Electric Field

The basic procedure proposed by Munz et al. [117] is followed to modify the electric field
equations of Maxwell’s equations. These equations are Ampere’s law, Equation (3.2), and
Gauss’s law, Equation (3.4). A generalized Lagrange multiplier is added to both equations to

arrive at the following modified expressions:

oD P
VxH+VYV— =—j 3.65
ot % Lo ) (3.65)

D(®)+ V- E= %. (3.66)
0

A hyperbolic set of differential equations can be formulated by defining

1 0P
D(P) = —-— 3.67
@) =55 (3.67)
where ® is the Lagrange multiplier for the electric field and y is a non-dimensional parameter
that controls the advection velocity of ®. It is desirable for y to have a value that is at least
as large the speed of light which is the fastest propagation speed for Maxwell’s equations.
However, it can also be seen that as x — oo the equations becomes elliptic. The final form of

the GLM-corrected equations for the electric field are given by

oD P
_VxH+VYV— = —j 3.68
5 XHAEV =), (3.68)
0P 2 2Pq
— -E=x"—. .
T +x“V X o (3.69)

3.8.2 GLM Equations for the Magnetic Field

The magnetic field equations (Faraday’s law and the solenoidal condition, Equations (3.1) and
(3.3), respectively) are also modified to include GLM divergence cleaning. Following the same
procedure as for the electric field and as proposed by Dedner et al. [118], the following GLM
equations result:

0B
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D(V)+V-B=0. (3.71)

A mixed correction is chosen this time which has a hyperbolic and parabolic component, and

is given by
1o¥ 1

D) = —— + =7, (3.72)
a ot

where W is the Lagrange multiplier for the magnetic field equations and the constants ¢;, and

¢p are the advection speed and dissipation speed for W. These choices of D(¥) result in

OB
E‘FVXE—I—V\I/:O, (3.73)
oY 2v.B- ﬁqf (3.74)
at g '

where there is now a new source term for dissipation of ¥ in the modified solenoidal condition

for B.

3.8.3 Telegraph Equations

It is possible to reduce the GLM equations to two telegraph equations by taking the derivative
of Equations (3.69) and (3.74) with respect to time and substituting the respective equations,
Equations (3.68) and (3.73). Using the fact that the divergence of a curl is always 0, it can be

shown that ) )
o 5, c, OV
— U =_-h~"" .75
o~ hY c2 ot (3.75)
and
@—(C)W%—X—z % v (3.76)
oz~ X e \ Ot 1) '

This shows that the two GLM equation sets developed for E and B are not in fact coupled.

3.8.4 Maxwell’s Equations with GLM Divergence Cleaning

By adopting the GLM approach outlined above in this work, what is referred to as the full
GLM (FGLM) Maxwell’s equations can then be summarized as follows:

0B

E‘FVXE—I—V‘I/:O, (3.73)
oD P

v .

P
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09 QV 2Pq 9
* E h— . 3-6
Ot X X €0 ( )

These equations replace Maxwell’s equations in the MMHD model, Equation (3.12), and are
referred to as the multifluid magnetohydrodynamic model with GLM divergence cleaning. An-
other variation of Maxwell’s equations, where only the divergence cleaning for the magnetic
field is also considered throughout this thesis. This second approach is referred to as Maxwell’s
equations with magnetic field divergence cleaning (MGLM) and does not include the evolution

of the electric field Lagrange variable ®.

3.8.5 Divergence Cleaning via Diffusion for the Electric Field

Finally, alternate methods for correcting the electric field and charge separation errors that
are commonly used in Particle In Cell (PIC) simulations are the Marder and Langdon-Marder
schemes [119,120]. The correction to the electric field is accomplished by adding a term that

diffuses the errors associated with charge separation. In the implicit Langdon-Marder scheme,

d <v CEnH - p:;“)] : (3.77)

this correction takes the form

n+1 _ mn+l
Ecorrected =E + AV €0

In the original Marder scheme, the variables in the diffusion term used values from the previous

update instead of the current values (lagged update), namely

n+1 _ o+l . n_ﬁ
Bl =BT ALY [d (v E GO)] (3.78)

The diffusion coefficient d is chosen to be a function of a time scale and grid resolution specified

according to

i< 1 [ Arly ] (3.79)

— 2At | Ax? + Ay?
for 2D problems. This choice ensures that the von Neumann stability condition for diffusion is
satisfied. As investigated in Langdon’s paper [119], a lagged update results in less of a correction

and a larger charge separation error.

The error diffusion is extended to the finite-volume schemes considered herein by simply adding
a diffusion term on the left of Equation (3.78) for the electric field equations as a diffusive source

term as suggested by Loverich et al. [66] so that the transport equation for E becomes

OE 1
CQVXB:j+)\EV<V'qu>. (3.80)
ot €0 €0

The new term on the left is non-zero when there are errors in the electric field and the resulting

error is then diffused away at the rate governed by the electric diffusion coefficient Ag. As
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recommended by Loverich et al. [66], the diffusion coefficient is specified using
Ag = cAzx (3.81)

where Az is chosen to be either the average, or the smallest grid spacing of the mesh. This
results in a time scale of the same order as the speed of light. Solutions obtained using this
method of error cleaning for the electric field are referred to as MGLMED solutions and include

a GLM treatment for divergence cleaning of the magnetic field.

3.8.6 MMHD Summary

The preceding set of coupled partial differential equations describes the time evolution of par-
tially ionized non-equilibrium anisotropic plasmas, consisting of a single ion species, in the
absence of heat flux. It is important to note that the coupling of the four sets of equations for
the ions, electrons, neutrals and electromagnetic fields occurs only through the source terms.

Otherwise, each equation set may be treated in isolation.

3.9 The 10-Moment Two-Fluid MHD Model

In order to develop an efficient and accurate numerical solution procedure, it is useful to have
a simpler subset of the MMHD equations to test. For this purpose, the 10-moment two-fluid
MHD (10TFMHD) model was also formulated. The 10TFMHD model was used for many of
the 1D analyses and simulations presented herein and is based on the MMHD model with no

Maxwell’s equations divergence cleaning.

In order to obtain the 10TFMHD model, a fully ionized plasma is assumed, eliminating the
neutral species in the MMHD equations. This reduces the fluid dynamics equations to include
only ions and electrons. Further, the interparticle collision terms reduce to include only the
elastic collision terms of Section 3.5 (superscript el), since there are no longer any ionization or

charge exchange reactions.

The above simplifications applied to the MMHD governing equations results in the following
set of governing equations known as the 10-moment two-fluid MHD model (I0TFMHD) in the

weak conservative form, Equation (3.8) with

. F. . S. Seol
b
Uion ion,i ion ion

U=| U. |, Fi=| F [, S=]| s. [, s=[ s |, (3.82)

Uy Foi Sy el
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PsUsi
Ps

PsUs ilg k + Ps,ik

U, = Psls k , Fsi= ) (383)

PsUsils jUs k + Ps,jkus,i

+Ps ipusj + Psijus g

PsUs jUs | + P&jk

ds 7[:155 (Ek: + 6ka’yusan)

_ , (3.84)

L (g i Bk + us 1 Ej) + s 2 (€jarUs,atis k + €karUsals ) B

ds s s,j ok s,k gs ms \EjayUs,allsk kayUs,als,j ¥

+,§ITSS (Eja'yps,ak + fkavps,oaj) B’y
and where s € {ion,e}. Maxwell’s equations are represented as
B; €iia 0
U = g » B = ];a ’ , Su = Pe Pion
EQEj —E&pC Eija (& (me ueJ — Moion, Uion,j)

(3.85)

The collision terms simplify to

col __
S =

ms+my |3

PsVst (Ut,k - us,k)

. (s,t) € {(e,ion), (ion,e)}.

Vs (ps(sjk — Ps,jk) + 2 PsVst k‘B(Tt — TS)(SJ'

B (ms+my)
MiPsVst 1
Pelot 1 2o (ur — u)? + (ury — s ) (e — s )

+psUst [Us g (ut,j — ws ) + s (e — Us k)]
(3.86)

It is remembered that

S59 = 0. (3.87)



Chapter 4

Dispersion Analysis of Multifluid
MHD Models

4.1 Overview

Contained in this chapter are dispersion analyses performed on the subset of the MMHD model,
the 10TFMHD model described in the previous chapter. Various analyses have also been per-
formed on the 5-moment two-fluid model of Shumlak and Loverich which includes an analytical
and a numerical analysis of the non-discrete and discrete equations. The full dispersion analy-
ses of the Shumlak and Loverich two-fluid model can be found in Appendix A. The results of
the dispersion analysis on the I0TFMHD model indicate that the system of equations, while
hyperbolic, also contain a wide range of disparate wave speeds and time scales. A numerical
solution framework is proposed based on the results of the dispersion analysis and a discrete
dispersion analysis is then applied to the resulting one-dimensional linearized equations of the
framework. The results of the discrete dispersion analysis indicate that the system is compati-
ble for solution by an appropriately selected combination of upwind finite-volume and implicit

time marching methods.

4.2 Dispersion Analysis of the Two-Fluid MHD Model

In order to better understand the physical and mathematical behaviour represented by the
system of equations given by Equations (3.8)—(3.13), and to aid in the development of an ap-
propriate numerical solution procedure, a dispersion analysis of the MMHD subset, 10TFMHD,

39
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was first carried out as part of this thesis. The dispersion analysis proceeded along the same
lines as the 5-moment dispersion analysis that is included in the Appendix A for completeness;
however, notable deviations included the 10-moment fluid description and inclusion of the in-
fluences of interparticle collision terms. Similar dispersion analyses have been carried out by
Brown et al. [86], Groth et al. [121], and Hittinger [122] for the 10- and 35-moment closures of
neutral, non-magnetized, gases. A description of the results of this dispersion analysis are now

summarized below.

4.2.1 Non-Dimensional Linearized Transport Equations

The dispersion analysis is applied to the linearized form of the equations. In order to linearize

the equations of the two-fluid MHD model of Section 3.9, it is first rearranged into a non-

conservative form given by

OW OW oW OW
A B C =SW 4.1
ot "o Py TV (4.1)
where the primitive solution vector is
Ps
Us,z
Us,y B,
U B
Wion > Y
Ps,ma: Bz
W == W€ 5 Ws - 9 WM - ) (42)
P, $,TY E:c
Wy
Ps,acz Ey
Psyy E.
Ps,yz
Ps,zz

and s € {ion,e}. The equations are then non-dimensionalized with respect to the following

quantities:

v, Prefs Pref, Mref, MO, (4'3)

which correspond to the interspecies collision frequency, the reference density, the reference

isotropic pressure, the reference mass, and the magnetic permeability of free space, respectively.

A reference sound speed can also be defined as arer = \/VPref/(pres). Using the preceding
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quantities, the following transformations to non-dimensional variables is adopted:

- _Qre
t=1t—, xz==2 f,
v v

Mion = mionmrefa Me = memrefy Pion = ﬁionpreﬁ Pe = ﬁeprefa

_ _ _ _ 4.4
Wion = Wionlref; Ue = Uelrefs Pion = PionVPref, Pe = PeVPref ( )
= Ho o = P
E= E7pref ) B = B\/ HoYPref, =T ref y
Pref prefRion

where the bar indicates the appropriate non-dimensional quantity. Please note that in the

remainder of this section, the bars have been dropped for simplicity.

The corresponding non-dimensional and non-conservative form of the governing equations are

then linearized about an equilibrium solution state, Wy, defined by

£0,s

W, = Woe | Wy, = , Won = ’ , (4.5)

Po,s
for which the average velocity, off diagonal pressure terms, and background electric field are
assumed to be zero, which are all valid assumptions for quiescent plasmas under equilibrium
conditions. The linearization is then achieved by assuming that the solution vector can be

approximated by the perturbed solution vector defined by

W =W, + W, (4.6)
with B
Wion ﬁs ~
- - ~ ~ By,
W = We ) Ws - ﬂ&k 5 WM = ( E ) 5 (47)
- ~ k
WM Ps,jk

and where W is the perturbation of the solution from the equilibrium state. The resulting

linearized non-conservative equations for W are then as follows:

Non-Dimensional Linearized Multispecies Non-Conservative Continuity
855 8asz

+
or " o,

=0 s € {e,ion}, (4.8)
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Non-Dimensional Linearized Multispecies Non-Conservative Momentum

Ol 1 a-f)szk ds ~ - ~ - -
— Ke & (E B ) i),
8t + p(),s 8.TZ € . k + Ekoz'yusoz 0,y + Vst (utk Usk) (49)

(s,t) € {(e,ion), (ion,e)},

Non-Dimensional Linearized Multispecies Non-Conservative Energy

8stk Olg; ou k 8ﬂ5j q ~ ~
5t : WS: + 51'3']00,387; + 5ikp0,saimi = Ke mfs(qmpsak + €kay Psaj) Boy

s
1 /- - ~ ~ 1
- P, P. P, ) Oir — Ps; 2| ——
+Vs <3 ( S, X + S,yY + s,zz | 95k syk) + (ereeref>

1 £0o sUst Pot -
+2 < > 2 kB — ? Dt +
mreeref (ms + mt) Pg,th

(4.10)

3p07th (Pt,z’x + Pt,yy + Pt,zz)

Do,s - 1 (~ ~ ~ ) ) .
d — P, P P Siks 1) € {(e, , e)},
+03,sRsPS 3p0,s Rs s T sy T s ] " et) € e tom). Lion. )

where the non-dimensional quantity Ke is defined by

Ke =

vV YHOPref- (4 1 1)

2

Maxwell’s equations become:

Faraday’s Law

OB (0E, O0FE, OE, OE, OE, OE,

— -2 - - — = 4.12

8t+<8y 82) (896 8z>+<8x 8y) 0 (4.12)
x Yy z

Ampére’s Law

o ¢ ((0B. 0B,\ _(0B. 0B,\ (0B, 0B,
ot a2, f oy 0z ox 0z or oy
T Yy z
2 2
= — o Ke Nigntlion + ——Ke nele.

2
aref aref

(4.13)

For the dispersion analysis, the following physical values were used to determine the various

constants and reference values:

_ 5
e = 1.602189246 x 1071 C ! ’ .
= Mijon = 1.6736 x 10727k
¢ = 209792458 11 el = Mhion : (4.14)
m ke Npey = no=7.31955 x 10% k3

o = 0.000001256637 LX<
A Pref = po=101325Pa
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and the reference collision frequency was calculated from the ion-electron collision frequency

based on the Coulomb collision model so that [103,123]

1 3

4/ 2ret ms +my \ 2 mg + My 2
= o nion 2222 In A | — . 4.15
Vst 3 Mion&s 21 ML < memy msTy + myTy ( )

where e, is the elementary charge constant and Zs, Z; is the charge number for the species s

and ¢, respectively, and where the Coulomb logarithm is given by

3 (T.\ 1, (n
lnA:23—|—21n<106>—21n(1012). (4.16)

The collision frequency is determined by using the following conversions to CGS from SI units:

CGS ST
eo = eo,sr*2.9979 x 10° % eo.s1 = 1.602189246 x 10719 C
ko= kerx1.0x 107 %8 ksi = 1.380658 x 1072
no = mosr*1.0x 1076 2 nosr = 7.31955 x 1023 Ly (4.17)
me = mesrx10x 10%4E Mesr = 9.1093897 x 10~3' kg
m; = mrsr*1.0x 10° k% mrsr = 1.6736 x 1072 kg

4.2.2 Eigenvalue Analysis

For initial value problems (IVP) with planar wave propagation in the z-direction only, the

perturbative solution vector, W, in Equations (4.8)—(4.13) can be assumed to have the form
W = Wexp [i (wt* — kz*)], (4.18)

where w is the temporal frequency, and k is the spatial wavenumber. For the initial value
problem, w is generally complex and k is strictly real valued. This results in the following

eigenvalue problem:

(iwl — ikA* — S*)W = 0. (4.19)

The form of the matricies are large and are not included here, but the procedure is outlined in
more detail in Appendix A for the 5-moment model. A number of simplifications are now made
which include assuming equal pressures, pg ion = po.e, that the plasma is a fully ionized quasi
neutral plasma so that ng = ngion = n0.e Or po.e = (Me/Mion)P0,ion, and that the background
magnetic field is aligned with the z-direction, By = (By,0,0). The standard right eigenvalue

problem can then be formed such that

HW = wW, (4.20)
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where w corresponds to the eigenvalue of the eigenvector W and
H = kA" —iS", (4.21)

and kA* and §&* are the linearized, non-dimensional x-direction coefficient and source term

matrices, respectively.

4.3 Results of the Dispersion Analysis

4.3.1 Wavespeeds of Fundamental Solution Modes

The eigenvalue problem of Equation (4.20) is solved numerically for w for a range of values of k.
The wave phase speeds are given by the real part of w divided by the spatial wavenumber k, and
the figures in this section provide the phase speed, wr/k, as a function of k. In what follows, the
various characteristics of the two-fluid MHD model are shown in the Figures 4.2-4.11, where
the fastest waves will be depicted first, and more of the eigenstructure will be revealed as we
telescope or zoom in to investigate the slower wave modes. In addition, the computed wave
structure is compared to the dispersive wave behaviour calculated for an isotropic 5-moment
version of the two-fluid MHD model. The latter is equivalent to the two-fluid model of Shumlak
and Loverich with the addition of modelling for interspecies collisions. The comparison with
the 5-moment version of the two-fluid MHD equations is instructive as the high frequency
wavespeeds of the 5-moment model correspond to accepted wavespeeds for the various modes

present in ideal MHD descriptions [33,62].

Figure 4.1 depicts the dispersive wave nature of the 10-moment two-fluid model showing the
full range of wave modes including those with the fastest wavespeeds. Unfortunately, the only
waves that can be really seen for this range of velocities and wavenumber are the L- and R-
waves, which are the left and right circularly polarized plasma waves, respectively [33]. The fast
L- and R-mode waves are composed of a total of four waves at order 10* for non-equilibrium
conditions or for large values of k, which is equivalent to the speed of light following the
non-dimensionalization. For small k, equilibrium conditions, these waves approach infinite
wavespeeds. These waves also agree with the phase speeds of the L- and R-modes of the 5-
moment analysis. The infinite wavespeeds may appear to pose some problems; however, the
infinite wavespeeds encountered in this analysis all originate from the electron plasma frequency,
which is associated with the plasma cut off frequency. For changes in charge density less than the
plasma cut off frequency, the charges will realign to cause Debye shielding. The Debye shielding

will stop the propagation of these infinite wavespeeds at equilibrium conditions. Moreover, it
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Figure 4.1: Phase speed as a function of non-dimensional wavenumber for the parallel direction,

indicating behaviour of the L- and R-mode waves.

should also be noted that it is permissible for an unterminated wave phase speed to exceed ¢

and, despite an infinite phase speed, the group velocity of these waves are in fact zero [33].

Figures 4.2 and 4.3 depict the dispersive behaviour for the next lower magnitude waves. These
waves are the electron plasma waves which are the same magnitude as those in the 5-moment
dispersion analysis. However, the dispersive wave behaviour of the 10-moment solution is not
the same as that of the 5-moment case as can be seen in Figure 4.2. The phase speeds of the
electron plasma waves are of order 10 for large values of k, which is about a thousand times

slower than the L- and R-mode waves.

The next wave at about the same magnitude that can be seen in Figure 4.2 is the electron
shear wave. A closer view of the high k£ behaviour of this wave can be seen in Figure 4.3. The
behaviour of these waves for very small values of k are shown in Figure 4.4 and it can be seen
that there is a pair of waves that, at this resolution, appear to be abruptly cut off. This is in
fact the equilibrium behaviour of the electron shear waves, which can be seen in greater detail
in Figures 4.5 and 4.7. The electron shear waves have two positive and two negatives waves
that have the same phase speeds at high k as in Figure 4.3. As k decreases for conditions
nearing equilibrium, the two sets of waves (one positive pair and one negative pair) approach
the wr/k = 0 axis, as seen in Figure 4.5. The waves then diverge from each other where one

positive and one negative wave mode changes direction and cuts across the zero axis, while
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Figure 4.2: Phase speed as a function of non-dimensional wavenumber for the parallel direction

showing electron plasma waves.

the other waves do not change direction, as seen in Figure 4.7. The resulting behavior of the

electron shear waves can be seen in Figure 4.5 for equilibrium conditions when k is small.

For very small values of k, some interesting behaviour can be seen from the eight shear waves
present in the two-fluid 10-moment solutions, which include not only the electron waves, but
also the ion waves which are discussed later in this section. As can be seen in Figure 4.6, for
very small values of k, some of the shear wave modes approach a phase speed of unity. There is
some fairly complex structure that can be seen in the behaviour of the shear waves. Looking to
the non-equilibrium region at high %, the waves that do not reverse direction when & decreases,
diverge to infinity for very small values of k. This behaviour is the same for both the electron
and ion plasma shear waves. The other wave, the one that cuts across the wgr/k = 0 axis then
does an arc that returns towards the wr/k = 0 axis as k becomes small, as seen in Figure 4.5,
approaches plus or minus unity for equilibrium conditions. Once again, this is true for both
electron and ion plasma waves, even though their phase speeds greatly differ in magnitude in
the non-equilibrium regime. One positive and one negative wave from the electron and ion
shear waves approaches +1 for very small values of k£ as illustrated in Figure 4.6. It shows a
strong coupling between the ions and electrons since unity here corresponds to the ion acoustic

speed.
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Figure 4.3: Phase speed as a function of non-dimensional wavenumber for the parallel direction

showing electron shear waves.

In Figures 4.8 and 4.9, the dispersive behaviour of the Alfvén waves, which are one set of
waves that do not have infinite speeds for very small values of k, can be seen. Figure 4.9
shows only the positive moving Alfvén wave compared to the 5-moment solution. At larger
values of k, the behaviours of these waves depart. Remember that a value of unity here implies
a value equal to the ion acoustic velocities, however, we approach ion acoustic velocities due
to the non-dimensionalization which defined the magnetic field such that the Alfvén velocity
var = (cBoy/€0)/(y/Pref) is equal to the ion acoustic velocity. In the 10-moment formulation,
perturbations actually propagate faster than the Alfvén velocity, unlike in the isotropic formu-
lation. This is perhaps due to the fact that the Alfvén phase speed is coupled to perpendicular
plasma oscillations and the plasma is freer to vary in the 10-moment description as opposed
to the ideal MHD limit where pressures are coupled in all directions. This is especially true
for non-equilibrium conditions, which is why the Alfvén wavespeed diverges rapidly from the
5-moment isotropic result as k increases from zero, and then remains faster, and continues to

diverge from the isotropic, near-equilibrium values.

There are two other major waves of interest that can be seen in Figure 4.8. One set is the
ion shear waves which have been observed in previous figures. In Figure 4.10, the behaviour
of the four ion shear waves can be seen bracketed within the lower hybrid wave in the small &k
regime. As was seen in the case of the electron shear waves, the ion shear waves exhibit complex

behaviour at about k& = 0.02. This is because the phase speeds shown in Figure 4.8 decrease
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Figure 4.4: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behavior of the electron shear waves for small k.

and approach the wr/k = 0 axis, where one pair of waves reverse direction and cross the zero
axis as the electron shear waves did between & = 0.006 and k = 0.007. Note that the electron
shear waves are much faster than the ion shear waves and asymptote to a constant value at
smaller k than the ion shear waves. This means that electrons are much more sensitive to
perturbations, and propagate for a wider range of k than the ion shear wave. This makes sense
due to their relative mass differences. As in the case of the electron shear waves, the ion shear
wave that reverses direction will go through a small arc, that passes very close to the wr/k =0
axis before approaching a phase speed of unity for very small values of k. The ion shear wave
that does not reverse direction going from non-equilibrium conditions to equilibrium conditions
will approach infinity for very small values of k. The ion shear waves are generally much slower
than the electron shear waves for the entire domain being about two orders of magnitude slower
than the electron shear waves for non-equilibrium conditions. This can be attributed to the
fact that characteristic speeds tied to movement of particles are usually proportional to 1/y/m

and the ions are four orders of magnitude heavier than electrons.

The next waves encountered are the slow L- and R-mode waves (LR waves), which can both
be seen in Figure 4.11. These waves can be seen along with the ion shear waves and are also
compared to the 5-moment isotropic result.  The two sets of slow LR waves do not agree

exactly, however, this can be partially attributed to the fact that the LR waves for the 10-
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Figure 4.5: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behavior of the electron shear waves for very small k.

moment formulation now have a large imaginary component to them. The damping behaviour
of these waves will be discussed in the next section. The temporal frequency of the slow LR
waves are constant and not a function of k£ and hence the wavespeed will approach zero for very

large values of k.

The last non-zero wave discussed is the lower hybrid wave. The variation of the phase speed
of this wave can be seen in Figure 4.10. It is the wave that brackets the small £ behaviour of
the ion shear waves. The waves are relatively slow and it should be noted that the temporal
frequency is constant and not a function of the spatial wavenumber, the phase speed goes to

zero for very large values of k.

There are several zero magnitude waves (eight to be exact). These are waves that simply
advect with the flow. These waves include electron and ion entropy, electron and ion transverse

pressure waves, and magnetic and electric flux waves.

As can be seen in the dispersion analysis, the range of speeds over which the various wave
modes propagate is very wide. There are large differences in phase speeds between the EM
waves and the fluid dynamics waves, as well as between the propagation speeds of the ion
and electron waves. These disparate speeds will present some numerical stiffness issues which

need to be resolved or mitigated in any solution scheme developed for the MMHD model
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Figure 4.6: Phase speed as a function of non-dimensional wavenumber showing very small &

behaviour for electron and ion shear waves for the parallel direction.

equations. Possible techniques for dealing with the stiffness would include local preconditioning

methods [124-128] and the use of implicit time marching schemes [129-131].

4.3.2 Damping of Fundamental Solution Modes

In order to explore the damping behaviour of the system, the imaginary part of the eigenvalue,
w, has been analyzed. The damping behaviour is dictated by the imaginary part of Equation
(4.18). Figures 4.12 and 4.13 illustrates the variation of the wave damping as a function of the
wavenumber for wavenumbers in the range of 0 to 1. Figure 4.13 provides a closer look at the
wave modes with lower damping rates. The number in the brackets indicate the number of

waves represented by each line.

The high-speed LR waves appear to have no damping for this range. In actual fact, for very
small values of k, or equilibrium conditions, when the LR wavespeeds approach infinity, there
is very large damping of the waves as can be seen in Figure 4.15. This behaviour helps explain

why we do not observe infinite waves in physical plasmas.

The Alfvén waves are less damped at near equilibrium conditions. At very small values of k

it is not damped at all. Similarly, the electron plasma waves are also less damped nearer to
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Figure 4.7: Phase speed as a function of non-dimensional wavenumber showing the dispersive

wave behaviour of the electron shear waves near the wr/k = 0 axis for small k.

equilibrium, but still remains damped for small values of k. This means perturbations and non-
equilibrium disturbances are more strongly damped than equilibrium waves as can be expected

of magneto-acoustic phenomenon.

There is an interesting phenomenon associated with both the ion and electron shear waves.
For non-equilibrium values at large k, both sets of waves have a constant damping, where the
electron shear waves have a much higher damping than the ions. This is likely due to the fact
that electrons are much faster and lighter than the ions and thus, travel faster and exhibit
higher damping when encountering other particles. For near equilibrium conditions, i.e., small
k, both sets of the four shear waves split-off into two sets of two waves which can be seen in
Figure 4.14. The split-off point for the electron shear waves coincides with the phenomenon
observed in Figure 4.4. The ion shear waves exhibit a similar divergence which occurs at higher
wavenumbers. This is the same point at which one set diverges to infinite phase speeds while
the other set of waves cross the zero axis and eventually approaches a phase speed of unity.
The labels “ESW uni” and “ISW uni” indicate the two waves that approach unity and “ESW
inf” and “ISW inf” indicate the waves that approach infinity. The modes that approach unity
actually end up as undamped waves for very small values of k. The “ESW uni” waves become

undamped in Figure 4.15. This indicates that these ion acoustic speed waves (both electrons
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shear waves for the parallel direction.

and ions travelling at this speed) that propagate pressure shears are undamped at equilibrium.
As mentioned before, at equilibrium conditions, there is a strong coupling between the ions and
electrons, through the electric fields, causing them to propagate together at the ion acoustic
velocity. The ion behaviour predominates because the larger mass of the ions over the electrons.
Conversely, at non-equilibrium conditions, there is no coupling between the ions and electrons
because there is insufficient time to compensate for local perturbations. For the waves that
approach infinite wavespeeds, it can be seen that they are heavily damped. Once again, this
helps mitigate the very fast wave speeds encountered. For the waves that approach infinity for
small values of k, the electron waves are much more damped compared to the ions. Again, this
is probably due to their relative masses. It should be noted that the shear waves for the ions
and electrons have a similar structure to the shear waves of the 10-moment analysis for non-
magnetized non-equilibrium gases [122]. The differences come from the non-dimensionalization

used as well as the presence of two fluids coupled through electromagnetic forces.

The electron plasma waves exhibit less damping at equilibrium than at high k. Since the
electron plasma waves are associated with thermal movements of electrons transmitting electron
cyclotron information, the electron shielding at equilibrium masks strong charges while at high
frequency spatial wave numbers there is less shielding resulting in strong charges and thus large

damping due to coulomb collisions with other particles including the large ions impeding the
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Figure 4.9: Phase speed as a function of non-dimensional wavenumber showing Alfvén waves

for the parallel direction compared to the 5-moment dispersion analysis.

motion of thermal electrons. On the other hand, the lower hybrid waves, which are ion waves
related to the ion plasma frequency, exhibits a constant damping rate for the full range of &

considered.

The slow LR waves have the highest damping of all waves for the entire range of k. Some other
waves that are present are the ion and electron transverse pressure waves which are zero velocity
waves. Again the electron waves are more highly damped than the ions. There are also three
undamped zero waves and one slightly damped wave. They appear to be linear combinations
of transverse pressure, entropy, and parallel E and B flux waves, as determined from numerical

evaluation of the corresponding eigenvectors.

4.4 Discrete Dispersion Analysis Based on Godunov

Finite-Volume Scheme

In order to gain a better understanding of what sort of numerical solution scheme would be
appropriate for solution of the 10TFMHD and ultimately the MMHD model, a dispersion
analysis of the discretized form of the I0TFMHD equations was performed. A basic framework

for the proposed numerical scheme was used to discretize the one-dimensional form of the
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10TFMHD equations. The proposed numerical scheme is a Godunov type finite-volume upwind
scheme and is detailed in Section 5.2.1 of Chapter 5 to follow. Godunov type finite-volume
schemes require a solution to a Riemann problem, and the proposed framework uses a Harten-
Lax-van Leer-Einfeldt (HLLE) numerical flux function [132] and a piecewise constant spatial
reconstruction. The proposed scheme considered here is a very basic first-order scheme from
which a higher-order multi-dimensional numerical scheme can be developed. A summary of the

results of the discrete dispersion analysis now follows.

