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Abstract
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Residual-distribution methods offer several potential benefits over classical methods, such

as a means of applying upwinding in a multi-dimensional manner and a multi-dimensional

positivity property. While it is apparent that residual-distribution methods also offer

higher accuracy than finite-volume methods on similar meshes, few studies have directly

compared the performance of the two approaches in a systematic and quantitative man-

ner. In this study, comparisons between residual distribution and finite volume are made

for steady-state smooth and discontinuous flows of gas dynamics, governed by hyperbolic

conservation laws, to illustrate the strengths and deficiencies of the residual-distribution

method. Deficiencies which reduce the accuracy are analyzed and a new nonlinear scheme

is proposed that closely reproduces or surpasses the accuracy of the best linear residual-

distribution scheme. The accuracy is further improved by extending the scheme to fourth

order using established finite-element techniques. Finally, the compact stencil, arithmetic

workload, and data parallelism of the fourth-order residual-distribution scheme are ex-

ploited to accelerate parallel computations on an architecture consisting of both CPU

cores and a graphics processing unit. Numerical experiments are used to assess the

gains to efficiency and possible monetary savings that may be provided by accelerated

architectures.
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Chapter 1

Introduction

Computational methods for solving hyperbolic partial differential equations are well es-

tablished and computational fluid dynamics (CFD) has gained widespread acceptance as

a powerful tool for engineering design. While classical methods, such as finite-difference

and finite-volume (FV), have found considerable success, research towards improving the

core algorithms is still very active. New classes of methods such as residual distribution

(RD), also known as fluctuation splitting, are specifically designed to address known

shortcomings of the classical methods and may offer several additional improvements as

well.

The first objective of this thesis is to systematically quantify the performance of the

RD method relative to the Godunov-type FV method. The latter method is chosen

as a reference because the FV method is mature and has demonstrated an exceptional

capability for computing solutions to discontinuous flows both robustly and accurately.

Despite these characteristics, there is some dissatisfaction with current finite volume

(FV) methods. While elegant and physical in one dimension, FV methods do not ex-

tend readily to multiple dimensions because the Riemann problem itself does not extend

readily to multiple dimensions. The usual workaround is to apply the one dimensional

scheme in multiple directions, a process in which the splitting of the flux becomes biased

in directions normal to the faces of the computational cells. Consequently, the schemes

1
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are no longer quite as physical and this causes a corresponding decrease in the accu-

racy via excess numerical dissipation. As shown by Roe and Sidilkover [51], dimensional

splitting is about the worst thing one can do for first-order solutions. Residual distribu-

tion methods attempt to correct this deficiency by explicitly modelling the underlying

multidimensional physics.

The most significant advantages of the RD method are regularly advertised in the

literature and generally illustrate their excellent shock-capturing capabilities. The com-

parison considered herein between RD and FV serves additional purposes. It provides

insight into the practicality of RD as a mainstream solution method by identifying any

disadvantages with respect to both the accuracy in smooth regions and in terms of ro-

bustness. It is our opinion that the notable disadvantages in the RD method are a result

of its relative immaturity and that most can be overcome. Indeed, much of the current

literature simply focuses on addressing problematic issues [3, 6, 53] rather than apply-

ing or extending the RD method. The second objective of this thesis to address these

deficiencies, by highlighting them and proposing solutions.

Residual distribution methods have a number of ancillary advantageous character-

istics, many of which are borrowed from finite-element methods and make it easier to

extend the method to orders of accuracy greater than two. These high-order schemes

are explored herein as candidates for processing on parallel heterogeneous architectures.

The final objective of this thesis is to explore methods for adapting an RD scheme to

new “accelerators” such a graphics processing units (GPU). Specifically, hybrid parallel

methods (those consisting of several levels of parallelism) are considered for heterogeneous

architectures featuring concurrent execution on both central processing units (CPU) and

GPUs.

The three main objectives of the thesis are thus a quantitative comparison with

FV , identification and correction of deficiencies, and a high-order extension on parallel

accelerated architectures. In the next sections, an introduction to the RD method and
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GPU acceleration are provided along with the governing equations and several canonical

test problems used to evaluate the computational performance of the method.

1.1 Residual Distribution

Residual distribution already has a long history; in 1981, a Lax-Wendroff RD scheme

was proposed by Ni [37] and, by 1986, the multidimensional framework for RD had been

developed by Roe [50]. Discussion of the early history is available in [4, 22] and in many

early theses, most notably [43, 57]. Techniques for RD were formalized in the early 1990s

through a collaborative effort between Roe and co-workers at the University of Michigan

and Deconinck and co-workers at the Von Kármán Institute for Fluid Dynamics, resulting

in the publication of three notable theses [35, 43, 57]. Significant contributions were also

due to efforts by Sidilkover [51, 54].

Around the turn of the century, efforts at the University of Michigan concentrated

on achieving solutions of the Euler equations via hyperbolic/elliptic splitting. Following

research by Mesaros [35] and Nishikawa [38], the thesis by Rad [46] is perhaps illustrative

of an “ultimate” Euler solver where hyperbolic parts of the system are treated by wave-

based multidimensional upwind methods and elliptic portions are solved by least-squares

minimization. Constraints on the minimization force the solver to preserve potential flow

and result in a scheme that can effectively handle flow regimes ranging from incompress-

ible to supersonic, all while retaining the excellent shock-capturing properties of RD.

This approach highlights the physics of the governing PDEs and yields very accurate

results. Drawbacks of Rad’s RD scheme include fine tailoring to the Euler equations and

the lack of a straightforward extension to three dimensional flows.

Efforts at the Von Kármán Institute have instead generally focused on matrix dis-

tribution techniques [58, 59] for solution of the Euler system of equations. The waves

crossing a face of an element are described in matrix form, rather than by first perform-
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ing a characteristic decomposition, and matrix-vector analogues of scalar techniques are

used to determine the solution. In this approach, the physics of the governing PDEs are

“hidden” in the matrices such that one cannot tune the solution procedure as explicitly

as with hyperbolic/elliptic splitting. Nevertheless, the results are still quite accurate and

more importantly, the technique is easily extended to any number of dimensions or to

systems of equations.

Since the year 2000, notable advancements include relaxation of the requirement for

a conservative linearization [19] and the discovery of mapped distribution schemes which

are essentially a generalization of limiters to multiple space dimensions [2, 4, 9]. There has

also been a significant amount of work on systems other than the Euler equations [41, 44]

and the solution of unsteady flows [2, 18, 48]. A wide variety of techniques have been

proposed for extending the RD method to orders of accuracy greater than two [13,

16, 32]; the most promising simply follows techniques established for the finite-element

method [9].

The mathematical foundations of RD have been primarily driven by a large number

of publications by Abgrall and co-workers. These efforts generally involve proofs of the

stability of the schemes [5, 8], however, study of the more intricate mathematics has also

shed light on some accuracy and convergence issues [3, 6]. The thesis by Ricchiuto [47]

and related works [21, 48] provide a very complete description of the fundamental math-

ematics behind RD.

The rationale behind the development of RD methods is to find a technique that is

superior in terms of accuracy per unit computational cost over existing methods. There

are several advantages to the RD method which help achieve this goal [22]:

• The first order scheme features much less cross-diffusion than a dimensionally split

FV scheme [51]. This is a consequence of the narrow stencil used by the first-order

RD scheme for updating the unknowns. Since its inception, this feature has been

well documented. The first-order scheme is not examined herein in much detail
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Figure 1.1 Dissipation of first-order FV and RD schemes on aligned and Carte-
sian meshes for circular advection of a “top-hat” profile.

as we will concentrate the high-order behaviour of the method. Nevertheless, the

first-order scheme is very important because it serves as a basis for the construction

of many RD schemes. A visual summary of the dissipative characteristics of the

first-order RD scheme compared to a first-order FV scheme is provided in Fig. 1.1.

For circular advection of a “top-hat” profile, both schemes closely reproduce the

exact solution if the mesh is aligned with the advection vector (Fig. 1.1a). However,

when the flow becomes multidimensional within the elements, as on a Cartesian

mesh, significant dissipation is observed. The better accuracy of the RD scheme is

illustrated in Fig. 1.1d after advecting the profile 360 ◦ on a Cartesian mesh.

• Residual distribution schemes have an inherent multidimensional positivity prop-

erty allowing for strict nonlinear stabilization. While nonlinear stabilization can be
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proven in one dimension for classical methods such as finite-difference and finite-

volume, the extension to multiple dimensions is less rigorous even though applica-

tion to multiple dimensions has been shown to work quite well for most practical

CFD applications. Finite-element methods, while allowing for proven multidimen-

sional stability properties, can suffer from a lack of accuracy or require problem-

dependent tunable constants [22, 47]. For application of the RD method to scalar

equations, positivity of the monotone and linear N scheme is shown herein. The en-

ergy stability of the first-order RD scheme (N scheme) applied to linear equations,

both scalar and systems, is proven by Abgrall and Barth [5], Abgrall and Mezine

[8], and Ricchiuto [47]. The results extend to any symmetrizable system. While

entropy stability can be shown for nonlinear scalar equations [47], the results for

nonlinear systems are less comprehensive and only indicate that an entropy con-

dition is satisfied for certain quadratures and in the limit of mesh-refinement [5].

Numerical results, however, invariably demonstrate the non-oscillatory behaviour

of the N scheme [2, 3, 21, 22].

• A compact reconstruction stencil (different from the update stencil), allows for

second-order accuracy on a stencil of only one element. The compact reconstruction

stencil simplifies application of boundary conditions, eases parallelization of the

algorithm, and increases the efficiency of the algorithm, especially for higher orders

of accuracy.

Within the literature, most of the results emphasize the accurate shock-capturing

properties of theRD schemes. This is indeed one of the most advantageous characteristics

but accuracy in smooth regions is also a requirement for practical computation, especially

when constrained by limited computational resources (and hence mesh size). While the

literature has shown thatRD methods are more accurate than FV methods when applied

to the solution of problems on the same size mesh [43, 46, 63, 64, 65], most of these

previous studies were more qualitative in nature, usually providing a visual comparison
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Figure 1.2 The GPU devotes more transistors to data processing than the CPU [42].

of a given flow feature. There is little to be found on the quantitative comparative

accuracy of RD and FV methods, especially with respect to the more practical nonlinear

distribution methods which are both second-order and monotone. The results obtained

by Abgrall [1] provide some insight, but the quantitative comparisons made therein only

describe solution minimums and maximums. With respect to the advancement of residual

distribution methods, this thesis focuses on accuracy in smooth flows. Of course, in

achieving maximum accuracy, it is desired to not compromise the advantages stated

above, most notably the nonlinear stability characteristics. This is a challenging task

since the accuracy of a method always seems to be inversely proportional to the nonlinear

stability of the method.

1.2 Parallel Accelerated Architectures

The potential for using graphics processing units (GPU) to assist with CFD has recently

generated considerable interest [12, 17, 55]. As shown in Fig. 1.2, the GPU devotes

more transistors to data processing than the CPU, which diverts significant resources to

data caching and flow control [42]. While the CPU can efficiently process conditional

instructions (branching) and dispersed data, the GPU is specialized for computation of

highly parallel data using instructions with a high arithmetic intensity. Programs that

exhibit these characteristics can benefit from the massive computational power of the
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GPU over the CPU. Perhaps most importantly, the GPU is a very cost-effective parallel

processor since research and development are supported by the graphics visualization

market.

Previously, using the GPU for computation has been difficult because code for the

GPU could only be expressed using application programming interfaces (API) designed

for graphics. NVIDIA has recently provided the Compute Unified Device Architecture

(CUDA), essentially a programming model, for “issuing and managing computations on

the GPU as a data-parallel computing device without the need of mapping them to a

graphics API [42].” With CUDA, the GPU can be programmed using the C programming

language and a library is provided for managing the GPU from code running on the

CPU. The introduction of CUDA also included changes to the hardware that facilitate

general-purpose computing. In particular, general scatter and gather operations to global

memory (RAM) are now permitted and a parallel data cache consisting of on-chip shared

memory increases the flexibility in which an algorithm can be designed [42]. Alternative

programming standards such as OpenCL [36] are emerging and may resolve many of the

concerns related to portability that arise from using a vendor-specific API.

In this work, the potential of using GPUs to assist with the computation of discrete

solutions to systems of partial differential equations using high-order residual-distribution

(RD) techniques is explored. The RD method is an attractive candidate for GPU com-

puting because it provides a compact reconstruction stencil (lowering memory operations)

and the high-order extension increases the arithmetic intensity. We take the perspective

that the different parts of the algorithm, depending on their characteristics, are better

suited to either the GPU or CPU. Suitability is determined both by the computational

efficiency that can be achieved on a processor and by the complexity of writing and

maintaining a particular section on a processor. Consequently, the resulting algorithm

illustrates the use of several levels of parallelism including a heterogeneous level featuring

simultaneous processing by the CPU and GPU; at this level, the algorithm is split be-
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tween the two processors depending on the aforementioned suitability. A similar attempt

at concurrent processing is described by Stock and Gharakhani [56] for a vortex-particle

method using an N -body approach.

1.3 Governing Equations and Canonical Problems

To study RD, we apply the method to hyperbolic systems of conservation laws having

the general form

∂U

∂t
+ ~∇ · ~F = 0 , (1.1)

where U is the solution vector and ~F is the flux dyad. The scalar advection equation,

nonlinear Burgers equation, and Euler equations of inviscid compressible gas dynamics

are all of this form and will be considered here. The latter are especially interesting,

not only because of the relevance to practical work, but because it is in the solution of

systems that RD methods can become more complex and face greater challenges. Only

steady solutions in two dimensions are considered as part of this research.

Several canonical problems are repeatedly used to evaluate the methods and are

introduced below. Each has an exact analytical solution allowing for the error to be

described by a particular norm given by

Lp-error =

(∫
|u− uexact|p dΩ

Ω

) 1
p

, (1.2)

where dΩ is the area associated with a discrete error measure. The integration is per-

formed numerically using a rectangle rule around each vertex (the location of the discrete

unknowns in RD). By evaluating a sequence of grids with an increasing number of dis-

crete unknowns, N , the error can be fit to the relation

Lp-error = αND
β , (1.3)

where ND is the dimensional spacing of the computational grid, ND =
√
N . In (1.3),

β denotes the spatial order of accuracy (for second order, β ≈ −2) and α describes the
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Figure 1.3 Scalar problems for study.

absolute magnitude of the error. This quantitative description of the error is used as a

basis for all analysis in this work and is supplemented by qualitative contour plots of

computed distributions where appropriate.

1.3.1 Scalar problems

The computational methods are applied to the scalar problems of circular advection of a

Gaussian profile, linear advection of a Gaussian profile, and nonlinear Burger’s equation.

Analytical solutions for the three cases are shown in Fig. 1.3. The linear advection

equation is given by

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0 , (1.4)

where a=a(x, y) and b=b(x, y) are the components of the advection velocity field. The

Gaussian profile, u = e−0.5[(x−0.5)/0.08]2 , prescribes a smooth solution. For the circular

advection problem, Fig. 1.3a, the Gaussian profile is assigned at the (0 ≤ x ≤ 1, y = 0)

boundary and then advected in a counter-clockwise direction on a domain extending

from −1 to 1 in both dimensions. For the linear advection problem, Fig. 1.3b, the

Gaussian profile is advected at an angle of 30 ◦ on a domain extending from 0 to 1.

The exact solution to the nonlinear Burgers equation, given by

∂u

∂t
+ u

∂u

∂x
+ 1

∂u

∂y
= 0 , (1.5)
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is shown in Fig. 1.3c and used to evaluate the shock-capturing properties of both the RD

and FV schemes for scalar equations. A steady problem was studied on a square solution

domain in which the boundary values of the solution u were specified to vary linearly

from 1.5 to -0.5 along the x-axis. This results in the formation of a compression wave

that strengthens and produces a shock at (x=0.75, y=0.5). The shock then progresses

upward and leaves the solution domain at the top right corner. The extent of the domain

is from 0 to 1 in both dimensions.

For all scalar problems, Dirichlet boundary conditions are assigned whenever the

advection vector points into the computational domain.

1.3.2 Euler system problems

The two-dimensional Euler equations are given by (1.1) with

U =



ρ

ρu

ρv

ρeT


, Fx =



ρu

ρu2 + p

ρuv

ρuhT


, Fy =



ρv

ρuv

ρv2 + p

ρvhT


, (1.6)

where eT is the specific total energy and hT is the specific total enthalpy. In this work,

gaseous flows of air are considered and the preceding partial differential equations are

supplemented with the ideal gas law, p = ρRT , as an equation of state. The specific gas

constant, R, is taken to be 287 J/(kg · K) and a perfect gas is assumed with a specific

heat ratio of γ = 1.4.

The problems to be considered are shown in Fig. 1.4. Problems of supersonic flow

with shocks are in the first two sub-figures. An oblique shock is shown in Fig. 1.4a. The

incident flow is at Mach 2 and orientated at an angle of −13.8978 ◦ to an inviscid wall at

y = 0. The resulting shock is inclined at 30 ◦ to the wall. A supersonic inflow condition

is specified at the left boundary, supersonic outflow at the right, and Dirichlet at the

top. Figure 1.4b shows a supersonic flow at Mach 3 past a diamond-shaped aerofoil.
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Figure 1.4 Euler system problems for study.

Freestream pressure and temperature corresponding to standard atmospheric conditions

are used and the angle of attack is 0 ◦ . The solution domain features a horizontal axis of

symmetry and the outflow boundary is close enough to prevent any interaction between

the otherwise simple and centered waves. Hence, an exact solution can be determined

for the entire domain. The left boundary is prescribed as supersonic inflow and the right

as supersonic outflow. A Dirichlet condition is specified at the top.

Figures 1.4c and 1.4d consist of subsonic flow over a smooth cosine bump and past

a circular cylinder, respectively. The flow is at standard atmospheric conditions and the

freestream Mach number was taken to be 0.1. A horizontal axis of symmetry is imposed

along with an inviscid wall condition over the object and a far-field condition is used

away from the object. The smooth bump has a chord of 3 and the profile is defined by

y =
1

20

(
cos
(πx

1.5

)
+ 1
)
, −1.5 ≤ x ≤ 1.5 . (1.7)

The far-field boundary is placed at 7 times the chord. The circular cylinder has a diameter
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of 2 and the far-field is placed at 10.5 times this diameter. As both these inviscid flows

are homentropic, any deviations from the freestream entropy are a result of numerical

solution error. Changes in entropy, given by

δs =
R

γ − 1
ln

(
p

ργ

)
− s∞ , (1.8)

were therefore used to define solution error where s∞ is the value of entropy in the

freestream. The problem of subsonic flow past a cylinder introduces the complexity of

stagnation regions compared to the bump problem.

Ringleb’s flow, Fig. 1.4e, is a hodograph solution to the Euler equations [52] that

involves an isentropic and irrotational flow contained between two streamlines. The

availability of the analytic solution for this case makes it useful for demonstrating the

accuracy of the spatial discretization. The left and right boundaries are delimited by

streamlines and there is subsonic inflow at the top and mixed subsonic/supersonic outflow

at the bottom of the domain. Dirichlet boundary conditions are applied at all boundaries.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, details of the RD

method are presented for scalar equations. Techniques for systems of equations are de-

scribed in Chapter 3. Details of the implementation are discussed in Chapter 4 including

the method of time-marching and the imposition of boundary conditions. The high-order

approach is also presented in Chapter 4. In Chapter 5, the second-order RD method is

compared against a Godunov-type FV method using the canonical problems described

in the previous section. The advantages and disadvantages of the RD scheme are high-

lighted. In Chapter 6, a technique is proposed for enhancing the accuracy of nonlinear

RD schemes. Chapter 7 introduces the target architecture and how the fourth-order RD

scheme is adapted to run on heterogeneous systems consisting of GPUs and CPUs. The

efficiency of using a GPU is analyzed in detail. Our final results are presented in Chap-
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ter 8 where second and fourth-order solutions are obtained using the proposed techniques

for improving the accuracy. The fourth-order results are additionally obtained on the

heterogeneous architecture using adaptations necessary for computing at reduced preci-

sion. Comparisons are made to solutions predicted using trusted but less comprehensive

RD techniques relevant to the problem at hand. Conclusions, including the contributions

of the thesis, are the subject of Chapter 9.



Chapter 2

Residual Distribution Methods for
Scalar Equations
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Figure 2.1 A simplex element for an RD
scheme.

Residual distribution methods calculate

the residual (or fluctuation) on an element,

E, of an unstructured mesh and then, by

some appropriate method, distribute the

fluctuation to the nodes of that element to

advance the solution in time. There are

three distinct steps: computation of the

fluctuation, distribution of the fluctuation,

and evolution of the solution. Residual dis-

tribution methods are cell-vertex methods

that are usually solved on simplexes (tri-

angles in two space dimensions). A typical element is illustrated in Fig. 2.1 and highlights

several relevant features: solution unknowns at the vertices of the triangle, inwards nor-

mals of edges numbered according to the opposing vertices and scaled by the lengths of

the edges, and contributions to the dual mesh constructed from the element centroid and

edge mid-points.

In this chapter, RD methods will be explained for scalar equations. There is a very

15
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large number of RD schemes, most of which feature one or more desirable properties

and one or more undesirable properties. Only standard schemes, those which are well

established in the literature and have the most desirable behaviour or characterize a

particular property, are presented for completeness. The details of these methods are

well documented in a variety of related theses [35, 43, 46, 47, 57] and at least summarized

in much of the literature. The mathematical notation expressed by Cśık et al. [19] and

Ricchiuto [47] is closely followed for consistency.

2.1 Theory for Scalar Equations

For the scalar advection equation, one can express the PDE as

∂u

∂t
+

d∑
j=1

(
λj
∂u

∂xj

)
= 0 , (2.1)

where d is the number of dimensions and λj is the advection speed in the jth coordinate

direction. The fluctuation on a simplex element, E, is defined as

φE = −
∫

E

∂u

∂t
dΩE =

∫
E

d∑
j=1

(
λj
∂u

∂xj

)
dΩE =

[
d∑

j=1

(
λ̄jx̂j

)]
·
∫

E

~∇u dΩE , (2.2)

where ΩE is the element area, x̂j defines a unit vector in the jth coordinate direction,

and λ̄j is linearized over the element. For nonlinear equations, λ̄j is determined via a

conservative linearization such that[
d∑

j=1

(
λ̄jx̂j

)]
·
∫

E

~∇u dΩE = −
∮

∂E

~f(u) · n̂ dS , (2.3)

where n̂ is the inwards-pointing unit normal vector of surface element dS and ~f(u) is the

flux vector. For second-order schemes, the solution, u, is assumed to vary linearly in the

element. The integral in (2.2) can then be evaluated exactly to obtain

φE =

[
d∑

j=1

(
λ̄jx̂j

)]
· 1

d

d+1∑
i=1,i∈E

ui~ni =
d+1∑

i=1,i∈E

kiui . (2.4)
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The index i loops over each vertex of an element and the vector ~ni defines the inwards

normal of the edge opposite node i and scaled by the length of the edge. The inflow

parameters, ki, are defined by

ki =
1

d

[
d∑

j=1

(
λ̄jx̂j

)]
· ~ni , (2.5)

and describe whether edge i sees the inflow (positive k) or outflow (negative k) of the

solution quantity. Because λ̄j is linearized,
∑d+1

i=1,i∈E ki = 0. The inflow parameters can

be used to interpolate the solution at inflow and outflow points according to

uin =

d+1∑
i=1,i∈E

k−i ui

d+1∑
i=1,i∈E

k−i

, (2.6)

and

uout =

d+1∑
i=1,i∈E

k+
i ui

d+1∑
i=1,i∈E

k+
i

, (2.7)

where k+
i = max(0, ki) and k−i = min(0, ki). Using these definitions, the fluctuation

defined by (2.4) can be cast into the form

φE =
d+1∑

i=1,i∈E

max(0, ki) (uout − uin) , (2.8)

which shows that the fluctuation is zero when the inflow and outflow points are at the

same value (or streamwise invariant) [43].

