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Residual-distribution methods offer several potential benefits over classical methods, such
as a means of applying upwinding in a multi-dimensional manner and a multi-dimensional
positivity property. While it is apparent that residual-distribution methods also offer
higher accuracy than finite-volume methods on similar meshes, few studies have directly
compared the performance of the two approaches in a systematic and quantitative man-
ner. In this study, comparisons between residual distribution and finite volume are made
for steady-state smooth and discontinuous flows of gas dynamics, governed by hyperbolic
conservation laws, to illustrate the strengths and deficiencies of the residual-distribution
method. Deficiencies which reduce the accuracy are analyzed and a new nonlinear scheme
is proposed that closely reproduces or surpasses the accuracy of the best linear residual-
distribution scheme. The accuracy is further improved by extending the scheme to fourth
order using established finite-element techniques. Finally, the compact stencil, arithmetic
workload, and data parallelism of the fourth-order residual-distribution scheme are ex-
ploited to accelerate parallel computations on an architecture consisting of both CPU
cores and a graphics processing unit. Numerical experiments are used to assess the
gains to efficiency and possible monetary savings that may be provided by accelerated

architectures.
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Chapter 1

Introduction

Computational methods for solving hyperbolic partial differential equations are well es-
tablished and computational fluid dynamics (CFD) has gained widespread acceptance as
a powerful tool for engineering design. While classical methods, such as finite-difference
and finite-volume (FV), have found considerable success, research towards improving the
core algorithms is still very active. New classes of methods such as residual distribution
(RD), also known as fluctuation splitting, are specifically designed to address known
shortcomings of the classical methods and may offer several additional improvements as

well.

The first objective of this thesis is to systematically quantify the performance of the
RD method relative to the Godunov-type FV method. The latter method is chosen
as a reference because the F) method is mature and has demonstrated an exceptional
capability for computing solutions to discontinuous flows both robustly and accurately.
Despite these characteristics, there is some dissatisfaction with current finite volume
(FV) methods. While elegant and physical in one dimension, FV methods do not ex-
tend readily to multiple dimensions because the Riemann problem itself does not extend
readily to multiple dimensions. The usual workaround is to apply the one dimensional
scheme in multiple directions, a process in which the splitting of the flux becomes biased

in directions normal to the faces of the computational cells. Consequently, the schemes
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are no longer quite as physical and this causes a corresponding decrease in the accu-
racy via excess numerical dissipation. As shown by Roe and Sidilkover [51], dimensional
splitting is about the worst thing one can do for first-order solutions. Residual distribu-
tion methods attempt to correct this deficiency by explicitly modelling the underlying

multidimensional physics.

The most significant advantages of the RD method are regularly advertised in the
literature and generally illustrate their excellent shock-capturing capabilities. The com-
parison considered herein between RD and FV serves additional purposes. It provides
insight into the practicality of RD as a mainstream solution method by identifying any
disadvantages with respect to both the accuracy in smooth regions and in terms of ro-
bustness. It is our opinion that the notable disadvantages in the RD method are a result
of its relative immaturity and that most can be overcome. Indeed, much of the current
literature simply focuses on addressing problematic issues [3, 6, 53] rather than apply-
ing or extending the RD method. The second objective of this thesis to address these

deficiencies, by highlighting them and proposing solutions.

Residual distribution methods have a number of ancillary advantageous character-
istics, many of which are borrowed from finite-element methods and make it easier to
extend the method to orders of accuracy greater than two. These high-order schemes
are explored herein as candidates for processing on parallel heterogeneous architectures.
The final objective of this thesis is to explore methods for adapting an RD scheme to
new “accelerators” such a graphics processing units (GPU). Specifically, hybrid parallel
methods (those consisting of several levels of parallelism) are considered for heterogeneous

architectures featuring concurrent execution on both central processing units (CPU) and

GPUs.

The three main objectives of the thesis are thus a quantitative comparison with
FV, identification and correction of deficiencies, and a high-order extension on parallel

accelerated architectures. In the next sections, an introduction to the RD method and
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GPU acceleration are provided along with the governing equations and several canonical

test problems used to evaluate the computational performance of the method.

1.1 Residual Distribution

Residual distribution already has a long history; in 1981, a Lax-Wendroff RD scheme
was proposed by Ni [37] and, by 1986, the multidimensional framework for RD had been
developed by Roe [50]. Discussion of the early history is available in [4, 22] and in many
early theses, most notably [43, 57]. Techniques for RD were formalized in the early 1990s
through a collaborative effort between Roe and co-workers at the University of Michigan
and Deconinck and co-workers at the Von Karmén Institute for Fluid Dynamics, resulting
in the publication of three notable theses [35, 43, 57]. Significant contributions were also
due to efforts by Sidilkover [51, 54].

Around the turn of the century, efforts at the University of Michigan concentrated
on achieving solutions of the Euler equations via hyperbolic/elliptic splitting. Following
research by Mesaros [35] and Nishikawa [38], the thesis by Rad [46] is perhaps illustrative
of an “ultimate” Euler solver where hyperbolic parts of the system are treated by wave-
based multidimensional upwind methods and elliptic portions are solved by least-squares
minimization. Constraints on the minimization force the solver to preserve potential flow
and result in a scheme that can effectively handle flow regimes ranging from incompress-
ible to supersonic, all while retaining the excellent shock-capturing properties of RD.
This approach highlights the physics of the governing PDEs and yields very accurate
results. Drawbacks of Rad’s RD scheme include fine tailoring to the Euler equations and
the lack of a straightforward extension to three dimensional flows.

Efforts at the Von Karman Institute have instead generally focused on matrix dis-
tribution techniques [58, 59] for solution of the Euler system of equations. The waves

crossing a face of an element are described in matrix form, rather than by first perform-
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ing a characteristic decomposition, and matrix-vector analogues of scalar techniques are
used to determine the solution. In this approach, the physics of the governing PDEs are
“hidden” in the matrices such that one cannot tune the solution procedure as explicitly
as with hyperbolic/elliptic splitting. Nevertheless, the results are still quite accurate and
more importantly, the technique is easily extended to any number of dimensions or to
systems of equations.

Since the year 2000, notable advancements include relaxation of the requirement for
a conservative linearization [19] and the discovery of mapped distribution schemes which
are essentially a generalization of limiters to multiple space dimensions [2, 4, 9]. There has
also been a significant amount of work on systems other than the Euler equations [41, 44]
and the solution of unsteady flows [2, 18, 48]. A wide variety of techniques have been
proposed for extending the RD method to orders of accuracy greater than two [13,
16, 32]; the most promising simply follows techniques established for the finite-element
method [9].

The mathematical foundations of RD have been primarily driven by a large number
of publications by Abgrall and co-workers. These efforts generally involve proofs of the
stability of the schemes [5, 8], however, study of the more intricate mathematics has also
shed light on some accuracy and convergence issues [3, 6]. The thesis by Ricchiuto [47]
and related works [21, 48] provide a very complete description of the fundamental math-
ematics behind RD.

The rationale behind the development of RD methods is to find a technique that is
superior in terms of accuracy per unit computational cost over existing methods. There

are several advantages to the RD method which help achieve this goal [22]:

e The first order scheme features much less cross-diffusion than a dimensionally split
FV scheme [51]. This is a consequence of the narrow stencil used by the first-order
RD scheme for updating the unknowns. Since its inception, this feature has been

well documented. The first-order scheme is not examined herein in much detail
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Figure 1.1 Dissipation of first-order ) and RD schemes on aligned and Carte-
sian meshes for circular advection of a “top-hat” profile.

as we will concentrate the high-order behaviour of the method. Nevertheless, the
first-order scheme is very important because it serves as a basis for the construction
of many RD schemes. A visual summary of the dissipative characteristics of the
first-order RD scheme compared to a first-order FV scheme is provided in Fig. 1.1.
For circular advection of a “top-hat” profile, both schemes closely reproduce the
exact solution if the mesh is aligned with the advection vector (Fig. 1.1a). However,
when the flow becomes multidimensional within the elements, as on a Cartesian
mesh, significant dissipation is observed. The better accuracy of the RD scheme is

illustrated in Fig. 1.1d after advecting the profile 360 ° on a Cartesian mesh.

e Residual distribution schemes have an inherent multidimensional positivity prop-

erty allowing for strict nonlinear stabilization. While nonlinear stabilization can be
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proven in one dimension for classical methods such as finite-difference and finite-
volume, the extension to multiple dimensions is less rigorous even though applica-
tion to multiple dimensions has been shown to work quite well for most practical
CFD applications. Finite-element methods, while allowing for proven multidimen-
sional stability properties, can suffer from a lack of accuracy or require problem-
dependent tunable constants [22, 47]. For application of the RD method to scalar
equations, positivity of the monotone and linear N scheme is shown herein. The en-
ergy stability of the first-order RD scheme (N scheme) applied to linear equations,
both scalar and systems, is proven by Abgrall and Barth [5], Abgrall and Mezine
8], and Ricchiuto [47]. The results extend to any symmetrizable system. While
entropy stability can be shown for nonlinear scalar equations [47], the results for
nonlinear systems are less comprehensive and only indicate that an entropy con-
dition is satisfied for certain quadratures and in the limit of mesh-refinement [5].
Numerical results, however, invariably demonstrate the non-oscillatory behaviour

of the N scheme [2, 3, 21, 22].

e A compact reconstruction stencil (different from the update stencil), allows for
second-order accuracy on a stencil of only one element. The compact reconstruction
stencil simplifies application of boundary conditions, eases parallelization of the
algorithm, and increases the efficiency of the algorithm, especially for higher orders

of accuracy.

