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A parallel, implicit, adaptive mesh refinement (AMR), finite-volume scheme is described for

the solution of the standard and regularized Gaussian moment closures on three-dimensional,

multi-block, body-fitted, hexahedral meshes. The standard Gaussian closure has been shown

to accurately predict non-equilibrium phenomena at moderate Knudsen numbers through an

anisotropic treatment of pressure. The regularized closure builds on these advantages and in-

cludes the effects of non-equilibrium heat transfer by means of a first-order correction to the

standard Gaussian closure. The combined moment closure treatment / numerical method is ap-

plied to the prediction of three-dimensional, non-equilibrium, micro-scale, gaseous flows. Unlike

other regularized moment closures, the underlying closure is the standard maximum-entropy

Gaussian closure which provides a fully-realizable and strictly hyperbolic description of non-

equilibrium gaseous flows that is valid from the continuum limit, through the transition regime,

and up to the free-molecular flow limit. The proposed finite-volume scheme uses Riemann-

solver-based flux functions and limited linear reconstruction to provide accurate and monotonic

solutions, even in the presence of large solution gradients and/or under-resolved solution con-

tent. A rather effective and highly scalable parallel implicit time-marching scheme based on a

Jacobian-free inexact Newton-Krylov-Schwarz (NKS) approach with additive Schwarz precon-

ditioning and domain partitioning following from the multi-block AMR mesh is used to obtain

solutions to the non-linear ordinary-differential equations that result from finite-volume spatial

discretization procedure. Details are given of the standard and regularized Gaussian closure,

extensions for diatomic gases, and slip-flow boundary treatment. Numerical results for several

canonical flow problems demonstrate the potential of the closures, that when combined with an
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efficient parallel solution method, provide an effective means for accurately predicting a range

of fully three-dimensional non-equilibrium gaseous flow behavior.
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Chapter 1

Introduction

1.1 Motivation

Gaseous flow behaviour is commonly described in computational fluid dynamics (CFD) by

the Navier-Stokes equations and this macroscopic mathematical model has proven itself to be

extremely useful in describing fluid flows in problems frequently encountered in the aerospace

industry. Fluid flows in these problems are treated in a continuous, near-equilibrium manner,

with intermolecular collisions occurring frequently enough to warrant such an assumption. At

the other end of the spectrum, the modelling of highly-rarefied gases and slip flows usually

requires the use of microscopic particle simulation methods, such as the Direct Simulation

Monte Carlo (DSMC) developed by Bird [1]. While these particle techniques are successful in

modelling both continuous and slip flows, their computational expense increases dramatically

as more simulation particles are needed for progressively nearer equilibrium flows approaching

the continuum regime. Recent scientific technologies, such as micro-electromechanical systems

(MEMS) [2], encounter flow regimes that occupy a transitional area between these two extremes,

where the fluid cannot be assumed to be sufficiently close to near-equilibrium to warrant the use

of the Navier-Stokes equations, but the number of particles involved is high enough to make

particle simulation methods quite impractical. Developments in modelling the behaviour of

this transitional regime efficiently with suitable extensions to both the continuous and slip-flow

regimes would not only provide invaluable information about the flow physics, but would also

aid in the development of future micro-scale technologies.

1



Chapter 1. Introduction 2

1.2 Background

Continuum models, such as those based on the Navier-Stokes equations, make the assumption

that the fluid remains in or in close proximity to local thermodynamic equilibrium. The thermal

state can then be described by a single temperature that fully describes the translational,

rotational and vibrational energy modes of the fluid particles. Energy transfer through particle

collisions must occur sufficiently frequently to maintain local thermodynamic equilibrium. The

dimensionless parameter used to gauge the nearness to equilibrium for a given flow is provided

by the Knudsen number Kn, defined as

Kn =
λ

L
(1.1)

where λ is the mean free path between interparticle collisions and L is the characteristic length

scale of the problem of interest. Continuum-limit flows are dominated by interparticle collisions

with very short mean free paths, with Knudsen numbers in the range Kn < 0.01. Conversely,

non-equilibrium flows may occur due to low gas densities and thus large mean free paths (as

in rarefied flows) or for problems having very small length scales, where particle collisions are

infrequent for the length scales of interest. In both of these cases, the Knudsen number in these

flows exceeds 0.01 and becomes large as the deviation from equilibrium conditions becomes

significant. The collisionless regime is taken to occur for Kn > 10−100. The focus of this thesis

lies in the modelling of flows in a transitional regime lying somewhere within 0.01 < Kn < 1

where the Navier-Stokes and particle simulation techniques experience difficulties. The ability

to seamlessly treat the continuum regime with the same model is also deemed to be a desirable

feature.

The use of moment methods for non-equilibrium gases was first hypothesized by Maxwell [3]

through the use of an equilibrium phase-space distribution function. Later, Boltzmann pro-

vided a means with which to study the evolution of non-equilibrium phase-space distribution

functions, which in turn could be used to derive generalized transport equations for macroscopic

properties of interest [4]. However, the construction of the resulting moment equations is such

that each transport equation relies on the flux of the next higher-order velocity moment, ad

infinitum. One approach to closing off this set of equations for practical purposes is to assume

a particular form for the non-equilibrium distribution function having a fixed number of free

parameters in such a way that the higher-order closing velocity moment can be expressed solely

in terms of lower ones. Grad [5] considered moment closures based on truncated polynomial

power series expansions for the approximate distribution function and this technique generated

first-order systems of hyperbolic partial differential equations (PDEs) describing the time evo-

lution of the macroscopic moments. However, hyperbolicity of the Grad moment equations is
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not guaranteed for all flow conditions leading to closure breakdown. Furthermore, the assumed

form for the distribution function is not always physically plausible and certainly not strictly

positive valued.

More recently, alternative hierarchies of maximum-entropy moment closures has been proposed

by Dreyer [6], Müller and Ruggeri [7], and Levermore [8]. In particular, Levermore [8] points

out that the maximum-entropy hierarchies have a number of desirable mathematical properties

including strict hyperbolicity, thus the possibility of closure breakdown in this sense is avoided.

The lowest order of the Levermore hierarchy of closures is the 5-moment closure that corre-

sponds to the Euler equations, while the next member results in the 10-moment closure, also

known as the Gaussian closure (the latter will be of primary interest herein). While a full guar-

antee of hyperbolicity, moment realizability, and breakdown avoidance applies only to these

two lowest-order closures in the hierarchy as described by Junk [9], the usefulness of the 10-

moment Gaussian closure is evident from a computational standpoint. Being purely hyperbolic

with only first-order derivatives, the solution is guaranteed to have finite speeds of propaga-

tion. Moreover, numerical solutions can be readily obtained using the highly successful class of

Godunov-type finite-volume schemes developed for hyperbolic conservation laws without exces-

sive modification [10]. These schemes are robust, accurate, and can preserve the conservation

properties of the solution at the discrete level. They can also be applied using a large variety

of boundary conditions and meshing techniques and, for first-order systems, provide solutions

that are generally insensitive to irregularities in the mesh.

It should be noted that recent advances in the field of interpolated closures, based on maximum-

entropy ideas, proposed McDonald and Groth [11] and McDonald and Torrilhon [12] have sought

to reintroduce higher-order moments to the Levermore system without incurring the closure-

breakdown penalties described by Junk [9]. These closures have been investigated in recent

work for two-dimensional flows by Tensuda et al. [13,14] and have shown promise in accurately

modelling non-equilibrium flows, but such closures are beyond the scope of this thesis.

The Gaussian closure is a somewhat simplified or reduced mathematical model as it does not

incorporate the effects of heat transfer. Nevertheless, it has been shown to accurately describe

non-equilibrium momentum transport for a range of micro-scale flows and is very representative

of other higher-order closures that would potentially include the effects of non-equilibrium

thermal transport [15–18]. The numerical solution and application of the Gaussian closure for

two-dimensional micro-scale flows has been studied extensively by McDonald and Groth, with

considerations for diatomic gases following the approach devised by Hittinger [19].

The lack of heat transfer in the Gaussian closure becomes an issue that cannot be ignored given
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its otherwise attractive computational properties. Work by Struchtrup and Torrilhon [20–23]

has explored the regularization of the Grad moment closure for describing higher order effects

through a Chapman-Enskog-type perturbative expansion about the moment equations to allow

for small deviations from the assumed form of the distribution function. The regularized forms

of the Grad 13-moment and 26-moment closures have been shown to be accurate in the predic-

tion of non-equilibrium phenomena such as velocity and temperature slip at solid boundaries,

and the accurate modelling of one-dimensional shock structures that deviate significantly from

thermodynamical equilibrium. While promising, the underlying hyperbolic moment system can

still suffer from those of the original Grad moment closure mentioned above, namely the loss

of hyperbolicity even for small deviations from equilibrium. McDonald and Groth [16,18] have

recently applied a similar regularization procedure on the Gaussian closure for two-dimensional,

heat-conducting flow directly based on the anisotropic pressure tensor. While the regulariza-

tion process adds additional terms of an elliptic nature term to the otherwise hyperbolic set

of equations, the underlying first-order moment system remains hyperbolic for the full range

of physically realizable moments. The computational advantages and modelling potential for

this approach to non-equilibrium flows has now prompted its advancement for the modelling of

fully three-dimensional flows.

The development of general purpose solution methods for the Gaussian closure in two dimen-

sions has been considered previously by McDonald and Groth and Brown et al. [15, 16, 24, 25]

for which Godunov-type finite-volume schemes were proposed. A discontinuous Galerkin finite-

element solution procedure of the Gaussian closure has also been proposed by Barth [26].

Additional research by Levermore et al. [27] investigated solutions of the Gaussian closure for

one-dimensional shock structures. From these studies, the Gaussian closure was shown to be a

computationally robust method for describing flow in a variety of regimes, and its extension to

three dimensions would make it even more attractive for academic and industrial uses. Never-

theless, the explicit nature of the above-mentioned solution schemes, while useful in exploring

the computational potential of the closure system, require small time steps that result in long

computational times, especially for highly rarefied flow regimes. Implicit schemes, such as those

based on the Newton-Krylov method, allow for larger time steps and fewer iterations at the

expense of a higher cost per iteration. The increased time step size allows for fully converged

steady state flow solutions to be acquired in very few iterations compared to an explicit scheme.

Newton-Krylov solution methods have already seen significant use in the field in computational

fluid dynamics [28–31]. The coupling of the Gaussian closures with this implicit solver would

allow low-cost steady state solutions for rarefied flow regimes. This would provide researchers

with a useful tool for exploring both the physics of the flow regime and the mathematical
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properties of the closure. Reduced computational costs and physical accuracy would also be of

great benefit in an industrial setting, where the current design of MEMS devices are still firmly

entrenched in physical experimentation.

1.3 Objectives

In this study, the extension of the previous work by McDonald and Groth [15–18] for two-

dimensional micro-channel flows to the three-dimensional flow case is considered. A parallel,

semi-implicit, adaptive mesh refinement (AMR), upwind, finite-volume scheme is described for

the solution of the 10-moment standard Gaussian closure and the regularized Gaussian clo-

sure that includes the effects of heat transfer through additional elliptic terms. An implicit

Newton-Krylov method with Schwarz preconditioning is employed for accelerated convergence

and robustness for steady flows. The combined modelling treatment/numerical method is ap-

plied to the prediction of three-dimensional, non-equilibrium, micro-scale, gaseous flows.

Beginning with an review of the kinetic theory of gases in Chapter 2, the 10-moment Gaussian

closure is defined with suitable approximations for treating diatomic gases. A description of the

resulting eigenstructure shows the hyperbolic characteristics that makes the Gaussian closure

computationally attractive. Details are also given concerning the regularization of the standard

Gaussian closure to allow for the modelling of heat transfer. Solid wall boundaries for the

transport equations in the Gaussian closure are then defined.

In Chapter 3, the proposed finite-volume method used for the solution of the Gaussian closure

is described. As in the previous studies, the proposed upwind scheme makes use of Riemann-

solver-based flux functions and limited linear reconstruction to provide accurate and monotonic

solutions, even in the presence of large solution gradients and/or under-resolved solution content

on three-dimensional, multi-block, body-fitted, hexahedral mesh. A block-based AMR strategy

is used here to allow for local refinement of the computational mesh based on the procedure

of Gao and Groth [32–34]. The focus here is on micro-scale flows as the Reynolds numbers in

these regimes tend to be very small and this allows for a comparison with standard laminar fluid

flows. The proposed parallel finite-volume scheme with block-based AMR on hexahedral mesh

is then used to assess the predictive capabilities of the Gaussian closure for three-dimensional

micro-scale flows and demonstrate the computational advantages offered by the closure.

A description of the implicit Newton-Krylov solution method with an additive Schwarz pre-

conditioner then follows in Chapter 4. An implicit Newton-Krylov method with Schwarz pre-

conditioning is developed for both the standard and regularized Gaussian closures based on
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a framework used for the prediction of two and three-dimensional Navier-Stokes equations by

Charest et al. [29] and Northrup and Groth [28]. The performance of the fully-implicit solver

is compared to those from a semi-implicit solver developed by McDonald and Groth [15–18]

extended to three dimensions. The convergence qualities of both methods are analyzed for a

number of non-equilibrium micro-scale flows and the benefits of the fully implicit treatment are

explored.

Numerical results for the standard and regularized Gaussian closure are then presented in

Chapter 5 and Chapter 6, respectively. A comparison of predicted results with those from the

continuum-based Navier-Stokes equations and free molecular flow theory for the same problems

will be made to show how the Gaussian closure performs in various regimes, from the continuum

limit to the free-molecular regime. Concluding remarks are then made about the use of the

Gaussian closures and its future development in Chapter 7. It should be noted that to the best

knowledge of the author, this study represents the first numerical study of three-dimensional

solutions of the Gaussian closure for rarefied flow applications.



Chapter 2

Gaussian and Regularized Gaussian

Moment Closures

2.1 Brief Review of Gaskinetic Theory

The kinetic theory of gases begins by treating the gas as a collection of discrete microscopic

particles that interact with each other and the walls of its container through collisional processes

to create perceived macroscopic properties such as density and pressure. Energy transfer be-

tween particles and its container are solely described by classical mechanics subject to Newton’s

laws of motion. However, constructing a set of equations describing the motion of individual

particles becomes computationally prohibitive for all but the most rarefied of flow conditions.

Treatment of the particles in kinetic theory is done instead through a statistical description,

and the evolution of this probability density function is correlated directly to the macroscopic

properties of the fluid medium [35]. As particle position and velocity are independent of each

other, a complete statistical description can be given by a six-dimensional phase space dis-

tribution spanning three-dimensional physical space, xi, and velocity space, vi, at a particular

moment in time, t. The resulting probability density function, F(t, xi, vi), describes the number

of particles occupying an elemental volume in the six-dimensional physical-velocity space at a

particular moment in time.

7
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2.1.1 Phase Space Distribution Function and Macroscopic Properties

The time evolution of F is governed by the Boltzmann equation [35–37], an integro-differential

equation having the form
∂F
∂t

+ vi
∂F
∂xi

+ ai
∂F
∂vi

=
δF
δt

, (2.1)

where ai is the acceleration due to external forces and is taken to be zero in the present work.

The term on the right-hand side of the equation, δF/δt, is the Boltzmann collision operator

representing the time rate of change of the distribution function produced by binary inter-

particle collisions. This term involves a multi-dimensional integral over both velocity space and

solid angle, and is given by

δF
δt

=

˚

∞

d3v

ˆ 2π

0
dε

ˆ π

0
dχ sinχ

dσ

dΩ
|−→g |

[
F
(
~v ′
)
F
(
~v2
′)−F (~v)F (~v2)

]
(2.2)

where ~v, ~v2 and ~v ′, ~v2
′ are the pre-collision and post-collision velocities of the two particles

involved in the collision, respectively.

Macroscopic properties of the gas can be obtained by taking appropriate velocity moments of

F . This is done by multiplying the distribution function by a velocity-dependent weight, M(vi),

and integrating over all velocity space as follows:

〈M(vi)F〉 =

˚

∞

M(vi)F(t, xi, vi) d3v . (2.3)

If the gas particle mass, m, is chosen as the weight (i.e., M(vi)=m), the corresponding velocity

moment yields the fluid density given by

ρ(t, xi) =

˚

∞

mF(t, xi, vi) d3v = 〈mF〉 . (2.4)

Other moments of interest include the bulk velocity (M(vi)=mvi),

ui(t, xα) =
< mviF >

ρ
, (2.5)

and second-order anisotropic pressure tensor (M(vα)=mcicj),

Pij(t, xα) =< mcicjF > , (2.6)

where here ci=vi−ui is the random component of particle velocity. The deviatoric or fluid stress

tensor, τij , is related to the pressure tensor as τij = δijp − Pij , where p is the thermodynamic

pressure. Using the ideal gas equation of state, the pressure, p, is given by

p = ρRT , (2.7)
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where T is the gas temperature and R is the gas constant. For a monatomic gas, τij is traceless

(i.e., τkk =0) such that Pkk =3p and T is a measure of the energy of the random translational

motion of the gaseous particles. However, for non-equilibrium diatomic and polyatomic gases,

this relationship does not generally hold and τkk 6= 0 and Pkk 6= 3p. For the latter, Pkk =

3p − τkk and T will be taken to be the temperature of the translational modes, which are not

necessarily in equilibrium with the other internal energy modes of the particle (i.e. rotational

and vibrational modes).

In the derivation of the equilibrium distribution function, Maxwell makes several assumptions

about the gas that are held to be true throughout this work which are also applicable for any

general non-equilibrium distribution function. Combined with notions from classical mechanics,

these assumptions can be summarized as:

1. Molecular Hypothesis

• Matter is composed of discrete small, hard and perfectly elastic spherical particles.

• All molecules of a given substance are alike and are the smallest quantity of the

substance that retains its unique chemical properties.

2. Ideal Gases

• Particles are point-like structures with no internal structure or internal degrees of

freedom (monatomic gas assumption). Note that this assumption will be challenged

later to expand the applicability of this work for diatomic gases.

• Particles exert inter-particle forces on each other over a sphere of influence with a

radius much smaller than the mean free path λ, and are governed purely by the laws

of classical mechanics elsewhere.

• Particles undergo binary collisions only. Tertiary and higher-order collision processes

are taken to be rare and have little to no impact on the general evolution of the state

of the gas.

3. Statistical Theory

• The individual motion of each particle is not tracked. Only the probability that par-

ticles at a given location have a given velocity is of interest. The velocity distribution

at any spatial location is also independent of time.

• Post-collision directions are distributed with equal probability over all solid angles.

• The orthogonal components of the particle velocities becomes statistically indepen-

dent after a large number of intermolecular collisions.
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• The isotropic nature of the distribution function holds in the absence of external

forces.

4. Molecular Chaos

• Colliding particles are uncorrelated and undergo many collisions with other particles

before re-colliding, and is responsible for the irreversibility of the system.

2.1.2 Maxwell-Boltzmann Distribution Function

For a monatomic gas in thermodynamic equilibrium, the solution to the Boltzmann’s equation

(2.1) is given by F =M where M is the Maxwell-Boltzmann distribution function given by

F(t, xi, ci) =M(t, xi, ci) =
(ρ/m)

(2π)3/2 (p/ρ)3/2
exp

(
−1

2

ρ

p
c2

)
, (2.8)

which is fully defined in terms of the conserved macroscopic moments or collisional invariants

ρ, ρui, and p. This collision operator in Eq. (2.2) will force all non-equilibrium solutions of

the distribution function towards this equilibrium solution, and, once in this state, the collision

operator will produce no further net changes to the distribution function. This entropy maxi-

mization property of the collision operator is well established by Boltzmann’s H theorem [35].

While the Maxwellian distribution function, M, fully defines the equilibrium behavior of the

gas, it is generally a poor description of the gas under non-equilibrium conditions. This is par-

tially due to the assumption of spatial uniformity used in its early derivation, but Boltzmann

later showed that the distribution function holds even under the condition of dynamic equi-

librium. Nevertheless, the Maxwell-Boltzmann distribution function, coupled with the method

of moments, is an alternate method for deriving a description of a system equivalent to Euler

equations of compressible gas dynamics.

2.1.3 Transport Equations for Macroscopic Properties and

Maxwell’s Equation of Change

Transport equations governing the time evolution of general sets of macroscopic quantities can

be derived by evaluating velocity moments of the Boltzmann equation given above, Eq. (2.1).

This yields the so-called Maxwell’s equation of change [35] describing the transport of the

moment 〈M(vα)F〉, which can be expressed in weak conservation form as

∂

∂t
〈M(vα)F〉+

∂

∂xi
〈viM(vα)F〉 = ∆ (〈M(vα)F〉) , (2.9)



Chapter 2. Gaussian and Regularized Gaussian Moment Closures 11

where the acceleration is now taken to be zero, M(vα) is the appropriate velocity dependent

weight, and ∆(〈M(vα)F〉) = 〈M(vα)(δF/δt)〉 represents the effect of collisions on the moment

quantity. This collision term assumes that only binary collisions occur, as the probability of

collisions involving more than two collision partners at exactly the same instance in time and

space are rare and will therefore not contribute significantly to the transport and evolution of

macroscopic properties.

2.2 Approximate Solutions via Moment Methods

In developing solutions to the Boltzmann equation and subsequently Maxwell’s equation of

change, the collision term given in Eq. (2.2) poses significant challenges. The evaluation of the

collision term in its current form turns the Boltzmann equation into a seven-variable, integro-

differential equation which is difficult to evaluate computationally or analytically even for the

simplest of problems. While solutions to the Boltzmann equation can be found for the simplest

of flow conditions [38,39], if computationally efficient ways to evaluate this expression for more

complex flows are not found, the effect of molecular collisions on moment evolution cannot be

investigated.

A problem of closure also becomes apparent for moment method techniques when the transport

equations for each moment defined from Maxwell’s equation of change in Eq. (2.9) are written

out. Evaluating the time evolution of a moment 〈M(vα)F〉 requires finding the spatial diver-

gence of the next higher order moment 〈viM(vα)F〉. The transport equation describing this

next higher order moment similarly depends on an even higher order moment, ad infinitum.

A complete and exact description of a non-equilibrium gas using this moment method directly

would therefore require the solution of an infinite number of coupled moment equations, which

is obviously not practical. In order to close off the number of required number of transport

equations that need to be evaluated, the non-equilibrium distribution function is assumed to

take on a certain form that contains a finite set of moments representative of a specified set

of macroscopic quantities. The result is that the highest order moment of interest can be ex-

pressed solely in terms of lower order ones, thus providing a closed set of conservation equations.

This closing off of the equations, while making the closure computationally manageable, is also

necessarily responsible for the approximate nature of the moment method. Choosing a form

of the distribution function that contains more moments will theoretically increase the accu-

racy of the model, but the computational expense may be beyond practicality. Research on

moment method techniques has therefore concentrated on finding a suitable balance between

computational efficiency and modelling accuracy.
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2.2.1 Bhatnager-Gross-Krook Collision Operator

For many engineering applications, the complexity of the collision operator can be replaced by

suitable model, provided that it mimics some basic properties of the original operator. The

entropy-increasing property outlined in Boltzmann’s H-Theorem should be upheld, such that

for any collision model, C(F), should satisfy

〈log(F) C(F)〉 6 0. (2.10)

A well-known model that simplifies the treatment of the collision term and satisfies the entropy

condition above was proposed by Bhatnagar et al. [40], known as the BGK model, that can be

written as
δF
δt
≈ C(F) = −1

τ
(F −M) , (2.11)

where τ is a relaxation time scale characteristic of the collisional processes, whereupon the

non-equilibrium distribution function F relaxes towards the Maxwell-Boltzmann equilibrium

distribution function M. As the gas becomes increasingly rarefied, this relaxation time in-

creases, which in turn drives the collision term towards zero. This behaviour is in line with

what is expected in free-molecular flow. It is also evident that if the gas is already in equilibrium

such that F =M, additional collisions between particles will impart no physical change to the

average measurement of any macroscopic property, as the collision term is again equivalent to

zero.

2.2.2 Ellipsoidal Statistical Collision Operator

One of the most serious drawbacks to using the BGK collision operator described above is the

assumption that all non-equilibrium processes relax on the same time scale, τ , regardless of the

gas properties. This single relaxation time is responsible for the non-equilibrium behaviour of

both the momentum and thermal energy, and as a result will always predict a Prandtl number,

Pr, equal to unity. This result is not ideal for the purposes of this study, given the need to

model Prandtl numbers that realistically depict heat transfer for monatomic and diatomic gases

that will appear in the regularized Gaussian closure.

The approximate collision operator originally developed by Holway [41], now commonly known

as the ellipsoidal statistical model, is used in place of the original BGK collision operator to

allow for variable Prandtl numbers and preserves much of the simplicity of the original BGK

approximation. For a monatomic gas, the ellipsoidal statistical collision operator can be written
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as
δF
δt

= − 1

τES
(F − GES) , (2.12)

where

GES(t, xi, ci) =
(ρ/m)

(2π)3/2 (det T)1/2
exp

(
−1

2
T−1
ij cicj

)
. (2.13)

The distribution, GES, is a Gaussian distribution function that possesses a modified pressure

tensor such that the second-order tensor, Tij , is defined as

Tij = (1− ν)
p

ρ
δij + νΘij = (1− ν)

p

ρ
δij + ν

Pij
ρ
, (2.14)

where Θij is a symmetric ‘temperature’ tensor given by Θij = Pij/ρ and Pij is again the

generalized pressure tensor. For monatomic gases, the ellipsoidal statistical collision model’s

adherence to Boltzmann’s H theorem was first demonstrated by Andries and Perthame [42].

Andies et al. [43] have also considered extensions of the ellipsoidal statistical collision model to

both diatomic and polyatomic gases and demonstrated that these extensions also satisfy the H

theorem.

It can be shown that if the parameters τES and ν associated with the ellipsoidal collision operator

are chosen such that

τES = (1− ν)
µ

p
= (1− ν)τ , 1− ν =

1

Pr
, (2.15)

then the model will predict the correct values for fluid viscosity and thermal conductivity in the

continuum limit. It is important to note that the relaxation times for both the relaxation-time

BGK and ellipsoidal statistical models, τ and τES, differ by just a factor of the Prandtl number

(i.e., τES =τ/Pr). The moment equations and analyses to follow will be written in terms of the

relaxation time for the standard BGK model, τ , and Prandtl number, Pr, for consistency with

traditional forms of these equations and other previous analyses.

2.2.3 Moment Closure Techniques

The method of moments was developed to attain approximate solutions to the Boltzmann

equation. It is, of course, possible to solve the Boltzmann equation directly and thus eliminate

the need for any closure expressions. Suitable boundary conditions for the physical and velocity

space can be developed, but difficulties can arise from the high dimensionality of the collision

term. The equation itself contains seven independent variables (time, three-dimensional physical

and velocity space). At each point in the phase space, the five-dimensional collision operator

must also be evaluated. When properly calculated, this method can be very accurate, but

is extremely expensive to implement. When additional physical effects such as multi-species
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mixtures are considered, evaluating the Boltzman equation directly becomes a purely academic

exercise.

The assumed form of the non-equilibrium distribution function can give rise to a large variety of

closure methods, each with its own distinct characteristics. Grad [5] proposed a set of moment

closures based on a truncated polynomial power series expansion about the Maxwell-Boltzmann

distribution function of the form

FGrad ≈M [1 +Aici +Bijcicj +Dijkcicjck + · · · ] (2.16)

where the coefficients Ai, Bij and Dijk are derived by matching the resulting moments with

those known from a finite number of velocity moments. The polynomial can be truncated at

any point to provide expressions for consecutively higher order moments, generating a set of

quasi-linear, first order, hyperbolic PDEs. These equations, however, have been shown to break

down and lose their hyperbolicity at times even under simple flows as shown by McDonald and

Groth [15]. The truncated polynomial can also potentially provide a mathematically sound,

but physically unrealistic distribution function.

In contrast to the Grad moment closure system, the Chapman-Enskog perturbative expansion

technique offers approximate solutions to a ‘scaled’ form of the Boltzmann equation in the form

∂F
∂t

+ vi
∂F
∂xi

= −F −M
ετ

, (2.17)

where the BGK collision operator has been implemented. A small perturbative parameter, ε ∝
Kn, is introduced to simulate the effects of small deviations from the equilibrium distribution.