The distribution of the fluctuation to the nodes, φE
i , is governed by distribution

coefficients, βi, with φE
i = βiφ

E and, for consistency,
∑d+1

i,i∈E βi = 1. The distribution

can be represented graphically as shown in Fig. 2.2; the barycentric coordinates of a

“distribution point” define the distributions to each vertex, e.g., β1 = Ω1/ΩE.
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Ω 1
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Figure 2.2 Geometrical representation of a distribution. The barycentric coordinates
of the distribution point equal the distribution coefficients.

The nodal residual is defined as the sum of all fluctuations distributed to node i from

all elements, E, that share node i as a vertex. The semi-discrete update formula is then

Ωi
dui

dt
+
∑
E

βE
i φ

E = 0 , (2.9)

where Ωi is the area of the dual mesh, shown in Fig. 2.3, associated with node i of the

unstructured mesh. Various time-marching schemes can be applied to the solution of the

coupled ordinary differential equations given above for the nodal values of the solution.

In two dimensions, one can envision two possible orientations of the elemental trian-

gles: those with one downstream vertex (one positive inflow parameter - type I triangle in

i

Ω

i

E

Ω

Figure 2.3 Primary elements (solid lines)
and dual mesh (dashed lines) created from
element centroids and edge midpoints.

Fig. 2.4) and those with two downstream

vertices (two positive inflow parameters -

type II triangle in Fig. 2.4). In the former

case, an upwind scheme sends all the fluc-

tuation to the downstream vertex. In the

latter case, the fluctuation is split between

the two downstream nodes.

There are a variety of RD schemes,

each distinguished by a different method

for determining the distribution coeffi-
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Figure 2.4 Possible triangle orientations in a two-dimensional flow. ~λ is the linearized
characteristic vector

cients, βE
i . The different residual distribution schemes can be classified according to

various properties that they may satisfy. The properties relevant to this work are as

follows:

Upwind (U) — No fluctuation is sent to an upstream vertex. This implies that the

distribution point in Fig. 2.2 must lie on the perimeter of the element.

Positivity (P) — A nonlinear bound on solution extrema is achieved if the residual

update can be written as a sum of the surrounding vertices with positive coefficients,

un+1
i =

N∑
j

ciju
n
j , cij > 0 , j = 1 . . . N . (2.10)

Schemes of this form are “local extremum diminishing” (local maxima are non-

increasing and local minima are non-decreasing) and thus monotonicity-preserving.

An extensive discussion of the subject including proofs of energy and entropy sta-

bility is available in the thesis by Ricchiuto [47]. In practice, positivity is prescribed

within each element rather than on the dual mesh. This stricter condition still en-

sures (2.10) and allows for completion of the distribution step within the stencil of

an element.

Linearity preservation (LP) — An exact linear solution, if imposed at the discrete

grid points, will not be altered by the scheme. This property allows for orders

of accuracy greater than one. It is sufficient that the distribution coefficients are
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bounded for a scheme to be LP [22]. If the exact solution of a linear problem is

assigned at the vertices, then the fluctuation in the element will be determined as

φE = 0. Bounded distribution coefficients will ensure that the solution does not

change since φE
i = βiφ

E = 0.

2.2 Linear RD Schemes

A number of linear RD schemes are presented next. Linear schemes cannot be both P

and LP. They may or may not possess property U .

2.2.1 N Scheme

The N scheme is a linear scheme that preserves monotonicity. The N scheme was

originally proposed by Roe [50] and is formulated by ensuring that positivity is pre-

served [20, 43, 57]. It is one of the most important schemes since it serves as a basis for

most nonlinear schemes that are also LP.

Consider three separate equations describing the updates to the vertices of an element,

Ω1
du1

dt
= −β1 (k1u1 + k2u2 + k3u3) (2.11a)

Ω2
du2

dt
= −β2 (k1u1 + k2u2 + k3u3) (2.11b)

Ω3
du3

dt
= −β3 (k1u1 + k2u2 + k3u3) , (2.11c)

with the fluctuation written using (2.4). For a type I triangle, as shown in Fig. 2.4, all

the fluctuation is sent to the downwind vertex; from (2.11), β1 = β2 = 0 and β3 = 1.

With an explicit-Euler time-marching algorithm, (2.11c) becomes

un+1
3 = un

3 −
h

Ω3

(k1u
n
1 + k2u

n
2 + k3u

n
3 ) . (2.12)

The inflow parameters k1 and k2 are negative yielding positive coefficients for un
1 and un

2 .

The coefficient for un
3 will be positive under an appropriate time-step constraint. The
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time step is determined independently for each sub-element E that connects to vertex 3, a

more restrictive condition for enforcing P than considering together all the updates from

all triangles that connect to vertex 3. In (2.12), the update from a triangle is applied to

the area, ΩE/3, contributed by the triangle to the dual mesh, resulting in the time-step

constraint

hE =
1

3

ΩE

k3

. (2.13)

As noted by Struijs [57], the distribution in one target triangles is bounded and satisfies

both properties P and LP.

For type II triangles (see Fig. 2.4) the fluctuation must be split between the two

downstream vertices, 1 and 2. Using the fact that
∑d+1

i=1,i∈E ki = 0, the fluctuation

can be written φE = k1 (u1 − u3) + k2 (u2 − u3). With an explicit-Euler time-marching

algorithm, (2.11a) and (2.11b) become

un+1
1 = un

1 −
h

Ω1

k1 (u1 − u3)

un+1
2 = un

2 −
h

Ω2

k2 (u2 − u3) ,
(2.14)

where β1 and β2 only have an implicit meaning and, for (2.11c), β3 = 0. Since k1, k2 > 0,

the coefficients for u3 are positive. With the same considerations as for the type I triangle,

the coefficients for u1 and u2 are positive under the time-step constraint

hE =
1

3

ΩE

max(k1, k2)
. (2.15)

Equation (2.14) is actually derived from the more general distribution

un+1
1 = un

1 −
h

Ω1

[k1 (u1 − u3) + p1 (u1 − u3)− p2 (u2 − u3)] (2.16)

un+1
2 = un

2 −
h

Ω2

[k2 (u2 − u3)− p1 (u1 − u3) + p2 (u2 − u3)] . (2.17)

In [57], it is shown that the largest time step of a positive update is achieved if p1 = p2 = 0,

yielding (2.14). Note that in the two-target case, the distribution coefficients are given
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λ

2

3

1

λ2

λ1

Figure 2.5 Geometrical distribution of the N scheme for a type II triangle.

by βi = φi/φ
E and become unbounded as φE → 0. Hence, for a type II triangle, the N

scheme is not LP.

A general formulation for the N scheme is given by

φN
j = k+

j (uj − uin) , (2.18)

where uin is from (2.6). For an explicit-Euler update, a time-step restriction enforcing

local positivity is

hE =
1

3

ΩE

max
(
k+

j

) , j ∈ E . (2.19)

Geometrically, the distribution of the N scheme in a type II triangle is equivalent to

splitting the advection vector into two components parallel to edges 1 and 2 (see Fig. 2.5).

Because of this, vertex 2, for example, will have no influence on the distribution to vertex

1; ~̄λ1, being parallel to edge 2 results in k2 = 0:

φ1 = k1|~̄λ1
u1 + k2|~̄λ1

u2 + k3|~̄λ1
u3

= k1|~̄λ1
u1 + k3|~̄λ1

u3

= k1|~̄λ1
(u1 − u3) .

Note that k1 = k1|~̄λ1
, reproducing (2.14). This leads to the very narrow stencil for which

the N scheme is named. In Fig. 2.6, while triangles (1, 2, 3), (1, 3, 4), and (1, 4, 5) are
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Figure 2.6 Vertices involved in
an N-scheme update.

involved in the update to vertex 1, the update is

written as a function of only vertices 1, 3, and 4.

The nature of the scheme excludes the outermost

vertices, 2 and 5, which are perpendicular to the

advection vector.

Formulation of the N scheme was based on the

use of (2.4) which requires the conservative lin-

earization for ~̄λ in (2.3). A conservative lineariza-

tion may be undesirable or even impossible for

some equations; an alternative is to use a contour-

integration-based RD (CRD) scheme [19]. In this technique, the fluctuation is computed

via a contour integral given by

φE = −
∮

∂E

~f(S) · n̂ dS , (2.20)

where ~f is the flux vector. In a numerical implementation, a Gauss quadrature integration

rule is used to evaluate the integral. In the subsequent distribution step, any set of

variables S may be used for the linearization. Since it may no longer be true that φE =∑d+1
i=1,i∈E kiui, the N scheme must be modified to ensure conservation. For substitution

into (2.18), equation (2.6) is replaced by

uin =

φE −
d+1∑

i=1,i∈E

k+
i ui

d+1∑
i=1,i∈E

k−i

. (2.21)

Note that if a conservative linearization is still used, this modification does not change

anything because
∑d+1

i=1,i∈E k
−
i ui = φE −

∑d+1
i=1,i∈E k

+
i ui. Although the CRD technique is

rather simple, the effects are profound because RD solutions are no longer restricted to

a particular linearization. For scalar equations solved in this study, the CRD technique
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is used with a linearization based on

S = u . (2.22)

2.2.2 LDA Scheme

The low diffusion A (LDA) scheme is a linear scheme which is LP but not P . As with

the N scheme, all the fluctuation in sent to the downstream vertex in a type I triangle.

λ
L

1

3

2

L1

L2

Figure 2.7 Geometrical distribu-
tion of the LDA scheme for a type
II triangle.

In a type II triangle, shown in Fig. 2.7, the distri-

bution is governed by the location at which the lin-

earized characteristic vector intersects the outflow

edge. This identifies the distribution point defined

by Fig. 2.2. In the example of Fig. 2.7, β1 = L1/L

and β2 = L2/L. A general formula for the LDA

scheme is

βLDA
i =

k+
i

d+1∑
j=1,j∈E

k+
j

. (2.23)

There is also an LDB scheme in which the splitting

of φE is based on angles [43, 57] but this scheme has fallen out of favour and is not

considered here.

If a non-conservative linearization is employed and the fluctuation is computed by

a contour integral, (2.20), no modifications are required for the LDA scheme since∑d+1
i=1,i∈E β

LDA
i = 1, irrespective of the linearization, and therefore the distributed fluctu-

ation is conserved.

Taylor-Series Analysis of the LDA Scheme

The LDA scheme performs very well on smooth flows and provides the expected spatial

order of accuracy. In some cases, super-convergence is observed, a property which can be
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Figure 2.8 Mesh elements used for Taylor series expansion about vertex i.

understood by examining the cross-diffusion of a Taylor-series expansion of the solution

around a vertex. This type of analysis is performed extensively by Paillère [43] at O(∆h3)

truncation for both the LDA and N scheme, with h being representative of the grid

spacing. The technique is repeated here at O(∆h4) truncation to investigate the super-

convergence. Taylor series expansion will also be used in Chapter 6 to study the accuracy

of nonlinear schemes.

A grid of three elements is considered and shown in Fig. 2.8. The update for vertex

i is considered and the downstream elements above vertex i can be ignored if the y-

component of the advection vector is assumed positive. The scaled inwards normals are

shown for E1 and have values

~na =

∆y

0

 ~nb =

−∆y

∆x

 ~nc =

 0

−∆x

 .

The fluctuations for each element may be expressed as

φE1 = kaui + kbuj + kcuk

φE2 = −kcui − kauk − kbul (2.24)

φE3 = kbui + kcul + kaum
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where

ka =
1

2
a∆y kb =

1

2
(b∆x− a∆y) kc = −1

2
b∆x .

Using a Taylor series expansion, all nodal values are expressed relative to ui as follows:

uj = ui −∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
− ∆x3

6

∂3u

∂x3
+O(∆h4)

uk = ui −∆x
∂u

∂x
−∆y

∂u

∂y
+

∆x2

2

∂2u

∂x2
+ ∆x∆y

∂2u

∂x∂y
+

∆y2

2

∂2u

∂y2

− ∆x3

6

∂3u

∂x3
− ∆x2∆y

2

∂3u

∂x2∂y
− ∆x∆y2

2

∂3u

∂x∂y2
− ∆y3

6

∂3u

∂y3
+O(∆h4) (2.25)

ul = ui −∆y
∂u

∂y
+

∆y2

2

∂2u

∂y2
− ∆y3

6

∂3u

∂y3
+O(∆h4)

um = ui + ∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
+

∆x3

6

∂3u

∂x3
+O(∆h4) .

Substituting (2.25) into (2.24) results in

φE1 =
∆x∆y

2

(
a
∂u

∂x
+ b

∂u

∂y
− a∆x

2

∂2u

∂x2
− b∆x

∂2u

∂x∂y
− b∆y

2

∂2u

∂y2

+
a∆x2

6

∂3u

∂x3
+
b∆x2

2

∂3u

∂x2∂y
+
b∆x∆y

2

∂3u

∂x∂y2
+
b∆y2

6

∂3u

∂y3

)
+O(∆h5)

φE2 =
∆x∆y

2

(
a
∂u

∂x
+ b

∂u

∂y
− a∆x

2

∂2u

∂x2
− a∆y

∂2u

∂x∂y
− b∆y

2

∂2u

∂y2
(2.26)

+
a∆x2

6

∂3u

∂x3
+
a∆x∆y

2

∂3u

∂x2∂y
+
a∆y2

2

∂3u

∂x∂y2
+
b∆y2

6

∂3u

∂y3

)
+O(∆h5)

φE3 =
∆x∆y

2

(
a
∂u

∂x
+ b

∂u

∂y
+
a∆x

2

∂2u

∂x2
− b∆y

2

∂2u

∂y2
+
a∆x2

6

∂3u

∂x3
+
b∆y2

6

∂3u

∂y3

)
+O(∆h5) .

A transformation is made from Cartesian coordinates, (x, y), to a coordinate system

aligned with the advection vector, (ξ, η), according to

ξ̂ =
a

|λ|
x̂+

b

|λ|
ŷ and η̂ = − b

|λ|
x̂+

a

|λ|
ŷ .
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Derivatives in the streamline coordinate system are given by the following relations:

∂u

∂x
=

1

|λ|

[
a
∂u

∂ξ
− b

∂u

∂η

]
∂u

∂y
=

1

|λ|

[
b
∂u

∂ξ
+ a

∂u

∂η

]
∂2u

∂x2
=

1

|λ|2

[
a2∂

2u

∂ξ2
− 2ab

∂2u

∂ξ∂η
+ b2

∂2u

∂η2

]
∂2u

∂x∂y
=

1

|λ|2

[
ab

(
∂2u

∂ξ2
− ∂2u

∂η2

)
+
(
a2 − b2

) ∂2u

∂ξ∂η

]
∂2u

∂y2
=

1

|λ|2

[
b2
∂2u

∂ξ2
+ 2ab

∂2u

∂ξ∂η
+ a2∂

2u

∂η2

]
∂3u

∂x3
=

1

|λ|3

[
a3∂

3u

∂ξ3
− 3a2b

(
∂3u

∂ξ2∂η
+

∂3u

∂ξ∂η2

)
− b3

∂3u

∂η3

]
∂3u

∂x2∂y
=

1

|λ|3

[
a2b

∂3u

∂ξ3
+
(
a3 − 2ab2

) ∂3u

∂ξ2∂η
+
(
b3 − 2a2b

) ∂3u

∂ξ∂η2
+ ab2

∂3u

∂η3

]
∂3u

∂x∂y2
=

1

|λ|3

[
ab2

∂3u

∂ξ3
−
(
b3 − 2a2b

) ∂3u

∂ξ2∂η
+
(
a3 − 2ab2

) ∂3u

∂ξ∂η2
− a2b

∂3u

∂η3

]
∂3u

∂y3
=

1

|λ|3

[
b3
∂3u

∂ξ3
+ 3ab2

∂3u

∂ξ2∂η
+ 3a2b

∂3u

∂ξ∂η2
+ a3∂

3u

∂η3

]
.

Based on the exact solution, derivatives in the streamline direction are set to zero,

∂()

∂ξ
=
∂()

∂ξ2
=

∂()

∂ξ∂η
=
∂()

∂ξ3
=

∂()

∂ξ2∂η
=

∂()

∂ξ∂η2
= 0 ,

thereby simplifying the previous transformation derivatives. After substituting in the

transformation derivatives, and letting s = ∆y/∆x, the new expressions for the fluctua-

tion in each element are

φE1 =
sab∆x3

4|λ|2

[
(b− as)

∂2u

∂η2
+

∆x

3|λ|
(as− 2b)(as− b)

∂3u

∂η3

]
+O(∆h5)

φE2 =
sab∆x3

4|λ|2

[
(as− b)

∂2u

∂η2
+

∆x

3|λ|
(b− 2as)(as− b)

∂3u

∂η3

]
+O(∆h5) (2.27)

φE3 =
sab∆x3

4|λ|2

[
(b− as)

∂2u

∂η2
+

∆x

3|λ|
(as+ b)(as− b)

∂3u

∂η3

]
+O(∆h5) .
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With explicit-Euler time-marching, the update scheme is written

un+1
i − un

i

∆t
+

1

Ωi

3∑
p=1

β
Ep

i φEp = 0 with Ωi = ∆x∆y = s∆x2 , (2.28)

and a converged steady solution is obtained when

1

s∆x2

3∑
p=1

β
Ep

i φEp = 0 . (2.29)

The truncation error, (TE), for the scheme is then given by

TE =
ab(as− b)∆x

4|λ|2

{[
−βE1

i + βE2
i − βE3

i

] ∂2u

∂η2

+
∆x

3|λ|
[
βE1

i (as− 2b)− βE2
i (2as− b) + βE3

i (as+ b)
] ∂3u

∂η3

}
+O(∆h3) . (2.30)

For an LDA scheme and an advection vector at an angle of 45 ◦ ≤ δ ≤ 90 ◦ from the

x-axis, one has

βE1
i =

ka

−kc

=
as

b
, βE2

i = 1 , βE3
i =

kb

−kc

= 1− as

b
, (2.31)

and (2.30) reduces to

TE =
ab(as− b)∆x2

12|λ|3
[2b− 4as]

∂3u

∂η3
+O(∆h3) . (2.32)

Equation (2.32) only has terms greater than or equal to O(∆h2) indicating that the LDA

scheme is at least second-order accurate. Additionally, the scheme is consistent since the

truncation error tends to zero as ∆x→ 0. It is also apparent that the LDA scheme is at

least third-order accurate if either:

a = 0 advection vector aligned with vertical mesh lines.

b = 0 advection vector aligned with horizontal mesh lines.

s = b
a

advection vector aligned with mesh diagonal.

s = 1
2

b
a

unique cell aspect ratio.

The first three conditions describe the advection vector aligning with the mesh. The last

condition is the most curious; if a Cartesian mesh with a regular triangulation has an
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aspect ratio s = 1
2

b
a
, then the scheme will be third-order accurate. This accounts for the

super-convergence that is sometimes observed with the LDA scheme and is a result of

error cancellation between the three elements of Fig. 2.8.

2.2.3 LDC Scheme

It is possible to adapt the error cancellation of the super-convergent LDA scheme to mesh

elements of any aspect ratio, resulting in a new distribution scheme we have labelled LDC.

Starting from (2.30), the three relations

−βE1
i + βE2

i − βE3
i = 0 (2.33a)

βE1
i (as− 2b)− βE2

i (2as− b) + βE3
i (as+ b) = 0 (2.33b)

βE2
i = 1 (2.33c)

are used to determine the distribution coefficients of the new scheme. Full upwinding

is assumed for type I triangles, such as E2, thereby providing the last relation. Solv-

ing (2.33) for βE1
i and βE3

i gives

βE1
i =

2

3
+

ka

3kc

and βE3
i =

2

3
+

kb

3kc

. (2.34)

A general distribution formula for type II triangles is

βLDC
i =


2
3 −

ki

3
∑d+1

j=1,j∈E k
+
j

if i is a downstream vertex,

0 if i is an upstream vertex.

(2.35)

Compared to the LDA scheme, the distribution coefficients are bounded between 1/3 ≤

Li/L ≤ 2/3 (see Fig. 2.7) and, quite surprisingly, the relative weighting between the

downstream vertices is opposite the weighting of the LDA scheme for a given advection

vector. In other words, if the advection vector points towards vertex i in triangle E1 of

Fig. 2.8, the LDC scheme will set βE1
j > βE1

i .
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The LDC scheme is quite similar to a high-order technique proposed by Hubbard and

Laird [32] where the stencil for the distribution is expanded such that an element can

distribute its own fluctuation to vertices that it does not share. Both this technique and

the LDC scheme are derived from Taylor-series expansions and both require a regular

grid. The main difference is that the LDC scheme still retains a stencil of one element

for distribution of the fluctuation.

The LDC scheme is only of academic interest. It relies upon a mesh with a regular

structure and a generic formula for both type I and type II triangles is cumbersome.

Nevertheless, the LDC scheme is a demonstration of an upwind method that achieves an

extra order of accuracy on certain meshes by error cancellation. The LDC scheme is a

linear scheme which, similar to the LDA scheme, is LP but not P .

2.2.4 Central Scheme

A central scheme is given by βi = 1/3. Although LP, the central scheme respects

neither of the U or P properties. As such, it is notoriously unstable for problems of wave

propagation. This scheme is identical to Jameson’s central finite-volume scheme [34] and

the Galerkin finite-element method. It is only considered in this thesis as a basis for the

construction of certain nonlinear schemes described later in Chapter 6.

2.2.5 Lax-Wendroff Scheme

The formulation of the Lax-Wendroff (LW) scheme in a RD framework is described

in [35, 43, 50, 57] and recalled here for completeness. Two relations are required based

on what amounts to mass lumping in the finite-element method [57]:

φE = −
∫

E

∂u

∂t
dΩE ⇒

∂u

∂t
= −φ

E

ΩE

, (2.36)

and ∫
D

(
un+1

i − un
i

)
dΩi =

(
un+1

i − un
i

)
Ωi , (2.37)
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where D is used to denote the dual mesh around vertex i having area Ωi. Equation (2.36)

defines the relation which expresses that ∂u/∂t is taken to be constant in a primary

element and (2.37) states that the evolution of the solution in an element of the dual

mesh is given by the change at node i.