4.4.1 Linearized Solution Scheme

Following the procedure outlined in the preceding dispersion analysis, a linearized non-dimensional

form of the conservative transport equations, Equation (3.8), can be written as

ouU*  OF;

* 4.22
o T or O (4.22)

where the equilibrium state used in the linearization process, Uy, is the conservative version

of Equation (4.5). The source term vector remains the same as for the non-discrete dispersion
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analysis. Therefore U* and F, is now

* ’
on

v'=| ur |, U= o .Uy,

Ps,xz

Pos + Psyy
ps7yz
Po,s + ps,zz

Ntljz@z&tijz

BO,:E + Bx
BO,y + By
BO,Z + Bz

: (4.23)
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4.4.2 Finite-Volume Spatial Discretization and HLLE Flux Function

The proposed numerical scheme (see Chapter 5) is a Godunov-type upwind finite-volume scheme
which requires a Riemann solver. The Riemann solver applied here is the HLLE approximate
Riemann solver (see Chapter 5 for the rational for this choice and Appendix B.2 for a detailed
description). The intermediate state F, (Equation (5.12)) is used since for current purposes

(z/t) = 0 and also because the slowest and fastest signal velocities are +c¢ with the equilibrium
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Figure 4.13: Damping factor as a function of non-dimensional wavenumber for the parallel

direction showing those modes that exhibit reduced damping.

velocity being zero. The finite-volume solution of the linearized equation is considered for a
uniform mesh with x; = 29 + jAx and Az = z;11 — Ax; = constant. For the current analysis
a piecewise constant spatial reconstruction was used as the values for the left and right states
used to calculate the flux function. Therefore, for the j+1/2 cell division, L = j, and R = j+1,
while for j —1/2, L = j — 1, and R = j where j is the cell index. Therefore, Equation (5.12) is
taken and noting ATI = A and A\™I = — A, where A is a diagonal matrix with the characteristic

velocities of each set of equations such that

Aion - 0 Aion = \/gaionl
A= LA, : and A, = 3a.l (4.25)
0 o AMazwell A Mazwen = ¢l

where

[ YPi [ P
Qjon = Qref = TL'FY%’ Qe = 777/772 ) (426)
ionTMion eMe

and c¢ is the speed of light, the following sets of equations for the two fluxes involved in this

formulation are finally obtained:

F

i1 =5 (Fj+Fj — AT (Ujy —Uy)), (4.27)

N

F.

j—

(Fjo1+F; — AT (U; - U;_y)). (4.28)

= N

[
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4.4.3 Time Marching Discretization

Two representative time marching schemes are used in order to discretize the equations. These
are the rather simple first-order explicit and implicit Euler time marching schemes, respectively,

which take the forms

At
n+l _ 11 _ n
Uit Uy - o (.F'J;% Fr %) + AtS?, (4.29)
and
At
n+l _ pn _ +1 n+1 n+1
Ut =y - o (f“] il J-"j;> + AtSIH, (4.30)

Using the reconstructed flux functions of Equations (4.27) and (4.28) and substituting them
into Equations (4.29) and (4.30), the following fully discrete update schemes for the solution,

U, are obtained:

At (1
n+1 n n T n n
and
urit_yn = 2L (1 > ) [ —Fp AT (U] —2upt Ut | aespe (482)
J Aa:] J+1 j+1 i :
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for both the explicit and implicit Euler schemes, respectively. Following substitution of U =
U* F = F*,, and S = S*, the equilibrium values cancel, leaving only the perturbative terms
involving equilibrium constants. The linearized non-dimensional form of the two-fluid MHD

model equations results in the following fully discrete solution update scheme

(Wit - W) = At Fuo (Wi = Wi ) + A (Wi, = 2W7 + W )| + AtS W7

2Ax a
(4.33)
for the explicit Euler and
_ _ At _ _ _ _ _
n—+1 ny __ n+1 n+1 n+1 n+1 n+1
(Wi = W) = o [Fo (W = Wi ) + A (Wi — 2wyt Wit )| )

+AtSCOVV;?+1

for the implicit Euler where VNV;‘ is simply the perturbative primitive solution state vector
Equation (4.6) for time level n and cell j, F* = F.,W and S* = S, W which relate the flux
and source terms to the perturbative solution vector through coefficient matrices. The time
step is At. The diagonal matrix A contains the local numerical maximum wavespeeds of the

system as a result of the HLLE Riemann flux function.
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4.4.4 Discrete Eigenvalue Analysis

For the discrete eigenstructure, the trial solution for W in Equations (4.33) and (4.34) is
W7 = Z"exp (i (jkAz)) W. (4.35)
Also,
Z = (exp [i wAt]) = e I8 (cos wr At + i sin wrAt) (4.36)

where wgr and wy are the real and imaginary parts of w, respectively. Substitution of Equation
(4.35) into Equations (4.33) and (4.34) results in a set of linear equations that can be expressed

as an eigenvalue problem of the form

HW = ZW (4.37)
where
_ At 1 —ikAx ikAx —ikAz ikAx
H=1+2 [Fup (e7AT — AT 1 A (o7hAT _ 91 ohAT)] 4 AtS,, (4.38)
and
At 1 . , ‘ . -1
H=T-=2—"= [Fco ( —tkAx _ ikAx A ( —ikAx 9 zkAa:)] _A o ’ 4.
[ Az 2 ¢ ¢ )+ e te tS (4.39)

for the explicit and implicit Euler time marching schemes, respectively. The time step, At, is
determined in the same manner as the physical time step defined by Equation (5.25) through
the TSCF parameter. The implicit scheme is unconditionally stable, at least for the linearized

problem of interest here.

4.5 Results of Discrete Dispersion Analysis

The eigenvalue problems of Equation (4.38) and (4.39) were solved numerically for Z for a
range of k values. Results for both the explicit and implicit schemes now will be presented,
and the recovery of the analytic dispersive behaviour and the stability of the discrete system

of equations are both examined.

4.5.1 Dispersion of the Finite-Volume Discretization with Explicit Time

Marching Scheme

The dispersion of the discrete system with explicit time marching has been explored by plotting

the eigenvalues of the eigen problem for four separate values of Az ranging from Az = 1.0 to
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Figure 4.16: Phase speed as a function of non-dimensional wavenumber for various Az for the

parallel direction (L- and R-mode waves visible).

Axz = 0.001. The value of the TSCF parameter in all cases is 0.1. The discretized scheme is
valid for k values up to kpmax = 7/Az, and a range of k£ up to 314 is shown to give a better
illustration of the phase speed behaviour showing the full range of validity for the Ax = 0.01
case with the other cases for comparison. It should be noted that all of the following figures
were stable in the imaginary plane as At satisfies the stability criteria of Equation (5.26). The

results of the eigensystem analysis are shown in Figures 4.16 and 4.17.

As can be seen in the figures, as the Ax value becomes smaller, the wavespeeds approach the
expected analytical wavespeeds described and discussed earlier in this chapter. Figure 4.16
shows the fastest - and R-mode waves. In Figure 4.17, the scale of k is reduced to something
closer to the previous analysis and the behaviour of the Alfvén waves can be seen as well as
those of the ion shear wave and the slow L- and R-mode waves. Once again, the phase speeds

approach the analytical values as Az becomes small.
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parallel direction.

4.5.2 Stability of the Finite-Volume Discretization with Explicit Time
Marching Scheme

Next, the stability of the finite-volume discretization with the explicit time marching scheme
is examined. The stability of the solution scheme is dictated by the imaginary component of
the eigenvalues. To view the unstable regions with greater ease, —w; as a function of non-

dimensional wavenumber k is considered.

Figure 4.18 depicts the stability of the proposed solution method for when the condition of
Equation (5.26) is not satisfied. A value of unity is used for Az. and the analysis is performed
for various TSCF values ranging from 100.0 to 0.1. As can be seen in Figure 4.18, the discrete
equations become unstable when the TSCEF is greater than unity, for which the time steps violate
the stability condition of Equation (5.26). As the TSCF number becomes smaller, bringing the
time step into the stable region, the imaginary component of w moves to the stable region (i.e.,
—wy < 0). The time step used for a TSCF of 1.0 is At = 3.9 x 1075. Note that the time

is non-dimensionalized according to t = #/v where v is of order 102 s~

This would require
At of order 107!7 s to be stable. This is much smaller than other time scales associated with
convection, acoustical propagation and collisional processes. This is where the stiffness arises.

The electron plasma frequency dictates the numerical time step that can be taken, which is
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Figure 4.18: Stability of the explicit scheme for various TSCF for the parallel direction

usually much smaller than the time scales of the phenomenon that are often of primary interest.

In summary, it has been shown that an accurate numerical solution procedure for the 10TFMHD
model can be achieved as Ax becomes small. This result has been found by other researchers
such as Hakim et al. [64,65] for the two-fluid model and by Loverich et al. [63,133] and others [39,
43,134] for traditional MHD models. However, stability of the explicit time marching scheme is
subject to the stability condition of Equation (5.26). This stability condition can result in a very
stiff solution scheme if one is interested in only accurately resolving solution content associated

with plasma convection, acoustical, and particle collisional processes, as is commonly the case.

4.5.3 Stability of the Finite-Volume Discretization with Implicit Time
Marching Scheme

For the implicit time marching scheme, as in the explicit discrete dispersion analysis, Figure
4.19 depicts —wy as a function of non-dimensional wavenumber k using a Az of unity for
various values of TSCF ranging from 100.0 to 0.1. All eigenvalues in Figure 4.19 are now in the
stable region (—w; < 0) whereas in Figure 4.18 many of the waves were unstable when using the
explicit method. It is clear that a stable and accurate solution scheme can be constructed for the
10TFMHD model using an implicit time marching scheme. The wavespeeds for the dispersion

analysis of the discrete system with implicit time marching also approach the wavespeeds of
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Figure 4.19: Stability of the implicit scheme for various TSCF for the parallel direction

the analytic dispersion analysis as Az approaches zero.

4.5.4 Summary of the Results of the Discrete Dispersion Analysis

A first-order Godunov-type upwind finite-volume scheme with HLLE numerical flux functions,
applied to a 10-moment description of a plasma with charged particles and a full modelling of
Maxwell’s equations, will produce realizable and stable, hyperbolic numerical solutions. The
system has a large number of very disparate waves and time scales which must be considered
and dealt with. An implicit method for the I0TFMHD system of equations can produce a
stable and accurate solution. The results of the discrete dispersion analysis shows that the
proposed numerical scheme produces a somewhat desirable eigensystem and suggests how to
develop a full numerical scheme for the non-linear equations. The latter is the subject of the

next chapter.



Chapter 5

Application of MMHD Models to
One-Dimensional Plasma Flow

Problems

5.1 Overview

This chapter is concerned with the development of a one-dimensional (1D) numerical scheme
for the MMHD model, which was the forerunner to the fully two-dimensional (2D) scheme also
developed herein. The one-dimensional study was first carried out to aid in understanding the
behaviour of the MMHD system and inform the development of the proposed two-dimensional
solution method. The proposed numerical scheme for the 1D case is a Godunov-type upwind
finite-volume scheme using temporal limited, implicit dual-time stepping time marching. The
first section of the chapter outlines the numerical solution procedure applied herein, while the
second deals with results obtained from the developed numerical solution procedure for several

1D plasma flow IVPs.

5.2 Temporal Limited Implicit Dual-Time Stepping High-Order

Time Marching Godunov Finite-Volume Scheme

Based on the results of the dispersion analysis of Chapter 4, a Godunov-type finite-volume up-
wind scheme [135] is proposed here for the solution of the MMHD equations in one space dimen-

sion, with the numerical fluxes evaluated using the HLLE approximate Riemann solver [132].

65
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Schemes of this type are appropriate for hyperbolic systems of equations. The proposed scheme
is extended to second-order spatial accuracy by way of a piecewise linear reconstruction for
second-order accuracy in conjunction with a Barth-Jespersen slope limiter [136] to aid in the
control of numerical oscillations. A second-order backwards difference (BDF) time marching
scheme with a dual-time stepping procedure [137] along with additional temporal limiting [130]
is used to compute second-order unsteady solutions. The fully implicit time marching scheme
is used to integrate the resulting coupled system of ordinary differential equations that results
from the finite-volume spatial discretization procedure. The combined scheme is used to solve

the I0TFMHD equations for several one-dimensional problems.

5.2.1 Godunov Finite-Volume Scheme

The Godunov finite-volume upwind scheme is a monotonicity preserving scheme which is capa-
ble of capturing solution discontinuities without introducing oscillations. Originally proposed
by Godunov in 1959 [135], the scheme can be derived by applying Green’s theorem to Equation
(3.8) to express the equations in integral form. For the one-dimensional case, Equation (3.8)

reduces to
ouU OF

ot T ow

where U is the conservative solution vector, F is the conservative flux vector in the z-coordinate,

=S (5.1)

and S is the non-conservative source terms. The integral form of this equation can be written

// (3U + ar;) drdt = %(de _Fdt) = // Sdzd. (5.2)

A discrete finite-volume scheme is created by evaluating the above integral around the surface

as

of a control volume representing a computational cell such as the one depicted in Figure 5.1.
Integrating along the boundaries of the control surface in a counter-clockwise direction results
in

fg“+ 2 U (2, t,) do — t”+AtF(xl+Ax t) dt

zi— 5 i tn+At zi+ 52 2 (5-3)
_fm% (z,tn +At Ydx + [ N F (w— A5, 1) dt = fxi S(z,t)dzdt
noting that the cell average for U is
1 EH—%
U= o / Ut de (5.4)
i~
and for S is
1 tn+At 1 xi+5
S~ At/t Si(t)dt, with Si(t) = A:z:/ N S(x,t)d (5.5)
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Figure 5.1: 1-D Finite-Volume Godunov’s Method

The solution fluxes can be written as

- /F<iﬁ2t) at=F (R (U} 1. U} )) (5.6)

tn

where the right hand side of the above equation can be thought of as the flux function which
requires the solution of a Riemann IVP whose arguments are the states to the left and right of

the interface located at 7 4 %, which is Uy el and U;‘% respectively. These solution values
Lo

RES R
are obtained using a spatial reconstruction discussed in the next section. It therefore follows

that Equation (5.3) can be re-expressed as
1 A
Ut = U - AL (R, - T ) + AT (5.7)

which is the original form of Godunov’s finite-volume scheme with a first-order explicit Eu-
ler time-marching scheme. The spatial accuracy of the scheme depends on the order of the

reconstruction used to evaluate the left and right solution states in Equation (5.6).

5.2.2 Spatial Reconstruction

In order to achieve second-order spatial accuracy, the cell-averaged state, along with a cell aver-
aged gradient calculated using a least squares approach similar to that proposed by Barth [138],

is used to determine the left and right states, U, , and U}, . ., where the 7 + 3 interface
’ 2 ’ 2

is considered. In the one-dimensional case, the least-squares computation of the cell gradient
reduces to the solution slope based on the cell centered values of the two adjacent cells given

by
ou" Ui, U,
oxr |. 2Ax ' (5-8)

)
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The piecewise linear spatial reconstruction is then given by

n n o Az 0U"

Ly = U0 (59)
Az oU"

noo— oyn, 22 , 1

R,H—% i+1 2 d) ox - (5 O)

A monotonicity preserving scheme is sought; however, the second-order scheme with linear
reconstruction above does not guarantee monotonicity, only first-order schemes are strictly
monotonic (See Hirsch [98]). To ensure a monotonic solution using piecewise linear reconstruc-
tion, the slope limiter, ¢, is introduced, which switches the influence of the solution gradient
on or off, giving linear, or piecewise constant reconstruction where needed. To evaluate ¢, the
limiter functions suggested by Barth-Jespersen [136] is considered:
min 1,'umaz_'u> for pur, —p > 0,
Hi —
Pk =\ min 1, Hmin — 1 for i — <0, (5.11)

HE — [
1 otherwise ,
where 1 is the cell centered value of a component of the solution vector of interest for each cell,
and ez and i, are the maximum and minimum values of the solution component being
reconstructed of the cell centered values of the cell in question and all of its neighbours. Finally,

g is the unlimited spatially reconstructed value of u(xy) at the interface position k, which in

this case is ;4 1.
2

5.2.3 Harten-Lax-van Leer-Einfeldt (HLLE) Flux Function

In order to evaluate the numerical flux in Equations (5.6), the interface between the two adjacent
computational cells is treated as a one-dimensional Riemann IVP assuming a short time interval
allowing the source terms to be neglected. The approximate HLLE Riemann solver [132] is
adopted due to its relative simplicity, low computational cost and number of operations, and
the ability to be implemented in a straightforward way for the MMHD system. It was also
found to be very robust for most of the systems of equations and problems considered in this
thesis. A simple general derivation of this flux function can be found in the Appendix B. The
HLLE flux function results in the intermediate flux state

)\+FL — A Fr ATA™
F, —
M oA AT —a

— (Ur — Uy), (5.12)

where Uy, and Ugr are the left and right solution states, Fy, and Fgr are the left and right

fluxes. The largest and smallest signal velocities are AT and A~, respectively. The final form



5.2. TEMPORAL LIMITED IMPLICIT DUAL-TIME GODUNOV FINITE-VOLUME SCHEME 69

of the approximate flux function for the right hand side of Equation (5.6) is

Fy, for (%) < AT,
F={ F, for\~ < (%) <\t (5.13)
Fr for (%) > At

For the MMHD model, AT and A\~ are different for each species and for the Maxwell’s equations.
This is to prevent a very dissipative scheme which would come about from using the slowest

and fastest wavespeed for the whole system, which includes the speed of light.

5.2.4 Temporal Limited Second Order Backwards Time Marching

Unconditionally stable implicit schemes were considered to allow large time steps and possibly
reduce computational costs. Temporal limiting was required in this case to ensure monotonicity
of the proposed fully-discrete TVD scheme. A temporal limited implicit second-order backwards
differencing discretization (TLBDF) scheme is described by Wuilbaut et al. [130]. The BDF
scheme is modified with a blending coefficient, 6, which can change the order from a second- to

first-order in time scheme depending on the value of 0:
1 1
<1 + 29) U™t - (1+60)U" + ieU"*1 = At [R"]. (5.14)

When 6 = 1, the BDF scheme is recovered while when 6 = 0 the first-order implicit Euler time

integration scheme is recovered.

In order to determine €, the minmod limiter of Roe [139] is used here given by

1 if 1 <|r|and r >0,
minmod(r) = ¢ r if |r| <1 and r > 0, (5.15)
0 if r <0,

where r in this case is defined by
urttour

SV 5.16
=g (5.16)
At’VL*%

The blending coefficient described by Wuilbaut et al. [130] is thus

6, — minmod(r;) (5.17)

max (1, |r;|)
Another blending parameter that will be used is the square of the above parameter. Namely,

minmod(r;)
, — MO 5.18
max (1, |r;|) ( )

which is a stronger, more sensitive blending parameter.
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5.2.5 Dual-Time Stepping

In order to solve the semi-discrete form of the governing equations, a dual-time stepping for-

mulation was adopted here of the form
dU dU
—+—=R(U 5.19
S+ =R(U), (5.19)
where ¢ is the physical time, 7 is a pseudo-time, U is the conservative solution state vector and
R (U) is the solution residual. The equation is arranged so that
dU dU
— =R ((U)——=R"(U)=0. 5.20
—=R(U)- = =R'(U) (5.20)
The TLBDF scheme above is adapted to the dual time formulation with a few slight modifica-
tions. The TLBDF scheme is used for the derivative with respect to ¢, and an implicit Euler
discretization is used for 7. Linearizing the right side implicit terms, it can be shown that
n—+k n+k
1 2+0AT I—AraR(U )] AU
2 At ountk AT
(24 0)UtF — (24 20)U" + oU !
2At

for time level n with AU™F = Untk+l — Un*t* and At and A7 are the physical and pseudo

time steps respectively. The blending coefficient is calculated for each cell at each subiteration

(5.21)

Crrh - |

using the transition U™** solution state. The solution residual R (U") is obtained by using
a discrete finite-volume scheme on a uniform spatial mesh with x; = ¢y + iAx and Ax =
Zi+1 — Ax; = constant, resulting in
1
R (U}) = <—M (Frs = Fs) + Atsy> , (5.22)
and OR (U"™)/0U™ is a banded block tridiagonal matrix of the form

IR (U?) _B< 1 97, ( 1 07 1 OF asy) 1 WZ@;) (523

our T\ AzdU;_ \ Az 0U; Az 9U; ' 9U; )’ Az dU;,

for cell <. The term F7, , is the interface flux at time level n and at interface ¢ + %, and S is
2

the source term. The banded tridiagonal matrix is a result of a first-order linearization for the

implicit terms of the numerical scheme. The details of this derivation can be found in Appendix

B.

Although the left side of Equation (5.23) is first-order, the dual-time formulation allows one to
iterate and converge to a higher-order solution. Convergence is determined by comparing the

norms of the residuals when
|Rr U < e RAUM) (5.24)

where ¢ is chosen to be 0.001.
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5.2.6 Time Step Control Factor (TSCF)

The time step, At, is determined through a Time Step Control Factor (TSCF) relation where

the TSCF number is a non-dimensional parameter that controls the size of the time step as

follows:
At
TSCF= — —~ (5.25)
min ( %, w;)
where c is the speed of light and wy. is the electron plasma frequency, wpe = /(ne€?)/(meeo).

The inclusion of the plasma frequency in the definition of the TSCF parameter is a common
limiting time scale in the numerical simulation of plasmas [140], which was verified in the
dispersion analysis of Chapter 4 as one of the higher frequencies. For a typical conditionally

stable explicit scheme, the stability condition,

At < min (M, ! ) , (5.26)

C Wpe

should be satisfied. This means a TSCF of unity represents the boundary between a typical
unstable (TSCF > 1.0) and stable (TSCF < 1.0) explicit scheme. The pseudo-time step, A7, is
determined using a pseudo or sub iteration TSCF which is defined by the same relation, but for
the pseudo time step. For the BDF scheme, the pseudo TSCF is set two orders of magnitude
higher than the physical TSCEF.

5.3 Numerical Results for One-Dimensional MMHD Model

The numerical scheme outlined in Section 5.2 above was applied to the solution of the 10TFMHD
model described in Section 3.9. The method of manufactured solutions (MMS) was first used to
verify the implementation of the numerical solution scheme in 1D. Numerical results for a one-
dimensional plasma flow were then considered and discussed in what follows. A validation of the
10TFMHD model was sought by considering its application to a well-known one-dimensional
problem: the IVP of the Brio-Wu test case [141]. Computational time and the requirements

for converged solutions for this test case are also examined.

5.3.1 Verification Using the Method of Manufactured Solutions

The method of manufactured solutions, or MMS [142,143], was used here as a way to verify the
order of accuracy of the spatial discretization scheme developed above. MMS is a mathematical

approach useful for verifying that the numerical method, as implemented, produces the expected
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theoretical spatial accuracy. It uses an analytical continuum solution which is of high enough
degree in all variables to exercise all the terms and derivatives in the code. This analytical
solution is independent of the numerical code and does not necessarily have to resemble an
actual physical solution. The method works by adding a new source term along with boundary
conditions, which forces the code to converge to a known steady state function. The modified

governing equations in the MMS for the case of the 10TFMHD model are

ouU OF .
—+ — = co . 2
ot + oz S+ S+ Quums (5 7)

The new term Qjpsprg is the source term associated with the MMS.

Two functions were examined, where all primitive variables were equal to the spatial variable

x and 1/x (The linear and inverse case, respectively) so that

1
P, Uy VW, Pygy Pryy Przy Pyy, Pyzy Pozy By, By, B, Ey, By, E, = x or —. (5.28)
x

Substituting the functions into the governing equations results in the Qpsasg for the MMS,

OUnms . OF vvs

5t oz, Sanrs — S$%vs = Qurars, (5.29)

which was determined using a symbolic math program.

The resulting numerical simulations were performed for various TSCF and also on different
numerical solution procedures versus grid resolution. The error to the exact solution was
calculated. In Figure 5.2, the errors obtained for the linear case is plotted against the number
of points. Note this case is non-linear since the fluxes and source terms are non-linear in the
primitive variables. Looking at this figure, it can be seen that the asymptotic regime is achieved
almost immediately. The results are the same for several TSCF as well as for several different

schemes showing second-order accuracy.

The numerical results for the inverse case were examined next due to the non-linear nature of
the function which can be illustrated by the infinite number of terms that are contained in a
Taylor expansion of the function. Figure 5.3 shows the solution error for various variables, grid
resolutions and schemes. For smaller N, there can be seen a non-asymptotic region before 200
points, which is likely due to the now more complex function. After 200 points the method
converges to second-order as expected. The different variables have different profiles, and all
eventually converge to the expected second-order error. The profiles for each variable in the

non-asymptotic region agree for all numerical schemes and TSCF.

In summary, it has been shown that the 1D numerical solution procedure converges to the

expected second-order accuracy for smooth continuous solution content. Although the MMS
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Figure 5.2: Spatial solution error as a function of N grid resolution points for various TSCF

and numerical solution schemes for the linear test case.

procedure does not provide any information on the validity of the equations being solved, it
does prove that the equations thus presented and developed are integrated correctly into a
working and accurate solution procedure. As was shown in the work by Salari and Knupp on
the MMS [144], even the smallest error would produce drastically reduced order of accuracy

and the procedure was found to be extremely sensitive to any errors or tolerances.

5.3.2 Brio-Wu Shock-Tube Initial Value Problem

The Brio-Wu test case is a MHD shock-tube problem that gives rise to some rather complex un-
steady wave structure due to the interaction of the plasma with the electromagnetic fields [141].

The simple discontinuous initial conditions for this problem are

WL for 0<z< L/2,
W — (5.30)

WHR for L/2<z<L,
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Figure 5.3: Spatial solution error as a function of N grid resolution points for various TSCF

and numerical solution schemes for the inverse test case.

for {x |z € [0, L]}, and where, in the case of the 10TFMHD equations

Wy wi
L_ R _
Wh=| wi, |, Wi=| Wi |, (5.31)
Wi Wi
with
5
By
meng MionM0o
wl = 0 , wh = 0 , Wk = , (5.32)

0
3 0jk 505k ’
0
0
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Figure 5.4: Density profile of the ideal MHD Brio-Wu solution.

1Bo
meno Mion N0 _BO
0
Wh = 0 , wi - 0 , wh = . , (5.33)
560k 560k 0
0
and
B,
B,
Ps B
W, = u, , s € {ion, e} and Wy = i (5.34)
E,
P, i
87‘7 Ey
1)

z
The quantities ng, po, and By are the reference number density, pressure, and magnetic field,
respectively. The termination time for the Brio-Wu test case is defined by:

1 L
T=— .
10 apey

(5.35)

The ideal MHD solution to the Brio-Wu IVP is illustrated in Figure 5.4 and has received con-
siderable study [39-43,63,145]. The plasma waves that are present in the ideal MHD solution
are a left moving fast rarefaction wave (FR), the slow compound (SC) wave, a contact discon-
tinuity (CD), a slow shock (SS), and a right moving fast rarefaction wave (FR) as indicated in
the figure.



76 CHAPTER 5. APPLICATION OF MMHD MobDELS TO 1D PrLasmMaA FLow PROBLEMS

C I I I ! ! I ]
——eee  |MHD
1B+13 I~ — Hancock TSCF=0.8 N
r = Two Fluid Dual Step TSCF=500 h
L —————— Two Fluid Dual Step TSCF=1000 |
= Two Fluid Dual Step TSCF=5000
8E+12 — =
& 6E+12 —
S B i
=
(2]
X, L _
Q L _
4E+12 -
2E+12 — =
e ———————— |
0 | | | | | | | | | | | |
0 2E-09 4E-09 6E-09 8E-09

x[m

—_

Figure 5.5: Density, p, as a function of z in the MHD limit.

5.3.3 Ideal MHD Limit Parameters for 10-moment Two Fluid MHD Model

In order to explore the recovery of the equilibrium ideal MHD limit by the I0TFMHD model,

the Brio-Wu IVP was considered with the following parameters:
no=576x10"m3,  By=10"T, gy = 3.0 x 10° ? t=23.33x10"165. (5.36)

A modified electron to ion mass ratio of 0.01 was adopted to reduce the computational cost
of the simulation by making the two plasma species wave speeds less disparate. It should
be noted that the ideal MHD solution to the Brio-Wu test case is not strictly physical and
arises from mathematical peculiarities inherent in the ideal MHD equations and assumptions.
This is the reason why the parameters chosen are not physically common. They were chosen
to approximate the conditions that satisfy the assumptions of ideal MHD. See Chapter 5 of
Ohsawa’s Thesis [48] for more details. See also Torrilhon [134] for discussion of intermediate,

non physical waves in the ideal MHD equations.

5.3.4 Non-Temporal Limited Dual-Time Stepping BDF Scheme Results

The results in this section were generated from a numerical solution scheme which did not

make use of the temporal limiting of Wuilbaut et al. [130]. The numerical results of this section



5.3. NUMERICAL RESULTS FOR ONE-DIMENSIONAL MMHD MODEL 77

I I I T I I

A ——— IMHD ]

L Hancock TSCF=0.8 B

8E+12 — = Two Fluid Dual Step TSCF=500 B

L ———— Two Fluid Dual Step TSCF=1000 B

L = Two Fluid Dual Step TSCF=5000 i

7.5E+12 — _

& B i

TE+12 — —

S L i
=

(2] — _

X, B i

Q L _

6.5E+12 — —

6E+12 — —

5.5E+12 — _

= [ TR [ [

4E-09 4.5E-09 5E-09 5.5E-09 6E-09 6.5E
X [m]

Figure 5.6: Close up of density, p, as a function of z for the compound shock in the MHD limit.

are important as they show the presence of numerical oscillations in the predicted solution,
for which the temporal limiting was subsequently implemented in order to mitigate. The
results from the non-temporal limited dual-time BDF scheme are compared with an explicit
Hancock time marching scheme [146] for accuracy. The effect of TSCF and grid resolution on
the predicted solutions are explored as well as the effect of collisions on the recovery of the

equilibrium solution.

5.3.5 Ideal MHD Limit Results

Figure 5.5 shows the resulting density profile using an explicit Hancock scheme with a TSCF of
0.8 and 4000 cells along with profiles made with the implicit dual-time stepping scheme with a
physical, outer, TSCF of 500, 1000 and 5000 with pseudo-time sub-iteration TSCFs of 50000,
100000 and 500000, respectively. Figure 5.6 provides a close up view of the compound shock
in the ideal MHD limit. As can be seen in the two figures, the I0TFMHD model recovers the
ideal MHD solution fairly well with only a few differences in terms of minor solution oscillations.
Further, the explicit and implicit methods agree quite closely with each other for the physical
TSCF of 500 and 1000 for the dual-time step method. However, when the TSCF is increased

further, there is a clear degradation in accuracy and loss of solution monotonicity as At becomes
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Table 5.1: Computational time for solving the Brio-Wu test case using the explicit Hancock

scheme and an implicit dual-time stepping scheme

Scheme Physical TSCF | Time (minutes)
Hancock 0.8 1093
Dual Step Implicit Euler 500 154
Dual Step Implicit Euler 1000 80
Dual Step Implicit Euler 5000 52

large. The loss of monotonicity here is due to the fact that monotonicity is not strictly enforced

within the dual-time stepping scheme.

There is a significant computational advantage to using the implicit dual-time stepping method
as illustrated in Table 5.1. As can be seen in the table, there is an order of magnitude increase
in speed using the implicit dual-time stepping scheme. Referring back to Figures 5.5 and 5.6,
it can be seen that a physical TSCF of about 1000 provides a satisfactory increase in speed

without significantly degrading the quality of the predicted solution for this Brio-Wu case.

5.3.6 Comparison of Collisionless and Collisional Results

To investigate the effects of interspecies collisions, the IVP of Brio and Wu was computed with
the 1I0TFMHD model and compared to the result with no interspecies collisions. Note that
the two-fluid MHD 10-moment result with no interspecies collisions, but with self collisions, is
virtually equivalent to a 5-moment isotropic result with no interspecies collisions when there is
sufficient self collisions to maintain an isotropic pressure. The present interspecies collisionless

results are expected to be similar to the previous results of Shumlak and Loverich [62].

In Figure 5.7, the resulting density profiles of the ideal MHD and collisionless 10TFMHD
solutions are compared using 4000 cells, a physical TSCF of 1000 and with an electron/ion
mass ratio of 0.01. In order to obtain a stable solution, the TSCF of the explicit Hancock
method was set to 0.1. It can be seen that the fully collisional solution presented in the previous
set of results is much closer to the ideal MHD result, eliminating, or minimizing many of the
oscillations that are present in the interspecies collisionless solution. The reduction of many
of the oscillations can be seen by looking more carefully at the slow compound wave as seen
in Figure 5.8 compared to the density profiles of the collisional result in Figure 5.6. Further,
the slow shock is resolved more accurately as compared to the ideal MHD result in the fully

collisional solution as illustrated in Figure 5.9. Evidently, interparticle collisions are essential
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Figure 5.7: Density, p, as a function of  of the MHD limit of the two-fluid model comparing

collisionless flows solved with the explicit Hancock and implicit dual-time stepping scheme.

Table 5.2: Computational time for solving the non-collisional Brio-Wu test case using the

explicit Hancock scheme and an implicit dual-time stepping scheme

Scheme Physical TSCF | Number of Cells | Time (minutes)
Hancock 0.1 4000 6229
Dual Step Implicit Euler 1000 4000 93

in order to properly recover the ideal MHD limit. The computational cost of generating the
collisionless solutions using the explicit Hancock and the implicit dual-time stepping method
for the 1I0TFMHD model were also measured and are included in Table 5.2. A nearly 70 fold
decrease in computational cost is achieved by using the implicit dual-time step over the explicit

Hancock method.

5.3.7 Grid Convergence Investigation Results

The effects of mesh resolution on the solution of the Brio-Wu test case using the two-fluid MHD
model with the implicit dual-time stepping were studied. The Brio-Wu test case was solved

using 4000, 6000, 8000, 10000 and 20000 cells using the implicit dual-time stepping scheme with
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Figure 5.8: Close up density, p, as a function of = for the compound shock of the MHD limit
comparing collisionless flows solved with the explicit Hancock and implicit dual-time stepping

scheme.

a TSCF of 1000 and compared with the results of the Hancock explicit scheme for 4000 cells
and a TSCF of 0.8, as well as the ideal MHD limit. The density profile results are presented in

Figure 5.10 with a close up view of the slow compound wave given in Figure 5.11.

The oscillations that appear in the 4000 cell explicit method become smaller in amplitude
when solved using the dissipative implicit dual-time step method, with several of the waves
disappearing at high grid resolutions. The wavelength of the oscillations also decrease. The
wavelength attenuation is most dramatic when going from 4000 to 6000 cells, with a smaller
change going from 6000 to 8000 cells and when moving from 8000 to 10000 cells, the wavelength
remains largely the same. Therefore, it is argued that the solution appears to converge for the
most part at about 8000 cells. Unfortunately, an increase in grid resolution also causes new
oscillations to appear and grow such as those in the contact discontinuity which can be seen
on the right side of the slow compound wave in Figure 5.11. At 20000 cells there are now
more oscillations. Once again, there is a loss of monotonicity brought about by the large time
steps. Note, even though the time step taken by the implicit method defined by the TSCF
remains the same, the time step is very large with respect to the cell size, as a characteristic

wave can travel across many more cells in the same time step as Az decreases. Table 5.3 lists
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Figure 5.9: Close up density p as a function of = for the slow shock of the MHD limit comparing

collisional and collisionless flows solved with the implicit dual-time stepping scheme.

the computational time for each solution. As can be seen, even with a grid resolution of 20000
cells, the computational cost is still significantly less than that of the explicit method with only
4000 cells.