Within the literature, most of the results emphasize the accurate shock-capturing
properties of the RD schemes. This is indeed one of the most advantageous characteristics
but accuracy in smooth regions is also a requirement for practical computation, especially
when constrained by limited computational resources (and hence mesh size). While the
literature has shown that RD methods are more accurate than 7V methods when applied
to the solution of problems on the same size mesh [43, 46, 63, 64, 65|, most of these

previous studies were more qualitative in nature, usually providing a visual comparison
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Figure 1.2 The GPU devotes more transistors to data processing than the CPU [42].

of a given flow feature. There is little to be found on the quantitative comparative
accuracy of RD and FV methods, especially with respect to the more practical nonlinear
distribution methods which are both second-order and monotone. The results obtained
by Abgrall [1] provide some insight, but the quantitative comparisons made therein only
describe solution minimums and maximums. With respect to the advancement of residual
distribution methods, this thesis focuses on accuracy in smooth flows. Of course, in
achieving maximum accuracy, it is desired to not compromise the advantages stated
above, most notably the nonlinear stability characteristics. This is a challenging task
since the accuracy of a method always seems to be inversely proportional to the nonlinear

stability of the method.

1.2 Parallel Accelerated Architectures

The potential for using graphics processing units (GPU) to assist with CFD has recently
generated considerable interest [12, 17, 55]. As shown in Fig. 1.2, the GPU devotes
more transistors to data processing than the CPU, which diverts significant resources to
data caching and flow control [42]. While the CPU can efficiently process conditional
instructions (branching) and dispersed data, the GPU is specialized for computation of
highly parallel data using instructions with a high arithmetic intensity. Programs that

exhibit these characteristics can benefit from the massive computational power of the
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GPU over the CPU. Perhaps most importantly, the GPU is a very cost-effective parallel
processor since research and development are supported by the graphics visualization

market.

Previously, using the GPU for computation has been difficult because code for the
GPU could only be expressed using application programming interfaces (API) designed
for graphics. NVIDIA has recently provided the Compute Unified Device Architecture
(CUDA), essentially a programming model, for “issuing and managing computations on
the GPU as a data-parallel computing device without the need of mapping them to a
graphics API [42].” With CUDA, the GPU can be programmed using the C programming
language and a library is provided for managing the GPU from code running on the
CPU. The introduction of CUDA also included changes to the hardware that facilitate
general-purpose computing. In particular, general scatter and gather operations to global
memory (RAM) are now permitted and a parallel data cache consisting of on-chip shared
memory increases the flexibility in which an algorithm can be designed [42]. Alternative
programming standards such as OpenCL [36] are emerging and may resolve many of the

concerns related to portability that arise from using a vendor-specific API.

In this work, the potential of using GPUs to assist with the computation of discrete
solutions to systems of partial differential equations using high-order residual-distribution
(RD) techniques is explored. The RD method is an attractive candidate for GPU com-
puting because it provides a compact reconstruction stencil (lowering memory operations)
and the high-order extension increases the arithmetic intensity. We take the perspective
that the different parts of the algorithm, depending on their characteristics, are better
suited to either the GPU or CPU. Suitability is determined both by the computational
efficiency that can be achieved on a processor and by the complexity of writing and
maintaining a particular section on a processor. Consequently, the resulting algorithm
illustrates the use of several levels of parallelism including a heterogeneous level featuring

simultaneous processing by the CPU and GPU; at this level, the algorithm is split be-
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tween the two processors depending on the aforementioned suitability. A similar attempt
at concurrent processing is described by Stock and Gharakhani [56] for a vortex-particle

method using an N-body approach.

1.3 Governing Equations and Canonical Problems

To study RD, we apply the method to hyperbolic systems of conservation laws having
the general form

U . -
S TV F=0, (1.1)

where U is the solution vector and F is the flux dyad. The scalar advection equation,
nonlinear Burgers equation, and Euler equations of inviscid compressible gas dynamics
are all of this form and will be considered here. The latter are especially interesting,
not only because of the relevance to practical work, but because it is in the solution of
systems that RD methods can become more complex and face greater challenges. Only
steady solutions in two dimensions are considered as part of this research.

Several canonical problems are repeatedly used to evaluate the methods and are
introduced below. Each has an exact analytical solution allowing for the error to be

described by a particular norm given by

— Uexac de %
L;»-errorz(ﬂu UQ d ) ;

where df) is the area associated with a discrete error measure. The integration is per-

(1.2)

formed numerically using a rectangle rule around each vertex (the location of the discrete
unknowns in RD). By evaluating a sequence of grids with an increasing number of dis-

crete unknowns, IV, the error can be fit to the relation
Ly-error = aNp” (1.3)

where Np is the dimensional spacing of the computational grid, Np = v/N. In (1.3),

[ denotes the spatial order of accuracy (for second order, § ~ —2) and « describes the
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Figure 1.3 Scalar problems for study.

absolute magnitude of the error. This quantitative description of the error is used as a
basis for all analysis in this work and is supplemented by qualitative contour plots of

computed distributions where appropriate.

1.3.1 Scalar problems

The computational methods are applied to the scalar problems of circular advection of a
Gaussian profile, linear advection of a Gaussian profile, and nonlinear Burger’s equation.
Analytical solutions for the three cases are shown in Fig. 1.3. The linear advection

equation is given by
ou  Ou  Ou
— —+b—=0 1.4
ot + ‘o + oy ’ (1.4)
where a=a(x,y) and b=0b(z,y) are the components of the advection velocity field. The

—0.5[(2—0.5)/0.08]" " preseribes a smooth solution. For the circular

Gaussian profile, u = e
advection problem, Fig. 1.3a, the Gaussian profile is assigned at the (0 < x <1, y = 0)
boundary and then advected in a counter-clockwise direction on a domain extending
from —1 to 1 in both dimensions. For the linear advection problem, Fig. 1.3b, the

Gaussian profile is advected at an angle of 30 ° on a domain extending from 0 to 1.

The exact solution to the nonlinear Burgers equation, given by

ou ou ou
+tu4-+ =

il i 1.
ot Ox oy 0, (15)



1.3. GOVERNING EQUATIONS AND CANONICAL PROBLEMS 11

is shown in Fig. 1.3c and used to evaluate the shock-capturing properties of both the RD
and FV schemes for scalar equations. A steady problem was studied on a square solution
domain in which the boundary values of the solution u were specified to vary linearly
from 1.5 to -0.5 along the z-axis. This results in the formation of a compression wave
that strengthens and produces a shock at (z=0.75,y=0.5). The shock then progresses
upward and leaves the solution domain at the top right corner. The extent of the domain
is from 0 to 1 in both dimensions.

For all scalar problems, Dirichlet boundary conditions are assigned whenever the

advection vector points into the computational domain.

1.3.2 Euler system problems

The two-dimensional Euler equations are given by (1.1) with

P pu pu
2
pu pu”+p puv
U=  F, = , F, = : (1.6)
pv PUD pv+p
| PeT | i puhr | i pvhr 1

where er is the specific total energy and hr is the specific total enthalpy. In this work,
gaseous flows of air are considered and the preceding partial differential equations are
supplemented with the ideal gas law, p = pRT', as an equation of state. The specific gas
constant, R, is taken to be 287 J/(kg - K) and a perfect gas is assumed with a specific
heat ratio of v = 1.4.

The problems to be considered are shown in Fig. 1.4. Problems of supersonic flow
with shocks are in the first two sub-figures. An oblique shock is shown in Fig. 1.4a. The
incident flow is at Mach 2 and orientated at an angle of —13.8978° to an inviscid wall at
y = 0. The resulting shock is inclined at 30° to the wall. A supersonic inflow condition
is specified at the left boundary, supersonic outflow at the right, and Dirichlet at the

top. Figure 1.4b shows a supersonic flow at Mach 3 past a diamond-shaped aerofoil.
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Figure 1.4 Euler system problems for study.

Freestream pressure and temperature corresponding to standard atmospheric conditions
are used and the angle of attack is 0°. The solution domain features a horizontal axis of
symmetry and the outflow boundary is close enough to prevent any interaction between
the otherwise simple and centered waves. Hence, an exact solution can be determined
for the entire domain. The left boundary is prescribed as supersonic inflow and the right
as supersonic outflow. A Dirichlet condition is specified at the top.

Figures 1.4c and 1.4d consist of subsonic flow over a smooth cosine bump and past
a circular cylinder, respectively. The flow is at standard atmospheric conditions and the
freestream Mach number was taken to be 0.1. A horizontal axis of symmetry is imposed
along with an inviscid wall condition over the object and a far-field condition is used

away from the object. The smooth bump has a chord of 3 and the profile is defined by

1 T
. i 1) 15<z<15. 1.
Y 20(‘308(1.5%r ! bsesld (17)

The far-field boundary is placed at 7 times the chord. The circular cylinder has a diameter
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of 2 and the far-field is placed at 10.5 times this diameter. As both these inviscid flows
are homentropic, any deviations from the freestream entropy are a result of numerical

solution error. Changes in entropy, given by

(55:iln(p>—sw, (1.8)

y-1 \p
were therefore used to define solution error where s, is the value of entropy in the
freestream. The problem of subsonic flow past a cylinder introduces the complexity of
stagnation regions compared to the bump problem.