The formulation starts with a Taylor series expansion in time around un
i ,

un+1
i = un

i + ∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+O(∆t3) (2.38)

un+1
i − un

i = ∆t
∂u

∂t
+

∆t2

2

∂2u

∂t2
+O(∆t3) , (2.39)

followed by integration over an element of the dual mesh,∫
D

(
un+1

i − un
i

)
dΩi︸ ︷︷ ︸

Use (2.37)

=

∫
D

(
∆t
∂u

∂t︸ ︷︷ ︸
A

+
∆t2

2

∂2u

∂t2︸ ︷︷ ︸
B

+ . . .

)
dΩi . (2.40)

The temporal derivatives in the RHS are now replaced with spatial derivatives using the

original equation. Consider a contribution to vertex i from primary element E. The term

A in (2.40) is evaluated using (2.36),∫
E∩D

∆t
∂u

∂t
dΩE = −1

3

(
∆t

φE

ΩE

ΩE

)
= −1

3
∆tφE . (2.41)

The relation

∂2u

∂t2
= −ā ∂

2u

∂x∂t
− b̄

∂2u

∂y∂t
= −~̄λ · ∇∂u

∂t

is used to rewrite term B in (2.40) as

∫
E∩D

∆t2

2

∂2u

∂t2
dΩE = −∆t2

2
~̄λ ·
∫

E∩D

∇∂u
∂t

dΩE =
∆t2

2
~̄λ ·
∮

∂E∩D

∂u

∂t
n̂dS

= −∆t2

2

φE

ΩE

~̄λ ·
∮

∂E∩D

n̂dS = −∆t2

2

φE

ΩE

ki . (2.42)

The 1
2

required to form ki follows from an integration over the path CDE instead of path

AB in Fig. 2.9 ( ~EC = 1
2
~AB). Substitution of (2.41) and (2.42) into (2.40) and summing

over all primary elements, E, that connect to vertex i results in
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Figure 2.9 Integration path for (2.42). Figure 2.10 Geometrical representation
of possible distributions for the LW
scheme. The distribution point (see
Fig. 2.2) may exist along the dashed lines.

(
un+1

i − un
i

)
= −∆t

Ωi

∑
E,i∈E

(
1

3
+

∆t

2ΩE

ki

)
φE , (2.43)

or in semi-discrete form,

Ωi
dui

dt
+
∑

E,i∈E

(
1

3
+

∆t

2ΩE

ki

)
φE = 0 . (2.44)

From (2.44), it is obvious that the distribution coefficients for this “semi-discrete” form

of the LW scheme are

βLW
i =

1

3
+

∆t

2ΩE

ki , (2.45)

which is effectively a central scheme plus a dissipation term. In (2.45), ∆t is a cell-based

time step and in this work, it is obtained from

∆t =
ΩE

max(k+
j )
, j ∈ E , (2.46)

(see (2.19)).

With the use of (2.46), the distribution coefficients are able to vary between −2/3 ≤

βLW
i ≤ 5/6. The possible distributions, as defined by the distribution point in Fig. 2.2,

are shown geometrically along the dashed lines of Fig. 2.10. The LW scheme is LP but
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not P or U . Although usually not upwind, there is sufficient dissipation to ensure a

convergent scheme.

2.2.6 Upwind Control Volume Scheme

Figure 2.11 Possible
distributions for the UCV
scheme. The distribution
point may exist along the
dashed lines.

The upwind control volume (UCV) scheme of Giles et al.

[25] (and described in [43]) is similar to the LW scheme but

with a modified dissipation term. The UCV scheme restricts

the distribution coefficients so that they cannot be negative,

essentially leading to an upwind formulation for type II tri-

angles. For example, compare the possible distributions of

Fig. 2.11 to those in Fig. 2.10. A generic formula for the

UCV scheme is

βUCV
i =

1

3
+

ki

3
∑d+1

j=1,j∈E k
+
j

(2.47)

As with the LW scheme, the UCV scheme is LP but not P

or U .

2.2.7 Accuracy of Linear Schemes

The performance of the linear schemes is shown in Fig. 2.12 for linear advection of a

Gaussian profile (Fig. 1.3b). The L1, L2, and L∞ error norms, computed on the line

segment of the two finest meshes, are listed in Table 2.1. These results are illustrative of

the interior scheme on a uniform Cartesian mesh that has been tessellated in the direction

of the advection vector; boundary conditions are avoided by expanding the domain and

imposing the exact solution around the exterior of the domain.

The N, LDA, and LDC schemes achieve the expected orders of accuracy. Interestingly,

the LW and UCV schemes also indicate perfect third-order convergence, a result that is

generally not indicated in the literature. However, the construction of the LW scheme
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Figure 2.12 Accuracy of linear schemes (β in (1.3)) for linear advection of a Gaussian
profile.

Table 2.1 Spatial convergence of linear schemes (β in (1.3)) for linear advection of a
Gaussian profile.

Scheme L1-error L2-error L∞-error

N -0.98 -0.97 -0.95

LDA -2.01 -2.01 -2.00

LDC -3.00 -3.00 -3.00

LW -3.00 -3.00 -2.99

UCV -3.00 -3.00 -3.00

is indeed at O(∆h3), and results obtained by Paillère [43] do indicate that the SUPG

scheme, which is essentially the LW scheme with a unique cell-based time step, has better

accuracy than the LDA scheme.
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2.3 Nonlinear Schemes

Analogous to Godunov’s theorem [26], only a nonlinear scheme can satisfy both the P

and LP properties [22]. The nonlinear distribution schemes described next depend on

and adapt themselves to the solution.

2.3.1 Limited N Scheme

The first scheme to satisfy all of properties U , P , and LP was the positive streamwise-

invariant (PSI) scheme devised by Struijs [57]. In 1995, Sidilkover and Roe [54] made the

observation that the PSI scheme is identical to a limited N (LN) scheme using a minmod

limiter. The distribution coefficients for the N scheme are not bounded and may tend to

±∞ as φE → 0. The LN scheme is based upon the N scheme but limits the distribution

coefficients when one of them (in the case of a type II triangle) becomes negative. If φN
1

and φN
2 denote the fluctuation that would be distributed to the two downstream nodes

by the N scheme and r = −φN
1 /φ

N
2 , then the limited distribution given by the LN scheme

is

φLN
1 = φN

1

[
1− Ψ(r)

r

]
, φLN

2 = φN
2 [1−Ψ(r)] , (2.48)

where Ψ(r) is a symmetric limiter. Use of a minmod limiter,

Ψ(r) = max [0,min (r, 1)] , (2.49)

reproduces the PSI scheme. Any symmetrical limiter may be used in the LN scheme

but the minmod limiter is preferred because it is the only limiter that strictly maintains

positivity [35, 43].

2.3.2 Blended Scheme

The blended scheme is a blending of the N and LDA schemes, φB
i = θφN

i + (1− θ)φLDA
i .

There are several possible definitions of the blending coefficient θ; see [1] for a definition
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that reproduces the PSI scheme. In this work, the heuristic definition proposed by

Deconinck et al. [22],

θ =

∣∣φE
∣∣

d+1∑
l=1,l∈E

∣∣φN
l

∣∣+ ε

, ε = 10−10 , (2.50)

is used where θ is defined to switch to the LDA scheme when divergence of the nodal

fluctuation, as computed by the N-scheme, is detected. Positivity of this particular

blended scheme has not been formally shown; however, numerical experiments generally

produce solutions that are satisfactorily monotone. The blended scheme has the LP and

U properties.

2.3.3 Map A Scheme

The mapped schemes proposed by Abgrall and co-workers [2, 4, 9] extend the limiting

concepts of the LN scheme to multiple dimensions. Whereas the LN scheme is only

applicable to a type II triangle, mapped schemes can be used at any number of dimensions

and also if the distribution to be limited is not upwind. The latter may occur in the

matrix distribution schemes to be discussed in the next chapter. Other than the oddity

of limiting for accuracy instead of monotonicity, mapped schemes are very similar to

the multidimensional limiting concepts discussed by Berger et al. [11]. However, the

constraint or target of the limiting is more obvious since geometrically, it equals the

perimeter of the element.

As with the LN scheme, the basis for a mapped scheme is the P distribution, βN
i ,

predicted by the N scheme. Next an LP distribution, β∗, is sought that satisfies

βN
i β

∗
i ≥ 0, (2.51)

such that the sign of the distribution does not change and the P property is retained. A
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mapping which reproduces the PSI scheme [2], hereon referred to as “map A”1, is

βmapA
i = β∗i =

max(0, βN
i )∑d+1

j=1,j∈E β
+
j

. (2.52)

As shown in Fig. 2.13, this mapping is always a translation toward one of the vertices

2

3

1

Figure 2.13 The map A scheme
translates a distribution point out-
side the element towards a vertex
until the perimeter of the element
is reached.

and essentially bounds the distribution to the

perimeter of the triangle, ensuring that the distri-

bution also has the P and U properties. In the case

where the distribution point (see Fig. 2.2) predicted

by the N scheme is within the perimeter of the ele-

ment, no changes are made to the distribution.

An alternative mapping described by Abgrall

and Roe [9] is to move the distribution point in

an orthogonal direction towards an edge. Although

this minimizes the distance the distribution point

is moved, it also alters the ratio of the distribution

coefficients. We label this mapping “map B” but it

is not considered in the remainder of this thesis.

2.3.4 Accuracy of Nonlinear Schemes

The performance of the nonlinear schemes at the interior is shown in Fig. 2.14 for the

same problem used to analyze the linear schemes. The L1, L2, and L∞ error norms,

computed on the line segment of the two finest meshes, are listed in Table 2.2.

As expected by design, the LN scheme with a minmod limiter is identical to the map

A scheme. More interesting is the performance of the blended scheme which follows the

LN (minmod) scheme very closely even though the construction is significantly different.

1This mapping scheme, being a reinterpretation of the PSI scheme, is often referred to as PSI in the
literature.
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Figure 2.14 Accuracy of nonlinear schemes (β in (1.3)) for linear advection of a Gaus-
sian profile.

Table 2.2 Spatial convergence of nonlinear schemes (β in (1.3)) for linear advection of
a Gaussian profile.

Scheme L1-error L2-error L∞-error

LN (minmod) -1.90 -1.67 -1.32

Blended -1.89 -1.67 -1.32

Map A -1.90 -1.67 -1.32

The fact that the spatial accuracy is less than second-order is examined more thoroughly

in the chapters that follow.



Chapter 3

Residual Distribution Methods for
Systems of Equations

The scalar RD techniques are extended in this chapter to systems of equations. The

Euler system of equations is used to present the various methods.

3.1 Theory for Systems of Equations

There are currently two approaches to distributing the fluctuation for a system: system

decomposition and matrix schemes [22]. The most physically satisfactory approach is

to decompose the system into scalar equations. This is achieved via hyperbolic-elliptic

splitting where, for the steady Euler equations, the addition of a preconditioner allows

for diagonalization of the equations in characteristic form [35, 43, 46]. Matrix schemes

are a generalization of scalar techniques to matrix-vector equations. Although not as

intuitive nor physically meaningful as equation decomposition techniques, the resulting

schemes can still provide very accurate results.

In quasi-linear form, (1.1) with (1.6) becomes

∂U

∂t
+

d∑
j=1

(
AU,j

∂U

∂xj

)
= 0 , (3.1)

where AU,j = ∂Fj/∂U are the conservative-variable flux Jacobians.

39
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For systems of equations, the scalar inflow parameters, ki, of the residual distribution

schemes become matrices, Ki, since the linearized scalar wave speed, λ̄j, of (2.3) is now

a matrix that depends on the linearized flux Jacobians

ĀU,j =
∂Fj

∂U

∣∣∣∣
S̄

. (3.2)

The notation of (3.2) denotes that the Jacobian is linearized at the average state S̄ =

1
d+1

∑d+1
i,i∈E Si of a set of, as yet undefined, solution variables S(U). Equation (2.5) then

has the form

Ki =
1

d

[
d∑

j=1

(
Ājx̂j

)]
· ~ni . (3.3)

Having matrices as inflow parameters creates two primary issues. The first is to find a

method of linearization, i.e., a definition of S, that is still conservative. The second is

the technique for computing the distribution coefficients, βi, which are now matrices.

3.1.1 Linearization

A conservative linearization has been found for the Euler equations. The Roe-Struijs-

Deconinck (RSD) linearization [57] is an extension of Roe’s parameter vector [49] to

multiple dimensions S = Z = [
√
ρ,
√
ρu,

√
ρv,

√
ρh]T . This linearization ensures that a

second-order conservative fluctuation may be computed as

φE
U =

d+1∑
i=1,i∈E

KU,iŨi , (3.4)

where Ũi = ∂U
∂S

∣∣
S̄
Si. Use of a conservative linearization leads to a linearization-based

RD (LRD) scheme. Unfortunately, conservative linearizations are not available for all

systems of equations. Also, in some cases the use of Z as the linearized state may be

undesirable. In particular, non-existent pressure gradients may be detected for shear

flows [35].

The alternative to using a conservative linearization is to use the CRD technique

described in section 2.2.1. For the Euler equations, the fluctuation is computed via a
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contour integral given by

φE
U = −

∮
∂E

~F(S) · n̂ dS , (3.5)

where, again, a Gauss quadrature integration rule is used to evaluate the integral. The

modifications required for the matrix N scheme will be noted in the following section on

matrix distribution. The Euler results in this study are all obtained using a CRD scheme

with a linearization based on the primitive variables given by

S = V = [ρ, u, v, p]T . (3.6)

3.2 Hyperbolic/Elliptic Splitting

Hyperbolic-elliptic splitting provides a method for decomposing the Euler equations.

Supersonic flows decouple into four scalar equations while subsonic flows decouple into

two scalar equations plus an acoustic subset. In this work, only the details relevant

to the implementation are described. Details regarding the development of the related

preconditioner are available elsewhere [35, 43, 46].

For simplicity, the Euler equations are expressed in a coordinate system aligned with

the streamline, (ξ, η), and in terms of a particular set of symmetrizing variables, Q̆, as

follows

∂Q̆

∂t
+ AQ̆

∂Q̆

∂ξ
+ BQ̆

∂Q̆

∂η
= 0 , (3.7)

before applying the preconditioner. The symmetrizing variables have the form

∂Q̆ =

[
∂p/(ρa) ∂q q∂θ ∂S

]T

, (3.8)

where q is the flow speed

q =
√
u2 + v2 , ∂q =

u∂u+ v∂v

q
, (3.9)

θ is the local flow direction

θ = tan−1 v

u
, ∂θ =

u∂v − v∂u

q2
, (3.10)
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and ∂S is proportional to the change in entropy

∂S = ∂p− a2∂ρ . (3.11)

With symmetrizing variables, the Jacobians have the form

AQ̆ =



q a 0 0

a q 0 0

0 0 q 0

0 0 0 q


, BQ̆ =



0 0 a 0

0 0 0 0

a 0 0 0

0 0 0 0


. (3.12)

The preconditioner, P, is added such that

∂Q̆

∂t
+ P

(
AQ̆

∂Q̆

∂ξ
+ BQ̆

∂Q̆

∂η

)
= 0 . (3.13)

Note that the preconditioning does not affect steady-state solutions. This system may

be re-written as

A−1

Q̆
P−1∂Q̆

∂t
+
∂Q̆

∂ξ
+ A−1

Q̆
BQ̆

∂Q̆

∂η
= 0 . (3.14)

The matrix A−1

Q̆
BQ̆ can be diagonalized as Λ = LA−1

Q̆
BQ̆R and thereby defining the

characteristic variables ∂W = L∂Q̆. After diagonalization and a change of variables

from Q̆ to W, (3.14) assumes the form

LA−1

Q̆
P−1R

∂W

∂t
+
∂W

∂ξ
+ Λ

∂W

∂η
= 0 . (3.15)

The preconditioner is defined to diagonalize the matrix D = LA−1

Q̆
P−1R, completely for

supersonic flows and as much as possible for subsonic flows. A preconditioner, valid for

both subsonic and supersonic flows, can be written as

P =



αχM2

β
−αχM

β
0 0

−αχM
β

αχ
β

+ α 0 0

0 0 βχ 0

0 0 0 α


, (3.16)
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where β =
√

max (ε2, |M2 − 1|) and χ = 1/max (M, 1). To avoid problems at the sonic

point, the parameter ε assumes a small value, typically 0.05 [43]. The quantity α was

introduced by Mesaros [35] to reduce sensitivity to the flow angle in stagnation regions.

It is defined as

α =



1
2
, for M ≤ 1

3
,

1
2

+ 27
2

(
M − 1

3

)2 − 27
(
M − 1

3

)3
, for 1

3
< M < 2

3
,

1 , for M ≥ 2
3
.

Equation (3.15) then takes the form

∂W

∂t
+ AW

∂W

∂ξ
+ BW

∂W

∂η
= 0 , (3.17)

where AW = D−1 and BW = D−1Λ. The characteristic variables are given by

∂W =



∂S

∂p+ ρq∂q

∂p+ ρq2

β
∂θ

∂p− ρq2

β
∂θ


. (3.18)

A prescription of AW and BW that is valid for both supersonic and subsonic flows and

encompasses a smooth transition between the two regimes is given by

AW =



αq 0 0 0

0 αq 0 0

0 0 1
2
χqβ(αη + 1) 1

2
χqβ(αη − 1)

0 0 1
2
χqβ(αη − 1) 1

2
χqβ(αη + 1)


, (3.19)

BW =



0 0 0 0

0 0 0 0

0 0 1
2
χq(α+ 1) 1

2
χq(α− 1)

0 0 1
2
χq(α− 1) 1

2
χq(α+ 1)


, (3.20)



44 Chapter 3. RD Methods for Systems of Equations

where η = (M2 − 1) /β2. Note that η is defined as −1 for subsonic flows and +1 for

supersonic flow but it smoothly transitions between the two values over the range 1−ε2 <

M2 < 1 + ε2. In supersonic flows, matrices (3.19) and (3.20) are diagonal and have the

form

Aw =



q 0 0 0

0 q 0 0

0 0 aβ 0

0 0 0 aβ


, Bw =



0 0 0 0

0 0 0 0

0 0 a 0

0 0 0 −a


. (3.21)

The following steps summarize the numerical implementation of the RD scheme re-

sulting from the hyperbolic-elliptic equation decomposition procedure:

1. The fluctuation in conservative variables, φE
U , is computed using (3.5).

2. The average linearized state is determined and used to compute the transformation

matrices ∂Q̆
∂U

, ∂U

∂Q̆
, ∂W

∂Q̆
, ∂Q̆

∂W
, and ∂U

∂V
as well as the preconditioner P.

3. The fluctuation is preconditioned and transformed into characteristic variables via

φE
W =

∂W

∂Q̆
P
∂Q̆

∂U
φE

U .

4. The solution state at each vertex in the element is converted from the linear state

(primitive variables in this work) to characteristic variables via

W̃i =
∂W

∂Q̆

∂Q̆

∂U

∂U

∂V
Vi .

5. The fluctuation is distributed using scalar distribution everywhere except for the

elliptic subset which arises from the acoustic equations in a subsonic flow. In this

work, the elliptic subset is distributed using a Lax-Wendroff scheme [35] with

βLW
i =

Î

3
+

τ

2ΩE

KW,i , (3.22)
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where Î is the identity matrix and ΩE

τ
is set to the maximum eigenvalue of matrix

KW,i. The acoustic inflow parameter KW,i is formulated using (3.3) but only using

the 2 × 2 acoustic subsets of AW and BW . Note that more sophisticated elliptic

distribution techniques exist, but are not considered as part of this work. The most

advanced is probably the least-squares minimization technique advocated by Rad

[46] as described earlier in Chapter 1.

6. The fluctuation sent to each vertex is converted to conservative variables for a

subsequent summation and update of the solution. At this point, there is the option

to retain or remove the preconditioner [35, 43]. The most consistent method is to

remove the preconditioner from the distributed element fluctuation and reapply it

at the vertex. This conversion is performed as follows:

φU,i =
∂U

∂Q̆
P−1 ∂Q̆

∂W
φW,i .

This method is fully conservative but less computationally robust. The precondi-

tioner may alternatively be retained in the fluctuation by the following conversion

φU,i =
∂U

∂Q̆

∂Q̆

∂W
φW,i .

This implies an assumption that the preconditioners in each of the elements sharing

vertex i are sufficiently close in value. In other words, the flow is smooth. This

approach is not conservative but numerical experiments indicate that it is more

robust (about the same as a matrix RD scheme). The two approaches yield similar

results, even in the vicinity of strong discontinuities, but the conservative method

was found to be more accurate. In this work, the conservative approach is used for

all the decomposed solutions.

7. The desired time-marching algorithm is applied to the discrete solution at each

vertex governed by the semi-discrete form of the governing equations given by (2.9).

For explicit time-marching, the preconditioner, computed at the vertex state, is
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typically reapplied to the vertex residual if it was removed in the previous step.

This ensures that the update scheme is consistent with the modified wave-speeds

of the system and theoretically provides convergence that is almost independent of

the Mach number for subsonic problems.

3.3 Matrix Distribution

Matrix distribution schemes are generalizations of scalar techniques [59]. The linear

schemes considered here are all invariant under a similarity transformation, meaning

that the same conservative fluctuation is sent to the vertices, irrespective of the variables

in which the distribution is actually performed [22]. It is therefore beneficial to switch

to the symmetrizing variables

∂Q =

[
∂p/(ρa) ∂u ∂v ∂S

]T

, (3.23)

where ∂S = ∂p−a2∂ρ, when formulating the distribution scheme. The matrices AQ and

BQ assume the form

AQ =



u a 0 0

a u 0 0

0 0 u 0

0 0 0 u


, BQ =



v 0 a 0

0 v 0 0

a 0 v 0

0 0 0 v


. (3.24)

In symmetrizing form, the last equation completely decouples from the system. This is

the entropy advection equation. As a result, only the upper 3 × 3 subset remains to be

solved by matrix distribution. In what follows, the inflow parameters KQ are formulated

using (3.3) but only for the upper 3× 3 subset of AQ and BQ.

The following steps summarize the numerical implementation of the residual distri-

bution scheme resulting from the matrix distribution procedure applied to the Euler

equations:
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1. The fluctuation in conservative variables, φE
U , is computed using (3.5).

2. The average linearized state is determined and used to compute the transformation

matrices ∂Q
∂U

, ∂U
∂Q

, and ∂U
∂V

.

3. The fluctuation is transformed into symmetrizing variables via

φE
Q =

∂Q

∂U
φE

U .

4. The solution state at each vertex in the element is converted from the linear state

(primitive variables in this work) to symmetrizing variables via

Q̃i =
∂Q

∂U

∂U

∂V
Vi .

5. The entropy equation is distributed using a scalar method and the remaining 3× 3

subset by a matrix technique.