Solutions to this scaled expression can be written as

FCE ≈M
[
f (0) + εf (1) + ε2f (2) + ε3f (3) + · · ·

]
(2.18)

where f (n) represents an nth order perturbative correction to the Maxwell-Boltzmann distri-

bution function, with contributions that become increasingly small with increasing powers of

ε. Substituting this perturbed distribution function into the scaled kinetic equation 2.17 and
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collecting like terms in powers of ε yields

M

(
f (0) − 1

τ

)

+ ε

[
∂
(
f (0)M

)
∂t

+ vi
∂
(
f (0)M

)
∂x

+
f (1)M
τ

]

+ ε2

[
∂
(
f (1)M

)
∂t

+ vi
∂
(
f (1)M

)
∂x

+
f (2)M
τ

]

+ ε3

[
∂
(
f (2)M

)
∂t

+ vi
∂
(
f (2)M

)
∂x

+
f (3)M
τ

]
+ · · · = 0 . (2.19)

Non-trivial solutions can be obtained by equating each term in powers of ε to zero. Higher

order moments can be evaluated by taking into account ever higher order perturbations to the

Maxwellian. It is important to note that while the solution content for higher order moments

in the Grad closures is embedded within all the coefficients in the truncated polynomial, the

Chapman-Enskog perturbative expansion technique simply adds additional corrective terms to

account for the higher order moments. The drawback to this method is that these corrective

terms involve high-order derivatives resulting in a loss of hyperbolicity that can produce unre-

alistic infinite propagation speeds for infinitesimal disturbances. This method of perturbative

expansions is used later to introduce higher-order moment contributions that would otherwise

be inaccessible for the moment closures considered in this thesis.

More recently, a hierarchy of maximum-entropy moment closures has been proposed by Dreyer [6],

Müller and Ruggeri [7], and Levermore [8]. The entropy of a system of particles can be directly

related to the number of possible arrangements of the particles in phase space as described

by some chosen distribution function. Assuming each particle arrangement occurs at the same

frequency, in the absence of complete information regarding the exact nature of the system,

choosing a distribution function with limited information that maximizes physical entropy would

provide the most likely distribution for the system. Deriving moment closures based on this

idea, the assumed form of the distribution function in the Levermore hierarchy takes on a simple

exponential form similar to the Maxwell-Boltzmann distribution function. The lowest order,

5-moment member of this hierarchy recovers the Maxwell-Boltzmann distribution function, gen-

erating the transport equations found in the Euler equations. The next higher-order member is

a 10-moment closure with a similar structure to that found in the equilibrium distribution func-

tion with the exception of an anisotropic description of pressure. These moment closures possess

significant advantages over those found from the Grad hierarchy and a Chapman-Enskog tech-

nique. The exponential nature of the distribution function guarantees that it is strictly positive
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for all points in velocity space, eliminating the moment realizability problem found in the Grad

closures. The transport equations derived from these low order members of the Levermore hi-

erarchy are also strictly hyperbolic, unlike the elliptic terms generated in the Chapman-Enskog

perturbative expansion technique. In addition to producing finite speeds of information propa-

gation associated with physical processes, hyperbolicity and its associated first order derivatives

also provide many computational advantages in flux evaluation and time step size.

Unfortunately, higher order members of the Levermore hierarchy encounter difficulties. Ex-

pressions for the closure coefficients derived from the moments become impossible to express

analytically and must be found numerically. A numerical application of these closures would

require large computational resources to perform these operations. A more serious problem lies

in the assumption that a maximum-entropy istribution function always exists for any given set

of moments. Junk [9, 44] has shown this to be false for members of the Levermore hierarchy

above the Gaussian closure. Higher order members of the hierarchy have been shown to fail in

the near-equilibrium regime, where the problem of calculating the maximum entropy becomes

ill-posed as the equilibrium point is unfortunately located exactly between the realizable and

unrealizable moment space. The inability to account for even small deviations from equilibrium

makes the higher order members of the Levermore hierarchy unattractive, while the lowest order

Maxwellian member provides nothing new. The Gaussian closure, however, contains the com-

putational advantages of the Levermore closures while offering a more detailed analysis of the

flow compared to the Euler equations. The numerical solutions of the original and regularized

forms of the Gaussian closure are explored in this thesis.

2.3 10-Moment Gaussian Closure

2.3.1 Maximum Entropy Gaussian Closure for a Monatomic Gas

The lowest order members of the Levermore hierarchy of moment closures [8] result in the local

equilibrium Maxwellian closure leading to the 5-moment Euler equations, and the Gaussian

distribution that leads to a 10-moment closure. For a monatomic gas, the velocity weights

associated with constructing the 10-moment Gaussian closure are

M(vα) = [m, mvi, mvivj ]
T , (2.20)

which correspond to the macroscopic moments

〈M(vα)F〉 = [ρ, ρui, ρuiuj + Pij ]
T . (2.21)
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The assumed form of the distribution function can be derived through analytical means, based

on entropy maximization concepts [8], and results in the Gaussian distribution function, G,

given by

F(t, xi, ci) = G(t, xi, ci) =
(ρ/m)

(2π)3/2 (det Θ)1/2
exp

(
−1

2
Θ−1
ij cicj

)
, (2.22)

where Θij =Pij/ρ is an anisotropic “temperature” tensor written as

Θ =


Pxx
ρ

Pxy

ρ
Pxz
ρ

Pxy

ρ
Pyy

ρ
Pyz

ρ
Pxz
ρ

Pyz

ρ
Pzz
ρ

 , (2.23)

with a determinant defined as

det Θ =
1

ρ3

[
PxxPyyPzz + 2PxyPyzPxz − P 2

xzPyy − P 2
yzPxx − P 2

xyPzz
]

(2.24)

and an inverse, Θ−1, found to be

Θ−1 =
1

ρ2 det Θ


(
PyyPzz − P 2

yz

)
− (PxyPzz − PxzPyz) (PxyPyz − PxzPyy)

− (PxyPzz − PxzPyz)
(
PxxPzz − P 2

xz

)
− (PxxPyz − PxzPxy)

(PxyPyz − PxzPyy) − (PxxPyz − PxzPxy)
(
PxxPyy − P 2

xy

)
 .
(2.25)

The non-equilibrium distribution function possesses a Gaussian-like distribution for each of the

principal strain axes, and physically corresponds to a non-equilibrium state with different tem-

peratures in each direction. The form of the Gaussian distribution function was first suggested

by Maxwell [3] as a probable and more general form of the widely known Maxwell-Boltzmann

equilibrium distribution function with consideration towards particle velocity anisotropies,

though no further attempt was made at the time to discover the nature of the velocity distribu-

tions. Independent work by Schlüter [45,46] and Holway [41,47–49] seems to have rediscovered

this form of the distribution function for use in describing flows with significant anisotropic

pressure effects.

The moment equations arising from the Gaussian closure can be found using Maxwell’s equation

of change in Eq. (2.9), with F = G and the ellipsoidal statistical approximation described in

Section 2.2.2 for the collision term after substituting the velocity moments in Eq. (2.20). The

transport equations from the Gaussian closure can then be summarized as follows:

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (2.26)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (2.27)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij +Qijk) = −1

τ
(Pij − pδij) . (2.28)
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The first two equations, Eqs. (2.26) and (2.27), describe the well-known conditions for the

conservation of mass and momentum, while the third equation, Eq. (2.28) describes the trans-

port of the symmetric non-equilibrium tensor for the total energy in the flow including random

and bulk kinetic energy components. Due to the assumed exponential form of the distribution

function, integration of the third-order velocity moment, Qijk, is always zero. The generalized

energy equation can then be simplified to give

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij) = −1

τ
(Pij − pδij) . (2.29)

The next higher order moment, when subject to Maxwell’s equation of change, gives

Qijk = 〈mcicjckG〉 = 0 , qi =
1

2
〈mcicjcjG〉 = 0 , (2.30)

due to the assumed exponential form of the distribution function. Its equivalence to zero

provides closure to the system as the transport equation for the total energy is now only

dependent on the lower order moments 〈mG〉 and 〈mciG〉. However, Qijk is the third-order

generalized heat flux tensor and qi is the usual fluid-dynamic heat flux vector. Its absence

means that the use of the Gaussian closure for modelling non-equilibrium flows automatically

assumes negligible heat flux.

2.3.2 Maximum Entropy Gaussian Closure for a Diatomic Gas

The description of the Gaussian closure to this point has been limited to monatomic particles.

Extending the validity of the closure to diatomic or even polyatomic particles would allow for

the modelling of a larger class of physically interesting flows and would bring the use of the

Gaussian closure closer towards engineering and industrial-relevant applications. The modelling

of polyatomic particles must take into account the energy associated with the internal rotational

degrees of freedom. Given that particles with more than two atoms will possess an increasingly

large number of geometric configurations and internal rotational degrees of freedom, it seems

prudent at this time to begin with diatomic molecules.

Diatomic particles are treated in a classical sense as two rigid bodies rotating about a common

center of mass. The dumbbell-like configuration for the diatomic molecule includes three rota-

tional degrees of freedom. Rotation about the axis joining the two atoms has a moment arm

equivalent to the radius of the atom, and the treatment of the atoms as point masses reduces the

moment of inertia about this arm to zero, leaving two significant rotational degrees of freedom

to manage. The net effect of these rotational degrees of freedom on the average angular mo-

mentum of the fluid is assumed to be zero, along with the assumption that external forces and
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torques applied to the fluid do not directly affect the internal rotational modes. The treatment

of diatomic particles in the non-equilibrium distribution function, F , remains largely the same

as for monatomic particles, except for an additional dependence on the angular velocity of the

particle, ωα. The resulting maximum-entropy Gaussian distribution takes the form

GD(t, xi, ci, ωα) =
(ρ/m) (I/m)

(2π)5/2 (det Θ)1/2 (p/ρ) (Tr/T )
exp

[
−1

2

(
Θ−1
ij cicj +R−1

αβωαωβ

)]
, (2.31)

where I is the moment of inertia of a gas molecule, p is again the usual thermodynamic pres-

sure, T is now the temperature associated with the translational energy, Tr is the rotational

temperature, and

Rαβ =

(
mp

Iρ

)(
Tr

T

)
δαβ =

(mer

I

)
δαβ (2.32)

where specific rotational energy of the gas, er, is then given by er = (p/ρ)(Tr/T ). The corre-

sponding Maxwellian distribution function for equilibrium conditions for a diatomic gas is then

given by

MD(t, xi, ci, ωα) =
(ρ/m) (I/m)

(2π)5/2 (p/ρ)5/2
exp

[
−1

2

ρ

p

(
c2 +

I

m
ω2

)]
. (2.33)

Taking moments about a non-equilibrium distribution function for diatomic gases to find the

macroscopic properties of the fluid proceeds in a similar fashion to the method described previ-

ously for monatomic gases. General velocity weights that can be applied can now be a function

of both the translation velocity, vi, and rotational velocity, ωα, and the resulting moments will

take the form

〈M(vi, ωα)F〉 =

˚

∞

M(vi, ωα)F(t, xi, vi, ωα) d3v d2ω , (2.34)

which requires an integration over five-dimensional space. The moments constructed up to

this point have all been formed from translational velocity functionals only. Their integration

through this new five-dimensional space will not bring about any additional terms in the mass

and momentum transport equations, but will have an effect on the energy transport equations.

Of interest are the moments found from the velocity weight Iωαωβ which describes the rotational

energy tensor, or, since the rotational energy is invariant over the two internal rotational degrees

of freedom, Iω2/2, which describes the scalar rotational energy. Their respective moments can

be written as

˚

∞

IωαωβGD(t, xi, vi, ωδ) d3v d2ω = 〈IωαωβGD〉 = p

(
Tr

T

)
δαβ = ρ(t, xi)er(t, xi)δαβ , (2.35)

˚

∞

I

2
ω2GD(t, xi, vi, ωα) d3v d2ω =

〈
I

2
ω2GD

〉
= ρ(t, xi) = p

(
Tr

T

)
= ρ(t, xi)er(t, xi) , (2.36)
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An extended treatment of the collision model is also required for diatomic gases. It is assumed

that the relaxation times required to reach equilibrium in the translational velocities only will

be shorter than those required to reach complete equilibrium in both the translational and

rotational velocities. This is in contrast to the single relaxation time used for monatomic

gases and its effect must be incorporated into the collision term operator. Using the ellipsoidal

collision operator described in the previous section, the collision term accounting for diatomic

gases can be written as

δF
δt

= − 1

τt
(F − GID)− 1

τr
(GID − GESD) , (2.37)

where it is assumed that the general non-equilibrium distribution relaxes first toward an inter-

mediate ellipsoidal Gaussian distribution, GID, given by

GID(t, xi, ci) =
(ρ/m) (I/m)

(2π)5/2 (det Υ)1/2 (p/ρ) (Tr/T )
exp

[
−1

2

(
Υ−1
ij cicj +R−1

αβωαωβ

)]
, (2.38)

whereupon equilibrium is achieved for the translational degrees of freedom, but not necessarily

for the rotational degrees of freedom, on some time scale τt. This distribution function then

further relaxes towards the modified ellipsoidal distribution function for diatomic gases, GESD,

having the form

GESD(t, xi, ci) =
(ρ/m) (I/m)

(2π)5/2 (det T)1/2 (p/ρ) [(1− ν) + ν (Tr/T )]
exp

[
−1

2

(
T−1
ij cicj + S−1

αβωαωβ

)]
,

(2.39)

on some time scale τr, where both the translational and rotational degrees of freedom are in

equilibrium. The pseudo-temperature tensor in the intermediate ellipsoidal Gaussian distribu-

tion, Υij , is defined as

Υij = (1− ν)
Pkk
3ρ

δij + νΘij = (1− ν)
Pkk
3ρ

δij + ν
Pij
ρ
. (2.40)

The tensor appearing in the equilibrium ellipsoidal Gaussian distribution, Sαβ, takes the form

Sαβ = (1− ν)
mp

Iρ
δij + νRαβ =

mp

Iρ

[
(1− ν) + ν

Tr

T

]
δij . (2.41)

The remaining tensors appearing in these distribution functions, Tij and Rαβ, have been defined

earlier in Eqs. (2.14) and (2.32) respectively.

This three-scale relaxation time approximation incorporates two time scales related to the

equilibrium processes in the translational and rotational modes. These can be defined using a

similar process as those shown for monatomic gases in Eq. (2.15) such that

τt = (1− ν)τ , τr = (1− ν)τv , 1− ν =
1

Pr
, (2.42)
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where µ is the fluid viscosity, µv is the bulk or volume viscosity. To define the characteristic

relaxation times for the collisional processes, the bulk and dynamic viscosities for the fluid are

used. In the near-equilibrium limit for perfect gases, rotational relaxation exhibits itself as a

major source of bulk viscosity. Through a perturbative expansion about a small parameter,

Hittinger [19] has shown that the relaxation times can be related to the dynamic viscosity µ

and the bulk viscosity µB through the expressions

τ ∼ µ

p
, τv ∼

15µB
4p

. (2.43)

Using the three-scale relaxation-time approximation defined above, the moment equations of

the maximum-entropy Gaussian closure for a diatomic gas can thus be obtained by substituting

appropriate weights into Maxwell’s equation of change yielding

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (2.44)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (2.45)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij) (2.46)

= −1

τ

(
Pij −

Pkk
3
δij

)
− 2

15τv
(Pkk − 3ρer) δij ,

∂

∂t
(ρer) +

∂

∂xi
(ρuier) = − 1

5τv
(3ρer − Pkk) , (2.47)

As with the monatomic closure, the moment equations of the diatomic closure are also strictly

hyperbolic and do not incorporate a description of heat transfer and predicts zero heat flux.

Note that the transport equations for diatomic gases are similar to those for monatomic gases

given in Eqs. (2.26)–(2.28), with the exception of an additional source term in the energy trans-

port accounting for a rotational energy relaxation time, and an additional transport equation

describing the evolution of rotational energy. This similarity allows for the construction of a

unified computational solution scheme with minimal specializations for managing fluids with

varying molecular structure.

2.3.3 Eigenstructure for Diatomic Gases

The eigenstructure of the Gaussian closure is of interest here not only because of its heavy use

in various flux functions used in Godunov-type finite volume schemes, but also to demonstrate

the hyperbolicity of the system and the propagation characteristics of various macroscopic prop-

erties. While the structure for diatomic gases is given here, the eigenstructure for monatomic
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gases can be obtained by simply removing the rotational energy transport equation and the

rotational energy contribution to the energy transport source term. Equations (2.44)–(2.47)

can be written in weak conservation form by

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= S, (2.48)

where U is the vector of conserved variables, S is the source vector, and E, F, and G are the

flux vectors in the x, y, and z directions respectively. The vectors are defined as

U =



ρ

ρu

ρv

ρw

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρv2 + Pyy

ρvw + Pyz

ρw2 + Pzz

Erot



, S =



0

0

0

0

− 1
3τ (2Pxx − Pyy − Pzz)− 2

15τv
(Pxx + Pyy + Pzz − 3Erot)

−Pxy

τ

−Pxz
τ

− 1
3τ (−Pxx + 2Pyy − Pzz)− 2

15τv
(Pxx + Pyy + Pzz − 3Erot)

−Pyz

τ

− 1
3τ (−Pxx − Pyy + 2Pzz)− 2

15τv
(Pxx + Pyy + Pzz − 3Erot)

− 1
5τv

(3Erot − Pxx − Pyy − Pzz)



E =



ρu

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρu3 + 3uPxx

ρu2v + 2uPxy + vPxx

ρu2w + 2uPxz + wPxx

ρuv2 + uPyy + 2vPxy

ρuvw + uPyz + vPxz + wPxy

ρw2u+ uPzz + 2wPxz

uErot



, F =



ρv

ρuv + Pxy

ρv2 + Pyy

ρvw + Pyz

ρu2v + 2uPxy + vPxx

ρuv2 + uPyy + 2vPxy

ρuvw + uPyz + vPxz + wPxy

ρv3 + 3vPyy

ρv2w + 2vPyz + wPyy

ρvw2 + vPzz + 2wPyz

vErot



,
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G =



ρw

ρuw + Pxz

ρvw + Pyz

ρw2 + Pzz

ρu2w + 2uPxz + wPxx

ρuvw + uPyz + vPxz + wPxy

ρuw2 + uPzz + 2wPxz

ρv2w + 2vPyz + wPyy

ρvw2 + vPzz + 2wPyz

ρw3 + 3wPzz

wErot



.

The conservative form of Eq. (2.48) can also be written with flux Jacobians as

∂U

∂t
+ A

∂U

∂x
+ B

∂U

∂y
+ C

∂U

∂z
= S, (2.49)

where A = ∂F/∂U, B = ∂E/∂U, and C = ∂G/∂U.

Taking the x-direction as an example, the eigenvalues of the Jacobian matrix A in three di-

mensions are found to be

λ1−11 =
(
u−
√

3cxx, u− cxx, u− cxx, u, u, u, u, u, u+ cxx, u+ cxx, u+
√

3cxx

)
(2.50)

where cxx =
√
Pxx/ρ is representative of an x-directional ‘sound’ speed. These eigenvalues

are representative of the propagation speeds of small disturbances in this system, and are all

real when ρ > 0 and Pxx > 0. Eigensystem and dispersion analyses of this system have been

performed previously by Brown [25] for monatomic gases, and Hittinger [19] for diatomic gases.

The right eigenvectors show the hydrodynamic properties affected by each of these wave speeds
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and are written as

rc1 =



1

u−
√

3cxx

v −
√

3Pxy

cxxρ

w −
√

3Pxz
cxxρ

3c2
xx − 2

√
3ucxx + u2

ρuvcxx−u
√

3Pxy−
√

3c2xxρv+3cxxPxy

cxxρ
ρuwcxx−u

√
3Pxz−

√
3c2xxρw+3cxxPxz

cxxρ
ρ2v2c2xx−2

√
3Pxycxxρv+ρc2xxPyy+2P 2

xy

ρ2c2xx
cxxρ(−

√
3(wPxy+vPxz)+cxx(Pyz+ρvw))+2PxzPxy

ρ2c2xx
−2
√

3ρcxxwPxz+ρ2c2xxw
2+Pzzc2xxρ+2P 2

xz
ρ2c2xx
Erot
ρ



, rc2 =



0

0

1

0

0

u− cxx
0

2(vcxxρ−Pxy)
cxxρ

wcxxρ−Pxz

cxxρ

0

0



, rc3 =



0

0

0

1

0

0

u− cxx
0

(vcxxρ−Pxy)
cxxρ

2(wcxxρ−Pxz)
cxxρ

0



,

rc4 =



1

u

v

w

u2

uv

uw

v2

vw

w2

0



, rc5 =



0

0

0

0

0

0

0

1

0

0

0



, rc6 =



0

0

0

0

0

0

0

0

1

0

0



, rc7 =



0

0

0

0

0

0

0

0

0

1

0



, rc8 =



0

0

0

0

0

0

0

0

0

0

1



,
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rc9 =



0

0

0

1

0

0

u+ cxx

0
(vcxxρ+Pxy)

cxxρ
2(wcxxρ+Pxz)

cxxρ

0



, rc10 =



0

0

1

0

0

u+ cxx

0
2(vcxxρ+Pxy)

cxxρ
wcxxρ+Pxz

cxxρ

0

0



, rc11 =



1

u+
√

3cxx

v +
√

3Pxy

cxxρ

w +
√

3Pxz
cxxρ

3c2
xx + 2

√
3ucxx + u2

ρuvcxx+u
√

3Pxy+
√

3c2xxρv+3cxxPxy

cxxρ
ρuwcxx+u

√
3Pxz+

√
3c2xxρw+3cxxPxz

cxxρ
ρ2v2c2xx+2

√
3Pxycxxρv+ρc2xxPyy+2P 2

xy

ρ2c2xx
cxxρ(

√
3(wPxy+vPxz)+cxx(Pyz+ρvw))+2PxzPxy

ρ2c2xx
2
√

3ρcxxwPxz+ρ2c2xxw
2+Pzzc2xxρ+2P 2

xz
ρ2c2xx
Erot
ρ


The left eigenvectors can be interpreted as the strength of each wave, and when expressed in

primitive variables are found to be

lp1 =
[
0,−

√
3ρ

6cxx
, 0, 0, 1

6c2xx
, 0, 0, 0, 0, 0, 0

]
, lp2 =

[
0,− Pxy

2c2xx
, ρ2 , 0,

Pxy

2c3xxρ
,− 1

2cxx
, 0, 0, 0, 0, 0

]
,

lp3 =
[
0,− Pxz

2c2xx
, 0, ρ2 ,

Pxz
2c3xxρ

, 0,− 1
2cxx

, 0, 0, 0, 0
]
,

lp4 =
[
1, 0, 0, 0,− 1

3c2xx
, 0, 0, 0, 0, 0, 0

]
, lp5 =

[
0, 0, 0, 0,

4P 2
xy−ρc2xxPyy

3ρ2c4xx
,−2Pxy

c2xxρ
, 0, 1, 0, 0, 0

]
,

lp6 =
[
0, 0, 0, 0,

4PxzPxy−ρc2xxPyz

3ρ2c4xx
,− Pxz

c2xxρ
,− Pxy

c2xxρ
, 0, 1, 0, 0

]
,

lp7 =
[
0, 0, 0, 0, 4P 2

xz−ρc2xxPzz

3ρ2c4xx
, 0,−2Pxz

c2xxρ
, 0, 0, 1, 0

]
, lp8 =

[
0, 0, 0, 0,− Erot

3ρc2xx
, 0, 0, 0, 0, 0, 1

]
lp9 =

[
0,− Pxz

2c2xx
, 0, ρ2 ,−

Pxz
2c3xxρ

, 0, 1
2cxx

, 0, 0, 0, 0
]
,

lp10 =
[
0,− Pxy

2c2xx
, ρ2 , 0,−

Pxy

2c3xxρ
, 1

2cxx
, 0, 0, 0, 0, 0

]
, lp11 =

[
0,
√

3ρ
6cxx

, 0, 0, 1
6c2xx

, 0, 0, 0, 0, 0, 0
]

Provided that Pxx and ρ remain real and greater than zero, this system of equations has real

eigenvalues and linearly independent eigenvectors and is therefore strictly hyperbolic, as shown

in the work of McDonald and Groth [15], Brown et al. [24], and Hittinger [19]. This condition

holds in any Cartesian reference frame as the x-direction chosen for the calculations here were

chosen arbitrarily and no direction-specific anomalies are seen. Returning to the assumed

form of the non-equilibrium distribution function for the Gaussian closure, the condition of

hyperbolicity is maintained when ρ > 0 and the symmetric tensor Θij is positive definite.

2.4 Regularized Gaussian Closure

The regularized Gaussian closures were first introduced by McDonald and Groth [16, 17] as

an alternative to including heat transfer effects into the standard Gaussian closure described
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previously. A more rigorous presentation of the material with full derivations is found in a

subsequent publication by these authors [50], complete with their application to a number of

two-dimensional flows. The regularization procedure for both monatomic and diatomic gases

described here is based on that description and is included here for the purposes of completeness.

As noted previously, due to the assumed form of the non-equilibrium distribution function,

the third order velocity moments representative of the heat flux in the system are equivalently

zero. This is an essential feature of the Gaussian distribution function that gives the sys-

tem closure, so any direct introduction of higher-order velocity moments through a change to

the assumed form of the distribution function would alter the closure, if closure in that sense

can be even attained at all. Junk [9] has shown that higher-order members of the Levermore

maximum-entropy hierarchy of closures cannot guarantee hyperbolicity for all physically real-

izable moments. Moment closures with alternate assumed forms for the distribution function

such as those of Grad [5], could incorporate these higher-order moments, but do not have many

of the attractive mathematical and computational features of the Gaussian closure.

McDonald and Groth [16,17] have found that by adding a small perturbative correction to the

moment closure itself, in the same spirit as that found in the well-known Chapman-Enskog

perturbative expansion technique, a higher-order velocity moment describing heat flux can be

reintroduced into the moment closure system without severely affecting many of the desirable

properties of the closure. McDonald and Groth [16,17] have also rigorously demonstrated that

the perturbative treatment is equally applicable to the moment equations directly as well as the

original kinetic equation and results in the same corrective term accounting for non-equilibrium

heat flux. These heat flux terms are of an elliptic nature that is directly dependent only on

lower order moments and provides smooth regularized solutions. The moment system, though

formally more elliptic in nature, is based on an underlying strictly hyperbolic, first-order set of

equations with the attractive computational qualities of the standard Gaussian closure for all

realizable moments of interest.