5.3.8 Real Electron/Ion Mass Ratio Results

The artificial mass ratio, me/mion, = 0.01, was then dropped and the physical ratio, me/mion, =
1836, was adopted when considering solutions of the Brio-Wu IVP. Figure 5.12 compares the
density profiles of the realistic Brio-Wu case using the explicit method with 4000 cells and a
TSCF of 0.7 for stability, and several implicit dual-time step profiles with a TSCF of 1000
and cell resolutions of 4000, 6000, 8000 and 10000 to illustrate the spatial convergence with
a close up of the slow compound shock presented in Figure 5.13. It is readily apparent from
the predicted solutions that adopting a realistic electron/ion mass ratio introduces additional
oscillatory behaviour in the predicted solutions since the system is now farther away from the
equilibrium conditions required to produce a well defined Brio-Wu solution, due to the faster
electrons. This behaviour is expected as similar oscillatory behaviour is observed in realistic

mass ratio solutions by Liu et al. [73]. Further, the problem is now less stable, and as a
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Figure 5.10: Density, p, as a function of x for the MHD limit of the two-fluid model for 4000,
6000, 8000, 10000, and 20000 cells solved with the implicit dual-time stepping scheme.

result, the explicit method must be run at a lower TSCF. The allowable time step is smaller
as well due to an increase in the electron plasma frequency causing the computational cost to
increase as illustrated in Table 5.4, which lists the computational times for the various solutions
presented. Once again, the implicit dual-time step method yields an order of magnitude decrease
in computational cost over the explicit Hancock method. At higher grid resolutions made
possible by the implicit dual-time step method, a solution much closer in agreement to the

ideal MHD case can be obtained.

5.3.9 Temporal Limited Results

The ideal MHD limit is considered using the temporal limited implicit dual-time BDF scheme
described earlier in Section 5.2.4. The two blending coefficient were examined: the full theta
condition as defined by Equation (5.18); and the relaxed square root theta condition as defined
by Equation (5.17). The effect of temporal limiting was examined by comparing results to
the previously obtained solutions with the non-temporal limited solution procedures of the
10TFMHD equations. The calculations were carried out on similar grid resolutions and TSCFs.

Figure 5.14 shows the predicted density profiles of the Brio-Wu solution using the non-temporal



5.3. NUMERICAL RESULTS FOR ONE-DIMENSIONAL MMHD MODEL 83

I I I T I !

I ———— IMHD i

L = Hancock 4000 points |

8E+12 = Two Fluid Dual Step 4000 points |

L Two Fluid Dual Step 6000 points |

L ——————— Two Fluid Dual Step 8000 points |

L = Two Fluid Dual Step 10000 points |

L = Two Fluid Dual Step 20000 points N

75E+12 — =

S 7E+12 |- -

e L 4
=

> L 4

X L 4

Q L 4

6.5E+12 — _

6E+12 — —

5.5E+12 — —

E [ TR [ =

4E-09 4.5E-09 5E-09 5.5E-09 6E-09 6.5E
x[m]

Figure 5.11: Close up density, p, as a function of = for the compound shock of the MHD limit
4000, 6000, 8000, 10000 and 20000 cells solved with the implicit dual-time stepping scheme.

limited BDF dual-time step scheme, and the explicit Hancock scheme, along with solutions from
the temporal-limited schemes using the two blending coefficients. The grid resolution is 4000
cells and a TSCF of 1000 and 5000 is used. Some interesting observations to note from the
figure are that the compound shock, a close-up view is provided in Figure 5.15, is well formed
and some major oscillations that are present in the non-temporal limited case are now absent
or severely reduced in the temporally limited results. The well formed compound shock is
important, as this is a characteristic of a second-order solution. The first-order solution of
the Brio-Wu test case results in a severely distorted compound shock as can be seen in Figure
5.14. Therefore, the temporal limiting does in fact generally preserve second-order accuracy
for interesting structures such as the compound shock. However, at the same time, some
oscillations, particularly the small bump at the front of the contact discontinuity, is reduced with
the weaker blending coefficient, and completely absent with the full blending coefficient. Other
oscillations are reduced as well, as can be seen in Figure 5.16 which shows that the oscillations
on the forward shock are lessened, again, more with the full theta blending coefficient. Further,
with a TSCF of 1000, there is a much better agreement with the ideal MHD limit compared
to the explicit scheme, while at the same time reducing the oscillations that are present in the

other numerical schemes. Figure 5.17 compares the explicit Hancock scheme to the time limited
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Table 5.3: Computational time for solving the Brio-Wu test case using the explicit Hancock

scheme and an implicit dual-time stepping scheme for various grid resolutions.

Scheme Physical TSCF | Number of Cells | Time (minutes)
Hancock 0.8 4000 1093
Dual Step Implicit Euler 1000 4000 80
Dual Step Implicit Euler 1000 6000 152
Dual Step Implicit Euler 1000 8000 202
Dual Step Implicit Euler 1000 10000 267
Dual Step Implicit Euler 1000 20000 385

Table 5.4: Computational time for solving the Brio-Wu test case using the explicit Hancock
scheme and an implicit dual-time stepping scheme for various grid resolutions and a physical

electron/ion mass ratio.

Scheme Physical TSCF | Number of Cells | Time (minutes)
Hancock 0.7 4000 4898
Dual Step Implicit Euler 1000 4000 323
Dual Step Implicit Euler 1000 6000 523
Dual Step Implicit Euler 1000 8000 660
Dual Step Implicit Euler 1000 10000 855

BDF schemes at the foot of the compound shock and once again, there is excellent agreement,
especially with the full theta version, however, at the same time there is significant reductions

in oscillations with the temporal limited schemes.

5.3.10 Effect of TSCF on the Temporal Limited Results

Next the role of the TSCF is examined. Taking a look at Figure 5.15, which depicts the density
profiles of the Brio-Wu test case obtained using several TSCFs, it is evident that although the
oscillations at the foot of the compound shock are lessened with increased TSCF, this is mainly
due to the dissipative nature of a large time step. Nevertheless, the temporally limited result is
a large improvement over the non-temporal limited scheme which has large oscillations at this

TSCF (see Figures 5.5 and 5.6).

The TSCF was altered for other grid resolutions and it was found that at higher grid resolutions,
a high TSCF resulted in unstable solutions. A TSCF of 5000 was not sustainable for higher grid



5.3. NUMERICAL RESULTS FOR ONE-DIMENSIONAL MMHD MODEL 85

C I I I T T I ]
- |[MHD
1B+13 [ ————— Hancock 4000 points N
r = Two Fluid Dual Step 4000 points b
L Two Fluid Dual Step 6000 points _
= Two Fluid Dual Step 8000 points
[ ~———— Two Fluid Dual Step 10000 points N
8E+12 — —
& BE+12 [— —
S i
Fe)
X, L 2
Q L i
AE+12 —
2E+12 — —
0 | | | | | | | | | | | | |
0 2E-09 4E-09 6E-09 8E-09 1E-08

x [m]

Figure 5.12: Density, p, as a function of x for the Brio-Wu test case with me/m;o, = 1/1836
of the two-fluid model for 4000, 6000, 8000, and 10000 cells solved with the implicit dual-time

stepping scheme.

resolutions and TSCFs higher than 1000 were fairly washed out. As before, a TSCF of 1000
seems to be a good balance between solution accuracy and computational time. At this time,
the temporal limiting makes the code about 120% slower than the scheme without temporal
limiting. This results in a run time for the TSCF of 1000 and 4000 points to be approximately
180 minutes on an Intel Core2 E6750 2.66 GHz computer, which is still nearly an order of

magnitude faster than the explicit Hancock scheme as seen in Table 5.3.

5.3.11 Effect of Grid Resolution on the Temporal Limited Results

The grid resolution was increased to observe its effects on the predicted temporally-limited
solutions. Figure 5.18 shows the predicted solutions near the top of the contact discontinuity
for the Brio-Wu test case obtained using 50,000 and 75,000 computational cells and a TSCF
of 1000 for the two blending coefficients and also compares the results with the non-temporal
limited and ideal MHD solutions. There is a dramatic difference between the limited and non-

temporal limited solutions. The oscillations that plagued the non-limited scheme have vanished
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Figure 5.13: Close up density, p, as a function of x for the compound shock of the Brio-Wu
test case with me/mjo, = 1/1836 of the two-fluid model for 4000, 6000, 8000, and 10000 cells

solved with the implicit dual-time stepping scheme.

completely with the 50,000 point, full theta solution. Next the forward shock is examined
in Figure 5.19. Once again, the oscillations present in the non-temporal limited scheme are

reduced significantly.

5.3.12 Grid Independent Solution

An attempt to obtain a grid independent solution was made with the temporal limited numerical
solution scheme. In Figure 5.21, which shows the predicted solution at the base of the compound
shock, the oscillations are significantly reduced from the non-time limited case. Further, the
phase of the oscillations are reversed from the non-time limited case. This suggests that the
oscillations are numerical in nature. However, even at 75,000 points resolution, the oscillations
are changing from the previous grid resolution of 50,000 points, although very slightly. It should
be emphasized that these oscillations are small at these resolutions as seen in Figure 5.20, which

shows the whole solution.

To verify the numerical origin of the oscillations seen in Figure 5.21, a comparison plot was

made of the explicit Hancock solution at a TSCF of 0.7 and the temporal limited and non-
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Figure 5.14: Density, p, for the Brio-Wu test case comparing temporal limited and non-limited

schemes.

limited BDF scheme at a TSCF of 1000. The grid resolution examined was 30,000 points. As
can be seen in Figure 5.22 the oscillations at this high resolution are completely eliminated
by the temporal limiting. This suggests that the increased numerical frequency content of the
solution generated by higher grid resolutions and large time steps can be effectively managed

by temporal limiting.

At this time, computer memory requirements have prevented further investigation at higher grid
resolutions. It should be stated that the need for extremely high grid resolutions when comput-
ing multi-fluid MHD solutions of this type has been encountered by other researchers. Hakim et
al. [64,65] observed similar findings when using a collisionless version of the I0TFMHD model
and indicated that grid resolutions of at least 50,000 points were required to resolve the complex
oscillations observed, especially at the base of the compound wave and also at the top of the
forward shock. The solutions were also still changing at this resolution. Grid resolution issues
have also been identified in other simpler MHD models [133,134]. However, as was demon-
strated here, some of these effects are numerical in origin and can be reduced by implementing

temporal limiting to obtain reasonable solutions without increased grid resolutions.
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5.3.13 Summary of 1D Plasma Flow Simulation Results

It has been shown in this section that the MMHD model for one-dimensional plasma flows can
recover, reasonably well, the ideal MHD limit, however high grid resolutions are required and
the presence of particle collisions are essential. It is clear that with the higher grid resolutions
required to resolve small scale content and time scales such as the plasma frequency, numeri-
cal and physical oscillations start to become a problem, as will be seen when predicting GEM
plasma flows in Chapter 8. It has been shown that implicit time-stepping reduces computa-
tional costs greatly. Further, it is clear that temporal limiting is beneficial to the solution of
the implicit numerical procedure, resulting in a more stable and accurate solution. However,
the particular blending coefficient used affects the accuracy and stability of the resulting so-
lution. Comparing the two blending coefficients examined, it is concluded that the full theta
blending coefficient given by Equation (5.18) would seem optimal. Although, more first-order
and dissipative effects are introduced, the conservative nature of the limiting, which effectively
eliminates some oscillations, outweighs these negative effects. It should also be noted that the
1D plasma flow solutions examined in this chapter are also used later in this thesis to verify

the 2D MMHD model and numerical solution method described in the next chapter.
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Chapter 6

Two-Dimensional Numerical

Solution Procedure

6.1 Overview of Parallel, Newton-Krylov-Schwarz Finite-Volume

Scheme

The proposed two-dimensional numerical solution procedure that is used to solve the MMHD
model with the FGLM and MGLM/MGLMED divergence cleaning procedures as presented in
Chapter 3 is now described. The method has been constructed based on the findings of the
previous one-dimensional studies and follows the one-dimensional scheme of Chapter 5 with the
associated extensions to the two-dimensional case. The proposed scheme for two-dimensional
plasma flow simulation makes use of a multi-block body-fitted quadrilateral mesh and a domain
decomposition approach to parallel implementations as described by Groth et al. [36,37,91,147]
and which has been applied to a wide range of applications including reacting [148-153], soot
formation [154-157], multi-phase [158,159] and micron-scale [93,97] flows. The implicit temporal
limited scheme used for the one-dimensional solution procedure is replaced with a Newton-

Krylov-Schwarz (NKS) scheme [131,154,157] for solution of both steady and unsteady problems.

6.2 Godunov Finite-Volume Scheme

The Godunov finite-volume spatial discretization scheme of Section 5.2.1 is extended here to

two-dimensional domains. In this case, Equation (3.8) becomes

93
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V? aU OF, @

8t T T Dy =5, (6-1)

where U is the conservative solution vector, ? = [F,,F,] is the conservative flux dyad, and S is
the non-conservative source terms combining the collision and non-collision terms. Integrating
the equation above over a control surface in 2D and using the divergence theorem [98,129], it

follows that

//A<%I;+V-b_“>>dA=i//AUdAJrjéﬁ.ndQ://ASdA. (6.2)

The semi-discrete form of the conservation equations can be obtained by considering Equation
(6.2) applied to a 2D control area, A;j;, representing cell (4, j), and thereby obtaining coupled
non-linear ODEs for the cell averaged values for U. Performing the integration for polygonal
cell (4, 7), using mid-point rule quadrature, contained by a series of k straight line segments of

length Al and unit normals ng, the resulting semi-discrete equations can be written as

dU;; B 1

dt Ay

3 (?k . ﬁkAlk)ij +8,; = ~R(Uy), (6.3)

where U;; = 1/A;; ffA UdA and S;; = 1/A;; ffA S dA are the cell averaged values for the
solution state and the source term vectors, respectlvely We also take the flux dyad, ﬁk, to
be evaluated at the mid-point of the kth face representing the cell boundary. The right hand
side of Equation (6.3) is defined to be the residual. For the current work, a Cartesian mesh,
with rectangular cells is assumed. This reduces the numerical fluxes to only those in the z- and
y-directions, though the scheme can be extended to non-rectangular quadrilaterals, as shown

in Section 7.4.

6.3 HLLE/Godunov Approximate Riemann Numerical Flux

n
The numerical fluxes, (?k . ﬁkAlk> " of Equations (6.19) and (6.3), through each cell face
ij
with unit normal ng and length of face Aly, are determined from the solution to an approximate
Riemann problem. The Riemann problem can be viewed as a one-dimensional Riemann problem

at the cell interface for each face, k, oriented in a direction normal to that face.

6.3.1 HLLE Numerical Flux for Fluid Equations

Due to the nature of being able to express the flux calculations across a boundary as a one-

dimensional problem, the HLLE flux function from Section 5.2.3 can be used, as is, for the fluid
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equations. The only modification in the previous procedure is in how the left and right solution

values are determined, as will be outlined in Section 6.3.3.

6.3.2 Godunov Exact Flux Function for the Maxwell’s Equations with GLM

Divergence Cleaning

When the MMHD equations were extended to two-dimensions, it was found that there was
a significant loss of accuracy due to round-off/cancellation errors in the HLLE numerical flux
formulation for the Maxwell’s and the GLM divergence cleaning equations. Due to the decou-
pled nature of Maxwell’s equations, the flux calculations for the EM system could be separately
calculated and an exact solver was developed for the system, replacing the HLLE numerical
flux function described in Section 5.2.3 for the EM equations. The spatial reconstruction is

performed in the same way as for the ion, electron and neutral fluid equations.

When the flux is linear, as in the case of Maxwell’s equations, it is possible to evaluate the flux
exactly. For detailed derivations of the solution procedure adopted here, please refer to the

Appendix C. The Riemann problem at the cell interface corresponds to an IVP of the form

ou ou
S HC5 =0, (6.4)
U f <0
U, 0)={ o s (6.5)
U, for x>0,

for one space dimension. Here, C is equal to OF/0U. The method of characteristics is used to
solve the IVP. For the non-GLM Maxwell’s equations, there are three characteristics separating
4 solution states as shown in Figure 6.1. For the Maxwell’s equations with GLM divergence
cleaning, there are only two characteristic lines when x = 1 and ¢, = ¢, separating 3 regions
as depicted in Figure 6.2. The derivation for the case of the non-GLM equations can be found
in Section C.4 of the Appendix, but here the flux function with GLM will be derived. In this
case, there are three regions

U, U U,. (6.6)

where U;, U,., and U* are the ‘left’, ‘right’ and intermediate conservative solution states ob-
tained from the primitive solutions states W;, W, and W, respectively from Figure 6.2. The

intermediate state, U* can be found using

where
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The left and right conservative GLM eigenvectors liG 1y and r’é 17 Tespectively, in matrix form

are listed in Appendix C.3, as Equations (C.29) and (C.30). The intermediate flux is then

F, =CU; =CU,.

Exact Maxwell GLM Flux Function

(6.9)

Because of the stationary wave pattern, the intermediate flux is always used. Therefore, the

analytical solution for the exact Godunov flux for both the non-GLM and GLM version of

Maxwell’s equations are as follows:

Fomr =

F.aom =

0
s (c(Biy—Byy) — B, — Ey.)
3 (€(Biz = Bpz) + By + Eypy)
0
! (Hl,z + Hy + /20 (B, Erjy)>
5 (Hz,y + Hry + (/72 (Er El,z)) ]
[ (i + 1y — Brgop+ Bigcp)
3 (¢(By = Bry) — Bi. — Ey.2)
3(c(Biz = By2) + Eiy + Ery)

% (i ((Z)l + ¢7‘) + %X (El,x - Er,x))
% (Hl,z + H’r,z + z/ % (El,y - Er,y))

_% (Hl,y + Hyy + \/ % (Erz — El,Z))
%ch (ChBl,x + ChBr,m - % + wl)
X (XE1y 4+ XErz — cép +cdy)

, (6.10)

(6.11)
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Neglecting the terms with particular GLM coefficients will result in the elimination of the asso-
ciated divergence cleaning algorithm. Setting 1, ¢p, ¢, and x to 0 will reduce the GLM version
of Maxwell’s equations to the non-GLM Maxwell’s equations. A common set of equations used
in this work is the magnetic field divergence cleaning model with no electric field error cleaning
(MGLM), which is achieved by setting ¢ = ¢;, = 0. Use of the exact Godunov flux for Maxwell’s

equations was found to reduce both computational costs and round-off errors.

6.3.3 Least-Squares Piecewise Linear Limited Spatial Reconstruction

The left and right solution values appearing in Equation (5.12) are obtained by using a least-
squares piecewise linear spatial reconstruction for higher-order spatial resolution very similar
to that described in Section 5.2.2, but extended to two-dimensions. For the two-dimensional
solution procedure, the primitive solution states are the basis for calculating the HLLE flux.

The piecewise linear spatial reconstruction for the left and right primitive solution states are

given by
WiL—l—%,j = W@j + qbi,jVWi,j - Axp, (6.12)
Wﬁi—%,j = Wi+ 0it1;VWitq - Axp, (6.13)

for the interface between cells (i,7) and (i + 1,7), defined as (i + %,j), and where Axy, Axp
are the distance vectors defined from the centroid of the left and right cells to the interface in
question, respectively. This procedure can be repeated for all interfaces by using the appropriate
indices. Since the flux problem reduces to a one-dimensional Riemann problem, the same Barth-
Jespersen, Equation (5.11), slope limiter can be used to calculate ¢ and limit the left and right

reconstructed solution states using primitive solution state vectors.

The gradients in Equations (6.12) and (6.13) were evaluated using a least-squares method [136]

which minimizes the least-squares error,

i
Z

(Wij = W) = VW - (x5 — x1))? (6.14)
=1

Ed

for each cell 75 using information from the neighbouring cells k, which for the 2D case is 8 cells
(N =8). The vector x is the location of the centroid of the cell. The problem is solved as a

linear system of equations which can be written as

(Az)2 Azly BBVQEV]_ AWA:):] (6.15)
AzAy (Ay)? AL AWAy |’
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with the averaged errors

(Bz)? = % i Ad2, (6.16)
k=1
1 &
AzAy = N kzl Az Ayy, (6.17)
1 X
AWAy = ; AW Ay, (6.18)

where A.%'k = Tij — Tk and AWk = Wij — Wk.

6.4 Parallel Implementation

The 2D numerical scheme was parallelized using a block based domain decomposition algo-
rithm [160] with Morton ordering [161] and follows the procedure outlined in [37,162] for par-
allelization. The basics of this method is to break up the domain of the problem into smaller
sub-domains, which is possible for the block based meshes used, and solve each sub-problem on
a separate process for each physical time step. To maintain solution continuity, the sub-divided
meshes communicate through boundary ghost cells for each mesh where the ghost cells for one
interior domain were the interior cells of the neighbouring mesh that shares the domain in-
terface. This solution information was communicated via the message passing interface (MPI)

library [163].

6.5 Explicit Predictor-Corrector Time Stepping Scheme

The explicit time marching method employed here was an explicit predictor-corrector Runge-
Kutta scheme with second-order time accuracy as proposed by MacCormack [129,164]. This
two-stage, second-order, explicit scheme applied to the semi-discrete form of the governing

equations, Equation (6.3), can be written as

ot = Uy, - j; (zk: (F- ﬁkAlk);k> + ALSY, (6.19)
n n At ) n =S AL fen @
Uij+1 =U}, - m (Zk: (?k . nkAlk)ijk + Zk: <?k . nkAlk>ijk ) + - (Sij + Sij+1) 7

(6.20)
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which integrates the solution forward from time level n to n 4+ 1 with a time step of At for cell
(4,7). Here, the cell averaged conservative solution state vector and source vector is U}, and

Sn

1> respectively and UZH represents an intermediate solution state.

6.6 Implicit Newton-Krylov-Schwarz Algorithm

The implicit temporal scheme that was adopted for the 2D procedure is based on a NKS algo-
rithm used in conjunction with a dual-time stepping scheme. For the most part, the procedure
and algorithm of Northrup [131] and Charest et al. [154,157] is adopted. Currently, the NKS
solution method is formulated for the full GLM (FGLM) and non-GLM (NGLM) equations,

but can be used with all other divergence error correction schemes.

6.6.1 Newton’s Method

In the NKS method, Newton’s method is used to solve simultaneously a coupled system of non-
linear algebraic equations. The system of algebraic equations of interest arises from the semi-
discrete form of the governing equations, Equation (6.3), following the spatial discretization
procedure. Using the notation of the RHS being the residual R(U), results in

dU
— ="R(U) (6.21)

where the cell indices 77 have been dropped, with the understanding that the equation applies
for all cells simultaneously. For steady state solutions, the residual is zero and solutions, U,

satisfying the non-linear algebraic equations
R(U) =0, (6.22)

are sought. Applying Newton’s method to the solution of Equation (6.22) with Jacobian,
J = OR/0U, requires the solution of the linear system of equations

JAUF = —R(U%) —  Ax=b (6.23)

with A = J, x = AU¥ and b = —R(U¥) at each step of Newton’s method, k. The solution is
then updated at the next step using x = AU* with Ukl = UF + AUF.

6.6.2 GMRES Iterative Procedure

In the NKS scheme, it is not necessary to solve the system of linear equations defined by Equa-

tion (6.23) exactly at each step in order to converge the solution of the non-linear problem



100 CHAPTER 6. TwoO-DIMENSIONAL NUMERICAL SOLUTION PROCEDURE

defined by Equation (6.22). The linear problem in the NKS scheme of this thesis is solved
using an iterative solution procedure known as the Generalized Minimal RESidual (GMRES)
method [165,166]. The GMRES method solves the linear problem of Equation (6.23) approx-
imately, which can be very effective for the solution of large, sparse, non-symmetric linear
equations. Please refer to Northup’s thesis [131] for more details on the GMRES procedure
applied here.

6.6.3 Normalization and Preconditioning

As was observed by Saad [167] and others such as Northrup [131], effective normalization and
preconditioning is required for the GMRES iterative scheme to be efficient. A linear scaling is
applied here using a diagonal matrix I' so that a linearized system is formed and solved such

that

JAU* = —R(U%)
I'rJ (I) AU* = -TxrR(U*
o (1 RR(UY) (6.24)
(TRIT,Y) (TyAU*) = —TRR(U%)
J/AU/{:/ — _Rl(Uk:)
The diagonal matrix is created by
I'r= (I an«m)_l, 'y = (I Unorm)_l- (6.25)

The scaling vectors, Ryorm and U,orm, were formed by scaling the system where each set of
equations has a tailored scaling vector that attempts to make the order of magnitudes of the

terms in each equation to be similar.

The row scaling that is used for the fluid equations is based on reference densities, pg s, and

acoustic velocities, ag s, of the 10-moment system. For each species s, the scaling vectors are

Ps P0,s £0,500,s
2
PsUsz £0,5Q0,s p075a075
2
PsUs,y £0,540,s P0,s40, s
2
Psls,z £0,500,s P0,sA0, s
2 P 2 3
Psts o + Lz P0,s40 s P0,s00 s
Us = ) Unorm,s = 9 ’ Rnorm,s = 3 )
Pstis sy + Psay P0,540, s P0,500,5
2 3
Psls zls z + Ps,xz P0,sA0 5 P0,s40, s
2 2 3
psu&y + Ps’yy p0,8a073 p075a0,s
2 3
psus7yus7z + Psyyz pO,SGO,s p07sa0,8
2 2 3
PsUs - +Ps,zz ] L 0,500 s | | P05 ]

(6.26)
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where the solution state vector is provided for reference. The scaling for the electro-magnetic
Maxwell GLM equations is based on reference magnetic and electric field values, |By| and |Ep|,
along with the associated magnetic field strength and electric displacement field, | Hy| and | Dy,

respectively. The magnitude of the magnetic field due to the fluid pressure is also considered,

given by
B, = /2pu. (6.27)
The largest values are chosen for the normalization such that
By = max(|By|, By),
v = max(|Bol, By) ) 629
Dy = max(|Dy|,ecBy), En =max(|Ep|,cBy), Hy :max(|Hg|,TN),
where By is evaluated first. The row scaling vectors are then given by
[ B, | [ By | [ By |
B, By Ey
B, By En
D Dy Hy
UGLM = ! ) Unorm,GLM = ) Rnorm,GLM = ) (629)
D, Dy Hy
D, Dy Hy
1 En c?By
K | XBn | | X°En |

with the conservative solution state vector provided for reference. The normalization vectors

are then combined, for Equation (6.25), such that

Rnorm,e Unorm,e
Rnorm on Unorm on
Rnorm — Unorm — (630)
Rnorm,n Unorm,n
Rnorm,GLM Unarm,GLM

Further preconditioning is performed on the Jacobian of Equations (6.23) and (6.24) by em-
ploying right preconditioning which does not affect the right side residual [166, 167]. With

preconditioning matrix M, the preconditioning takes the form

(IM™) (MAU) = -R. (6.31)

Though there are many different preconditioning options possible [168], the best preconditioner
would be an easily invertible approximation to the Jacobian of the system. The preconditioners
used here are the Schwarz global additive preconditioner [169] and a local Block Incomplete

Lower-Upper (BILU) preconditioner.
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The Schwarz preconditioner allows for easier computation of the implicit problem through do-
main decomposition and by solving the problem, using the Newton-Krylov scheme, on each
subdomain separately. This decreases the memory and computational resources required sig-
nificantly for large problems, despite an increase in the number of GMRES iterations needed
for a converged solution. The inverted preconditioning matrix, M~!, for each sub-domain is de-
termined through the local BILU factorization which makes use of the incomplete lower-upper
(ILU) factorization [166] to approximate the approximate block Jacobian, which is discussed in
the next section, such that

M =L(f)U(f) ~ J (6.32)

where f is the level of fill for the ILU matricies. A level of fill of 2 is used for the results obtained
in this thesis. Please refer to Northrup’s work for more details on the preceding preconditioning

strategies [131].

6.6.4 Approximate Jacobians of the MMHD GLM 2D Equations

As was mentioned in the previous section, the preconditioning matrix formed through BILU

factorization is based on an approximation to the Jacobian of the system of Equations (6.23),

- R
NER R (6.33)

The approximate Jacobians are based on the first-order terms of the discretization scheme

employed to solve Equation (6.3).

For the fluxes in the Godunov-type finite-volume upwind scheme, the approximate flux solver of
Section 6.3 is implemented by first rotating the solution state vectors, WX, W, on either side
of the interface into a common local frame (a positive z-direction). The 1D Riemann problem is
then solved numerically using either the HLLE flux function for the fluid case, or the Godunov
flux function, for the Maxwell-GLM case. The resulting conservative fluxes are then rotated

back to the global frame. The resulting operation can be described as
¥ i = A™LF (AWE, AWF) (6.34)

where A is the rotation matrix and F is the numerical flux function. Keeping the left state as
the cell in the center, (i, j),
OR. A-197( (AW, AWT) 0Si;

(6.35)

- OAU;

_ AAl
an A ) T

for every face k, where the chain rule was used noting 0F/0U = 0F /O(AU) A. The scalar A;;
is the area of the cell. All of the flux Jacobian terms, 0F (AU, AUR)/J(AUp) both for the

fluid and Maxwell-GLM, can be calculated from analytic equations.
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For the source terms, 0S;;/0U;;, the calculation of the Jacobian is simpler as the source terms
only required information from the local cell in question. Most of the Jacobian can be ana-
lytically determined. However, due to the complexity of the collision frequency models, the
particle collision frequencies were assumed constant. Further, for the ionization-recombination
and charge exchange terms, it was found that taking a first-order approximation, or dropping
some small parameter terms, resulted in a severely reduced GMRES convergence. Therefore,
the ionization-recombination and charge exchange Jacobian terms were determined using a fi-
nite difference approximation, which is quite costly, but resulted overall in a faster convergence

and computational time within the NKS scheme.

6.6.5 Jacobian-Free GMRES Procedure

As detailed in the work by Northrup [131], the GMRES procedure requires a Krylov space
orthogonalization which requires the evaluation of the matrix-vector product, Av, where A is
defined in Equation (6.23) and v is an arbitrary solution change vector. In the Jacobian-free
GMRES procedure used by Northrup [131], this product is evaluated numerically by using
Fréchet derivatives [170,171], which is simply derived from an approximation for the first-order
derivative and can be written as

R(U +¢v) - R(U)
€

Av =

: (6.36)

where the perturbation parameter is given by € = ¢¢/ ||VH§/ ? as suggested by Nielsen et al. [170].
For the simulations given in this thesis, eg = 107%. However, with the numerical stiffness issues
of the MMHD GLM 2D equations, the perturbation of the solution state vector resulted in
acute round off/cancellation errors. To mitigate this issue, a hybrid procedure is proposed.
The cancellation errors were found to mostly occur in the source terms involving the electro-
magnetic forces. Because it occurred in the source terms, it is possible to evaluate Av using
the analytic source term Jacobian for the EM terms only. Therefore the modified matrix-vector

product of Equation (6.36) is given by

Av ~ Q(U +ev) — Q(U) n aSEMV7
€ ouU

(6.37)

where Q(U) is the modified residual, which is calculated in the same way as R(U), but with all
source terms associated with the electromagnetic equations excluded. Likewise, dSgps/0U is
the analytic Jacobian of all the source terms excluded from Q(U). When the above modification
is applied, the convergence rates of the GMRES method are significantly improved to the point

where convergence could be achieved for previously non-converging problems.
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6.7 Dual-Time Stepping-Like NKS

In addition to the steady state implicit solver outlined in the previous section, a dual-time
formulation was also implemented, which can provide time accurate solutions to the MMHD
GLM model [172,173]. This was easily accomplished by adding a pseudo-time term to Equation
(6.21) such that

dU dU
—+ — = —-R(U). 6.38
dr * dt (U) ( )

This can be arranged so that the pseudo-time replaces the physical time in all the calculations
in the steady NKS scheme in Section 6.6 making each physical time step a steady problem in

the pseudo-time 7 so that
—— —R(U)=-R*(U) =0. (6.39)
Equation (6.39) is the equivalent of Equation (6.22) in this regard. The physical time derivative

of Equation (6.39) is discretized using the second-order BDF scheme given by

%Un+1 —2U"™ + yr-1
At

where the index n now represents the physical time level. Therefore, the approximate residual

R* (U™ = +R (U™ (6.40)

Jacobian of Equation (6.33) can be extended to include the dual-time formulation to give

- . (3 OR

to solve the pseudo-time steady system of non-linear equations given by Equation (6.39). This
then requires the solution of a corresponding linear system of equations at each Newton step

of the form

R
(a7 1+ 50 AUr = AU — R (Up), (6.42)

for each Newton iteration k in pseudo-time 7. Each Newton iteration updates the pseudo-time

steady problem solution in k (with physical step n + 1 being solved for) with

Uil = U+ Aupt (6.43)

where a natural choice for k = 0 is the previous physical time solution such that

Uptt =un (6.44)

The GMRES procedure also needs to incorporate the dual-time element. The Fréchet derivative
expression of Equation (6.37) is also modified to incorporate the dual-time BDF2 scheme by

adding a physical time term resulting in

N Q(U + 5v) — Q(U) 8SEM 3
AV~ c +[8U +2At]v

(6.45)
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6.7.1 Switched Evolution and Relaxation Procedure

For both the steady state and dual-time NKS schemes, a Switched Evolution/Relaxation
(SER) [174] procedure is employed to discretize the dual-time or steady-state Jacobian (Equa-
tions (6.41) and (6.33)) and steady-state Newton problem (Equation (6.39)) in Section 6.7. The
pseudo-time derivative of Equation (6.39) is discretized using an implicit Euler formulation, ul-

timately resulting in the SER version of the dual-time Equation (6.42) which is

HAlT + (23&)] I+ gm AUPH = J*AUPH = —R* (U}, (6.46)
noting that the index k is associated with the pseudo time 7. This allows for a slow ramp up
towards full Newton for stability purposes by increasing the A7. This is particularly useful
when the initial guess is far off from the solution. When A7 — oo, the full Newton method
is recovered. Further, the steady state NKS solution is achieved with an arbitrarily large time
step and seeking a zero residual so that U /0t = 0 ~ AUZ'H/ At. This is achieved when the

residual norm becomes sufficiently small.