6. The fluctuation at each vertex is converted to conservative variables for the update

φU,i =
∂U

∂Q
φQ,i .

7. The desired time-marching algorithm is applied at each vertex using the semi-

discrete update formula (2.9).

Matrix versions of the various RD schemes are now described. For all the schemes,

except LW, the inflow parameters KQ must first be split into positive and negative

components. Matrix KQ is diagonalized via Λ = LKQR. Using Λ± = (Λ ± |Λ|)/2,

the split inflow parameters are defined as K±
Q = RΛ±L. As the sum of the negative (or

positive) distribution coefficients is an oft-required denominator, it is common to define

NQ =

(
d+1∑

j=1,j∈E

K−
Q,j

)−1

(3.25)

for matrix schemes. At stagnation points, the matrix NQ may become singular. Ana-

lytically, it has been shown that K+
Q,iNQ, the manner in which NQ is used, always has
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meaning [1]. Numerically, a small modification is made to avoid the singularity. For

the problems considered in this thesis (Fig. 1.4), a linearized stagnation region is never

encountered in the interior. However, at inviscid wall boundaries, the normal compo-

nent of the velocity is explicitly forced to zero and the inversion required in (3.25) can

be difficult in the degenerate ghost elements used to impose boundary conditions. At

stagnation points,
∑d+1

j=1,j∈E K−
Q,j assumes the form

s11 0 0

0 s22 s23

0 s23 s33

 .

and becomes problematic when s22s33 − s2
23 = 0. For the ghost elements, a simple

modification to avoid the singularity is introduced:

K+
Q,i,22 = K+

Q,i,22+ε K+
Q,i,33 = K+

Q,i,33+ε K−
Q,i,22 = K−

Q,i,22−ε K−
Q,i,33 = K−

Q,i,33−ε ,

where ε assumes a small value, typically 1×10−6. Note that this procedure has no effect

on the overall value of KQ,i.

3.3.1 Linear Schemes

N Scheme

The matrix N scheme defines the fluctuation distributed to each node i of an element as

φN
Q,i = K+

Q,i

(
Q̃i −Qin

)
. (3.26)

The modified state Qin for the CRD scheme is

Qin = N

(
φE

Q −
d+1∑

j=1,j∈E

K+
Q,jQ̃j

)
. (3.27)

LDA Scheme

For the matrix LDA scheme, φLDA
Q,i = βLDA

i φE
Q where

βLDA
i = −K+

Q,iNQ . (3.28)
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LW Scheme

The matrix LW scheme is given by (3.22). This is the only matrix scheme (considered in

this thesis) that does not require the use of NQ.

UCV Scheme

The UCV scheme has a matrix formulation similar to that of the LW scheme:

βUCV
i =

1

3

(
Î + KQ,iNQ

)
. (3.29)

Accuracy of Linear Matrix Schemes

An overview of linear matrix schemes is given by examining the performance of the

interior scheme on a square subset of Ringleb’s flow using a Cartesian mesh and a uniform

tessellation. The results are also relevant to hyperbolic/elliptic splitting which uses the

LW matrix scheme for the acoustic subset (in fact, both approaches use a combination of

scalar and matrix techniques). Actual comparisons between hyperbolic/elliptic splitting

and matrix distribution, as described earlier in this section, are presented in the next

chapter for more practical problems. For this problem, the flow is the same as illustrated

in Fig. 1.4e but only solved on the square domain extending from a bottom left corner of

(−0.35, 1) to a top right corner of (0.45, 1.8). The flow in this subset is entirely subsonic.

This test is only indicative of the interior scheme; vertices around the exterior of the

domain are fixed to the exact solution. The results, illustrated in Fig. 3.1 and listed for

several error norms in Table 3.1, show that all the LP schemes achieve similar second-

order behaviour. For systems, no super-convergence is observed. The N scheme also

behaves as expected giving first-order accuracy.
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Figure 3.1 Accuracy of linear matrix schemes applied to a Cartesian grid on a subset
of Ringleb’s flow.

Table 3.1 Spatial convergence of linear matrix schemes applied to a Cartesian grid on
a subset of Ringleb’s flow.

Scheme L1-error L2-error L∞-error

N -0.98 -0.98 -0.98

LDA -2.01 -2.01 -2.04

LW -2.02 -2.03 -2.00

UCV -2.01 -2.02 -1.99

3.3.2 Nonlinear Schemes

Blended Scheme

For systems, use of the LN scheme is not straightforward so nonlinear distributions are

commonly obtained by applying blends of the N and LDA schemes. The fluctuation

distributed by the blended B scheme is

φB
Q,i = ΘφN

Q,i + (Î−Θ)φLDA
Q,i , (3.30)
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where Î is the identity matrix. The entries of the diagonal nonlinear blending matrix Θ

are given by

Θk,k =

∣∣φE
Q,k

∣∣∑d+1
l=1,l∈E

∣∣φN
Q,l,k

∣∣+ ε
, ε = 10−10 , (3.31)

where index k refers the the kth equation of the system and l loops over the vertices of

the element [19].

Map A Scheme

The scalar map A scheme is also used for systems of equations. However, the system is

first cast into a set of scalar equations by projecting the fluctuation, and distributions of

the system N scheme, onto the left eigenvectors, lEσ , of the one-dimensional, 3× 3 subset

of system

AQmx + BQmy . (3.32)

In (3.32), m̂ is a unit vector aligned with the linearized velocity in the element, ~̄q [8]. Fol-

lowing the notation used by Ricchiuto [47] and with σ = 1 . . . 3, the projected fluctuation

is determined as

ψN
i,σ = lEσ φ

N
i,σ and ψE

σ = lEσ φ
E
σ . (3.33)

For each scalar component, the fluctuation is then limited using the scalar map A scheme,

ψmapA
i,σ = fmapA

(
ψN

j,σ, ψ
E
σ

)
. (3.34)

Finally, the limited results are projected back into conservative variables by

φmapA
i =

3∑
σ=1

ψmapA
i,σ rE

σ . (3.35)

The left (rows) and right (columns) eigenvectors are given by

lEσ =


0 −my mx

1
2

mx

2

my

2

−1
2

mx

2

my

2

 , and rE
σ =


0 1 −1

−my mx mx

mx my my

 , (3.36)
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respectively.

This method for producing a P and LP mapping scheme for systems of equations

does suffer from a known flaw. The symptoms of the flaw are poor convergence and

“the occurrence of wiggles in the smooth part of the solution” [4]. Repeating the com-

ments of Ricchiuto [47], matrix distribution techniques may prevent the occurrence of

type I triangles and the dissipation associated with the upwinding of a one-target dis-

tribution. In the absence of type I triangles, limiting produces destabilizing effects such

that convergence to machine zero is never achieved. More information and proposed cor-

rections involving the addition of dissipation in smooth regions are discussed by Abgrall

[3] and Abgrall et al. [6].

Accuracy of Nonlinear Matrix Schemes

The nonlinear matrix schemes are solved on the same subset of Ringleb’s flow that was

used to test the linear matrix schemes. Results are illustrated in Fig. 3.2 and listed in

Table 3.2.

Poor convergence was observed for residuals of the blended scheme but this was

easily rectified by freezing the blending coefficient after the convergence stalled. The

performance of the blended scheme for systems is similar to the scalar case with only

the L∞-error being significantly worse. The L1-error is below second-order accurate and

this degradation will be explored in more detail in Chapters 5 and 6. The order of the

L∞-error is unity in this example indicating that the solution is not being recognized as

smooth in at least one element. The results from the map A scheme, on the other hand,

are unsatisfactory. The performance is actually worse than the N scheme. It is suspected

that this test case exacerbates the flaw known to exist in the scheme. The symptom

of poor convergence is indeed observed; both the L2 and L∞ norms of the residual only

converge by one order of magnitude. A type of limiter freezing was not employed because

there is no parameter to freeze aside from the distribution coefficients themselves.
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Figure 3.2 Accuracy of nonlinear matrix schemes applied to a Cartesian grid on a
subset of Ringleb’s flow.

Table 3.2 Spatial convergence of nonlinear matrix schemes applied to a Cartesian grid
on a subset of Ringleb’s flow.

Scheme L1-error L2-error L∞-error

Blended -1.87 -1.65 -1.00

Map A -0.72 -0.66 -0.83

Because of the extremely poor accuracy of the map A scheme, we rely on the blended

scheme for accuracy estimates of P and LP solutions to systems. However, it is important

to note that recent work on the map A scheme may entirely correct the flaw [3, 6].
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Chapter 4

Implementation of the Numerical
Algorithm

Details of the implementation including the meshes, imposition of boundary conditions,

and the time-marching algorithm are described in this chapter. The approach for obtain-

ing orders of accuracy greater than two is then presented and discussed.

4.1 Structured Mesh

Standard RD methods are solved on a grid of simplexes (triangles in two dimensions).

Both structured and unstructured meshes are used for the solutions presented in this

thesis. In Chapter 5, our FV solutions are obtained on structured quadrilateral grids

and, with some special modifications, the same grids are used to obtain the RD solu-

tions. In later chapters, unstructured grids are used for the subsequent analysis and

for the extension to fourth-order accuracy. The approach adopted here for applying the

RD schemes to quadrilateral grids is to insert a diagonal into each quadrilateral and

thereby triangulate the mesh. It is therefore possible to take advantage of the freedom

to optimally align the diagonal with the characteristic vector. In Chapter 5, the effects

of choosing an optimal direction for the diagonal are examined for scalar equations. An-

other method for applying an RD scheme to a quadrilateral mesh is discussed by Abgrall

55
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and Marpeau [7].

For scalar equations, the optimal diagonal is aligned with the advection vector. For

solutions of the Euler equations by matrix distribution or subsonic decomposition, the

diagonal is aligned with the streamline vector. The same procedure can be applied when

decomposing the Euler equations in supersonic flows, but in some cases this will cause the

diagonal to be inserted in a direction that is opposite to the direction of the dominant

wave. An example of this is illustrated in Fig. 4.1 for the oblique shock problem of

Fig. 1.4a. In this example, the incident supersonic flow is oriented in a direction from the

top left to the bottom right. An oblique shock produced by a solid wall aligned with the

x-axis turns the flow to the horizontal or x-direction. The streamline in the incident flow

(and through a finite shock) is therefore oriented in a direction that is opposite to the

direction of the shock wave. The shock is the only significant wave in the flow and ideally

the diagonals should be aligned with this wave. Figure 4.1a and 4.1b show the grid and

a discrete representation of the exact solution, respectively. A matrix distribution using

a blended scheme with a streamline tessellation is shown in Fig. 4.1c. A decomposed

solution (the flow is entirely supersonic so the Euler equations decouple into four scalar

equations) using an LN scheme with a streamline tessellation is shown in Fig. 4.1d. Both

of these are more dissipative than if the tessellation had been fixed in the orientation

of the shock prior to the solution. In Fig. 4.1e, each scalar wave resulting from the

decoupled Euler equations is solved on a tessellation aligned with its own characteristic

velocity. The shock is much more compact but numerous spurious waves are produced

behind the shock. The reasons for these waves are currently not fully understood. In

Fig. 4.1f, both streamline waves are solved on a tessellation aligned with the streamline,

and both acoustic waves are solved on a tessellation aligned with the dominant acoustic

wave. This technique seems to eliminate the spurious waves and is used for all results

obtained on quadrilateral grids.

Note that when a separate tessellation is used for the streamline and acoustic waves,
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Figure 4.1 Distribution of pressure for solution of an oblique shock. The effect of
various tessellations are examined.

the linear state is averaged over the entire quadrilateral and conservation is maintained

on the quadrilateral. Since all transformation matrices are computed at the same state,

and since the CRD linearization technique allows conservation to be independent of the

linear state, the scheme is still conservative. The dominant acoustic wave is determined

by comparing the difference in the acoustic characteristic variables between opposite
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Figure 4.2 Weak boundary condition for vertex V1 consisting of ghost elements, GE1
and GE2, and ghost vertex GV1.

vertices in the quadrilateral. The dominant wave is assumed to run counter to the largest

difference. Note also that the tessellation is frozen at a prescribed level of convergence

so as not to interfere with the convergence of the solution.

4.2 Boundary Conditions

Boundary conditions (BC) are implemented using the weak formulation originally pro-

posed by Paillère [43]. In contrast with a strong formulation, where the required bound-

ary state is imposed directly at the vertices, a weak formulation indirectly enforces the

boundary condition by using supplementary ghost elements. In Fig. 4.2, the boundary

conditions for vertex V1 are prescribed indirectly via two ghost elements, GE1 and GE2.

Vertex V1 is completely surrounded by physical elements E1, E2, and E3 and ghost ele-

ments GE1 and GE2. The ghost elements are degenerate with the dashed line having zero

length. The ghost vertex, GV1, therefore lies directly on top of vertex V1. Because of the

degeneracy, no fluctuation is sent from the ghost elements to V2 or V3. The states in the

ghost vertices are set to produce the desired results, e.g., farfield conditions for a farfield

BC, reflected velocity for a symmetry or inviscid wall BC, or the desired conditions for

a Dirichlet BC. For the purpose of calculating the time-step in the ghost element, the
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area is taken to be half the area of the physical dual mesh associated with vertex V1.

Except for special handling of the zero-length edge, which only involves explicitly setting

the inflow parameter to zero for that edge, the ghost elements are treated the same as

any of the interior elements.

Paillère [43] recommends to use all three nodes in the ghost element to set the lin-

earized state. This is reasonable if the state in the ghost vertex is carefully maintained.

However, it is convenient to minimize this maintenance by letting the scheme itself deter-

mine which characteristic information is needed. Consider, for example, a farfield BC. It

is desirable to set the farfield state in the ghost vertex and not change it. If the boundary

experiences supersonic outflow, the ghost vertex should not have any influence on the

linearized state. Otherwise it could, depending on its value, change the linearized flow to

subsonic. For this scenario, it is preferable to only use the interior vertices to compute

the linearized state (vertices V1 and V2 for element GE1 in Fig. 4.2). If the boundary

experiences anything other than supersonic outflow, then information from the ghost

vertex is required. In this situation, usage of only the interior vertices for calculation of

the linearized state is still valid since the interior vertices should eventually adopt the

appropriate value due to the incoming waves. For inviscid wall BC, on the other hand,

the ghost vertex is instrumental in altering the flow. This is especially true for supersonic

flows normal to the wall, such as may be encountered during the impulsive starting of a

solution. For wall or symmetry BC, all three vertices are used to compute the linearized

state whereas for all other BC, only the interior vertices are used.

In contrast to ghost cells commonly used in FV schemes, it is straightforward to

apply the ghost elements in corners. Vertex GV1 can be split into two separate vertices

and given different states if either the normals are different (at a corner) or the left and

right boundary conditions differ.

For all the problems considered in this thesis, this manner of imposing boundary con-

ditions has proven robust. However, we have experienced difficulty with other cases, such
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as the supersonic forward-facing step described by Woodward and Colella [66] and origi-

nally proposed by Emery [23]. For that problem, the solution can be impulsively started

with supersonic flow normal to the wall, but eventually negative density and pressure

will result behind the corner of the step. Robust handling of supersonic expanding flows

at walls is still elusive to our implementation and certainly requires more investigation.

Other options that may improve results at walls include setting the normal velocity to

zero in the ghost vertex (instead of reflecting it) and finely tailoring the linearized state

in the ghost elements. Another curiosity we have noticed, especially at walls, is that in-

stabilities may develop if the linearized state is computed from only one vertex (e.g., set

the linearized state to that of vertex V1 for elements GE1 and GE2). It seems necessary

to include information tangential to the boundary when computing the linearized state.

Hence, vertex V2 must be used to help compute the linearized state for element GE1 and

vertex V3 for element GE2.

4.3 Time Marching Algorithm

A simple explicit-Euler time-marching algorithm is used to advance the solution in time.

The time step in each element is computed as

hE =
1

3

ΩE

kmax

, (4.1)

a restriction that ensures positivity for a scalar N scheme. For scalar equations, kmax

is the maximum inflow parameter in the element. For matrix-distribution techniques,

kmax is the maximum eigenvalue over all the Ki,i∈E matrices. For the scalar equations,

a Courant-Friedrichs-Lewy (CFL) number of 1.8 is used. For supersonic Euler solutions,

a CFL number of 1.5 is used. In all other flows, a CFL number of unity is used. CFL

numbers above unity were determined by trials and are acceptable in some cases because

the positivity condition is more restrictive than necessary (see Eq. (2.13) and the text

preceding it).
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4.4 Non-dimensional Variables

For solutions of the Euler equations, the state variables are all made non-dimensional by

ρ̃ =
ρ

ρ∞
, ũ =

u

a∞
, ṽ =

v

a∞
, and ẽT =

eT

a2
∞
, (4.2)

where a denotes the speed of sound. Equation (1.1) is changed to

1

a∞

∂U

∂t
+ ~∇ · ~F = 0 , (4.3)

and written with the non-dimensional variables given above instead of the dimensional

variables. The physical time step from solving (4.3) in an element is given by

hE =
h̃E

a∞
(4.4)

where h̃E results from (4.1) applied to non-dimensional variables. For the most part,

using non-dimensional variables has no effect on the solution. However, errors from finite

floating-point precision were encountered during use of the GPU, and having all variables

at the same magnitude allows for better identification of the round-off errors.

4.5 Construction of High-Order RD Schemes

Schemes with an order of accuracy greater than two are constructed by following a

framework similar to that of finite-element theory. Abgrall and Roe [9] used such an

approach to increase the number of degrees of freedom in an element by inserting nodes

in the interior. This leads to the construction of P 2 and P 3 elements for third and

fourth order solutions, respectively. In this work, we adopt a slightly different per-

spective where reconstruction elements are defined as an ordered collection of primary

elements with the desired degrees of freedom. Figure 4.3 shows a reconstruction element

with 9 primary elements and 10 degrees of freedom (vertices) for a fourth-order solu-

tion. Although the primary elements should have an arrangement similar to that shown
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Figure 4.3 P 3 recon-
struction element consist-
ing of an ordered collec-
tion of primary elements
(shaded).

in Fig. 4.3, the reconstruction elements can have a com-

pletely unstructured connectivity. The solution is obtained

on the primary elements and the reconstruction elements

only serve to compute the high-order reconstruction. The

fluctuation over the entire reconstruction element is never of

interest. Ultimately, the same approach is taken by Abgrall

and Roe [9]; the different perspectives only affect the mo-

ment in the CFD process when P 3 elements are introduced.

In [9], extra degrees of freedom are introduced into a pre-

existing triangular mesh; in our case [29], it is at the time

of grid generation. All degrees of freedom are introduced as discrete unknowns before

starting the solution and retained afterwards. This allows for additional tailoring of the

mesh; the details are discussed later in this section. The results we present all have

fourth-order spatial accuracy but the technique can be extended to any desired order.

Note that alternative approaches to constructing high-order RD schemes do exist in the

literature [13, 16, 31, 32].

Lagrange basis functions are used to define a cubic interpolating polynomial for the

entire P 3 element. Within this Lagrange element, both the coordinates and the solution

are interpolated by the Lagrange basis functions. The solution is interpolated in the vari-

ables chosen for the linear state, (2.22) for advection and (3.6) for the Euler equations.

These polynomials are used to integrate the fluctuation and the linearized state in each

of the primary elements that are members of the reconstruction element. The Lagrange

basis functions provide C0 continuity along the edges of the reconstruction-elements,

thereby ensuring consistent evaluations of the fluctuation through an edge. The coordi-

nates may be interpolated by Lagrange basis functions at the same order as the solution,

leading to iso-parametric Lagrange-elements [67]. This allows for curved edges in the

reconstruction elements so that they may be fitted to boundaries of the domain. Alter-
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natively, the coordinates may be linearly interpolated in each primary element leading

to sub-parametric Lagrange elements.

The Lagrange basis functions can be defined in canonical, Fig. 4.4, or natural, Fig. 4.5,

normalized coordinate systems. The canonical coordinates, ξ and η, are orthogonal while

the natural coordinates, L1, L2, and L3, are related by the expression L1 + L2 + L3 = 1.

The symmetry of the natural coordinate system allows for application of triangular Gauss

quadrature rules [67]. All the integrations required in a primary element are performed

using numerical Gauss quadrature. For integration in a specific primary element, a

mapping is performed such that the natural coordinate system, typically normalized for

the reconstruction element, is instead normalized over the primary element. We define

the natural coordinates, normalized over a primary element, as S1, S2, and S3.

Within each primary element, two quantities must be integrated: the linearized state

and the fluctuation. Components of the linearized state, here denoted by U, are given by

Ū =
1

ΩE

∫
E

U dΩE , (4.5)

where ΩE is the area of the primary element. A sub-parametric Lagrange element is as-

sumed for computation of the linearized state and after transformation into a normalized
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primary element, T , (4.5) becomes

Ū =

∫
T

U (L1, L2, L3) dΩT . (4.6)

Equation (4.6) is integrated using a Gauss quadrature rule where ~Sj defines the location

of Gauss point j in natural coordinates in a primary element and ~Lj = ~L(~Sj). The

linearized state is assumed to be no more than a linear function of the solution, and

therefore, four Gauss points are sufficient to ensure exact integration of each component.

The fluctuation is integrated over each face, F , (edge) by evaluating the line integral

φF = −
∫

F

~F (x, y) · n̂ (x, y) dS . (4.7)

In terms of the normalized parameter, s, the fluctuation is given by

φF = −
∫ 1

−1

~F (L1, L2, L3) ·
(
−dy

ds
ı̂+

dx

ds
̂

)
ds , (4.8)

for a counter-clockwise integration around the element and with ~Sj = ~S(sj) and ~Lj =

~L(Sj) at Gauss point j. The coordinate derivative dx/ds can be obtained from

dx

ds
=

∂x

∂L1

dL1

ds
+

∂x

∂L2

dL2

ds
+

∂x

∂L3

dL3

ds
(4.9)

and similarly for dy/ds. At each Gauss point, the solution in linearized form is in-

terpolated and then used to compute ~F. For scalar advection, the flux, ~f (~F in (4.7)

and (4.8)), is assumed to be no more than a quadratic function of the solution, u and,

because all problems considered herein have straight edges, the coordinate derivatives are

constants (i.e., giving sub-parametric Lagrange elements). Therefore, four Gauss points

are sufficient to ensure exact integration of the fluctuation along each edge,

(
u3
)2︸ ︷︷ ︸

fi

(
dxi

ds

)0

= degree 6 < 2(4)− 1 .

For the Euler equations, the flux, ~F, may be up to a quartic function of the primitive

(linearized) variables and the possibility of curved edges is considered. Eight Gauss points
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are sufficient to ensure exact integration of the fluctuation,

(
U3
)4︸ ︷︷ ︸

Fi

(
dxi

ds

)2

= degree 14 < 2(8)− 1 .

The high-order method only alters the integration of φE and the linearized state

within each primary element. The distribution of the fluctuation and the evolution of

the solution are the same in the primary elements as for standard second-order schemes.