2.4.1 Regularized Gaussian Closure for a Monatomic Gas

Derivation of the regularized closure for a monatomic gas proceeds as follows. A general trans-

port equation for energy as derived by taking second-order velocity moments about some arbi-

trary non-equilibrium distribution function, F , with the ellipsoidal statistical collision approx-

imation for a monatomic gas takes the form

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij +Qijk) = −1

τ
(Pij − pδij) . (2.51)
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When F = G, the form of the distribution forces the third-order tensor Qijk to zero and closure

to the coupled set of equations is achieved, giving us the energy equation derived from the

Gaussian closure shown earlier in Eq. (2.28). Assuming once again the use of any general non-

equilibrium distribution function F , a transport equation derived from Maxwell’s Equation of

Change for the third-order velocity moment requires the macroscopic quantity m 〈vivjvkF〉,
already evaluated within the spatial divergence in Eq. (2.51), and also introduces the fourth-

order velocity moment m 〈vivjvkvlF〉 defined as

m 〈vivjvkvlF〉 = m 〈(ui + ci) (uj + cj) (uk + ck) (ul + cl)F〉

= ρuiujukul + uiujPkl + uiukPjl + uiulPjk + ujukPil + ujulPik + ukulPij

+ uiQjkl + ujQikl + ukQijl + ulQijk +Rijkl. (2.52)

The random velocity moments have been simplified such that m 〈cαcβF〉 = Pαβ, m 〈cαcβcγF〉 =

Qαβγ , and m 〈cαcβcγcεF〉 = Rαβγε. Using the ellipsoidal statistical collision operator, the

complete weak-conservation form of the transport equation describing the evolution of the

third-order velocity moments takes the form

∂

∂t
(ρuiujuk + uiPjk + ujPik + ukPij +Qijk)

+
∂

∂xl

(
ρuiujukul + uiujPkl + uiukPjl + uiulPjk + ujukPil + ujulPik + ukulPij

+ uiQjkl + ujQikl + ukQijl + ulQijk +Rijkl

)
= − 1

(1− ν) τ
Qijk . (2.53)

Written in primitive form, the transport of the third-order generalized heat flux tensor, Qijk,

can be derived from the above equation through an expansion and simplification of terms,

yielding

∂Qijk
∂t

+
∂

∂xl
(ulQijk) +Qjkl

∂ui
∂xl

+Qikl
∂uj
∂xl

+Qijl
∂uk
∂xl

+ Pkl
∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)
+
∂Kijkl
∂xl

= − 1

(1− ν)τ
Qijk = −Pr

τ
Qijk , (2.54)

where, in the expression above, Kijkl is a fourth-order deviatoric tensor comprised of the terms

Kijkl = 〈mcicjckclF〉 − 〈mcicjckclG〉 = Rijkl −
1

ρ
[PijPkl + PikPjl + PilPjk] , (2.55)

The formal Chapman-Enskog-like perturbative expansion technique of McDonald and Groth [16,

17] expresses the general non-equilibrium distribution function as a series of small perturbations

about a Maxwellian distribution, upon which progressively higher-order approximations to the
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Boltzmann Equation shown in Eq. (2.1) can be found. A similar treatment is used here for Qijk

and Kijkl, such that when applied to Eq. (2.54) estimates can be made for the corrective values

to Qijk. In this case, the two tensors can be expressed as a perturbative expansion about their

values that result from the Gaussian closure, Q
(G)
ijk and K

(G)
ijkl, such that

Qijk = Q
(G)
ijk +Q

(1)
ijk +Q

(2)
ijk +Q

(3)
ijk + · · · , (2.56)

Kijkl = K
(G)
ijkl +K

(1)
ijkl +K

(2)
ijkl +K

(3)
ijkl + · · · , (2.57)

where the superscript (n) represents an nth-order correction. Note that again, due to the con-

struction of the non-equilibrium distribution function and the nature of the Gaussian solution,

Q
(G)
ijk = K

(G)
ijkl = 0. Introducing a smallness or scaling parameter, ε, the contribution of these

higher-order corrections can be scaled to give

Qijk = ε0Q
(G)
ijk + ε1Q

(1)
ijk + ε2Q

(2)
ijk + ε3Q

(3)
ijk + · · · , (2.58)

Kijkl = ε0K
(G)
ijkl + ε1K

(1)
ijkl + ε2K

(2)
ijkl + ε3K

(3)
ijkl + · · · , (2.59)

with the assumption that ε � 1. The transport equation for the generalized heat flux tensor

can also then be scaled to yield

∂Qijk
∂t

+
∂

∂xl
(ulQijk) +Qjkl

∂ui
∂xl

+Qikl
∂uj
∂xl

+Qijl
∂uk
∂xl

+ Pkl
∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)
+
∂Kijkl
∂xl

= − 1

ε(1− ν)τ
Qijk . (2.60)

Substituting the expressions of Eqs. (2.58) and (2.59) and collecting like terms in powers of ε,

the transport equation for Qijk can be rearranged as

ε0
[
Q

(G)
ijk

]
+ ε1

Q(1)
ijk + (1− ν)τ

∂Q(G)
ijk

∂t
+ Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)
+
∂K

(G)
ijkl

∂xl


+ ε2

Q(2)
ijk + (1− ν)τ

∂Q(1)
ijk

∂t
+

∂

∂xl

(
ulQ

(1)
ijk

)
+Q

(1)
jkl

∂ui
∂xl

+Q
(1)
ikl

∂uj
∂xl

+Q
(1)
ijl

∂uk
∂xl

+
∂K

(1)
ijkl

∂xl


+ ε3

Q(3)
ijk + (1− ν)τ

∂Q(2)
ijk

∂t
+

∂

∂xl

(
ulQ

(2)
ijk

)
+Q

(2)
jkl

∂ui
∂xl

+Q
(2)
ikl

∂uj
∂xl

+Q
(2)
ijl

∂uk
∂xl

+
∂K

(2)
ijkl

∂xl


+ · · · = 0 . (2.61)

Non-trivial solutions require that each term in powers of ε in the above expression be equal to

zero. The zeroth-order correction returns the expected zero heat flux tensor predicted from the

Gaussian closure. Corrections of order ε2 and higher require unavailable knowledge concerning
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high-order gradients of the perturbations of the tensors of interest, and their contribution

becomes increasingly small for higher powers of ε. This leaves a non-zero first-order correction

dependent purely on lower order moments, as by definition ∂Q
(G)
ijk /∂t = ∂K

(G)
ijkl/∂xl = 0. These

quantities are either already available or can be derived from the application of the flow problem

on a finite-volume mesh. Rearranging to solve for the first-order correction to the generalized

heat flux tensor results in

Q
(1)
ijk = −(1− ν)τ

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]
= − τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]
. (2.62)

Assuming that Qijk ≈ Q
(1)
ijk, this first-order correction can be substituted into Eq. (2.51), such

that the complete set of transport equations for monatomic fluids governing the conservation

of mass, momentum and energy in this regularization of the Gaussian closure in conservative

form can be expressed as
∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (2.63)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (2.64)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij)

+
∂

∂xk

{
− τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]}
= −1

τ
(Pij − pδij) . (2.65)

2.4.2 Regularized Gaussian Closure for a Diatomic Gas

It has been well established that an increase in the degrees of freedom of a molecule results in

a corresponding increase in the specific heat capacity of that fluid. The energy stored within

the gas can no longer be attributed only to the translational kinetic energy of the molecules (as

measured by temperature), and is instead also influenced by the energy distributed throughout

the degrees of freedom of each molecule. As addressed in Section 2.3.2, the rotational energy

within a diatomic gas contributes significantly to the transport of the total energy, and is

likewise affected by a corresponding energy flux.

For diatomic gases, an additional equation describing the transport of rotational energy using

the Gaussian closure is given by Eq. (2.47). For a general non-equilibrium distribution function,
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F , the full form of this transport equation is given as

∂

∂t
(ρer) +

∂

∂xi
(ρuier + hi) = − 1

5τv
(3ρer − Pkk) , (2.66)

where hi is the heat flux vector associated with the transport of rotational energy defined by

the moment quantity

hi =
〈
Iciω

2F
〉
. (2.67)

This third-order velocity moment is once again equivalent to zero when using the Gaussian

closure for a diatomic gas. The conservative transport equation for this third-order velocity

moment for any general non-equilibrium distribution function can be shown to take the form

∂

∂t
(ρuier + hi) +

∂

∂xj
(ρuiujer + uihj + ujhi + Pijer + rij)

= − 1

(1− ν)τ
hi −

1

5τv
ui (3ρer − Pkk) . (2.68)

Note that once again, due to the construction of the Boltzmann equation, an additional higher-

order velocity moment is introduced in the spatial divergence term. This second-order deviatoric

tensor, rij , can be written as

rij =
〈
Icicjω

2F
〉
−
〈
Icicjω

2GD

〉
=
〈
Icicjω

2F
〉
− Pijer . (2.69)

Similar to the Chapman-Enskog-like method used to describe first-order correction terms for

the Qijk and Kijkl in the previous section, a perturbative expansions for hi and rij can be

postulated and used to determine a first-order correction to the Gaussian solution purely in

terms of lower-order moment quantities. The perturbative expansions for hi and rij in terms

of a small parameter ε take the form

hi = ε0h
(G)
i + ε1h

(1)
i + ε2h

(2)
i + ε3h

(3)
i + · · · , (2.70)

rij = ε0r
(G)
ij + ε1r

(1)
ij + ε2r

(2)
ij + ε3r

(3)
ij + · · · , (2.71)

where once again, h
(G)
i = r

(G)
ij = 0 as stipulated by their values arising from the Gaussian

closure. The scaled version of the non-conservative transport equation for this rotational energy

heat flux vector is given by

∂hi
∂t

+
∂

∂xj
(ujhi) + hj

∂ui
∂xj

+ Pij
∂er

∂xj
+
∂rij
∂xj

= − 1

(1− ν)ετ
hi . (2.72)

Substituting Eqs. (2.70)–(2.71) into this tranport equation and grouping like-orders of ε results
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in

ε0
[
h

(G)
i

]
+ ε1

[
h

(1)
i + (1− ν)τ

(
∂h

(G)
i

∂t
+ Pij

∂er
∂xj

+
∂r

(G)
ij

∂t

)]

+ ε2

[
h

(2)
i + (1− ν)τ

(
∂h

(1)
i

∂t
+

∂

∂xj

(
ujh

(1)
i

)
+ h

(1)
j

∂ui
∂xj

+
∂r

(1)
ij

∂t

)]

+ ε3

[
h

(3)
i + (1− ν)τ

(
∂h

(2)
i

∂t
+

∂

∂xj

(
ujh

(2)
i

)
+ h

(2)
j

∂ui
∂xj

+
∂r

(2)
ij

∂t

)]
+ · · · = 0 . (2.73)

With the stipulation that all terms in powers of ε must be equivalent to zero for non-trivial

solutions, and that ∂h
(G)
i /∂t = ∂r

(G)
ij /∂t = 0, the first-order corrective term describing the heat

flux due to the transport of rotational energy is found to be

h
(1)
i = −(1− ν)τ

(
Pij

∂er

∂xj

)
= − τ

Pr
Pij

∂er

∂xj
. (2.74)

The heat flux associated with the transport of translational energy derived for monatomic gases

is equally applicable for diatomic gases. Again assuming that hi ≈ h
(1)
i and substituting the

derived expression for Qijk shown earlier into the original set of moment equations from the

Gaussian closure for diatomic gases described in Eqs. (2.44)–(2.47), the complete set of moment

equations resulting from a regularization of the Gaussian closure as applied to diatomic gases

can be summarized as
∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 , (2.75)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + Pij) = 0 , (2.76)

∂

∂t
(ρuiuj + Pij) +

∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij)

+
∂

∂xk

{
− τ

Pr

[
Pkl

∂

∂xl

(
Pij
ρ

)
+ Pjl

∂

∂xl

(
Pik
ρ

)
+ Pil

∂

∂xl

(
Pjk
ρ

)]}
= −1

τ

(
Pij −

Pkk
3
δij

)
− 2

15τv
(Pkk − 3ρer) δij , (2.77)

∂

∂t
(ρer) +

∂

∂xi
(ρuier) +

∂

∂xi

(
− τ

Pr
Pij

∂er

∂xj

)
=

1

5τv
(3ρer − Pkk) . (2.78)

This extended fluid-dynamic description is used herein for all diatomic fluid flow problems

addressed in this thesis. The validity of the regularized formulation for incorporating heat

transfer effects into the Gaussian closure will be thoroughly analyzed as part of this thesis in

Chapter 6.
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2.5 Solid-Wall Boundary Conditions

In the continuum regime, the commonly-used no-slip boundary conditions assume that the

velocity of the fluid is at rest relative to the reference frame of the wall, with a similar assumption

on equivalency made on the temperature of the fluid adjacent to the wall and the temperature

of the wall. At moderate Knudsen numbers, increased intermolecular collision distances extends

both the time and the distance needed for molecules to reach an equilibrium state. Aside from

producing thickened boundary layers, the lack of intermolecular collisions also produces a slip

effect at solid wall boundaries, affecting both the velocity and temperature profiles of the flow of

interest. This effect must be taken into account when developing suitable boundary conditions

for the Gaussian closures. Applying continuum-regime techniques for slip regime flows requires

some description of these slip effects at solid wall boundaries that rely on corrective parameters

derived separately either from kinetic theory [51] or from physical experiments [52]. It will

be shown in this section that the boundary conditions necessary for modelling slip effects falls

naturally from the construction of the Gaussian closure, providing a smooth transition between

the continuum and slip flow regimes.

2.5.1 Velocity Slip

The construction of appropriate boundary conditions for the Gaussian closure used in this

thesis is based on a classical method proposed by Grad [5]. Similar approaches were developed

and used by McDonald and Groth [16, 18] and Torrilhon et al. [23]. An infinitesimally thin

layer of particles, known as the Knudsen layer, is assumed to exist next to the surface of the

wall, and its distribution function is affected by particles from the interior flow field and those

that have reflected off the wall. Reflected particles may reach thermodynamic equilibrium with

the wall prior to being released back into the Knudsen layer (diffuse reflection), in which case

the particles adopt a Maxwell-Boltzmann distribution function dependent only on the wall

temperature and wall velocity. Particles can also be reflected back into the Knudsen layer

still retaining its original incoming particle distribution function with only a change in particle

direction (specular reflection). The fraction of diffuse reflections versus specular reflections

can be described with an accommodation coefficient, α, where α = 1 describes diffuse or fully

accommodated reflection, and α = 0 describes specular reflection. The true physical behavior

of solid walls will depend on material and finish, with 0 < α < 1. The remainder of this study

will focus on fully diffuse reflections only, though specular reflection will be considered when

examining the limiting behavior of the boundary conditions. For the sake of computational

simplicity, fluxes are computed by first rotating the two cell states into the +x frame of reference,
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solving the Riemann problem in that frame, and subsequently rotating the updated cell states

back into their original orientation. This simplifies the Riemann solver and boundary condition

problem to one in which the wall normal extends in the +x−direction only.

The particle distribution function for the Knudsen layer, FKn, is then formulated as a linear

combination of both the incoming and reflected distributions, F− and F+ respectively. For a

wall normal extending into the flow in the +x−direction,

FKn = F− + F+ , (2.79)

where F− and F+ are given by

F− =

{
Ge(vx, vy, vz) for vx < 0 ,

0 for vx > 0 ,
(2.80)

F+ =

{
αMw(vx, vy, vz) + (1− α)Ge(−vx, vy, vz) for vx > 0 ,

0 for vx < 0 ,
(2.81)

where Ge represents the Gaussian particle distribution at the interior edge of the boundary and

Mw is a Maxwell-Boltzmann distribution defined by the solid wall properties.

Armed with this proposed distribution function, the properties of the gaseous particles in the

Knudsen layer can be found through the same integrating methods outlined in Section 2.1.3,

with the exception of a change in the limits of the integration due to the presence of the wall.

A cursory look at the number of moment equations involved reveals that blindly integrating all

eleven flow variables from the system will yield too many boundary conditions. The number

of required conditions can be reduced by considering the geometry of the flow problem. For

an +x−direction wall normal, only variables that generate a flux across the wall-fluid interface

are needed, and the list of moments reduces to {cx, cxx, cxy, cxz}. Grad [5] and Torrilhon and

Struchtrup [23] have further observed that if the accommodation coefficient α is set to zero,

velocity functionals of even degree in cx create non-zero boundary conditions that cannot be

controlled. To preserve the continuity of the boundary conditions as α approaches zero, the list

of moments is restricted to only odd degrees of cx, yielding {cx, cxy, cxz}. The first moment cx

corresponds to the bulk velocity of the fluid normal to the walls and is required to be zero to

ensure the impermeability of the solid wall. Together with expressions for the remaining shear
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pressures defined by the moments cxy and cxz, the boundary conditions can be summarized as

ux Kn = 0 , (2.82)

Pxy Kn = m

ˆ ∞
0

dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [(1− α)G (−vx, vy, vz) + αM (vx, vy, vz)]

+ m

ˆ ∞
0

dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [G (vx, vy, vz)]

= m

ˆ ∞
0

dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [−αG (−vx, vy, vz) + αM (vx, vy, vz)]

= α

[
Pxy
2
−
√
ρPxx
2π

(uy − uy)

]
+ α

√
Pxxρ

2π
(uyw − uy) , (2.83)

Pxz Kn = α

[
Pxz
2
−
√
ρPxx
2π

(uz − uz)

]
+ α

√
Pxxρ

2π
(uzw − uz) , (2.84)

where uyw and uzw are the y− and z− direction velocities of the wall respectively, and uy and

uz are the bulk velocities of the Knudsen layer velocity distribution given by

uy =
ρ

ρKn

[
(2− α)

[
uy
2
− Pxy√

2πρPxx

]
+
α

2

√
mPxx
ρkTw

uyw

]
(2.85)

uz =
ρ

ρKn

[
(2− α)

[
uz
2
− Pxz√

2πρPxx

]
+
α

2

√
mPxx
ρkTw

uzw

]
(2.86)

where ρKn is the density within the Knudsen layer found from a similar half-Maxwellian inte-

gration with M(vα) = m, given by

ρKn =
ρ

2

(
(2− α) + α

√
mPxx
ρkTw

)
(2.87)

with all properties being those from the incoming Gaussian except for uyw , uzw , and Tw which

define the Maxwellian distribution of accommodated particles from the wall. By placing bound-

ary conditions on the shear pressure, it is possible to recover the no-shear-stress condition for

the Euler equations in the equilibrium limit with no accommodation at the wall, as can be seen

in Eqs. (2.83) and (2.84) with α = 0. A full description on the procedure performed to find the

Knudsen layer properties through half-Maxwellian type integrations can be found in Appendix

A of the thesis.

2.5.2 Additional Boundary Conditions for Temperature Slip

Temperature slip at wall boundaries is one of the most significant physical characteristics present

in high Knudsen number flows. Since the standard Gaussian closure cannot account for heat

flux regardless of boundary conditions, the implementation of temperature slip phenomena is
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limited to the the regularized Gaussian closure. The velocity slip boundary conditions discussed

above, however, are used for both closure systems. The effects of thermal transpiration are not

included within the velocity slip boundary conditions, as heat flux is not treated as a moment

quantity and does not appear naturally within the derivation for the velocity slip boundary

conditions. Expressions for this term can be derived from higher-order moment systems, but

the Gaussian closure alone cannot model this effect. The lack of thermal transpiration in the

boundary conditions prevents the regularized Gaussian closure from modelling counter-gradient

heat flux behaviour in the near-wall region, and remains a significant source of error when using

this closure for non-equilibrium flows.

Boundary conditions used up till this point involves rotating the Knudsen layer boundary state

and the first interior cell into the x−direction and performing a series of half-Maxwellian integra-

tions to find the appropriate velocity moments. However, temperature slip cannot be modelled

with these boundary conditions alone, even with the regularization procedure described in the

previous section, as the heat flux becomes dependent only on the pressure gradients through

the wall, creating a corresponding smooth transition in temperature at the wall.

A method of introducing temperature slip into the boundary conditions has been proposed by

Smoluchowski [53] and implemented for the two-dimensional regularized Gaussian closure by

McDonald and Groth [16,18]. The Knudsen layer temperature T is adjusted such that

T = Tw + ∆Ts = Tw + fsλ
∂T

∂ni
, (2.88)

where T is the temperature of the fluid at the Knudsen layer, Tw is the temperature of the

wall introduced earlier, ∆Ts is the temperature slip across the Knudsen layer, and ni is the

unit vector normal to the wall. The idea is to take the no-slip temperature gradient along an

outward-drawn normal to the wall, ∂T/∂ni, and evaluate the temperature along this gradient

at a slip distance factor, fs, given by Smoluchowski [53] as

fs =
10π

16Pr

(
2− αt
αt

)
γ

γ + 1
, (2.89)

and where αt is the thermal accommodation coefficient. Thermal accommodation coefficients

are typically empirically derived and depend largely on gas properties, surface materials and

smoothness. For the purposes of this study, the thermal accommodation coefficient is set to

unity, such that the incoming gas is fully accommodated to the wall temperature upon collision.

This newly calculated temperature is then used in Eqs. (2.82)–(2.87) to calculate updated

boundary conditions for the corresponding pressure tensor and rotational energy within the

Knudsen layer, which in turn is used to calculate the heat flux corrections in Eqs. (2.62) and

(2.74). These temperature slip boundary conditions are equally amenable for monatomic and
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diatomic gases as the rotational energy is coupled only through the source terms in the energy

equation and is easily separable.

It is important to note that while the slip temperature is approximate, there are no boundary

conditions on the heat flux at the wall, as the regularized Gaussian closure treats the heat

flux as function of the pressure gradient, and not as a separate macroscopic property derived

from taking moments about the non-equilibrium distribution function. Higher-order moment

techniques, such as the regularized 13-moment equations of Struchtrup and Torrilhon [21],

treat heat flux directly as moments of the non-equilibrium distribution function, with which

half-Maxwellian-type boundary conditions can be formed. The regularization of the 13-moment

closure treats the even higher order moments representative of the Burnett equations in the

same manner as the heat flux used in the regularized Gaussian. For the regularized Gaussian

closure, producing the correct slip temperature is expected to give some insight into the correct

non-equilibrium behaviour in the near-wall region.



Chapter 3

Finite-Volume Spatial Discretization

Scheme

In this study, a parallel, implicit, AMR, finite-volume scheme is proposed and developed for

the solution of the moment equations of the standard and regularized Gaussian moment closure

described in Chapter 2 for both monatomic and diatomic gases. For the three-dimensional flows

of interest here, the finite-volume discretization is applied to multi-block body-fitted meshes

with hexahedral volume elements. The multi-block mesh and spatial discretization procedure

readily allow for the application of solution-directed block-based AMR as developed previously

by Gao et al. [32, 34, 54–57] for three space dimensions. In this block-based AMR scheme, a

flexible block-based hierarchical octree data structure is used to facilitate automatic, solution-

directed, and local adaptation of the mesh according to physics-based refinement criteria. The

local refinement and coarsening of the mesh is carried out by division and merging of solu-

tion blocks, respectively. In the proposed finite-volume procedure, the hyperbolic fluxes at

cell boundaries will be evaluated using a Riemann-solver based flux function by Roe, though

an approximate Harten-van Leer-Lax-Einfeldt (HLLE) solver is also implemented. A Newton-

Krylov-Schwarz (NKS) algorithm implemented for two and three-dimensional Navier-Stokes

equations by Charest et al. [29] and Northrup and Groth [28] is employed for steady-state

solutions. The elliptic heat transfer terms from the regularized Gaussian closure are incorpo-

rated using the technique implemented by Gao [34] with a centrally-weighted method for cell

face gradients described by Mathur and Murphy [58]. The multi-block, body-fitted, AMR and

Newton schemes are well suited to the parallel implementation of the implicit finite-volume

AMR scheme on distributed-memory multi-processor architectures via domain decomposition.

Because of the self-similar nature of the grid blocks, domain decomposition is a achieved by

37
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simply distributing the blocks making up the computational mesh equally among available pro-

cessors and/or processor cores, with more than one block permitted per core. The use of NKS

with the proposed parallel, implicit, AMR, finite-volume scheme has been applied successfully

for a number of complex flow problems in computational combustion, including unsteady, fully

compressible reactive flows [59] and radiative heat transfer [60]. To the best of the author’s

knowledge, the Newton-Krylov approach is applied here for the first time to the solution of

three-dimensional non-equilibrium micro-scale flows using the Gaussian closures.

This thesis focuses on the application of an implicit NKS scheme to the Gaussian closures for

the solution of steady-state, three-dimensional flows. This is in contrast to the semi-implicit

approach of McDonald and Groth [15,16] applied to the Gaussian closures for two-dimensional

flows. Based on this approach, the semi-implicit solver was extended for solutions to the

standard Gaussian closure in three dimensions in the thesis of Lam [61]. While its use is not

the focus of this thesis, its performance is nevertheless used as a benchmark for the Newton-

Krylov implicit solver implemented for all examined flow problems. Details on the Newton-

Krylov method with Schwarz preconditioning are described in Chapter 4 with reference to its

application to the two and three-dimensional Navier-Stokes equations by Charest et al. [29] and

Northrup and Groth [28].

The proposed block-based AMR solution scheme is similar to that described in Gao and

Groth [34,55] for the prediction of three-dimensional turbulent non-premixed combustion flames,

and those used in the prediction of MHD flows by Ivan et al. [62–65]. Aspects of the mesh adap-

tation scheme and computer code developed as part of this previous work were re-used in the

current development of the approach for the Gaussian closure. An overview of the finite-volume

AMR scheme for multi-block, body-fitted meshes using hexahedral cells is presented here, in-

cluding special consideration for the source terms associated with the Gaussian moment closure.

The reader is referred to the above-mentioned papers for full details of the block-based AMR

algorithm for multi-block hexahedral mesh.

3.1 Godunov-Type Finite-Volume Methods

The purely hyperbolic and first-order quasi-linear nature of maximum-entropy moment closures

present several numerical advantages which extend into both the transition and continuum

regimes as discussed by Groth and McDonald [66]. These hyperbolic systems are less sensitive

to grid irregularities, making them well suited to to AMR and complex geometries. They also

only require the evaluation of first derivatives, which means that an extra order of spatial
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accuracy, relative to a mixed hyperbolic-parabolic system such as the Navier-Stokes, can be

gained using the same stencil. Hyperbolic equations describing a system of conservation laws,

such as the moment equations derived from the Gaussian closures, are well suited to solution by

Godunov-type finite-volume methods. In such finite-volume methods, the domain of interest

is divided into subvolumes wherein the transport of macroscopic properties are solved from

cell to cell. Evolving the solution in each cell produces a Riemann problem at each of the cell

interfaces that translates into a net flux at that interface. The proper accounting of these fluxes

over each interface in each cellular control volume, its effect on the average solution in each

cell over time, and the incorporation of source terms become the primary areas of concern for

finite-volume methods.

In differential form, the general form of the governing equations for the Gaussian closures from

Eqn. (2.48) can be expressed using matrix-vector notation as

∂U

∂t
+
−→
∇ ·
−→
F = S, (3.1)

where U is the vector of conserved flow solution variables, F is the total solution flux dyad,

and S is the source vector. Integrating this expression throughout three-dimensional physical

space and applying the divergence theorem, the integral form of the conservation equations can

then be written as
d

dt

˚

V

U dV +

‹

Ω

−→
F · −→n dΩ =

˚

V

S dV (3.2)

where V is the control volume of interest, Ω is the closed surface of the control volume, and
−→n is the outward-facing unit normal vector of the closed surface Ω. This integral equation

is enforced over each three-dimensional cell that spatially-discretizes the domain of interest.

The conserved properties in each cell are then subject to change through the net solution flux

through the surface of each cell and through the source terms. Due to the spatially-discretized

nature of the finite-volume scheme, the solution content within each cell is averaged over the

cell, such that

U ≡ 1

V

˚

V

U dV (3.3)

and

S ≡ 1

V

˚

V

S dV, (3.4)

where U and S represent the averaged solution vector and source term within each cell respec-

tively. The solution within each cell, however, is assumed to be piecewise constant in Godunov’s

original method, while higher-order methods allow for a polynomial variation of the solution

within each cell. The reader is directed to the texts of Lomax et al. [67] and Hirsch [68,69] for
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detailed discussions regarding conservation equations and their properties as applied towards

finite-volume methods.

General Godunov-type methods involve three major steps: reconstruction, flux function eval-

uation, and time marching. The original method developed by Godunov [10] uses a piecewise

constant reconstruction, an exact Riemann solver for the flux function evaluation, and a time-

marching scheme that reduces to an explicit Euler scheme. The following sections expand on

these ideas to create a higher-order scheme that provide greater computational efficiency and

accuracy.

3.2 Semi-Discrete Form

The preceding moment equations for the Gaussian closure are solved herein by applying an

upwind finite-volume method in which the conservation equations are integrated over hexahedral

cells of a body-fitted, multi-block mesh. By applying the geometric properties of a sample

hexahedral cell depicted in Figure 3.1 to the integral form of the conservation equations given

in Eq. (3.2), the finite-volume formulation applied to some cell (i, j, k) of the body-fitted grid

can be expressed as

dUi,j,k

dt
= − 1

Vi,j,k

∑
m

(
~F · ~n ∆A

)
i,j,k.m

+ S
(
Ui,j,k

)
i,j.k

(3.5)

where U is the vector of conserved solution variables averaged over the cell, ~F = (F,G,H) is the

hyperbolic solution flux dyad, S is the cell-averaged source term associated with the collisional

processes, Vi,j,k is the volume of cell (i, j, k), and ∆A and ~n are the area and unit outward

normal vector of the cell face m respectively. Definitions for the flux vectors F, G, H and the

source term S can be found in Sections 2.3.1 and 2.4.1 of Chapter 2 for the Gaussian closure

and the regularized Gaussian closure, respectively. Equation (3.5) then describes the evolution

of the averaged solution over a computational cell and forms a non-linear system of first-order

ordinary differential equations. The numerical fluxes at the faces of each cell are determined

using the least-squares piecewise limited linear solution reconstruction procedure of Barth [70]

and Riemann solver based flux functions. The limiter of Venkatakrishnan [71] and an extension

of the approximate linearized Riemann solver of Roe [72] for the Gaussian moment equations

are both used. Details of the numerical flux functions and solution reconstruction procedure

follow below.
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Figure 3.1: An example of a three-dimensional hexahedral cell for the finite volume formulation

used in this thesis. Image from Northrup [59].

3.3 Approximate Riemann Solvers

Godunov [10] initially evaluated the solution to the Riemann problem or extended ‘shock tube’

problem at each interface using the Rankine-Hugonoit relations and Riemann invariant formu-

lations to extract an exact flux through the interface, defined by the initial conditions as

F = F̄ (R (UL,UR, x/t = 0)) (3.6)

where UL, UR are the solutions from the left and right sides of the interface respectively,

R(UL,UR, x/t = 0) is the solution of the Riemann problem using these initial conditions, and

the flux is evaluated at x/t = 0.