Ringleb’s flow, Fig. 1.4e, is a hodograph solution to the Euler equations [52] that
involves an isentropic and irrotational flow contained between two streamlines. The
availability of the analytic solution for this case makes it useful for demonstrating the
accuracy of the spatial discretization. The left and right boundaries are delimited by
streamlines and there is subsonic inflow at the top and mixed subsonic/supersonic outflow

at the bottom of the domain. Dirichlet boundary conditions are applied at all boundaries.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, details of the RD
method are presented for scalar equations. Techniques for systems of equations are de-
scribed in Chapter 3. Details of the implementation are discussed in Chapter 4 including
the method of time-marching and the imposition of boundary conditions. The high-order
approach is also presented in Chapter 4. In Chapter 5, the second-order RD method is
compared against a Godunov-type FV method using the canonical problems described
in the previous section. The advantages and disadvantages of the RD scheme are high-
lighted. In Chapter 6, a technique is proposed for enhancing the accuracy of nonlinear
RD schemes. Chapter 7 introduces the target architecture and how the fourth-order RD
scheme is adapted to run on heterogeneous systems consisting of GPUs and CPUs. The

efficiency of using a GPU is analyzed in detail. Our final results are presented in Chap-
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ter 8 where second and fourth-order solutions are obtained using the proposed techniques
for improving the accuracy. The fourth-order results are additionally obtained on the
heterogeneous architecture using adaptations necessary for computing at reduced preci-
sion. Comparisons are made to solutions predicted using trusted but less comprehensive
RD techniques relevant to the problem at hand. Conclusions, including the contributions

of the thesis, are the subject of Chapter 9.



Chapter 2

Residual Distribution Methods for
Scalar Equations

Residual distribution methods calculate
the residual (or fluctuation) on an element,
E, of an unstructured mesh and then, by
some appropriate method, distribute the
fluctuation to the nodes of that element to
advance the solution in time. There are
three distinct steps: computation of the

fluctuation, distribution of the fluctuation,

and evolution of the solution. Residual dis-
tribution methods are cell-vertex methods Figure 2.1 A simplex element for an RD
scheme.

that are usually solved on simplexes (tri-

angles in two space dimensions). A typical element is illustrated in Fig. 2.1 and highlights
several relevant features: solution unknowns at the vertices of the triangle, inwards nor-
mals of edges numbered according to the opposing vertices and scaled by the lengths of
the edges, and contributions to the dual mesh constructed from the element centroid and

edge mid-points.

In this chapter, RD methods will be explained for scalar equations. There is a very

15
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large number of RD schemes, most of which feature one or more desirable properties
and one or more undesirable properties. Only standard schemes, those which are well
established in the literature and have the most desirable behaviour or characterize a
particular property, are presented for completeness. The details of these methods are
well documented in a variety of related theses [35, 43, 46, 47, 57] and at least summarized
in much of the literature. The mathematical notation expressed by Csik et al. [19] and

Ricchiuto [47] is closely followed for consistency.

2.1 Theory for Scalar Equations

For the scalar advection equation, one can express the PDE as
ou d \ Ju\ 0 91
5 ; < jﬁ_:c) =0, (2.1)
where d is the number of dimensions and A; is the advection speed in the jth coordinate

direction. The fluctuation on a simplex element, F is defined as

d

¢F = — —dQE /Z( au)dQE [Z ]-/E%dQE, (2.2)

j=1
where (1 is the element area, Z; defines a unit vector in the jth coordinate direction,
and 5\j is linearized over the element. For nonlinear equations, 5\j is determined via a
conservative linearization such that
d

[Z (Xj:zj)] -/%dQE = —7{ flu)-ndS, (2.3)

j=1 E OE
where 7 is the inwards-pointing unit normal vector of surface element dS and f(u) is the
flux vector. For second-order schemes, the solution, u, is assumed to vary linearly in the
element. The integral in (2.2) can then be evaluated exactly to obtain

j=1 z 1€k i=14€F



2.1. THEORY FOR SCALAR EQUATIONS 17

The index 7 loops over each vertex of an element and the vector 7i; defines the inwards
normal of the edge opposite node ¢ and scaled by the length of the edge. The nflow
parameters, k;, are defined by

d

7j=1

1
ki:—
d[

and describe whether edge i sees the inflow (positive k) or outflow (negative k) of the

(Ajaéj)] 7 (2.5)

. . N . d+1 . .
solution quantity. Because J; is linearized, Zi:l,ie g ki = 0. The inflow parameters can

be used to interpolate the solution at inflow and outflow points according to

d+1
i=1,i€F
d+1 ’

> ki

i=14€F

(2.6)

Uip =

and
d+1
_l’_
i=1,icE
d+1 ’

2 K

i=1,icE

Uout =

(2.7)

where k7 = max(0,k;) and k; = min(0,k;). Using these definitions, the fluctuation
defined by (2.4) can be cast into the form

d+1

¢” = > max(0, k) (tour — tin) , (2.8)

i=1,icE
which shows that the fluctuation is zero when the inflow and outflow points are at the
same value (or streamwise invariant) [43].

The distribution of the fluctuation to the nodes, ¢F, is governed by distribution
coefficients, 3;, with ¢F = B;¢” and, for consistency, ijel g Bi = 1. The distribution
can be represented graphically as shown in Fig. 2.2; the barycentric coordinates of a

“distribution point” define the distributions to each vertex, e.g., 51 = Q1 /Q.
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Figure 2.2 Geometrical representation of a distribution. The barycentric coordinates
of the distribution point equal the distribution coefficients.
The nodal residual is defined as the sum of all fluctuations distributed to node 7 from

all elements, F/, that share node i as a vertex. The semi-discrete update formula is then
QA%+ZﬁE¢E:0 (2.9)
dt ’ ’ '
E

where €2; is the area of the dual mesh, shown in Fig. 2.3, associated with node 7 of the
unstructured mesh. Various time-marching schemes can be applied to the solution of the
coupled ordinary differential equations given above for the nodal values of the solution.
In two dimensions, one can envision two possible orientations of the elemental trian-

gles: those with one downstream vertex (one positive inflow parameter - type I triangle in

Fig. 2.4) and those with two downstream

vertices (two positive inflow parameters -
type II triangle in Fig. 2.4). In the former
case, an upwind scheme sends all the fluc-

tuation to the downstream vertex. In the

latter case, the fluctuation is split between

the two downstream nodes.

There are a variety of RD schemes,

Figure 2.3 Primary elements (solid lines)
and dual mesh (dashed lines) created from
element centroids and edge midpoints. for determining the distribution coeffi-

each distinguished by a different method
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Figure 2.4 Possible triangle orientations in a two-dimensional flow. X is the linearized
characteristic vector

cients, SF. The different residual distribution schemes can be classified according to
various properties that they may satisfy. The properties relevant to this work are as

follows:

Upwind (U) — No fluctuation is sent to an upstream vertex. This implies that the

distribution point in Fig. 2.2 must lie on the perimeter of the element.

Positivity (P) — A nonlinear bound on solution extrema is achieved if the residual

update can be written as a sum of the surrounding vertices with positive coefficients,

N
utt = "cpul, ey >0,  j=1...N. (2.10)

%
J

Schemes of this form are “local extremum diminishing” (local maxima are non-
increasing and local minima are non-decreasing) and thus monotonicity-preserving.
An extensive discussion of the subject including proofs of energy and entropy sta-
bility is available in the thesis by Ricchiuto [47]. In practice, positivity is prescribed
within each element rather than on the dual mesh. This stricter condition still en-
sures (2.10) and allows for completion of the distribution step within the stencil of

an element.

Linearity preservation (LP) — An exact linear solution, if imposed at the discrete
grid points, will not be altered by the scheme. This property allows for orders

of accuracy greater than one. It is sufficient that the distribution coefficients are
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bounded for a scheme to be LP [22]. If the exact solution of a linear problem is
assigned at the vertices, then the fluctuation in the element will be determined as
¢* = 0. Bounded distribution coefficients will ensure that the solution does not

change since ¢F = 3,¢F = 0.

2.2 Linear RD Schemes

A number of linear RD schemes are presented next. Linear schemes cannot be both P

and LP. They may or may not possess property U.

2.2.1 N Scheme

The N scheme is a linear scheme that preserves monotonicity. The N scheme was
originally proposed by Roe [50] and is formulated by ensuring that positivity is pre-
served [20, 43, 57]. It is one of the most important schemes since it serves as a basis for
most nonlinear schemes that are also LP.

Consider three separate equations describing the updates to the vertices of an element,

d

91% = —61 (kzlul + kQUQ + ]{?3’LL3) (211&)
d

QQ% = —ﬁg (klul + kQUQ + ]{?3U3) (211b)
dU3

Q?’E = —63 (k1u1 + /{ZQUQ + ]C3U3) y (211C)

with the fluctuation written using (2.4). For a type I triangle, as shown in Fig. 2.4, all
the fluctuation is sent to the downwind vertex; from (2.11), 5 = f, = 0 and 3 = 1.

With an explicit-Euler time-marching algorithm, (2.11c) becomes

h
uptt = ul — o (kyuf + kouly + ksul) . (2.12)

The inflow parameters k; and ks are negative yielding positive coeflicients for v} and uj.

The coefficient for uf will be positive under an appropriate time-step constraint. The
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time step is determined independently for each sub-element £ that connects to vertex 3, a
more restrictive condition for enforcing P than considering together all the updates from
all triangles that connect to vertex 3. In (2.12), the update from a triangle is applied to
the area, Q¥ /3, contributed by the triangle to the dual mesh, resulting in the time-step

constraint
B 1QF

he=-— . 2.13
3T (2.13)

As noted by Struijs [57], the distribution in one target triangles is bounded and satisfies
both properties P and LP.