The CRD technique is used to ensure conservation. This is especially important for

high-order schemes because (3.4) will certainly not hold true.

A unique characteristic of the high-order reconstruction is that, compared with a

typical high-order FV scheme [33], the interpolation is not necessarily centered around

a primary element. However, the asymmetry of the stencil allows for the solution in the

10 primary elements to be interpolated by one reconstruction, a process which should be

very efficient. Additionally, the impact of the high-order scheme on parallelization and

boundary conditions is minimal.

Currently, our approach to achieving high-order is very comprehensive in terms of

accuracy but does not weigh the accuracy gains against the computational expense.

For many of the algorithmic details, we have not thoroughly explored improving the

efficiency for a given level of solution error. Gains might be realized, for example, by using

a lower-order interpolation for integrating the linear state or by using sub-parametric

Lagrange elements everywhere. Although such modifications may increase the error,

their use may be more efficient on a refined mesh that compensates for the increased

error. Alternatively, these modifications may not even adversely affect the error.

4.5.1 High-Order Mesh

All high-order solutions for this work are obtained on unstructured meshes. As mentioned

previously, the P 3 elements are defined during mesh generation. While more demand-

ing of mesh-generation software, this does allow for fitting the reconstruction elements
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Figure 4.6 High-order mesh elements respect the curvature of the boundary.

around the curvature of the domain boundaries as shown in Fig. 4.6. Note that the inte-

rior reconstruction elements all still have straight boundaries and could be interpolated

using sub-parametric Lagrange elements. Although not studied quantitatively, the use of

curved boundaries seems to have a large effect on minimizing the error. We have made

modifications to the open-source mesh generator Gmsh [24] to support the output of

boundary-fitted P 3 meshes in CGNS [14] format. An alternative would be to build the

P 3 elements within the solver from a mesh of triangles by inserting the extra degrees of

freedom and mapping them to the domain boundary. However, this requires more than

a discrete understanding of the geometry within the solver code. It is our opinion that

such complexity is best left within the mesh generator.

4.5.2 High-Order Boundary Conditions

For weak ghost cells, the solution on the edges is interpolated using one-dimensional La-

grange elements that follow a certain path, depending on which edge is being integrated.
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Figure 4.7 Paths for interpolating the solution in weak ghost elements of a fourth-order
scheme.

Several possible paths are shown in Fig. 4.7. Note that interpolating along the interior

path, path 1 in Fig. 4.7, is equivalent to interpolating on the edge of the two-dimensional

Lagrange element that borders that path.

4.5.3 Accuracy of High-Order Scheme

The experiment involving a square subset of Ringleb’s flow from section 3.3.1 is repeated

here at fourth-order accuracy for various schemes. An example of the unstructured P 3

mesh is shown in Fig. 4.8 along with density contours. As before, vertices around the

exterior of the domain are fixed to the exact solution to allow testing of only the interior

scheme. Linear schemes using both hyperbolic/elliptic splitting and matrix techniques

are illustrated in Fig. 4.9. The corresponding error norms are listed in Table 4.1. The

notation LDA-LW for the decomposed schemes describes the distribution method for the

decoupled scalar equations followed by the method for the acoustic subset (always LW).

All the LP schemes achieve the expected fourth-order spatial convergence and have very
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Figure 4.8 Unstructured mesh
for high-order solutions on a subset
of Ringleb’s flow along with density
contours.

similar error levels. Because it lacks the LP prop-

erty, the matrix N scheme is still first-order accurate

whereas the partial LP distribution of the decom-

posed N-LW scheme (LP for LW distribution of the

acoustic subset) averages to near second-order ac-

curacy.

Predictions from nonlinear schemes using both

hyperbolic/elliptic splitting and matrix techniques

are illustrated in Fig. 4.10 and the error norms are

listed in Table 4.2. The decomposed LN-LW scheme

has similar accuracy to the LDA-LW scheme with only the L∞-error indicating a lower

order of convergence. Although the matrix blended scheme performs very well on the

two coarsest mesh samples, the results are more erratic as the mesh is further refined.

This behaviour is only apparent at higher orders of accuracy. The reason is probably
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Figure 4.9 L1-density error of high-order linear schemes applied to a Cartesian grid
on a subset of Ringleb’s flow.
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Table 4.1 Spatial convergence of high-order linear schemes applied to a Cartesian grid
on a subset of Ringleb’s flow.

Scheme L1-error L2-error L∞-error

Matrix N -1.01 -1.02 -0.83

Matrix LDA -4.00 -3.97 -4.37

Matrix LW -3.92 -3.94 -4.07

Matrix UCV -3.99 -3.98 -4.19

Decomposed N-LW -1.87 -1.95 -1.95

Decomposed LDA-LW -4.08 -4.04 -3.88

Decomposed LW-LW -4.09 -4.05 -3.80

Decomposed UCV-LW -4.09 -4.05 -3.84
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Figure 4.10 Accuracy of high-order nonlinear schemes applied to a Cartesian grid on
a subset of Ringleb’s flow.
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Table 4.2 Spatial convergence of high-order nonlinear schemes applied to a Cartesian
grid on a subset of Ringleb’s flow.

Scheme L1-error L2-error L∞-error

Matrix map A -0.79 -0.80 -0.16

Matrix blendeda -4.39 -4.46 -4.61

Decomposed LN-LW -4.09 -4.07 -3.66

a Results from line segment between two coarsest meshes.

different from what normally affects the map A scheme as the blended scheme is fully

converged for all these results. As for the map A scheme, switching to fourth order

provides no significant change from what was seen at second order accuracy. For this

case, the performance is not much better than the N scheme.



Chapter 5

Comparison of the Residual
Distribution and Finite Volume
Methods

A quantitative comparison of the accuracy of theRD method versus a Godunov-type FV

method was performed on the set of canonical problems described in Chapter 1 (Figs. 1.3

and 1.4) [28]. These comparisons make exclusive use of structured quadrilateral meshes,

but it is shown in the results that RD methods can also benefit from the structure

by optimally tessellating the mesh. Graphs of spatial L1-error norms are supplemented

by contour plots of the computed distributions where informative. All comparisons are

made using second-order versions of the numerical schemes. No direct comparisons are

made concerning the accuracy per computational cost. A quantitative analysis of the

costs was not possible at the time due to issues of optimization for the RD and FV

code implementations. However, since both second-order schemes were observed to have

approximately similar runtimes, differences in the solution accuracy obtained for the same

number of unknowns does provide some indication of the accuracy per computational

cost.

For smooth solutions (i.e., continuously differentiable solutions), it is expected that

both theRD and FV schemes will exhibit second-order spatial accuracy, i.e., β ≈ −2. For

solutions with discontinuities, it is expected that both methods will reduce to first-order

71
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spatial accuracy to preserve monotonicity, i.e., β ≈ −1. Where informative, the slope

of the line-segment connecting the two finest grids is denoted by β in the error graphs

to show the spatial order of accuracy. Of primary interest in (1.3) is the coefficient α

which describes the absolute magnitude of the error. Although of the same formal order

of accuracy, it is anticipated that the multidimensional RD schemes will have an error

with an absolute magnitude that is lower than that of the FV scheme.

5.1 Godunov-Type FV Schemes

As mentioned above, a Godunov-type finite-volume scheme serves as a reference for

evaluating the performance of the RD method. Godunov-type finite volume schemes

perform an integration of the solution flux at the boundaries of a cell to compute the cell

residual when advancing the solution in time using a time-marching method [26]. The

solution is often stored and updated at the cell centers. Before computing the flux, the

solution in the cell is reconstructed, possibly using neighbour cells. A piece-wise constant

reconstruction leads to a first-order scheme while a piece-wise linear reconstruction leads

to a second-order scheme. To maintain monotonicity, second-order schemes limit the

reconstruction, reducing it towards piece-wise constant when there are large changes in

the local solution gradient. The solution fluxes at the cell interfaces are evaluated in

terms of the possibly discontinuous reconstructed solution values by solving a Riemann

problem, providing an appropriate upwinding of the hyperbolic flux. In this study, a

Godunov-type finite-volume method developed for body-fitted multiblock meshes is used

as the basis for all of the comparisons to the RD schemes. The method incorporates a

least-squares piece-wise linear reconstruction, the slope limiter of Venkatakrishnan [61],

and the exact Riemann solver flux function of Gottlieb and Groth [27]. Refer to the

paper by Sachdev et al. [52] for a complete description of the finite-volume method used

herein.
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5.2 Performance Comparisons for Scalar Equations

Aside from directly comparing the RD and FV schemes, the effect of grid tessellation is

also examined for scalar equations. In each case, a relevant RD distribution scheme was

used to compute solutions on grids with an optimal tessellation (diagonal aligned with

characteristic vector), a reverse tessellation (diagonal opposite the characteristic vector),

and a random unstructured triangular grid.

5.2.1 Linear Advection Equation

The RD and FV methods are first compared for the linear advection equation applied

to the time-invariant problem of circular advection (Fig. 1.3a). Solutions to this smooth

scalar flow were computed on simple Cartesian grids with uniform spacing. An interesting

aspect of this test case is that the advection velocity is generally not aligned with the

Cartesian grid. This challenges the dimensional-splitting of the FV scheme. Because the

solution is smooth, the LDA scheme was used to obtain the majority of the RD results.

The LN scheme is also solved to compare its performance relative to the LDA scheme.

The FV solution was obtained without using a limiter. However, had one been used,

experiments indicate it would have had virtually no effect on the computed solution.

Numerical results were obtained for grid densities ranging from ND = 40 to ND = 640.

Figure 5.1 shows a Cartesian mesh of size 80× 80 and the various solutions obtained

on that mesh. The grid is shown in Fig. 5.1a and a representation of the exact solution on

the mesh is shown in Fig. 5.1b. Notable dissipation is observable in solutions generated

by the RD LN (minmod) scheme, FV scheme, and RD LDA scheme with a reverse

tessellation. Figure 5.2 depicts the variation of the spatial accuracy with the mesh size.

From the results given in these two figures, it is apparent that the effects of the

tessellation are very significant. When using anRD LDA scheme, the optimal tessellation

is over half an order of magnitude more accurate that the reverse tessellation. The
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b) Exact Solution

c) RD LDA scheme with
optimal tessellation

f) RD LN (minmod) scheme
with optimal tessellation

e) RD LDA scheme on
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Figure 5.1 Solutions of circular advection obtained using a 80× 80 uniform Cartesian
mesh.
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Figure 5.2 L1-error as a function of mesh density for circular advection.

accuracy achieved on the unstructured grid with the random tessellation lies in between.

It is also quite apparent from the predicted errors that, while both the LDA scheme and

the FV scheme achieve second-order accuracy for this problem, the absolute error of the

LDA scheme with the optimal tessellation is more than an order of magnitude less than

that of the FV scheme.

The results for the RD LN scheme with a minmod limiter are somewhat less impres-

sive. Although the LN (minmod) scheme offers a marginal improvement over the FV

method on coarser meshes, this quickly disappears because of its lower order-of-accuracy

(β ≈ −1.88). Other nonlinear formulations, such as the blended scheme, also exhibit a

similar degraded order of accuracy.

5.2.2 Nonlinear Burgers Equation

The solution to the nonlinear Burgers equation (Fig. 1.3c) is considered next and used

to evaluate the shock-capturing properties of both the RD and FV schemes for scalar
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Figure 5.3 Solutions to Burgers equation obtained using a 40× 40 uniform Cartesian
mesh.

equations. A Cartesian mesh with uniform spacing is again used to obtain the numerical

solutions. The compression waves and the shock run at angles to the Cartesian quadrilat-

eral grid, again challenging the dimensional-splitting of the FV scheme. The RD results

were obtained using an LN distribution scheme to preserve monotonicity. The FV results

used the slope-limiter of Venkatakrishnan [61] for the same purpose. Numerical results

were obtained for grid densities ranging from ND = 40 to ND = 640.
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Figure 5.4 L1-error as a function of mesh density for Burgers equation.

Figure 5.3 shows the coarsest Cartesian mesh used in the calculations and the various

solutions obtained on that mesh. Figure 5.3b depicts a representation of the exact solu-

tion on the discrete mesh of Fig. 5.3a and numerical solutions obtained using the RD LN

scheme with various tessellations are given in Figs. 5.3c-e. The solution obtained using

the FV scheme is shown in Fig. 5.3f. It is evident from these results that, at least qual-

itatively, the RD LN scheme using an optimal tessellation provides the most compact

shock.

Figure 5.4 depicts the variation of the spatial accuracy with the mesh size. All

schemes have near first-order accuracy in the L1-error norm. The spatial accuracy of

the best RD scheme is greater than the FV scheme by more than half an order of

magnitude. Interestingly, this is entirely dependent upon proper tessellation of the grid;

the RD scheme solved on the reverse tessellation is about equivalent to the FV scheme.

As should be expected, the RD solution on the unstructured mesh is somewhere between

the optimal and reverse tessellations.
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5.3 Performance Comparisons for the Euler

Equations

Solutions to the Euler equations are now considered. The performance of the RD and

FV schemes are evaluated for a discontinuous supersonic flow, a smooth subsonic flow, a

flow with stagnation regions, and a smooth transonic flow. The quadrilateral grid used to

obtain theRD solutions is always optimally tessellated. For the decomposedRD schemes

applied to supersonic flow regimes, a split streamline and dominant acoustic tessellation

is used. For the other RD schemes and flow regimes, the tessellation direction is aligned

with the flow streamline.

5.3.1 Supersonic Flow Past a Diamond-Shaped Aerofoil

The first problem considered related to the Euler equations involves supersonic flow past

the diamond-shaped aerofoil of Fig. 1.4b. Numerical solutions were obtained using a

RD decomposed LN scheme (the flow fully decouples everywhere), a RD matrix blended

scheme, and, for comparison purposes, the FV scheme. The computational domain was

divided into four blocks with the body-fitted multiblock grids ranging in size from 160×40

to 640× 160.

Figures 5.5 and 5.6 depict both qualitative and quantitative results for the error in the

computed density of the RD and FV schemes. Figure 5.5 shows the coarsest grid used

in the accuracy study and the various solutions obtained on that grid for this supersonic

flow problem. It is quite apparent from this figure that the numerical shocks obtained

with the FV code are somewhat thicker than those of the RD schemes due to its more

dissipative nature. The qualitative results for the two RD schemes (decomposed and

matrix) appear quite similar. The L1-norm of the solution error of the various schemes

as a function of the mesh size is provided in Fig. 5.6. As expected, all of the schemes

exhibit close to first-order accuracy (β=−1). However, small differences in the absolute
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Figure 5.5 Density distributions for M = 3 supersonic flow past a diamond-shaped
aerofoil obtained using 160× 40 body-fitted multiblock mesh.

error are evident. The decomposed RD solution is the most accurate, followed by the

matrix RD solution and then the FV solution.

5.3.2 Subsonic Flow Past a Smooth Bump

The performance of the RD and FV algorithms is now considered for subsonic flow past

a smooth bump (Fig. 1.4c). The computational grid was divided into six blocks and
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Figure 5.6 L1-density-error as a function of grid spacing for M = 3 supersonic flow
past a diamond-shaped aerofoil.

ranges in size from 120 × 80 to 480 × 320. The RD solutions were obtained using a

decomposed LDA-LW (meaning an LDA distribution for the decoupled scalar equations

and Lax-Wendroff distribution for the remaining subsonic acoustic subset) scheme, a

decomposed LN-LW scheme, a matrix LDA scheme, and a matrix blended scheme.

Contours of the entropy change are shown in Fig. 5.7 for solutions obtained on the

coarsest mesh. Qualitatively, the decomposed RD schemes show the least entropy pro-

duction, followed by the matrix RD schemes and finally, the FV scheme. The spatial

convergence is illustrated in Fig. 5.8. The FV scheme and the RD schemes that use

an LDA distribution all indicate spatial orders of accuracy near β = −2.64. The reason

for the super-convergence is not well understood but the most likely explanation is that

the width of the layer in which entropy deviations occur is also a function of the mesh

spacing (the L∞-error is not super-convergent). The matrix RD schemes perform simi-

larly to the FV scheme. However, as observed with the LN (minmod) scheme for scalar

equations, the matrix blended scheme shows a degraded order of accuracy compared to

the matrix LDA scheme. An interesting result in Fig. 5.8 is that the decomposed RD
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Figure 5.7 Distributions of entropy change for M = 0.1 subsonic flow past a smooth
bump (mesh size 120× 80).

schemes are much more accurate than the other approaches. The decomposed LDA-LW

scheme and the decomposed LN-LW scheme provide nearly identical results, probably

because this flow is dominated by the acoustic subsystem. In other words, the results

are mostly indicative of how well the subsonic acoustic subset is treated. Experiments

revealed that it is the hyperbolic-elliptic splitting, rather than the distribution scheme,

that is providing most of the benefit; resolving the acoustic subset with an LDA matrix
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Figure 5.8 L1-error as a function of grid density for M = 0.1 subsonic flow past a
smooth bump.

scheme provides similar results to using the LW scheme.

5.3.3 Subsonic Flow Past a Circular Cylinder

The more difficult problem of subsonic flow past a circular cylinder was also considered

to include the added complexity of stagnation regions (Fig. 1.4d). System decomposition

via hyperbolic/elliptic splitting fails for this case as large instabilities develop near the

stagnation regions. Numerical solutions were obtained using both matrix LDA and ma-

trix blended RD schemes along with the FV method on multiblock grids ranging from

40× 40 to 160× 160 in each quadrant.

Contours of the entropy change are shown in Fig. 5.9 for a mesh size of 40 × 40 in

each quadrant. From this figure, it should be quite evident that the RD LDA scheme

produces much less entropy than the FV scheme. Qualitatively at least, the RD schemes

provide a significantly improved result as compared to the FV method. Naturally, even

greater improvements would be expected if the decomposed RD scheme could have been
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Figure 5.9 Distributions of entropy change for M = 0.1 subsonic flow past a circular
cylinder (mesh size 40× 40 in each quadrant).

used. Quantitative comparisons of the methods are given by the variation of the solution

accuracy with respect to mesh density as shown in Fig. 5.10. The results depicted in

the figure are not quite as expected. Neither of the RD schemes yield straight lines.

The blended scheme displays an order of accuracy of only 0.77 on the finest meshes, a

value much worse than observed for the bump case. While the absolute error of the LDA

scheme is indeed less than that of the FV scheme, the order of accuracy is significantly

lower. Although it could be argued that the asymptotic regime for the solution error in

terms of the mesh resolution has not yet been achieved on the range of grids considered,

this explanation is not supported by the FV results, for which asymptotic-like behaviour

is observed. Instead, a cause for the behaviour of the RD schemes may be some form of

numerical instability. This instability is especially noticeable on the finer meshes.

Figure 5.11 shows the predicted Mach number and entropy distributions on a grid with
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Figure 5.10 L1-error as a function of grid density for M = 0.1 subsonic flow past a
circular cylinder.

Figure 5.11 Perturbations in the subsonic cylinder flow generated by the RD LDA
scheme (mesh size 80× 80 in each quadrant).

80× 80 cells in each quadrant. This solution was obtained using the LDA scheme. The

L2 norm for all solution residuals was reduced by 11 orders of magnitude indicating that

a steady solution was indeed achieved. Although the Mach number contours are smooth

and symmetrical, the entropy solution displays a number of perturbations. Similar, but

less significant, perturbations were also observed in the blended results. The oscillations

seem to be highly sensitive to the grid. A pre-defined tessellation can exacerbate the
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situation. Letting the tessellation optimally adapt to the solution tends to minimize the

oscillations. An unstructured mesh disrupts the regularity of the perturbations, but their

effect is still otherwise present. To our knowledge, this behaviour has not been reported

elsewhere in the literature and may be a result of boundary conditions.

5.3.4 Ringleb’s Flow

Numerical solutions were obtained for Ringleb’s flow using both the RD and FV schemes

on body fitted grids ranging in size from 40× 40 to 320× 320. An example grid, coarser

than the coarsest grid solved and shown for illustrative purposes only, is displayed in

X
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0

0.5
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2

Figure 5.12 Grid for solution of
Ringleb’s flow.

Fig. 5.12. The RD solutions were obtained using

a matrix LDA scheme, a matrix blended scheme, a

decomposed LDA scheme, and a decomposed LN

scheme. In subsonic regions, the elliptic acous-

tic subset of the decomposed Euler equations was

solved using the Lax-Wendroff approach described

previously.

The blending coefficient or limiter of the nonlin-

ear RD schemes was frozen when the solution was

fully developed. In the previous problems, freezing

the limiter would avoid a convergence stall but not appreciably influence the overall accu-

racy of the results. It was therefore not used. For this problem, freezing the limiter and

extending the convergence did actually lead to more accurate estimations of the solution

accuracy of the nonlinear RD schemes.

The L1-error norms of the computed difference in the solution densities are shown

in Fig. 5.13 for the Ringleb’s flow problem. The results indicate that the FV and both

of the RD LDA schemes have spatial orders of accuracy near 2, as should be expected.

However, in this case, it is the FV scheme that yields the best results, providing solutions
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Figure 5.13 L1-density-error as a function of grid density for Ringleb’s flow.

that appear to be almost twice as accurate as the decomposed LDA scheme. We explore

this issue further in the next chapter. The performance of the nonlinear RD schemes is

inferior to that of the linear LDA schemes. For the matrix blended method, a degradation

in the order of accuracy is seen, especially on finer grids, similar to that observed for other

problems. Between the two finest meshes, the order of accuracy is only -1.24. On the

finest mesh, 320 × 320, the decomposed LN method produced oscillations that severely

corrupt the accuracy. However, the decomposed LN results that were obtained seem to

follow a trend similar to that of the matrix blended results. As with the supersonic case,

the decomposed RD schemes show a slight improvement in absolute accuracy over the

RD matrix schemes.



Chapter 6

Analysis and Corrections of
Deficiencies in Residual Distribution
Schemes

In the previous chapter, a comparison of the RD method with the FV method identified

several deficiencies in the RD method:

1. Degraded spatial accuracy of the nonlinear RD schemes.

2. Lower accuracy than FV for Ringleb’s flow.

3. Perturbations in solutions of subsonic flow around a cylinder.

4. Instability of the hyperbolic/elliptic decoupling method at stagnation points.

The first two deficiencies relate to accuracy and are examined in this chapter. The latter

two relate to issues of robustness and are not addressed. The perturbations generated by

the LDA scheme are not reported elsewhere in the literature and no correction is known.

More information on the stagnation point instabilities resulting from hyperbolic/elliptic

splitting is available in the theses by Mesaros [35] and Rad [46]. In particular, the use of

least-square minimization, although complex, appears to avoid the problem.
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6.1 Degraded Spatial Accuracy

The most troubling deficiency of the RD method is the degraded accuracy of the non-

linear RD schemes that are both P and LP. Monotone and second-order accurate RD

schemes are essential for most practical applications of CFD and the accuracy must be

better than or equivalent to the FV method for the RD method to be considered as a

viable alternative. The problem with limiters degrading the accuracy is also apparent

in the FV framework where it is understood in a one-dimensional context [62] and the

solution there applies equally well to the RD method. The problem is related to the

behaviour of symmetric limiters, Ψ(r), in the region where r ≈ 1. Any limiter which

deviates from a constant slope of 1/2 in this region can exhibit first-order error terms;

the closer a scheme preserves the slope in this region, the better the accuracy will be.