The usefulness of this exact flux is diminished by the fact that Godunov’s scheme, based on a

piecewise constant representation of the solution within each cell makes the entire scheme only

first-order accurate. Solving the Riemann problem exactly can also become computationally

expensive due to its iterative procedure and limitations to simple equations of state. Although

a very efficient solution algorithm has been devised by Gottlieb and Groth [73] for polytropic

gases, these issues spurred the development of approximate Riemann solvers that provide the

numerical flux with the necessary degree of accuracy. While the reduction in computational
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cost may not be significant for simple systems such as the Euler equations, the lack of an exact

solution for general hyperbolic systems, including the Gaussian closures, generally necessitates

the use of an approximate solver.

3.3.1 Roe’s Approximate Riemann Solver

Roe [72] developed a linearized approximate Riemann solver, taking advantage of the fact that

a linear system’s solution can be easily obtained through an eigensystem decomposition. The

simplicity of solving such systems can be employed by using a local linearization of the Euler

equations. The governing equations for the system from Eq. (3.1) can be rewritten as

∂U

∂t
+ A

∂U

∂x
= 0 (3.7)

with the Jacobian matrix given by A = ∂F/∂U. Roe replaces this Jacobian with a constant

matrix, Ā, dependent on some intermediate state U∗, which in turn is a function of the initial

states UL and UR. This procedure generates a linear system of constant coefficients which

is then solved exactly. The approximate nature of the Roe solver comes from replacing the

original non-linear conservation laws and its associated Jacobian with this linearized system.

The creation of this replacement matrix for the flux Jacobian is subject to a number of stipu-

lations in order to accurately mimic the behaviour of the original Jacobian. They are:

1. In the limit that UL = UR = U, Ā should be able to recover the same system as the

original Jacobian such that

Ā (UL,UR) = Ā (U,U) = A (U) =
∂F

∂U
(3.8)

2. An exact solution for an isolated discontinuity between UL and UR, such that

∆F = Ā (UL,UR) ∆U (3.9)

3. The constant coefficient matrix Ā has real eigenvalues and a complete set of linearly inde-

pendent eigenvectors to retain the hyperbolic nature of the original system of equations.

Roe [72] developed the original approximate solver for the Euler equations of compressible gas

dynamics; however, extensions are possible for other hyperbolic systems such as the moment

equations found from the Gaussian closure, as demonstrated by Brown et al. [24] and McDonald

and Groth [15]. The construction of the intermediate state, U∗, is done here through a corrected
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average approach as proposed by Brown [25]. Applied to the Gaussian closure, with Wij =

Pij/ρ, the primitive variables for this state are found to be

ρ̂ =
√
ρLρR (3.10a)

ûi =

√
ρLuiL +

√
ρRuiR√

ρL +
√
ρR

(3.10b)

Ŵi =

√
ρLWijL +

√
ρRWijR√

ρL +
√
ρR

+
1

3

√
ρLρR(√

ρL +
√
ρR
)2 ∆ui∆uj (3.10c)

Êrot =

√
ρLErotL +

√
ρRErotR√

ρL +
√
ρR

(3.10d)

The final form of the flux function is then found to be

F =
1

2
(F̄L + F̄R)− 1

2

n∑
k=1

|λ∗,k|α∗,kr̄c∗,k (3.11)

where F̄L, F̄R are the left and right states of the interface, n is the number of conserved

variables, and λ∗,k , α∗,k and r̄c∗,k are the eigenvalues, wave strengths, and the right eigenvectors

associated with each conserved variable. The computational advantages of the Gaussian closure

can be seen here, as the eigenvectors and eigenvalues of the constant coefficient matrix, Ā, can

be easily generated to satisfy the hyperbolicity requirement needed to use this approximate flux

function.

The linearization process applied to the Riemann problem works well for contact and shock

waves where the discontinuity of the problem is modelled, albeit with errors associated with

the size of the jump. However, the continuous change in flow properties in rarefaction waves is

oversimplified by the linearizing process where the averaging procedure models all the propa-

gating waves using only their eigenvalues, leading to an inability to distinguish between shock

waves and rarefaction waves. The two nonlinear acoustic waves, λ1 and λ11, for the diatomic

Gaussian closure are prone to this problem and are incorrectly modelled as rarefaction shocks.

An entropy fixing term proposed by Harten [74] is added to Roe’s solver and corrects the

eigenvalues to avoid this problem. The positive and negative parts of the eigenvalues, λ±k , are

replaced by a corrected value, λ̂±k , such that

λ̂±∗,k =
1

2
(λ∗,k ± |λ∗,k|)±

δ∗,k
2
, (3.12)

where

δ∗,k =


1
2

[
|λ∗,k|2
Θ∗,k

+ Θ∗,k

]
− |λ∗,k| if |λ∗,k| ≤ Θ∗,k

0 if |λ∗,k| > Θ∗,k

(3.13)

and

Θ∗,k = max [0, 2 (λR,k − λL,k)] . (3.14)
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3.3.2 HLLE and HLLL Flux Functions

Originally developed by Harten, van Leer and Lax and expanded on by Einfeldt [75], the HLLE

flux function postulates the presence of a single intermediate state between the left and right

states of the interface. The maximum and minimum signal velocities are found by comparing

signal velocities taken from the eigenvalues of a Roe’s scheme linearization, and those from

the exact Riemann solution using the left and right states. The final form of the HLLE flux

function can be expressed as

F =
λ+FL − λ−FR

λ+ − λ−
+

λ+λ−

λ+ − λ−
(UR −UL) (3.15)

where FL, FR are the left and right flux contributions, and λ+, λ− are the maximum and

minimum signal velocities respectively. The lack of the intermediate wave can be problematic

in modelling shear waves and introduces excess dissipation in the boundary layer. To account

for this phenomenon, a formulation by Linde [76] based on the HLL flux function introduces

an intermediate wave in the presence of isolated contacts and discontinuities. Note that while

both flux functions are able to model the evolution of the shock and rarefaction waves, the Roe

flux function generates slightly steeper profiles at discontinuities. The HLLE flux function is

not without its merits, however, as the flux function of Roe can sometimes lead to negative

internal energies for highly rarefied flows.

3.3.3 Reconstruction and Slope Limiting

Godunov’s original method assumes that the solution is piecewise constant in each cell. Adopt-

ing a piecewise linear representation or higher order scheme to model a varying solution within

the cell would increase the global accuracy of the method. For second-order accuracy, linear re-

construction can be used in which the solution inside the cell is modelled with a linear function.

This results in a different initial solution on either side of the cell’s interfaces, and the resulting

Riemann problem on the interfaces would be changed. For a uniformly spaced one-dimensional

mesh, the slope of the solution within a cell i can be found through a second-order centred

derivative using the solutions from the two adjacent cells. The solution at each of the two

interfaces are then evaluated. The flux function evaluation is then carried out at each interface

and the average solution in each cell can then be updated

Employing a linear reconstruction procedure as is carries with it the risk of continuously fluc-

tuating slopes in a cell, resulting in undesirable oscillations near shocks. The use of slope

limiters helps to enforce montonicity by adjusting the slope based on the maximum and min-

imum averaged solutions in adjacent cells. As an example, slope limiters are applied to the
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one-dimensional problem such that the calculation of the solution at interface i+ 1
2 in cell i is

given by

Ui+ 1
2

= Ui + φ :
∂U

∂x

∣∣∣∣
i

(xi+ 1
2
− xi) (3.16)

where ∂U/∂x
∣∣
i

is the slope in cell i, xi is the position vector of the centre of cell i, and φ is a

slope limiter (one value of the limiter for each variable). Various slope limiters are available,

with the Barth-Jespersen [77] and the Venkatakrishnan [71] slope limiters studied here. The

use of a linear reconstruction dramatically increases the resolution of the shock, while the use

of a slope limiter limits the size of oscillations near discontinuities. The Barth-Jespersen and

Venkatakrishnan slope limiters behave similarly, with the only difference lying in the way the

slope limiters vary when encountering nearly smooth areas of the solution.

3.3.4 Treatment of Elliptic Fluxes

The regularization procedure applied to the Gaussian closure outlined in Section 2.4 of Chapter

2 introduces fluxes having an elliptic nature that are not addressed directly in the Godunov

scheme described above. The treatment of these terms in two dimensions, as performed by

McDonald and Groth [16–18], used a diamond-path reconstruction technique using the solution

state at a cell and the gradients at the cell interfaces. An application of the Green-Gauss

theorem on the diamond-shaped polygon bounded by the cell centers of the cell of interest and

its neighbouring cell, and the vertices of the cell that form the interface between the two cells.

In three dimensions, a direct application of this method becomes rather expensive. The edges

formed from the diamond-path reconstruction are replaced by surfaces instead. The octahedron

formed by a similar joining of cell centers and vertices requires an extensive storage of geometric

data, such as the face tangential vectors, which is not readily available for most hexahedral

meshes. Instead using the technique implemented by Gao [34] with a centrally-weighted method

for cell face gradients as proposed by Mathur and Murphy [58], the cell face gradients in three

dimensions for some cell and its i-direction neighbour can be expressed and evaluated as

−→
∇W|i+ 1

2
,j,k =

W|i+ 1
2
,j,k −W|i,j,k
ds

−→n
−→n · −→es

+

(
−→
∇W|i+ 1

2
,j,k −

−→
∇W|i+ 1

2
,j,k ·
−→es
−→n
−→n · −→es

)
, (3.17)

where W is the primitive solution vector, ds is the centroid distance, −→n is the face norm unit

vector, and −→es is the unit vector joining the two cell centroids. The weighted average of the

cell-centered gradient at the cell interface,
−→
∇W|i+ 1

2
,j,k is given by

−→
∇W|i+ 1

2
,j,k = α

−→
∇W|i,j,k + (1− α)

−→
∇W|i+1,j,k (3.18)
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where the weighting factor, α, is based on the respective volumes of the cells, V , such that

α =
Vi,j,k

Vi,j,k + Vi+1,j,k
(3.19)

3.3.5 Semi-Implicit Time Marching Scheme

While the focus of this thesis is the development of a fully implicit Newton-Krylov solver, a

semi-implicit time marching scheme for the Gaussian closures developed by McDonald and

Groth [15,16] for the solution of two-dimensional flows is used as a comparison to highlight the

computational advantages provided by the Newton-Krylov solution scheme. The details of this

semi-implicit time marching scheme are provided forthwith.

As the relaxation times, τt and τr, become very small under near-equilibrium conditions, the

numerical stiffness of the system increases. To handle these difficulties, the explicit solver

uses a point-implicit finite-volume formulation with second-order semi-implicit time-marching

is used to integrate the set of differential equations that results from the spatial discretization.

Returning to the three-dimensional semi-discrete form of the problem presented in Eq. (3.5), a

fully discrete solution scheme can be formed from the semi-discrete equations by introducing a

two-stage, second-order accurate, semi-implicit time marching scheme with implicit treatment

of the source terms, resulting in a solution update for some cell (i, j, k) that takes the form

Ũn+1
i,j,k = Un

i,j,k −
∆t

Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

)
+ ∆tS̃n+1

i,j,k (3.20a)

Un+1
i,j,k = Un

i,j,k−
∆t

2Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

+
∑
m

(
~̃F · ~n∆A

)n+1

i,j,k,m

)
+ ∆t

(
Sni,j,k + S̃n+1

i,j,k

2

)
(3.20b)

where Un
i,j,k and Sni,j,k are the vector of conserved variables and the source terms at time level n

respectively, Vi,j,k is the volume of the cell, and
(
~F · ~n∆A

)n
i,j,k,m

is the numerical flux through

the m-face of the hexahedral cell with area A to be solved with the approximate Riemann solver

described in the previous section, resulting in a second-order accurate scheme over smooth

sections of the solution.

A matrix K can be constructed such that the source terms can be expressed in the form

Sn = KnUn where
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K =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

au2 + bv2 + bw2 −2au −2bv −2bw a 0 0 b 0 b 2
5τr

−uv
τt

v
τt

u
τt

0 0 − 1
τt

0 0 0 0 0

−uw
τt

w
τt

0 u
τt

0 0 − 1
τt

0 0 0 0

bu2 + av2 + bw2 −2bu −2av −2bw b 0 0 a 0 b 2
5τr

−vw
τt

0 w
τt

v
τt

0 0 0 0 − 1
τt

0 0

bu2 + bv2 + aw2 −2bu −2bv −2aw b 0 0 b 0 a 2
5τr

u2+v2+w2

5τr
−2u
τr

−2v
τr

−2w
τr

1
5τr

0 0 1
5τr

0 1
5τr

− 3
5τr



a = − 2

3τt
− 2

15τr
, b =

1

3τt
− 2

15τr

The update scheme in Eqs. (3.20) can then be rewritten and rearranged as

Ũn+1
i,j,k −

(
K̃Ũ

)n+1

i,j,k
= Un

i,j,k −
∆t

Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

)
(3.21a)

Un+1
i,j,k −

∆t

2
(KU)

n+1
i,j,k = Un

i,j,k −
∆t

2Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

+
∑
m

(
~̃F · ~n∆A

)n+1

i,j,k,m

)
+ ∆t

(
Sni,j,k

2

)
(3.21b)

Defining a matrix B = I−∆t/ΩK, where Ω is the internal stage of the update scheme, a further

simplification of the scheme is possible. The inverse of this matrix preconditions the stages to

account for the, in many cases, stiff source terms and can be evaluated analytically due to the

local nature of the source terms and by assuming that the relaxation times do not vary over

the time step. In this case, the fully-discrete finite-volume scheme can then be written as

Ũn+1
i,j,k = B−1

[
Un
i,j,k −

∆t

Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

)]
(3.22a)

Un+1
i,j,k = B−1

[
Un
i,j,k −

∆t

2Vi,j,k

(∑
m

(
~F · ~n∆A

)n
i,j,k,m

+
∑
m

(
~̃F · ~n∆A

)n+1

i,j,k,m

)
+ ∆t

(
Sni,j,k

2

)]
(3.22b)
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3.4 Parallel Adaptive Mesh Refinement

Groth and co-researchers [28, 55–57, 66, 78, 79] have developed block-based AMR finite-volume

schemes for the solution of a range of physically complex flows on multi-block body-fitted

meshes with second-order accuracy. The application of these methods has included laminar

flames [57,79] and high-pressure soot prediction [80–82], turbulent non-premixed flames [55–57]

as well as turbulent multi-phase rocket core flows [78,83], micro-scale flows [15,66], and radiation

transport [84]. Extensions of the multi-block methods for embedded boundaries not aligned

with the mesh [85] and for use with an anisotropic refinement strategy [86,87] are also possible

and have been developed. This adaptive multi-block approach was extended to cubed sphere

grids (with second-order accuracy) and magnetohydrodynamics (MHD) flow problems by Ivan

et al. [62–65]. Application of this block-based AMR scheme for the Gaussian closures has been

performed by McDonald and Groth [15, 66] for a variety of two-dimensional micro-scale flows,

and highlights the computational benefits of the mesh refinement scheme. In this thesis, a three-

dimensional AMR scheme based on the work of Gao and Groth [34,55] has now been extended

for use with the standard and regularized Gaussian closure with an implicit Newton-Krylov

method for the solution of fully three-dimensional steady flow micro-scale problems.

High mesh resolution allows for a more accurate numerical solution of various flow problems,

but this comes at the expense of increasingly larger computational costs. In order to minimize

these costs, an adaptive mesh refinement algorithm proposed by Gao and Groth [34, 55] for

the modelling of turbulent non-premixed combustion flames in three dimensions is used herein

with a body-fitted hexahedral mesh leading to an efficient distribution of computational loads

suitable for implementation on large-scale distributed-memory computing clusters. By changing

the mesh according to physics-based criteria during the computation, areas of interest are

resolved with high mesh densities, while areas with smaller solution changes are evaluated with

larger cells. When used in conjunction with the finite-volume scheme above, the entire technique

can be used to treat flows with disparate length scales commonly present in shear and boundary

layers with reduced computational costs.

The mesh is divided into a number of body-fitted blocks dependent on the initial geometries

of the problem. At regular points during the computation, physics-based refinement criteria

are evaluated in each block to determine if a higher or lower mesh resolution is desired. To

ensure that gradual changes in the overall solution are depicted, mesh refinement ratios between

adjacent blocks are limited to 1:2 and the minimum resolution is limited to the initial mesh

resolution. An octree data structure such as the one in Figure 3.2 emerges from this three-

dimensional algorithm, where ‘parent’ blocks in need of refinement are divided into eight equally-
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Figure 3.2: Octree data structure and block connectivity for an AMR multi-block hexahedral

mesh.

sized ‘child’ blocks, each with the same mesh resolution as its parent, effectively doubling the

resolution in the parent block. Coarsening is done in the same manner with the joining of 8

child blocks to form a parent block. The computational costs for each block from this data

structure are equal, and a redistribution of the child blocks amongst available processors in

the parallel cluster ensures load balancing. Two layers of ghost cells form an overlapping layer

between adjacent blocks that provide a transparent passing of information between blocks and

are also used to impose boundary conditions, an illustration of which can be seen in Figure 3.3.

An example of the application of the overall AMR algorithm can be seen in Figure 3.4, where

refined grid blocks can be seen in areas of interest in the vicinity of a small cylindrical flow tube

embedded in a surrounding cylindrical flow. Refer to the paper by Gao and Groth [34, 55] for

further details of the AMR method used here.
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Figure 3.3: Two layers of overlapping ghost cells responsible for passing information between

neighbouring three-dimensional blocks on a hexahedral mesh.

Figure 3.4: Sample 3D AMR for multiblock body-fitted hexahedral mesh for internal flow of a

fuel line.



Chapter 4

Newton-Krylov-Schwarz Solution

Method for Steady Flows

The NKS solution algorithm for the set of non-linear algebraic equations that result from

the spatial discretization procedures of the finite-volume procedure defined in Chapter 3 uses

Newton’s method with a Krylov subspace approach for the solution of the linear system at each

Newton step. An additive Schwarz preconditioner is used in the parallel implementation of

the Krylov subspace method, and is fully compatible with the block-based AMR and domain

decomposition procedure used in the parallel implementation of the solution method. The

application of this implicit non-linear iterative solver to the standard and regularized Gaussian

closures aims to replicate the advantageous parallel performance of the NKS method for reactive

flows as previously investigated by Northrup [59] for a range of laminar flames.

4.1 Overview

Time marching methods seek fo find a solution to the coupled set of non-linear ordinary differ-

ential equations given in Eq. (3.5), and can be broadly categorized as either explicit or implicit

schemes [67]. Explicit schemes, such as the Runge-Kutta methods, are easily programmable

with a low computational cost per iteration. However, these methods tend to suffer from strict

stability limits that restrict the size of the time steps that can be taken. As a result, a very

large number of iterations with very small time steps is required to produce meaningful insight

on the temporal evolution of the conservative system of equations. Numerical stiffness puts

further restrictions on the size of the time step, such that the overall computational cost of

an explicit scheme can become astronomical. Advancements in algorithm development have

51



Chapter 4. Newton-Krylov-Schwarz Solution Method for Steady Flows 52

introduced explicit methods of increasing efficiency, such as multi-grid techniques [88], local

time-stepping [89], and implicit residual smoothing [90]. Implicit time marching methods can

typically employ larger time steps and are not limited by the numerical stiffness of the system.

They can therefore potentially reach a converged solution in far fewer iterations compared with

its explicit counterpart. The computational cost per iteration is significantly higher than those

from the explicit scheme, as a linear system of equations must be stored and solved at each

iteration. While the complexity of the implicit schemes requires more effort to implement dur-

ing algorithm development, the ability to use time steps orders of magnitude larger than those

from explicit methods is highly desirable, and can lead to significant savings in computational

cost.

For steady flows, it is also possible to eschew the use of time-marching altogether since by

definition the contribution of the time-derivative terms to the conservation equations reduces

to zero under steady state conditions. By removing the time derivative terms, the remaining set

of non-linear algebraic equations can be solved in an iterative manner using Newton’s method.

While Newton’s method alone reduces the algebraic equations of a semi-discrete approach into

a slightly more manageable coupled set of linear equations, an efficient solution to this linear

system is required at each Newton iteration. Exploiting the relatively sparse nature of this

linear system, an accelerated version of Newton’s method known as Newton-Krylov method

is used herein as an alternative to traditional time-marching methods for steady state flows.

They can also be applied to time-dependent problems using a dual-timestepping approach as

discussed by Northrup [59], but this is beyond the scope of this thesis.

The class of Newton-Krylov methods are so named by the use of Newton’s method for solutions

to a non-linear set of equations, with a Krylov subspace method used to find a solution for the

coupled set of linear equations generated within Newton’s method. As an iterative technique,

the internal linear system is only solved to within a certain tolerance before performing another

Newton iteration, so practical implementations of such methods are more accurately classified as

inexact Newton methods. Dembo et al. [91] have shown that the iterative treatment of inexact

Newton methods have significant advantages over exact Newton methods while retaining the

attractive quadratic convergence rates of Newton’s method.

The use of the Krylov subspace methods for use with Newton’s method was first proposed by

Brown and Saad [92]. A large variety of Krylov methods have been developed but many require

that the system of equations to be symmetric, such as the Conjugate Gradient method [93], a

condition that is impossible to satisfy for the Gaussian closure due to constraints in geometry

and the structure of the solution vector. The specific Krylov method used in this thesis is the

the Generalized Minimum RESidual (GMRES) method developed by Saad and Schultz [94].
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McHugh and Knoll [95] have shown that GMRES outperforms many other Krylov subspace

methods in the matrix-free implementation of Newton-Krylov methods applied to the steady,

incompressible Naview-Stokes equations in terms of convergence behaviour and robustness.

As an added acceleration technique, preconditioning is implemented on the Newton-Krylov

scheme in the form of a domain-decomposition method proposed by Schwarz [96]. The domain-

decomposition aspect of Schwarz preconditioning is an attractive feature, as the division of the

domain of interest is already performed by the multi-block, parallel, AMR scheme used in this

thesis. The additive nature of the preconditioning also leads to a fully parallel implicit scheme

as with no global serial computations. With additive Schwarz preconditioning applied to the

inexact Newton method described above, the entire scheme is referred to as the Newton-Krylov-

Schwarz (NKS) method in this thesis. The robustness of this combination of methods has been

shown in applications towards flow problems including aerodynamic optimization [30, 31] and

computational combustion [28,29]. The successful implementation of the NKS solution scheme

for such a diverse range of flow problems has prompted an investigation on its applicability for

the Gaussian closures considered in this thesis. A brief review the fundamentals of the NKS

method and its application specifically for the Gaussian closures is presented in this chapter.

4.2 Newton’s Method

The semi-discrete form of the governing equations used in the finite volume method form a

coupled set of non-linear ordinary differential equations. However, steady-state solutions (the

primary focus here), can be computed directly by solving the nonlinear algebraic equations such

that the residual vector satisfies

R (U) =
dUi,j,k

dt
= 0 (4.1)

using Newton’s method. Given an estimate to the solution to R(U) = 0 at iteration level n, the

following system of linear equations can be solved in Newton’s method to obtain an improved

estimate for the solution at the n+1 iteration level, U(n+1), satisfying ∆U(n+1) = U(n+1)−U(n):

(
∂R

∂U

)n+1

∆Un+1 = J∆Un+1 ≈ −R
(
Un+1

)
(4.2)

Given an initial estimate for the steady-state solution, U0, successively improved estimates

for the solution Un+1 are obtained by solving Equation (4.2) at each step, n, of the Newton

method, where J = ∂R/∂U is the residual Jacobian. Newton’s method is then applied in

an iterative fashion until a selected L2 residual norm (usually density) is reduced beyond a
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specified tolerance, ε, such that

‖R (Un)‖2 ≤ ε
∥∥R (U0

)∥∥
2
. (4.3)

The sparse nature of this linear system lends itself well to a number of accelerated solution

methods, such as the iterative Krylov method used in this thesis. The result is that within each

Newton iteration another set of iterations is performed to find the solution to the coupled linear

system. This nesting of iterations, while seemingly expensive, provides excellent convergence

properties that make the method much more attractive than algorithmically-simple explicit

schemes.

When the initial estimate of the problem is far from the desired converged solution, the nonlinear

nature of Eq. (4.1) can cause the solution method to converge slowly. To address this problem,

a finite-time step approach reminiscent of an implicit application of the Euler method with

switched evolution/relaxation (SER) is used, as proposed by van Leer and Mulder [97] and

incorporated in the NKS solver using the Navier-Stokes for reactive flows by Northrup [59].

The linear system given in Eq. (4.2) is modified to include an additional term in the diagonal

entries in Jacobian, such that (
∂R

∂U
− I

∆t

)n
∆Un ≈ −R (Un) (4.4)

where I is an identity matrix of the same dimensions as ∂R/∂U. A small time step, ∆t, is

chosen at the first Newton step, and is then allowed to increase gradually depending on the

ratio between the current Newton iteration residual norm and the starting residual norm. The

diagonal dominance of the Jacobian matrix reduces the implicitness of the system and aids in

the convergence rate during the initial Newton iterations. As the residual norm decreases, ∆t

increases, and its contribution to the linear system is reduced until the original linear system in

Eq. (4.2) is recovered when ∆t = ∞. The initial and final time step is not controlled directly

upon startup, but is instead done so by specifying an initial and final CFL number to avoid

handling variations in time step due to mesh spacing.

4.3 Krylov Subspace Linear Solver

Krylov subspace methods [93] focus on the solution to linear systems of the form

Ax = b (4.5)
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1. Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β

2. Define the m×m matrix Hm = {hij}1≤i≤m+1,1≤j≤m. Set Hm = 0

3. For j = 1, 2, · · · ,m Do:

4. Compute wj = Avj

5. For i = 1, · · · , j Do:

6. hij = (wj ,vi)

7. wj = wj − hijvi
8. EndDo

9. Compute hj+1,j = ‖wj‖2. If hj+1,j = 0 set m = j and Goto 12

10. Compute vj+1 = wj/hj+1,j .

11. EndDo

12. Compute ym the minimizer of ‖βe1 −Hmy‖ and xm = x0 + Vmym

Table 4.1: The GMRES algorithm, from Saad [93]

where, for the system in Eq. (4.2), x = ∆Un, b = −R (Un) and A = J (Un). A Krylov

subspace for this non-singular system is a linear subspace defined as

Km (A,b) = span
{
b,Ab,A2b, ...,Am−1b

}
(4.6)

The usefulness of this subspace comes from the fact that the solution to the linear system can

be expressed as a linear combination of basis vectors spanning this subspace. As discussed

earlier, the Krylov method used in this thesis is the GMRES method developed by Saad and

Schultz [94], which will define the spanning vectors and initiate a search through this subspace

for a solution vector z that solves min
z∈Kj(A,b)

‖b−Az‖. GMRES constructs a set of orthonormal

basis vectors for the Krylov subspace using Arnoldi’s method, which in turn is an extension

of the Gram-Schmidt process adapted to Krylov subspaces. Table 4.1 summarizes the basic

GMRES algorithm.

Starting with the normalized vector, v1 = r0/β, and some initial solution vector, x0, each iter-

ation j through the Arnoldi algorithm recursively builds an orthonormal basis vector, vj+1, by

a matrix-vector multiplication of the matrix A and the basis vector generated in the previous

iteration, Aj−1b. Upon completion of each iteration, a vector of the computed basis vectors,

Vj+1, and a Hessenberg matrix, Hj , consisting of dot products used in the basis vector calcu-

lations (Line 6. from Table 4.1) can be extracted. The decomposition process for each Arnoldi

method iteration can be written as

AVj = Vj+1Hj (4.7)
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with

Vj+1 = (Vj vj+1) , Hj =

(
Hj−1 hj

0 hj+1,j

)
(4.8)

where hj+1,j is the magnitude of the newly-found non-normalized basis vector vj+1. Upon

completion of the interior loops, a solution vector z can be defined as a member of the Krylov

subspace Kj (A,b) and thus can be written as a linear combination of the orthonormal basis

vectors as z = Vmy, where y is some vector. With this relation, the minimization problem can

be rewritten with

Az = A (Vmy) = (Vm+1Hm) y, b = βv1 = βVm+1e1 (4.9)

min
z∈Kj(A,b)

‖b−Az‖ = min
y
‖βVm+1e1 −Vm+1Hmy‖ = min

y
‖βe1 −Hmy‖ (4.10)

where e1 is the first column of the identity matrix. Once the minimized vector is obtained,

denoted here as ym, the updated approximate solution is then found as xj = x0 + Vmym.