For type II triangles (see Fig. 2.4) the fluctuation must be split between the two
downstream vertices, 1 and 2. Using the fact that sz;rllzeE k; = 0, the fluctuation
can be written ¢F = ky (u; — u3) + ko (uz — u3). With an explicit-Euler time-marching

algorithm, (2.11a) and (2.11b) become

h

uttt =l — Q—k‘l (uy — us)
1

uh = uy — —ky (ug — ug) ,

where (31 and (5 only have an implicit meaning and, for (2.11c), f3 = 0. Since kq, ks > 0,
the coefficients for ug are positive. With the same considerations as for the type I triangle,

the coefficients for u; and wuy are positive under the time-step constraint

E
hE = %m . (2.15)

Equation (2.14) is actually derived from the more general distribution
't =l — 5% [y (uy — uz) + pr (w1 — uz) — pa (uz — ug)] (2.16)
W = — ol (=)~ (i — )+ — )] . (27

In [57], it is shown that the largest time step of a positive update is achieved if p; = py = 0,

yielding (2.14). Note that in the two-target case, the distribution coefficients are given
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Figure 2.5 Geometrical distribution of the N scheme for a type II triangle.

by 3; = ¢;/¢* and become unbounded as ¢¥ — 0. Hence, for a type II triangle, the N
scheme is not LP.

A general formulation for the N scheme is given by

oY =k (uj — i) (2.18)

J

where u;, is from (2.6). For an explicit-Euler update, a time-step restriction enforcing
local positivity is

= —— e F. 2.19
3 max (k;“) I € ( )

Geometrically, the distribution of the N scheme in a type II triangle is equivalent to
splitting the advection vector into two components parallel to edges 1 and 2 (see Fig. 2.5).
Because of this, vertex 2, for example, will have no influence on the distribution to vertex

1; il, being parallel to edge 2 results in ko = 0:

§Z51 = ]{31|i1 (75} -+ /{32|i1 U9 + k3|i1 us
= ]{:1|§\‘1 U1 + k’3|;~\1 us

= k1|:»1 (Ul — Ug) .

Note that ki = ki[5 , reproducing (2.14). This leads to the very narrow stencil for which
the N scheme is named. In Fig. 2.6, while triangles (1,2,3), (1,3,4), and (1,4,5) are
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involved in the update to vertex 1, the update is
written as a function of only vertices 1, 3, and 4.
The nature of the scheme excludes the outermost
vertices, 2 and 5, which are perpendicular to the
advection vector.

Formulation of the N scheme was based on the

use of (2.4) which requires the conservative lin-

5

earization for A in (2.3). A conservative lineariza-

tion may be undesirable or even impossible for Figure 2.6 Vertices involved in
an N-scheme update.
some equations; an alternative is to use a contour-

integration-based RD (CRD) scheme [19]. In this technique, the fluctuation is computed

via a contour integral given by
o =— @ F(S)-ndS, (2.20)
OF

where f is the flux vector. In a numerical implementation, a Gauss quadrature integration
rule is used to evaluate the integral. In the subsequent distribution step, any set of
variables S may be used for the linearization. Since it may no longer be true that ¢¥ =

d+1 : . I
S iep kiui, the N scheme must be modified to ensure conservation. For substitution

into (2.18), equation (2.6) is replaced by

d+1
E +
¢ - § k@ Us;
i=1,i€E
d+1

> ki

i=1,icE

(2.21)

Uip =

Note that if a conservative linearization is still used, this modification does not change
anything because Zj:ll iep ki ui = ¢F — Zfl;l .p ki u;. Although the CRD technique is
rather simple, the effects are profound because RD solutions are no longer restricted to

a particular linearization. For scalar equations solved in this study, the CRD technique
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is used with a linearization based on

S=u. (2.22)

2.2.2 LDA Scheme

The low diffusion A (LDA) scheme is a linear scheme which is £P but not P. As with
the N scheme, all the fluctuation in sent to the downstream vertex in a type I triangle.
In a type II triangle, shown in Fig. 2.7, the distri-
bution is governed by the location at which the lin-
earized characteristic vector intersects the outflow
edge. This identifies the distribution point defined
by Fig. 2.2. In the example of Fig. 2.7, 5, = L,/L
3 and By = Lo/L. A general formula for the LDA
scheme is
1 kit

Bt = . (2.23)

Figure 2.7 Geometrical distribu- Z Lt
tion of the LDA scheme for a type !

IT triangle.

j=1,j€E
There is also an LDB scheme in which the splitting
of ¢F is based on angles [43, 57] but this scheme has fallen out of favour and is not
considered here.

If a non-conservative linearization is employed and the fluctuation is computed by
a contour integral, (2.20), no modifications are required for the LDA scheme since
Z?;lze 5 BEPA =1, irrespective of the linearization, and therefore the distributed fluctu-

atlon is conserved.

Taylor-Series Analysis of the LDA Scheme

The LDA scheme performs very well on smooth flows and provides the expected spatial

order of accuracy. In some cases, super-convergence is observed, a property which can be
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Figure 2.8 Mesh elements used for Taylor series expansion about vertex .

understood by examining the cross-diffusion of a Taylor-series expansion of the solution
around a vertex. This type of analysis is performed extensively by Paillere [43] at O(AR?)
truncation for both the LDA and N scheme, with h being representative of the grid
spacing. The technique is repeated here at O(Ah*) truncation to investigate the super-
convergence. Taylor series expansion will also be used in Chapter 6 to study the accuracy
of nonlinear schemes.

A grid of three elements is considered and shown in Fig. 2.8. The update for vertex
1 is considered and the downstream elements above vertex ¢ can be ignored if the y-
component of the advection vector is assumed positive. The scaled inwards normals are

shown for F; and have values

The fluctuations for each element may be expressed as

¢E1 = kaui + kbuj + kcuk
O™ = —keu; — kquy — kyuy (2.24)

¢E3 = kbui + kcul + kaum
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where

1
k, = §@Ay ky =

1

(bAx — aAy) k.= —5

bAzx .

DO | —

Using a Taylor series expansion, all nodal values are expressed relative to u; as follows:

ou  Az?20*u Az dPu

L — . — A _ _ A 4

wi = e N 2 Ox? 6 O3 +O(AR)

ou ou  Ax?0*u Pu Ay? 0*u
=u; — Ar— — Ay— + ——— + AzA
e = “or y@y * 2 Oz AT yaxay + 2 0y?
A2 Pu  Ax?Ay Bu AxAy? Bu Ay Ou
- - - - O(AR! 2.25
6 Ox3 2 0x20y 2 O0x0y? 6 Oy? + O ) ( )

A ou N Ay? 0%u Ay Ou
w = u; — Ay— —
: ’ y(’?y 2 0y? 6 Oy?

+ O(ARY)

ou  Az?u Az Pu A
um—ui—i-Ax%—I— 5 527 + W + O(ARY).

Substituting (2.25) into (2.24) results in

o — AzAy ( du N Ju alxzdPu . Pu DAy u
2 e dy 2 0x? 0x0y 2 0y?
alAx? d3u  bAx? Ou bAxAy Pu bAy? *u
O(AR®
6 O3 * 2 0220y * 2 Oxoy? * 6 8y3> +O(An)
AzAy ([ Ou ou  alx d*u Pu bAy*u
Ey _ _ - _ - — 2.2
¢ 2 <a8x dy 2 o2 yaxﬁy 2 0y? (2.26)
aAz? Pu  alAxAy Ou aly? Bu bAY? O3u
AR’
6 O3 + 2 0x20y + 2 Ox0y? + 6 8y3) +O(AR’)
AzAy [ Ou  Ou alAxd*u bAy*u alAz?Pu  bAY? Pu
Es _ L p=—= — O(ARP).
¢ 2 <a8:v + dy + 2 Ox? 2 Oy? + 6 Ox3 * 6 0Oy? +0( )

A transformation is made from Cartesian coordinates, (x,y), to a coordinate system

aligned with the advection vector, (£,7), according to
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Derivatives in the streamline coordinate system are given by the following relations:

ou 1 { ou 8u}

ox 1Al on
ou 1 8u + Ou
ay N “on
2 T2 2, 2
8u: ! a28u 2aba —|—b2%
ox?  |A\? | 0& oo on?
0*u 1 [ [(0%°u O%u 0*u
L P Y (e e
dwdy AP | <652 an2) e )06077]
O*u 1 [ ,0% O*u , 0%
pu— 2 —
= T 5 e
u _ 1 _a383u aa% P*u N PFu '\ bg@
oz3  [A\P | 08 0&20n  0&0n? on?
du 1 [, 0% Du Du PPu
= b ’ — 2ab? b* — 2a%b v —
sty T3 [+ * (6 = 209) g + 0 ~20%) g + o
Pu 1 [ ,0% 5 b\ OPu 5 o OPu 5, OPu
pu _— —2 _— — R
50 P _ab 963 (b a’b) €20 + (a ab®) DD bang}
Du 1 [ ;0% Du PPu Du
= b* 3ab” 3a?b ’
o P | e 0 agan T Maeap T (9773}

Based on the exact solution, derivatives in the streamline direction are set to zero,

90 _00 _ 00 _90 _ 90 _ 90 _,
9 €2 dcom  0es oty ocopR

thereby simplifying the previous transformation derivatives. After substituting in the
transformation derivatives, and letting s = Ay/Ax, the new expressions for the fluctua-

tion in each element are

B sabA® [ @ ﬁ B .\ Pu 5
P = —4’)\|2 _(b as ) + 3‘)\|( 2b)(as — b)— o + O(AR?)
B, sabAz? | 82u Az Pu 5
2 — — -2 —0)— A 2.2
1) e _(as b) 3|>\|( as)(as —b) o + O(AR) (2.27)
s [ @ a ] oo
P = e (b as) + 3|>\|(as+b)( b>@n3 + O(AR%).