As suggested by Mulder et al. [174] and modified slightly herein, the method of determining
the ramp up for the pseudo-time step is defined by the time step multiplication factor

; 1
V=" max (1, —— |, (6.47)
( ||R||2>

which multiplies the pseudo-time TSCF. This increases as the residual decreases.

This procedure has been used for both steady and time dependent calculations. In the time
dependent calculations it was used for each sub-problem in the pseudo-time Newton steps when
convergence stability was an issue. Constant pseudo-time TSCFs can be utilized as well when

stability is an issue.

6.7.2 Problems with the Maxwell-GLM Preconditioning Approximate

Jacobians

It should be noted here that the residual Jacobian, and therefore the right block preconditioning
matrix, for the Maxwell-GLM subsystem is ill conditioned, and in fact singular for a Godunov
upwind scheme. While numerical inversion was possible, using the preconditioning matrix
for most of the problems presented in this thesis resulted in significantly poorer convergence
rates. Some variations on the preconditioning matrix were examined, including other flux
function approximations, and regularization techniques. One that seemed to work particularly

well with respect to convergence was arbitrarily making the diagonal of the preconditioning
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matrix dominant by multiplying the off diagonal terms of the preconditioning matrix by a
small constant. However, it was found that while this significantly accelerated convergence
(on the order of 10 to 100 times), it introduced some strange numerical oscillation modes in
solutions, particularly for DTS NKS solutions such as the plane wave sinusoidal case of Section
7.2.8. Unless otherwise stated, the approximation to the Jacobian, 9R/9U, in Equation (6.33)
and in the dual-time formulation, Equation (6.41), for the Maxwell-GLM equations only, is
set to 0. Since the SER procedure of Section 6.7.1 is used this results in a diagonal right
preconditioning matrix for the NKS scheme, but a Fréchet derivative for the actual residual

Jacobian.

The Jacobian for the fluid equations were still computed as described in Section 6.6.4. This
generally provided a superior convergence to the block preconditioning procedure outlined in
Section 6.6.4 for when applied to the Maxwell-GLM subsystem, though there were exceptions
such as for the LEO GEM case in Section 8.7. Strategies for improved preconditioning of the

Maxwell subsystem should certainly be the subject of future follow-on studies.

6.8 Implementation of Electric Diffusion

The inclusion of the electric error diffusion terms described in Section 3.8.5 requires the com-
putation of a second order diffusion term as seen in Equation (3.80). This was accomplished
by first calculating the divergence of the electric field in Equation (3.80) using the diamond
path stencil, and assuming a linear variation in the solution at the four points of the diamond.
Gauss’s law is used to approximate the solution gradient at the middle of the diamond to

calculate the divergence components [175,176].

The electric diffusion coefficient A\g is chosen to be

A = cAuz, (6.48)

where Az is the average, or the smallest grid spacing of the mesh. The von Neumann stability
requirements for a 2D diffusion scheme, requires that the limiting time scale associated with
the diffusion coefficient is 1/4 that of an explicit inviscid time scale. Therefore, the limiting

time scale for the electric error diffusion equations is 1/4 c.
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6.9 Time Step Control Factor (TSCF)

The time step, At, is determined as before through the non-dimensional TSCF relation to
control the size of the time step. A greater number of time step restrictions are checked for the
2D MMHDGLM model than in the 1D MMHD model. To facilitate the ability to simulate non

magnetized flows the 10-moment fluid dynamics acoustic time scales given by

Ady,
Tiom = min | —————— ]| 6.49
tom (\/gas,k + |vs,k‘> ( )

which results from the eigenvalues of the 10-moment system, are checked. In the equation, s is
for the ion, electron and neutral species, and k is the direction normal to the interface examined.
The acoustic and bulk velocity in the k direction is ayj and vy, respectively. The quantity dj,
is an approximate distance to the face. The approximation used results in the exact distance
for a Cartesian grid. Next, all EM time scales are examined and given by

d 1
TEy = min < K , > (6.50)
max(c, x¢, ¢p)” wuH

where ¢, xc, ¢, are the speed of light and the electric and magnetic GLM wavespeeds, respec-

tively. The electron plasma, cyclotron and upper hybrid frequencies are defined as follows,

| nee? |eB| /
Wpe = mee{:‘()’ Wee = o 5 WUH = %%e + wge' (651)

In general, the ion hybrid, cyclotron or plasma frequencies are not checked as the ion mass

respectively:

makes these time scales orders of magnitude larger.

As discussed in Section 6.8, when the electric diffusion equations are enabled, Equation (6.50)

must be replaced with

dp, 1
o . 6.52
TEMEdiff = N (max(4c, cn)’ OJUH) ( |

The definition of the TSCF is therefore

At
TSCF = — , (6.53)
min (T1om, TEM)

for a time step At. The stability condition used here is
At < min (T10m, TEM) , (6.54)

where a TSCF of unity represents the boundary between unstable (TSCF > 1.0) and stable
(TSCF < 1.0) explicit schemes.
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6.10 Boundary Conditions for the GLM Version of Maxwell’s

Equations

The boundary relations for the GLM version of Maxwell’s equations are presented here. For
a more complete derivation of the characteristics, please refer to Appendix C. The boundary
conditions were calculated by using the method of characteristics to solve for the intermediate
solution state, Equation (6.7), using the influence of the solution states on either side of the

boundary. It can be shown that the following relations hold at the the boundary:

B; — % ((Bz,z + Bo,x) + é (% - 'Qbo)) P
B; = % ((Bi,y + Bo,y) + % (Eo z Ez z)) 5
B: % ((BZEZ + Bo,Z) + % (Ez y Eo

y
* 1

E; = % (C (Bz,z - Bo,z) + ( ORY + E y))
EY = 1(c(Boy Biy) (Eoz+ Ei2)),
v* = g(cn(Biw— Bow) + (¥ +10)),
d)* = % (% (Eza: - o,a:) ((z)o + ¢Z)) )

where ()*

is the intermediate boundary state, (); is the internal domain state, and (), is the
outside of the domain state. Because of the linear nature of the equations, an exact Riemann
solution for the hyperbolic part of the equations for the intermediate state can be obtained.
Also, because the characteristics are constant, if one of the variables in the characteristic is
fixed, the other must be allowed to float to prevent the Riemann problem from becoming ill
posed. For the z-direction and GLM variables, either the GLM variable, or the z-direction
component of E or B may be held constant. For the remainder of the variables, only the
magnetic or the electric field component can be held constant. For example, if the magnetic

field is held constant on a boundary, v» and E must float. However, ¢ should be held constant

and set to zero so that the electric field error on the boundary is enforced to be zero.



Chapter 7

Evaluation and Verification of the
Two-Dimensional MMHD GLM
Model

7.1 Overview

Prior to considering the two-dimensional plasma flows associated with the GEM magnetic re-
connection challenge, which are of primary interest here, verification of the proposed numerical
solution procedure and GLM divergence cleaning algorithm was sought. This chapter summa-
rizes efforts carried out as part of this thesis to verify the accuracy of the proposed finite-volume
scheme as well as assess the performance of the various divergence cleaning algorithms. The pre-
dictions of the 2D solution procedure are also compared to those of the previously described 1D
solution method (See Chapter 5). Finally, the predictions of the 2D MMHD solution procedure
are compared to results obtained by a previously developed solution scheme for the single-fluid
Gaussian moment equations describing non-conducting gaseous flows. In particular, supersonic

flow past a circular cylinder is considered for various flow regimes.

7.2 Assessment of Spatial and Temporal Accuracy

The spatial and temporal accuracy of the MMHD numerical solution procedure was first verified
by examining several simple test cases for which the predicted solutions could be compared

directly to known analytical solutions. Each system of equations were considered separately. For

109
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the 10-moment fluid model, a sinusoidal periodic test case was considered with grid refinement.
For the magnetic field, a magnetostatic test case was assessed, and a static line charge problem
was assessed for electrostatics. Planar electro-magnetic wave propagation was also considered

for the full Maxwell’s equations.

7.2.1 Non-Dimensional Parameters and Reference State

For all the test cases considered, reference states were calculated as suggested by Ohsawa [48]

using the non-dimensional parameters

Tei  Uthi w2k:T0/mi Y Qmik‘To

s Tei _ _ 71
T T L T Lwes | eBoL/m eBoL (7.1)
1
L )\D 1 280]{}T0 2
S = D 72
b T’CJ L?QCJ < €2TL0 ( )
=S = C (7.3)

Uth,i \/ 2kT0/mi’

which define the non-dimensional ion cyclotron (Larmour) radius, Debye length, and speed of
light, respectively. Also, 7¢; is the dimensional Larmour radius, L is the characteristic length,
Uth,i 1S the thermal ion velocity, w. ; is the ion cyclotron frequency, Ap is the dimensional Debye
length. Solving for the reference number density, ng, temperature, Ty, and magnetic field, By,

from above results in
B 2€0k‘T0 1 1

n — 7.4
B A (7.4)
2
m;c 1

Ty = - 7.5

07 o T (7.5)

P() = nok‘T(), (76)
V2mskTy 101

By = Y2t 2 2 (7.7)
e L 7

In general, the following values for the preceding non-dimensional parameters were employed,

which correspond to a two-fluid, nearly fully ionized limit:
L =1.0x 10, Fei = 1.0, Ap = 0.01, ¢ = 100.0. (7.8)
For divergence cleaning, the following values for the GLM parameters were adopted:
ch =c¢ (Chratio = 1.0), x = 1.0, ¢ = 0.18, (7.9)

which correspond to all GLM divergence cleaning waves propagating at the speed of light.
The value of ¢, above is what is recommended by Dedner [118]. Unless otherwise indicated,
the physical electron-ion mass ratio is used. The second-order, unlimited, explicit predictor

corrector and implicit NKS schemes were both assessed.
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7.2.2 Periodic Sinusoidal Fluid Wave Propagation

The first computational test performed was to assess the accuracy of the implementation of the
fluid equations of the MMHD solution procedure. For this test, the electromagnetic equations
were decoupled from the equation set and not solved. Further, the three sets of fluid equations
(representing ions, electrons and neutrals) were uncoupled and solved separately. The simula-
tion was carried out for variations in both the z- and y-directions where the number of cells in
the direction of wave propagation were varied from 10 or 25 cells (10 cells proved too coarse
for the electrons) and up to 200 cells while the number of cells perpendicular to the direction
of propagation was 10. The domain used was a rectangular box where —50 < d < 50 for the

direction of propagation and —5 < p < 5, for the perpendicular direction.

The reference state from Section 7.2.1 was used, but in the interest of speeding up computation
and stability, the electron-ion mass ratio was artificially set to 0.01. The various fluid solution

values were initialized according to
Ws = [msn07UO7O7O7P070707P0707P0] ) Wm = [07070707070]7 (710)

where s € {electron, ions, neutrals} and the direction of propagation is in the x-direction.
These vectors represent the uniform state populating the domain. A sinusoidal variation is

then applied to the density field according to

Ps = Prets - <2 + sin <2' <z + ;) w>> (7.11)

where z is the direction of propagation and the reference density is simply prers = mgng from

above. An additional propagation velocity for the density variation was also imposed given by
vo = 1.0 x 105 2., (7.12)
s

This means for the domain used, a time of t = 1.0 x 10*s corresponds to the propagation of

the density wave by one period.

In Figure 7.1, the initial condition for the sinusoidal test case in density is plotted alongside the
solution after one period. The result corresponds to the particular case of the the z-direction
variation with 20 points in the direction of propagation. The grid convergence plot is shown
in Figure 7.2 which provides the L1- and L2-norms of the errors for both the electron and ion
densities in both the z- and y-directions versus number of points in the direction of propagation
on a logarithmic scale. The right angle triangle in the plots shows a second-order slope. It can

be seen that both the L1- and L2-norms of the errors converge with second-order accuracy.
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Figure 7.1: Sinusoidal fluid wave propagation test case initial (p) and after one period (py) for

the z-direction with 20 cells.

7.2.3 Sinusoidal Fluid Wave Propagation with Dual-Time Stepping NKS

Next, the periodic sinusoidal test case was examined using the dual-time NKS solution proce-

dure of Section 6.7. The sinusoidal base function considered was

1
Ps = Pref,s * <200 + sin (2 . (; + 2) 7r>> . (7.13)

For a comparison between explicit and implicit time steps, the 100x 10 cell case was considered
using both the explicit predictor-corrector and the dual-time NKS schemes. The explicit TSCF
was set at 0.5 while the dual-time physical TSCF was set to 10. Figure 7.3 compares the
sinusoidal wave after one period using the explicit predictor corrector and the dual-time NKS
scheme using second-order BDF for the physical time step. As can be seen, the two solutions
are very similar, however the dual-time solution has a slight temporal lag, along with a slight
loss of amplitude. This is expected for the dissipative implicit time accurate solution. However,
at these resolutions, the variations are very slight. A higher TSCF, for such a coarse mesh was
not possible as the number of time steps were too low to produce a stable solution. For the
above case, only 37 physical time steps were performed with a TSCF of 10. A higher mesh
resolution 500x 10 case was also examined which allowed a larger physical time step due to the

stiffer problem. For the 500x10 mesh periodic sinusoidal case, a physical TSCF of 100 was
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Figure 7.2: Grid convergence error plots for the sinusoidal fluid wave propagation test case
with electron and ion density for the - and y-directions showing L1 and L2 error norms versus

number of points. Triangle represents a second-order slope.

able to be used. The results of accuracy and computational costs of the dual-time NKS scheme
compared with the explicit predictor corrector scheme are included in Table 7.1. The dual-time
NKS scheme clearly has a computational advantage at the cost of some accuracy. The dual-time
NKS scheme has a higher advantage for stiff problems in the purely fluid dynamic cases. In
contrast, for the 100x 10 case, which was less stiff and had a lower TSCF, the computational
cost was approximately the same. Additional computational tests using the fluid dynamics

portion of the MMHD model with the dual-time NKS scheme are explored in Section 7.4.

7.2.4 Priest Magnetostatic Test Case

To assess the accuracy of the magnetic error correction scheme, the irrotational magnetic field
(V-B = 0) 2D test case proposed by Priest [177] is examined. The domain for this problem

was a 1.0m by 1.0m box with exact fluxes for the boundaries. The fluid equations are not

Table 7.1: Periodic sinusoidal wave propagation accuracy comparison

150 200

Scheme | Resolution | CFL(TSCF) | CPU Time L1 Norm L2 Norm
Explicit | 500 x 10 0.5 21.46 4.7596 x 10721 | 5.2866 x 102!
NKS 500 x 10 100 8.2 7.6117 x 10718 | 8.4595 x 10~ 18
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Figure 7.3: Sinusoidal fluid wave propagation test case explicit and dual-time NKS comparison

after one period for the z-direction with 100 cells.

simulated.

The reference solution values were set as in Section 7.2.1 where the By reference value is used

to scale the 2-D magnetostatic test case whose dimensional equations are given by

mino
0
0 [ 1
0 s !
Py <19.84 + W) By (sin (7‘(’% + %)
0
0

oYl
Py (19.84 - W)
0
T
Py (19.84 + (22“2)>

The domain is —0.5m < z < 0.5m and 0.5m < y < 0.5m and exact flux (Dirichlet) boundary

. (7.14)

conditions were imposed at the domain boundaries based on the exact solution. This eliminated

errors associated with the imposition of boundary data.
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Figure 7.4: Initial conditions (Exact) for the 2-D magnetostatic test case of Priest showing B,

and By with streamlines showing 2-D magnetic field lines for a 100x 100 mesh.

The contour plots of the initial conditions for the components of the magnetic fields given
in Figure 7.4, correspond to the solution on a 100x 100 cell mesh where the exact solution is
assigned to B, and B,. In Figure 7.5, the L1 and L2 error norms in both B, and B, are plotted
versus the number of total cells on a logarithmic scale. The total number of cells was varied
from 100 to 10,000 (100, 625, 2500, 10000 for this case). The triangle on the plot represents a
second-order slope. Once again second-order accuracy is demonstrated for the proposed scheme.

It should be noted that a small amount of E, error results from the small V - B errors due to
the transverse components associated with the E, conservation equations. The errors result in
a cumulative F, field which reaches a steady state as the V - B error approaches machine zero.
The plot of the FE, component for the 50x50 (2500 cells) case is shown in Figure 7.6. Note
that in this regime the electric flux density is scaled equivalent to the speed of light over the

magnetic flux density, which makes the relative values negligible.

7.2.5 Priest Magnetostatic Test Case Results with NKS

The Priest magnetostatic case was also examined using the steady state NKS scheme. It was
found that in order to arrive at a converged solution as fast as possible, the block diagonal
preconditioner of Section 6.6.4 had to be neglected for the Maxwell’s equations subsystem as
discussed in Section 7.2.12. The order for grid convergence is second-order as can be seen in

Figure 7.7 where the L1 and L2 error norms for B, is plotted versus the square root of the total
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Figure 7.5: Grid convergence error plots for B,, B, magnetic field showing L1 and L2 error

norms versus number of cells. Triangle represents a second-order slope.

Table 7.2: Magnetostatic test case accuracy comparison

Scheme | Resolution | CFL(TSCF) | CPU Time L1 Norm L2 Norm
Explicit | 100 x 100 0.7 833 6.5679 x 1077 | 1.0410 x 1076
NKS 100 x 100 1.0 x 10° 40.6 9.8428 x 1077 | 1.2849 x 1076

number of cells on a logarithmic scale. The number of cells considered were 625, 2500, 10,000,
40,000 (mesh varied from 25x25 to 200x200). The TSCF was limited to 1.0 x 10° for stability

and the residual was driven down more than 10 orders of magnitude.

The computational advantage of using the NKS steady state scheme is again quite evident for
this problem when solving only the Maxwell’s equations with GLM based divergence cleaning.
In Table 7.2, the various parameters, accuracy, and computational costs are compared between
the NKS and explicit solutions. It can be seen that at the cost of a very small increase in error,
a CPU time speed up of around 20 times is achieved. The explicit scheme required around
140,000 time steps while the NKS scheme required around 195 newton steps with a total of
5840 GMRES iterations.
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Figure 7.6: Plot of E, component for 50x50 mesh for the magnetostatic test case.

7.2.6 Modified Priest Test Case to Explore Divergence Cleaning

The mechanism by which divergence errors are cleaned from the solution of Maxwell’s equations
with GLM divergence cleaning is briefly examined here by introducing a defect in the magnetic
field of the Priest test case. The effect of the divergence cleaning was observed by how the
defect error was advected away and removed from the computational domain. The Priest test
case outlined in Section 7.2.4 was modified with a point defect in the magnetic field near the
center of the domain. The defect takes the form of a 50% increase in the x-direction magnetic
field intensity and a reduction of the y-direction magnetic field by 50% at the exact center of the
computational domain. Using this as the initial data, the test case was then run on a 200x200
grid of length and width 1m and fixed Dirichlet boundary conditions for the magnetic field.
The GLM variable, v, was allowed to flow out of the domain. Time-accurate simulations were
then carried out for time up to 1.0 x 1078 and 1.0 x 1079 seconds, respectively, and the errors
were compared to the simulation of the non-GLM equations for the same time periods. Figures
7.8 and 7.9 compare the V - B error between the non-error corrected and GLM error corrected
simulations of the modified Priest test case for the time scale 1.0 x 107 and 1.0 x 10~% seconds,
respectively.  As can be seen, the V - B error slowly numerically dissipates in the non-GLM

simulation along the Cartesian axis, but propagates outward as a wave in the GLM simulation.
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Figure 7.7: Grid convergence error plots for the Priest magnetostatic test case with B, magnetic

field showing L1 and L2 error norms versus number of cells using the NKS scheme.
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Figure 7.8: Modified Priest test case comparing V - B for the non-GLM (left) and GLM (right)

equations at t=1.0 x 10~ %s.
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Figure 7.9: Modified Priest test case comparing V - B for the non-GLM (left) and GLM (right)

equations at t=1.0 x 107 5s.

7.2.7 Electrostatic Line Charge Test Case

To assess the accuracy of the electric field equations, a simple infinite line charge which results in
a radial electric field was examined. Specifically, a box of width 1.5 m by 1.0 m whose centroid is
located 0.7 m below the point at which the infinite line charge intersects the 2D computational
plane was considered. The charge is set to equal 5% of the background electrons per meter.

The resulting electric field exact solution is given by

q T, q Y.
E=——i4+—= 7.15
271’67‘21 271'57"2‘] ( )

where ¢ is the charge per unit length of the line charge, and x and y is the z and y distance
from the line charge with r?> = 22 + y?. Once again, only the Maxwell’s equations with GLM
divergence cleaning were simulated. The boundaries of the test case are the exact fluxes (while
constant extrapolation is used for the GLM variable) for the problem and the exact solution is

used as the initial conditions. The reference state is as described in Section 7.2.1.

Figure 7.10 shows the exact initial solution showing F, and E, with streamlines depicting the
electric field lines. The mesh for this result is 70 cells wide and 50 cells high. For the grid
convergence test considered here, numerical results ovtained using 14x10, 21x15, 35x25, and
70x50 grids were compared. In Figure 7.11, the L1 and L2 grid convergence error norms for F,
and I, are plotted versus number of cells on a logarithmic scale. A second-order convergence
rate is achieved as can be seen by comparing the slopes to the triangle which represents a

second-order slope.
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Figure 7.10: Initial conditions (Exact) for the 2-D electrostatic line charge test case showing

E, and E, with streamlines showing 2-D electric field lines for 70x50 cells.

As a counterpart to the magnetostatic case, there is a small level of B, error that results from
V - E errors due to the transverse components associated with the B, conservation equations.
These approach steady-state as the residual converges to machine zero. The plot of the B,

component for the 70x50 cells case is shown in Figure 7.12. It is similarly negligible.

7.2.8 Sinusoidal Electromagnetic Plane Wave Case Examining Magnetic Field

with Explicit Time Stepping

The last set of accuracy assessment test cases considered for the proposed solution scheme for
Maxwell’s equations involved electromagnetic plane wave propagation. The problems examined
consisted of a sinusoidal wave that exists in both the electric and magnetic field equations which

can be represented by the following equations:

% cos(0) cos(2mkr — wt) sin(¢) —Ey sin(0) cos(2mkr — wt + o) sin(¢)
B= —% cos() cos(2mkr — wt) cos(¢) | , E = | Eysin(f)cos(2mkr — wt + ay) cos(p) | »
% sin(f) cos(2mkr — wt + o) Ey cos(0) cos(2mkr — wt)
(7.16)

with the initial conditions corresponding to ¢ = 0. The initial data results in a wave propagating
at the speed of light, alternating between the electric and magnetic fields in the perpendicular
directions [178]. The above expressions have been formulated such that the plane wave can be

rotated to exercise the numerical scheme in various directions, and also to specifically exercise
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Figure 7.11: Grid convergence error plots for FE,, E, electric flux density for the electrostatic
line charge test case showing L1 and L2 error norms versus number of cells. Triangle represents

a second-order slope.

and assess the magnetic or electric error cleaning algorithms. The parameter 6 controls the
projection of the sinusoidal function into the magnetic or electric field plane while ¢ represents
a rotation in the z-y plane which allows us to assess accuracy in various directions. In Equation
(7.16), the parameter Ejy, is the amplitude, k is the wavenumber, w is the wave frequency, ¢ is

time and «, is the phase shift. Also
r =z cos (¢) + ysin (¢) (7.17)

to be consistent with the rotation.

The sinusoidal electromagnetic plane wave case was first examined by selecting the following
solution parameters:

k
Ey=1.0 x 107, 0 =0°, k=1.0, w = 27, oy =0, tp=—, (7.18)
C

with ¢ = 0° for the z-direction case and ¢ = 90° for the y-direction case on a domain of
—0.5m < d < 0.5m on the axis of the direction of propagation and —0.05m < p < 0.05m in
the perpendicular direction. To exercise the magnetic error cleaning algorithm, 6 was set to

0°, which projects the sinusoidal function in the magnetic z-y plane, and places the electric
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Figure 7.12: Plot of B, component for a 70x50 mesh for the electrostatic line charge test case.

field in the z-direction. The final time, ¢y, was chosen so that the wave propagated one full
cycle. Periodic boundary conditions were used throughout, and the resolutions considered in
the direction of propagation, were 100, 250, 500, and 750 cells, while 20 cells were used in the

perpendicular direction for the z- and y-direction cases.

The errors in B, and B,, for the x and y cases, respectively, versus the propagation direction
grid resolution on a logarithmic scale are plotted in Figure 7.13. There is no error in the other
magnetic field directions. As can be seen, the z- and y-direction cases have identical errors, as

expected, and have second-order convergence in the L1 error norm.

With the 1D case verified in the x- and y-directions, the above case was then modified so the
plane wave propagated at a 45° angle. This exercises the full 2D error cleaning for the magnetic

field. The parameters of Equation (7.18) were used again, but with
k=2, ¢ = 45°, (7.19)

and an associated change in ¢5 as in Equation (7.18). Periodic boundary conditions were used
throughout and the domain was square, using grid resolutions of 100x100, 250x250, 400x400,
and 500x500 cells. The resulting convergence plot is included in Figure 7.14 which plots the
errors in B, and B, versus the square root of the resolution on a logarithmic scale. Both

B, and B, are plotted together since there is solution content, and thus error, in both these
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Figure 7.13: Error in B, and B, versus 1D grid resolution for the sinusoidal EM plane wave

case for the z- and y-direction, respectively using the MGLM error correction scheme.

variables. As expected, the errors are identical in the z- and y-direction due to the symmetry

of the problem, and is second-order in the L1 error norm.

Note that only the convergence for the magnetic error cleaning, MGLM, equations are presented
here, but all the variations of the error correction schemes for the MMHD equations (FGLM,
MGLM, MGLMED) were examined. There were no differences in the error in B as was expected

since there is no solution content in the z-y plane for the electric field.

7.2.9 Sinusoidal Electromagnetic Plane Wave Case Examining Electric Field

with Explicit Time Stepping

The electromagnetic sinusoidal plane wave case of Equation (7.16) was considered for the electric
field errors. The parameters are mostly the same as for Section 7.2.8, Equation (7.18), along
with the angles, domain and times, however, in order to project the plane wave into the z-y

plane of the electric field, 6 was set to 90°.

The grid convergence study errors in Fy, and E,, for the x and y cases respectively, versus 1D
resolution on a logarithmic scale are plotted together in Figures 7.15 and 7.16, which are for the

two divergence cleaning algorithms: the full GLM and the electric error diffusion (FGLM and
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Figure 7.14: Error in B, and B, versus square root of resolution for the sinusoidal EM plane

wave case for the 45° direction using the MGLM error correction scheme.

MGLMED), respectively. There are no errors in the other electric field directions for each case
in the 1D case. The z- and y-direction errors agree well and the L1 error norms are second-order

for both schemes. The absolute errors for both the schemes are also quite similar.

To exercise the full 2D divergence cleaning equations, the 45° case was simulated for the electric

field similar to the magnetic field using
k=2, ¢ = 45°, 6 = 90°. (7.20)

The errors in E, and E, versus the square root of the 1D resolution on a logarithmic scale
for the FGLM scheme is plotted in Figure 7.17. The error plot provides a nice second-order

convergence for the L1 error, with both the E, and F, errors matching.

7.2.10 Sinusoidal Electromagnetic Plane Wave Case Examining Magnetic
Field with Dual-Time Stepping NKS

The electromagnetic sinusoidal plane wave test case examining error cleaning for the magnetic
field was also considered using the DTS NKS scheme from Section 6.7. The parameters used

were identical to the explicit scheme test cases of Section 7.2.8. For accuracy assessment
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Figure 7.15: Error in E, and E, versus 1D resolution for the sinusoidal plane wave case for the

x- and y-direction respectively using the FGLM error correction scheme.

purposes, the physical time step chosen was set to 10 and GMRES iterations driven down at
least two orders of magnitude. NKS did not result in a computationally advantageous simulation
for this case. As shown in Section 7.2.3, for sufficiently stiff problems, usually arising from an
increase in resolution compared to the explicit case, a computational advantage does often
evolve when making use of the NKS scheme. However, because the time accurate solutions
here were designed to be solved in a reasonable amount of time with an explicit scheme, the

resolutions examined did not result in a computationally advantageous simulation.

The results for the convergence of the z and y cases are presented in Figure 7.18. In the coarser
mesh regime, where the DTS scheme does not converge per iteration as well, the errors are
larger and do not converge to second-order. However, as the grid refines, the errors approach

second-order and also agree nicely when comparing with the results in the z- and y-directions.

7.2.11 Sinusoidal Electromagnetic Plane Wave Case Examining Electric Field
with Dual-Time Stepping NKS

The sinusoidal electric field case of Section 7.2.9 was simulated using the DTS NKS scheme with
a TSCF of 10 with all other parameters the same as in Section 7.2.10. Figure 7.19 shows the
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Figure 7.16: Error in E, and E, versus 1D resolution for the sinusoidal plane wave case for the

x- and y-direction respectively using the MGLMED error correction scheme.

E, and E, error against the square root of the 1D mesh resolution on a logarithmic scale. As
in the magnetic field case, the coarse mesh solutions did not result in a good error convergence.
However, as the resolution increased, the errors converged to second-order for both the L1 and

L2 error norms in both the z- and y-direction cases.

7.2.12 NKS Accuracy Assessment Conclusions

Preliminary results are very encouraging for the steady and dual-time NKS schemes. Note that,
as mentioned in Section 6.7.2, due to the poor performance of the approximate Jacobian for the
Maxwell GLM equations based on the exact Godunov flux function, the residual Jacobian was
neglected in all cases in this chapter. While cases could be identified for which the approximate
Jacobian would provide superior performance when included, these cases were quite specific
and tended to be extremely stiff. As shown in Section 7.2.3, the steady-state and dual-time
NKS algorithms can perform significantly faster than the explicit scheme while still providing

comparable solution accuracy.
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Figure 7.17: Error in E, and E, versus square root of 1D resolution for the sinusoidal EM

plane wave case for the 45° case using the FGLM error correction scheme.

7.3 Comparison to One-Dimensional MMHD Results

Validation of the two-dimensional numerical solution procedure was also considered by compar-
ing predicted solutions to those of the one-dimensional scheme previously described in Chapter
5. This was accomplished by solving a shock-tube type problem using both the 1D and 2D
versions of the multi-fluid MHD models and comparing the solutions obtained using various

solving methods in the z- and y-directions for the 2D procedure.

7.3.1 Two-Fluid Limit One-Dimensional Test Case

The two-fluid limit test case was a test case originally proposed by Ohsawa [48] and was used
to compare 1D solutions between the two-fluid and three-fluid MHD models as the conditions
produced a nearly fully ionized plasma. The two-fluid limit test case is used to compare the
1D and 2D schemes using the multi-luid MHD model. This IVP results in some complex
interactions between the two plasma species and the Maxwell’s equations. It is loosely based

on the classic Brio-Wu test case outlined in Section 5.3.2 of Chapter 5. The conditions of the
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Figure 7.18: Error in By and B, versus 1D resolution for the sinusoidal EM plane wave case

for the x- and y-direction respectively using the DTS NKS MGLM solution procedure.

Brio-Wu test case of Section 5.3.2 were modified by using the following parameters:
L=10, #;=10, Ap=001, ¢&=100.0, (7.21)
with GLM parameters
ch =c¢ (Chratio = 1.0), x = 1.0, ¢ = 0.18. (7.22)

The above set of parameters dimensionalize the Brio-Wu problem as described in Section 7.2.1

and is referred to as the two-fluid limit. The IVP was then set using the following conditions:

Wb for 0<d< L/2,
W = (7.23)
WR for L/2<d<L,
for {d|d € [0, L]}, and d is the axis of the 1D problem, with
Wi W
wh wh
W = e, W= e, (7.24)
W wi

Wi Wi
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Figure 7.19: Error in F, and E, versus 1D resolution for the sinusoidal EM plane wave case

for the z- and y-directions respectively using the DTS NKS FGLM error correction scheme.

with
15,
By
meno MionM0 mMpTn,0 0
Wy = 0 ) Wg:)n = 0 ) W) = 0 ) W%4 - 0
Boji P00k Pn,00jk 0
0
(7.25)
and
180
MenQ MionN0 MnNn R _BO
8 8 8 0
W? = 0 ) ng = 0 ) WS = 0 ) WJI\{/I = 0
59k 69k Pn,rOjk .
0
(7.26)

The Maxwell’s equations primitive solution vector is ordered with the magnetic flux density,

then electric field density. The reference values were calculated according to Equations (7.4) to
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(7.7) using hydrogen gas, except for the neutral species, which was evaluated according to

2
g

Npo = m, Pn,o = nn,OkTi,O, (727)
noting 7. o = T o = T for the left side and
”g,R
N, R = , Pn.R = Nn,RETh R, (7.28)
HTB’R

for the right. The right side values for the electron equations above are simply

n no P Po Pe,R
€, 8 9 €, 10 I €, ne’Rk 9

(7.29)

with the Saha’s equilibrium relation  as defined in Eq. (3.37) in order to preserve the ionization-

recombination equilibrium state.