Additional iterations of the GMRES algorithm will expand the number of basis vectors in the

Krylov subspace until j is equal to the size of the system, N , at which point the exact solution of

the system in Eq. (4.5) will be found. However, searching through the entire Krylov subspace

can be computationally expensive. Krylov methods therefore in general are instead used as

iterative methods to accelerate solution convergence by prematurely terminating the number

of iterations under two conditions: a maximum number of iterations m < N as specified by the

user, or if the residual norm ‖b−Ax‖ is sufficiently small. In a restarted GMRES algorithm,

also known as GMRES(m), further computational improvements can be seen if modifications

are made to the linear system through global and local preconditioning to encourage an accurate

approximation within a small number of iterations, m, and will be discussed later in Section

4.5 of Chapter 4.

4.4 Approximate Jacobian Matrix and

Application to the Gaussian Closure

The residual vector, R(U), can be defined as the change in the solution state with respect to

time, which the finite volume formulation defines as

R(U) =
dUi,j,k

dt
= − 1

Vi,j,k

∑
m

(F · ~n ∆A)i,j,k.m + Si,j.k. (4.11)

Newton’s method requires the Jacobian of this residual vector with respect to the solution state,

∂R/∂U, which in turn requires an evaluation of ∂ (F · ~n) /∂U and the Jacobian acting on the
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source terms, ∂S/∂U. The source vector itself is clearly defined from the collisional processes

in the Gaussian closure. The source vector found from the regularized Gaussian closure for

diatomic gases can be taken to be the right hand side expressions given in Eqs. (2.75)–(2.78).

The evaluation of the source term Jacobian is a straightforward exercise as it is not dependent

on the face normal. The same cannot be said for the remaining flux Jacobian.

To reduce the computational complexity regarding arbitrarily-oriented face normals, the inter-

mediate Jacobian ∂ (F · ~n) /∂U is computed on a reference frame generated by aligning the face

normal to the +x-axis. The transformation of this Jacobian into and out of this reference frame

can be written as
∂ (F · ~n)

∂Uij
=

∂F

∂F∗

∂F∗
∂U∗

∂U∗
∂Uij

, (4.12)

where ∂F∗/∂U∗ is the Jacobian of the rotated flux vector in the rotated reference frame.

The Jacobian ∂U∗/∂Uij describes the rotation of the cell state into the +x-axis, while the

Jacobian ∂F/∂F∗ describes the inverse of this rotation. Due to the structure of the terms

in the conservative form of the state vector, the Jacobian of the flux with respect to this

conservative state vector is further broken down via the chain rule to use the primitive form of

the state vector instead, resulting in

∂ (F · ~n)

∂Uij
=

∂F

∂F∗

(
∂F

∂W

∂W

∂U

)
∗

∂U∗
∂Uij

, (4.13)

where W is the primitive variable solution state.

The method described here is applicable to both the standard Gaussian closure and its regu-

larized counterpart, though additional consideration is required when incorporating the elliptic

fluxes in the regularized closure. As applied to Eq. (4.11), the flux vector is now defined as a

sum of the hyperbolic flux from the Gaussian closure and the elliptic flux from the regulariza-

tion. This necessitates the construction of an additional ‘viscous’ flux Jacobian, but otherwise

the solution method remains the same. Expressions for the structure of the above-mentioned

Jacobians as applied to both forms of the Gaussian closure can be found in Appendix B.

4.5 Global and Local Preconditioning Strategies

Preconditioning a system of linear equations represents any strategy of implicit or explicit

modifications done to a linear system that will make it easier to solve. Saad and Schultz [94]

have shown that the size of the Krylov subspace is dependent on the minimal polynomial of

A. This phenomenon suggests that preconditioning the matrix into a more diagonal form has

the potential to reduce the size of the searched subspace. Highly scalable parallel algorithms
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have been developed with this technique by Charest et al. [29] for the solution of radiative heat

transfer and by Northrup and Groth [98] for unsteady laminar flames.

A right-preconditioning, additive Schwarz scheme is applied here to the linear system in the

form (
JM−1

)
(Mx) = b (4.14)

where M is the preconditioning matrix. An additive Schwarz global preconditioner is a domain

decomposition method where the solution in each subdomain is updated only when the cycle

of updates is completed for all subdomains. The domain decomposition aspect of the additive

Schwarz and the independence of subdomain communication during temporal updates is exactly

what is used in the parallel, block-based AMR scheme. A further block incomplete lower

upper (BILU) local preconditioner is used in each subdomain as described by Saad [93]. The

preconditioner with both global Schwarz and local BILU can be written in the form

M−1 =

Nb∑
k=1

BT
kM−1

k Bk, (4.15)

where Nb is the number of blocks, and Bk is a gather operator matrix for the kth block, with

the BILU preconditioning appearing in the local preconditioner, Mk. Small overlaps between

subdomains can be performed by a suitable exchange of data between blocks to increase the

overall implicitness of the scheme, but care must be made to ensure that the cost of computing

the preconditioner does not exceed the cost of not using a preconditioner at all.

Solving the right-preconditioned system in (4.14), the matrix-vector product JM−1x is required.

Numerical differentiation based on Fréchet derivatives yields an approximation to this product

as

JM−1x ≈
R
(
U + εM−1x

)
−R (U)

ε
, (4.16)

where ε is a small scalar quantity representing a small perturbation in the solution state. The

value for ε used here is derived from Neilsen et al. [99], and is presented as ε = εo/ ‖x‖1/22 ,

where εo ≈ 10−8 − 10−7. Using this expression, the GMRES algorithm does not require an

explicit definition of a global Jacobian ∂R/∂U.

4.6 Selection of Newton-Krylov Solution Parameters

for the Gaussian Closures

Sufficiently converged solutions to the Gaussian closures using the NKS method are sensitive to

various adjustable parameters within the solver. In addition to the small perturbative quantity
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Flow Regime Initial CFL Final CFL ε

Continuum (Kn < 0.01) 101 − 103 106 − 107 10−6 − 10−7

Transition (0.01 ≤ Kn < 1) 102 − 104 107 − 1010 10−7 − 10−9

Free-Molecular (Kn ≥ 1) 100 − 102 102 − 104 10−9 − 10−11

Table 4.2: NKS Initial/Final CFL parameters and ε values for various flow regimes using the

standard and regularized Gaussian closures.

for the first-order Frechet derivative discussed earlier, the time step used in the SER implicit

Euler startup procedure outlined in Eq. (4.4) can be started at low value and slowly ramped

up to a specified final value to recover Newton’s method. This time step is controlled via an

initial and final CFL value that takes into account the mesh density of the computed problem.

It is certainly possible to set this time step to be a constant throughout the computation, but

this has been found to negatively impact the convergence rate for all problems considered in

this thesis. While the optimal NKS solution parameters will vary depending on the geometries

of the mesh, some conclusions can be drawn about their general behaviour in relation to the

non-equilibrium nature of the flow problem.

Table 4.2 shows the initial and final CFL values and the corresponding values for ε used in the

Frechet derivative for problems within the continuum, transition, and free-molecular regimes,

respectively. These general parameter settings hold for both the standard and regularized

Gaussian closures. In the continuum regime, increased stiffness of the equations due to the

short relaxation times in the source terms requires smaller initial time steps in the implicit Euler

startup procedure, but as the solution progresses larger time steps can be easily accommodated.

Strictness in the accuracy of the Frechet derivative through the selection of ε for continuum

flow tends to lead to stalled solutions. In transition regime flow, tightening the accuracy of the

Frechet derivative tends to increase the convergence rate, but lower accuracies can still lead to

converged solutions. Transition regime flows also seem less sensitive to the initial and final time

step values in the implicit Euler startup and operate under a large range of values. Flows within

the free-molecular regime pose significant restrictions on the NKS parameters. The initial and

final time steps tend to much smaller than those for the continuum and transition regimes, and

a highly-accurate Frechet derivative was also required. It should be noted that the smaller time

steps needed for free-molecular flows are still orders of magnitude larger than those need for

the semi-implicit method, as will be shown in the convergence histories of problems discussed

in Chapters 5 and 6.

Another adjustable parameter in the NKS method is the GMRES convergence tolerance, which

effectively governs how accurately the linear system is solved within each Newton iteration.
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High tolerances, while mathematically favourable, may require a large number of GMRES

iterations and become computationally expensive. Low tolerances, however, can negatively

impact the performance of subsequent Newton updates. Due to the iterative nature of the

NKS method and the inexact implementation of the restarted GMRES algorithm, tolerances

within the GMRES algorithm do not need to be too strict. For the standard and regularized

Gaussian closure, tolerances of 0.3 have been found to be sufficient, though for highly rarefied

flows, tolerances were tightened to 0.1.

Other adjustable NKS parameters and their effects on convergence are discussed by Northrup [59],

however these parameters have not been found to be dependent on the collisional nature of the

flow. Parameters such as the local BILU preconditioner fill level and domain overlap for the

additive Schwarz global preconditioner have been found to provide little improvement on the

convergence qualities of the standard and regularized Gaussian closures, and is similar to re-

sults reported by Northrup [59]. Higher levels of fill in the local BILU preconditioner allows

the approximate inverse to retain more non-zero entries at the expense more computational

work. For the flow problems considered in this thesis, a fill level of 2 was found to be sufficient.

Domain overlap can help overcome the loss of implicitness in the Schwarz preconditioner, which

becomes evident when the number of domains becomes large. Northrup [59] has reported that

while domain overlap can reduce the number of GMRES iterations, the overall computational

cost increases due to the extra block communication required. A similar behaviour was also

observed for the three-dimensional Gaussian closures, and therefore no domain overlap is used

for all flow problems considered herein.



Chapter 5

Three-Dimensional Numerical

Results for the Gaussian Closure

5.1 Overview

The standard Gaussian closure for both monatomic and diatomic gases and the proposed solu-

tion method for three-dimensional non-equilibrium flows are applied here to various flow prob-

lems to demonstrate their ability to model commonly-encountered flow phenomena, including

drag, boundary layer evolution, and slip flow behaviour. The flow problems considered are

mainly all three-dimensional extensions of similar two-dimensional cases considered previously

by McDonald and Groth [15–18]. Three-dimensional subsonic flow past a sphere is also consid-

ered. The numerical predictions are compared to available analytical solutions, experimental

data, and previous numerical solutions where applicable. The solid-wall boundary conditions

derived in Section 2.5 of Chapter 2 are used exclusively here.

For the cases considered here, the definition of mean free path, λ, used for all of the flow

problems considered here is that as given by Bird [1] and has the form

λ =
16µ

5 (2πρp)
1
2

, (5.1)

where µ is the dynamic viscosity of the fluid, and the gas particles are assumed to behave as

hard spheres during collision processes.

61
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5.2 Manufactured Solution

The finite-volume scheme developed here for the Gaussian closure is similar to that used in pre-

vious two-dimensional studies by McDonald and Groth [15–17]. A spatial accuracy assessment

for the finite-volume scheme applied to the solution of the Euler equations on two-dimensional

multi-block quadrilateral mesh has been performed by Sachdev and Groth [85, 100], and more

recently for the two-dimensional Gaussian closure with embedded boundaries by Mcdonald et

al. [50]. As the second-order spatial accuracy of the scheme has been demonstrated for the

moment equations of interest here, the task that remains is to demonstrate that the spatial

accuracy is also achieved in the current implementation for three-dimensional multi-block hex-

ahedral grids. As practical situations with exact analytical solutions for the variants of the

three-dimensional Gaussian closure of interest here are not available, the accuracy of the pro-

posed scheme is instead verified with the method of manufactured solutions [101]. This accuracy

assessment mirrors closely the analysis carried out previously by Mcdonald et al. [50] for the

two-dimensional case.

The method of manufactured solutions permits the construction of an analytical solution over

the computational domain of interest by driving the solution of the governing PDEs towards

the selected analytical results through the addition of source terms. This chosen analytical

solution for the Gaussian closure, Û, can be used to determine its associated solution residual

vector, R̂, based on a re-expression of Eqs. (2.44)–(2.47) in weak conservation form such that

R̂ =
∂Û

∂t
+
∂F(Û)

∂x
+
∂G(Û)

∂y
+
∂H(Û)

∂z
− S(Û) (5.2)

where F, G, and H are the flux vectors of the analytical solution in the x−, y−, and z−
directions respectively, and S is the associated source term. This residual vector is then added

as an additional source term to the original set of equations in the form

∂U

∂t
+
∂F(U)

∂x
+
∂G(U)

∂y
+
∂H(U)

∂z
= S(U) + R̂ (5.3)

such that the computed solution vector, U, is driven towards the prescribed solution, Û, once

a converged steady-state solution is achieved. The spatial accuracy of the solution method

(i.e. the discretization error) can then be evaluated by comparing the computed solution to the

prescribed analytical result.

For the particular case of interest, time-invariant solutions are found using the three-dimensional

Gaussian closure for a monatomic gas between two concentric cylinders. The interior and

exterior radii of the cylinders are 0.5 m and 1.0 m, respectively, and each has a height of 1.0
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m. The prescribed components of the Gaussian solution for this analysis are taken to be

ρ = 2 + sin(x+ y),

ux = cos(x+ y),

uy = sin(x− y),

uz = 0,

Pxx = 3− sin(x+ y),

Pxy = sin(y − x),

Pxz = 0,

Pyy = 3 + cos(x+ y),

Pyz = 0,

Pzz = 3 + cos(−x− y),

where the x− and y−axes lie within the plane of the circular base and the z−axis extends along

the length of the cylinder as shown in Figure 5.2.

Boundary conditions for this case were enforced by assigning the prescribed analytical solution

to appropriate ghost cells with reference to their position in three-dimensional space. The

NKS algorithm developed for the solution of the three-dimensional Gaussian closure was used

herein to find the time-invariant solution. The forcing nature of the manufactured residual

source term towards the analytical solution and the simplified boundary conditions and flow

conditions allowed the NKS solution algorithm to reach ideal convergence rates, with L2-norm

solution residual reductions of at least eight orders of magnitude.

For the grid convergence study, four nested meshes were considered. An initial coarse multi-

block, hexahedral grid is used together with three grids generated by three consecutive uniform

refinements of this grid. The mesh density of these four grids can be seen in Figure 5.2, and

their statistics are given in Table 5.1. Each mesh block contains 8 cells in the radial direction,

8 cells in the angular direction, and 16 cells over the height of the cylinder. An example of the

convergence history for the cylinder grid with 512 block grid is in Figure 5.1. The total CPU

time used for this particular case is approximately 4000 minutes, that when divided over the

256 processors used for the calculation, yields a total physical time of about 17 minutes. A

total of 200 Newton iterations are performed on each mesh, but as evident from Figure 5.1, a

suitably converged solution is reached before this time limit is reached.

The predicted error norms based on the computed and analytical solutions with increasing mesh

resolution is depicted in Figure 5.3. The L1 and L2 norms were calculated using the difference
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Refinement Level Blocks Cells Mesh Points Processors L2 Norm Time (min)

0 8 8192 9.7920 × 103 8 1.99279 × 10−12 0.653

1 64 65536 4.2931 × 106 64 9.95513 × 10−12 6.5

2 512 524288 2.1538 × 109 256 5.67367 × 10−11 17

3 4096 4194304 1.0999 × 1012 512 1.0918 × 10−8 92.03

Table 5.1: Properties of four cylinder grids used in the method of manufactured solutions using

the standard Gaussian closure.

Figure 5.1: L1, L2, and max error norms based on the solution residual for the manufactured

solution problem containing 512 computational blocks performed on 256 processors.

between computed and analytical solution at each cell center and weighted according to the

volume of the cell. The three-dimensional nature of the problem prompts a comparison to the

nominal mesh density given by the cube root of total number of cells, n1/3. A reference line

with a slope of -2 is included for comparison, and clearly illustrates that the formal second-order

spatial accuracy of the scheme is achieved on the multi-block hexahedral mesh.
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(a) 8,192 cells, 8 blocks (b) 65,536 cells, 64 blocks

(c) 524,288 cells, 512 blocks (d) 4,194,304 cells, 4096 blocks

Figure 5.2: Manufactured solution grids and parameters generated from consecutive uniform

mesh refinements.
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Figure 5.3: Predicted L1 and L2 error norms for the manufactured solution problem with

increasing mesh densities using the Gaussian closure for a monatomic gas.

5.3 Planar Couette Flow with Velocity Slip

One of the main non-equilibrium characteristics of increasing Knudsen number is the appearance

of velocity slip flows at solid walls. In the continuum regime, particle density at the wall is

sufficiently high that a large number of particles will collide with the wall and undergo a

change in velocity corresponding to the velocity of the wall. As the flows become increasingly

rarefied, fewer particles will collide with the wall and undergo this velocity change, resulting

in a decrease in macroscopic fluid velocity measurements at the wall. This disparity between

the velocity of the wall and the velocity of the flow at the wall begins at a Knudsen number

range of about 0.01 < Kn < 0.1. Accommodating velocity slip flows within the standard Navier-

Stokes descriptions usually involves incorporating complex boundary conditions as an extension

to the continuum-based equations [102]. The standard Gaussian closure however, requires no

case-specific boundary conditions beyond those already used for specifying solid-wall boundary

conditions, as slip flow effects fall out naturally from the equation set. This becomes a powerful

tool for modelling flows that lie in the continuum-slip flow regime.

Having established the spatial accuracy of the proposed finite-volume scheme for the Gaussian

closure, planar Couette flow is studied here to illustrate the ability of the closure to modelling
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boundary layer and shear stress evolution in various flow regimes, including those with velocity

slip. Figure 5.4 shows the setup for the flow modelled here, depicting the multi-block mesh

configuration and a sample computed solution. For this particular problem, the two plates

are moving at 30 m/s in opposite directions in argon at 288 K in standard pressure, and

the setup is extruded in the z−direction. The plate separation is used as the characteristic

length of the problem, and varies between 7.19438987 × 10−5m in the continuum regime to

7.19438987 × 10−10m in the free-molecular regime. The solution of the Gaussian closure was

used with periodic boundary conditions were used at the inflow and outflow boundaries, while

the solid wall boundaries described in Section 2.5 are used for the two plates. The mesh

resolution with three levels of mesh refinement were used for this problem, generating a total

of 43,200 cells. As the problem is relatively simple and the flow is almost one-dimensional,

the use of AMR was not necessary to reach a steady solution within a reasonable amount of

computational time. Flow solutions for this problem were performed using the NKS solver in

parallel over eight Intel Xeon E5540 cores operating at 2.53 GHz.

Figure 5.5(a) shows the non-dimensionalized velocity u/U , where u is the fluid velocity at the

wall and U is the wall velocity, versus the Knudsen number based on the separation of the two

plates. The standard Navier-Stokes equations calculates the fluid velocity at the wall to be

equal to the velocity of the wall regardless of Knudsen number. The free molecular solution

generates an infinite slip velocity at the wall, with the fluid velocity at the wall equal to zero

for all flows. Lees solution [103] provides an analytical solution to this problem that predicts

the slip velocity and shear stress at the wall, gradually transitioning from the continuum result

to the free-molecular. It is evident from the figure that the Gaussian solution is capable of

modelling the formation of a slip velocity and follows Lees solution closely for the full range

range of Knudsen numbers.

The shear pressure profile for the same problem can be seen in Figure 5.5(b). For comparison

purposes, the shear stresses are normalized to the free molecular solution as τxy/(ρU
√

2kT/πm).

Use of the continuum formulation predicts an ever-increasing shear stress with increasing Knud-

sen number, while the free-molecular shear stress remains constant regardless of Knudsen num-

ber. The Gaussian solution predicts a smooth transition between the continuum and free-

molecular solutions and is in very close agreement with the analytical solution by Lees.

It is important to note here the constant shear stress found in the free-molecular regime, as

this phenomena is clearly at odds with the continuum regime results. In the free-molecular

regime, assuming no interparticle collisions and fully accommodated collisions at the walls, the

non-equilibrium distribution function describing the fluid between the plates will be dependent

only on the half-Maxwellian distributions emanating from the two walls. With the plates
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sufficiently close such that the flow is effectively collisionless, the resulting solution for the

Couette flow becomes independent of the plate separation. Based on the two half-Maxwellians,

it can be shown that the shear stress between the plates is a constant non-zero value, even

with zero mean velocity, and represents the forces exerted by the plates on one another due

to momentum transfer occuring at the plate walls [104]. The ability of the Gaussian closure

to accurately model this constant free-molecular shear stress is a highly desirable feature. At

the very least, the results of Figure 5.5 provide confidence in the correctness of the slip-wall

boundary condition for the Gaussian closure.
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(a)

(b)

Figure 5.4: (a) Cutaway view of 3D mesh blocks for Couette flow problem with periodic

boundary conditions developed using AMR. Mesh size can also be seen in the blocks in a lower

half of the domain, (b) Sample result u velocity profile for Kn = 0.1. The moving walls are

situated along the top and bottom edge of the domain.
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(a)

(b)

Figure 5.5: (a) Normalized fluid velocity at the wall vs. Knudsen number. Note that the

free-molecular solution gives u = 0 at the wall regardless of Knudsen number, (b) Normalized

shear stress at the wall vs. Knudsen number.
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5.4 Subsonic Flat Plate Boundary Layer Flow

The Gaussian closure’s ability to model slip flows and its effect on the boundary layer is further

demonstrated here through the prediction of subsonic boundary layer development over a flat

plate. The configuration of interest is shown in Figure 5.6, with the third spatial dimension

extruded out of the page as shown in the mesh of Figure 5.7. The free stream conditions for this

flow consist of air at 288 K flowing at a Mach number of 0.2 under standard atmospheric pres-

sure. The characteristic length, and consequently the Knudsen number, is varied by sampling

the boundary layer profile along different lengths along the plate downstream from the leading

edge. The continuum boundary layer profile at Kn = 4.5 × 10−5 was sampled at 1.5 × 10−3

m, while the transition regime boundary layer profile at Kn = 2.6 × 10−1 was sampled at

2.6× 10−7 m. The associated Reynolds number for the continuum and transition regime flows

are Re = 6505 and Re = 1.1 respectively, well within the laminar flow regime. Solutions of the

Gaussian closure for this case in two-dimensions were obtained previously by McDonald and

Groth [15–18] using AMR with ten levels of refinement resulting in a very high mesh resolution

at the surface of the flat plate. For the Gaussian closure solutions in three-dimensions, four

levels of refinement were used, resulting mesh that contained a total of 250,000 cells. This level

of mesh refinement proved satisfactory for the current purposes. The mesh is linearly varying in

space such that a higher resolution is achieved closer to the plate surface. Solid wall boundary

conditions were again employed for the plate, with a far field situated 10 plate lengths above

the plate and inflow and outflow boundary conditions situated upstream and downstream from

the plate, respectively.

Figure 5.8 compares the boundary layer profiles between the Knudsen number-independent

Blasius solution [105] and solutions from the continuum (Kn = 4.5 × 10−5) and transition

(Kn = 2.6 × 10−1) regimes. Blasius proposed a relation between a non-dimensionalized veloc-

ity u/U normalised to the free stream velocity U , and a non-dimensional number y
√
U/(νx)

relating to the development of the boundary layer at a certain position above the plate. These

non-dimensionalized numbers are calculated for both the continuous and transitional case for

comparison purposes.

From Figure 5.8, it is quite evident that the continuum result matches closely with the Blasius

approximation with a zero slip velocity at the wall, while the transitional regime solution

clearly shows a non-zero velocity at the wall. Calculations were performed with approximately

100 cells lying within the boundary layer. From the numerical results, it would seem that

the Gaussian closure is equally capable of resolving the slip flow phenomena exhibited with

increasing Knudsen numbers.
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Figure 5.6: Boundary layer development along a flat plate, with boundary layer thickness δ(x),

velocity profile u(x, y) inside the boundary layer, and the free stream velocity U .

The convergence history of the flat plate boundary layer problem for continuum and transition

regime flow for both the NKS and semi-implicit solver are shown in Figure 5.9. The solvers

were performed over three Intel Core i7-980 processors operating at 3.33 Ghz. The NKS solver,

performing 100 Newton iterations in this case, is capable of reaching high convergence levels

at a fraction (0.3%–1%) of the computational cost of the equivalent semi-implicit solver. Be-

ginning with uniform initial conditions, resolution of the sharp edge at the front of the plate

seems to pose some problems for both solvers. The convergence rate of the NKS solver in the

continuum regime does not perform as well as those from the transition regime, a phenomenon

that occurs throughout most flow problems studied in this thesis. For small Knudsen numbers,

the relaxation time used in the source terms becomes very small and magnifies the size of the

source terms. This in turn increases the stiffness of the moment equations and reduces the

efficiency of the NKS solver. However, the solutions coming from the NKS solver are still in

line with results acquired from continuum-based solutions, as seen from the close agreement in

boundary layer profiles shown in Figure 5.8(a).
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(a)

(b)

Figure 5.7: (a) Cutaway view of 3D mesh blocks for flat plate boundary layer flow problem

developed using AMR. The flat plate boundary conditions are situated in the small patch of

wall at the centre of the domain as indicated. The large far field extending above the plate is

necessary for unimpeded boundary layer formation, (b) Sample u/U non-dimensional velocity

profile for continuum regime flow. Boundary layer profiles are taken at specific points along the

plate in accordance to the Knudsen number of interest.
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(a)

(b)

Figure 5.8: Flat plate normalised velocity distribution in developing boundary layer at varying

Knudsen numbers (a) Continuum Regime, Kn = 4.5 × 10−5, (b) Transition Regime, Kn =

2.6× 10−1.
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(a)

(b)

Figure 5.9: NKS and semi-implicit convergence rates for subsonic flat plate boundary layer flow

in the (a) Continuum Regime, Kn = 4.5× 10−5, and (b) Transition Regime, Kn = 2.6× 10−1.
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5.5 Subsonic Immersed Flow Past a Circular Cylinder

The drag forces exerted on a cylinder in an immersed flow is a well studied topic in aerodynamics

and serves as an excellent platform here with which to evaluate the validity and accuracy of

the Gaussian closure. The effects of laminar flow past a cylinder in both the continuum and

transitional regimes have been studied experimentally by Coudeville et al. [106], with focus on

the drag coefficient with both varying Reynolds and Knudsen numbers. Approximate solutions

to the cylinder drag in the continuum and transitional regime have also been put forward

by Patterson [107]. For the flow problem considered here, the cylinder radii was varied from

3.36 × 10−5 to 3.36 × 10−9 m, corresponding to a Knudsen number ranging from Kn = 0.001

to Kn = 10 using the cylinder diameter as the characteristic length. The computed Gaussian

closure solutions are for air at 288 K at standard atmospheric pressure. Two speed ratios of

S = 0.107 and S = 0.027 corresponding to Mach numbers of Ma = 0.128 and Ma = 0.032,

repectively, were used for setting the free stream velocity, where the speed ratio is defined as

the ratio between the bulk speed of the fluid to the most probable random speed of a particle,

and is proportional to the Mach number. The Reynolds number for these flows ranged from

Re = 0.005 up to Re = 188.

A sample of the three-dimensional computational grid with AMR implemented for this im-

mersed cylinder flow is shown in Figure 5.10. Solid wall boundary conditions were used for the

surface of the cylinder, with the far field set at 100 times the cylinder radius. However, for

Kn = 0.1, the boundary layer formed around the cylinder expands considerably, and the far

field boundaries were extended up to 400 times the cylinder radius to avoid any interaction with

the boundary layer. Mesh resolution at the surface of the cylinder was maintained at a level

similar to that of McDonald and Groth [15–18], with a final three-dimensional mesh resolution

of approximately 180,000 cells. As for the flat plate problem, the mesh was stretched to create

a higher concentration of cells near the cylinder surface.

The drag coefficient is plotted against the Knudsen number in Figure 5.11 for two different

speed ratios S. The Gaussian closure is successful in duplicating the experimental results of

Coudeville et al. [106] in both the continuum and transition regimes. However, the closure

solution begins to over-predict the drag coefficient compared to both the experimental results

and the theoretical solutions when the fluid begins to transition into the free molecular flow

regime at about Kn > 0.5. While the Gaussian closure tends to over-predict the drag coefficient

in this region, possibly due to the neglected heat transfer effects, it is successful in demonstrating

a smooth transition of drag coefficients while moving from the continuum regime into the free

molecular regime.



Chapter 5. Three-Dimensional Numerical Results for the Gaussian Closure 77

NKS Semi-Implicit

Kn Initial CFL Final CFL Time (min) L2-norm Ratio CFL Time (min) L2-norm Ratio

0.001 1 × 102 1 × 109 356.4 3.48279 × 10−7 0.3 2871.51 7.691 × 10−6

0.1 1 × 101 1 × 1010 205.1 1.88937 × 10−6 0.3 2782.91 1.401 × 10−6

1 1 × 101 1 × 1010 105.3 5.90163 × 10−12 0.05 2813.25 7.630 × 10−1

Table 5.2: Summary of NKS/semi-implicit CFL parameters and computation times for the flow

problems performed in Figure 5.13.