28 CHAPTER 2. RD METHODS FOR SCALAR EQUATIONS

With explicit-Euler time-marching, the update scheme is written

ultt —

At

n
7

3
1
+ Q ;ﬂf‘%& =0 with Q, = AzAy = sAz?, (2.28)

and a converged steady solution is obtained when

3
1 5y 5,
o > B =0. (2.29)
p=1

The truncation error, (TE), for the scheme is then given by

_ ab(as —b)Ax B | B B OCU
TE = T { [_61 + 6,7 = 05; } on?
A &
+apy [0 (as = 20) — 07 (205 = b) + 57 (as + )] a—;ﬁ} +O(AR). (2:30)

For an LDA scheme and an advection vector at an angle of 45° < § < 90° from the

r-axis, one has

E1_ E— E2_1 Es =1—- — 2.31
/81, —kc b ) Bz ) /Bz —kc b Y ( 3 )
and (2.30) reduces to
ab(as — b)Ax? Du
TE = 2b — das] —— + O(AR?) . 2.32
A 2 das] 55 O(AK) (2.32)

Equation (2.32) only has terms greater than or equal to O(Ah?) indicating that the LDA
scheme is at least second-order accurate. Additionally, the scheme is consistent since the
truncation error tends to zero as Ax — 0. It is also apparent that the LDA scheme is at

least third-order accurate if either:

a=0 advection vector aligned with vertical mesh lines.
b=0 advection vector aligned with horizontal mesh lines.
s = g advection vector aligned with mesh diagonal.

s = %g unique cell aspect ratio.

The first three conditions describe the advection vector aligning with the mesh. The last

condition is the most curious; if a Cartesian mesh with a regular triangulation has an
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5 then the scheme will be third-order accurate. This accounts for the

aspect ratio s = %
super-convergence that is sometimes observed with the LDA scheme and is a result of

error cancellation between the three elements of Fig. 2.8.

2.2.3 LDC Scheme

It is possible to adapt the error cancellation of the super-convergent LDA scheme to mesh
elements of any aspect ratio, resulting in a new distribution scheme we have labelled LDC.

Starting from (2.30), the three relations

—B + B = B =0 (2.33a)
ﬂiEl(as —2b) — ﬂiE2(2as —b)+ 6{33(618 +0)=0 (2.33b)
B =1 (2.33¢)

are used to determine the distribution coefficients of the new scheme. Full upwinding
is assumed for type I triangles, such as FEs, thereby providing the last relation. Solv-

ing (2.33) for B7* and B/ gives

2k, 2k

B 2 d 8= = : 2.34
A=yt awd =gty (2:34)
A general distribution formula for type II triangles is
% ?E‘Hf;— if 7 is a downstream vertex,
BEPC = j=tiee (2.35)
0 if 7 is an upstream vertex.

Compared to the LDA scheme, the distribution coefficients are bounded between 1/3 <
L;/L < 2/3 (see Fig. 2.7) and, quite surprisingly, the relative weighting between the
downstream vertices is opposite the weighting of the LDA scheme for a given advection

vector. In other words, if the advection vector points towards vertex ¢ in triangle F; of

Fig. 2.8, the LDC scheme will set ﬁfl > i
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The LDC scheme is quite similar to a high-order technique proposed by Hubbard and
Laird [32] where the stencil for the distribution is expanded such that an element can
distribute its own fluctuation to vertices that it does not share. Both this technique and
the LDC scheme are derived from Taylor-series expansions and both require a regular
grid. The main difference is that the LDC scheme still retains a stencil of one element
for distribution of the fluctuation.

The LDC scheme is only of academic interest. It relies upon a mesh with a regular
structure and a generic formula for both type I and type II triangles is cumbersome.
Nevertheless, the LDC scheme is a demonstration of an upwind method that achieves an
extra order of accuracy on certain meshes by error cancellation. The LDC scheme is a

linear scheme which, similar to the LDA scheme, is £LP but not P.

2.2.4 Central Scheme

A central scheme is given by ; = 1/3. Although LP, the central scheme respects
neither of the U or P properties. As such, it is notoriously unstable for problems of wave
propagation. This scheme is identical to Jameson’s central finite-volume scheme [34] and
the Galerkin finite-element method. It is only considered in this thesis as a basis for the

construction of certain nonlinear schemes described later in Chapter 6.

2.2.5 Lax-Wendroff Scheme

The formulation of the Lax-Wendroff (LW) scheme in a RD framework is described
in [35, 43, 50, 57] and recalled here for completeness. Two relations are required based

on what amounts to mass lumping in the finite-element method [57]:

ou ou oF
E _ PR
o" = dQgp = 5 0,

- | % (2.36)

and

/ (W — ) A = (= u?) 9 (237
D
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where D is used to denote the dual mesh around vertex ¢ having area €2;. Equation (2.36)
defines the relation which expresses that Ou/0t is taken to be constant in a primary
element and (2.37) states that the evolution of the solution in an element of the dual
mesh is given by the change at node 1.

The formulation starts with a Taylor series expansion in time around u,

ou  At? 0%u

n+1l __ n 3
ul™t =] +At_8t t 5 + O(At”) (2.38)
ou  At?0%u
ntl _ ,n _ s = " 3
u; up = At 5 + 5 o8 + O(At”), (2.39)

followed by integration over an element of the dual mesh,

A 2 92
/@W—WN@:/ m@+lfﬁ+“dm. (2.40)
JD . D 875 2 6t2
Use‘(g.37) A B

The temporal derivatives in the RHS are now replaced with spatial derivatives using the

original equation. Consider a contribution to vertex ¢ from primary element F. The term

A in (2.40) is evaluated using (2.36),

ou 1 E 1
At—dQp = —= [ At—Qp | = —=Atod” . 2.41
[, Mg 3(QEE) 3200 (241)
The relation
0%u _0%u - 0%u > _Ou
a2~ gzt Yoy T N Var

is used to rewrite term B in (2.40) as

At2 52 At?= At? <
/ _ingE:__)\. V@dQE:—)\-% s
END 2 at 2 END at 2 OEND at
A2 §F = At? ¢P
_ __¢_/\ 7{ ndS = __tqb—k;i. (2.42)
2 Qp END 2 Qp

The % required to form k; follows from an integration over the path C'DE instead of path
AB in Fig. 2.9 (EC = %A_B) Substitution of (2.41) and (2.42) into (2.40) and summing

over all primary elements, F, that connect to vertex i results in
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>

B

Figure 2.9 Integration path for (2.42). Figure 2.10 Geometrical representation
of possible distributions for the LW
scheme. The distribution point (see
Fig. 2.2) may exist along the dashed lines.

At 1 At
ntl _ ,n) _ _—" - =" 1. E
EicFE

or in semi-discrete form,

du; 1 At
o, dv LAY er —o. 2.44
’ EZZEE <3 ’ 2 ) ’ .

From (2.44), it is obvious that the distribution coefficients for this “semi-discrete” form
of the LW scheme are

1 At
Lw _ - = 1.
BT =3 20, ki, (2.45)

which is effectively a central scheme plus a dissipation term. In (2.45), At is a cell-based

time step and in this work, it is obtained from

Qg

max(k;)’

At = jeE, (2.46)

(see (2.19)).
With the use of (2.46), the distribution coefficients are able to vary between —2/3 <
BEW < 5/6. The possible distributions, as defined by the distribution point in Fig. 2.2,

are shown geometrically along the dashed lines of Fig. 2.10. The LW scheme is LP but
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not P or U. Although usually not upwind, there is sufficient dissipation to ensure a

convergent scheme.

2.2.6 Upwind Control Volume Scheme

The upwind control volume (UCV) scheme of Giles et al.

[25] (and described in [43]) is similar to the LW scheme but /T
e %
with a modified dissipation term. The UCV scheme restricts L7 ’
L 4
L 4
the distribution coefficients so that they cannot be negative, .’

1

essentially leading to an upwind formulation for type II tri- C<

angles. For example, compare the possible distributions of e
~ ~

Fig. 2.11 to those in Fig. 2.10. A generic formula for the “Q

UCYV scheme is
Figure 2.11 Possible
1 k; distributions for the UCV
vev _ + i
G 3 + 3zd+1 kT (2.47) scheme. The distribution
Jj=ljeE ) . .
point may exist along the

As with the LW scheme, the UCV scheme is £P but not P dashed lines.
orU.

2.2.7 Accuracy of Linear Schemes

The performance of the linear schemes is shown in Fig. 2.12 for linear advection of a
Gaussian profile (Fig. 1.3b). The L, Ly, and L., error norms, computed on the line
segment of the two finest meshes, are listed in Table 2.1. These results are illustrative of
the interior scheme on a uniform Cartesian mesh that has been tessellated in the direction
of the advection vector; boundary conditions are avoided by expanding the domain and
imposing the exact solution around the exterior of the domain.

The N, LDA, and LDC schemes achieve the expected orders of accuracy. Interestingly,
the LW and UCYV schemes also indicate perfect third-order convergence, a result that is

generally not indicated in the literature. However, the construction of the LW scheme
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Figure 2.12 Accuracy of linear schemes (3 in (1.3)) for linear advection of a Gaussian
profile.

Table 2.1 Spatial convergence of linear schemes (5 in (1.3)) for linear advection of a
Gaussian profile.