The preceding one-dimensional problem was used to validate the two-dimensional solution pro-
cedure by simulating the IVP in both the z- and y-directions and comparing the resulting so-
lutions to those obtained by the 1D three-fluid MHD model. For the 2D simulations, 500 cells
were used for the direction of propagation, and 10 cells were used for the perpendicular direction
with constant extrapolation boundary conditions all around. For the 1D simulations, 500 nodes
were used. The simulations were performed for a simulated time up to ¢ = 3.33564 x 10~8s in
a domain of 1.0m in the direction of propagation (0.1 m in the perpendicular direction for the

two-dimensional cases).

7.3.2 Comparisons of Explicit Time Stepping Two-Fluid Limit Results

The first results that were examined were obtained using the explicit schemes. The 1D model
used a Hancock scheme while the 2D model used an explicit predictor corrector with no diver-
gence cleaning (NGLM). The TSCF for both methods was 0.7. Neither solution method (1D
or 2D) made use of divergence cleaning. The comparisons of the 1D and 2D predicted results
can be seen in Figure 7.20 which depicts the total density p, showing the predicted profiles
of the z- and y-directions of the 2D simulated solutions compared to the 1D solution. The
solutions agree quite well with a small deviation at around x = —0.225. This can be explained
by the slightly different 2-stage explicit schemes as well as the fact that a different numerical
flux was used for the Maxwell’s equations. The HLLE numerical flux function was used for the
1D method and the exact numerical flux function was used for the 2D results. The 2D solution
procedure was found to be sensitive to cancellation errors and using the HLLE numerical flux
function for the Maxwell’s equation in 2D resulted in large deviations from the 1D results. Use

of the exact flux function greatly reduced these errors.
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Figure 7.20: Comparison of 1D explicit three fluid model versus 2D x- and y-direction multifluid
MHD model solutions to the two fluid limit Brio-Wu IVP showing predicted density distribution
obtained using 500 points/cells in the 1D direction.

7.3.3 Comparisons of NKS Two-Fluid Limit Results

Next the NKS solutions to the two-fluid limit problem were examined. The dual-time NKS
implicit time marching scheme of Section 6.6 was used. The two-fluid limit problem was sim-
ulated using a physical TSCF of 5 and 10 and compared to the explicit result which can be
seen in Figure 7.21. The explicit result used a TSCF of 0.7 and an explicit predictor corrector
scheme. All of the three simulations had a spatial resolution of 500x10 cells with 500 cells in
the z-direction. The 1D three-fluid model solution is also included for comparison and has a

500 cell resolution.

The four sets of predicted results all agree very well despite a physical TSCF speed up of over
10 times. It should be noted that while the NKS dual-time solutions ended up taking about
the same or longer than using the explicit predictor corrector scheme, they are presented here
for validation of the numerical results. Additionally, it was found that the NKS solutions were

unstable past a TSCF of 10.
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Figure 7.21: Comparison of 2D explicit multifluid MHD versus 2D NKS multifluid MHD solu-
tions to the two-fluid limit Brio-Wu IVP showing predicted density profiles obtained using 500
points/cells with various TSCF.

7.4 Application to Non-Conducting Gases in Two Dimensions

As a last set of assessments, the non-equilibrium fluid portion of the MMHD numerical method
and steady-state NKS scheme have been validated in this thesis by comparing predicted steady-
state solutions of the fluid equation to those obtained using a two-dimensional NKS solution
method developed separately for the solution of the 10-moment Gaussian closure for non-
conducting gases by Mcdonald et al. [93,96] and Tensuda et al. [179-181]. A simple blunt
body problem was examined using various collision regimes and the convergence of the NKS

implicit time marching scheme was compared.

7.4.1 Gaussian Based Fluid Dynamics Model

In order to validate the fluid portion of the MMHD solver, solutions were generated and com-
pared with predicted numerical solutions of the Gaussian model developed by McDonald et

al. [93,96] and extended with the NKS method by Tensuda et al. [179-181].



7.4. APPLICATION TO NON-CONDUCTING (GGASES IN Two DIMENSIONS 133

Table 7.3: Flow regimes

Continuum Transition Free-Molecular

Kn <0.01 | 0.01 <Kn<10 10 < Kn

For the case considered, all reactions were neglected and the intra-species collisions were
held constant to a common time scale or frequency. Only one species was examined in the
MMHDGLM solver and the NKS preconditioner, for the fluid case, was based on the first-order

approximation for the numerical flux function.

7.4.2 Knudsen Number and Flow Regimes

Specifying intra-species collision frequencies allowed for the examination of various flow regimes
as defined by the Knudsen number,

Kn = T (7.30)
where A is the mean free path between collisions and L is the characteristic length scale of the
problem being examined. This ratio between the mean free path and problem scale describes
how dominant the molecular phenomenon is versus the macroscopic flow effects. For larger
Knudsen numbers, the free-molecular effects dominate and like-wise macroscopic fluid effects
dominate for smaller Knudsen numbers. Generally, there are three regimes defined by the

Knudsen number. They are listed in Table 7.3.

7.4.3 Supersonic Flow Past a Blunt Body Cylinder Test Case

The test case examined was a blunt body where the computational domain consisted of a curved
quadrant in front of a circular cylinder with a radius of 1.0m. This case is similar to the one
examined by Groth et al. [147], but with a free stream Mach number of 3.0 and a different
working fluid. The mesh shown in Figure 7.22 defines the geometry where the boundary on
the lower right is the cylinder front. The boundary on the axis at the bottom used reflection
conditions, while the left curved boundary used constant free stream conditions, and constant
extrapolation was used for the straight boundary on the right. A free stream uniform flow with

a working gas of argon was imposed having the following conditions
par = 1.225kg/m3, pa, = 101325 Pa, M, = 3.0, (7.31)

where the number M, defines the velocity in the positive x-direction impacting the face of

the cylinder. All sheer pressures and non z-direction velocities were taken to be zero. For
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Table 7.4: Examined flow regimes for the supersonic flow past a blunt body test case

Case v Kn

Collisionless 0 00
Transitional | 5.0 x 10® | ~ 0.03

Continuum | 5.0 x 1012 ~0

the case examined here, for which the main interest is the solution agreement between the two
implementations of the Gaussian closure, a somewhat coarse computational mesh of 16x16 cells
was considered. For the two models, the mean free path used to calculate the Knudsen number
is
Uth
A= — 7.32
G (732

where vy, is the thermal velocity and v is the fixed collision frequency. The length scale L is

equal to the diameter of the cylinder.

7.4.4 Results of the Supersonic Flow Past a Blunt Body Test Case Using
Steady-State NKS

The blunt body problem described in the last section was simulated using various collision
frequencies associated with the free-molecular, transitional, and continuum regimes. The three
cases considered are presented in Table 7.4. For the transitional, and continuum cases, a
second-order spatial reconstruction was used with Barth-Jespersen slope limiting [136]. For the
collisionless case, only first-order spatial reconstruction could be used due to the instabilities of

running a supersonic flow collisionlessly.

The steady state solutions for the three cases are presented in Figures 7.23, 7.24 and 7.25. The
figures matched exactly those obtained from the previous solution method developed for the
Gaussian closure by Tensuda et al. [179-181]. This was verified by examining the predicted
solution profiles throughout the domain. A sample comparison of the predicted profiles is
included in Figure 7.26. The NKS convergence plots for the three cases for both the MMHD
and Gaussian models are included in Figures 7.27 to 7.32. The convergence histories match
very well, though it should be noted that the TSCF is calculated differently for both methods
so an exact match was not possible. Further, it should be noted that when simulating only the

gasdynamic portion of the MMHDGLM solution procedure, the NKS performance is excellent.
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Figure 7.22: Mesh defining the blunt
body cylinder using 16x16 computa-

tional cells.
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Figure 7.24: Supersonic blunt body
test case, transitional constant colli-
sion frequency 5.0 x 103, using NKS
and 2nd order reconstruction on a

16x16 mesh.
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Figure 7.23: Supersonic blunt body
test case, collisionless, using NKS and
1st order reconstruction on a 16x16

mesh.
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Figure 7.25: Supersonic blunt body
test case, continuum constant collision
frequency 5.0 x 10'2, using NKS and
2nd order reconstruction on a 16x16

mesh.
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Figure 7.26: Comparison of predicted density profiles, p, along the axial direction for the
supersonic blunt body test case obtained using the two implementations of the NKS solution

method for the Gaussian closure: the non-conducting gas and MMHD models.

7.5 Summary

In this chapter, it was verified that the numerical solution procedure is in fact second-order ac-
curate in both time and space in agreement with theoretical expectations and that the proposed
solution method for two-dimensional plasma flows can recover the 1D results of the previously
described 1D solution method. Additionally, the GLM divergence cleaning algorithm was found
to work well alleviating divergence errors associated with the magnetic field and charge separa-
tion. Also, it was shown that the MMHD model can recover the predicted solutions of the 2D
Gaussian non-conducting fluid equations, providing further confidence in the implementation

of the proposed finite-volume solution method.
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Figure 7.27: NKS convergence plot for the

MMHD model, collisionless test case.
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Figure 7.29: NKS convergence plot for the
MMHD model, transitional test case.
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Figure 7.31: NKS convergence plot for the

MMHD model, continuum test case.
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Figure 7.28: NKS convergence plot for the

Gaussian model, collisionless test case.
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Figure 7.30: NKS convergence plot for the

Gaussian model, transitional test case.
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Figure 7.32: NKS convergence plot for the

Gaussian model, continuum test case.

137



138 CHAPTER 7. EVALUATION AND VERIFICATION OF THE 2D MMHD GLM MODEL



Chapter 8

Numerical Results for

Two-Dimensional Plasma Flows

8.1 Overview

This chapter will describe the application of the proposed two-dimensional multifluid MHD
GLM plasma model and finite-volume solution procedure to a representative and relevant
plasma flow problem of interest within the space physics community: the GEM magnetic
reconnection challenge. In this chapter, the original GEM problem definition is first stated
in non-dimensional form. A dimensional equivalent of the problem is then presented, and a
grid convergence study is subsequently undertaken to establish some estimates of the resolution
requirements for the problem. The resulting numerical solutions for the GEM case are then
compared to similar numerical results obtained for modified versions of the problem in differ-
ent collision regimes and with the application of the different divergence cleaning techniques
considered herein. Numerical results associated with the exploration of the effectiveness of the
NKS implicit time marching scheme for the GEM case are also discussed. The present multi-
fluid MHD solutions are also compared to other published results from the literature. Finally,
two more realistic sets of conditions for the GEM reconnection problem, corresponding more
closely to the actual conditions occurring in the Earth’s magnetosphere, are proposed and the

numerical solutions for these additional cases are also described and discussed.

139
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8.2 Geospace Environmental Modeling Magnetic Reconnection

Challenge

The GEM challenge [2-4, 27,38, 54, 70-72] has become a standard space plasma problem for
numerical validation studies and involves the interaction of magnetic fields and plasmas, ap-
proximating their behaviour in the magnetosphere. Please refer to Section 1.3 of Chapter 1 for

more background and history of the GEM challenge.

8.2.1 Definition of GEM Problem

As originally posed, the GEM problem is defined as a collisionless problem for a fully ionized
plasma comprised of a Harris current sheet with an imposed magnetic perturbation. The Harris
current sheet equilibrium solution is a widely known one-dimensional equilibrium solution to
the Maxwell-Vlasov equation [182] and is defined by the magnetic field and plasma number

density which are taken to have the form
_ Y\ 4 _ 2 (Y
By = By tanh (X> &, n = ng (0.2 + sech (X>) , (8.1)

where A\ here is a scaling length. The Harris current sheet equilibrium solution is subsequently

perturbed so that

B =By + Bp, (8.2)
where
Bp = Vi x &, (8.3)
and where ) is given by
1 = 1y cos <2£Tj) cos <7£Z:> . (8.4)

The two-dimensional, rectangular, computational domain is taken to be defined by —L,/2 <
x < Lp/2and —L,/2 <y < L,/2. The standard parameters defining the GEM problem are as

follows:

Ly =870ion, Ly =4m0ion,  A=0.50;0,, T2 =5 Men =25
Yo = 15BoSion; o =20,

where 0;y, is the ion inertial length and v4 is the Alfven velocity.

Two reference values for the magnetic field and number density can be selected, which for this

study are taken to be

Byep = By = 0.972173605T,  nyey = ng = 2.0 x 10¥m™3, (8.6)
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Using the reference values and assuming a fully ionized, two-fluid plasma with inter-species
reactions neglected, the GEM problem parameters are calculated using the following values for

the quantities:

VA eBO 1 BO m
dion = —— m, Qion = 5, VA= —F/—— —, (87)
Wion Mion VM oMion S

where ;. is the ion gyrofrequency and wj,y, is the ion plasma frequency. The above reference

values were selected so that a realistic value for the speed of light can be used in defining the

last parameter of Equation (8.5) and results in

Sion = 0.161m,  and w4 =1.5x 107 % (8.8)

In order to compare the dimensional solutions of the GEM case with the non-dimensional

solutions, it is useful to note that one unit of non-dimensional time is equivalent to

t= =1.0745 x 10785 (8.9)

on

in physical time and one unit of non-dimensional magnetic flux is
B -l = Brefdion = 0.156 T - m, (8.10)

in physical units. The latter is used in normalizing the computed values for the magnetic
reconnection fluxes. The revised definition of the Harris current sheet and perturbation is then

By (y) = Bgtanh (%) &, Nion(y) = ne(y) = n(y) = no (0.2 + sech? (%)) , (8.11)

_m ) g .
o 7. cos (27r Lz) sin <7TLy>
= 21 o z Y
Bp 1/10(Lx sin (27TL$> cos (ﬂ'Ly . (8.12)
0
In addition, the other initial conditions that are implied can be determined using definitions for

magnetic pressure, total temperature, and solving Maxwell’s equation for initial current. They

are given by

B% n(y> Tion Te

= ion - ) e = ’ 1

p(y) o ng P (y) T +Tep(y) Pe(y) T +Tep(y) (8.13)
0
m m
J= 0 s Jey) ==, Jinly) = =, (8.14)
5 , emen(y) e Mionn(y)
—A—ﬁsech (%)
where

m = _MeMMion (8.15)
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The above initial total current is the same as that suggested by Hakim [65], but while Hakim let
the electrons carry the entire current, the current work splits the current between the ions and
electrons using a momentum balance as suggested by Johnson [6]. Further, the initial electric
field, which is zero for the original GEM problem due to the formulation within the context of
ideal MHD, is evaluated according to the solution of Ohm’s law derived from the momentum
equations and the definition of current. When the momentum equation defined in Section 3.9

is multiplied by ¢s/ms, the current equation for each species is given by

0J 2
TV <Jsus + qus> - T% (E + u, x B) + S, (8.16)

Assuming a fully ionized plasma in a two-fluid, quasi-neutral formulation, noting that the
collision terms vanish when summed over the two species and solving for the electric field while
focusing on the pressure balance as suggested by Johnson [6], the initial electric field can be

approximated as

P; P
Einitial & -V - <wn - e) ; (8.17)
en Mion Me
which results in the following expression for the y-component of the electric field:
Mion — OMe Bg 2 (Y Y
E = —=sech (—) tanh (—) 8.18
v(¥) 6en(y) (Mion + me) pp A A A (8.18)

with the other two components of the electric field assumed to be initially zero.

8.2.2 Reconnected Magnetic Flux

There are various ways to calculate the total reconnected flux. By definition, the reconnected
flux is the amount of y-component magnetic flux that crosses the z-axis center line of the GEM
problem. The y-component of the magnetic flux density along the y = 0 line can be integrated

to arrive at the reconnected magnetic flux and is traditionally divided by two.

Another way to evaluate the reconnected magnetic flux, as described by Johnson et al. [7], is
to consider Ohm’s law at the origin of the domain for the problem. The electric field at the
origin represents the reconnection rate for the magnetic flux. Thus integrating this value over
time would give the total reconnected flux. However, the most common way to determine the
reconnected flux is to take the negative of the change of the x-component of the magnetic flux
across the center line y-axis between the top two quadrants. The magnetic flux is calculated
by integrating the z-component of the magnetic flux density along the x = 0 line which leads

to the definition for the total reconnected flux to be

?J:L.U/Q
Prrc = Pinivial — / B, dy (8-19)
)

=0

=0
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This is how the reconnected flux is calculated in the present study unless otherwise indicated. In
order to compare the predicted reconnected flux to the non-dimensional results in the literature,
®rpc, which has the units of T - m, must be non-dimensionalized using the magnetic flux
normalization factor of

B 1= BrefSion- (8.20)

8.2.3 Boundary Conditions of Problem

The boundary conditions for the rectangular computational domain of the original GEM prob-
lem and other modified variants considered in this thesis consist of a periodic boundary on the
east (right) and west (left) boundaries, and conducting boundaries for the north (top) and south
(bottom) boundaries, respectively. At the conducting boundary, the fluid properties of the ions
and electrons are reflected, while the electric field is made perpendicular, and the magnetic
field is enforced to be parallel at the boundary. For the reflected fluid properties, the following

boundary conditions are imposed:

8'&5@ _ O’ aPs,a}$ _ 07 P _0
ay 8y s,xY )
0 OP, OP,
af;j = 07 Us,y = 07 % = 07 aZIZ = 07 (821)
Ous. OP.
= =0, 5,22 _ 0, Ps7yz = 0.
dy Ay
For the electro-magnetic fields, the boundary data
BBZ _ aBz —
25 =0, B, =0, b =0
o (8.22)
Ew = Y Y = 07 EZ = b

is used and the GLM parameters, 1) and ¢ if used, are extrapolated to the boundary with

constant extrapolation.

8.3 Modified GEM Cases

Due to the capabilities of the multifluid GLM MHD model, and the fact that the original
GEM case has been redefined in dimensional form, two modified and more realistic GEM
cases were also examined here to explore more fully the predictive capabilities of the proposed
MMHDGLM2D solution procedure. To be realistic, the artificial values defining the electron-ion
mass ratio and the speed of light were replaced with the true values for the mass ratio and speed

of light. Additionally, more realistic values for the magnetosphere plasma parameters were used
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to dimensionalize the GEM problem. Further, real intra- and inter-species collisions and the
option for real charge-exchange and ionization-recombination reactions were also explored.

In order to approximate the original GEM conditions, the following inequality must be satisfied:

V3a

Y0,max

)\D L Ojon K \ = (8.23)

or in other words, the Debye length should be much smaller than the ion inertial length, which
should be much smaller than the smallest mean free path of the initial conditions. The cases

described in the following subsections conform to this condition.

8.3.1 LEO Version of GEM Problem

As a first modified case, a set of established Low Earth Orbit (LEO) plasma and magnetic
field conditions were examined. The LEO conditions were initially chosen as the presence of
collisions at this density and energy should provide a more stable solution. Most authors infer
a totally collisionless plasma at the magnetopause, while many of the models and results in
the literature reviewed have included collisions or an isotropic pressure to stabilize the results.
Some characteristic plasma conditions were determined for this case using information from
Kelley [183] for the 1000 km altitude for plasma density and energy as well as the average
magnetic intensity of the earth’s ionosphere. The conditions are tabulated in Table 8.1, which

lists the conditions used for both the LEO and magnetopause plasmas.

Using the constants suggested in Table 8.1, the dimensional parameters defining the LEO
version of the GEM problem are

=6.529 x 107%s.  (8.24)

Siom =228 x10%m, vy =349x 102,  and  t=
S Qion

The magnetic flux normalization constant for the LEO case is

B -1 = Byefbion = 0.0364T - m. (8.25)

Table 8.1: Plasma properties for LEO and Magnetopause [183,184]
Region nj; (m=3) By (T) | Tion(simulation)(J) Tion(J)

LEO 1.0 x 100 | 1.6 x 107 8.49 x 107° -
Magnetopause | 1.0 x 107 | 1.5 x 1078 7.4 x 1071 8.0 x 1017
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8.3.2 Magnetopause Version of GEM Problem

The magnetopause is typically located at a radial distance that is approximately ten times the
radius of the earth. It is not well understood or easily measured as observations via ground
based or space based instruments are exceedingly difficult to perform [185]. However, data
analysed from Cluster and the recently launched MMS have advanced the understanding of
the magnetopause considerably [68,69]. Taking typical values found at the magnetotail and
magnetopause from readings of the Cluster mission [184,186,187], a set of conditions is obtained
for the reference values as presented in Table 8.1. It should be noted that the conditions reported
by Cluster state a lower energy than that which results from the modified dimensionalized GEM
case. However, for this study, and for some consistency, the values specified by the GEM case
with the magnetopause reference values and a true electron mass and true speed of light were
used. The dimensionalizing parameters for the so-called magnetopause GEM case considered
herein are

Sion = 7.20 x 10'm,  and  wv4=1.03x10° =,  ¢t=

S ion

=6.964 x 1071s, (8.26)

and the magnetic flux normalization constant is given by

B 1= ByefSion =1.08 x 107 T - m. (8.27)

8.4 Numerical Results for the Original GEM Case

In this section, the numerical results for the standard GEM case are presented. A grid conver-
gence study was first undertaken to determine the mesh requirements for a converged solution
of the GEM case. Several baseline grids were then selected for further consideration. Predicted
results obtained using the multifluid MHD model on these grids are then compared to other
known results from the literature. The effects of collisions on the GEM problem are examined
as well as the effects of various error cleaning algorithms for the Maxwell’s equations. Finally,

the performance of the proposed implicit time marching method is examined and discussed.

8.4.1 Computational Domain and Initial Conditions

The grids considered were all uniform Cartesian meshes with square cells. The horizontal
cell resolution is twice the vertical cell resolution. A typical mesh is shown in Figure 8.1
which corresponds to a very coarse 100x50 grid. The sequence of meshes considered here is

summarized in Table 8.2.
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Figure 8.1: GEM test case example mesh (100x50).

Table 8.2: Meshes considered for GEM problem.

Dimensions | Number of Cells
400200 80,000
512x256 131,072
800x400 320,000
1600x800 1,280,000

32001600 5,120,000

Contour plots of the initial conditions for the original GEM case plotted on a 1600x800 uniform
grid are presented in Figures 8.2 and 8.3, showing the initial distribution of the magnitude
of the y-component of the magnetic field, |B,|, along with the magnetic field lines and the
corresponding electron pressure in the x-direction, respectively. The initial normalized magnetic

reconnected flux is 0.2 in this case.

8.4.2 Grid Convergence Study with Magnetic GLM Error Cleaning

A grid convergence study was undertaken for the original GEM case as outlined above by
considering the sequence of meshes with increasing resolution defined in Table 8.2. For the study,

a constant collision frequency was assumed as suggested by Johnson [6]. The elastic collision
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Figure 8.2: GEM test case solution showing |B,| and magnetic field lines at ¢ = ()Q;ml1 and

mesh resolution 1600x800. Normalized magnetic reconnected flux is 0.2.
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Figure 8.3: GEM test case solution showing P, ;, at t =0 Q! and mesh resolution 1600x800.

on

Normalized magnetic reconnected flux is 0.2.
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terms outlined in Section 3.5 were modified and the collision frequencies defined in Equation
(3.17) were held constant. The inter-species collisions were neglected and the intra-species (self)
collision terms were modified by assigning a fixed value to the self collision frequency, vy, such
that

g =0, and v,=10"s"" (8.28)

This value for v was found to produce solutions similar to the results obtained by Johnson [6].

Figures 8.4 to 8.11 show the predicted distributions of the magnitude of the y-component of the
magnetic field, | B, |, along with the magnetic field lines and the corresponding electron pressure
in the z-direction, for the GEM case obtained for a succession of uniform Cartesian meshes wih
increasing resolution as summarized in Table 8.2. The predicted, instantaneous, normalized
magnetic reconnected flux is included in the caption for each figure. The time index for the
plots is at t = 18 Q;Oil, which corresponds approximately to an instance for which one unit of
magnetic flux (see Equation (8.10)) has reconnected in many of the previous results found in

the literature not based on PIC simulations. PIC simulations predicted an earlier time for one

unit of magnetic flux to reconnect, which was generally found to be around ¢t = 15 Q;mll

As can be seen in Figures 8.4 to 8.11, the reconnected magnetic flux increases with increasing
mesh resolution. At mesh resolutions higher than 800x400, a magnetic island appears in the
vicinity of the origin. The formation of a magnetic island was found previously by other authors
and is quite common place in many simulations [3,28,54,63,66,70,71,188]. The magnetic island
is composed of opposite direction magnetic field lines so that the integration of the y-direction
magnetic field does not accurately reflect the total reconnected magnetic flux, hence the absolute
value of the By component is used in the integration. The reconnected flux converges to a value
of approximately 1.93 at high mesh resolutions as shown in Figure 8.12, which shows the
normalized magnetic reconnection versus the z-direction grid resolution. As was mentioned,
though the time index ¢ = 18 Q;O}l was chosen based on when most fluid based results had a
normalized magnetic reconnected flux of unity, it was later found that there was an error in the
flux reported by Johnson et al. [6,7] and the test case used for the various two-fluid solvers of
Hakim et al. [64,65], and Loverich et al. [66], were not exactly the original GEM problem, while
most Hall MHD results had to be tuned to obtain the reconnection results desired. However,
reconnection information for this time index is still readily available for other simulations and
several are included in Figure 8.12. A special test case with a grid resolution of 512x256 and
no collisions is examined later in this chapter and is also included in the convergence plot
as a separate data point and results in the desired reconnection value of approximately one
normalized unit of magnetic flux; however, it was quite unstable and these results are discussed

in Section 8.4.3. At high mesh resolutions, the reconnected magnetic flux is approximately
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double the value found by other researchers using fluid based models. Nevertheless, this high
value for the reconnected magnetic flux was found to be closer in line with the values obtained
using either the PIC or hybrid PIC simulations, such as those reported by Pritchett [3], Shay et
al. [2], and Kuznetsova et al. [54]. It should be also noted that a similar doubling of reconnection

was encountered by Johnson [6] while investigating the so called ‘pair plasma’ case.

Referring again to Figure 8.12, at grid resolutions close to those used by many researchers [2,4,5]
using PIC (512x256) and Vlasov equation (512x256) modelling approaches, approximately
one unit of normalize reconnected flux is obtained by the MMHDGLM2D model. As can
be seen, the Darwin-Vlasov simulations are closest to the MMHDGLM2D results for similar
mesh resolutions, while the pure PIC simulations and the hybrid simulations result in non-
dimensional values for the reconnected flux closest to the converged MMHDGLM2D results
found here, albeit at lower mesh resolutions (but also at much higher computational cost). The
higher reconnection values reported in some PIC simulations [3, 54, 70] are often attributed
to the formation of magnetic islands, such as those found at higher mesh resolutions in the
current study. This can explain the better agreement of the reconnected flux with the PIC
simulations at higher mesh resolutions, while at the same time agreeing with the Darwin-
Vlasov simulations [4, 5] at lower mesh resolutions, when there are no magnetic islands, as the
Darwin-Vlasov simulations also do not exhibit the magnetic islands at mesh resolutions similar

to those used in this study.

The effect of the magnetic island on reconnection rate is also illustrated by Hesse et al. [70].
Their results show a dramatic drop in reconnection rate when going from the PIC simulations
to the Hall MHD simulations which lack a magnetic island. A more recent result from Rieke
et al. [5] shows that using Hakim et al.’s two-fluid 5-moment scheme for the original GEM
problem and not the modified version from [64,65] agrees with a lower reconnection value
as would be predicted when going to a fully collisional plasma as will be examined in Section
8.4.6. It can be seen that most results are reasonably close to the results of the current study for
similar resolutions. However, the predicted rate is also very sensitive to the numerical scheme
employed [2-6, 54, 70]. Therefore, based on the current mesh refinement study, The current
results shown here and those of other researchers are thought not to be fully converged for the

lower mesh resolutions considered.

8.4.3 Baseline Solutions on Nominal Grids

Due to the observed sensitivity of the reconnection value to mesh resolution, several base cases

were chosen as standard results to compare with other results in the literature. Examining
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Figure 8.4: GEM test case solution with MGLM error cleaning showing |B,| and magnetic field

lines at t = 18 Qz_ml1 and mesh resolution 400x 200 with collision frequency 10" s~'. Normalized

magnetic reconnected flux is 0.82.
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Figure 8.5: GEM test case solution with MGLM error cleaning showing P, ,, at t = 18 QZ_O; and
mesh resolution 400x200 with collision frequency 107s~!. Normalized magnetic reconnected

flux is 0.82.



8.4. NUMERICAL RESULTS FOR THE ORIGINAL GEM CASE 151

T R | e

absBy: 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17

Figure 8.6: GEM test case solution with MGLM error cleaning showing |B,| and magnetic field

lines at t = 18 Qz_ml1 and mesh resolution 800x400 with collision frequency 10" s~'. Normalized

magnetic reconnected flux is 1.32.
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Figure 8.7: GEM test case solution with MGLM error cleaning showing P, ;, at t = 18 QZ_O; and
mesh resolution 800x400 with collision frequency 107 s~!. Normalized magnetic reconnected

flux is 1.32.
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Figure 8.8: GEM test case solution with MGLM error cleaning showing |B,| and magnetic field

lines at t = 18 Qz_mll and mesh resolution 1600x800 with collision frequency 107 s~'. Normalized

magnetic reconnected flux is 1.77.
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Figure 8.9: GEM test case solution with MGLM error cleaning showing P, ,, at t = 18 QZ_O; and

mesh resolution 1600x800 with collision frequency 107 s~'. Normalized magnetic reconnected

flux is 1.77.
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Figure 8.10: GEM test case solution with MGLM error cleaning showing | B, | and magnetic field

lines at t = 18 QZ_O}Z and mesh resolution 3200x 1600 with collision frequency 107 s~!. Normalized

magnetic reconnected flux is 1.93.

| | L | T | L |

P_e,xxx: 10000 30000 50000 70000 90000 110000

Figure 8.11: GEM test case solution with MGLM error cleaning showing P, ;. at t = 18 QZ_O}Z and
mesh resolution 3200x 1600 with collision frequency 107 s~!. Normalized magnetic reconnected

flux is 1.93.
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Figure 8.12: Convergence plot of normalized magnetic reconnected flux versus z-direction res-
olution for GEM test case at t = 18 QZ_OL for the MGLM error correction scheme. Results from

Shay et al. [2], Pritchett et al. [3], Schmitz et al. [4], Rieke et al. [5], and Johnson [6] are also

included.
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Figure 8.12, a reasonably converged solution for the original GEM case, balancing computa-
tional considerations, was identified to be the results obtained using a uniform Cartesian mesh
containing 1600x800 cells. This is the grid used for most of the comparisons herein and explo-
ration of the effect of various parameters and properties. A lower resolution grid of 400x200

cells was also used for a few of the comparisons and is stated clearly when used.

One additional grid resolution was examined in order to see how the MMHDGLM2D solution
result compared specifically to the Darwin-Vlasov results examined in Section 8.4.5. In order
to compare to the Darwin-Vlasov simulations, completely collisionless MGLM simulations were
carried out. As was expected, with collisionless fluid equations, the results were less stable than
the base case solutions. Figures 8.13 and 8.14 shows the predicted y-direction magnetic field
magnitude with magnetic field lines and the electron pressure in the x-direction, respectively,
for the collisionless case at the standard time, ¢t = 18 Q;}L obtained using a 512x256 grid. The
normalized magnetic reconnection was 1.04 at this time for this case as is predicted by Schmitz
et al. [4,75] and Johnson [6] for the original GEM case. This simulation proved to be fairly

unstable, and was very unstable past the standard 18 () 0711 time. The final result that was used
to study the temporal evolution of the magnetic reconnected flux of Figure 8.17 for this case is

at t = 480}

ion, and is included in Figures 8.15 and 8.16. As can be seen at longer time, there
is considerable instability and asymmetry in the predicted solutions for this collisionless case.
The instability of the results is to be expected as will be shown later in Section 8.4.6 of this
chapter. Note that there was no instance of magnetic island formation, at least for the lower

mesh resolution considered here.