While all the classical limiters are at least tangential to dΨ/dr = 1/2, only the MUSCL

limiter [60] (equivalent to the Barth-Jespersen slope limiter in one dimension [10]),

Ψ(r) = max

[
0,min

(
2r,

r + 1

2
, 2

)]
, (6.1)

features this constant slope; in a one-dimensional FV framework, the MUSCL limiter

recovers Fromm’s scheme for 1/3 ≤ r ≤ 3.

The effect of simply using a MUSCL limiter in place of the minmod limiter on an

optimally tessellated structured mesh is shown in Fig. 6.1 for circular advection of a

Gaussian profile. For the most part, the LN scheme with a MUSCL limiter achieves

better accuracy than the linear LDA scheme.

Using a geometrical interpretation of the distribution based on the barycentric co-

ordinates of a distribution point in a triangle, as described by Fig. 2.2, the behaviour

of the minmod and MUSCL limiters on a type-II triangle (see Fig. 2.4) are shown in

Fig. 6.2. An upwind distribution will not send any fluctuation to vertex 3, hence the dis-

tribution point lies along the line connecting vertices 1 and 2. Because the distribution

for the N scheme is unbounded as φE → 0, the N scheme may send opposing positive
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Figure 6.1 Effect of the MUSCL limiter on spatial accuracy for circular advection of
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Figure 6.2 Limited distributions, β∗, arising from various “unbounded” distributions
of the N scheme, β.

and negative fluctuations to the downstream vertices. In Fig. 6.2, this is represented by

the distribution point, as determined by the N Scheme (circle symbol), moving outside

the triangle. The limited distribution is shown for the minmod limiter (square symbol)

and MUSCL limiter (triangle symbol). Consistent with the map A scheme, the minmod

limiter moves the distribution point to the nearest vertex; in doing so, the signs of the

distribution coefficients are not changed and the scheme is still positive. The MUSCL
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limiter reflects the distribution point about vertex 2 until an equal distribution between

vertices 1 and 2 is reached. The limited distribution point remains at the center for all

unlimited distributions 1/3 ≤ r ≤ 3. The MUSCL limiter can change the sign of the

distribution coefficients and hence, use of this limiter no longer guarantees property P .

With r = −φN
1 /φ

N
2 , the MUSCL limiter obtains the same distribution of the fluctua-

tion in the vicinity of

r = 1 + ε (6.2)

for all small values of ±ε. The minmod limiter, on the other hand will set the distribution

point to vertex 2 for ε < 0 and to vertex 1 for ε > 0. From a geometrical perspective, this

seems rational and intuitive (the distribution point is to the left of vertex 2 in Fig. 6.2 for

ε < 0 and vice-versa), but when written as (6.2), the limiting appears discontinuous. This

behaviour is the first hint of trouble but only indicates the possibility for limiter chatter

in regions of near constant solution for which φE → 0. Insight into the accuracy can be

gained by performing an analysis similar to that of section 2.2.2 where a Taylor series

expansion is performed on a representative grid (Fig. 2.8) followed by determination of the

truncation error. In this case, however, the distribution is split early in the development

for the two-target triangles according to (2.18) and limited via (2.48) with (2.49). The

development is provided in Appendix A. By varying the type of limiter and the sign of

ε in (6.2) for input to the minmod limiter in triangles 1 and 3, the truncation errors

displayed in Table 6.1 were obtained. The notation for the truncation error is the same

as in section 2.2.2; in particular, s is the aspect ratio of the element and λ = aı̂ + b̂

is the advection velocity. For the minmod limiter, when ε < 0, the limiter evaluates to

Ψ(r) = r, and when ε > 0, the limiter evaluates to Ψ(r) = 1. It is shown in Table 6.1

that when triangles E1 and E3 have values of ε with different signs, first-order error terms

are introduced into the truncation error. Although less concise, this result is essentially

the same as that presented by Waterson and Deconinck [62] for one-dimensional FV

methods.
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Table 6.1 Truncation error of various limiters for the LN scheme.

Limiter Ψ(rE1) Ψ(rE3) Truncation Error

MUSCL
rE1

+1

2

rE3
+1

2
O (∆x2)

rE1 rE3 O (∆x2)

1 1 O (∆x2)
minmod

rE1 1 ab(as−b)∆x

4|λ|2
∂2u
∂η2 +O (∆x2)

1 rE3

ab(b−as)∆x

4|λ|2
∂2u
∂η2 +O (∆x2)

The LN scheme with a MUSCL limiter is very effective in the two-dimensional case;

however, as mentioned in section 2.3.3, the LN scheme cannot be extended to higher

βN

βmapA

βCentral

L1

L2

1

3

2

Figure 6.3 Geometrical lengths used
to computed the blending coefficient for
the map C scheme.

dimensions. It is therefore of interest to find

a mapped scheme which geometrically extends

the limiting concept to any number of di-

mensions. The most logical extension of the

MUSCL limiter to multiple dimensions is to

similarly reflect the negative distribution coeffi-

cients to positive values until a centered distri-

bution, β Central
i = 1/(d + 1) = 1/3, is reached.

In this proposed approach, from here on la-

belled “map C”, three distribution points are

used: βCentral, βN , and βmapA. From the geo-

metrical interpretation, the lengths of the two line segments, L1 =
∣∣βN − βmapA

∣∣ and

L2 =
∣∣β Central − βmapA

∣∣ as shown in Fig. 6.3, are used to define a blending coefficient,

θ = min

(
1,

∣∣βN − βmapA
∣∣

|β Central − βmapA|

)
. (6.3)

The limited distribution of the map C scheme is then given by

βmapC
i = β∗i = θβLP + (1− θ) βmapA

i , (6.4)
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where βLP is either β Central or, optionally, any other linear LP scheme. When the

distribution point given by βN is inside the triangle, βN = βmapA, resulting in θ = 0 and

βmapC = βN . When L1 ≥ L2, θ = 1 and βmapC = βLP . This should only occur when

φE ≈ 0. Otherwise, the distribution point is moved along a linear path from βmapA to

βLP a distance corresponding to the ratio given by (6.3). The resulting scheme is similar

to the blended scheme except with a positive component of βmapA
i in place of βN

i and

with a blending coefficient instead derived according to geometrical similarities with the

LN scheme and a MUSCL limiter.

A scheme bearing some similarities to map C was suggested by Abgrall and Roe [9]

where a modification was made to the map A scheme as follows:

β̂mapA
i =

2φN+
i + ε∑3

j=1,j∈E(2φN+
j + 3ε)

φN+
j =


φN

j φN
j φ

E ≥ 0

0 φN
j φ

E < 0

, (6.5)

where ε = 10−10 in double precision. In regions of constant solution, where both φE ≈ 0

and φN
i ≈ 0, this scheme will set β̂mapA

i = 1/3. For elements where the distribution

coefficients of the N scheme diverge, it will closely reproduce the map A scheme. At

least in near constant regions, this will have a similar effect to the map C scheme and

the authors of [9] state that the modification was required to obtain the expected orders

of accuracy. However, the rationale given for (6.5) was to ensure that
∑

i β̂
mapA
i = 1

exactly. Based on the analysis given in this chapter, it may be that limiting towards an

LP distribution is instead the reason for obtaining better accuracy.

6.1.1 Accuracy

The accuracy of the map C scheme is assessed here for linear advection and Ringleb’s

flow at both second and fourth orders of accuracy. Possible candidates for the βLP target

of (6.4) are the Central, LW, LDA, and UCV scheme. The central scheme is excluded

because it leads to an unstable map C scheme when applied to to Ringleb’s flow. However
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Figure 6.4 L1-Error norm of map C al-
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Figure 6.5 L∞-Error norm of map C al-
gorithms for linear advection of a Gaussian
profile on unstructured meshes.

results are shown for linear advection. The LW scheme is also not considered because

it may place the distribution point outside the geometry of the triangle, something that

is unsettling, even if workable, because our entire effort is to get the point inside the

triangle. Unlike in Chapters 2 and 3, solutions here were obtained using the full interior

and boundary schemes.

Figures 6.4 and 6.5 illustrate the L1-error and L∞-error, respectively, of the map C

scheme applied to a problem of linear advection of a Gaussian profile on unstructured

meshes. Both second and fourth-order results are shown for the different LP schemes as

a central target of the limiting. For reference, the error of the LDA scheme is also shown.

All the map C schemes provide similar accuracy to the LDA scheme and only for second

order L∞-error is the LDA scheme slightly more accurate. From this case, it appears

that all βLP targets would be suitable candidates as far as accuracy is concerned.

The LDA and UCV target LP schemes are additionally compared in Figs. 6.6 and 6.7

for matrix solutions of Ringleb’s flow. Each equation is limited using the scalar method

defined by (6.3) and (6.4) by first projecting the fluctuations onto the eigenvectors of a

one-dimensional system in the direction of the velocity vector, exactly as described for the



94 Chapter 6. Analysis and Corrections of Deficiencies in RD Schemes

ND

L 1
E

rro
r

100 150 200

10-7

10-6

10-5

10-4

2nd Order LDA
2nd Order Map C (LDA)
2nd Order Map C (UCV)
4th Order LDA
4th Order Map C (LDA)
4th Order Map C (UCV)

LDA and Map C (LDA)
overlap

β = -1.98 (LDA)

β = -3.81 (LDA)

Figure 6.6 L1-Error norm of map C al-
gorithms for Ringleb’s flow on unstruc-
tured meshes.

ND

L ∞
E

rro
r

100 150 200

10-5

10-4

10-3

2nd Order LDA
2nd Order Map C (LDA)
2nd Order Map C (UCV)
4th Order LDA
4th Order Map C (LDA)
4th Order Map C (UCV)

β = -1.19 (LDA)

β = -2.98 (LDA)

Figure 6.7 L∞-Error norm of map C
algorithms for Ringleb’s flow on unstruc-
tured meshes.

map A scheme in section 3.3.2. From the figure, limiting towards an LDA distribution

is almost identical to using the LDA scheme itself, with only minor variations in the

L∞-error. For unknown reasons, perhaps because it is not fully upwind, using a UCV

distribution as the target for the map C limiting was not successful at higher orders of

accuracy. In Figs. 6.6 and 6.7, the order of convergence for both mapC (UCV) error

norms are close to first-order when fourth-order is expected. Based on these results,

an LDA distribution was chosen as the LP target of the map C scheme (as defined in

Eq. (6.4)) for all remaining numerical experiments.

6.2 Monotonicity

The construction of the map C scheme clearly sacrifices monotonicity. In this section,

the severity of the compromise is examined by considering solutions of Burgers equation

(Fig. 1.3c) and the Euler equations for a single shock wave (Fig. 1.4a). Contours from

second-order predictions of Burgers equation are shown in Fig. 6.8. The contours vary

by 0.2 around a solution minimum and maximum of -0.5 and 1.5, respectively. The map
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Figure 6.8 Monotonicity of various RD schemes for solutions of Burgers equation.

C scheme shows significantly more oscillations than either the blended or map A schemes

but significantly less than the LDA scheme. Table 6.2 lists the global minimum and

maximum in each solution. Note the small undershoot by the blended scheme and the

perfect monotonicity of the map A scheme. The extrema predicted by the map C scheme

are a bit disappointing with all values being a significant fraction of the LDA scheme.

The monotonicity of Euler equation solutions computed for an oblique shock is shown
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Table 6.2 Global extrema for solutions of Burgers equation.

Scheme Minimum Maximum

Exact -0.5 1.5

LDA -0.77 1.88

Blended -0.52 1.5

Map A -0.5 1.5

Map C -0.62 1.61

by pressure contours in Fig. 6.9. The contours vary by intervals of 1000 Pa around the

solution minimum and maximum of 101325 Pa and 210444 Pa. The results are similar

to the advection case for both hyperbolic/elliptic splitting and the matrix method. The

global minimum and maximum for each solution are available in Table 6.3. For systems,

all schemes exhibit at least some minor oscillations. Again, we had hoped for better

monotonicity in solutions obtained by the proposed map C scheme.

Table 6.3 Global extrema (Pa) for solutions of an oblique shock.

Scheme Minimum Maximum

Exact 101325 210444

LDA 72462 246052

Blended 101038 214397
H/E Split

Map A 101325 213972

Map C 94669 227700

Blended 101095 215180

Matrix Map A 101286 218844

Map C 96462 223180
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Figure 6.9 Monotonicity of various RD scheme for solutions of an oblique shock wave.

There are techniques one can use to increase the monotonicity-preserving character-

istics of the map C scheme. A simple modification is to increase the distance that a

distribution point, as computed by the N scheme, must be outside the perimeter of the

triangle before the limited distribution point is blended with the chosen LP scheme. For

example, replace the numerator in (6.3) with

max
(
0,
∣∣βN − βmapA

∣∣− α
)
, (6.6)
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where α assumes some appropriate value. This will improve the monotonicity of a solution

but can have a large impact on the accuracy. We found it nearly impossible to obtain

satisfactory monotonicity and still obtain the fourth-order accuracy shown in Figs. 6.6

and 6.7 for Ringleb’s flow.

Another possible approach is to use some form of explicit discontinuity detection;

possible techniques are discussed by Abgrall [3] and Guzik and Groth [29]. For elements

where discontinuities exist, the blending coefficient can be determined using the blended

scheme. Since both schemes blend between a LP scheme and a P scheme, it may be

possible to easily interchange the coefficients.

However, for this study, (6.3) remains unaltered and we make no further effort to

improve the monotonicity. Instead, in Chapter 8, the performance of the map C scheme

defined by (6.3) and (6.4) is examined for the canonical test problems at both second

and fourth order accuracy. Improvements to the monotonicity of the scheme are left to

future work.

6.3 Poor performance of Ringleb’s Flow

X

Y

-1.5 -1 -0.5 0 0.5 1
0

0.5

1

1.5

2

Figure 6.10 Distorted grid
for solution of Ringleb’s flow.

In Chapter 5, it was shown that the FV method delivers

solutions that are consistently more accurate than the

RD solutions. The discrepancy regarding the relative

accuracies of RD and FV methods is known to not be

related to mesh alignment. This was proven by gener-

ating solutions on randomly distorted grids, similar to

that shown in Fig. 6.10, in place of the smooth mesh

shown in Fig. 5.12. The results for an unlimited FV

method are compared to those for the matrix-LDA RD

scheme on the distorted mesh in Fig. 6.11. It should be
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Figure 6.11 L1-density-error as a function of grid density for Ringleb’s flow on a
distorted mesh.

evident from this figure that while second-order accuracy is still achieved on the distorted

grids, there is a notable decrease in the solution accuracy of both methods. However,

the overall effect on each of the methods is quite similar such that the FV scheme is still

more accurate than the RD scheme.

The poor performance of the RD schemes for Ringleb’s flow is thought to be related

to how well the schemes correct solutions in regions that violate the entropy condition.

Entropy violations result from the discretization and typically occur when a vertex re-

ceives no update because all waves move away from the vertex. This commonly occurs

at sonic points and, in some cases, can lead to the formation of expansion shocks [53].

Figures 6.12a and 6.12b show the absolute magnitude of the density error for the FV

and RD schemes, respectively. It is apparent that the RD scheme suffers from higher

error levels near sonic points. The entropy fix proposed by Sermeus and Deconinck [53]

was implemented for the matrix scheme. Regions where an entropy fix may be required,

as detected by this scheme, are shown in Fig. 6.12c. The effect of applying the entropy

fix is displayed in Fig. 6.12d. Although almost indistinguishable from Fig. 6.12b, there is



100 Chapter 6. Analysis and Corrections of Deficiencies in RD Schemes

-1 0 1
0

0.5

1

1.5

2

a) FV - density error

-1 0 1
0

0.5

1

1.5

2

b) RD matrix LDA - density error

-1 0 1
0

0.5

1

1.5

2

c) Regions where entropy fix
was applied

-1 0 1
0

0.5

1

1.5

2

d) RD matrix LDA with entropy fix -
density error

Figure 6.12 Distributions of the density error generated by the RD and FV schemes
and performance of an entropy fix.

a small improvement to the accuracy. Most of the improvement is obtained in the region

of large error at the center of the domain. The large error at the outflow boundary is

caused by an entropy violation within the degenerate ghost elements and is not dealt

with at all by the entropy fix.

The FV scheme is more accurate than the RD scheme even when an entropy fix

is applied. It seems likely that the results reported in Fig. 5.13 are more indicative of

how well the two schemes satisfy the appropriate entropy condition than anything else.

The FV method is much more successful, probably because of its larger stencil. In one

dimension, a second-order reconstruction will tend to remove most entropy violations.

The RD scheme, on the other hand, must completely rely on accurate multidimensional

analytical approximations of the solution in regions of entropy violation. Besides the
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entropy correction considered here, fixes have also been proposed by Wood and Kleb [65]

and Nishikawa and Roe [40].
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Chapter 7

Heterogeneous Parallelism Using
Central and Graphics Processing
Units

High-order RD schemes are attractive candidates for computing on graphics processing

units (GPUs) because the compact stencil provides parallel data and the high-order

extension dramatically increases the arithmetic intensity of the computation. With these

two characteristics, data parallelism and arithmetic intensity, an algorithm may be better

suited to the highly parallel architecture of a GPU rather than the serial architecture

of the CPU. In this chapter, the potential for computing portions of a RD algorithm

on a GPU is explored. The algorithm is tested by applying an LDA matrix scheme to

Ringleb’s flow (Fig. 1.4e). The results in this chapter often relate to the three principal

CPU

Cores

processors
Multi−

GPU

Processors

Node

CPU

Cores

processors
Multi−

GPU

Processors

Node

Figure 7.1 Parallel architecture.

steps of the RD algorithm as described in

Chapter 2 and repeated here: computa-

tion of the fluctuation, distribution of the

fluctuation, and evolution of the solution.

The target architecture for this research

is a distributed cluster with an arbitrary

number of identical compute nodes. As il-

lustrated in Fig. 7.1, each node is assumed

103
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to contain a number of CPU cores sharing random-access memory (RAM) and a GPU

with its own dedicated RAM. The numerical implementation features four levels of par-

allelism. The computational grid for the problem is divided into zones and the coarsest

level (1st) of parallelism is defined by the set of zones distributed to each node. Within

a node, the zones in the set are distributed among the CPU cores. An intermediate

level (2nd) of parallelism is characterized by the simultaneous processing of the GPU

and CPU cores. The finest levels (3rd and 4th) of parallelism are expressed by the vector

processing of the GPU.

The 1st level of parallelism, involving communication between the nodes, is imple-

mented with MPI. The 2nd level involves communication on a single node and is entirely

contained within a process. The parallelism at this level is expressed using POSIX

threads. A single thread is fixed to each CPU core residing on the node. As well, a single

thread, not assigned to any particular core, is created on the node for the sole purpose

of controlling the processing of the GPU; this thread remains mostly idle. The next two

sections described the complete parallel implementation for a cluster of nodes. However,

having access to only one node for this thesis work, our results focus only on the parallel

interaction between the CPU cores and the GPU within a single node. Specifically, our

test node consists of a quad-core AMD Phenom II 940 CPU and an NVIDIA GTX 260

(27 multiprocessors and 896 MB) GPU. Predictions of computational performance are

presented in the last section.

7.1 Parallel Implementation

For the 1st and 2nd levels of parallelism, the domain is partitioned into a number of

zones. An example of a partitioned mesh is shown in Fig. 7.2. The meshes used in this

study were all generated with Gmsh [24] and partitioned between reconstruction elements

using the spectral partitioning algorithm of Chaco [30].
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Figure 7.2 Sample mesh and partitions used for parallel computation of Ringleb’s flow.

7.1.1 Parallel Communication Strategy

The partitioning of the domain into zones splits elements of the dual mesh (see Fig. 2.3)

for vertices that reside on interior zone boundaries. In each zone, the dual mesh elements

need to be rebuilt with the missing information from neighbour zones. This is done by

locally accumulating and then communicating the required information: the fluctuation

distributed to the vertex, the area associated with the vertex, and the time-step con-

straint. Figure 7.3 illustrates how this is accomplished using MPI for communication

between the compute nodes and POSIX threads for communication between the threads

executing on the CPU cores within a compute node. Five zones are shown in Fig. 7.3

with zones 1 and 2 belonging to node 1 and zones 3–5 belonging to node 2. An interface

is defined for all vertices on interior boundaries that belong to a common set of nodes. In

Fig. 7.3, a dual interface connects the five vertices between zones 1 and 5 and a multiple

interface connects all the zones to one vertex. For two-dimensional problems, a dual

interface only connects two zones while a multiple interface can connect any number

of zones, but only for one vertex. A copy of the interface exists on all nodes holding

zones that share the interface. We label these as sibling interfaces. Within each interface

there are two buffers for accumulating data: a local buffer and a window buffer. Once

the distribution of the fluctuation has been completed for a zone, the necessary data is
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Figure 7.3 Communication between zones is accomplished by defining interfaces be-
tween the zones.

accumulated in the local buffer of all interfaces shared by the zone. A mutex1 is assigned

to each interface to isolate the updates from the threads on the node. When an interface

has received updates from all zones local to the node, the last thread to update the zone

initiates an MPI remote memory access (RMA) operation that accumulates information

from the local buffer of the local interface into the window buffer of any sibling interfaces

on remote nodes. The RMA operations are one-sided and do not require cooperation

from the receiving nodes. However, the window buffer is marked as a special window

of memory that can be written to by remote processes. Once all interfaces have been

updated by all nodes, the window buffer is added to the local buffer in each interface.

The local buffer now holds all information required to advance the solution on the dual

mesh. This information is relayed to the zones belonging to an interface allowing for each

zone to independently advance the solution at all of its vertices.

An example is given for the multiple interface shown in Fig. 7.3. Node 2 will process

zones 3–5. After completing the distribution of the fluctuation for zone 3, the fluctuation

sent to the shared vertex, the area associated with the shared vertex, and the time-step

1A locking algorithm that allows only one thread to update the interface at a time.
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constraint are all accumulated into the local buffer of the interface on node 2. The

same is done for zones 4 and 5. Once the information from zone 5 is added, the local

buffer is complete on node 2. The local buffer is then added to the window buffer of the

sibling interface on node 1 using RMA operations defined by MPI. Meanwhile, node 1

has processed and gathered information from zones 1 and 2 (and, when complete, added

the data to the window buffer of the sibling interface on node 2). By adding the window

buffer to the local buffer, node 1 now has information from all five zones that share the

vertex. The information from the interface is now copied by node 1 to zones 1 and 2

before proceeding with the evolution of the solution.