Scheme | Li-error | Lg-error | Loo-error
N -0.98 -0.97 -0.95
LDA -2.01 -2.01 -2.00
LDC -3.00 -3.00 -3.00
LW -3.00 -3.00 -2.99
Uucv -3.00 -3.00 -3.00

is indeed at O(Ah?), and results obtained by Paillere [43] do indicate that the SUPG
scheme, which is essentially the LW scheme with a unique cell-based time step, has better

accuracy than the LDA scheme.



2.3. NONLINEAR SCHEMES 35
2.3 Nonlinear Schemes

Analogous to Godunov’s theorem [26], only a nonlinear scheme can satisfy both the P
and LP properties [22]. The nonlinear distribution schemes described next depend on

and adapt themselves to the solution.

2.3.1 Limited N Scheme

The first scheme to satisfy all of properties U, P, and LP was the positive streamwise-
invariant (PSI) scheme devised by Struijs [57]. In 1995, Sidilkover and Roe [54] made the
observation that the PSI scheme is identical to a limited N (LN) scheme using a minmod
limiter. The distribution coefficients for the N scheme are not bounded and may tend to
+00 as ¢¥ — 0. The LN scheme is based upon the N scheme but limits the distribution
coefficients when one of them (in the case of a type II triangle) becomes negative. If ¢
and ¢ denote the fluctuation that would be distributed to the two downstream nodes
by the N scheme and r = —¢¥ /¢ then the limited distribution given by the LN scheme

is

A | AR L TO R (2.49

where W(r) is a symmetric limiter. Use of a minmod limiter,
U(r) = max [0, min (1, 1)] , (2.49)

reproduces the PSI scheme. Any symmetrical limiter may be used in the LN scheme
but the minmod limiter is preferred because it is the only limiter that strictly maintains

positivity [35, 43].

2.3.2 Blended Scheme

The blended scheme is a blending of the N and LDA schemes, ¢Z = ¢ + (1 — 0)p=PA.

There are several possible definitions of the blending coefficient #; see [1] for a definition
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that reproduces the PSI scheme. In this work, the heuristic definition proposed by
Deconinck et al. [22],
sl

d+1 ’

Yo o] +e

I=1,l€E

9:

e=10"1, (2.50)

is used where 6 is defined to switch to the LDA scheme when divergence of the nodal
fluctuation, as computed by the N-scheme, is detected. Positivity of this particular
blended scheme has not been formally shown; however, numerical experiments generally
produce solutions that are satisfactorily monotone. The blended scheme has the £P and

U properties.

2.3.3 Map A Scheme

The mapped schemes proposed by Abgrall and co-workers [2, 4, 9] extend the limiting
concepts of the LN scheme to multiple dimensions. Whereas the LN scheme is only
applicable to a type II triangle, mapped schemes can be used at any number of dimensions
and also if the distribution to be limited is not upwind. The latter may occur in the
matrix distribution schemes to be discussed in the next chapter. Other than the oddity
of limiting for accuracy instead of monotonicity, mapped schemes are very similar to
the multidimensional limiting concepts discussed by Berger et al. [11]. However, the
constraint or target of the limiting is more obvious since geometrically, it equals the

perimeter of the element.

As with the LN scheme, the basis for a mapped scheme is the P distribution, 3%,

predicted by the N scheme. Next an £P distribution, %, is sought that satisfies

B ;> 0, (2.51)

such that the sign of the distribution does not change and the P property is retained. A
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mapping which reproduces the PSI scheme [2], hereon referred to as “map A’ is

max(0, 5}")

d+1 +
Zj:l,jeE 6]’

gt = gr = (2.52)

As shown in Fig. 2.13, this mapping is always a translation toward one of the vertices
and essentially bounds the distribution to the

perimeter of the triangle, ensuring that the distri-

~

bution also has the P and U properties. In the case
where the distribution point (see Fig. 2.2) predicted
by the N scheme is within the perimeter of the ele-
ment, no changes are made to the distribution.

An alternative mapping described by Abgrall

and Roe [9] is to move the distribution point in

an orthogonal direction towards an edge. Although

this minimizes the distance the distribution point

Figure 2.13 The map A scheme
translates a distribution point out-
side the element towards a vertex

until the perimeter of the element
is not considered in the remainder of this thesis. is reached.

is moved, it also alters the ratio of the distribution

coefficients. We label this mapping “map B” but it

2.3.4 Accuracy of Nonlinear Schemes

The performance of the nonlinear schemes at the interior is shown in Fig. 2.14 for the
same problem used to analyze the linear schemes. The L, L, and L., error norms,
computed on the line segment of the two finest meshes, are listed in Table 2.2.

As expected by design, the LN scheme with a minmod limiter is identical to the map
A scheme. More interesting is the performance of the blended scheme which follows the

LN (minmod) scheme very closely even though the construction is significantly different.

!This mapping scheme, being a reinterpretation of the PSI scheme, is often referred to as PSI in the
literature.
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Figure 2.14 Accuracy of nonlinear schemes (3 in (1.3)) for linear advection of a Gaus-
sian profile.

Table 2.2 Spatial convergence of nonlinear schemes (3 in (1.3)) for linear advection of
a Gaussian profile.

Scheme Lq-error | Lo-error | Lo,-error
LN (minmod) -1.90 -1.67 -1.32
Blended -1.89 -1.67 -1.32
Map A -1.90 -1.67 -1.32

The fact that the spatial accuracy is less than second-order is examined more thoroughly

in the chapters that follow.



Chapter 3

Residual Distribution Methods for
Systems of Equations

The scalar RD techniques are extended in this chapter to systems of equations. The

Euler system of equations is used to present the various methods.

3.1 Theory for Systems of Equations

There are currently two approaches to distributing the fluctuation for a system: system
decomposition and matrix schemes [22]. The most physically satisfactory approach is
to decompose the system into scalar equations. This is achieved via hyperbolic-elliptic
splitting where, for the steady Euler equations, the addition of a preconditioner allows
for diagonalization of the equations in characteristic form [35, 43, 46]. Matrix schemes
are a generalization of scalar techniques to matrix-vector equations. Although not as
intuitive nor physically meaningful as equation decomposition techniques, the resulting
schemes can still provide very accurate results.
In quasi-linear form, (1.1) with (1.6) becomes

ou d ou
0 E A, — ) = Nl
ot ‘ < v &xj) 0, (3-1)

Jj=1

where Ay ; = OF;/0U are the conservative-variable flux Jacobians.

39
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For systems of equations, the scalar inflow parameters, k;, of the residual distribution
schemes become matrices, K;, since the linearized scalar wave speed, /_\j, of (2.3) is now

a matrix that depends on the linearized flux Jacobians

o OF,

U,j - (‘3_U (32)

n
The notation of (3.2) denotes that the Jacobian is linearized at the average state S =
W11 ijel 1 S; of a set of, as yet undefined, solution variables S(U). Equation (2.5) then

has the form

d
K; :clz [Z (Aj:z:j)] ;. (3.3)

j=1

Having matrices as inflow parameters creates two primary issues. The first is to find a
method of linearization, i.e., a definition of S, that is still conservative. The second is

the technique for computing the distribution coefficients, 3,, which are now matrices.

3.1.1 Linearization

A conservative linearization has been found for the Euler equations. The Roe-Struijs-
Deconinck (RSD) linearization [57] is an extension of Roe’s parameter vector [49] to
multiple dimensions S = Z = [\/p, \/pu, \/pv, /ph]". This linearization ensures that a

second-order conservative fluctuation may be computed as
d+1
o0 = > KyU;, (3.4)
i=1,i€E
where fJi = %—g!s S;. Use of a conservative linearization leads to a linearization-based
RD (LRD) scheme. Unfortunately, conservative linearizations are not available for all
systems of equations. Also, in some cases the use of Z as the linearized state may be
undesirable. In particular, non-existent pressure gradients may be detected for shear
flows [35].
The alternative to using a conservative linearization is to use the CRD technique

described in section 2.2.1. For the Euler equations, the fluctuation is computed via a
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contour integral given by

—

o = —f F(S)-ndS, (3.5)

OF
where, again, a Gauss quadrature integration rule is used to evaluate the integral. The
modifications required for the matrix N scheme will be noted in the following section on
matrix distribution. The Euler results in this study are all obtained using a CRD scheme

with a linearization based on the primitive variables given by

S=V=[puuvp". (3.6)

3.2 Hyperbolic/Elliptic Splitting

Hyperbolic-elliptic splitting provides a method for decomposing the Euler equations.
Supersonic flows decouple into four scalar equations while subsonic flows decouple into
two scalar equations plus an acoustic subset. In this work, only the details relevant
to the implementation are described. Details regarding the development of the related
preconditioner are available elsewhere [35, 43, 46].