8.4.4 Time Evolution of Normalized Magnetic Reconnected Flux

The time evolution of the magnetic reconnected flux is examined here. The normalized magnetic
reconnected flux versus time for the base case is plotted in Figure 8.17 along with the results
of Pritchett et al. [3] and a collisionless GEM case at a mesh resolution of 512x256 that is
examined in Sections 8.4.3 and 8.4.5. As can be seen, the predicted reconnected flux initially
starts off at a low value and quickly ramps up and then continues to increase, levelling off at a
value of around 3.85. It should be noted that at times after 18 QZ_O;, the magnetic island seen in
Figure 8.8 moves to the left and eventually merges, which reduces the rate of reconnection as
the opposing magnetic field lines eliminate each other. Due to the asymmetric movement of the
magnetic island, the reconnected flux value was determined by the integration of |B,| across

the entire domain divided by 2 to be consistent with the definition of magnetic reconnected flux

in the literature.
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Figure 8.13: GEM test case solution with MGLM error cleaning showing |B,| and magnetic
field lines at ¢ = 18 Q!

ion, and mesh resolution 512x256 with no collisions. Normalized magnetic

reconnected flux is 1.04.
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Figure 8.14: GEM test case solution with MGLM error cleaning showing P, ;, at t = 18 0!

won

and mesh resolution 512x256 with no collisions. Normalized magnetic reconnected flux is 1.04.
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Figure 8.15: GEM test case solution with MGLM error cleaning showing |B,| and magnetic
field lines at t = 48 Q!

ion, and mesh resolution 512x256 with no collisions. Normalized magnetic

reconnected flux is 3.14.
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Figure 8.16: GEM test case solution with MGLM error cleaning showing P, ;, at t = 48 Q;mll

and mesh resolution 512x256 with no collisions. Normalized magnetic reconnected flux is 3.14.
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Figure 8.17: Normalized magnetic reconnected flux versus time for GEM test case at a mesh
resolution of 1600x800 and a collisionless GEM test case at a mesh resolution of 512x256 for
the MGLM error correction scheme. Also includes data from PIC simulations of Pritchett et

al. [3].
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The movement of the magnetic island can be seen in Figures 8.18 and 8.19, which show plots of
| By| with the magnetic field lines and the electron pressure, P ;,, respectively, for time 24 QZ_O}Z
obtained using the base grid resolution of 1600x800. The movement and eventual merger has
also been observed in the literature [28, 63,66, 70, 71], though the direction the island moves
is not consistent and differs with the scheme used. However, the leftward direction is often
documented [28,71]. Taking a look at the slope of the time evolution plot, the maximum
normalized magnetic reconnection rate is approximately 0.2 which is also in good agreement
with values reported in the literature [2,3,6,27,71,189]. The agreement of the time evolution
of the predicted reconnected flux with the PIC simulations of Pritchett et al. [3] is in fact quite
good and this behaviour is typical of most PIC and hybrid simulations. Though the resolution
of the base case is much higher than the PIC grid resolution of 512x256, the computational
resources required are much less. It should also be noted that the reconnected flux generally
converges to around 3.3 in the literature, but the increased value observed here can be attributed
to the higher resolution employed, which is evidenced by the lower final reconnected flux of the
lower (collisionless) mesh resolution case of 512x256 cells. The collisionless 512x256 case has
a slightly different profile, agreeing well to around ¢ = 12 Q;mll for all solutions compared, but
then the reconnected value goes lower until the peak near 30 Q;mll where it once again agrees
with the other simulations. However, the reconnected flux then suddenly drops down and then
recovers to a value of approximately 3.27 as is expected for this lower mesh resolution case.
The drop in reconnected flux before reaching a final value has also been observed by other

researchers [2,4,5,27,66,189,190].

8.4.5 Comparison of Predicted Solutions to Other Results

Examining further the results for the base grid of 1600x800 computational cells, the predicted
distributions of the out of plane magnetic field are presented in Figure 8.20, and Figures 8.26 and
8.27 show the diagonal and off diagonal components of the electron pressure tensor, respectively.
The plots of the out of plane variables, namely B., P, ,., FPe ., are shown using the negative
of the values obtained as done by Johnson [6]. This is to be consistent with the original GEM
results which were defined to be in the x-z plane. This made the out of plane results positive
into the plane, while the results obtained with the z-y plane definition of the GEM problem

has the out of plane axis positive out of the plane.

Significant instabilities can be seen in the pressure tensors of Figures 8.26 and 8.27. How-
ever, the quadrupole structure of of the out of plane magnetic field in Figure 8.20 shows very

good agreement with the literature [2-4,6-8,54]. For comparison, the out of plane magnetic
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Figure 8.18: GEM test case solution with MGLM error cleaning showing | B, | and magnetic field

lines at t = 24 Qz_mll and mesh resolution 1600x800 with collision frequency 107 s~!. Normalized
magnetic reconnected flux is 2.53.
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Figure 8.19: GEM test case solution with MGLM error cleaning showing P, ;. at t = 24 QZ_O}Z and

mesh resolution 1600x800 with collision frequency 107 s~!'. Normalized magnetic reconnected
flux is 2.53.
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Figure 8.20: GEM test case solution with
MGLM error cleaning showing negative
out of plane magnetic field —B, and mag-
netic field lines at t = 18 Q;mll and mesh res-
olution 1600x800 with collision frequency
107 s~!. Normalized magnetic reconnected

flux is 1.77.
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Figure 8.22: Results from PIC simulations
by Pritchett et al. [3] showing magnetic
field lines (a) and out of plane magnetic
field (b) at a grid resolution of 512x256 at
t=15.7Q;,

ion- Normalized magnetic recon-

nected flux is 1.0.

Figure 8.21: GEM test case solution with
MGLM error cleaning showing negative
out of plane magnetic field —B, and mag-
netic field lines at t = 18 Q;O}l and mesh res-
olution 400x200 with collision frequency
10”s™!'. Normalized magnetic reconnected

flux is 0.82.
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Figure 8.23: Results from Darwin-Vlasov
simulations by Schmitz et al. [4] showing
out of plane magnetic field at a total grid
resolution of 512x256 at t = 17.79;111.

Normalized magnetic reconnected flux is
1.0.
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-(magnetic field) at t = 17.25/ Q ; (magnetic field) at t= 18/ Q,

. 20-moment two-fluid Maxwell
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Figure 8.24: Results from 10-moment two-  Figure 8.25: Results from 20-moment two-
fluid simulations by Johnson et al. [7] show-  fluid simulations by Johnson et al. [8] show-
ing out of plane magnetic field at ¢ = ing out of plane magnetic field at ¢t =
17.25 QZ_O; Normalized magnetic recon- 18 Qz_ml1

nected flux is 1.2.

quadrupole results of Pritchett et al. [3], Schmitz et al. [4], and Johnson et al. [7,8] are included
in Figures 8.22, 8.23 and 8.24-8.25, respectively. This illustrates the somewhat decoupled nature
of the fluid dynamic behaviour of the electrons and ions with the behaviour of the magnetic
field. As can be seen by comparing the results, the fine detail found in the PIC and Vlasov
solutions between the quadrupoles close to the z-axis is recreated with the current high res-
olution base grid solution using the MMHDGLM2D model. The predicted solution is more
stable than the PIC code and the agreement is better than that obtained by Johnson’s 10- and
20-moment two-fluid results. Note that the scales are approximately correct as the magnitude

of the dimensionalization constant for the magnetic field is approximately one.

The predicted distribution of the pressure tensor of Figures 8.26 and 8.27 exhibit the major
elements which agree with the results in the literature; however, with a concentration of electron
pressure at the center coinciding with the existence of a magnetic island. For comparison, the
electron pressure tensor results from the Darwin-Vlasov simulation of Schmitz et al. [4] is
included in Figure 8.28 and the 10- and 20-moment two-fluid results of Johnson et al. [7] are
included in Figures 8.29 and 8.30. The results presented in Figures 8.26 and 8.27 have better
agreement than the two-fluid formulation of Johnson et al. [7] when compared to the Darwin-
Vlasov solutions, with the main difference being the effect of the magnetic island on the pressure

profile at the center of the domain.

It should be stated that the results for the base case are at a higher grid resolution than those

of Johnson et al. [6-8], so a lower mesh resolution of 400x200 is also examined, which is more
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Figure 8.26: GEM test case solution with MGLM error cleaning showing diagonals of the
electron pressure tensor at t = 18 Q;mll and mesh resolution 1600x800 with collision frequency

10”s~!. Normalized magnetic reconnected flux is 1.77.
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Figure 8.27: GEM test case solution with MGLM error cleaning showing off-diagonals of the
electron pressure tensor at t = 18 QZ_O:L and mesh resolution 1600x800 with collision frequency

107 s7!. Normalized magnetic reconnected flux is 1.77.
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Figure 8.28: Results from Darwin-Vlasov simulations by Schmitz et al. [4] showing electron

pressure tensor at t = 17.7 Qz_mll and total grid resolution 512x256. Normalized magnetic

reconnected flux is 1.0.
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Figure 8.29: Results from 10-moment two-fluid simulations by Johnson et al. [7] showing elec-

tron pressure tensor at ¢t = 18 Q;O}l Normalized magnetic reconnected flux is 1.28.
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Figure 8.30: Results from 20-moment two-fluid simulations by Johnson et al. showing electron

pressure tensor at ¢ = 16 Q;L
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stable than the high mesh resolution case for the predicted fluid results. Returning to the
results previously shown in Figure 8.21, it is evident that the predicted distribution of the out
of plane magnetic field now resembles very closely the 10- and 20-moment out of plane magnetic
quadrupole results of Johnson et al., which are shown in Figures 8.24 and 8.25. The predicted
electron pressure tensor for the 400x200 coarse mesh was also examined, and the predicted
distribution of these quantities are presented in Figures 8.31 and 8.32 for the diagonal and off
diagonal terms, respectively. The pressure plots at the coarser mesh also agree very well with
the Vlasov simulations of Schmitz et al. [4], particularly the off-diagonal terms which play a
large role in the evolution of the magnetic field through the Ohm’s law as noted by Schmitz et
al. The present results also agree fairly well with Johnson’s 10-moment results, but captures the
results of the Vlasov simulation more closely, though it should be mentioned at the resolutions
being used, the results are not converged and may simply agree better because the resolutions
of the results are similar. Johnson et al.’s 20-moment results for the off-diagonal pressures now
agrees very well with the results of the current study. The only major difference between the
results presented here and those of Schmitz et al. and Johnson et al.’s results is the y-direction
electron pressure. A rectangular region of high anisotropic pressure exists in the center here

which makes sense since the electrons would want to spiral along the field lines.

Next, three sets of results were examined to compare the reconnected flux values and the out
of plane currents to the coupled Vlasov solutions of Rieke et al. [5]. The three cases were a col-
lisionless 512x 256 mesh resolution case, and a case with mesh resolution of 400x200 with both
physical collisions and no collisions. All cases made use of the proposed MGLM error cleaning
algorithm. The results at a time of ¢t = 32 QZ_OL showing the negative out of plane current,
—J, for the three cases considered are presented in Figures 8.33(b), 8.33(d) and 8.33(c) for

the collisionless 512x256 mesh, the physical 400x200 mesh and the collisionless 400x 200 mesh

cases, respectively. The 400x200 grid solutions at a time of ¢t = 32 Q;ml% resulted in a normalized
reconnected flux of 3.34 and 3.37 for the physical collisions and completely collisionless solu-
tions respectively, while the 512x256 grid collisionless case resulted in a normalized magnetic

reconnected flux of 3.32.

All three of the numerical solutions summarized in Figure 8.33 are very similar, with the
collisionless and higher grid resolution solutions exhibiting more oscillations in the plasma.
The reconnected flux value agrees with the majority of the literature for long time runs past
t =30 QZ_O; using a variety of solution procedures [2,4,54,65,66,70,71]. When compared with
the coupled Darwin-Vlasov two-fluid results obtained by Rieke et al. [5], which is included in

Figure 8.33(a), it can be seen that the results agree extremely well, both for the normalized

magnetic reconnected flux value and also for the predicted form of the out of plane current.
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P_exx: 10000 28000 46000 64000 82000 100000

(a) Electron pressure P ..

P_eyy: 10000 30000 50000 70000 90000

(b) Electron pressure Pe yy.

P_ezz: 10000 311765 52352.9 73529.4 94705.9

(c) Electron pressure Pk ...

Figure 8.31: GEM test case solution with MGLM error cleaning showing diagonals of the

1

., and mesh resolution 400x200 with collision frequency

electron pressure tensor at t = 18 €,

107 s7!. Normalized magnetic reconnected flux is 0.82.
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P_exy: -5000 -2857.14 -714.286 1428.57 3571.43

-P_eyz: -3000 -1714.29 -428.571 857.

(c) Negative electron pressure —Pe y-.

Figure 8.32: GEM test case solution with MGLM error cleaning showing off-diagonals of the

1

., and mesh resolution 400x200 with collision frequency

electron pressure tensor at t = 18 €,

107 s7!. Normalized magnetic reconnected flux is 0.82.
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The peaks and outline of the current regions occur in the same place and the values also agree

(note that the results must be non-dimensionalized by en,.rva).

8.4.6 Collisional Effects on Reconnection

The collision frequency for the base, 1600x800, grid with MGLM error correction was altered
to explore the effects of collisions on the solution and values of the reconnected magnetic flux.
Three different collision regimes were examined: the collisionless (vs = 0s™!), transitional
(vs = 107s7 1), and fully collisional (vs = 10*?s7!) regimes. Figures 8.34 and 8.35 provide
comparisons showing |B,| with magnetic field lines and P, ., for t = 18 QZ_O; for the cases
examined. In general, with less collisions, the solution becomes less stable, with the rate
of reconnection increasing when going from collisional to collisionless. As mentioned before,
this trend has also been found in the literature [71]; however, the actual predicted differences
in the reconnected flux between the transitional and collisionless regimes are not large here.

Also, as can be seen in Figures 8.34(a) and 8.35(a), which shows the base case with magnetic

divergence cleaning at ¢t = 180"

ion» With no collisions, the solution is asymmetric with the

magnetic island having moved already towards the left along with other asymmetries that can
be seen in the solution. However, when the regime moves towards an isotropic 5-moment fluid
description, with fully collisional inter- and intra-species collision terms, results such as those
plotted in Figures 8.34(c) and 8.35(c) are obtained. The magnetic island has been eliminated
and the region where the magnetic field lines have reconnected is much larger; however, the
total magnetic reconnected flux is lower due to the absence of the magnetic island. This finding
is to be expected as shown in Figure 8.12, which depicts the 5-moment result of Rieke et al. [5]

as being much lower in reconnected flux than the anisotropic models.

Results for Modified Johnson’s Case

In a 2013 presentation for the STAM Conference on Computational Science and Engineering [8],
Johnson and Rossmanith revealed the collision relationship used to obtain Johnson’s thesis
results. These ultimately were slightly different than the constant collision frequencies used
for the results presented in this chapter. To compare how the results differed for the modified
collisional rates, the collision frequencies of Johnson and Rossmanith were reproduced and the
base case was examined with these new collision frequencies. The collision frequencies were
separate for the electron and ion species and determined to be approximately 2.0 x 10°s~!
and 2.0 x 10°s~! for the ions and electrons, respectively. Figures 8.36(b) and 8.37(b) present

1
iom, fOT

predicted values of | B,| along with magnetic field lines and P ;,, respectively at ¢ = 182
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6.3 0.05
Yy 0.0 -1.22
-6.3 -2.50
-12.6 0.0 12.6

@x

Jjz atz = 32.3 Q7! (coupled)

(a) Coupled Darwin-Vlasov two-fluid results, Rieke et al. [5]. Normalized magnetic reconnected flux is 3.2.

-J =z -1 AE+D7 -5.98571E4+06 2 97143E+06

‘ J_z: -1.1E+07 -6.98571E+06  -2.97143E+06

‘ J_z -1.1E+07 -6.98571E+06 -2.97143E+06

(d) Physical collisions MGLM results with a 400x200 mesh. Normalized magnetic reconnected flux is 3.34

-1
on’

Figure 8.33: Out of plane current results comparison for the GEM problem at t = 322
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(c) Collision frequency 10*?s™!. Normalized magnetic reconnected flux is 1.433.

Figure 8.34: GEM test case solution comparison with MGLM error cleaning showing |B,| and

magnetic field lines at t = 18 Qi_ol and a mesh resolution of 1600x800 for various collision

mn

frequencies.
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P_exx: 10000 30000 50000 70000 90000 110000

P exx: 10000 30000 50000 70000 90000 110000

(b) Collision frequency 10" s™'. Normalized magnetic reconnected flux is 1.77.

T —T
P_exx: 10000 30000 50000 70000 90000 110000

(¢) Collision frequency 10*? s7!. Normalized magnetic reconnected flux is 1.433.

Figure 8.35: GEM test case solution comparison with MGLM error cleaning showing P, ;, at

t=18 Q;}l and a mesh resolution of 1600x800 for various collision frequencies.
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the base mesh resolution of 1600x800 using the modified, Johnson and Rossmanith, collision
frequencies. Predictably, the results are slightly less stable, but do not differ greatly from the

results in the rest of this section both qualitatively and also for total magnetic reconnected flux.

A set of alternate initial conditions were also examined, as outlined by Johnson [6], which
included second-order effects for initial current, usually left to evolve on their own. Equation

(8.14) is modified with an addition so that

0
J= 0 : (8.29)
—%‘zsechQ (1) + wiwo <Li§ + L%) cos(2m ) cos(m )

which resulted in Figures 8.36(c) and 8.37(c). This was coupled with the separate collision
frequencies of Johnson and Rossmanith [8]. There is not much difference in the final solution as
compared with Figures 8.36(b) and 8.37(b), except that there is slightly less reconnection and
there is a curious move to the right for the magnetic island. Ultimately the magnetic island

merges with the right lobe in this case.

8.4.7 Comparison of the Effect of Mass Ratio on the Electron Diffusion
Thickness

The effect of the electron-ion mass ratio was briefly examined, by considering the low mesh
resolution 400x200 base case with a physical electron-ion mass ratio. It was found that using
a physical mass ratio resulted in a much stiffer and more unstable solution, requiring a smaller

time step as was expected and found by other researchers [189].

In order to compare the results obtained with the physical mass ratio, the out of plane electron

currents were plotted at ¢ = 18 Qz_mll for both mje,/me = 25 and for the physical mass ratio,
Mion/Me = 1836, in Figures 8.38(a) and 8.38(b), respectively. The change in the mass ratio
causes an equivalent change in the electron diffusion region as found in the literature where the
diffusion region decreases with increasing ion-electron mass ratio [2,70,189]. Approximately
measuring the peak to peak distance of the diffusion region normalized by the respective ion

inertial length, 9,4, results in

die
d(Real )

xre

= 2.76. (8.30)

The theoretical value for this ratio as found by Ricci et al. [189] is 2.92, however, measured
values in simulations are often lower. The value obtained is close to the value obtained by Ricci

et al., which was 2.8.
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(c) Johnson conditions. Normalized magnetic reconnected flux is 1.839.

Figure 8.36: GEM test case solution comparison with MGLM error cleaning showing |B,| and

magnetic field lines at ¢ = 18 QZ_O; and mesh resolution 1600x800 with changes in collision

frequency and initial conditions.
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P_exx: 10000 30000 50000 70000 90000 110000

P exx: 10000 30000 50000 70000 90000 110000

(b) Johnson collision frequency. Normalized magnetic reconnected flux is 1.865.

=T ™
P_exx: 10000 30000 50000 70000 90000 110000

(c) Johnson conditions. Normalized magnetic reconnected flux is 1.839.

Figure 8.37: GEM test case solution comparison with MGLM error cleaning showing P, ;, at
t=18 Ql_o}l and a mesh resolution of 1600x800 with changes in collision frequency and initial

conditions.
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T T T T LI B B B S B A |
‘-J ez.  -8E+06 -5E+06 -2E+06

(a) GEM mass ratio mion/me = 25. Normalized magnetic reconnected flux is

0.82. Normalized peak to peak diffusion region distance d;zes) = 1.37.

| L I B B I B e B — — e e e
-J ez -5E+06 -2.25E+06 500000

(b) Physical mass ratio mion/m. = 1836. Normalized magnetic reconnected flux

is 1.05. Normalized peak to peak diffusion region distance d\5°*" = 0.497.

177

Figure 8.38: Comparison of GEM test case solutions with MGLM error cleaning showing —.J, .

at t =18 QZ_O}L and a mesh resolution of 400x200.
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8.4.8 Effects of Divergence Cleaning Strategies on Numerical Solutions

To assess the quality of the solution obtained, predicted solutions for various combinations
of error correction schemes were examined and compared. The error correction combinations
examined were FGLM (refer to Section 3.8.4), MGLMED (refer to Section 3.8.5), and no error
correction (NGLM). The MGLM scheme (refer to Section 3.8.4) is the error correction used
for the base case and was examined in the previous section. Each error correction scheme was
examined using the GEM case for a mesh resolution of 1600x800 to a time of 18 QZ_O; for the
three different constant collision regimes of collisionless (vs = 0s™!), transitional (v = 107s71),
and fully collisional (vs = 10'2s71). Note that solution results could not be obtained in all cases
due to instabilities. All obtained results in this section are placed into figures showing either

| By| with magnetic field lines (Figures 8.39, 8.40 and 8.42) or the electron z-direction pressure

(Figures 8.41 and 8.43) and are discussed in the following sections.

FGLM Error Correction Results

As was found by other researchers [7,65, 66, 73], utilizing a full GLM error correction on the
electric and magnetic fields resulted in very unstable results. The results for the collisionless
and transitional regimes could not be obtained due to negative energies or densities, however
the fully collisional regime could be obtained, but as can be seen from the results of Figure
8.39, the numerical simulation appears to be unstable with a large number of oscillations in the

predicted solutions.

MGLMED Error Correction Results

A less strict method of electric field divergence cleaning is achieved using the electric diffusion
method, MGLMED, as discussed in Section 3.8.5. Results obtained with this scheme were far
more stable than with the FGLM method. Despite this, solutions obtained using MGLMED
were less stable than with the MGLM scheme and only the transitional and fully collisional

simulations could be completed successfully.

The predicted transitional solutions, Figures 8.40(b) and 8.41(b), are very similar to the MGLM
counterparts (Figures 8.40(a) and 8.41(a)), which shows that the effect of charge separation
errors on the GEM problem are minimal. These findings agree with what other researchers
have found when examining alternate charge separation error cleaning methods related to the

Langdon-Marder corrections [7,66,70]. This was verified by examining the charge separation
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Figure 8.39: GEM test case solution with Full GLM cleaning showing |B,| and magnetic field
lines at t = 18 Q;O}L and a mesh resolution of 1600x800 with collision frequency 10'2s~!.
errors for the MGLM and MGLMED solutions, where in the MGLM solution the errors are
high, but concentrated, while in the MGLMED solutions, the errors are negligible. The variance
in the magnetic reconnected flux is around 4% between the two solutions. This is expected as
altering the error cleaning of the Maxwell’s equations may produce differences in the final

magnetic fields. Even so, the differences are fairly minor.

Figure 8.44 depicts the predicted magnetic reconnected flux versus x-direction grid resolution
for the MGLMED scheme based on the base case collision frequency of v, = 107s~!. The
magnetic reconnected flux approaches a value of 2, like the MGLM case; however, at extremely
high resolutions, the MGLMED scheme becomes increasingly unstable and the results became

unreliable and is reflected in the final data point of the plot.

The fully collisional cases depicted in Figures 8.42(b) and 8.43(b) are nearly identical to the
MGLM versions. The magnetic reconnection value is also very close to the MGLM result and
reflects the disappearance of the magnetic island in the drastic reduction in reconnection as
compared with the NGLM results. The added stability of the fully collisional scheme contributes
to the convergence of both the MGLM and MGLMED solutions.

No Error Correction Results

As with the MGLMED solutions, when there is no error correction, the solution for the collision-

less regime could not be obtained due to the instabilities which caused non physical solutions.
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(c) No error cleaning. Normalized magnetic reconnected flux is 1.722.

Figure 8.40: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

|B,| and magnetic field lines at ¢ = 182} and a mesh resolution of 1600x800 with collision

frequency 107 s71.
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P_exx: 10000 30000 50000 70000 90000 110000

P exx: 10000 30000 50000 70000 90000 110000

(b) MGLMED error cleaning. Normalized magnetic reconnected flux is 1.84.

=T ™
P_exx: 10000 30000 50000 70000 90000 110000

(c) No error cleaning. Normalized magnetic reconnected flux is 1.722.

Figure 8.41: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

P, .. at t =18 Qz_oil and a mesh resolution of 1600x800 with collision frequency 107s~ L
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(b) MGLMED error cleaning (MGLMED).

flux is 1.436.

n—¢\-\\\‘
| /\‘s\\‘
|

p
-

r

(¢) No error cleaning. Normalized magnetic reconnected flux is 2.341.

Z_Ofl and a mesh resolution of 1600x800 with a constant

Figure 8.42: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing

|By| and magnetic field lines at ¢ = 18 (2

collision frequency of 1012 s~1,
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P_exx: 10000 30000 50000 70000 90000 110000

P exx: 10000 30000 50000 70000 90000 110000

(b) MGLMED error cleaning. Normalized magnetic reconnected flux is 1.436.

=T ™
P_exx: 10000 30000 50000 70000 90000 110000

(c) No error cleaning. Normalized magnetic reconnected flux is 2.341.

Figure 8.43: GEM test case solution with MGLM, MGLMED and NGLM error cleaning showing
P.,.att=18 Ql-_ol and a mesh resolution of 1600x800 with a constant collision frequency of

mn
1012¢ L,
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Figure 8.44: Convergence plot of normalized magnetic reconnected flux versus z-direction res-
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olution for GEM test case at ¢t = 18 Q;O}L for the MGLMED error correction.
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Solutions were obtained for the transitional and fully collisional regimes. Once again, the pre-
dicted transitional regime solutions for NGLM differs very little compared to the MGLMED
and MGLM counterparts as can be seen in Figures 8.40(c) and 8.41(c). The predicted mag-
netic reconnected flux is similar to that of the MGLM scheme, but is consistently lower, as can
be seen by the magnetic reconnected flux versus z-direction grid resolution convergence plot,
Figure 8.45, which approaches 1.7 instead of 2 as in the MGLM case. There is also additional

instability at higher mesh resolutions when there is no error cleaning.

A surprising development occurs when the fully collisional regime with no error correction is
examined. As can be seen in Figures 8.42(c) and 8.43(c), the magnetic island remains at the
center, instead of disappearing as in the other schemes. Despite the existence of the magnetic
island, other elements of the fully collisional case from the other schemes remain such as the
very large magnetic reconnection region. This, combined with the magnetic island results in a
very large value for the reconnection flux of 2.341. This finding indicates a few things. First, the
larger reconnection region and characteristic pressure profile (except at the magnetic island) is
largely driven by fluid mechanical factors instead of the form of Maxwell’s equations. Further,
the magnetic island tends to appear when the simulation is less stable. Exploring the origins
of the magnetic island would be of some interest and is discussed further in the future work

section of the next chapter.

8.4.9 Summary of Findings

The major conclusions arising from this section of the thesis dealing with the GEM case results
are summarized here. As was previously found by all researchers that have commented on
the matter, the magnetic reconnection does not seem to be affected greatly by the underlying
fluid dynamics. Varying fluid parameters, such as mass, isotropization and collisions, do not
contribute greatly to changes in the reconnected fluxes when the solution procedures are the
same [2,3,54,65,71,189]. As was also found by most other researchers [7,66], enforcing the
solenoidal condition through divergence cleaning of the magnetic field errors results in the most
stable solutions, while aggressive charge separation error cleaning results in generally unstable
solutions. Using a Langdon-Marder diffusive error cleaning scheme (MGLMED) [7,66,70] results
in a stable solution to the GEM case, but does not result in a significantly different solution

over the MGLM scheme and results in an overall less stable solution.

Collisions, though not strictly physical for the GEM conditions, results in solutions for the
GEM case which are more stable. Simulations with transitional collision frequencies results in

predictions that resemble closely those of the collisionless results, but exhibit greater stability.
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Figure 8.45: Convergence plot of normalized magnetic reconnected flux versus z-direction res-

olution for GEM test case at ¢t = 18 Q;m]l for no error correction.
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It was found that the grid resolution has the greatest effect on the predicted values of the
magnetic reconnected flux. The influence of mesh resolution was observed to be greater than
other parameters and even divergence error correction schemes used. However, the reconnected
flux appears to show convergence at very high mesh resolutions. The results of the mesh
resolution study presented here also suggests that most solutions in the literature may not
be fully converged solutions. The requirements for high resolution meshes when simulating

plasmas in general has been noted by other researchers [3,47,65,134].

Qualitatively, the solutions presented in this chapter agree well with the majority of the solutions
in the literature, and also reproduce the reconnected fluxes of PIC simulations [2, 54, 189]
for lower computational cost, but at higher mesh resolutions. A comparison of the temporal
evolution of the predicted magnetic reconnection between the MMHDGLM2D model and the
full PIC simulations [3] agree well for a low and high resolution mesh. The final reconnected
flux value is affected by mesh resolutions. The results from Darwin-Vlasov simulations [4, 5]
also agree well with the solutions obtained with the MMHDGLM2D numerical procedure for
similar resolutions and the out of plane currents match very well, while computationally the
MMHDGLM2D model is significantly cheaper. The relatively small computational effort of
the MMHDGLM2D model has allowed the generation of very high mesh resolution solutions
of the GEM test case. The differences that are seen in the reconnected fluxes and plasma
solutions could be a result of the set of equations used, as well as the numerical approached
employed, as many have commented that significant changes can and do result from these

differences [2,4,5, 38, 71].

It is up to debate whether the magnetic island observed in some results is a physical structure
or a result of mathematical or computational artefacts. Magnetic islands appear in solutions
with very little collisions, higher mesh resolutions, or from a lack of error cleaning, which all
characteristically results in less stable solutions. On the other hand, the MGLM scheme, which
seems to produce the most stable results, reduces the occurrence of the magnetic island. Note
that the divergence error cleaning has a dissipative effect on the overall scheme which contributes
to a reduction in the unstable oscillatory behaviour. Increasing the collision frequency also
generally reduces oscillatory behaviour and results in a reduction of the occurrence of the
magnetic island except when there is no error cleaning. The relationship between properties
that affect the stability of the simulations and the occurrence of the magnetic island has been
observed in other studies [28, 54,63, 66, 188]. Further, Kuznetsova et al. [54] attributed the
magnetic island to PIC instabilities and observed they reduce with an increase in isotropic
effects. Others have studied the role of turbulence in the formation of magnetic islands [191]. A

higher-order time and space algorithm also eliminated a low mesh resolution magnetic island as
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found by Loverich et al. [63] which also illustrates the possible numerical origin of the magnetic
island. The seemingly random, asymmetric motion observed in this study and also by other
researchers above seems to indicate that many factors can cause the formation and evolutions

of the magnetic island.

8.5 Numerical Results for LEO GEM Case

An initial high resolution solution for the LEO GEM case of Section 8.3.1 was obtained at
1600x800 cells using realistic self collisions, but without reactions or inter-particle collisions.
The MGLM error correction scheme was used. The results of this simulation can be seen in
Figures 8.46 and 8.47, which shows |B,| with magnetic field lines and the z-direction electron
pressure, respectively. This case was slightly unstable with some wave-like numerical instabili-
ties manifesting in the magnetic field. This case was also stiffer, resulting in a 2400% increase
in computational time over the base GEM case. The limiting time scale for this problem, and
also for the magnetopause GEM case, changed from the error advection (which is set to be 5%
faster than the set speed of light in the GEM case), to the upper hybrid frequency due to the
now significantly smaller electron mass. This is consistent with PIC simulations where plasma
frequencies are often the limiting time scales [140]. This case has very similar characteristics to
the base GEM case along with the formation of a magnetic island that is moving towards the
right lobe. The normalized magnetic reconnected flux, which is once again the integration of
the |B,| magnetic field along the z-axis across the entire domain divided by 2, is close to that
expected at 1.238. Because of the instability, despite running at a TSCF of only 0.1, a lower

resolution case was examined for further investigations.

A second case was considered at a mesh resolution of 400x200 which was far more stable.
The results of this simulation are presented in Figures 8.48 and 8.49. Once again similar
structures are observed with a very small magnetic island forming. The reconnected flux is
quite low at 0.331, and a lower reconnection rate is expected as in the original GEM case.
In order to investigate the effect of interparticle collisions and reactions, this case was again
examined at the 400x200 grid resolution and MGLM correction, but with both inter- and intra-
particle collisions enabled as well as charge exchange and ionization-recombination reactions.
The results can be seen in Figures 8.50 and 8.51 which shows |B,| with magnetic field lines
and the z-direction electron pressure, respectively. As was expected at these conditions, the
effects of the reactions and interparticle collisions were very small. The time scales for the
reactions are at least ten million times that of the limiting time scale due to the rarefied nature

of the plasma. Although the distribution of the magnetic field was slightly different, it was not
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Figure 8.46: LEO GEM test case solution with MGLM error cleaning showing | B, | and magnetic
field lines at t = 18 Q1 and a mesh resolution of 1600x800. Normalized magnetic reconnected

won
flux is 1.238.
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Figure 8.47: LEO GEM test case solution with MGLM error cleaning showing P, ., at t =

18 QZ_O; and a mesh resolution of 1600x800. Normalized magnetic reconnected flux is 1.238.
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enough to change the reconnected flux significantly, which is indicated slightly lower at 0.330.
The reduction in normalized magnetic reconnected flux, in general, is expected as was found
by others when moving towards the real electron mass [2,70,189]. Clearly, the conditions are
essentially collisionless in reaction and interparticle collisions as is expected [74]. The stiffness
of the problem was also expected as moving to the physical electron/ion mass ratio increases

the stiffness of the problem by an exponential factor [189].