Although RMA operations are relatively new to MPI, and perhaps not as efficient as

well-established cooperative instructions, the preceding communication pattern has some

advantages. First, it is simple to implement because coordination is not required between

pairs of processes. Second, completion of the local buffers should occur at irregular time

intervals. Hence, the RMA operations will be issued at irregular intervals while zones are

being processed. This allows for some overlap between communication and computation.

As well, we speculate that sending messages at irregular intervals throughout the entire

duration of the processing should alleviate saturation of the communication network.

However, we have not had the opportunity to investigate the actual performance of this

communication pattern.

7.1.2 Subdivision of the Algorithm Between CPU and GPU

For execution at the 2nd level of parallelism, the algorithm is subdivided depending on

which type of processor a portion of the algorithm is best suited for. The imposition

of fourth-order accuracy provides for high arithmetic intensity and the regular compact

structure of the RD stencil provides highly parallel data. For example, the integrations

in 9 primary elements can be completed on the data of one reconstruction element. Fig-

ure 7.4 shows a profile of the RD algorithm executing on a quad-core CPU. The three
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Figure 7.4 Profile of the fourth-order RD algorithm solving Ringleb’s flow on a quad-
core CPU.

distinct steps of the RD method, as described in Chapter 2, are identified in the figure:

computation/integration of the fluctuation (red), distribution of the fluctuation (blue),

and evolution of the solution (green). The computational cost of the two quadratures

(integration of the fluctuation and integration of the linear state) increases dramatically

when switching from second-order accuracy to fourth-order accuracy. While the quadra-

tures are extremely expensive, the algorithms involved are both simple and easily par-

allelized. At the 2nd level of parallelism, we therefore chose to perform the quadratures

on the GPU while all other tasks concurrently execute on the CPU cores. The results

in Fig. 7.4 were generated using profiling capabilities provided with the compiler; precise

timings of the code indicate that the quadratures in the fourth-order algorithm require

75 % of the processing time. According to Amdahl’s law [15], which can be written as

S =
1

1− fp + fp

Sp

, (7.1)

where fp is the parallel fraction and Sp is the speedup of the parallel fraction, the maxi-

mum possible speedup, S, of the overall algorithm for infinite speedup of the quadratures

(Sp = ∞) is four.

During each iteration of the algorithm, a streaming process is defined where the GPU

integrates the fluctuation and linear state in a set of zones, equivalent to the number

of CPU cores, before distributing the zones to the CPU cores. The CPU cores then

distribute the fluctuation while the GPU simultaneously begins integration of the next
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set of zones. Because of global time-stepping (which is retained, as opposed to local

time-stepping, only to allow experimentation with the added complexity), the solution

cannot be evolved until the residual has been distributed for all zones and the global

minimum of the time-step is determined. To ensure concurrent processing, the GPU is

tasked to integrate the first set of zones for the next iteration as soon as the CPUs finish

evolving the solution for the first set. Meanwhile, the CPUs can evolve the solution for

the remaining zones in the current iteration.

Synchronization between the threads which process the zones on the CPU cores (la-

belled CPU threads) and the thread that controls the GPU (labelled GPU host thread) is
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Figure 7.5 Synchronization between threads
executing on the CPU cores and a thread man-
aging the GPU.

achieved using the series of barriers

shown in Fig. 7.5. Before entry at the

top of the figure, the CPU threads are

processing the distribution for a set of

zones while the GPU is performing the

quadratures for the next set of zones.

As the CPU threads finish computing,

they enter the top of the figure. The

first CPU thread to arrive sets bar-

rier C and removes barrier A. This al-

lows the GPU host thread, which has

been idle while the CPU threads com-

pute, to activate and check the status

of the GPU. Once the computation on

the GPU is complete and the results

transferred to main memory, the GPU

thread sets barrier D and removes bar-

rier B. Meanwhile, the CPU threads
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have been collecting at barrier B. They are now able to proceed with loading interpo-

lation data that the GPU will process next. The last thread to load the data will set

barrier A and remove barrier C. The GPU host thread now invokes a number of asyn-

chronous functions (the functions do not wait for completion before returning). These

functions initiate the transfer of the interpolation to global memory on the GPU, exe-

cute the kernel (the program) on the GPU, and transfer the results back to main CPU

memory. After executing these functions, the GPU host threads sets barrier B and re-

moves barrier D. Because the CPU threads are waiting idle at barrier D, the GPU host

thread does not have to compete for resources on the CPU. When barrier D is lifted,

the CPU threads proceed to distribute the fluctuation using the data just obtained from

the previous execution on the GPU. Meanwhile, the GPU host thread goes to sleep at

barrier A.

If the CPU threads are about to process the last set of zones received from the GPU,

then there is nothing for the GPU to do; it cannot process the next iteration until the

global time step is known and the solution has been advanced. In this event, the GPU

host thread is left idle at barrier C and the last CPU thread to arrive at barrier D sets

barrier D for the next entry into the synchronization routine and removes barrier D for

this entry. The CPU threads will distribute the fluctuation for the last set of zones and

compute the global time step. Once the solution has been evolved for the first set of

zones, all CPU threads will re-enter the synchronization routine. They will fall through

barrier B and proceed to load the interpolation for the first set of zones for the GPU. The

GPU will now compute the fluctuation for the first set of zones while the CPU threads

finish advancing the solution in all remaining zones. Ideally, the GPU will finish its task

before the CPU threads finish theirs. Global time-stepping can be seen to add complexity

here and possibly cause inefficiency if concurrent processing is inhibited.
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Figure 7.6 Main components of NVIDIA GeForce 200 series GPUs.

7.2 Numerical Quadrature on the GPU

The 3rd and 4th levels of parallelism are expressed entirely on the GPU. The program-

ming of the GPU is closely aligned with the architecture of the hardware. A description

is provided here to illustrate how an algorithm executes on a GPU and is based upon

information given in the CUDA programming guide [42].

7.2.1 GPU Architecture

Figure. 7.6 summarizes the main components of NVIDIA GeForce 200 series GPUs.

The main feature is a set of multiprocessors, the number of which primarily determines

the performance (and cost) of the GPU. In the example of our test node, the GPU

contains 27 multiprocessors. Each multiprocessor, features a single-instruction, multiple-

data (SIMD) architecture with 8 processors that each execute a single instruction on

different data. The SIMD processors are all 32-bit and only operate on single-precision

data. For double-precision computations, a single 64-bit processor exists on the multi-

processor. In terms of computational performance, double-precision operations are sig-
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nificantly handicapped; the theoretical double-precision performance is actually twelve

times slower than that of the theoretical single-precision performance.

The memory system consists of on-chip memory and global memory, the latter being

similar to RAM for a CPU. The individual multiprocessors have four types of on-chip

memory: registers, shared memory, a read-only constant cache, and a read-only texture

cache. The read-write global memory for the GPU can be read from or written to

by the CPU. Additionally, the CPU can write items belonging to texture or constant

memory to the GPU. Reading from constant or texture memory, versus directly from

global memory, on the GPU is generally more efficient because of the cache. Although

limited in size, the shared memory has very fast read and write access and it can be

accessed from any processor within a multiprocessor. It is useful for temporary storage

of data or sharing intermediate results within a multiprocessor. Because accessing global

memory is orders of magnitude slower than accessing shared memory, the recommended

programming strategy is to stage data from global memory to shared memory, perhaps

using the texture or constant caches, perform as many arithmetic operations as possible

on the data in shared memory, and then write the results back to global memory. Memory

can be accessed in any manner but there are penalties if optimal access patterns are not

respected. The details of optimal patterns are intricate [42], but a simplified example of

a rule is to require data with a stride of 32 bits.

7.2.2 Algorithm for Numerical Quadrature

The programming model is closely aligned with the hardware of the GPU. GPU blocks

are defined which are distributed to the multiprocessors of the GPU. Within each block,

GPU threads (not to be confused with the POSIX threads running on the CPUs) are

defined which execute in parallel on the processors following the SIMD pattern. The code

written for the GPU, called a kernel, is programmed from the perspective of a thread.

The threads in a block can be synchronized and can share data with each other via the
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shared memory. The blocks, on the other hand are completely independent units and

may not communicate with each other. Because of this, the number of multiprocessors on

a GPU can vary and have no effect, besides performance, on the execution. A grouping

of blocks, labelled a GPU grid, defines the complete problem to be computed during a

kernel execution.

The number of threads, and if possible blocks, should massively outnumber the hard-

ware resources. For example, the threads are issued in batches of 32, called a warp, to

the processors. However, at least 192 to 256 threads per block are recommended [42].

In addition, the device attempts to run as many blocks as possible on a multiproces-

sor. The actual number is limited by hardware resources, usually either the number of

available registers or the amount of available shared memory. The overall concept is to

have as many active warps as possible. “The ratio of the number of active warps per

multiprocessor to the maximum number of active warps (limited by hardware) is called

the multiprocessor occupancy” [42]. With a large enough occupancy, the GPU is able to

hide the memory access latencies of some warps behind the computation of other warps;

in doing so, it can avoid requirements for large local memory caches.

In our example of high-order RD, the quadrature of the linearized state and fluctua-

tion is adapted to this GPU programming model. The grid consists of all the zones that

must be evaluated during one kernel execution (the number of zones evaluated per kernel

execution is equivalent to the number of available CPU cores in the compute node). Each

block contains two reconstruction elements and 144 threads are used per reconstruction

element to perform the integration. Dummy reconstruction elements are added if needed

to fully complete all GPU blocks. In total, 288 threads are assigned per block which is

evenly divisible into 9 warps per block. As stated in Section 4.5, four Gauss points are

required in each primary element for integration of the linearized state and eight Gauss

points are required on each edge for integration of the flux. During integration of the

linearized state, 16 threads are used in each element to simultaneously evaluate all Gauss
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points for all variables:

4 Gauss points × 4 variables × 9 primary elements × 2 reconstruction elements = 288 .

During integration of the flux, 8 threads simultaneously interpolate the solution at all

Gauss points on the edge for a single variable, and store the result in a register. This is

repeated four times for each variable in the linearized state. The flux is then evaluated

at each Gauss point and summed to numerically solve the integral. This is also repeated

four times to assemble the flux for each equation in the two-dimensional Euler system of

equations:

8 Gauss points × 1 variable × 18 edges × 2 reconstruction elements = 288 .

The fluctuation in a primary element is completed by a summation of the flux on the

surrounding edges. The particular ordering of the edges and elements shown in Fig. 7.7
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Figure 7.7 Reduction patterns for sum-
mation of the flux on the edges into the
primary-element fluctuation using the GPU.

simplifies the reduction. Assuming se-

quential ordering of the elements and edges

in memory, the red and green edges can be

read from consecutive memory locations

and written to consecutive memory loca-

tions. Only addition of the blue edges re-

sults in a disordered access pattern.

Results for the Euler equations are pre-

sented in this chapter but a kernel has

been written for high-order solutions of the

scalar advection equations as well. In the

advection case, each block contains eight

reconstruction elements and 36 threads are

used per reconstruction element to per-

form the integration. Four threads are as-



7.2. Numerical Quadrature on the GPU 115

signed to each primary element for quadrature of the linearized state and two threads

are assigned to each edge for quadrature of the fluctuation. Each block then consists of

288 threads or exactly 9 warps.

The usage of the GPU memory is illustrated in Fig. 7.8. The connectivity of the

reconstruction elements is loaded into global memory by the CPUs only once at the start

Global Memory

Texture Memory Constant Memory

Shared Memory

Connectivity

Solution

Reduction

Results

Gauss Points 1D

Gauss Points 2D

Edge Coord. Map

Element Coord. Map

Edge−Vertices

Edge−Element Map

Integration Kernel

Figure 7.8 Memory types used for
quadrature on the GPU.

of the solution. Before each invocation of

the kernel, the CPU threads load the cur-

rent solution for the set of zones to be in-

tegrated into global memory. As shown in

Fig. 7.8 both the solution and connectiv-

ity are bound to, and read via, textures so

that the data can be read using the texture

cache. When the kernel executes, the con-

nectivity for a Lagrange element is read

and this information is used to load the

solution at the vertices. The solution is

stored in shared memory (2 reconstruction

elements at a time per block or multiprocessor) for fast access throughout the kernel ex-

ecution. To facilitate the quadrature, several constants are required. These include the

1-D and 2-D Gauss point locations and weights, maps for transforming normalized coor-

dinates of the edges and primary elements into the natural coordinates of the Lagrange

element, tables of vertices belonging to the edges for linear interpolation of the coordi-

nates (used only for sub-parametric Lagrange elements), and a map for summing the

fluctuation integrated along an edge into the total for a primary element (the indices of

the blue edges in Fig. 7.7). Some shared memory is also allocated for reduction opera-

tions (e.g, summation of Gauss points). The computed values of the linearized state and

the fluctuation are then written to global memory.



116 Chapter 7. Heterogeneous Parallelism Using CPUs and GPUs

In order to reduce the complexity of the quadrature algorithm on the GPU, ap-

proximately 33% additional work, versus quadrature on the CPU, is performed during

integration of the fluctuation. On the CPU, the flux on each edge is integrated only

once, a task made simpler because one does not have to worry about parallel execution

or dispersed memory fetches. On the GPU, each edge in a Lagrange element (Fig. 4.3)

is integrated, but the outer edges are commonly shared with another Lagrange element.

Therefore, while the CPU integrates an average of 13.5 edges per Lagrange element, the

GPU integrates all 18 edges per Lagrange element. Perhaps a similar algorithm to that

for the CPU could be developed for the GPU, but it would be even more difficult to

isolate the blocks and maintain data parallelism.

A summary of the overall relationship between the hardware and the implementation

of the algorithm in software is shown in Fig. 7.9. The domain is decomposed into a

Hardware Software

Node

CPU

Processor core

Multiprocessor

Processor

GPU

Group of zones

Distribution of fluct−
uation and evolution

Zone

Quadrature

Two Lagrange

Gauss point
elements

Figure 7.9 Relationship between hard-
ware and software for the heterogeneous ar-
chitecture.

number of zones and the coarsest level

of parallelism is defined by a set of

zones (in our numerical experiments,

all the zones reside on one node). The

second level of parallelism is a split

in the algorithm allowing for concur-

rent processing on the CPU cores and

the GPU. The CPU cores distribute

the fluctuation and evolve the solu-

tion while the GPU concentrates on

integrating the fluctuation and the lin-

earized state. The third level of parallelism defines blocks as two reconstruction elements.

The finest level of parallelism is expressed by threads on the GPU which compute the

contributions from a single Gauss point.
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Figure 7.10 Spatial convergence of error in density for solutions of Ringleb’s flow.
Single-precision results are obtained on co-processing of the GPU and CPU while double-
precision results are obtained on only the CPU.

7.2.3 Floating-Point Precision

Our expectation was that single-precision would be sufficient to solve the Euler equations.

However, the single-precision results for Ringleb’s flow in Fig. 7.10 suggest otherwise.

In single-precision, as the number of grid points increases, the error also increases. The

reason for this behaviour is subtractive cancellation, an error related to the finite precision

of floating point numbers, during computation of the fluctuation. The flux on the edges is

well defined, possibly using all of the available precision. However, summation of the flux

on the three edges will often produce a fluctuation near zero. The fluctuation is known to

frequently approach zero because only in this limit does the N scheme become unbounded.

An example of subtractive cancellation is given below for six digits of floating-point

precision:

1.00002×105

−1.00000×105

2.xxxxx×100
.
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The subtraction here has eliminated 5 digits of precision leaving nothing but round-

off error in the positions marked by ‘x’. A similar effect is corrupting the computed

fluctuation and, unless the entire method can be radically reformulated, the only solution

is to increase the precision. Another problem is simply the lack of sufficient precision

to represent the shape of the solution. If differences in the range of solution values are

six orders of magnitude lower than the average value of the solution, then with only six

digits of precision, the shape will appear flat.

These issues present a dilemma. It is possible to use the double-precision processor

on the GPU and obtain results identical to those that would be obtained by only using

the CPU. However, this leaves most of the arithmetic resources on the GPU idle and

has a large negative impact on the efficiency of the GPU. On the other hand, single-

precision computation, while extremely fast, introduces unacceptable round-off errors.

To find a compromise, several changes have been made. First, the linearized state is

computed entirely in single-precision. This has no effect on the accuracy; it is likely

that even a linear shape function could be used in the primary elements but we have

not investigated this possibility. Second, the interpolation of the solution on the edges is

performed in single-precision, without much loss of accuracy, by first subtracting off the

average solution value in the Lagrange element. This concept is illustrated in Fig. 7.11 for

a one-dimensional Lagrange element. The original solution is given in double-precision,

as represented by approximately 15 base-10 digits at the top of the figure. This is

broken down into a single-precision average value and single-precision shape, each using

approximately 6 base-10 digits. When the average value is subtracted from the Lagrange

polynomial defining the solution, the shape of the solution then varies about an average of

zero. Consequently all six digits can be used to evaluate the shape during interpolation.

In the algorithm, the average solution in a reconstruction element is computed in

double-precision and subtracted from the solution at the vertices. Both the average and

solution at the vertices are stored in 32-bit variables. During evaluation of a Gauss point,
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Figure 7.11 Decomposition of a double-precision solution into a single-precision aver-
age value and a single-precision shape.

the interpolation is performed completely in single-precision. The average solution and

interpolated solution at the Gauss point are converted to double-precision before being

summed as shown at the bottom of Fig. 7.11. The final result achieves a precision near

that of the full double-precision computation.

The above method is appropriate for solution variables. For spatial coordinates, the

same technique is used but, since derivatives of the coordinates are needed, an average

derivative is subtracted instead.

Although introducing a fair amount of extra computation, this technique, which is

referred to as mixed precision in the following sections, allows for all interpolations to

be performed using single-precision. High-order interpolations require a large amount

of arithmetic and by utilizing the full SIMD capability of the GPU, large gains in effi-

ciency can be realized while still retaining an accuracy similar to that of double-precision

computations.
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Table 7.1 Mesh sizes for evaluation of GPU efficiency.

Mesh Number Vertices Primary Elements Reconstruction Elements Partitions

1 3220 6210 690 12

2 13111 25758 2862 12

3 52738 104533 11616 16

7.3 Computational Performance

The computational performance of a single compute node was evaluated with and without

use of the GPU. In all numerical experiments without the use of the GPU, results were

obtained in double-precision. When the GPU kernel was run at double-precision or using

the mixed-precision technique, the code on the CPU also made use of double-precision

arithmetic. When the GPU kernel was executed using single-precision arithmetic, single-

precision values were used for storage by the algorithm executed on the CPU; however, as

specified by the x86 compilers that were used, operations on the CPU were still performed

using the double-precision floating-point unit with intermediate results being stored in

64-bit registers.

Three meshes with the sizes given in Table 7.1 were used to determine the spatial

convergence rates for solutions of Ringleb’s flow. Comparisons of execution time and

synchronization charts were obtained using the intermediate mesh size. All timings are

reported as an average of three runs using a wall-time encapsulating only the solver

portion of the algorithm. The errors in the timings are estimated to be less than 0.5%.

The computational efficiency of the GPU was first tested for an isolated quadrature

of the reconstruction elements using mesh 2 from Table 7.1. Figure 7.12 shows the

speedups obtained by using double-precision, single-precision, and the mixed precision

processing on the GPU versus both 1 core and all 4 cores of the CPU . Computing in

double precision, the GPU offers a speedup of 3.9 times over the 4-core CPU whereas in
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Figure 7.12 Speedup of the quadrature
by the GPU.

Figure 7.13 Speedup of the complete
RD algorithm by concurrently processing
quadratures on the GPU.

single-precision, the speedup is 13.9. With mixed precision, the speedup falls in-between

at 7.3.

The speedups obtained for execution of the complete RD algorithm, again on mesh 2

from Table 7.1, are shown in Fig. 7.13. In this chart, parallel heterogeneous processing

of the GPU and all four cores of the CPU are compared against one core and all four

cores of only the CPU. Parallelization of the (double-precision) integration was predicted

by Amdahl’s law to allow a maximum speedup of 4, versus processing on only four cores

of the CPU. This is shown by the dashed line in Fig. 7.13 and all speedups (versus four

cores of the CPU) are near this maximum value.

The speedups for the complete algorithm are near the maximum because the pro-

cessing performed by the GPU is hidden behind the concurrent processing of the CPUs,

i.e., the second level of parallelism. The synchronization and processor utilization are

illustrated in Figs. 7.14 to 7.16 for a single iteration (derived from an average of 500

iterations) of the algorithm at double precision, single precision, and mixed precision,

respectively. Zones are numbered in these figures as they stream between the proces-
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Figure 7.14 Processor synchronization and usage for one iteration of the fourth-order
RD algorithm at double precision.

Figure 7.15 Processor synchronization and usage for one iteration of the fourth-order
RD algorithm at single precision.

sors. Integration of linearized state and fluctuation is performed for four zones at once

on the GPU (red). The results are transferred (yellow) to the CPU cores so that distri-

bution of the fluctuation can be performed (blue). Upon completion, the CPU sets up

the workspace for the next zone (light blue). This involves tasks such as computing the

linearized variables and constructing weak ghost elements for the application of bound-

ary conditions. The solution for the next set of zones is packaged (magenta) and sent
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Figure 7.16 Processor synchronization and usage for one iteration of the fourth-order
RD algorithm using mixed precision on the GPU.

to the GPU (orange). Thus, the four cores and the GPU process concurrently. Because

global time stepping is used, the solution cannot be evolved until the residual has been

distributed for all zones, and the global time step is known. As soon as the CPU cores

evolve the first set of zones, the GPU is tasked to integrate these zones for the next

iteration while the CPU cores continue to evolve the solution (green) for the remaining

zones in the current iteration. The load balancing of the four CPU cores is not perfectly

even because of extra computations associated with boundary conditions in some zones.

The only change resulting from the precision of the GPU is the amount of time the

GPU takes to perform the integration (as described in Fig. 7.12). However, note that

CPU remains idle after evolving the solution in Fig. 7.14 while it waits for data from

the GPU. In Figs. 7.15 and 7.16, the CPU does not have to wait. This accounts for the

different speedups seen in Fig. 7.13.

The GPU is more than 50 % idle in Fig. 7.16. There are two approaches towards

achieving better utilization of the GPU. The first is to give it more work, although

remaining parts of the algorithm do not adapt as well as the quadrature to the GPU

architecture. The second is to simply add more CPU cores; the GPU can easily co-
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process with 8 CPU cores. This would have the effect of idling the CPU after evolution

of the solution, as was seen in Fig. 7.14, and reducing the speedup (over the 8 CPU cores

alone) to approximately three.

It is interesting to consider the capital costs of the hardware. We assume an ideal

configuration with 2 quad-core CPUs, 1 GPU, and an overall speedup of 3. The GPU

costs about the same as a quad-core CPU (the quad-core CPU is defined as having a unit

cost). In an ideal configuration, the GPU would co-process with 8 cores (total of 3 units

cost), providing a 6 times speedup over processing with only one quad-core CPU. To

match the co-processing power with only CPUs requires 6 CPUs (total of 6 units cost).