For simplicity, the Euler equations are expressed in a coordinate system aligned with

the streamline, (£,7), and in terms of a particular set of symmetrizing variables, Q, as

follows
0Q  , 9Q . 9Q
— +As5—+Bs—=0 3.7
or T ape TPag, Y (37)
before applying the preconditioner. The symmetrizing variables have the form
} T
0Q = |dp/(pa) dq qd0 0S| (3.8)
where ¢ is the flow speed
0 0
g=Varro?,  9g= """ u;rvv, (3.9)
6 is the local flow direction
v — v0
f—tan' =, o= L0 (3.10)
u q
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and 0S is proportional to the change in entropy
dS = 0p — a*dp. (3.11)

With symmetrizing variables, the Jacobians have the form

g a 00 0

0 a 0O
a g 0 0 0000
Ay= , By = (3.12)
0 0 q O a 0 0 0
0 0 0 ¢ 0000
The preconditioner, P, is added such that
0Q 0Q -, 0Q
— +P|As—+By— | =0. 3.13
ot ( 0oe T Pag, (3.13)

Note that the preconditioning does not affect steady-state solutions. This system may

be re-written as

L .0Q  0Q L 0Q
1 1Y% | Yl g v
AP 8t+8£+AQBQ8n

0. (3.14)
The matrix AE;BQ can be diagonalized as A = LAE;BQR and thereby defining the
characteristic variables OW = L@Q. After diagonalization and a change of variables

from Q to W, (3.14) assumes the form

OW  OW  OW
50+t o TAG =0 (3.15)

—1p-1
LAQ PR

The preconditioner is defined to diagonalize the matrix D = LAgP_lR, completely for
supersonic flows and as much as possible for subsonic flows. A preconditioner, valid for

both subsonic and supersonic flows, can be written as

axM?  _axM
5 0 O
axM  ay
—odMex 0 0
P = g , (3.16)
0 0 By 0
0 0 0 «
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where 8 = y/max (¢2,|M? — 1]) and x = 1/max (M, 1). To avoid problems at the sonic
point, the parameter e assumes a small value, typically 0.05 [43]. The quantity « was
introduced by Mesaros [35] to reduce sensitivity to the flow angle in stagnation regions.

It is defined as

1 1
R for MSE’
a=9i+Z (M- —2r(M -1 for LaM <2
1, for MZ%

Equation (3.15) then takes the form

oW A% A%

W+AW8_§+BW8_77:O’ (3.17)
where Ay = D! and By = D7!'A. The characteristic variables are given by
]
Ip + padq
OW — 2 (3.18)
Op + £5-06
|0p — 2400

A prescription of Ay and By, that is valid for both supersonic and subsonic flows and

encompasses a smooth transition between the two regimes is given by

aq

0

0

aq

0

sxaB(an +1)

sxqB(an—1)

xq(a+1)

xq(a —1)

0

0
sxq(a—1)
sxa(a+1)

, (3.19)

, (3.20)
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where n = (M? —1) /3% Note that 7 is defined as —1 for subsonic flows and +1 for

supersonic flow but it smoothly transitions between the two values over the range 1 —¢? <

M? < 1+ ¢ In supersonic flows, matrices (3.19) and (3.20) are diagonal and have the

form

g 0 0 0 000 0
0 g 0 0O 000 O
A, = ., B,= : (3.21)
00 a8 O 00 a O
00 0 aB 000 —a

The following steps summarize the numerical implementation of the RD scheme re-

sulting from the hyperbolic-elliptic equation decomposition procedure:

. The fluctuation in conservative variables, ¢5 , is computed using (3.5).

The average linearized state is determined and used to compute the transformation

0Q U oW  09Q

matrices 3, 98’ 90 W

and g—g as well as the preconditioner P.

The fluctuation is preconditioned and transformed into characteristic variables via

OW _0Q
b = —<P_——op .
oQ 0U
The solution state at each vertex in the element is converted from the linear state
(primitive variables in this work) to characteristic variables via
- OWOQaU
0Q dU vV
The fluctuation is distributed using scalar distribution everywhere except for the

elliptic subset which arises from the acoustic equations in a subsonic flow. In this

work, the elliptic subset is distributed using a Lax-Wendroff scheme [35] with

i T
LW
37" ==+ —Kw, 22
! 3 205 Y (3:22)
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where I is the identity matrix and QTE is set to the maximum eigenvalue of matrix
Kyy,;. The acoustic inflow parameter Kyy; is formulated using (3.3) but only using
the 2 x 2 acoustic subsets of Ay and By,. Note that more sophisticated elliptic
distribution techniques exist, but are not considered as part of this work. The most
advanced is probably the least-squares minimization technique advocated by Rad

[46] as described earlier in Chapter 1.

6. The fluctuation sent to each vertex is converted to conservative variables for a
subsequent summation and update of the solution. At this point, there is the option
to retain or remove the preconditioner [35, 43]. The most consistent method is to
remove the preconditioner from the distributed element fluctuation and reapply it

at the vertex. This conversion is performed as follows:

v, 00
¢U,i_aQP ﬁﬁbw,i‘

This method is fully conservative but less computationally robust. The precondi-

tioner may alternatively be retained in the fluctuation by the following conversion

5 U 0Q
Y 0Q OW

P, -

This implies an assumption that the preconditioners in each of the elements sharing
vertex ¢ are sufficiently close in value. In other words, the flow is smooth. This
approach is not conservative but numerical experiments indicate that it is more
robust (about the same as a matrix RD scheme). The two approaches yield similar
results, even in the vicinity of strong discontinuities, but the conservative method

was found to be more accurate. In this work, the conservative approach is used for

all the decomposed solutions.

7. The desired time-marching algorithm is applied to the discrete solution at each
vertex governed by the semi-discrete form of the governing equations given by (2.9).

For explicit time-marching, the preconditioner, computed at the vertex state, is
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typically reapplied to the vertex residual if it was removed in the previous step.
This ensures that the update scheme is consistent with the modified wave-speeds
of the system and theoretically provides convergence that is almost independent of

the Mach number for subsonic problems.

3.3 Matrix Distribution

Matrix distribution schemes are generalizations of scalar techniques [59]. The linear
schemes considered here are all invariant under a similarity transformation, meaning
that the same conservative fluctuation is sent to the vertices, irrespective of the variables
in which the distribution is actually performed [22]. Tt is therefore beneficial to switch

to the symmetrizing variables

T

Q= |dp/(pa) Ou Ov 9S| (3.23)

where 95 = dp — a*dp, when formulating the distribution scheme. The matrices A and

B assume the form

u a 0 O v 0 a O
a u 0 0 0O » 0 O
Ag = , Bg = . (3.24)
0 0 » O a 0 v O
0 0 0 wu 0 0 0 w

In symmetrizing form, the last equation completely decouples from the system. This is
the entropy advection equation. As a result, only the upper 3 x 3 subset remains to be
solved by matrix distribution. In what follows, the inflow parameters K¢ are formulated
using (3.3) but only for the upper 3 x 3 subset of Ay and By,.

The following steps summarize the numerical implementation of the residual distri-
bution scheme resulting from the matrix distribution procedure applied to the Euler

equations:
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1. The fluctuation in conservative variables, qbg, is computed using (3.5).

2. The average linearized state is determined and used to compute the transformation

0Q 99U

. ou
matrices 7, 5q; and 55

3. The fluctuation is transformed into symmetrizing variables via

r_ 0Q

¢Q—%¢5-

4. The solution state at each vertex in the element is converted from the linear state

(primitive variables in this work) to symmetrizing variables via

0, = 999U,
‘T ouav Y
5. The entropy equation is distributed using a scalar method and the remaining 3 x 3

subset by a matrix technique.

6. The fluctuation at each vertex is converted to conservative variables for the update

7. The desired time-marching algorithm is applied at each vertex using the semi-

discrete update formula (2.9).

Matrix versions of the various RD schemes are now described. For all the schemes,
except LW, the inflow parameters Ky must first be split into positive and negative
components. Matrix K is diagonalized via A = LKgR. Using A = (A + |A])/2,
the split inflow parameters are defined as K& = RA*L. As the sum of the negative (or
positive) distribution coefficients is an oft-required denominator, it is common to define

d+1 -1
Ng = ( > KQJ) (3.25)
j=1,j€E
for matrix schemes. At stagnation points, the matrix Ny may become singular. Ana-

lytically, it has been shown that KaiNQ, the manner in which Ng is used, always has
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meaning [1]. Numerically, a small modification is made to avoid the singularity. For
the problems considered in this thesis (Fig. 1.4), a linearized stagnation region is never
encountered in the interior. However, at inviscid wall boundaries, the normal compo-
nent of the velocity is explicitly forced to zero and the inversion required in (3.25) can

be difficult in the degenerate ghost elements used to impose boundary conditions. At

d+1

stagnation points, 2]‘:1 jen Kg ; assumes the form

s;1 0 0
0 S22 S23
0 s23 s33
and becomes problematic when sgs33 — s3; = 0. For the ghost elements, a simple

modification to avoid the singularity is introduced:
+ et + gt - g T
KQ,Z‘,QQ = KQ,z‘,QQ"'G KQ,z‘,33 = KQ,i,33+E KQ,i,22 = KQ,i,QQ_E KQ,i,33 =Ngpizs—¢,

where € assumes a small value, typically 1 x107%. Note that this procedure has no effect

on the overall value of Ko, ;.

3.3.1 Linear Schemes
N Scheme

The matrix N scheme defines the fluctuation distributed to each node ¢ of an element as

d)g,i =K, (Qz - Qm) - (3.26)
The modified state Q;, for the CRD scheme is
d+1 )
Qi =N (¢5 -y Kg,ij> . (3.27)
j=1,j€E

LDA Scheme

For the matrix LDA scheme, ¢££A = BLP Agbg where

B4 = —K{Ng. (3.28)

1
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LW Scheme

The matrix LW scheme is given by (3.22). This is the only matrix scheme (considered in

this thesis) that does not require the use of Ng.