8.6 Numerical Results for Magnetopause GEM Case

The magnetopause GEM case of Section 8.3.2 was found to be extremely stiff, resulting in
more than a three order magnitude increase in computational effort to perform the simulation
compared to the original and LEO GEM case. Once again, the TSCF had to be reduced to
0.1. The reduction in TSCF was due to increased instability from the more fully collisionless
and rarefied case. This resulted in not being able to obtain a high resolution solution due to
the added computational cost and instability. A test case with a resolution of 384x192 was
obtained, and the results for this case at the standard time of ¢ = 18 Ql_ml1 are shown in Figures
8.52 and 8.53 for |B,| with magnetic fieldlines and the electron pressure in the z-direction,
respectively. Once again, the solution has many of the features of the GEM and LEO GEM
case though with a smaller normalized magnetic reconnected flux value. The even smaller
reconnected flux value over the LEO GEM case can be attributed to the fact that the speed of
light is not constant to the reference values. The domain for this problem is significantly larger
and so could change the expected behaviour of electromagnetic waves as travel times change

across the domain.

An even lower resolution case was examined to verify the unconverged nature of the solution.
A mesh resolution of 192x96 was examined for the magnetopause GEM case. The results are
presented in Figure 8.54 and 8.55 for | B, | with magnetic fieldlines and the electron pressure in
the z-direction, respectively. The normalized magnetic reconnected flux is significantly lower

and it is clear that the results are not converged at this resolution.

8.7 LEO GEM Case Results with NKS Implicit Time Marching

Scheme

The LEO GEM case of Section 8.3.1 presented a problem that was significantly stiffer than
the original GEM case making it an ideal candidate for the NKS dual-time scheme. A small



8.7. LEO GEM Cast REsuLTs wiTH NKS IMPLICIT TIME MARCHING SCHEME 191

15000 absBy: 5E-08 2E-07 3.5E-07 5E-07 6.5E-07 8E-07

10000

5000

-5000

-10000

Figure 8.48: LEO GEM test case solution with MGLM error cleaning showing | B, | and magnetic
field lines at t = 18 Q! and a mesh resolution of 400x200. Normalized magnetic reconnected

won
flux is 0.331.
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Figure 8.49: LEO GEM test case solution with MGLM error cleaning showing P, ., at t =

18 QZ_O; and a mesh resolution of 400x200. Normalized magnetic reconnected flux is 0.331.
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Figure 8.50: LEO GEM test case solution with MGLM error cleaning showing | B, | and magnetic
field lines at t = 18 Qz_oib and a mesh resolution of 400x200 including reactions and interparticle

collisions. Normalized magnetic reconnected flux is 0.330.
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Figure 8.51: LEO GEM test case solution with MGLM error cleaning showing F. ., at

t =18 Q;mll and a mesh resolution of 400x200 including reactions and interparticle collisions.

Normalized magnetic reconnected flux is 0.330.
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Figure 8.52: Magnetopause GEM test case solution with MGLM error cleaning showing |B,|

-1
on

and magnetic field lines at t = 182, ° and a mesh resolution of 384x192. Normalized magnetic

reconnected flux is 0.232.
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Figure 8.53: Magnetopause GEM test case solution with MGLM error cleaning showing P, ;.
at t = 180!

on, and a mesh resolution of 384x192. Normalized magnetic reconnected flux is
0.232.
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Figure 8.54: Magnetopause GEM test case solution with MGLM error cleaning showing |B,|
-1

on, and a mesh resolution of 192x96. Normalized magnetic

and magnetic field lines at t = 18}

reconnected flux is 0.087.
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Figure 8.55: Magnetopause GEM test case solution with MGLM error cleaning showing P ;.

att =18 QI_O; and a mesh resolution of 192x96. Normalized magnetic reconnected flux is 0.087.
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Table 8.3: Comparison of MGLM Realistic LEO GEM case at 128 x 64 resolution

Scheme TSCF | CPU Time | |Brec| (T - m)

Explicit 0.3 2732 1.264 x 1072
NKS Godunov 25 1125 1.264 x 1072
NKS Godunov | 50 921.2 1.263 x 1072
NKS Neglected | 25 5319 1.264 x 1072
NKS Neglected 50 - -

sample problem of 128 x 64 cells was used in order to eliminate Schwarz preconditioning issues,
which was found to be a significant obstacle in simulating the GEM problem using the NKS
scheme. The Schwarz preconditioning issue is discussed further in the future work Section 9.2
of the last chapter of the thesis. Using MGLM error correction and particle collisions, the
computational times for the various simulations are included in Table 8.3. The system with no
residual Jacobian (neglected) on the block right preconditioner of the NKS Maxwell’s equations
as discussed in Section 6.7.2 did not converge at a TSCF of 50. As can be seen, the NKS
dual-time scheme with the Godunov approximate Jacobian for the Maxwell’s equations has a
significant advantage over both the non-preconditioned and explicit method with no degradation
in reconnected flux results. The NKS scheme did not perform as well with the original GEM
case. It is theorized that the stiffer LEO case gave an advantage to the preconditioned system,
since with the smaller time step needed for the LEO case, the LHS preconditioning matrix
becomes diagonally dominant and compensates for the singular nature of the preconditioning
matrix as mentioned in Section 6.7.2. NKS seems to excel at stiff systems when not heavily
Schwarz preconditioned as seen in Chapter 7. It was found that the optimal ratio of diagonal
dominance was approximately constant for the highest TSCF for a converging preconditioned

system regardless of the preconditioning type.

8.8 Discussion of Results for the Realistic GEM Cases

The findings from the two realistic GEM cases were somewhat to be expected with the increased
computational difficulty and lower reconnected flux when going to the real electron-ion mass
ratio and speed of light as was found in the literature [2,70,189]. These factors, and the more
collisionless regime using physical gas properties, resulted in significantly less stable solutions.
The computational difficulty and reduced stability made obtaining high mesh resolution solu-

tions difficult, and beyond the scope of this thesis. The realistic GEM cases examined here are
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deemed to be not fully grid converged. Obtaining a stable high mesh resolution solution would
be desirable in future studies, but a more effective implementation of the NKS scheme would
be essential. Adaptive mesh refinement may also be a way to obtain a converged high mesh

resolution solution and is recommended for future follow-on studies.



Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

In this thesis, a new model for predicting the flow and behaviour of multispecies, anisotropic,
non-equilibrium, multi-temperature, partially ionized, plasmas was proposed and developed
using extended fluid dynamics. Additionally, a finite-volume numerical solution procedure was
developed for the multifluid non-equilibrium plasma model. The combined approach was shown
to offer significant computational advantages over direct particle simulation techniques, while

recovering known solutions to the particle simulations and other published results.

The multifluid MHD model consisted of three plasma species (ion, electron, neutral) that takes
into consideration pressure and temperature anisotropies by making use of a 10-moment, Gaus-
sian moment closure. The non-equilibrium collisional processes are modelled using a BGK
collision approximation. A full set of Maxwell’s equations is included with GLM and Langdon-
Marder divergence error cleaning schemes for treating the electro-magnetic field errors and are
coupled to the plasma species equations through the source terms. Chemical kinetic mech-
anisms are used to model the plasma reactions, including charge exchange and ionization-
recombination. The separation of the plasma species equations and the Maxwell’s equations
with coupling through the source terms allows for flexibility in the problems that can be con-
sidered with the MMHD model and can include large temperature anisotropies and differences
in plasma species flows as well as being able to simulate very high to low density plasma species

and strong to weakly magnetized plasmas.

The numerical solution procedure made use of a Godunov-type upwind finite-volume discretiza-

tion scheme. The Godunov-type scheme used here is second-order in time and space and makes

197
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use of an HLLE and Godunov numerical flux function to solve the Riemann based fluxes for
the fluid and Maxwell’s equations, respectively. A block-based domain decomposition scheme is
used to partition the problem for large-scale parallel computation. Two time marching schemes
are considered: A standard explicit method and an implicit scheme. The explicit numerical
solution procedure is a second-order predictor-corrector scheme. The implicit scheme made use
of a NKS algorithm with GMRES to solve the system of equations for each Newton step. The
implicit numerical solution procedure is used for steady problems, or unsteady problems with
a second-order backwards difference time integration in a dual-time formulation making use of

the NKS algorithm to solve each physical time step sub-problem.

The mathematical properties of the multifluid MHD model were examined through a dispersion
analysis. The system of equations were shown to be hyperbolic, and the semi-discrete form of
the equations were found to be suitable for solution by Godunov-type finite volume schemes.
The numerical solution procedure for the multifluid MHD model was evaluated through various
accuracy assessment test cases for both steady and unsteady problems using both the explicit
and implicit solution procedures. The error correction schemes for the Maxwell’s equations
was found to effectively clean errors arising from the divergence of the electric and magnetic
fields. Further comparisons were made with 1D solutions from a 1D multifluid MHD model
and 2D non-magnetized flows. The scheme produced second-order solutions in time and space,
recovered known 1D multifluid MHD and 2D non-magnetized results, and the implicit scheme
provided significant computational performance improvements over the explicit scheme for the

cases considered during evaluation and validation.

To explore the computational capabilities of the proposed multifluid MHD model, the GEM
problem was examined along with various modified versions including the LEO and magne-
topause versions. It was shown that the multifluid MHD scheme is able to recover results from
the literature generated by PIC schemes and Darwin-Vlasov simulations with significantly less
computational cost. Simulated results were found to be close to other multi-fluid models. Due
to the relative low computational cost of the scheme, high mesh resolution results were able to
be obtained. A grid convergence study was also performed showing convergence of the magnetic
reconnected flux at high mesh resolutions. It was found that at unconverged mesh resolutions,
the greatest factor that affected the magnetic reconnection was the grid resolution, and not
other factors such as the collisions or electron-ion mass ratios. The GEM case was examined
using the implicit dual-time NKS scheme which shows promise, however the computational

advantages of the scheme were not consistent in all the GEM cases examined.

The original contributions of the thesis include:
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e A multifluid MHD model based on the 10-moment Gaussian closure capable of simulating
anisotropic temperatures and pressures, with a full modelling of Maxwell’s equations with

divergence error cleaning, along with collisional and reaction processes was developed.

e A computationally tractable, second-order, numerical solution procedure was developed
for one- and two-dimensions using a Godunov-type upwind finite-volume scheme with

HLLE and Godunov numerical flux functions.
e Dispersion analysis of the two-fluid plasma subset of the MMHD model.

e Application of implicit temporal limiting in mitigating numerical oscillations in the 1D
MMHD model.

e Development of an early two-dimensional implicit NKS scheme for the MMHD model and

application to sample test problems and the GEM challenge.

e The developed MMHD model and numerical solution procedure was applied to the GEM
challenge, with a grid convergence study and the effect of various error correction schemes

and collisional regimes was explored.

e Application of the MMHD model and numerical solution procedure to physical elec-

tron/ion masses and LEO and magnetopause plasma conditions.

9.2 Future work

9.2.1 Adaptive Mesh Refinement

One avenue of research that should be considered is adaptive mesh refinement or AMR [192].
AMR is a procedure by which a mesh can be refined in areas that require higher mesh resolutions
to resolve features of the simulation, while keeping the rest of the computational domain in a
coarser, lower computational load, mesh resolution. As was mentioned in various parts of this
work and by other researchers [3,39, 43,47, 63, 65, 65, 66, 134], high resolutions are required
to resolve many plasma flows. AMR can help alleviate the computational difficulties that
come with the need for high resolutions as well as reducing the number of total computational
domains to support the high resolutions. A good candidate for future research, is the block-
based AMR that uses physics-based refinement criteria similar to the schemes developed by
Groth et al. [147], Northrup et al. [131,193,194], Charest et al. [157,195,196] and Gao et
al. [153]. This type of AMR would be a good fit for the parallel block based implementation of

the MMHD numerical solution procedure. Further, an anisotropic AMR scheme has also been
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developed [197-199] which could prove useful particularly with magnetized, anisotropic flows.
There are also avenues for choosing physics-based refinement criteria for plasmas, such as those
proposed by Powell [200]. Additionally, more recent output- or error-based AMR methods such
as the methods developed by Narechania et al. [201] and Ngigi et al. [202] would also be worth

considering.

9.2.2 Physical Partially Ionized Transitional Test Cases

Though various parts of the multifluid MHD model were exercised in the current work, a test
case that challenges all aspects of the model, including reactions, and large species anisotropies
at once should be part of the future work going forward. Further, modelling shocks with
magnetized flows has been difficult and is a known issue, particularly when keeping errors in
the electric and magnetic fields low [66]. Solving test cases with the characteristics above would
be a notable challenge to tackle. Also, as noted in Section 8.3.2, the parameters used to generate
the magnetopause GEM case did not result in the correct energies. Formulating a GEM case
that would result in the correct conditions found at the magnetopause would be a problem of

interest.

A possible test case is a blunt body re-entry problem with a magnetic shield that holds the
potential to increase the plasma shock stand-off distance from the blunt body. This has gener-
ated interest due to possible applications in practical high speed transportation and spacecraft.
There have been experiments based around the Ziemer experiment [203—205] on the subject as
well as numerous numerical simulations attempting to recover the experimental results and to
prove the practicality of the various shielding [205,206], flow control [207], power [208] and drag
enhancement [209] techniques proposed. The models used to simulate the experiment assumed
strong magnetic fields, isotropic energies, or generalized Ohm’s laws. A simulation with the
multifluid MHD model would have none of these deficiencies. However, the existence of the
shock presents numerical difficulties that are beyond the scope of this thesis. Future work in
examining ways to treat shocks in the multifluid MHD scheme would be important in creating

a general magnetized flow solver.

9.2.3 Exploration of the Magnetic Island

As was reported in Chapter 8, the cause, formation, and evolution of the magnetic island should
be considered for extra study as it is not immediately clear whether it is a result of a physical

effect or a numerical artefact. There is inconsistency in the direction of the movement of the
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island, sometimes changing with the numerical scheme, and the magnetic island tends to occur
at higher, noisier, mesh resolutions, or when there are less stabilizing collisions, or when there is
less dissipative error cleaning. Higher-order schemes also seem to eliminate the magnetic island
for low mesh resolution solutions for 5-moment two-fluid models [63]. While the relationship
between the stability of a scheme and the formation of the magnetic island have been observed
[28, 54,63, 66, 188] and studies of turbulence models on the formation of the magnetic island
have been performed [191], it would be an interesting avenue of research to determine the origin
of the magnetic island’s formation. The effect of temporal limiting would be a good start for

this study.

9.2.4 Further Study of Implicit Time Marching Scheme

While there is significant computational advantage to the MMHD model and numerical solution
procedure, problems with more fluid species, complex reactions and shocks will present signifi-
cant challenges in terms of stiffness and computational resources. An obvious avenue of future
work is through an implicit computational scheme. Preliminary investigation of the implicit
NKS scheme considered in this work shows potential in reducing computational costs as in the
evaluation and verification chapter, Chapter 7, where a speed up of several orders of magnitude
could be obtained over an explicit scheme. In Section 7.4 the NKS MMHD scheme is used to
predict non-magnetized flows and in this situation, the NKS scheme performs excellently. How-
ever, when applied to the GEM challenge, the results were inconsistent and dependent on the
problem and grid resolution being examined. Further study is required to produce a consistent,

robust, general implicit solution procedure.

In this work, two main problems were identified with the NKS MMHD scheme. One was the
degradation in computational performance due to the Schwarz preconditioning. As an example,
the base case GEM problem of Chapter 8, required the domain to be decomposed into 512
blocks in order to fit in the node memory, while splitting the GEM problem into just 8 domains
was found to cause a significant increase in computational time making it more expensive
than an explicit scheme. This issue is well known and a balance between the computational
advantage of solving smaller problems versus the increase in computational iterations due to
reduced global accuracy is an important consideration [131]. The observed rapid degradation
in iterative convergence and need for future improvements was also mentioned in Northrup’s
thesis [131]. The NKS MMHD scheme is particularly sensitive to the memory requirement,
not just because of the large number of governing equations, but due to the second issue

encountered which was the singular nature of the block right preconditioning matrix for the
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Maxwell’s equations as discussed in Section 6.7.2. The Maxwell’s equations are a degenerate
system, and if it were not for the temporal entries in the diagonal of the Maxwell’s equations
preconditioning matrix, a matrix inversion would be impossible. As discussed in Sections 8.7
and 7.2.12, the ill-posed nature of the Maxwell’s equations is such that for larger time steps,
the diagonal dominance of the preconditioning matrix is reduced and the singular nature of
the matrix takes over and increasingly poses a challenge to GMRES convergence. In general,
NKS MMHD GMRES iterations are at least an order of magnitude greater than the number of
iterations expected for a similar non-magnetized flow. The larger the GMRES iterations, the
higher the memory requirements, which aggravate the Schwarz preconditioning issue. Solving
the Maxwell’s equations preconditioning matrix issue would go a long way towards producing

an effective implicit algorithm for the MMHD model.

As mentioned, effective preconditioning is essential to an effective NKS GMRES scheme. As was
seen in Chapters 7 and 8, for certain problems, neglecting the approximate residual Jacobian
for the Maxwell’s equations can produce faster results than fully preconditioned simulations,
which indicate that an effective preconditioner has the potential to greatly accelerate solution
convergence. One area of study would be to identify what factors or entries in the precondition-
ing matrix most affects the convergence of the GMRES procedure. In Section 8.7 some studies
were undertaken to determine the diagonal dominance of the preconditioning matrix used and
it was found that the ratio between the absolute sum of the diagonal entries versus the absolute
sum of the off-diagonal entries of the preconditioning matrix was approximately the same for
the limit of converging solutions for the LEO GEM problem. This indicates a threshold for

numerical inversion of the preconditioning matrix.

There are other promising avenues of research that is suggested by the results of Chapter
5, where a temporal limiting implicit method was studied for the 1D version of the MMHD
model. The high resolutions needed for plasma simulations often result in numerical noise and
oscillations. As with the 1D case, temporal limiting has the potential to significantly reduce
these numerical oscillations. Temporal limiting should be applicable to the NKS scheme with
not too much difficulty and is one of the first things that should be considered for improving

the 2D numerical solution procedure.



Appendix A

Dispersion Analysis of the
5-Moment Two Fluid Model

A.1 Overview

To gain a better understanding of the Two-Fluid Model proposed by Shumlak and Loverich
[62] a dispersion analysis on the 16 equations is performed. The basic equations are slightly
modified from the form presented in Loverich’s paper. The equations are non-dimensionalized
and linearized about an equilibrium state, then the complex eigen equations are solved and

suitable parameters are chosen to create locus plots.

A.2 The Shumlak and Loverich Two-Fluid Model

The two-fluid model equations proposed by Shumlak and Loverich are based on a system of
collisionless 5-moment Eulerian transport equations; one set of equations for the ions and
electrons and also a set of equations to model the electromagnetic forces. The equations are

listed below.

Ion and Electron Conservative Continuity

Ontion + V- nionWion = 0,
o (A1)
4V -nu. =0
ot ele )
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Ion and Electron Conservative Momentum

OMionMion Wi
W +V. (nionmionuionuion + pionI) = Njon€ (E + Wion X B) s
onemeu
% + V: (nemeucue + pl) = —nee (E 4+ ue x B),
Ton and Electron Conservative Energy
Oe;
81;71 +V. [(Eion + pion) uion] = €NjonWion * E7
s
6: + V- [(ee + pe) ue] = —encu, - E,
where
1 1 9
Eion = ﬁpion + §nionmionuz’on7
1 1 9
e = ﬁpe + §nemeuea
Faraday’s Law
0B
— = -V x E,
ot
Ampére’s Law
OE 1
— =V xB- —eNjonWion, + —€NeUe.
ot €0 €0

A.3 Non-Dimensional Two-Fluid Model Equations

The following basic quantities are used to non-dimensionalize the above equations:

Vy MNpefs Prefs Merefy, MO, -

All variables are non-dimensionalized as follows:

-1 _ Pref 1 _ _
l=t—, x=2=x,/v —  Mion = MionMyef, Me = MeMpef,
v NyefMyef V
B _ _ Pref — Dref
Njon = NionNrefs TNe = NeNref;, Wion = Wiony [V 5 Ue = Uey [V,
NpefMiref NpefMief

_ _ = 0 .
Pion = PionVPref, Pe = PeVPref, E= E’mef n;jl?nf’ B = B\/ HOYPref -
\/ NrefMre

The following non-dimensionalized transport equation are obtained:

Non-Dimensional Ton and Electron Conservative Continuity
aﬁion
o
b,
ot

+V. NjonWion = 07

+V - R0, =0,

(A.4)

(A.5)

(A.6)

(A.8)

(A.9)
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Non-Dimensional ITon and Electron Conservative Momentum

ONionMion s _ B _ _ _ _ _ _ —

W +V. (nionmionuionuion + pionI) = Ke non (E + Wion X B) s

ONeMeUg

ot

B B B (A.10)
V- (iemeueue + pl) = —Ke ie (E + . x B),
where

Ke =

e
A1l
Ve V/YHOPref ( )

Non-Dimensional lon and Electron Conservative Energy

8§ion

85 + v : [(é:ion + ﬁion) ﬁion] = Ke NionWion * E;
0,

_ _ (A.12)
5 TV lE+p)u] = —Keneu. - E,

where

1 1 _ _9
1pion + §nionmionuion>
- (A.13)
1 1 _9
€e = N lpe + inemeuev

Eion =

Non-Dimensional ITon and Electron Non-Conservative Pressure

8]32'071

_ = _ 5. = _
or + Wion * VDion + 5DionV * Wion = 0,
t 9p 2 (A.14)
e _ = _ s -
ﬁ""ue‘vpe"i_gpev'uezov

Non-Dimensional Faraday’s Law

0B .
— =—-V xE, A.15
ot ( )
Non-Dimensional Ampére’s Law
OF 2 2 2
= = U x B — ——Ke ftignTion + —5—Ke 71, (A.16)
ot aref a“ref aref

where a%e F = VPref [NrefMyef, the reference speed of sound.

For the rest of this document we will drop the bar indicating non-dimensional terms.

A.4 Linearized Equations About the Equilibrium State

The system of equations is linearized by expanding around a constant equilibrium state with

small perturbations so that second-order terms in the perturbed solution are neglected. The
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primitive perturbative solution vector is
W = |fion, e, Tion,es Gion,ys Tion,z» ez Ueys e,z Pions Pes Euy By, Bz, By, By, Bx| - (A7)
and the equilibrium state is defined to be
Wo = [10,i0n, 10.¢, 0,0,0,0,0,0, Pojon, Po.es 0,0,0, Bo., Boy, Bo.2]" (A.18)
where the background electric field and bulk equilibrium velocities are set to zero.
Taking the non-dimensional two-fluid equations and substituting in for

W = W + W*, (A.19)

and neglecting all higher order terms, the following linearized equations are obtained:

Linearized Ion and Electron Continuity

on; B
azton + 10,ion (V . uion) =0, (AQO)
o
o (V6 =0 (A.21)
ot
Linearized Ion and Electron Momentum
8l~1ion 1 5 Ke B . i
Vion = (E By Uiony — Bo,;
ot " 10,ionMion Pion Mion, +( 0,zWion,y 07yuwn,z)x

- (BO,Zaion,w - BO,xﬂion,Z)y + (BO,yaion,:c - Bo,mﬂion,y);:) ’

(A.22)
ou 1 N Ke /- _ -
8t8 . Vpe = _m76 (E + (Bo,zUey — BOJ/U@,z)x
- (BO,Z'&@,:L‘ - B07Iﬂ67z)y + (B(),yﬁeyw - Bovﬂﬂﬂ’eyy)z) ’
(a power expansion is used to simplify the coefficient in front of the pressure term)
Linearized Ion and Electron Energy
Op; 5 -
Dion + 7pionv * Wion = 07
63~ 3 (A.23)
Pe | D .
at +§pev'ue:07
Ampére’s Law
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ot e oy 0z ; ox 0z . Oz oy . (A.24)
c? . c? .
= _TKe NijonWion + TKe Nele,

aref aref
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Faraday’s Law

(A.25)

OE,
dy

0B,
ox

OF,
0z

OE,
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(

)

0B,
0z

OE,
dy

(

OB N
ot

A.4.1 The Coefficient Matricies

The above equations can be put into coefficient matrices in the following form:

(A.26)

OW* _ OW*
W _ oW
oy T o

+ B*

OW*
oxr*

+ A*

OW*
ot*

where as an example

0

0 0 10, ion

0
0

0
0

0

0

0 0 no.e

1
10,ionMion

0

0

1
n0,eMe

0

5
3P0,e

0

0

0

-1 0

0 0

0

(A.27)
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The source term matrix is

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00 0 T}ffn 0,z _7551 0,y 0 0 0
00 —n&Bo. 0 Ke Boa 0 0 0
00 nlsznBo,y _i{en 0.z 0 0 0 0
00 0 0 0 0 %BO,Z 5530;/
00 0 0 0 _%B&z 0 %B()x
S*(1-8) 00 0 0 0 Eee Y _%Bﬂz 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
00 —ngfeno,wn 0 0 C;%ffeno,e 0 0
00 0 e son 0 0 Ke,, . 0
rlep Ke al; ke
0 0 0 0 2, N0,ion 0 0 2 np.e
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 00 0 0 0 0 0 0
(A.28)
(o0 0 0 0 00 0]
00 0 0 0 000
0o Ko 0 000
o0 o KB g 000
oo o o Keogoo
00 K o 0 000
00 o -Be g 900
S*(9-16) _ 00 0 0 ES 0 00 (A.29)
00 0 0 0 000
00 0 0 0 000
00 0 0 0 000
00 0 0 0 000
00 0 0 0 000
00 0 0 0 000
00 0 0 0 000
(00 0 0 0 000
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A.4.2 Eigen Analysis

The perturbative primitive solution state W* is substituted in Equation (A.26) using
W* = Wexp [i (@t + az* + By*)] (A.30)

and neglecting the z-direction derivative in order to make a two-dimensional approximation,

the following eigen equation is obtained
(i0I + iaA* +iBB* — S*) W = 0. (A.31)

It should be noted that all the above quantities are non-dimensional according to the following:

_ w T _ v _ Qe > Qre
w=—, t=tv, T=x , azaif, Bzﬁif-
v Aref v v

(A.32)

Again, the bars are dropped for simplicity. The conversion for the « and S values of wave

number should be noted.

A number of simplifications are made which include assuming equal pressures poion = Po.e,
which is perfectly reasonable for an equilibrium plasma. Also, poe = (Me/Mion)pPoion is as-
sumed, which means that the fluid has the same background number density, ng = ng ion = no,e-
Finally, it is assumed that the background magnetic field is aligned with the x-direction,

By = (By,0,0). Therefore, the following eigen matrix is obtained:

w 0 iang 18ng 0 0 0 0

0 iw 0 0 0 iang 18ng 0

0 0 iw 0 0 0 0 0

0 0 0 iw  —Aep, 0 0 0
oo o Kep W 0 0 0

0 0 0 0 0 iw 0 0

0 0 0 0 0 0 iw Kep,

0 0 0 0 0 0 ~Bep, iw

AU = 0 O i%apo i%ﬁpo 0 0 0 0 » (A-33)

0 0 0 0 0 i2apo i2Bpo 0
00 Shng 0 0 Heng 0 0
000 0 Shmg 0 0 w0

0 0 0 0 i 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 |
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
i Ke
nO:s{ion 0 _mion O 0 0 0 O
3 K
n();nion O O Woen 0 0 0 O
K
0 0 0 0 e 0 0 0
; K
0 G- 08 0 0 0 0 0
i8 K
0 =0 e 0 0 0 0
o 0 0 0 o Ke 0 0
9—-16) __ ¢
AT =10 o 0 0 0 0 0 0 , (A34)
0 iw 0 0 0 0 0 0
0 0 iw 0 0 0 0 ~if5
ref
0 0 0 iw 0 0 0 %
ref
0 0 0 0 iw 155 =5 0
a’ref ref
0 0 0 0 5 Tw 0 0
0 0 —1x 0 w 0
0 0 —ip 1o 0 0 0 iw
where AW = 0
A.5 Numerical Values
The following values were used to determine the constants and reference values:
v = 3
e = 1.602189246 x 10~19C, 37 .
= Mion = 1.6736 x 10~27kg,
¢ = 29979245811 Miref = Tion o (A.35)
n = ng="7.31955 x 10%° =5,
o = 0000001256637 58 ref 0 m
52A Pref = po=101325Pa.

The typical collision frequency is calculated from the ion-electron collision frequency based on

the coulomb collision as follows [103,123]:

1
4 /2 4 . b .
Ve ion = %%nionZEZfon In A (me + mwn> ( Me + Mion ) ’ (A36)

2 MeMion meﬂon + mionTe

(NI

where e, is the elementary charge constant in cgs and Z., Z;,, is the charge number for the

electrons and ions respectively. This is just -1, and 1. This equation is in cgs units. Also,

3 Te ]- ne
lnA—23+21n<106)—2ln<1012) (A.37)
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where this equation is in SI. The typical collision frequency is determined by using the following

conversions to CGS from SI:

CGS SI
eo = eosr*2.9979 x 107 % eo.s1 = 1.602189246 x 10719C,
ko= ksrx 1.0 x 107 58, ks = 1.380658 x 10-23J
ng = nogr*107° Crﬁfg, nosr = 7.31955 x 1073 g (4.38)
me = mesrx10x 10° & Mesr = 9.1093897 x 10~3'kg,
m; = mrsr*1.0x 10° kﬁg, mrsr = 1.6736 x 10~2"kg.

Next the following substitutions are made in order to recover known results:

3nomev? €Eom m; w

ae 2 07lte ion ce

Po= T, o = Wi ( 2 > , Bo= Wei™_—5  Mion = ——Me. (A.39)
ct

The determinant of matrix A is taken to obtain the dispersion equation. The equation is far

too long to include. One way of simplifying this equation even further is to take specific cases.

For instance, the high and low frequency plasma limits are taken.

A.5.1 R-mode, L-mode and Alfvén Waves

First the case for waves propagating parallel to the background magnetic field will be exam-
ined. Note that the magnetic field is aligned in the z-direction only. This simplification is
accomplished by setting 5 = 0 and o = k as the wave number for waves in the x-direction. The

equation simplifies to

2 2 3 2, .2 2, 2 2 2.2
(U-)pe Weiw” — Weiw Wee + Weik“We*Wee + Weiee “W* — weik“wee“c

Yweek2w?c® — whwee + wp62wcew2 — k2wctwe? + w?’wceQ)
(wpe weiw? + weiw wee — Weik?wCPwee + Weitwee?w? — wWeikwee*c?

) (A.40)

Yweek2w?c® — whwee + wpeQ(,ucer + Kwctwe? — w3w682)

2 2 2 2 2 2 2
(_wpe Weiw* + 2Wpe Weik“Vae” — Wpe™ WeeW

—Weik?Vge2w? + weiktvget + wiwee — wcek2vae2w2) =0.

A short time interval is assumed, otherwise known as the high frequency limit where ion fre-

quencies are negligible, w.; = 0, then the following relation holds:

(FPwe? — w? + wpe?w — kPwee + w?wee) (FPwe? — w? 4+ wpe?w + Ak?wee — wwee)

_r 2, 2y _ (A.41)
(wpe w* + k“vge ) 0.

By inspection it can be seen that there are three factors resulting in three relations which are

w? = vl k? + er (A.42)
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which is the electron plasma wave, and
2

ww
W=k —2 (A.43)
W + Wee
and )
ww
w? =2k —2 (A.44)
W — Wee

which is the high frequency L-mode and R-mode plasma waves respectively. These match
Loverich’s results [133], which in turn match expected results from Chen [210]. In the course
of the investigations of the eigen systems of this model, the non dimensional versions of the

L-mode and R-mode equations were derived. They are provided here for reference:

KeB 2 2 lpe? ’KeB
W 02 (2: 2 4 ref o HO; wF 02 ©20k2 — . (A.45)
Me e Mipe fMeV Qe fTMe
The non dimensional version of the Electron plasma wave is
WD P o nonre{;@uoe?' (A.46)
3nrefmrefn0mearef MelV=Myef

When w < we; < Wee, this is the low frequency limit. The last factor in Equation (A.40)

becomes
2 _ 2 g2 4 o2 g2 Whe (A.47)
w = v —— . .
ae ae vgekg +w]2je
Taking the other two factors in Equation (A.40), the Alfvén wave becomes
w? = chQWL;UCi. (A.48)
w
pe

The Alfvén speed is defined as vZ, = ¢ (wg Jwpe)?. The non-dimensional version of the low

frequency electron plasma wave and the Alfvén wave are respectively

5 1 c?ppe?
w2 = g pref7p()2 k2 + e Ho , (A.49)
MypefMedy., ¢ Nire f10 §7n::;noa2 ; k% + nonye pc?poe?
32
W= D0rel g2 (A.50)
e fMre fTMion MO re f

A.5.2 X-mode, O-mode and Magnetosonic Waves

Now a = 0 and 8 = k is examined to find relations for the waves travelling perpendicular to
the background magnetic field. Again w.; = 0 is set for the high frequency limit to get
(wpe? + ?k? — w?)
(—w2w062 + KPwee2c? — K2w?c? + APk wpe? — 2wpe*w? (A.51)

twpet = E?0ae%w? + wpe?k?vge? + w? + klug?c?) = 0.
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x 10" Dispersion Parallel » »
3 : : : . : . . . : x10" 10-moment Two Fluid Model Parallel Dispersion Analysis
T T T T T T

2k

Figure A.1: Large scale dispersion analysis Figure A.2: Positive, large magnitude L
for the parallel direction and R-mode plasma waves for the parallel
direction

The first factor in this equation is the ordinary or the O-mode,

w? =K% + wge. (A.52)

The second factor is the X-mode which can be given by

w2 — w2 2 _ 272
w? = A2k* + %2;@ (2776 + wge (wc) (A.53)

— w2 2 _ 2
w Wee w Wee

if v4e < ¢ which is quite valid. The magnetosonic wave can be obtained by a power expansion

on the dispersion relation.