Therefore, equivalent computing on only CPUs would cost twice as much. Similar savings

could be expected for operational (electricity) costs. These cost estimates are subject to

some considerations. First, although, programmed thoughtfully, the GPU code has not

been profiled or optimized based on such information. More detailed optimizations could

have a large effect. Secondly, the vector capabilities of the the arithmetic units on the

CPU (SSE registers) were unused in this study. With a width of 128 bits, usage of the

SSE registers is probably only worthwhile for single-precision operations. Nevertheless,

the same techniques for enabling single-precision computation on the GPU could also

be used on the CPU. With consideration of extra data packaging efforts, we roughly

estimate that use of the SSE registers could reduce the speedups in Fig. 7.12 by a factor

of two.

7.3.1 Accuracy

Regarding spatial accuracy, the results from using either double-precision or mixed-

precision on a GPU overlap the double-precision CPU results shown in Fig. 7.10. How-

ever, because an explicit-Euler time-marching algorithm is used with a global time-step,

a relation can be made between the mesh-spacing and computation time using the CFL

condition (4.1). This allows us to graph error versus computation time for the various
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methods. The total time, T , for a simulation can be estimated by

T = 2 ∗ L

∆x

L

∆x︸ ︷︷ ︸
No. cell

H

h︸ ︷︷ ︸
No. time step

, (7.2)

where L is the length of the domain, H is the desired solution time (which prescribes

the number of iterations required to converge this steady-state simulation), and h is the

time step. Substituting in the CFL condition, h = ∆x2/(6 ∗ kmax) results in

∆x =

(
12L2Hkmax

T

) 1
4

(7.3)

which, when placed in the spatial error relation (1.3), becomes2

Lp-error = αT−
β
4 . (7.4)

Therefore, a scheme with fourth-order spatial accuracy should have a slope of −1 if the

error is plotted versus time on a log-log scale graph. Such a graph is given in Fig. 7.17

for various architectures and floating-point precisions. With some extrapolation, it is

evident from this figure that, for a given level of solution error, the fourth-order scheme

is several orders of magnitude faster than the second-order scheme. The difference in

computational time increases dramatically for lower levels of solution error. Usage of the

GPU, on the other hand, provides a constant speedup to the fourth-order scheme for

any level of solution error. More sophisticated algorithms for converging a steady state

problem should also realize this constant speedup while improving upon the slope of

the curve. Although seemingly of similar performance to double-precision heterogeneous

computation in Fig. 7.17, remember that the GPU is underutilized in mixed-precision

and could theoretically process with more CPU cores.

2This relationship is more applicable to unsteady problems but is used here to help quantify the
performance of the high-order algorithm and the GPU.
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Figure 7.17 Accuracy of a scheme versus total runtime. Each solution is converged to
the same solution time and data points represent different mesh sizes.



Chapter 8

Results

The set of problems examined for the comparison betweenRD and FV are revisited using

the map C scheme at both second and fourth-order accuracy. At fourth-order accuracy,

the results are obtained on the heterogeneous architecture described in chapter 7. Where

accuracy is of concern, the results are compared to an LDA scheme using full double-

precision on the GPU. Where monotonicity is more important, a matrix blended scheme

or decomposed map A-LW (equivalent to PSI-LW) is used as a basis for comparison, again

computed using full double-precision on the GPU for fourth-order results. Only accuracy

is reported in this chapter; speedups do not differ significantly from that reported in

chapter 7. All results are computed on unstructured grids as described in section 4.5.1.

The grids are manually refined around known flow structures and are scaled by adjusting

the characteristic length of an element.

8.1 Scalar Equations

The scalar problems of circular advection and Burgers equations were solved at both

second and fourth-order accuracy. Although solutions of scalar equations on the het-

erogeneous architecture have not been thoroughly discussed, a double-precision kernel

has been written and the fourth-order results shown here were obtained with assistance

127
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Figure 8.1 L1-error of the map C scheme as a function of mesh density for circular
advection.

from the GPU. However, a mixed precision kernel was not developed for scalar advection,

hence the results presented here are equivalent to what would be obtained by using only

a CPU.

Circular Advection

Second and fourth-order spatial convergence are shown for circular advection in Fig. 8.1.

The map C scheme is showing the desired order of accuracy and almost exactly overlaps

the LDA scheme at fourth-order accuracy.

Non-Linear Burgers Equation

The steady shock-wave problem for Burgers equation has already been used in Chapter 6

to explore the monotonicity of solutions computed with the map C scheme at second-

order accuracy. Those results are supplemented here by plots of spatial convergence

and results obtained at fourth-order accuracy. As a reference, solutions have also been

obtained with the scalar map A scheme (equivalent to a PSI scheme or N scheme limited
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Figure 8.2 L1-error of the map C scheme as a function of mesh density for Burgers
equation.

with a minmod limiter). The spatial convergence is illustrated in Fig. 8.2 and shows all

schemes achieve essentially first-order accuracy. As the mesh is refined, the fourth-order

results exhibit slightly less accuracy than the second-order results. This is likely a result

of oscillations being introduced by the reconstruction itself; at fourth-order, there are

no restrictions on the shape of the cubic polynomials in the vicinity of discontinuities.

Ultimately, it is probably necessary to enforce monotonicity over the entire reconstruction

element. An approach that reduces the reconstruction to linear in the primary elements

when discontinuities are detected is discussed by Guzik and Groth [29], albeit with a

cumbersome approach for explicitly detecting discontinuities.

Distributions of the solution are shown in Fig. 8.3 for a section of the shock wave.

At second order, both the map A and map C schemes seem to produce the same result

(a clearer picture of the monotonicity, which is not the same, is given in chapter 6). At

fourth-order accuracy, both schemes introduce some oscillations with the map C scheme

being noticeably worse.
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b) Exact solution
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e) 4th order map A f) 4th order map C

0.7 0.8 0.9 1
0.7

0.8

0.9

1

a) Grid

Figure 8.3 Solutions of Burgers equation obtained using the map C scheme.

8.2 Euler Equations

The canonical flow problems for the Euler equations are re-visited next. All fourth-order

map C results are obtained on the heterogeneous architecture using mixed-precision com-

putation on the GPU. Unless otherwise noted, these results are almost indistinguishable

from using full double-precision on the GPU.
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Figure 8.4 L1-error of the map C scheme as a function of mesh density for supersonic
flow past a diamond aerofoil.

Supersonic Flow Past a Diamond-Shaped Aerofoil

The spatial accuracy of the map C scheme for supersonic flow past a diamond-shaped

aerofoil is presented in Fig. 8.4. A notable characteristic of this graph is the similarity

between the matrix and hyperbolic/elliptic splitting techniques, for a given distribution

scheme. Interestingly, on the finest mesh, the map C scheme is more accurate than the

blended or map A scheme at second order, and less accurate at fourth-order. The order

of convergence for the fourth-order schemes is less than that observed at second order,

presumably for the same reasons discussed for Burgers equation: oscillations introduced

by the cubic reconstruction polynomials. The contours of density shown in Fig. 8.5

indicate oscillations around the shocks at fourth-order accuracy, with the map C scheme

being noticeably worse than the map A scheme.
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b) Exact solution

d) 2nd order matrix map C
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Figure 8.5 Density contours of supersonic flow past a diamond aerofoil using the map
C scheme.
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Figure 8.6 L1-error of the map C scheme as a function of mesh density for subsonic
flow past a smooth bump.

Subsonic Flow Past a Smooth Bump

Surprisingly, the relatively benign flow of a subsonic gas over a smooth bump presented

some unexpected results. As shown in Fig. 8.6 convergence of the second-order map C

schemes are, for the most part, on par with those of the LDA schemes. However, fourth-

order spatial convergence is not apparent for the higher-order interpolations. Instead

all curves seem to reach a threshold at 3.5×10−8 J/(kg · K). The notable exception is

the fourth-order, double-precision, matrix map C scheme but for it, the threshold simply

appears a bit lower. We have no conclusive explanation, but believe this behaviour to be

a limit of the floating-point precision. Unlike every other problem, results obtained using

mixed-precision on the GPU are significantly worse than those obtained using double-

precision on the GPU. The small difference in precision, estimated at 3 base-10 digits,

is having a large effect on the accuracy. Even the second-order decomposed map C-LW

scheme, the only second-order scheme to reach the threshold, is unable to penetrate it.

Before reaching the threshold, this scheme performs as expected reaching the appropriate
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order of convergence. Additionally, full convergence of the residuals could be achieved for

all the considered distribution schemes. We do not believe these results to be indicative

of a flaw in the scheme, only that some inherent limitation of the hardware with respect

to floating-point accuracy has been reached when evaluating the solution error. In any

case, results of the map C scheme, at least at full double-precision, are no worse than

those of the LDA scheme.

The final peculiarity is a large error in the solution of the fourth-order matrix LDA

scheme on the finest mesh. The error is obvious in the solution and appears as pertur-

bations away from the bump near the downstream farfield boundary. For the moment,

this error is not understood but may be related to the boundary implementation. Note

that the map C scheme seems to overcome this instability, demonstrating enhanced ro-

bustness.

Subsonic Flow Past a Circular Cylinder

Subsonic flow past a circular cylinder also presented some challenges for the high-order

schemes. Because of instabilities near the stagnation limit, hyperbolic/elliptic split-

ting is not used and all results are by matrix distribution techniques. In Fig. 8.7, the

second-order map C scheme closely follows the second-order LDA scheme and the order

of accuracy is near the expected value. At fourth-order, however, the spatial accuracy

diverges for the LDA scheme. The reason for this is the development of unstable recircu-

lation regions near the stagnation points on the circular cylinder. Contours of pressure

and streamlines are shown near the aft stagnation point in Fig. 8.8. It seems that the

recirculation patterns develop when there is insufficient dissipation near the stagnation

point. Both the second-order LDA scheme and the fourth-order map C scheme are able

to suppress these patterns. We would have expected the fourth-order map C scheme

to resume at least first-order spatial convergence but the convergence seems stalled in

Fig. 8.7. This is unlikely to be related to a similar spatial-convergence stall observed
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Figure 8.8 Regions of recirculation produced by high-order solutions of subsonic flow
past a circular cylinder.

for subsonic flow past a bump. For the cylinder, results from using mixed precision and

double-precision on the GPU are nearly identical. Also for this case, convergence of the

residuals stalled for all fourth-order schemes. The residual convergence stalls very quickly
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Figure 8.9 L1-error of the map C scheme as a function of mesh density for Ringleb’s
flow.

for the LDA scheme and is clearly related to the recirculation zones. The residuals for

the fourth-order map C scheme stall after converging about five orders of magnitude for

no obvious reason. Full convergence could be achieved at second order accuracy. The

exact reason for the poor spatial convergence of the fourth-order map C scheme is not

understood. However, as for the bump flow, results obtained with the map C scheme are

similar to, or even improve upon, results obtained with an LDA scheme.

Ringleb’s Flow

Ringleb’s flow (Fig. 1.4e), having an exact analytical solution, allows for direct measure-

ment of the solution error. The map C and LDA schemes produce nearly identical results

indicating that map C scheme admits the same entropy violations. We assume that the

solutions for Ringleb’s flow are still less accurate than what could be achieved using a

FV scheme, but otherwise, the results are exactly as intended. As shown in Fig. 8.9 both

second and fourth-order accuracy are obtained as expected for all distribution schemes.
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Conclusion

The RD method has revealed itself as a candidate for overcoming well-known deficiencies

in the FV method, while maximizing accuracy per unit computational cost. The excellent

capability of the RD method at capturing discontinuities is well demonstrated in the

literature and has strong mathematical foundations. Herein, it was shown that the RD

method can also surpass the accuracy of the FV method in smooth regions, especially

when combined with techniques such as solution-dependent tessellation of the domain. At

second-order, this should translate into better accuracy per computational cost since both

second-order methods have similar runtimes. Unfortunately, a quantitative comparison

of the RD method with the FV method indicates a number of deficiencies relating to

both accuracy and computational robustness. The deficiencies are thought to result from

the relative immaturity of the method and it is very likely that all may eventually be

overcome.

The most significant deficiency is an observed degradation in the order of convergence

of the spatial accuracy for nonlinear RD schemes. These schemes retain the linearity

preservation and positivity properties enabling solutions that are accurate in smooth re-

gions and monotone around discontinuities. While excelling at the latter, the degradation

of accuracy in smooth regions makes the uncorrected RD method less viable than the

FV method. Analysis of the problem revealed the limiting technique as the culprit and a

137
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new nonlinear mapped scheme, labelled map C, was proposed and shown to correct the

deficiency. Although the map C scheme either closely reproduces or surpasses the accu-

racy of the best linear RD schemes, too much is sacrificed in terms of monotonicity near

discontinuities. An interesting situation now exists with two nonlinear schemes at oppo-

site extents of a compromise between accuracy and monotonicity. The map A scheme,

already well known for some time, produces solutions with excellent monotonicity but

degrades the accuracy in smooth regions. The new map C scheme achieves excellent

accuracy, but permits too much (in our opinion) oscillation around discontinuities. Per-

haps a nonlinear RD scheme can be found that excels at both or perhaps more involved

techniques such as explicit discontinuity detection are required to bridge this divide.

Extension of the RD method to higher orders of accuracy improves the accuracy per

computational cost and also allows for effective usage of highly parallel graphics proces-

sors which have recently been marketed as devices for general-purpose computing. The

monetary costs for GPUs are subsidized by the graphics visualization market and there-

fore, they have a strong potential for increasing the cost effectiveness of computational

fluid dynamics. Because an inherent compact reconstruction stencil increases the data

parallelism and evaluation of the high-order interpolations increases the arithmetic inten-

sity, parts of theRD algorithm are well suited to computation on a GPU. An architecture

was proposed featuring four levels of parallelism including heterogeneous processing on

both GPUs and CPUs. It was shown that significant speedups could be achieved by

porting only simple, yet expensive, portions of the RD algorithm to the GPU. This has

a major impact on the ease at which a GPU can be utilized. Using a single node of

the proposed architecture, experiments on the efficiency of solving the Euler equations

indicated that adding a GPU could improve performance by a factor between two and

four over using only CPUs.

In the final results, the parallel architecture was used to obtain solutions with the

new map C scheme for a set of canonical problems. Although the results are still not
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perfect, large steps have been made at both improving the accuracy, and computational

efficiency at which solutions can be realized using the residual distribution method.

9.1 Original Contributions

A number of original contributions form an integral part of this thesis. Some of the more

notable contributions are as follows:

1. On regular structured meshes, a linear scheme was proposed that uses error cancel-

lation between elements to achieve third-order accuracy from a linear interpolation.

Although other well-known schemes perform similarly, the proposed LDC scheme

is the only one that features the upwind property. The development of the scheme

also highlights why an LDA scheme may exhibit super-convergent properties.

2. Although probably unworkable at higher dimensions (due to exponentially increas-

ing logistical complexities), a method was introduced for solving a decomposed sys-

tem of equations on a quadrilateral mesh by optimally tessellating a quadrilateral

element for each of the decomposed scalar equations according to its characteristic

velocity.

3. A qualitative comparison of the RD and FV methods was performed for several

canonical problems. The comparison has highlighted and documented several de-

ficiencies in the RD method. The most significant, the degraded accuracy of the

nonlinear schemes was seemingly unnoticed in the literature.

4. A new mapped scheme, labelled map C, was developed to correct the degraded ac-

curacy observed in nonlinear schemes. Although the monotonicity of solutions gen-

erated by this scheme are not entirely satisfactory, it is the only nonlinear mapped

scheme known by the author to obtain similar or better accuracy than the LDA

scheme for all problems considered.
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5. The methodologies outlined herein for adapting a CFD algorithm to a heteroge-

neous architecture consisting of a GPU and CPU are quite novel. This includes

finding techniques that compromise between the efficiency of single-precision arith-

metic and the accuracy of double-precision arithmetic.

6. The fourth-order results presented in this thesis are thought to be some of the first

obtained for the Euler system of equations with a nonlinear distribution scheme

using P 3 elements as proposed by Abgrall and Roe [9].

7. A technique was outlined for using a set of interfaces, POSIX threads, and RMA op-

erations defined by MPI to enable communication both within the shared memory

of a node and between the distributed memory of a cluster of nodes. The technique

is logistically simple, allows for overlap of communication and computation, and

somewhat distributes the communication messages throughout an iteration instead

of sending them all at once.

9.2 Future Research

We still feel that the residual method is somewhat immature but this leaves much oppor-

tunity for future research. Having two nonlinear schemes, one which excels at achieving

monotone solutions and one which excels at reducing error in smooth regions, the most

obvious avenue for future work is to find a nonlinear scheme that excels at both. As

mentioned earlier, this may require more involved, if less elegant, approaches such as

explicit discontinuity detection. It would also be desirable to have a limiter that does

not adversely affect convergence of the residuals and is not dependent upon freezing

techniques.

Some robustness issues have also been identified, both at second and fourth-order

accuracy, which require further research. Unless solutions are obtained by minimization,

hyperbolic/elliptic splitting suffers from instability near stagnation regions. Additionally,
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it was shown that RD schemes can have higher solution error than FV schemes in flows

where entropy violations may develop. However, the errors are not excessive and it is

perhaps incorrect to believe that RD should be better than FV in all cases. Several

robustness issues were also observed for the problem of subsonic flow past a circular

cylinder. These include minor perturbations at second-order and recirculation patterns

and stalling of the residual convergence at fourth-order. Problems related to the circular

cylinder may be resolved by a more mature nonlinear scheme as described in the previous

paragraph.

The method for imposing boundary conditions has proven effective for the problems

considered herein. However, it can be problematic in other flows, such as strong expansion

near a wall, and a more rigorous study on methods for applying boundary conditions is

certainly required. At interior boundaries, the simplicity of the interface should allow for

an efficient parallel implementation of solution-adaptive mesh refinement.

Finally, practical CFD withRD will not be realized until steady and unsteady viscous

solutions are possible in three spatial dimensions. Many components, such as unsteady

and viscous flows have already been examined in two-spatial dimensions. Unsteady ap-

proaches ensure consistent mass matrices [45] or construct either simplex [18] or pris-

matic [48] elements in space-time. For viscous flows, uniform accuracy of the advective

and diffusive components can be achieved by casting the problem as a first-order sys-

tem [39] or following a Petrov-Galerkin analogy [21]. While the hyperbolic/elliptic split-

ting approach still requires more research for extension to three-dimension, there are no

such limitations for matrix schemes. As such, the road to practical CFD may not involve

much more than the assembly of the constituent parts. An extensive discussion of the

future research requirements for RD in general is given by Deconinck and Ricchiuto [21].
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Appendix A

Truncation Error of the LN Scheme

The Taylor series expansion of the LN scheme is performed on the three triangles shown

in Fig. 2.8. The fluctuation is defined by (2.24) with the same inflow parameters. All

nodal values are expressed relative to ui using the Taylor series defined by (2.25) but only

to O(∆h3). By switching to a streamline coordinate system and assuming derivatives in

the streamline direction are zero, the expansions become

uj = ui +
1

|λ|

[
b∆x

∂u

∂η
+
b2∆x2

2|λ|
∂2u

∂η2

]
+O(∆h3)

uk = ui +
1

|λ|

[
(b∆x− a∆y)

∂u

∂η
+

(b∆x− a∆y)2

2|λ|
∂2u

∂η2

]
+O(∆h3)

ul = ui +
1

|λ|

[
−a∆y∂u

∂η
+
a2∆y2

2|λ|
∂2u

∂η2

]
+O(∆h3)

um = ui +
1

|λ|

[
−b∆x∂u

∂η
+
b2∆x2

2|λ|
∂2u

∂η2

]
+O(∆h3) .

(A.1)

For element E1, the fluctuation sent to vertices i and j by the N scheme are φN
i =

ka(ui − uk) and φN
j = kb(uj − uk), respectively. Substituting into the limiting formula

defined by (2.48), φLN
i = φN

i + Ψ1(r1)φ
N
j with r1 = −φN

i /φ
N
j , results in

φLN,E1

i =
a∆y(b∆x− a∆y)

2|λ|

[
−∂u
∂η
− b∆x− a∆y

2|λ|
∂2u

∂η2

+Ψ1(r1)

(
∂u

∂η
+

2b∆x− a∆y

2|λ|
∂2u

∂η2

)]
+O(∆h4) . (A.2)
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From element E2, the entire fluctuation, φE2 = −kcui − kauk − kbul, is sent by the LN

scheme to vertex i,

φLN,E2

i = −ab
2∆x2∆y

4|λ|2
∂2u

∂η2
+O(∆h4) . (A.3)

For element E3, the fluctuation sent to vertices i and m by the N scheme are φN
i =

kb(ui − ul) and φN
m = ka(um − ul), respectively. Substituting into the limiting formula

defined by (2.48), φLN
i = φN

i −Ψ3(r3)φ
N
i with r3 = −φN

m/φ
N
i , results in

φLN,E3

i =
a∆y

2|λ|
[1−Ψ3(r3)] (b∆x− a∆y)

(
∂u

∂η
− a∆y

2|λ|
∂2u

∂η2

)
+O(∆h4) . (A.4)

With the substitution ∆y = s∆x, the total fluctuation sent to vertex i from all upwind

elements is

φLN
i =

as(as− b)∆x2

2|λ|

{
[Ψ3(r3)−Ψ1(r1)]

∂u

∂η
+

∆x

2|λ|
[2b+ Ψ1(r1) (as− 2b)

−Ψ3(r3)as]
∂2u

∂η2

}
+O(∆h4) . (A.5)

For element 1, the input to the limiter is given by

r1 =

−∂u
∂η

+
(as− b)∆x

2|λ|
∂2u

∂η2

−∂u
∂η

+
(as− 2b)∆x

2|λ|
∂2u

∂η2

. (A.6)

For element 3, the input to the limiter is given by

r3 =

∂u

∂η
− (as+ b)

∂2u

∂η2

∂u

∂η
− as

∂2u

∂η2

. (A.7)

Assuming a smooth solution such that r ≈ 1, the accuracy of using a MUSCL limiter,

(6.1), can be determined by substituting Ψ1(r1) = (r1 + 1)/2 and Ψ3(r3) = (r3 + 1)/2

into (A.5). The result, φLN
i = O(∆h4), indicates a second-order scheme.

In the region r ≈ 1, the minmod limiter returns the minimum of r and 1. If either

r1 ≤ 1 and r3 ≤ 1, or r1 ≥ 1 and r3 ≥ 1, then the LN scheme is also second-order accurate.
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However, if r1 < 1 and r3 > 1, then Ψ1(r1) = r1 and Ψ3(r3) = 1 are substituted into (A.5)

yielding

φLN
i =

sab(as− b)∆x3

4|λ|2
∂2u

∂η2
+O(∆h4) ,

a result that retains first-order terms. Similarly, if r1 > 1 and r3 < 1, then Ψ1(r1) = 1

and Ψ3(r3) = r3 such that

φLN
i =

sab(b− as)∆x3

4|λ|2
∂2u

∂η2
+O(∆h4) .

Therefore, the LN scheme with a minmod limiter can, in certain cases, introduce first-

order terms into the truncation error.
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