It should be noted that as the Knudsen number increases and the flow approaches the free

molecular regime, the flow structure also changes dramatically. Figure 5.12 shows the velocity

profiles for the flow around the cylinder in the continuum regime (Kn = 0.001) through the

transitional regime (Kn = 0.1), right up to the boundary of the free molecular regime (Kn = 1).

A clear separation of the flow with a recirculation area in the wake of the cylinder can be seen

in the continuum result which agrees with standard experimental results for this value of the

Reynolds number. As the Knudsen number is increased, the thickness of the boundary layer

increases and the flow remains attached. This thicker boundary layer disturbs the far field flow

much more prominently, and numerical results for these higher Knudsen numbers required a

larger domain to accommodate their effects. The increase in boundary layer thickness is in line

with basic kinetic theory for rarefied flows, as the reduction in interparticle collisions comes

about from larger mean free paths.

Examples of the NKS and semi-explicit solver convergence behaviour for the continuum, transi-

tion and near free-molecular regimes can be found in Figure 5.13. Both solution methods were

performed in parallel over eight Intel Xeon E5540 cores operating at 2.53 GHz on the SciNet

General Purpose Cluster (GPC). Table 5.2 provides a summary of the NKS and semi-implicit

CFL parameters used in these cases. The NKS scheme, each running 200 Newton iterations,

consistently outperforms the semi-implicit methods across all Knudsen numbers. The highly-

converged results and low computation time show that the NKS scheme is both robust and

efficient. The semi-implicit method requires consecutively smaller CFL numbers for conver-

gence, ranging from CFL = 0.3 for Kn = 0.001, to CFL = 0.005 for Kn = 1, which adversely

affects the amount of time required for convergence.

To further illustrate the robustness of the combined NKS and AMR schemes, the results from

a mesh convergence study for immersed flow over a cylinder at Kn = 0.01 and S = 0.107 can

be seen in Figure 5.14. Beginning with a coarse mesh, a converged NKS solution is computed

at consecutively refined meshes using AMR. The convergence history of the NKS solution is

shown in Figure 5.14(b). Rapid convergence can be seen at each refinement level and illustrates

the robustness of the NKS scheme regardless of mesh refinement. Using a planar view of the
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(a)

(b)

Figure 5.10: (a) A cutaway view of the radial mesh blocks created by the AMR algorithm for

immersed cylinder flow, showing refined block structure at the surface of the cylinder and in

the downstream regions. Mesh sizes are also shown in the lower left blocks. (b) Sample result

of Mach number profile for Kn = 0.1.
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Figure 5.11: Drag coefficient for varying Knudsen numbers at two speed ratios: Gaussian closure

vs. experimental results.

cylindrical grid, the meshes used at the beginning, middle and end of the the refinement study

can be seen in Figure 5.15. Each mesh block contains 80 cells in the radial direction, 20 cells

in the angular direction, and 2 cells over the height of the cylinder. Figure 5.14(a) shows the

computed drag over the cylinder at each level of refinement, where N denotes the total number

of cells in the mesh. The asymptotic behaviour of the drag with increasing refinement level

shows that the accuracy of the solver is maintained and effectively becomes independent of mesh

size. The experimental drag from Coudeville et al. [106] is plotted to show that the computed

and experimental drags agree to within 1%. The results of Figure 5.14 provide confidence in

the convergence accuracy of the predicted drag coefficients for the cases considered.
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(a) (b)

(c)

Figure 5.12: Comparison of x-directional velocity profiles for immersed cylinder flow at various

Knudsen numbers (a) Kn = 0.001, (b) Kn = 0.1, (c) Kn = 1.
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(a)

(b)

(c)

Figure 5.13: NKS and semi-implicit convergence rates for immersed subsonic flow past a

cylinder using the standard Gaussian closure at (a) Kn = 0.001, (b) Kn = 0.1 and (c) Kn = 1,

with S = 0.107.
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(a)

(b)

Figure 5.14: (a) Residual norm convergence over multiple applications of AMR for Kn = 0.01,

(b) Drag convergence towards experimental result over the refined grids.
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(a) 8 mesh blocks (25,600 cells) (b) 8 mesh blocks (25,600 cells), magnified

(c) 64 mesh blocks (204,800 cells) (d) 64 mesh blocks (204,800 cells), magnified

(e) 344 mesh blocks (1,100,800 cells) (f) 344 mesh blocks (1,100,800 cells), magnified

Figure 5.15: Sample of refined mesh blocks used for the mesh convergence study of the standard

Gaussian closure.
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5.6 Subsonic Immersed Flow Past a Sphere

As a final test case, flow past an immersed sphere is investigated next to demonstrate the full

three-dimensional capabilities of the Gaussian closure and its solution methods. A comparison

is made between the well-established values for sphere drag in low Reynolds number flows with

additional considerations for increasingly rarefied flows. For the first flow of interest, the sphere

radius was varied from 3.36 × 10−5 to 6.72 × 10−9 m, corresponding to a Knudsen number

range of 10−3 ≤ Kn ≤ 5 and a Reynolds number range of 1.934 × 102 ≥ Re ≥ 1.934 × 10−1

using the sphere diameter as the characteristic length, and is well within the laminar regime

and approaching the Stokes flow regime.

The computed Gaussian closure solutions were obtained for air at 288 K at standard atmospheric

pressure. The velocity slip boundary conditions were used in all cases. A cubed sphere grid

based on the work of Ivan et al. [62–65] for MHD flows is used, consisting of 48 blocks with

25,600 cells per block for a grand total of 1,228,800 cells. First introduced for the solution of

PDEs by Ronchi et al. [108], hexahedral cubed-sphere grids are generated from a projection

of a cube onto the surface of a sphere that divides the surface of the sphere into six identical

domains. This results in a quasi-uniform grid size over the the entire domain and avoids the

two computationally-restrictive poles generated in a latitudinallongitudinal grid system. The

cubed-sphere mesh used herein is based on the work of Ivan et al. [62–65] as applied towards

modelling MHD flow problems. An example of the mesh blocks and cell resolution on the

cubed-sphere grid used in this thesis can be seen in Figure 5.16, with a Mach profile of a sample

solution at Kn = 0.05 in Figure 5.17. This mesh resolution has provided sufficient accuracy in

computing the drag over the sphere.

Figure 5.18 shows the convergence histories of the NKS and semi-implicit solvers applied to

immersed subsonic flow past a sphere over a range of Knudsen numbers. Both NKS and semi-

implicit solvers were performed over 48 Intel Xeon E5540 cores operating at 2.53 GHz. A total

of 100 Newton iterations were performed for each flow problem. The NKS method clearly shows

its ability to reach high levels of convergence with much better convergence rates than those

from the semi-implicit solver. The small time steps required for stability in the semi-implicit

method is again found to be a significant hindrance in acquiring suitably converged solutions

in moderate Knudsen numbers. The CFL parameters and resulting computation times for

both methods can be found in Table 5.3, where the total physical time required for the NKS

method across all Knudsen numbers is orders of magnitude less than that required for the the

semi-implicit method, while still reaching highly converged solutions.
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(a)

(b)

Figure 5.16: (a) A cutaway view of the 48 mesh blocks used for immersed flow over a sphere in

the continuum regime, with one block illustrating the mesh density within each block, (b) Cell

density on the XY-plane centered on the sphere surface.
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Figure 5.17: Sample result Mach number profile for Kn = 0.05.

NKS Semi-Implicit

Kn Initial CFL Final CFL Time (min) L2-norm Ratio CFL Time (min) L2-norm Ratio

0.001 1 × 101 1 × 106 105.6 1.6597 × 10−9 0.1 2509.79 2.250 × 10−7

0.05 1 × 101 1 × 106 80.69 1.19477 × 10−9 0.1 2523.58 4.650 × 10−7

1 1 × 100 1 × 101 59.15 2.83057 × 10−4 0.05 1616.30 3.613 × 10−5

Table 5.3: Summary of NKS/semi-implicit CFL parameters and computation times for the flow

problems performed in Figure 5.18.

The variation of the sphere drag coefficient with respect to the Reynolds number is shown in

Figure 5.19(a). Experimental data for sphere drag, such as those by Roos and Willmarth [109]

and Liebster [110], and an analytical solution given by Flemmer and Banks [111], are shown here

and are largely focussed on its variance with respect to the Reynolds number. Low Reynolds

number flows are typically achieved in the experiments by increasing the fluid viscosity and/or

lowering the free stream velocity, whereas low Reynolds number flows performed with the

Gaussian closure here were achieved through a decrease in the sphere diameter only. The result

is that while the range of Reynolds numbers between the sets of data remains comparable, the

Gaussian closure results are subject to varying Knudsen numbers, whereas the experimental

and analytical results remain firmly in the continuum regime. Noting the lines demarking
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(a)

(b)

(c)

Figure 5.18: NKS and semi-implicit convergence rates for immersed subsonic flow past a sphere

using the standard Gaussian closure at (a) Kn = 0.001, (b) Kn = 0.05 and (c) Kn = 1
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the Knudsen number ranges for the Gaussian closure in Figure 5.19(a), the predicted drag

begins to deviate from the experimental results at the lower limits of the free molecular range

at about Kn = 1 due to the increased rarefication of the gas. The data comparison shown

in Figure 5.19(a) is therefore more suited to showing that the Gaussian closure is capable

of reproducing the continuum-type drag behaviour predicted by experimental and analytical

results, and that non-continuum effects are responsible for skewing the drag coefficient away

from the low Reynolds number, continuum-based near-Stokes solution.

Experimental results accounting for the rarefication of the flow over the sphere can be extracted

from the oil droplet experiments of Millikan [112,113] originally used to measure the elemental

charge, with corrections by Allen and Raabe [114] using more updated values for the viscosity

of air. The terminal velocity of oil droplets of varying size were measured in air with and

without the presence of an electric field. Without the electric field, the terminal velocity can

be directly related to the drag forces acting on the oil droplet. The advantage of comparing the

Gaussian closure results to this data set is that, due to the extensive amount of recorded data

by Millikan for each droplet, the computational parameters can be set such that the Knudsen

and Reynolds numbers match, ensuring that neither one is affected disproportionally due to

differences in rarefication. The range of Knudsen numbers covered by the investigated droplets

in these experiments extend from the slip regime (Kn = 0.01) to the free molecular regime

(Kn = 95). The Reynolds numbers are on the order of Re ≈ 10−4, sufficiently small to ensure

Stokes flow. The Gaussian closure is used here to model a portion of these experiments, though

computational convergence is difficult to achieve beyond Kn = 1. However, judging from the

breakdown of the equation set in this flow regime illustrated in the above study on cylinder

drags, any results gleamed from the equations in this high Knudsen number range are not

expected to be in complete accordance with the experimental results.

Millikan introduced a correction factor to the Stokes sphere drag solution similar to the ana-

lytical sphere drag correction by Cunningham [115] to account for the non-continuum effects

on successively smaller oil droplets and their impact on the measured drag. This factor, fKn,

can be found experimentally as the ratio between the measured drag, fdrag, and the analytical

drag predicted from Stokes flow, fStokes, and by extension is equivalent to the ratio between

their respective drag coefficients. A plot of this ratio with varying Knudsen number for both

the experimental and computational results with the Gaussian closure can be seen in Figure

5.19(b). The low Mach numbers and small density gradients in these flows has been found to

lower the overall convergence rate of the NKS scheme, but residuals in these results shown here

are on the order of at least 10−6 after each mesh refinement. The drag ratios from the Gaussian

closure match well with the experimental results for Kn < 0.1, with an overestimation for higher
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Knudsen numbers. The breakdown of the equations in this Knudsen number range is compa-

rable to results found from a similar study on rarefied Stokes flow by Torrilhon [116], except

that without the presence of heat transfer terms the calculated drag overestimates, rather than

underestimates, the experimental drag. The lack of suppression on the growth of the boundary

layer causing an overestimation of the drag was also seen in the study on cylinder drag outlined

earlier. However, the Gaussian closure is still able to model the overall decreasing trend in

the drag ratio, whereas the usual Navier-Stokes solution is firmly grounded in the continuum

regime and will always return the Stokes drag (i.e., fKn = fdrag/fStokes=1).
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(a)

(b)

Figure 5.19: (a) Drag coefficient over a sphere: Gaussian closure vs. experimental and analytical

results, (b) Stokes drag correction factor with varying Knudsen number for experimental results

by Millikan [112,113], and some corresponding data points using the Gaussian closure.



Chapter 6

Three-Dimensional Numerical

Results for the Regularized

Gaussian Closure

6.1 Overview

The Gaussian closure in its original form is well-adapted to modelling flows in the continuum

regime as well as the velocity slip phenomenon present at moderate Knudsen numbers. While

the velocity slip is modelled correctly even at high Knudsen numbers, as demonstrated in the

microscale Couette flow problem, the overall performance of the closure is unable to accurately

model the drag on a cylinder and sphere at comparable Knudsen numbers. This suggests that

non-equilibrium drag is dependent not only on velocity slip, and that the Gaussian closure as is

does not account for this phenomenon. McDonald and Groth [16] have shown that incorporating

the effects of heat flux into the Gaussian closure drastically improves the predictive abilities of

the closure for flow over a NACA0012 micro-airfoil and microscale cylinder. Heat transfer in

non-equilibrium flow is therefore non-negligible, and its inclusion into the Gaussian closure via

regularization as described in Section 2.4 of Chapter 2 should offer substantial improvements.

The improved predictive capabilities of the regularized Gaussian closure are illustrated here in a

number of flow problems dedicated to evaluating non-equilibrium heat transfer effects for both

monatomic and diatomic gases. The numerical predictions are compared to available analytical

solutions, experimental data, and previous numerical solutions where applicable. Using the

method of manufactured solutions, the second-order spatial accuracy of the solution scheme

91
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applied to the regularized Gaussian closure is also evaluated. In addition to the velocity slip

boundary conditions discussed in Section 2.5.1 of Chapter 2, the temperature slip boundary

conditions from Section 2.5.2 are also applied for all flow problems discussed in this chapter.

The performance of the temperature slip boundary conditions are evaluated through the energy

transfer between two heated plates, and in conjunction with the velocity slip boundary condi-

tions in pressure-driven Poiseuille flow and a lid-driven cavity. Immersed subsonic flow over a

cylinder and sphere is also revisited with the regularized closure to observe changes due to the

inclusion of the heat transfer terms.

6.2 Manufactured Solution

The method of manufactured solutions as described in Section 5.2 of Chapter 5 is used once

again to ensure that the addition of regularized terms in the Gaussian closure does not degrade

the second-order spatial accuracy in the proposed finite-volume scheme. The method follows

closely that described in Section 5.2 with modifications to the residual vector accounting for the

elliptic heat flux terms within the regularized Gaussian closure. The prescribed components of

the regularized Gaussian solution were again set to be dependent only on the spatial coordinates,

and are taken to be

ρ = 2 + sin(x+ y),

ux = cos(x+ y),

uy = sin(x− y),

uz = 0,

Pxx = 3− sin(x+ y),

Pxy = sin(y − x),

Pxz = 0,

Pyy = 3 + cos(x+ y),

Pyz = 0,

Pzz = 3 + cos(−x− y),

where the heat flux vector, Qijk, was evaluated by analytically taking derivatives of the solution

state quantities given above. The residual vector associated with the chosen analytical solution

defined initially in Eq. (5.2) was modified to include the elliptic heat flux terms created in the
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regularized procedure, such that

R̂ =
∂Û

∂t
+

∂

∂x
(F(Û) + Fe(Û)) +

∂

∂y
(G(Û) + Ge(Û)) +

∂

∂z
(H(Û) + He(Û))− S(Û) (6.1)

where Fe, Ge, and He represent the elliptic heat transfer terms in the x−, y−, and z− directions

respectively. These are defined in terms of the heat flux tensor Qijk and have the form

Fe =



0

0

0

0

Qxxx

Qxyx

Qxzx

Qyyx

Qyzx

Qzzx

0



, Ge =



0

0

0

0

Qxxy

Qxyy

Qxzy

Qyyy

Qyzy

Qzzy

0



, He =



0

0

0

0

Qxxz

Qxyz

Qxzz

Qyyz

Qyzz

Qzzz

0



. (6.2)

It must be noted that while Qijk is symmetric and contains at most ten unique terms, these

terms are differentiated over different spatial axes, necessitating a full evaluation of all eighteen

terms.

Four hierarchical grids were again used based on consecutive uniform refinements of an initially

coarse mesh for a concentric cylindrical domain with interior and exterior radii of 0.5 m and 1.0

m, respectively, and a height of 1.0 m. Beginning with an 8-block description, three consecutive

mesh refinements were performed with a grid converged solution acquired at each level of

refinement. The mesh resolution of these grids can be found in Section 5.2 of Chapter 5, with

the NKS convergence level and computation time incorporating the heat transfer effects from

the regularized Gaussian closure can be found in Table 6.1. A total of 200 Newton iterations

were performed on each mesh. A sample convergence history can be found in Figure 6.1 for the

cylinder mesh containing 512 computational blocks.

The regularized Gaussian closure performs similarly to the original Gaussian closure in terms of

convergence rate. The error norms for the regularized Gaussian closure can be found in Figure

6.2. The characteristics of a second-order spatially accurate scheme are once again reproduced

and provides verification of the discretization of the elliptic terms associated with heat transfer

in the regularized Gaussian closure.
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Refinement Level Blocks Cells Mesh Points Processors L2 Norm Time (min)

0 8 8192 9.7920 × 103 8 9.93232 × 10−12 5.8

1 64 65536 4.2931 × 106 64 5.07717 × 10−11 7.436

2 512 524288 2.1538 × 109 256 4.52045 × 10−10 21.39

3 4096 4194304 1.0999 × 1012 512 2.51864 × 10−5 115.3

Table 6.1: Properties of four cylinder grids used in the method of manufactured solutions using

the regularized Gaussian closure.

Figure 6.1: L1, L2, and max error norms based on the solution residual for the manufactured

solution problem with heat transfer containing 512 computational blocks performed on 256

processors.
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Figure 6.2: Predicted L1, L2 and L∞ error norms for the manufactured solution problem with

increasing mesh densities using the regularized Gaussian closure for a monatomic gas.

6.3 Energy Transfer Between Heated Plates

The regularized moment closure in combination with the slip flow boundary conditions described

above have been used to model the temperature profile between two heated infinite plates

over a wide range of Knudsen numbers. Argon initially at 300 K and standard pressure is

placed between two isothermal plates oriented in the x−direction with TL = 290 K and TR =

310 K, separated by a distance ranging from 7.05973× 10−4 to 7.05973× 10−9 m (defining the

characteristic length of this problem) corresponding to 10−4≤Kn≤10. The computational mesh

can be seen in Figure 6.3, and consists of a total of 200 cells in the x−direction and 6 cells each

in the transverse directions. The temperature profile between the plates is shown in Figure 6.4.

The temperature slip phenomenon is clearly visible entering the transition regime at Kn = 0.1

and continues well into the free molecular regime. Figure 6.5 shows the calculated normalized

wall temperature at the high temperature wall and the normalized heat flux calculated between

the plates. In Figure 6.5(a), the temperature is normalized using the expression

T ∗ =
T − Tm
Tw − Tm

(6.3)

where T ∗ is the normalized temperature, Tm is the temperature of the gas midway between

the plates, Tw is the temperature of the wall, and T is the measured temperature of the gas at
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Figure 6.3: The two mesh blocks used for temperature profile calculations between two heated

plates in the x−direction.

the wall. The figure clearly shows the temperature slip effect with increasing Knudsen number

which is not captured by the Navier-Stokes. These results can be captured using the boundary

conditions described in Section 2.5.2 of Chapter 2 based on work by Smoluchowski [53]. Figure

6.5(b) shows the variation of the normalized heat flux with increasing Knudsen number. The

heat flux is normalized to the free molecular heat flux, qfm, given by Bird [104] as

qfm = −ρ (2R)
3
2

(
TUTL
π

) 1
2
(
T

1
2
U − T

1
2
L

)
(6.4)

where TU and TL are the temperatures of the upper and lower plate at 310 K and 290 K,

respectively, and R is the specific gas constant. As discussed in Section 5.3 of Chapter 5, the

lack of interparticle collisions and fully accommodated collisions at the walls produce a non-

equilibrium distribution for the gas between the plates of a Couette flow that is independent of

the plate separation. For the problem of heat transfer between two plates in the free-molecular

flow regime, it can be shown that the heat flux between the plates has a non-zero constant

value given by Eq. (6.4) above, even though the expected gas temperature between the plates

is uniform and constant [104]. The heat flux between the plates in this case is produced by the

energy transfer occuring at the walls as dictated by the fluxes of incoming particles arriving
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Figure 6.4: Temperature distribution between two isothermal walls over the non-

dimensionalized wall separation distance Lx for a range of Knudsen numbers, with Lx = 0

designating the centerline between the plates.

directly from the upper and lower walls, respectively. The Gaussian closure with temperature

slip boundary conditions predicts a heat flux in line with those of the Navier-Stokes in the

continuum limit, and smoothly transitions to the perfect temperature slip characterized by the

free-molecular limit with increasing Knudsen number. Similar to the previous Couette flow

results for the velocity slip boundary conditions of the original Gaussian closure, the results for

heat transfer between the heated plates of Figure 6.5 provide some confidence in the accuracy

of the boundary conditions for temperature slip.
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(a)

(b)

Figure 6.5: (a) Change in normalized temperature at the heated wall with increasing Knudsen

number, (b) Heat flux between the plates normalized to the free-molecular solution.
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6.4 Pressure-Driven Poiseuille Flow

Pressure-driven Poiseuille flows form a fundamental part of various microchannel flows com-

monly found in MEMS devices, and is also of interest in the study of fluid transport in animal

physiology. Continuum Poiseuille flow has been well studied both analytically and experimen-

tally, but the difficulties in acquiring accurate physical data in the rarefied regime has led to

a significant lack of study of Poiseuille flow in this regime, especially in matters concerning

thermal transport. It has been well established that thermal properties seen on the continuum

level are not representative of those seen in rarefied flows, such as the presence of heat fluxes

not enforced by a temperature gradient.

The properties of moderate Knudsen number Poiseuille flows have been investigated analytically

by Taheri et al. [117] using the regularized 13-moment equations of Struchtrup and Torrilhon [21]

and John et al. [118] using DSMC. One of the most interesting features of this flow is the

formation of a dip in the heat flux profile coinciding with the centerline of the channel in the

slip and transition regimes. This phenomenon was established analytically in literature by Tij

and Santos [119] and Aoki et al. [120], and has been replicated by the regularized 13-moment

equations and DSMC. Using the regularized Gaussian closure, pressure-driven Poiseuille flows

are studied to show the capabilities of this closure under the effects of both temperature and

velocity slip, aiming to reproduce the bimodal heat flux profile shown in earlier computational

and analytical studies.

The initial conditions and flow geometry follow closely with those performed by John et al. [118].

A pressure-driven Poiseuille flow over a channel with an aspect ratio of L/H = 5 is studied

here. Similar to the problem described earlier regarding the energy transfer between two parallel

plates, argon initially at 300 K and standard pressure is placed between two isothermal plates

oriented in the x−direction, separated by a distance ranging from 7.05973× 10−5 to 1.41195×
10−7 m (defining the characteristic length of this problem) corresponding to 10−3≤Kn≤ 0.5.

The inlet pressure, Pi, inlet temperature, Ti, and the outlet pressure, Po, are specified, with

the wall temperature, Tw, and inlet temperature set to a reference temperature, T0, such that

T0 = Tw = Ti = 273 K. Of interest is the tangential heat flux distribution across the channel

height. This heat flux is non-dimensionalized against a reference heat flux, q0 = µRT0/H.

A pressure ratio, p′ = Pi/Po, is defined to study the effect of the pressure gradient on the

development of the heat flux profile. Values of p′ = 1.5 and p′ = 2.0 are studied here. For

comparison purposes with the DSMC data, the heat flux profile is measured at a distance 2L/3

from the entrance of the channel. The computational mesh uses 120 cells across the height

of the channel to provide a reasonable resolution to the final results, and the complete mesh
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(a)

(b)

Figure 6.6: (a) Poiseuille flow mesh blocks in the XY-plane, and (b) a cutaway view of the

mesh blocks with temperature contours for Kn = 0.025 and p′ = 2.0.

contains 192,000 cells. Using the NKS algorithm, the L2-norm residual has been reduced by up

to at least six orders of magnitude. The computational mesh and a sample solution result for

the Poiseuille flow problem is given in Figure 6.6.

The regularized Gaussian closure and the Navier-Stokes equations are first applied to the

Poiseuille flow problem in the continuum regime with Kn = 0.001 at p′ = 1.5, where the

characteristic length is defined as the height of the channel. Figures 6.7 and 6.8 show the over-

all Mach number and temperature profiles compared to an equivalent flow problem solved using

the Navier-Stokes equations. The Mach and temperature profiles generated by the regularized

Gaussian closure are in good agreement with those from the Navier-Stokes, and shows that the

closure system is capable of replicating the continuum-limit behaviour of the Poiseuille flow

problem. Figure 6.9 shows the non-dimensionalized temperature, normal and transverse heat

flux, and Mach number predicted from both the regularized Gaussian closure and the Navier-

Stokes equations measured at 2/3 of the total channel length from the entrance of the channel.
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(a)

(b)

Figure 6.7: Mach number contours for Poiseuille flow, Kn = 0.001 and p′ = 1.5 using (a)

Navier-Stokes, and (b) regularized Gaussian closure

It is evident that, in the continuum regime, the regularized Gaussian closure performs well in

predicting the Mach and temperature profiles, and does a reasonably good job in predicting

the centerline heat fluxes. The heat flux as measured in the near-wall region leaves much to

be desired. While the overall trends in heat flux generated by viscous effects at the wall are

present, the regularized Gaussian closure tends to overpredict these trends. The slip temper-

ature boundary conditions, though designed to provide the proper no-slip temperature in the

continuum regime, may be insufficient in describing the full range of heat transfer phenomena

that occur in the near wall regime.

The heat flux profiles obtained using the regularized Gaussian closure are compared with those

from the above-mentioned DSMC analysis of John et al. [118] and the Navier-Stokes equations

in Figure 6.10 and 6.11. The bimodal heat flux distribution is most pronounced within the

early slip regime and transition regime, and is shown to occur using both DSMC and the

regularized Gaussian closure. There is a distinct and general increase in magnitude for the heat

flux predicted by the Gaussian closure, and a sharp reversal of the heat flux at the boundaries,

while the shape of the profile is largely in agreement. Recall that the boundary conditions

implemented by the Gaussian closure places no restrictions on heat flux, and the temperature

slip phenomenon is modelled purely through an analytical expression, which in turn returns

corrected values for the shear stress at the boundary. However, the construction of temperature
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(a)

(b)

Figure 6.8: Non-dimensionalized temperature with heat flux contours for Poiseuille flow, Kn =

0.001 and p′ = 1.5 using (a) Navier-Stokes, and (b) regularized Gaussian closure

slip boundary conditions in this manner assumes that the thermal Knudsen layer at the wall is

infinitesimally thin, an assumption that carries heavy consequences with increasingly rarefied

flows. From Figure 6.10 and 6.11, aside from the known physical accuracy of the DSMC method,

this heat flux reversal occurs within the first few interior cells and is indicative of inadequate

boundary conditions. This large shift in heat flux at the boundaries most likely effects the

overall predicted heat flux in the channel and acts to increase the heat flux, shown in the figure

as a shift to the left. Even with these deficiencies, it is encouraging to note that the general

shape of the profile and its bimodal characteristics can be reproduced with the regularized

Gaussian closure, along with its evolution with increasing Knudsen number. The pronounced

bimodal profile from an increase in the pressure ratio is also properly modelled by the regularized

closure. The detrimental effects of the no-slip boundary conditions in the Navier-Stokes solution

become evident with increasing Knudsen number. The boundary layer that forms from the walls

dominates the entire channel height and prevents particles from migrating towards the low

pressure end of the channel, significantly reducing the flow velocity, temperature gradient, and

transverse heat transfer. Even for a mildly rarefied flow at Kn = 0.025 the measured transverse

heat flux is nearly non-existent and is independent of increasing rarefaction or pressure gradient,

caused in part by this backlog of particles forming the boundary layer at the walls.