A.6 Results of Dispersion Analysis

The characteristic equation is derived by taking the determinant of matrix A (Matrix (A.33)-
(A.34)) and numerically solving the resultant equations for temporal frequency w for various
values of the spatial wave number k. To make the analysis easier to understand and conform
to results presented in Section A.5.1 and A.5.2 the analysis is split into two sections for parallel

and perpendicular wave propagation.

A.6.1 Parallel Dispersion Analysis

The values first considered is 8 = 0 and o = k to obtain the following dispersion plot Figure

A1 for wr/k vs. k (or wavespeed versus spatial wavenumber). Note that there is no imaginary
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Dispersion Parallel Dispersion Parallel
T T T T T T

Figure A.3: Small magnitude L and R- Figure A.4: Electron plasma waves for the
mode plasma waves for the parallel direc- parallel direction

tion

eigenvalues for the regime being studied, and so there is no damping. All waves except for two,
and the four zero waves (associated with purely perpendicular waves) go to infinite values of
wr/k for small values of k. This means that near uniform physical variations will disperse much
faster than more rapidly varying solutions of large values of k. In fact, for very large spatial
wavelength disturbances, the wave interaction associated with that disturbance must propagate

instantaneously.

There are four main wave regimes expressed in this analysis. The largest magnitude for
wavespeed wpr/k is the L and R-mode plasma waves. These waves consist of six waves. The
L and R-mode waves are unique in the sense that they contain both the highest magnitude
waves along with one of the smallest magnitude waves. Four of the waves (two positive and two
negative) are of order 10* for large values of k. The waves have the same absolute value. The
positive, large magnitude L. and R-mode wave is shown in Figure A.2. The smallest magnitude

L and R-mode plasma wave is of order 1072 for large values of k and can be seen in Figure A.3.

The next regime is where the electron plasma wave exists. For large values of k, the magnitude

is of order 10. The dispersion analysis can be seen in Figure A.4.

The next regime is for the Acoustic and Alfvén waves of order 1 for large values of k. The
Figure A.5 shows the Alfvén waves along with the small magnitude L. and R-mode waves. As
can be seen in the figure, the Alfvén waves do not go off to infinity for small values of k& but

approach wr/k = 1.41. The Figure A.6 is a close up view of the Alfvén mode.

The final regime is for the ion plasma frequency. This mode can be seen in Figure A.7 and is
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Dispersion Parallel Dispersion Parallel
T T T T

Figure A.5: Alfvén mode waves along with Figure A.6: Alfvén mode waves along with
small magnitude L and R-mode waves for small magnitude L and R-mode waves for
the parallel direction the parallel direction, close up

of order 107° for large values of k. This mode does not show up in Shumlak and Loverich’s

analysis and is a result of keeping the ion frequencies in the analysis.

A.6.2 Perpendicular Dispersion Analysis

The dispersion plot for the perpendicular case, « = 0 and 5 = k can be seen in Figure A.8. For
the perpendicular direction, there are three main regimes with a total of six modes or waves.
All the waves in the perpendicular direction go to infinite values of wavespeed, wr/k, for small
values of spatial wavenumber k. The largest magnitude modes are the O and X-modes, totalling
four waves with the same absolute value of order 10° for large values of k (one positive, and one
negative O-mode, and one positive and one negative X-mode). The X-mode waves, similar to
the L and R-mode waves of the parallel direction, have both large and small magnitude waves.

Figure A.9 shows the positive O-mode and large positive magnitude X-mode waves.

The next regime is the small magnitude X-mode waves. Figure A.10 and A.11 shows these

waves which are of order 103 for rapidly varying spatial solutions or large values of k.

The final mode is associated with the magnetosonic wave. This is the Acoustic/Alfvén wave in
the parallel direction. As can be seen in Figure A.12, the waves are of order 1 for large values
of k. In the non-dimensional formulation, 1 is representative of the acoustic velocity, which for
large values of k, the magnetoacoustic wave approaches exactly. This is as expected as acoustic

waves propagate in the real world in all directions at the same rate.
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A.6.3 Infinite Wavespeeds

The infinite wavespeeds associated with pure plasma waves for small values of £ was found to
be due to the electron plasma frequency. This can be seen best when examining the analytical
solution for the electron plasma wave Equation (A.42) when the equation is divided by k and
then looking at the &k = 0 case. However, it should be noted that the analytical solutions were

derived with several simplyfying assuptions and do not tell the whole story [33].

This infinite wavespeed is well documented to exist [32,211] and there are two reasons why
this can exist in a physical model. First, the physical variations represented by these large
wavelength waves are associated with small gradients. These small gradient at large distances
do not effect much of a change in the solution state [33]. Second, the wavespeed is a phase
velocity and it is well known that an unterminated wave can have phase velocities that are
larger than the group velocity, which is associated with propagations of disturbances [32,212].
Further, it can be shown that the group velocity becomes very small for large phase velocities

in the case of the electron plasma, such that

dw k Vae

Vgpe = g = JYac = (A.54)

where vy = w/k. It can be seen that as the phase velocity vy becomes larger, vy e = 0.

A.7 Discrete Dispersion Analysis of the 5-Moment Collisionless
Two Fluid Model

A dispersion analysis on the discrete system of equations for the 5-moment two-fluid model is
undertaken. This is to understand where numerical difficulties may arise. The analysis proceeds
in a similar manner to the non-dimensional dispersion analysis, but with the discretized form
of the governing equations along with elastic collisions. In order to discretize the governing
equations, the numerical scheme of this thesis is implemented to first-order. The procedure is

identical to that described in Section 4.4.1. Equation 4.31 can be rearranged to give

- . At (1) [nr - . -
n+1 ny\ __ n n n n
(0 -0y = e <2> [BUY_, +CUJ + DU}, | + AtETY, (A.55)

where

1 1 1
B=F +—A"1, C=-2—A"1 D=-F+ —ATI (A.56)

Qref Qref Qpef
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0 0 0 0 0 0
00 0 0 0 0
00 0 Ke 2% —Ke 2o 0
0 0 Ke: = 0 —Ke 222 0
0 0 Ker  —Kezros 0 0
00 0 0 0 0
0 0 0 0 0 —Ke 20
0 0 0 0 0 —Ke Do
EUO =1 0 0 0 0 (A.57)
0 0 0 0 0 0
0 0 0 0 0 0
00 0 0 0 0
0 0 0 0 0 0
oo Kee o g Kee
0 0 0 Be aif 0 0
00 0 0 me e 0
0 0 00000 0 0 0 |
0 0 00000 0 0 0
0 0 00000 Kenjong 0 0
0 0 00000 0  Kemng 0
0 0 00000 0 0 Keniono
~Ke™2 KeZ2 00 0 0 0 —Keneg 0 0
00 Ke2 00000 0 —Keng 0
o _ | K¢ B 0 00000 0 0 —Keneg s
0 0 00000 0 0 0 ‘
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 00000 0 0 0
0 %% 00000 0 0 0
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and
[0 0 mim 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 n% 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 00 (v—1) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 (v=1) 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F= 0 0 %mi”gﬁ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 | 0 0 % nf, f)gle 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a:gif 0 0
0 0 0 0 0 0 0 0 0 0 0 - a§2 0 0 0
) (A
The substitution for U is made using
U? = Z"exp[i (jkAz)] U (A.60)
to arrive at the eigen equation
A(Z-1)= %% (Be—i’m +C+ Dei’m) + AtE. (A.61)

All elements are substituted for numerical values. The collision frequency is calculated using
a coulomb collision model [103,123]. Suitable Az and At values are determined through the
CFL number such that

At

A.8 Results of Dispersion Analysis

The characteristic equation is derived from taking the determinant of Equation (A.55) the
resultant equations are numerically solved for the complex variable Z for various values of the

spatial wave number k. The complex variable Z is defined by

Z = (exp [i wAt]) = €T (coswp + isinwpg) , (A.63)

o O O O O O o o o o o

|
—_

o O O O
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where wgr and wy are the real and imaginary parts of w, respectively. The following relations

are used in order to determine wr and wry:

Imag(Z) Real(Z)
Wh = aretat Real(Z)’ W= s wr ( )
with the following definition for CFL:
(aref)
Ar=A . A.
x t CFL (A.65)
There is also a theoretical maximum value for the spatial wavenumber defined by
s
kmal’ - ?x, (A66)

however, plots do not have to be plotted up to this maximum value.

The system of equations was solved in matrix form as an eigenvalue problem defined by

o At 1 —tkAzx ikAx
1Z =1+ 55 (Be +C+ De )+AtE. (A.67)

where the right hand side is the eigen matrix being solved for the eigenvalues Z. The following
figures are for CFL = 0.1 with Ax varying from 0.1 to 0.0001 in orders of magnitude. The
solution from the analytic dispersion analysis is also included for comparison. In Figure A.13,
the phase speed is plotted against spatial wave number for various values of Az. As the spatial
resolution increases, the phase speeds better follow the behaviour of the analytic solution.
Figure A.14 shows the acoustic level scale showing the same behaviour. All waves exhibited

this behaviour.

Figure A.15 shows the behaviour of the imaginary component of w associated with the stability
of the various eigenmodes. The plot is made for Az = 0.001 and for values of CFL ranging
from 0.1 to 0.0001. It can be seen that there are unstable growth modes (Associated with
positive values of wy) up till when CFL=0.0001, at which point all eigenvalues become stable.
However, these small CFL and Az values are associated with very small time steps and high

computational costs.

A.9 Implicit Discrete Dispersion Analysis

Proceeding as in Chapter 4 an implicit method is used to discretize the equations. A dispersion

analysis is performed using the same procedure as in Section A.8, but with Equation 4.32 to
obtain

1 T\

U, (U7 -0y =

A () [Fa (U1 - Uptl) + ATU, (O - 207+ + U ) | 4 Aes, 07,

(A.68)
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and
0 0 00000 0 0 0 |
0 0 00000 0 0 0
0 0 0000 0 Kening 0 0
0 0 00000 0  Kengny 0
0 0 00000 0 0 Kenigno
~Ke®2 KeZ2 00 0 0 0 —Kenegg 0 0
00 Ke= 00000 0 —Keng 0
Bo,x
KeZe 0 00000 0 0 —Keneg
S{T=16) — e (A.71)
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
0 0 00000 0 0 0
Kee 9o 00000 o0 0 0
€ ref
0 ﬁfaff 00000 0 0 0

Then making the substitution of Equation (4.35) in Equation (A.68) and rearranging in eigen

problem form gives

17 — [Ua B AA% (;) |:Fa (64 KAz _ i km> 4 ATU, (efi AT _ o 4 i kmﬂ " AtSa] 71Ua
J (A.72)

which is then solved for Z. Then Z is deconstructed as in Section A.S8.

A.10 Results of Implicit Dispersion Analysis

The system of equations was solved for Az = 0.1 and CFL’s ranging from 1.0 to 0.001. This
was to show that there is stability even at course grid sizes and high CFL numbers. As can
be seen from Figure A.16 and A.17, it is indeed unconditionally stable, however, from Figure
A.18 it can be seen that at these course grid sizes and CFL’s the phase speed behaviour is not
very accurate. To show that accurate behaviour can be recovered, the Ax value was reduced
to 0.001 and Figures A.19 and A.20 were obtained that shows the solutions approach analytic

values as the CFL value decreases and that the scheme is still stable.
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various values of CFL for Az = 0.001. Sta-
bility plot wy vs. k
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Figure A.16: Large scale dispersion analy-
sis for the implicit discrete two fluid system
for various values of CFL compared to the

analytic solution for stability. Az = 0.1
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Figure A.17: Large scale dispersion analy-
sis for the implicit discrete two fluid system
for various values of CFL compared to the

analytic solution for stability. Az = 0.1
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Figure A.19: Large scale dispersion anal-
ysis for the implicit discrete two fluid sys-
tem for various values of CFL compared
to the analytic solution for phase speed.
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Figure A.18: Large scale dispersion anal-
ysis for the implicit discrete two fluid sys-
tem for various values of CFL compared
to the analytic solution for phase speed.
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Figure A.20: Large scale dispersion analy-
sis for the implicit discrete two fluid system
for various values of CFL compared to the

analytic solution for stability. Az = 0.001
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Appendix B

Additional Derivations Related to

the Numerical Solution Scheme

B.1 Overview

This section contains extra derivations used to develop the numerical solution procedure utilized
in this thesis. The HLLE approximate numerical Riemann solver and the banded tridiagonal

matrix for the implicit 1D scheme of Chapter 5 is derived.

B.2 Harten-Lax-van Leer-Einfeldt (HLLE) Flux Function

In order to determine the numerical flux in Equations (5.6), the interface flux between the two
adjacent computational cells is required. To determine this middle state flux, the interface
is treated as a one-dimensional Riemann initial value problem assuming a short time interval
allowing the source terms to be neglected. The approximate Riemann solver of Harten-Lax-van
Leer-Einfeldt (HLLE) [132] is used.

The HLLE approximate Riemann solver is derived by solving for the fluxes around a control
volume centered on the interface of the two cells (or rather at the interface for the Riemann
initial value problem) and a control volume where one side is coincident with the interface (see
Figures B.1 and B.2). The control volume in Figure B.1 is considered and the one-dimensional

integral form of the conservation equation, Equations (5.2), are taken and integrated around
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U.
u.
-
A A
At F.
At
U Uy U,
N ! . Ax
-5 0 5 s 0
Figure B.1: Control volume centered on x=0 inter- Figure B.2: Control volume on
face left side of interface
the control volume to get
Ax Ax Ax

2

As (B.1)
+U A AL - Up (2 + xm) + FpA

where Uy, and Ugr are the left and right solution states, Fy, and Fgr are the left and right
fluxes. The largest and smallest signal velocities are AT and A\~ respectively. The intermediate

state U, is sought. Rearranging for U, gives

)\+UR — AUy (FR — FL)
U, = — . B.2
P A - (B-2)

This gives the solution for U, and now the volume of Figure B.2 is considered and integrated

around to determine the flux at the interface such that
A A
0= UL; —-F.At+UN At — Uy, <295 + /\At> + FrAt. (B.3)

Rearranging and substituting for U, from Equation (B.2) above results in

A+FL — A Fr AT
F. =
e e e e

Ugr —Uyp). (B.4)

This is the HLLE flux function and is used if the value of z/t = 0 lies within the region defined

by the fast and slow signal velocities according to

Fy, for (%) < AT,
F={ F, for\ < (%)<, (B.5)
Fr for (%) > AT
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B.3 Implicit Banded Tridiagonal Matrix System

In order to derive the banded tridiagonal matrix system used in the dual time formulation for
the numerical scheme in Chapter 5, the implicit Fuler time marching method along with a
HLLE type flux function was used for the first-order numerical scheme along with piecewise
constant spatial reconstruction. A first-order scheme can be used for the left hand side matrix
because the dual time formulation is used to iterate to a higher-order solution. The interface

flux terms for the implicit Euler equation, Equation 4.30, are linearized as so that

i _ g 0F7 1 guy, ou; ALt OFl1 oug o,
iy it UL U, ot OUr OU; 0Ot (B.6)
OF 1 gUL 0U,, AL 0 1 9UR 0U;4y N

oUy, an+1 ot JoUR 8Ui+1 ot

a}"Zi% 8UL (9UZ-,1 8]-“1"7% 8UR an,1

n+l _ ' At At
Fi*% f;’i% +naUL an,1 ot " + 8UR 8UZ-,1 ot (B7)
ﬁfz»_% OULOU, OF 1 gug oU; N
oUy, 0U; ot OUr 0U; ot

Note that for piecewise constant reconstruction, the left and right states are just the cell centered

values of the left or right cells of the interface. Therefore the linearized terms simplify to

]:'n-i-l _ n a}—i-i-% 8Ui 6}—24-% 8UZ~+1

=F At At B.8
it Tt ou, o S T au,, o o (B8)
= Fn T2 TN 2 TG B.9
P =T o, o M au o (B9)
Further, by discretizing the time derivative it can be shown that
+1 adis ads (B.10)
= Fr AU} AU} :
JT:Z’JF% FH% * 8UZ it 8Ui+1 Gk
N OF OF -
= F" AU} ZAUL. .
Jri*% FZ*% + 8Ui_1 i1t 8UZ !
Using the HLLE scheme, Equations B.5 and B.4, results in
F; for (%) < AT F,_1 for (%) < AT
.7-"i+%= F*i+§ for /\—§(§)§>\+ , ]-"Z-_%: F*F% for /\—g(%)g)ﬁ ,
Fiop  for (%) >\ F; for (%) > A+
(B.12)
and . .
ANF; — )\_Fi+1 ATAT
Fonn=—r— T U~ Ui, (B.13)
)\+Fi71 — \7F; AT~
F*Z;% = I + e (UZ — Uifl) . (B14)
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This means that when forming the matrices for the implicit method, it can be written such that

e My Ay O8I e AR T
Az 0U; Az 0U; ou |, P Az \0U T au, !
At [, N
= —x, (Flay = Fiy) + oSy

(B.15)
The terms on the left hand side form a tridiagonal matrix where the flux Jacobian terms are

determined as follows. Each flux Jacobian term has three cases:

0 for (%) <A,
OF™ | AT OF " ATAT — < (z) < 3t
5L (Wi, o) s en (B.16)
8U2+1 OF (e
il f z +
U, or (t)>)\,
OF |"
= for (Z) < A\~
OF" ou |, or (0 <2
ity _ At OOF | ATAT . (B.17)
=0 (2 T 2 1) for A< (2) <A :
oU; <A+—)\— au|, AT — A" ) or AT < (7) =A%,
0 for (%) D
and
0 for (%) <A\,
OF™ A~ OF " At
i—3 - - - — < (Z) < )\t
8U-2 = <)\+_)\_ Ul A+_)\—I> for A —(t)—/\ ) (B.18)
K3 F n
8— for (%) > AT,
\ 8U 7
OF |"
— for (z) < AT,
07y AT 812[{1 oA t
2
— = (- - 22 1) for A< (B) <At (B.19)
Ui <>\+ “A U, AT — A > or AT < (§) <A
\ 0 for (%) > AT,

It should be noted that the solution to the Maxwell’s equation is taken to be the left state since
the 2/t = 0 line lies on a stationary characteristic and so could be either. The scheme solves
the HLLE flux function, and therefore the flux Jacobians separately for each of the species and
Maxwell’s equations at every step, so the combined flux Jacobian will be composed of three
blocks down the diagonal of the matrix. This is because the fluxes are not coupled to any of the
other equations so can therefore be calculated individually before forming the matrix. Because
of the lack of cross coupling, these blocks lie on the diagonal of the matrix for the entire system.

This characteristic may be used later to speed up the matrix inversion.



Appendix C

GLM Maxwell’s Equations
Eigenstructure and Numerical Flux

Function Derivations

C.1 Overview

This section contains a complete eigenstructure for the GLM Maxwell’s equations. There is
also a comparison between the HLLE flux function and the Godunov exact flux function for
the GLM Maxwell’s equations. The Maxwell’s equations with and without divergence cleaning

will be presented.

C.2 Eigenstructure of the Non-GLM Maxwell’s Equations

This section lists useful matricies and vectors for the Maxwell’s equations without divergence
cleaning. The equations for Faraday’s Law and Ampere’s Law can be rearranged into the

following weak conservative form in 1D:

oU  OF

wr + Fr S, (C.1)
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where

[ B, | B, | [0 ] [0 |
B, B, —-F, 0
B B E 0

U=| 7~ V=| 7 F= Y|, s= _ (C.2)

D:v Ea: 0 —Jx
Dy Ey HZ _jy

_Dz_ _EZ_ __Hy_ __jz_

Taking the hyperbolic part and rearranging for the primitive variables results in

gUIV  OF OV ov OV

where

aver |0 0 0 01 0

= —=—= (C.4)
UV 1o 0 0 00 0
1
0 0 = 0 0
1
[0 —om O 0 _
The right eigenvectors are arranged in columns as follows:
[0 0O 01 0 0 |
‘5‘—3 0 00 — ‘6‘—3 0
0 —/E 00 0 £o
R — - o (C.5)
0 0 10 0 0
0 1 0 0 0 1
|1 0 0 0 1 0 |

and are associated with the eigenvalues in order,

(—c,—¢,0,0,¢,c¢). (C.6)
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The left eigenvector matrix, R™1, is

0 1/2,/% 0 0 0 1/2
13
0 0 ~1/2. /2 0 1/2 0

0 0 0 1 0 0
L=R'= (C.7)
1 0 0 0 0 0

[
0 -1/2,/% 0 0 0 1/2
[
| 0 0 1/2,/2 0 1/2 0 |

where the rows are the left eigen vectors arranged in the same order. Characteristic variables

obtained from Ly, , W girm = Ligim,cUgim = are

[; (50EZ + \/sz> % <50Ey - \/i32>  £0Es, Bm,% <50EZ - ;(())By> % <50Ey + \//fBzﬂ .

(C.8)
The method of characteristics state that the characteristic variables are constant along the
characteristic lines with slopes of the eigenvalues (for the linear Maxwell’s equations). Figure 6.1
represents an interface between two regions i and o with two intermediate states in the middle
separated by the stationary characteristic which represents the z-direction (normal) electric
and magnetic fields. An interesting note about the stationary state is that it is associated with
changes in F, and B,, however, the flux does not change across the state because it is stationary.

This can be seen when taking the 1D, line integral form of the hyperbolic conservation laws
7{ (Uds — Fdt) = 0 (C.9)

and integrating it counter-clockwise around the control volume integral around the stationary

state as seen in Figure C.1 such that

U1d£+U2d—m—det—UQdi—Uldj—l-Fldt:O (ClO)
2 2 2 2
or
Fi = F». (C.11)

More generally for linearized waves,
AF = aAU (C.12)

where a is the velocity of the characteristic wave splitting the control volume. Since the char-
acteristic only affects E, and B,, the other variables will remain continuous across the in-
terface. Each variable can be solved as follows where Fy, = F>, = Fy, E1, = E>, = F_,

Byy= By, =B, and By, = By, = B, and

(E.+cBy) = (Eo. + cBoy) (C.13)
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U12 7—0 U22

| 5 | =

F dt F.dt
U, U,

dx dx
Ul?—> UZE

Figure C.1: Finite Volume around stationary state

(E. — cB,) = (Ei. — cBiy), (C.14)

where E, and B, was solved for by adding and subtracting Equations (C.13) and (C.14) as an

example. Repeating the above calculations results in

By 5 ((Biy+ Boy) + ¢ (B, — Ei2)) Bi. = Big,
B = Y(Bet B By Bu))s L Ba = Ban
B, = %(C( — Bo2) + (Eiy ‘|’E0y))” Eix = FEig,
E. = §(c(Boy— Bigy) + (Eix + Bopz)), Byy = FEou,

noting that it does not matter which side you take for F, and B, at the interface z/t = 0 due

to the stationary state.

C.3 Eigenstructure of GLM Maxwell’s Equations

The eigenstructure of the GLM Maxwell’s equation is now presented. The equations in Section

3.8.4 can be arranged into the weak conservative form in 1D, Equation (C.1), where

B, B, v 0
B, B, _E. 0
B. B. E,
@ _.
v | Pl v B po| ow |, 5= e (C.16)
D, E, H, —jy
DZ EZ _Hy _jz
v v ch2B, —en ¥
P
2
R Ea _XQEx_ | e
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Taking the hyperbolic part and rearranging to get the coefficient matrices as before, produces

_OVoE
T ouavV

0

0

0

0

0

0

0

0

0

0

XQ

0

0

Also there are a few other Jacobians of interest including

OF
ou

and

oS
ou

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8=

Note that 1/(eguo) = 2, where c is the speed of light.

0

—1

0

1

0

0

(C.17)

(C.18)

(C.19)
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The eigen problem of matrix (C.17) is solved to obtain the following eigenvalues and right

eigenvectors:
Ch, [11010a0707076ha0]7
— Ch, [170707070707 _Ch70]7
X 0,0,0,——.0,0,0,1]
\/m? ) ) 7Xm7 M M ) )
X 1
- ) 0707()’_7707070717
VA | X v/ €oto ]
! [0,0,1,0, ——.0,0,0],[0,1,0,0,0, - 0,0]
ma 7773\/ma77aaa777\/m777
! 0,0,1,0, ———0,0,0],[0,1,0,0,0, ———.0,0]
\/m? ) ) ) 9 \/m? )] ) ) M ] ) ) 7,\/@7 )] M

Therefore the eigenvalues are

[ —X¢ —Ch, —C, —C, ¢ C, Cp, XC :| ’

and the right eigenvector matrix is

[0 1 0 0 0 o 1 0
0 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0
-1 0 0 0 0 0 0 L

R o X v/ €0HO X /€00
1 1
0 0 —va= 0 = 0 0 0
0 0 0 1 0o —— 0 0
€010 €00
0 —cp 0 0 0 0 n 0
1 0 0 0 0 0 0 1

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)
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with a left eigenvector matrix

000 —syyam 0 0 0 3
100 0 0 0 —34 0
00 3 0 —1 \/feotto 0 0 0
0 10 0 0 L Jeomo 0 0
L= ? ? (C.28)

00 3 0  \/eoro 0 0 0
0 3 0 0 0 —3Veom 0 0
1 11

100 0 0 0 i 0
0 0 0 1x\emo 0 0 0 3]

Adding the Lagrange multiplier to the Maxwell’s equations creates two new waves with signal
velocities ¢, and xc that advect ¥ and ® as seen above. Also, the waves associated with B,
and F, are no longer stationary as in the original Maxwell’s equations. The left and right

eigenmatrices are scaled and normalized, to arrive at the GLM eigenvectors

0 10 0 0 0 1 0
0 0 o9 - /B0 00
0 0 0 o oo
1 0 0 0 0 0o 0 1
Rgim.c = : (C.29)
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 —c O 0 0 0 e O
| —xy/2 0 0 0 0 0 0 x|




236 APPENDIX C. GLM MAXWELL’S EIGENSTRUCTURE AND FLUX FUNCTION

1 1.-1
0 0 0 3 00 0 SX N2
3 0 0 000 —3¢7! 0
0 54/52 0 00 1 0 0
1 1
0 0 —3y/x 0 3 0 0 0
Lgim,c = , (C.30)
0 —54/2 0 00 3 0 0
1 1
0 0 sy 0 5 0 0 0
i 0 0 000 ¢t 0
1 1. —
K 0 0 5 00 0 FX T/
and
i ) I
0 0 0 560 0 0 0 3/
: 0 0 0 0 0 —ic¢7! 0
Y 0 0 0 3eo 0 0
0 0 —sy/ 0 e O 0 0
Lgim,p = (C.31)
0 —5/52 0 0 0 3eo 0 0
1 IS 1
3 0 0 0 0 0 Fept 0
0 0 0 30 0 0 0 3/ X!

which are the right conservative, left conservative, and left primitive eigenvector matrices re-

spectively. The characteristic variables are obtained by Ly, p W gim = Lgim,cUgim =

E E E E
|:<¢_XE:£> ) <B{E_1/}> ) (Bz_y> ) <By+z> ) <Bz+y> 9 <By_z> ) <B:E+w>7(¢+XEx):| .
c Cch c c c c c c
(C.32)
The above characteristics can be used to find an intermediate state using the method of char-
acteristics, as before, where the regions are split as in Figure 6.2 with an intermediate state in

the middle formed by the Riemann problem. This time there is only one intermediate region

(when x =1 and ¢, = ¢). Each variable can be solved for as follows:

(0= 2E:) = (#0— XFoa). (C.33)

(0+2E:) = (¢ + 2 Fua) | (C.34)
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where F, and ¢ is solved for by adding and subtracting Equations (C.33) and (C.34) as an

example. Repeating the above calculations gives

Br = 3 ((Biw+Bos)+ i(wi—w),

B, = %((Bl}y"‘Bo,y) ( ))>

B. %((BiﬁBoz) L(E ,y)

B, = ((EM+EM)+; o)) | -
E, = 3(c(Bi:—Boyz)+ (Eiy+ Eoy)),

E. = 3(c(Boy—Biy) + (Eos + Ei2)),

v o= %(Ch (Bi,:v_Bo,x) (Vi + o)),

¢ = 3(2(Eix—FEox)+ 0+ 0i),

for all the variables.

Comparing the eigen matrices and eigenvalues, we can see that it is easy to arrive at the non-
GLM eigenstructure by simply setting the GLM coefficients to zero. In this way it is possible
to move from the GLM to the non-GLM Maxwell’s equations.

C.4 Godunov Numerical Flux for Maxwell’s Equations without

Divergence Cleaning

When the flux is linear, it is possible to solve the exact flux. The Riemann problem at the cell

interface is the initial value problem of the form

ou ou
= TCo- =0, (C.36)
U fi <0,
U, 0)={ o (C.37)
U, for = >0,

in one-dimension. Here, C is equal to %. The method of characteristics is used to solve the

IVP. There are three characteristics in this system separating 4 states:
U;, Uy, Uq, U,. (C.38)
The intermediate states can be found by
U, =U + Y2 qr' = U, — 52_jag_ir® ", (C.39)

U, = U+ 3L qir' = U, — B1_jag_ir®, (C.40)
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where

oy = li(Ur — Ul). (0.41)

The flux is thus
F =CU; =CU,, (C.42)

for the 1D case. It should be noted that whatever the values that U; or U, take, when operated

on by C, the term associated with B, and F, will always be zero.

C.5 HLLE Numerical Flux for Maxwell’s Equations without

Divergence Cleaning

The HLLE flux is determined by integrating around the linear (or linearized) Riemann problem
control volume, as in Figure B.1, and results in the following for the intermediate state:
A A
0= ULT"T ~F.At + UA"At - Uy, <; + xm) + FLAL. (C.43)
Applying the same integration for flux and substituting in for the intermediate state above, the

intermediate flux is
)\+FL — A Fr AT~
F, =
AT — A~ + AT — A

— (Ur — Uyp). (C.44)

As can be seen from above, using F, does not guarantee that the xz-direction fluxes are zero.

In fact there will be a flux if there is a change in the z-direction magnetic field B,.

For example, taking just the z-direction magnetic field equation for B, the following is obtained

_ NTFy(By) = N Fr(Bs) | ATA-

F.(B,; B,) — B.)), A4
(B.) 2L A Un(Ba) - Un(B). (C45)
where, F'(B,) = 0 for any solution state. Thus,
AT
FuBy) = -2 (B,,— B.)), 4
(Ba) = 5= (Bay — Buy) (C.46)
and likewise for F,
F(E) =22 (B, —E C.47
*( I)_)\+_)\7( T,r T :B,l)‘ ( . )

When comparing the Godunov and HLLE fluxes, only the B, and FE, terms are different as

above.



C.6. HLLE AND GoDUNOV FLUXES FOR THE GLM MAXWELL'S EQUATIONS 239

C.6 HLLE and Godunov Exact Numerical Fluxes for the GLM

Maxwell’s Equations

Repeating the above process for the GLM equations and keeping the eigenvalues all equal to
+c¢, both the HLLE and Godunov fluxes are equivalent as it should be. Obviously the difference
between the HLLE and Godunov flux for the regular Maxwell’s equations comes from the fact

that there is a third, stationary wave, which is associated with the B, and E, wave.

It is interesting to note that even though the only term in the flux for the B, and E, (or D)
equations is in terms of ¥ or ¢, the flux is actually a function of B, and F, as well as ¢, and ¢.

The terms are listed below, noting that it is equal for both HLLE and Godunov flux functions:

1
F*<Bm) = 5 (QM + P — CBr,z + CBl,I) ; (048)

F*(Dy) = % (1 +tr — cDypy +¢cDiy) . (C.49)

C.7 Exact Numerical Flux Function

Because the Maxwell’s equations have a stationary wave pattern, the intermediate flux is always
used. Therefore, an analytical solution for the exact flux can be derived. This actually reduces
both computation and round off errors, which can be very large with the GLM equations. Below

are the analytic exact flux functions for the regular and GLM Maxwell’s equations:

Four = (C.50)

% (Hl,z + Hy . + Lg (El,y - ETle))

i ~3 (Hl,y + Hyy + /2 (Er. — El,z)) ]
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which are the non-GLM (MF) and GLM fluxes respectively.
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F.orm =

3 (W +¢r — Brgcn+ Big )
(c(Biy — Bry) — Ei. — Ey2)
(c(Biz— Br.)+ Ey+ Ery)
(% G+ 60+ [2x (Bre — Bra))
L (Hiz + Hy 22 (Biy — Eyy))
3 (Hiy+ Hoy + |22 (Br — B))
3cn (enBig + cnBrg — tr + )

% X (XEl,ac + XEr,x - C¢r + CQSZ)

(C.51)

As before, setting the GLM

coefficients and constants to 0 will result in shutting off the associated divergence cleaning

algorithm. Setting v, ¢p, ¢, and x all to 0 will reduce the GLM equations to the non-GLM

Maxwell’s equations.
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