It is interesting to note that the regularized Gaussian closure maintains the bimodal behaviour

in the heat flux for higher Knudsen numbers. Using DSMC, this bimodal behaviour disappears
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(a) (b)

(c) (d)

Figure 6.9: Navier-Stokes vs Regularized Gaussian Closure for Poiseuille flow, Kn = 0.001 and

p′ = 1.5, for (a) non-dimensionalized temperature, (b) Mach number, (c) non-dimensionalized

transverse heat flux, and (d) non-dimensionalized normal heat flux, as measured 2/3 of the

total distance from the channel entrance.
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(a) Kn = 0.025, p′ = 1.5 (b) Kn = 0.05, p′ = 1.5

(c) Kn = 0.1, p′ = 1.5 (d) Kn = 0.5, p′ = 1.5

Figure 6.10: Non-dimensionalized heat flux profiles across the channel at various Knudsen

numbers for Poiseuille flow using DSMC and the Regularized Gaussian Closure, p′ = 1.5

at about Kn = 0.1 and takes on a parabolic profile that becomes more uniform when entering

the free-molecular regime. The regularized Gaussian however predicts a small bimodal profile

for flows up to Kn = 0.5. Both modelling methods generate a heat flux profile that asymptopes

toward a uniform profile in the free-molecular regime.
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(a) Kn = 0.025, p′ = 2.0 (b) Kn = 0.05, p′ = 2.0

(c) Kn = 0.1, p′ = 2.0 (d) Kn = 0.5, p′ = 2.0

Figure 6.11: Non-dimensionalized heat flux profiles across the channel at various Knudsen

numbers for Poiseuille flow using DSMC and the Regularized Gaussian Closure, p′ = 2.0
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6.5 Lid-Driven Cavity Flow

The capabilities of the half-Maxwellian boundary conditions in modelling temperature slip and

velocity have been demonstrated separately in the parallel heated plates flow problem and the

Couette flow problem respectively. The combined effect of both types of slip can be seen in

the driven cavity flow problem. Channel elements and moving surfaces constitute a major

portion of designs used in modern MEMS device manufacturing, such that a thorough study of

its behaviour under non-equilibrium conditions is an important benchmark for validating the

regularized Gaussian closure.

Continuum-based solutions to lid-driven cavity flow are widely available with a predictable

velocity and heat flux profile. With increasing Knudsen number, the Navier-Stokes equations

become ill-suited in demonstrating some of the phenomena that manifests itself under non-

equilibrium conditions. Extensive studies by John et al. [121] on non-equilibrium cavity flow

were performed using the DSMC method of Bird [1], with a later study on the effects of varying

accommodation coefficient using the same method [122]. To the best of the author’s knowledge,

there exist no three-dimensional experimental studies of this problem with which an accurate

comparison can be made with solutions generated from the regularized Gaussian closure. The

results acquired here are instead compared to the DSMC results of John et al. [121, 122],

given the known physical accuracy of the DSMC technique for moderate Knudsen numbers. A

comparison of results from the regularized Gaussian closure and the Navier-Stokes equations for

continuum-regime lid-driven cavity flow are also shown to ensure that the regularized closure

is able to recover continuum-limit behaviour.

A square-shaped cavity filled with the fluid of interest is subject to shearing forces from the

movement of the top face of the cavity. Figure 6.12 illustrates the setup for this problem.

For the three-dimensional regularized Gaussian, periodic boundary conditions are placed in

the transverse location such that a slice of the channel is comparable to the two-dimensional

computational solutions available in literature. Argon under standard atmospheric conditions

at 273K is placed within the cavity, and the Knudsen number is controlled by varying the

dimensions of the cavity. Isothermal boundary conditions set to the initial temperature of the

gas are enforced on the cavity walls, with an additional x−direction velocity component on the

upper wall moving to the right at uw = 50 m/s. The computational mesh consists of 921,600

cells concentrated in the plane of interest. A view of the computational mesh and a sample

numerical result for the regularized closure can be seen in Figure 6.13.

Results from the regularized Gaussian closure for this flow problem in the continuum regime
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Figure 6.12: Diagram of lid-driven cavity flow by John et al. [121].

are first compared to those from the Navier-Stokes equations. DSMC data for these low Knud-

sen numbers are unavailable due to the extreme computational cost associated with the ever-

increasing number of virtual particles needed per cell. These results can be seen in the Mach

number and temperature contours in Figure 6.15 and Figure 6.16, respectively, for Kn = 0.001.

The predicted Mach number contours are very similar for the two equation sets at this Knudsen

number, but velocity slip effects are beginning to form in the upper right corner of the cavity.

The computed non-dimensionalized velocity profiles along a vertical and horizontal line pass-

ing through the centre of the cavity are also shown in Figure 6.14 for both the Navier-Stokes

equations and the regularized Gaussian closure. The regularized closure predicts that the speed

of the recirculating flow is slightly higher than that predicted by the Navier-Stokes equations,

possibly due to the small slip effect in the upper right corner, but otherwise the profiles are in

good agreement.

While the actual slip values are small enough to not have any impact on the general Mach

number profile of the Kn = 0.001 case, they are significant enough to affect the maximum

temperature values in the predicted temperature field. The formation of the hot spot in the

upper right corner of the cavity is suppressed by the slipless wall temperature in the Navier-

Stokes. Although the temperature profile generated by both the regularized Gaussian closure

and Navier-Stokes looks similar in shape, as seen in Figure 6.16, an examination of the tem-

perature contour range shows that the maximum temperature acquired from the Navier-Stokes

is noticeably lower than that found from the regularized closure. This shows that slip effects
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(a)

(b)

Figure 6.13: (a) Driven cavity flow mesh blocks and cells as seen on the XY plane, and (b) a

cutaway view of the mesh blocks with Mach number contours for Kn = 0.001 and uw = 50 m/s.
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(a)

(b)

Figure 6.14: Non-dimensionalized velocity plotted against a non-dimensionalized length scale

for driven cavity flow with Kn = 0.001 and uw = 50 m/s showing (a) vertical velocity along a

horizontal line, and (b) horizontal velocity along a vertical line. Both horizontal and vertical

lines pass through the centre of the cavity.
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(a) (b)

Figure 6.15: Mach number profile with velocity streamlines for driven cavity flow at Kn = 0.001

and uw = 50 m/s using (a) Navier-Stokes, and (b) regularized Gaussian closure

(a) (b)

Figure 6.16: Temperature profile with heat flux streamlines for driven cavity flow at Kn = 0.001

and uw = 50 m/s using (a) Navier-Stokes, and (b) regularized Gaussian closure

can potentially have a significant impact even for relatively small Knudsen numbers in the

continuum regime, though additional corroborating evidence from physical or computational

experiments are needed to confirm this effect.

Use of the Navier-Stokes applied for the lid-driven cavity flow problem yields results that are

not dependent on the Knudsen number and produces heat fluxes dictated by Fourier’s Law.
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While valid in the continuum regime, the Navier-Stokes alone is unable to account for the

various non-equilibrium phenomena shown both experimentally and computationally by the

regularized Gaussian closure and DSMC, demonstrated here through the following driven cavity

flow conditions at larger Knudsen numbers. Figure 6.17 shows results of the driven cavity flow

problem at Kn = 0.1 using the Navier-Stokes, along with those from the regularized Gaussian

closure and DSMC. Note that the predicted range of temperatures produced by the Navier-

Stokes equations is significantly more limited than those from the regularized Gaussian closure

and DSMC approach. The colour scale in the temperature contour plots has been adjusted to

illustrate this feature for the solutions. The lack of expansion cooling (i.e. gas temperature less

than wall temperature) is clearly seen in the Navier-Stokes profile, as is the counter-gradient

heat flux. Thus, while the regularized Gaussian closure is not capable of exactly reproducing

the non-equilibrium phenomena described in literature and DSMC, the effects of temperature

and velocity slip, expansion cooling, and a counter-gradient heat flux can still be generated.

Extensive problem-based modifications to the Navier-Stokes based on empirical formulations

would be necessary to adapt it to simulate these non-equilibrium phenomena, making the

regularized Gaussian closure a more attractive option.

The onset of non-equilibrium effects with increasing Knudsen number can be seen in Figures

6.18 and 6.19, where the lid velocity is set at uw = 50 m/s and the Knudsen number is varied

within the range 0.1 ≤ Kn ≤ 8. A comparison is made between the DSMC results of John

et al. [121] and those from the regularized Gaussian closure, where the predicted temperature

contours are shown overlaid with the corresponding heat flux vectors. For reference, the top

boundary is the moving lid with a velocity moving to the right. The DSMC results clearly

show that the heat flux near the lid is directed in the same direction as the lid velocity, but

is opposite to what is implied by the temperature gradient. The regularized Gaussian closure

similarly depicts this alignment of the heat flux, but the temperature profile is significantly

different. As the heat flux at the wall is not strictly enforced through the current temperature

slip boundary conditions, the temperature gradient at the corners of the cavity adjacent to the

moving lid tries to conform to the heat flux. This results in a lowering of the temperature in

the upper right corner and a raising of the temperature in the upper left corner, contrary to

the expansion cooling effect depicted in the DSMC results. This discrepancy is most visible

for Kn = 1. The regularized Gaussian closure recovers this expansion cooling effect for higher

Knudsen numbers, but overpredicts the amount of cooling that will occur. The heat flux profiles

however, maintain their directionality opposite to that of the temperature gradient. It should

be mentioned that the counter-gradient heat flux predicted by the DSMC results of John et

al. [121] arises due to a combination of expansion cooling and heating due to viscous dissipation,
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(a) (b)

(c)

Figure 6.17: Temperature profile with heat flux streamlines for driven cavity flow at Kn = 0.1

and uw = 50 m/s using (a) Navier-Stokes, (b) regularized Gaussian closure, and (c) DSMC.

and results in a heat flux that is in a direction from low to high temperatures.
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(a) DSMC, Kn = 0.1 (b) Gaussian Closure, Kn = 0.1

(c) DSMC, Kn = 0.5 (d) Gaussian Closure, Kn = 0.5

Figure 6.18: DSMC vs Regularized Gaussian Closure for driven cavity flow, uw = 50 m/s at

Kn = 0.1 and Kn = 0.5
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(a) DSMC, Kn = 1 (b) Gaussian Closure, Kn = 1

(c) DSMC, Kn = 8 (d) Gaussian Closure, Kn = 8

Figure 6.19: DSMC vs Regularized Gaussian Closure for driven cavity flow, uw = 50 m/s at

Kn = 1 and Kn = 8
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6.6 Subsonic Immersed Flow Past a Circular Cylinder

Immersed flow over a cylinder is re-considered here to examine the effects of heat transfer on drag

coefficients over a range of Knudsen numbers. The results are compared to the previous three-

dimensional results for the standard Gaussian closure of Chapter 5, that do not include heat

transfer. The proposed NKS solution method is employed with the temperature slip boundary

conditions of Smoluchowski [53] as described in Section 2.5.2 of Chapter 2. Isothermal boundary

conditions were used on the surface of the cylinder and set to the free stream temperature of

288 K. As a result, the heat flux from the wall into the fluid is not large and the temperature

slip phenomena should manifest itself only in higher Knudsen number regimes.

As noted previously, the effects of laminar flow past a cylinder in both the continuum and

transitional regimes has been studied experimentally by Coudeville et al. [106], with focus on

the drag coefficient with varying Reynolds and Knudsen numbers. As in Chapter 5, the cylinder

radii was varied from 3.36 × 10−5 to 6.72 × 10−9 m, corresponding to 10−3≤Kn≤5 using the

cylinder diameter as the characteristic length. A speed ratio of S = 0.107 is used here and

corresponds to a Mach number of Ma = 0.128, where the speed ratio is defined as the ratio

between the bulk speed of the fluid and the most probable random speed of a particle. The

Reynolds numbers for these flows ranges from 0.005≤Re≤188, well within the laminar regime.

The far field boundary was set at 32 times the cylinder radius, however, for Kn = 0.1, the

boundary layer formed around the cylinder expands considerably, and the far field boundaries

were extended up to 300 times the cylinder radius to avoid any interaction with the boundary

layer. Final three-dimensional mesh resolution ranges from 83,200 to 166,400 cells.

A comparison can be made between the predictions of the Gaussian closure with and without

heat transfer and the Navier-Stokes equations pertaining to the immersed flow over a cylinder

with varying Knudsen number. Figure 6.20 shows the performance of these three descriptions

compared to the experimental measurements by Coudeville et al. [106] and an analytical solution

valid for the free molecular regime of Patterson [107]. The addition of heat transfer maintains

physical accuracy up till about Kn = 1 but drops off for higher Knudsen numbers. Interestingly,

the Gaussian closure without heat transfer and the Navier-Stokes equations predict similar

overestimated drag coefficients even though the Navier-Stokes model includes heat transfer,

but not slip. This suggests that boundary conditions that account for temperature slip are

most likely required for an accurate depiction of high Knudsen number flows.

To get a sense of the structure of the boundary layer predicted by these methods, the Mach

number profiles for a transition regime problem (Kn = 0.1) and free molecular regime problem



Chapter 6. Three-Dimensional Numerical Results for the Regularized Gaussian Closure 116

Figure 6.20: Drag coefficient over a cylinder vs. Knudsen number for a speed ratio S = 0.107.

(Kn = 1) are shown in Figures 6.21 and 6.22, respectively. In the transition regime, all three

methods produce similar drag coefficients and boundary layer thicknesses, but the lack of veloc-

ity slip at the cylinder boundaries in the Navier-Stokes is already evident. Adding heat transfer

in the regularized Gaussian closure does not produce any noticeable effects at this point. At

Kn = 1, the overestimation of the cylinder drag by the Navier-Stokes and the Gaussian clo-

sure without heat transfer can be related to an overestimation of the boundary layer thickness

as evidenced by Figures 6.22(a) and 6.22(b). The addition of heat transfer in Figure 6.22(c)

suppresses the growth of the boundary layer and results in a cylinder drag more in line with

experimental and analytical data. However, for Kn > 1, the suppressed boundary layer gives

way to an underestimation of the drag which becomes worse with increasing Kn. This limit may

represent a point at which the current form of the equations breaks down and can be also seen

in the results of other moment techniques [116]. Further study into the physical phenomena

occurring in this regime will be subject of future follow-on research to this thesis.

As for the standard Gaussian closure, it is useful at this point to illustrate the advantages
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(a) (b)

(c)

Figure 6.21: Mach number profile of flow over a cylinder at Kn = 0.1 as calculated by (a)

Navier-Stokes, (b) standard Gaussian closure with no heat transfer, and (c) regularized Gaussian

closure with heat transfer.

in computational cost provided by the AMR and NKS algorithm for solutions to the three-

dimensional regularized Gaussian closure. For Kn = 0.01, the AMR algorithm was used to

produce a cylinder mesh with up to four levels of refinement. A close-up view of the mesh blocks

produced from the AMR procedure is given in Figure 6.23. At each mesh refinement, the drag

over the cylinder was calculated and compared to the experimental result from Coudeville et

al. [106] for the same flow conditions. Figure 6.24(a) shows the mesh convergence of the solution

method with reference to the calculated drag over the cylinder. The strength of the AMR/NKS

solution method is even more pronounced as the converged computational drag approaches the

experimental drag to within 0.6%. The convergence history of the NKS solution method with

consecutive mesh refinements from the AMR algorithm can be seen in Figure 6.24(b), showing

rapid convergence can be seen at each mesh level. The grid refinement is set to occur every 60
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(a) (b)

(c)

Figure 6.22: Mach number profile of flow over a cylinder at Kn = 1 as calculated by (a) Navier-

Stokes, (b) standard Gaussian closure with no heat transfer, and (c) regularized Gaussian

closure with heat transfer.

Newton iterations, though if allowed to proceed further the norm can be reduced by more than

the approximately five orders of magnitude shown here. Using a planar view of the cylindrical

grid, the meshes used at the beginning, middle and end of the the refinement study can be seen

in Figure 6.25. Each mesh block contains 40 cells in the radial direction, 10 cells in the angular

direction, and 2 cells over the height of the cylinder.

The advantages offered by the NKS include a vast saving in computational costs. Figure 6.26

depicts the convergence history of the immersed cylinder flow in a range of Knudsen numbers

without AMR on a eight block mesh with a total of 179,200 cells using NKS and the semi-

implicit solver. Both schemes were performed over eight Intel Xeon E5540 cores at 2.53 GHz.

Additionally, Table 6.2 provides a summary of the NKS and semi-implicit CFL parameters and

computation time for the three convergence cases considered here. As seen in the figures, the
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Figure 6.23: Mesh blocks created with the AMR algorithm for flow over a cylinder at Kn = 0.01.

The uncolored block shows the individual cells residing within that particular mesh block to

illustrate the resolution acquired.

NKS Semi-Implicit

Kn Initial CFL Final CFL Time (min) L2-norm Ratio CFL Time (min) L2-norm Ratio

0.001 1 × 102 1 × 109 268.9 8.54167 × 10−11 0.2 2868.06 1.825 × 10−6

0.1 1 × 103 1 × 109 208.6 9.58762 × 10−7 0.05 2870.8 5.332 × 10−4

1 1 × 102 1 × 106 218.9 6.70304 × 10−5 0.005 2744.1 4.28 × 10−4

Table 6.2: Summary of NKS/semi-implicit CFL parameters and computation times for the flow

problems performed in Figure 6.26.

NKS scheme for these flow problems require 4 hours to reach a suitably converged solution, while

the explicit method requires 48 hours providing a reduction in the overall computational costs

of the simulations by approximately a factor of 12. The convergence history also shows that the

NKS solution method is capable of reducing the residual by almost eleven orders of magnitude

in the continuum case. The ability to reach a highly converged solution, the enormous savings

in computational time, and the accuracy of the method shown in the examples above illustrate

the potential that these moment closures have for both research and industrial applications.



Chapter 6. Three-Dimensional Numerical Results for the Regularized Gaussian Closure 120

(a)

(b)

Figure 6.24: (a) Cylinder drag for Kn = 0.01 with increasing number of cells, showing mesh-

convergent behavior approaching the experimental data of Coudeville et al. [106], (b) Error

norm evolution over multiple mesh refinements.



Chapter 6. Three-Dimensional Numerical Results for the Regularized Gaussian Closure 121

(a) 64 mesh blocks (51,200 cells) (b) 64 mesh blocks (51,200 cells), magnified

(c) 302 mesh blocks (241,600 cells) (d) 302 mesh blocks (241,600 cells), magnified

(e) 2192 mesh blocks (1,753,600 cells) (f) 2192 mesh blocks (1,753,600 cells), magnified

Figure 6.25: Sample of refined mesh blocks used for the mesh convergence study of the regu-

larized Gaussian closure.
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(a)

(b)

(c)

Figure 6.26: NKS and semi-implicit convergence rates for immersed subsonic flow past a

cylinder using the regularized Gaussian closure at (a) Kn = 0.001, (b) Kn = 0.1 and (c)

Kn = 1.
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6.7 Subsonic Immersed Flow Past a Sphere

Under the same physical parameters as those described in Section 5.6 of Chapter 5, the drag

on a sphere is also again studied here using the regularized Gaussian closure. Using the same

grid and NKS parameters as summarized earlier, the sphere drag is once again compared to the

experimental results of Roos and Willmarth [109], Liebster [110], and Millikan [112,113], as well

as an analytical solution given by Flemmer and Banks [111]. Use of the regularized Gaussian

closure and its associated heat term is expected to improve the accuracy of the sphere drag

predictions in the transition regime as was seen in the improvement of cylinder drag prediction

studied earlier in Section 6.6.

The NKS and semi-explicit convergence histories for this flow problem using the regularized

Gaussian closure are shown in Figure 6.27 for a range of Knudsen numbers, with Table 6.3 show-

ing the CFL parameters and physical computational times used by each method. Using only

100 Newton iterations in each case, the NKS method is clearly superior in providing converged

solutions within all flow regimes. While the semi-implicit method can be highly converged

in the continuum regime, the computational time needed to account for the additional heat

transfer terms in the regularized Gaussian closure increases dramatically even for moderately

rarefied flows compared to the standard Gaussian closure (see Table 5.3 in Chapter 5). The

robust nature of the regularized Gaussian closure with the NKS solution method for this fully

three-dimensional flow makes it an attractive option for more complex geometries and flow

conditions.

Figure 6.28(a) shows the change in sphere drag with Reynolds number, compared with an

analytical solution by Flemmer and Banks [111], and experimental results from Roos and Will-

marth [109] and Liebster [110]. Once again it must be noted that the Reynolds number in

these experimental and analytical results are obtained by varying the flow velocity and fluid

viscosity, and are therefore firmly entrenched in the continuum regime. The Gaussian closure

sphere drags shown previously in Figure 5.19 are also included here for reference. The computed

NKS Semi-Implicit

Kn Initial CFL Final CFL Time (min) L2-norm Ratio CFL Time (min) L2-norm Ratio

0.001 1 × 101 1 × 107 97.24 3.089 × 10−8 0.1 2877 3.821 × 10−13

0.05 1 × 101 1 × 105 82.92 4.276 × 10−6 0.0001 2877.29 3.528 × 10−1

1 1 × 101 1 × 105 98.25 5.618 × 10−7 0.0001 2877.54 3.613 × 10−5

Table 6.3: Summary of NKS/semi-implicit CFL parameters and computation times for the flow

problems performed in Figure 6.27.
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(a)

(b)

(c)

Figure 6.27: NKS and semi-implicit convergence rates for immersed subsonic flow past a sphere

using the regularized Gaussian closure at (a) Kn = 0.001, (b) Kn = 0.05 and (c) Kn = 1
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sphere drag from the regularized Gaussian closure in the continuum limit agrees closely with

those from the analytical and experimental results. For Kn > 1, the drag reaches a maximum

and begins to decrease as the flow becomes increasingly rarefied. This behaviour is similar to

that found in the cylinder drag flow problems summarized in Section 6.6 above at about the

same Knudsen number.

Experimental data by Millikan [112, 113], as corrected by Allen and Raabe [114], and an an-

alytical solution by Clift et al. [123] showing the relationship between Knudsen number and

sphere drag correction coefficient, is shown with the results from the Gaussian closure and

the regularized Gaussian closure in Figure 6.28(b). Due to Millikan’s extensive collection of

data, this particular problem is known to possess no significant initial temperature gradients.

It can be clearly seen, however, that taking into account a heat flux term produces significant

improvements in the predictive abilities of the Gaussian closure in the transition and early

free-molecular regimes. While both Gaussian closures predict similar drags in the continuum

regime, the regularized closure follows the decreasing trend much closer to the experimental

and analytical results, and only begins to deviate from them for Kn > 0.4. A similar behaviour

of sphere drag can be found from an analytical solution [116] to the regularized 13-moment

equations by Struchtrup and Torrilhon [21, 22]. The overprediction of drag for the Gaussian

closure is once again reminiscent of its behaviour for cylinder drag, and can be attributed to

the overpredicted growth of the Knudsen layer.

Using the linearized Boltzmann equation, Takata et al. [124] have found that a thermal polar-

ization effect develops on the surface of the sphere. Furthermore, Torrilhon [116] has recently

studied low-speed non-equilibrium flow over a sphere using the regularized 13-moment Grad

closure on a two-dimensional grid with axisymmetric boundary conditions and found a similar

temperature polarization effect. The temperature of the gas near the leading surface of the

sphere rises while the trailing surface drops. However, similar to the lid-driven cavity flow

discussed previously, the heat flux vectors from the results of both Takata et al. [124] and Tor-

rilhon [116] originate from the back of the sphere towards the front, contrary to the heat flux

/ temperature gradient relationship dictated by Fourier’s Laws. This can be seen in Figure

6.29(a) from Torrilhon [116], showing the temperature contours and heat flux vectors for flow

over a sphere at Kn = 0.3. The counter-gradient heat flux effect is clearly evident, with the

heat flux vectors forming a recirculation region above and below the sphere.

The regularized Gaussian solution for the same Knudsen number can be found in Figure 6.29(b).

While the heat flux vectors are oriented in the same direction as those from the regularized

13-moment closure, the temperature profile is flipped to accommodate the heat flux vectors.

This shows that, while the regularized Gaussian closure can predict the correct heat flux in this
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(a)

(b)

Figure 6.28: (a) Drag coefficient over a sphere: Regularized Gaussian closure vs. experimental

and analytical results, (b) Stokes drag correction factor with varying Knudsen number for exper-

imental results by Millikan [112,113], and some corresponding data points using the regularized

Gaussian closure.
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flow regime, the temperature profile is not decoupled from the heat flux and therefore cannot

generate the counter-gradient behaviour predicted by Takata et al. [124] and Torrilhon [116].

At higher Knudsen numbers (Kn = 0.9), a similar analysis on the regularized 13-moment

equations in Figure 6.29(a) reveals that the counter-gradient behaviour of the temperature

profile has disappeared. The regularized Gaussian closure at this Knudsen number in Figure

6.29(b) similarly shows no counter-gradient effect. Torrilhon [116] has attributed this to the loss

of validity of the regularized 13-moment closures for this higher range of Knudsen numbers. In

contrast it appears, however, that the regularized Gaussian closure is never able to reproduce

this counter-gradient behaviour regardless of Knudsen number. In particular, the boundary

conditions used for the regularized Gaussian closure do not account for thermal transpiration

effects that are important for accurately modelling counter-gradient heat fluxes in these flow

regimes. Counter-gradient heat fluxes must take into account thermal stresses generated by

temperature gradients within the bulk mass of the gas, and transpiration effects in the near-

wall regime created by temperature gradients at the wall. While the strong coupling between

temperature gradients and heat flux direction within the first-order correction in the regularized

Gaussian closure remains as a primary source of error in modelling general counter-gradient

effects, transpiration effects will directly affect how this counter-gradient behaviour evolves in

the near-wall regime and is vital towards modelling this non-equilibrium flow phenomenon.



Chapter 6. Three-Dimensional Numerical Results for the Regularized Gaussian Closure 128

(a)

(b)

Figure 6.29: Temperature contours with heat flux vector streamlines for flow over a sphere

at Kn = 0.3 calculated from a) the regularized Grad 13-moment closure performed by Torril-

hon [116] and b) the regularized Gaussian closure.
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(a)

(b)

Figure 6.30: Temperature contours with heat flux vector streamlines for flow over a sphere

at Kn = 0.9 calculated from a) the regularized Grad 13-moment closure performed by Torril-

hon [116] and b) the regularized Gaussian closure.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

The development of a parallel, implicit finite-volume method for the solution of the standard

and regularized Gaussian closure for both monatomic and diatomic gases on three-dimensional,

body-fitted, hexahedral mesh with block-based AMR and its subsequent application for a range

of micro-scale flows has been considered in this thesis. This has yielded the first fully three-

dimensional numerical solutions of the Gaussian closure for non-equilibrium gases, and some

of the first moment closure solutions for geometries and flow conditions of more practical in-

terest. Unlike the continuum-based Euler and Navier-Stokes equations, the Gaussian closures

allow for an anisotropic pressure tensor directly, even in the absence of solution gradients. This

and other considerations allow for the modelling of not only the continuum regimes, but also

higher-Knudsen number regimes approaching free molecular flow. The inclusion of regular-

ized terms describing heat flux have been incorporated into the original Gaussian system, and

allows for a reasonably accurate depiction of none-equilibrium thermal phenomena, including

the presence of a counter-gradient heat flux and suppressed boundary layer growth. Suitable

boundary conditions describing velocity and temperature slip have also been developed that

show agreement with both empirical and analytical results, though due to the regularization

of the system, boundary conditions cannot be directly implemented on the heat flux. Never-

theless, the system of equations has been shown to possess certain computational advantages

that have been exploited through the use of the implicit NKS solution method. The proposed

finite-volume and NKS solution methods have been shown to maintain second-order spatial

accuracy and reach highly converged states with drastically reduced computational cost.

The efficiency, robustness and accuracy of the Gaussian closures used in combination with the

130
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NKS solution scheme have been clearly demonstrated through the application of the closure to

various canonical flow problems which has yielded physically-realistic results over a wide range

of Knudsen numbers. Numerical results for Couette flow have shown a smooth transition in the

shear stress and slip velocities between continuum and free-molecular regimes, while a flat plate

boundary layer profile solved with the Gaussian closure agrees closely with the Blasius solution

and the slip velocity phenomenon is again clearly identified. The evolution of the boundary

layers through the transition regime is shown through the modelling of immersed flow past

a cylinder and a sphere, and a further comparison of drag coefficients of the cylinder in this

regime agrees closely with experimental results.

The inclusion of heat flux terms through the regularization procedure has enabled the Gaussian

closure to explore the effects of heat flux in high-Knudsen number regimes. A simple heated

plate problem demonstrates the accuracy of the temperature slip boundary conditions and its

effect on overall temperature profile between the plates. More complex problems involving

high-Knudsen number heat flux in driven cavity flow and Poiseuille flow have shown that while

the regularized heat flux terms effect the flow in the correct manner, the magnitude of the

effects can be incorrect. The expansion cooling demonstrated in the driven cavity flow, while

encouraging in the fact that the effect is absent in the Navier-Stokes solution, is much stronger

than that predicted by the DSMC results. The bimodal heat flux profile in microscale Poiseuille

flow is likewise duplicated, but incorrect in magnitude. Since heat flux is not calculated directly

as a moment quantity, there exist no boundary conditions on it, and the resulting temperature

slip effect is added in via a Knudsen layer treatment and empirical expression.

The regularized closure is applied again to immersed cylinder and sphere drag flow problems.

These problems possess no significant initial temperature gradients, but it has been shown

that the inclusion of heat flux terms significantly improves the performance of the Gaussian

closure. While the original Gaussian closure tends to create excessively thick boundary layers

that contribute to an overestimation of the drag at high Knudsen numbers, the heat flux terms

of the regularized closures suppress that growth and maintain agreement with experimental and

analytical results up to conditions approaching the free-molecular regime.

The performance of the NKS and semi-implicit scheme for the standard and regularized Gaus-

sian closure for both monatomic and diatomic gases has been evaluated throughout for the

flow problems considered in the thesis. The fully-implicit NKS method has been shown to

consistently perform better than the time-marching approach from the semi-implicit method,

requiring far less computational time given the same resources, and reaching a high level of

convergence. This performance is maintained for a wide range of Knudsen numbers, though

the convergence rate degrades somewhat for high Knudsen number flows. While computation-
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ally cheaper on a per-iteration cost, the semi-implicit solver requires extremely small time steps

even for transition regime flows carries heavy penalties in convergence rate. The proposed

NKS solution scheme for the Gaussian closures is therefore shown to be both a robust and

computationally efficient tool for analyzing three-dimensional non-equilibrium flow behaviour.

7.2 Future Recommendations

This study represents a first step for planned moment closure research pertaining to three-

dimensional non-equilibrium gaseous flows. While the potential of such techniques has been

demonstrated, a more thorough study for fully three-dimensional flows is certainly warranted

and will be the focus of future research. It is worthwhile to note that moment methods in general

have the capability to simulate a broader range of non-equilibrium fluid flow phenomena than

what is afforded by the standard Navier-Stokes equations, such as velocity and temperature

slip as shown in this thesis and counter-gradient heat fluxes as found by Takata et al. [124]

and Torrilhon [116]. The development of higher-order moment closures methods therefore

would provide more insight into flow behaviour under varying conditions, though computational

considerations for cost and hyperbolicity will need to be addressed. Continuing work by Tensuda

et al. [13, 14] on a set of interpolative closures based on Levermore’s hierarchy of maximum-

entropy closures [8] and its near-hyperbolic description of heat transfer provides another avenue

of exploration into modelling higher-order moments at moderate Knudsen numbers.

Since the Gaussian closure does not handle heat flux directly as a moment quantity, there is

no transport equation for heat flux and consequently there is also no boundary condition on

it either. One method of possibly incorporating heat flux into the boundary conditions is to

consider a half-Maxwellian type integration for the heat flux. While a full integration through

the entire velocity space of this moment quantity will be zero, as dictated by the construction of

the assumed non-equilibrium distribution function, a half-Maxwellian integration will provide

non-zero boundary conditions. The problem then lies in equating this heat flux boundary

condition with that from the heat flux term in the regularized closure. This leaves unknowns

in the pressure gradient that need to be addressed. Some preliminary tests with this type

boundary conditions briefly considered here but not reported, did not yield favourable results

for moderate Knudsen numbers, though this approach may be feasible with the use of more

appropriate expressions for the pressure gradient at the boundaries.

The lack of thermal transpiration in the boundary conditions constructed for the regularized

Gaussian closure is a contributing factor that prevents it from accurately modelling counter-
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gradient heat flux behaviour shown in the DSMC results by John et al. [118] and the regularized

Grad 13-moment closure results by Torrilhon [116]. However, it may be possible to incorporate

thermal transpiration terms to the velocity slip boundary conditions by using the boundary

conditions derived from higher-order moment closures, such as those within the regularized

Grad 13-moment closure, or the 14-moment closure by Tensuda et al. [13, 14]. This approach

could also provide a better boundary conditions for the heat flux at the wall and alleviate the

issues seen in the regularized Gaussian closure.

The Gaussian closures studied here have been subjected to tests concerning its computational

and physical accuracy over problems with relatively simple geometries. The problems are

solved over a fully three-dimensional grid, but the solutions with which they are compared to

are largely limited to two-dimensional geometries. There are really no experiments conducted

with fully non-axisymmetric three-dimensional microscale geometries with which to gauge the

full potential of the Gaussian closures. Setting up and quantifying such problems in a physical

environment is understandably difficult, and fully three-dimensional DSMC solutions can be

very costly. Future research may provide solutions to such problems, in which case the evalu-

ation of the regularized Gaussian closure can be taken into more detail. A direct application

to industrial problems is certainly possible, given the feasibility of the proposed accelerated

Newton-Krylov solver developed herein, and the closures’ subsequent successes and failures can

then point along new lines of inquiry.



Appendix A

Half-Maxwellian Integration for

Solid Wall Boundaries

As described in Section 2.1.3, macroscopic properties can be found from the phase space dis-

tribution function by multiplying them with some chosen velocity functionals and integrating

throughout all of phase space. The limits on the velocity components are taken to extend

from −∞ < {vx, vy, vz} < +∞. Solid boundaries limit the movement of particles in certain

directions depending on its orientation, and the limits of this integration must be modified

accordingly. The derivation shown here considers a solid wall with a normal vector pointing in

the +x− direction into the fluid. Wall normals pointing in different directions are handled in

the computational calculations by rotating the cell states into the +x− direction to limit the

complexity of the integration procedure.

The phase space distribution function at the wall is given as

FKn = F− + F+ , (A.1)

where F− and F+ are given by

F− =

{
Ge(vx, vy, vz) for vx < 0 ,

0 for vx > 0 ,
(A.2)

F+ =

{
αMw(vx, vy, vz) + (1− α)Ge(−vx, vy, vz) for vx > 0 ,

0 for vx < 0 ,
(A.3)

where Ge represents the Gaussian particle distribution at the interior edge of the boundary and

Mw is a Maxwell-Boltzmann distribution defined by the solid wall properties.
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Boundary conditions on the shear pressure are given here to show how to manage weighting

factors with multiple velocity components. However, a similar half-Maxwellian integration

process is required to find values for the bulk velocities (via a velocity weighting representing

momentum) and density within the Knudsen layer. These lower order weights simplify the

integration procedure shown here and are left as an exercise for the reader. Expressions for the

bulk velocity and density within the Knudsen layer can be found in Eqs.(2.85) and (2.87).

Since particles cannot pass through the wall in the −x direction, the limits on the integration

of particle velocities in the x−direction are changed. The shear pressure Pxy is then formulated

as

ux Kn = ux = 0, (A.4)

Pxy Kn = m

ˆ ∞
0

dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [(1− α)G (−vx, vy, vz) + αM (vx, vy, vz)]

+ m

ˆ 0

−∞
dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [G (vx, vy, vz)]

= m

ˆ ∞
0

dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvzvx (vy − uy) [−αG (−vx, vy, vz) + αM (vx, vy, vz)] .

(A.5)

The Gaussian portion of the integrand is considered first. The Gaussian distribution function

is given as

G(t, xi, ci) =
(ρ/m)

(2π)3/2 (det Θ)1/2
exp

(
−1

2
Θ−1
ij cicj

)
= A exp

(
−1

2

(
Θ−1
xx c

2
x + Θ−1

yy c
2
y + Θ−1

zz c
2
z + 2Θ−1

xy cxcy + 2Θ−1
xz cxcz + 2Θ−1

yz cycz
))

(A.6)

where

A =
(ρ/m)

(2π)3/2 (det Θ)1/2
, (A.7)

and Θ represents a pseudo-temperature tensor shown in Eq. (2.23), with an inverse defined in

Eq. (2.25).

Substituting, the Gaussian portion of the integration becomes,

Pxy,G =− αm
ˆ ∞

0
dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvz vx (vy − uy) [G (−vx, vy, vz)]

=− αm
ˆ ∞

0
dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dvz vx (vy − uy)[
A exp

(
−1

2

(
Θ−1
xx v

2
x + Θ−1

yy v
2
y + Θ−1

zz v
2
z + 2Θ−1

xy (−vx)
(
vy − uGy

)
+ 2Θ−1

xz (−vx) (vz − uGz) + 2Θ−1
yz

(
vy − uGy

)
(vz − uGz)

))]
(A.8)
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where the substitution vx = ux + cx, vy = uy + cy, vz = uz + cz has been made to express the

integral purely in terms of the random velocities ci, with ux Kn = ux = 0. Values for ui represent

the bulk velocities of the Knudsen layer and are addressed later.

This type of exponential integration can be performed with a series of integrations of the form

ˆ ∞
−∞

e(−Ax
2+Bx)dx (A.9)

where the mapping x = X + B
2A is used such that

ˆ ∞
−∞

e(−Ax
2+Bx)dx =

ˆ ∞
−∞

e(−AX
2+ B

4A)dX =

√
π

A
e

B
4A (A.10)

When applied to the Gaussian integrand, the mapping

vz − uGz = Vz −
Θ−1
xz

Θ−1
zz

(−vx)−
Θ−1
yz

Θ−1
zz

(
vy − uGy

)
(A.11)

is used to eliminate the z−direction dependency of the integration. The terms in the integration

from Eq. (A.8) that contain (vz − uGz) can be re-expressed as follows:

Θ−1
zz (vz − uGz) =Θ−1

zz V
2
z − 2Θ−1

xz Vz (−vx)− 2Θ−1
yz Vz

(
vy − uGy

)
+

(
Θ−1
xz

)2
Θ−1
zz

(−vx)2

+

(
Θ−1
yz

)2
Θ−1
zz

(
vy − uGy

)2
+ 2

Θ−1
xz Θ−1

yz

Θ−1
zz

(−vx)
(
vy − uGy

)
2Θ−1

xz (−vx) (vz − uGz) =2Θ−1
xz (−vx)Vz − 2

(
Θ−1
xz

)2
Θ−1
zz

(−vx)2 − 2
Θ−1
xz Θ−1

yz

Θ−1
zz

(−vx)
(
vy − uGy

)
2Θ−1

xz

(
vy − uGy

)
(vz − uGz) =2Θ−1

yz

(
vy − uGy

)
Vz − 2

(
Θ−1
yz

)2
Θ−1
zz

(
vy − uGy

)2
− 2

Θ−1
xz Θ−1

yz

Θ−1
zz

(−vx)
(
vy − uGy

)
(A.12)

Note that in order to successfully apply this new mapping from vz to Vz the limits of integration

must also match. It is simple to see that as vz : −∞ → +∞, so too does Vz : −∞ → +∞,

evident from a rearranging of the mapping Eq. (A.11) into

Vz = (vz − uGz) + independent terms. (A.13)
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Substituting Eqs.(A.12) into the integral from Eq. (A.8) yields

Pxy,G =− αm
ˆ ∞

0
dvx

ˆ ∞
−∞

dvy

ˆ ∞
−∞

dVz vx (vy − uy)[
A exp

(
−1

2

(
Θ−1
xx v

2
x + Θ−1

yy v
2
y + Θ−1

zz V
2
z + 2Θ−1

xy (−vx)
(
vy − uGy

)
−
(
Θ−1
xz

)2
Θ−1
zz

(−vx)2 −
(
Θ−1
yz

)2
Θ−1
zz

(
vy − uGy

)2 − 2
Θ−1
xz Θ−1

yz

Θ−1
zz

(−vx)
(
vy − uGy

)))]
=− αmA

(
2π

Θ−1
zz

) 1
2
ˆ ∞

0
dvx

ˆ ∞
−∞

dvy vx (vy − uy)[
exp

(
−1

2

(
Av2

x − 2Bvx
(
vy − uGy

)
+ C

(
vy − uGy

)2))]
, (A.14)

where the Vz terms have been integrated out, and

A =
1

Θ−1
zz

(
Θ−1
xxΘ−1

zz −
(
Θ−1
xz

)2)
(A.15)

B =
1

Θ−1
zz

(
Θ−1
xy Θ−1

zz −Θ−1
xz Θ−1

yz

)
(A.16)

C =
1

Θ−1
zz

(
Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2)
(A.17)

As these terms are independent of velocity they may be treated as constants. This new integrand

is once again in the same exponential form and a similar mapping procedure can be performed.

By setting

vy − uGy = Vy +
B

C
vx, (A.18)

the remaining terms in the integrand can be re-expressed as

−2Bvx
(
vy − uGy

)
= −2Bvx

(
Vy +

B

C
vx

)
(A.19)

C
(
vy − uGy

)2
= CV 2

y + 2BvxVy +
B2

C
v2
x (A.20)

and substituted into the integrand to reveal

Av2
x − 2Bvx

(
vy − uGy

)
+ C

(
vy − uGy

)2
=

(
A− B2

C

)
v2
x + CV 2

y

=

(
1

CΘ−1
zz det Θ

)
v2
x + CV 2

y (A.21)
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Substituting this expression back into Eq. (A.14) transforms it into a separable form

Pxy,G = −αmA

(
2π

Θ−1
zz

) 1
2
ˆ ∞

0
dvx

ˆ ∞
−∞

dVy

vx

(
Vy +

B

C
vx + uGy − uy

)
exp

(
− 1

2CΘ−1
zz det Θ

)
exp

(
−1

2
CV 2

y

)
= −αmA

(
2π

Θ−1
zz

) 1
2
[ˆ ∞

0
dvx vx exp

(
− 1

2CΘ−1
zz det Θ

v2
x

)ˆ ∞
−∞

dVy Vy exp

(
−1

2
CV 2

y

)
+

ˆ ∞
0

dvx

(
B

C
vx + uGy − uy

)
exp

(
− 1

2CΘ−1
zz det Θ

v2
x

) ˆ ∞
−∞

dVy exp

(
−1

2
CV 2

y

)]
(A.22)

The first term in the integrand containing the integrand Vy exp
(
−1

2CV
2
y

)
is an odd function

when integrated over the entire Vy velocity space and is by definition equivalent to zero. The

remaining integral is separable and can be evaluated using expressions for definite integrals over

exponential functions that can be found in a general integral table. Referring to Eqs.(2.23) and

(2.25), the shear pressure can be further simplified to give

Pxy,G =− αmA

(
2π

Θ−1
zz

) 1
2
(

2π

C

) 1
2
[(

Bπ
1
2

4C

(
2CΘ−1

zz det Θ
) 3

2

)
+
(
uGy − uy

) (
CΘ−1

zz det Θ
)]

=− αm

(
nG

(2π)3/2 (det Θ)1/2

)(
2π

Θ−1
zz

) 1
2

(
2πΘ−1

zz

Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2
) 1

2 (
Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2)
(det Θ)

[(
π det Θ

2

) 1
2

(
Θ−1
xy Θ−1

zz −Θ−1
xz Θ−1

yz

Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2
)(

Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2) 1
2

+
(
uGy − uy

)]

=− αmnG
[(

det Θ

2π

)(
Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2)] 1
2

[(
Θ−1
xy Θ−1

zz −Θ−1
xz Θ−1

yz

Θ−1
yy Θ−1

zz −
(
Θ−1
yz

)2
)(

π det Θ

2

) 1
2

+
(
uGy − uy

)]

=α

[
Pxy
2
−
√
ρPxx
2π

(
uGy − uy

)]
(A.23)

The Maxwellian portion of the integration is substantially simpler due to the structure of the

Maxwell-Boltzmann distribution function. With the limitations on the x−directional velocities

in place, the integration of the Maxwellian portion becomes

Pxy,M = mnwα

ˆ ∞
0

dvx vx

(
β

π

) 1
2

exp
[
−βv2

x

]
ˆ ∞
−∞

dvy (vy − uy)
(
β

π

) 1
2

exp
[
−β (vy − uwy)2

]
ˆ ∞
−∞

dvz

(
β

π

) 1
2

exp
[
−βv2

z

]
(A.24)
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where uwy and uwz represent the bulk velocity of the wall. The even function integration over

vz is by definition equal to 1. Using a variable substitution Vy = vy − uwy,

Pxy,M =mnwα

(
β

π

)(
1

2β

)[ˆ ∞
−∞

dVy (Vy + (uwy − uy)) exp
[
−βV 2

y

]]
=mnwα

(
1

2π

)
(uwy − uy)

(
π

β

) 1
2

=α

√
Pxxρ

2π
(uwy − uy) (A.25)

Combining both the Gaussian and Maxwellian portions of the integration yields the shear

pressure PxyKn within the Knudsen layer for a wall normal in the +x-direction:

PxyKn = Pxy,G + Pxy,M

= α

[
Pxy
2
−
√
ρPxx
2π

(
uGy − uy

)]
+ α

√
Pxxρ

2π
(uwy − uy) (A.26)
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Flux Jacobians for the Gaussian

Closure

The construction of the flux Jacobians specific for the 10-moment Gaussian closure needed for

the Newton-Krylov implicit solver is a straightforward affair and is included here for reference.

Evaluation of the viscous flux Jacobian for the regularized terms requires care, as the flux vector

for the heat transfer terms is described in terms of the cell face solution state, as opposed to

the cell center solution used in the hyperbolic fluxes. This comes about from the finite-volume

treatment of elliptic fluxes using the centrally-weighted method for cell face gradients described

by Mathur and Murphy [58].

For the 10-moment Gaussian closure for diatomic gases, the conserved state vector, U, and

primitive state vector, W, is given by

U =



ρ

ρu

ρv

ρw

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρv2 + Pyy

ρvw + Pyz

ρw2 + Pzz

Erot



, W =



ρ

u

v

w

Pxx

Pxy

Pxz

Pyy

Pyz

Pzz

Erot



. (B.1)
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The Jacobian ∂U/∂W is then found to be

∂U

∂W
=



1 0 0 0 0 0 0 0 0 0 0

u ρ 0 0 0 0 0 0 0 0 0

v 0 ρ 0 0 0 0 0 0 0 0

w 0 0 ρ 0 0 0 0 0 0 0

u2 2ρu 0 0 1 0 0 0 0 0 0

uv ρv ρu 0 0 1 0 0 0 0 0

uw ρw 0 ρu 0 0 1 0 0 0 0

v2 0 2ρv 0 0 0 0 1 0 0 0

vw 0 ρw ρv 0 0 0 0 1 0 0

w2 0 0 2ρw 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1



(B.2)

.

The Jacobian ∂W/∂U is simply the inverse of the matrix in Eq. (B.2), and is calculated as

∂W

∂U
=



1 0 0 0 0 0 0 0 0 0 0

−u/ρ 1/ρ 0 0 0 0 0 0 0 0 0

−v/ρ 0 1/ρ 0 0 0 0 0 0 0 0

−w/ρ 0 0 1/ρ 0 0 0 0 0 0 0

u2 −2u 0 0 1 0 0 0 0 0 0

uv −v −u 0 0 1 0 0 0 0 0

uw −w 0 −u 0 0 1 0 0 0 0

v2 0 −2v 0 0 0 0 1 0 0 0

vw 0 −w −v 0 0 0 0 1 0 0

w2 0 0 −2w 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1



(B.3)

.

Orienting the cell states of two neighbouring cells such that the interface cell face normal is

aligned in the +x-direction eliminates the need to account for any fluxes in the transverse

direction along the cell face as they are equivalently zero. The construction of flux Jacobian is

therefore only necessary for the +x-direction. The x-direction flux vector for the 10-moment
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Gaussian closure is given in Section 2.3.3 as

Fx =



ρu

ρu2 + Pxx

ρuv + Pxy

ρuw + Pxz

ρu3 + 3uPxx

ρu2v + 2uPxy + vPxx

ρu2w + 2uPxz + wPxx

ρuv2 + uPyy + 2vPxy

ρuvw + uPyz + vPxz + wPxy

ρw2u+ uPzz + 2wPxz

uErot



(B.4)

.

The Jacobian of this flux vector with respect to the primitive variables is found to be

∂Fx
∂W

=



u ρ 0 0 0 0 0 0 0 0 0

u2 2ρu 0 0 1 0 0 0 0 0 0

uv ρv ρu 0 0 1 0 0 0 0 0

uw ρw 0 ρu 0 0 1 0 0 0 0

u3 3ρu2 + 3Pxx 0 0 3u 0 0 0 0 0 0

u2v 2ρuv + 2Pxy ρu2 + Pxx 0 v 2u 0 0 0 0 0

u2w 2ρuw + 2Pxz 0 ρu2 + Pxx w 0 2u 0 0 0 0

uv2 ρv2 + Pyy 2ρuv + 2Pxy 0 0 2v 0 u 0 0 0

uvw ρvw + Pyz ρuw + Pxz ρuv + Pxy 0 w v 0 u 0 0

w2u ρw2 + Pzz 0 2ρuw + 2Pxz 0 0 2w 0 0 u 0

0 Erot 0 0 0 0 0 0 0 0 u



. (B.5)

The Jacobian of the flux vector with respect to the conserved solution state necessary for the

Newton-Krylov solver can be found from the product of the Jacobian of the flux vector with

respect the primitive state multiplied by the Jacobian in Eq. (B.3) as described in Eq. (4.13).
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Performing this chain rule yields

∂Fx
∂U

=

(
∂Fx
∂W

)(
∂W

∂U

)
=

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

−u(−ρu
2+3Pxx)
ρ

3(−ρu2+Pxx)
ρ 0 0 0 3u 0 0 0 0 0

−(−ρu2v+2uPxy+vPxx)
ρ

2(−ρuv+Pxy)
ρ

−ρu2+Pxx

ρ 0 v 2u 0 0 0 0 0
−(−ρu2w+2uPxz+wPxx)

ρ
2(−ρuw+Pxz)

ρ 0 −ρu2+Pxx

ρ w 0 2u 0 0 0 0
−(−ρuv2+uPyy+2vPxy)

ρ
−ρv2+Pyy

ρ
2(−ρuv+Pxy)

ρ 0 0 2v 0 u 0 0 0
−(−ρuvw+uPyz+vPxz+wPxy)

ρ
−ρvw+Pyz

ρ
−ρuw+Pxz

ρ
−ρuv+Pxy

ρ 0 w v 0 u 0 0
−(−ρw2u+uPzz+2wPxz)

ρ
−ρw2+Pzz

ρ 0 2(−ρuw+Pxz)
ρ 0 0 2w 0 0 u 0

Erotu
ρ

Erot

ρ 0 0 0 0 0 0 0 0 u



.

(B.6)

For the regularized Gaussian closure, orienting the cell interface normal in the +x-direction does

not eliminate the need to evaluate the Jacobians in the transverse directions since the elliptic

fluxes are dependent on non-zero gradients at the cell face. As an example, the x-direction heat

flux term shown in Eq. (2.62) can be written as

FE,x = [0, 0, 0, 0, Qxxx , Qxyx , Qxzx , Qyyx , Qyzx , Qzzx , Erot]
T , (B.7)
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where

Qxxx = 3τ

[
Pxx
ρ

(
∂Pxx
∂x
− Pxx

ρ

∂ρ

∂x

)
+
Pxy
ρ

(
∂Pxx
∂y
− Pxx

ρ

∂ρ

∂y

)
+
Pxz
ρ

(
∂Pxx
∂z
− Pxx

ρ

∂ρ

∂z

)]
Qxyx = τ

[
2Pxx
ρ

(
∂Pxy
∂x
− Pxy

ρ

∂ρ

∂x

)
+

2Pxy
ρ

(
∂Pxy
∂y
− Pxy

ρ

∂ρ

∂y

)
+

2Pxz
ρ

(
∂Pxy
∂z
− Pxy

ρ

∂ρ

∂z

)
+
Pxy
ρ

(
∂Pxx
∂x
− Pxx

ρ

∂ρ

∂x

)
+
Pyy
ρ

(
∂Pxx
∂y
− Pxx

ρ

∂ρ

∂y

)
+
Pyz
ρ

(
∂Pxx
∂z
− Pxx

ρ

∂ρ

∂z

)]
Qxzx = τ

[
2Pxx
ρ

(
∂Pxz
∂x
− Pxz

ρ

∂ρ

∂x

)
+

2Pxy
ρ

(
∂Pxz
∂y
− Pxz

ρ

∂ρ

∂y

)
+

2Pxz
ρ

(
∂Pxz
∂z
− Pxz

ρ

∂ρ

∂z

)
+
Pxz
ρ

(
∂Pxx
∂x
− Pxx

ρ

∂ρ

∂x

)
+
Pyz
ρ

(
∂Pxx
∂y
− Pxx

ρ

∂ρ

∂y

)
+
Pzz
ρ

(
∂Pxx
∂z
− Pxx

ρ

∂ρ

∂z

)]
Qyyx = τ

[
Pxx
ρ

(
∂Pyy
∂x
− Pyy

ρ

∂ρ

∂x

)
+
Pxy
ρ

(
∂Pyy
∂y
− Pyy

ρ

∂ρ

∂y

)
+
Pxz
ρ

(
∂Pyy
∂z
− Pyy

ρ

∂ρ

∂z

)
+

2Pxy
ρ

(
∂Pxy
∂x
− Pxy

ρ

∂ρ

∂x

)
+

2Pyy
ρ

(
∂Pxy
∂y
− Pxy

ρ

∂ρ

∂y

)
+

2Pyz
ρ

(
∂Pxy
∂z
− Pxy

ρ

∂ρ

∂z

)]
Qyzx = τ

[
Pxx
ρ

(
∂Pyz
∂x
− Pyz

ρ

∂ρ

∂x

)
+
Pxy
ρ

(
∂Pyz
∂y
− Pyz

ρ

∂ρ

∂y

)
+
Pxz
ρ

(
∂Pyz
∂z
− Pyz

ρ

∂ρ

∂z

)
+
Pxz
ρ

(
∂Pxy
∂x
− Pxy

ρ

∂ρ

∂x

)
+
Pyz
ρ

(
∂Pxy
∂y
− Pxy

ρ

∂ρ

∂y

)
+
Pzz
ρ

(
∂Pxy
∂z
− Pxy

ρ

∂ρ

∂z

)
+
Pxy
ρ

(
∂Pxz
∂x
− Pxz

ρ

∂ρ

∂x

)
+
Pyy
ρ

(
∂Pxz
∂y
− Pxz

ρ

∂ρ

∂y

)
+
Pyz
ρ

(
∂Pxz
∂z
− Pxz

ρ

∂ρ

∂z

)]
Qzzx = τ

[
2Pxz
ρ

(
∂Pxz
∂x
− Pxz

ρ

∂ρ

∂x

)
+

2Pyz
ρ

(
∂Pxz
∂y
− Pxz

ρ

∂ρ

∂y

)
+

2Pzz
ρ

(
∂Pxz
∂z
− Pxz

ρ

∂ρ

∂z

)
+
Pxx
ρ

(
∂Pzz
∂x
− Pzz

ρ

∂ρ

∂x

)
+
Pxy
ρ

(
∂Pzz
∂y
− Pzz

ρ

∂ρ

∂y

)
+
Pxz
ρ

(
∂Pzz
∂z
− Pzz

ρ

∂ρ

∂z

)]
Note that the above fluxes are the negative of those found from Eq. (2.62), as the Newton-

Krylov solver pertaining to the implementation of second-order ’viscous’ fluxes uses the inward-

facing face normal, instead of the outward-facing normals used in other flux calculations. This

methodology is reproduced for the Gaussian closures to maintain congruity with other solvers

and equation sets in the group code.

The primitive solution state at the cell face, Wf , contains the variables present in the cell center

primitive solution state, Wc, but also includes the derivatives of those variables with respect

to each axial direction. This creates three Jacobians ∂Wf/∂Wc, one for each direction applied

respectively to a corresponding flux vector. Simplifications to the Jacobian can be made by

realizing that the heat flux tensor contains no velocity terms or their corresponding derivatives,

thus reducing the size of the primitive solution states and the resulting Jacobian matrix. The

primitive solution state at the cell face can then be written in tensor notation as

Wf =

[
ρ, Pij , Erot,

∂ρ

∂xi
,
∂Pij
∂xi

,
∂Erot
∂xi

]T

, (B.8)
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The vector contains 32 distinct terms, such that the Jacobian ∂FE,x/∂Wf is of dimension

11× 32. This largely sparse matrix is somewhat large for inclusion in print, but is sufficiently

simple to generate with symbolic mathematics software. The required flux Jacobian with respect

to the conserved variables is found by multiplying this Jacobian with the Jacobian found in

Eq. (B.3).
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