UCV Scheme

The UCV scheme has a matrix formulation similar to that of the LW scheme:

1 /.
B =2 (I + KQJ-NQ> . (3.29)

Accuracy of Linear Matrix Schemes

An overview of linear matrix schemes is given by examining the performance of the
interior scheme on a square subset of Ringleb’s flow using a Cartesian mesh and a uniform
tessellation. The results are also relevant to hyperbolic/elliptic splitting which uses the
LW matrix scheme for the acoustic subset (in fact, both approaches use a combination of
scalar and matrix techniques). Actual comparisons between hyperbolic/elliptic splitting
and matrix distribution, as described earlier in this section, are presented in the next
chapter for more practical problems. For this problem, the flow is the same as illustrated
in Fig. 1.4e but only solved on the square domain extending from a bottom left corner of
(—0.35,1) to a top right corner of (0.45,1.8). The flow in this subset is entirely subsonic.
This test is only indicative of the interior scheme; vertices around the exterior of the
domain are fixed to the exact solution. The results, illustrated in Fig. 3.1 and listed for
several error norms in Table 3.1, show that all the £P schemes achieve similar second-
order behaviour. For systems, no super-convergence is observed. The N scheme also

behaves as expected giving first-order accuracy.
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Figure 3.1 Accuracy of linear matrix schemes applied to a Cartesian grid on a subset

of Ringleb’s flow.

Table 3.1 Spatial convergence of linear matrix schemes applied to a Cartesian grid on
a subset of Ringleb’s flow.

Scheme | Lq-error | Lo-error | Loo-error
N -0.98 -0.98 -0.98
LDA -2.01 -2.01 -2.04
LW -2.02 -2.03 -2.00
Ucv -2.01 -2.02 -1.99

3.3.2 Nonlinear Schemes

Blended Scheme

For systems, use of the LN scheme is not straightforward so nonlinear distributions are

commonly obtained by applying blends of the N and LDA schemes. The fluctuation

distributed by the blended B scheme is

b5, =0y, + (1- 057",

(3.30)
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where I is the identity matrix. The entries of the diagonal nonlinear blending matrix ©

are given by
|DG.]
7 s [P0kl T

where index k refers the the kth equation of the system and [ loops over the vertices of

G)k k= € = 10_10, (331)

the element [19].

Map A Scheme

The scalar map A scheme is also used for systems of equations. However, the system is
first cast into a set of scalar equations by projecting the fluctuation, and distributions of

the system N scheme, onto the left eigenvectors, 12, of the one-dimensional, 3 x 3 subset

) o)

of system

Ame + Bme . (332)

In (3.32), 712 is a unit vector aligned with the linearized velocity in the element, ¢ [8]. Fol-
lowing the notation used by Ricchiuto [47] and with o = 1...3, the projected fluctuation

is determined as
big =l 00,  and Y7 =1707 . (3.33)
For each scalar component, the fluctuation is then limited using the scalar map A scheme,

Papd = prapd (N pE) (3.34)

Finally, the limited results are projected back into conservative variables by

mapA Z ¢mapA E (335)

The left (rows) and right (columns) eigenvectors are given by

0 —-my, m, 0 1 -1
E __ 1 X m E _
17 = 1 Mo Tw, and T, = |—my, my; my| (3.36)
1 me My
2 2 2 My My MYy
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respectively.

This method for producing a P and £P mapping scheme for systems of equations
does suffer from a known flaw. The symptoms of the flaw are poor convergence and
“the occurrence of wiggles in the smooth part of the solution” [4]. Repeating the com-
ments of Ricchiuto [47], matrix distribution techniques may prevent the occurrence of
type I triangles and the dissipation associated with the upwinding of a one-target dis-
tribution. In the absence of type I triangles, limiting produces destabilizing effects such
that convergence to machine zero is never achieved. More information and proposed cor-

rections involving the addition of dissipation in smooth regions are discussed by Abgrall

[3] and Abgrall et al. [6].

Accuracy of Nonlinear Matrix Schemes

The nonlinear matrix schemes are solved on the same subset of Ringleb’s flow that was
used to test the linear matrix schemes. Results are illustrated in Fig. 3.2 and listed in
Table 3.2.

Poor convergence was observed for residuals of the blended scheme but this was
easily rectified by freezing the blending coefficient after the convergence stalled. The
performance of the blended scheme for systems is similar to the scalar case with only
the Lo-error being significantly worse. The Li-error is below second-order accurate and
this degradation will be explored in more detail in Chapters 5 and 6. The order of the
L-error is unity in this example indicating that the solution is not being recognized as
smooth in at least one element. The results from the map A scheme, on the other hand,
are unsatisfactory. The performance is actually worse than the N scheme. It is suspected
that this test case exacerbates the flaw known to exist in the scheme. The symptom
of poor convergence is indeed observed; both the Ly and L., norms of the residual only
converge by one order of magnitude. A type of limiter freezing was not employed because

there is no parameter to freeze aside from the distribution coefficients themselves.
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Figure 3.2 Accuracy of nonlinear matrix schemes applied to a Cartesian grid on a
subset of Ringleb’s flow.

Table 3.2 Spatial convergence of nonlinear matrix schemes applied to a Cartesian grid
on a subset of Ringleb’s flow.

Scheme | Li-error | Lo-error | Lo.-error
Blended -1.87 -1.65 -1.00
Map A -0.72 -0.66 -0.83

Because of the extremely poor accuracy of the map A scheme, we rely on the blended
scheme for accuracy estimates of P and LP solutions to systems. However, it is important

to note that recent work on the map A scheme may entirely correct the flaw [3, 6].
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Chapter 4

Implementation of the Numerical
Algorithm

Details of the implementation including the meshes, imposition of boundary conditions,
and the time-marching algorithm are described in this chapter. The approach for obtain-

ing orders of accuracy greater than two is then presented and discussed.

4.1 Structured Mesh

Standard RD methods are solved on a grid of simplexes (triangles in two dimensions).
Both structured and unstructured meshes are used for the solutions presented in this
thesis. In Chapter 5, our FV solutions are obtained on structured quadrilateral grids
and, with some special modifications, the same grids are used to obtain the RD solu-
tions. In later chapters, unstructured grids are used for the subsequent analysis and
for the extension to fourth-order accuracy. The approach adopted here for applying the
RD schemes to quadrilateral grids is to insert a diagonal into each quadrilateral and
thereby triangulate the mesh. It is therefore possible to take advantage of the freedom
to optimally align the diagonal with the characteristic vector. In Chapter 5, the effects
of choosing an optimal direction for the diagonal are examined for scalar equations. An-

other method for applying an RD scheme to a quadrilateral mesh is discussed by Abgrall

%)
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and Marpeau [7].

For scalar equations, the optimal diagonal is aligned with the advection vector. For
solutions of the Euler equations by matrix distribution or subsonic decomposition, the
diagonal is aligned with the streamline vector. The same procedure can be applied when
decomposing the Euler equations in supersonic flows, but in some cases this will cause the
diagonal to be inserted in a direction that is opposite to the direction of the dominant
wave. An example of this is illustrated in Fig. 4.1 for the oblique shock problem of
Fig. 1.4a. In this example, the incident supersonic flow is oriented in a direction from the
top left to the bottom right. An oblique shock produced by a solid wall aligned with the
x-axis turns the flow to the horizontal or xz-direction. The streamline in the incident flow
(and through a finite shock) is therefore oriented in a direction that is opposite to the
direction of the shock wave. The shock is the only significant wave in the flow and ideally
the diagonals should be aligned with this wave. Figure 4.1a and 4.1b show the grid and
a discrete representation of the exact solution, respectively. A matrix distribution using
a blended scheme with a streamline tessellation is shown in Fig. 4.1c. A decomposed
solution (the flow is entirely supersonic so the Euler equations decouple into four scalar
equations) using an LN scheme with a streamline tessellation is shown in Fig. 4.1d. Both
of these are more dissipative than if the tessellation had been fixed in the orientation
of the shock prior to the solution. In Fig. 4.1e, each scalar wave resulting from the
decoupled Euler equations is solved on a tessellation aligned with its own characteristic
velocity. The shock is much more compact but numerous spurious waves are produced
behind the shock. The reasons for these waves are currently not fully understood. In
Fig. 4.1f, both streamline waves are solved on a tessellation aligned with the streamline,
and both acoustic waves are solved on a tessellation aligned with the dominant acoustic
wave. This technique seems to eliminate the spurious waves and is used for all results

obtained on quadrilateral grids.

Note that when a separate tessellation is used for the streamline and acoustic waves,
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Figure 4.1 Distribution of pressure for solution of an oblique shock. The effect of
various tessellations are examined.

the linear state is averaged over the entire quadrilateral and conservation is maintained
on the quadrilateral. Since all transformation matrices are computed at the same state,
and since the CRD linearization technique allows conservation to be independent of the
linear state, the scheme is still conservative. The dominant acoustic wave is determined

by comparing the difference in the acoustic characteristic variables between opposite
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Figure 4.2 Weak boundary condition for vertex V1 consisting of ghost elements, GE1
and GE2, and ghost vertex GV1.

vertices in the quadrilateral. The dominant wave is assumed to run counter to the largest
difference. Note also that the tessellation is frozen at a prescribed level of convergence

so as not to interfere with the convergence of the solution.

4.2 Boundary Conditions

Boundary conditions (BC) are implemented using the weak formulation originally pro-
posed by Paillere [43]. In contrast with a strong formulation, where the required bound-
ary state is imposed directly at the vertices, a weak formulation indirectly enforces the
boundary condition by using supplementary ghost elements. In Fig. 4.2, the boundary
conditions for vertex V1 are prescribed indirectly via two ghost elements, GE1 and GE2.
Vertex V1 is completely surrounded by physical elements E1, E2, and E3 and ghost ele-
ments GE1 and GE2. The ghost elements are degenerate with the dashed line having zero
length. The ghost vertex, GV1, therefore lies directly on top of vertex V1. Because of the
degeneracy, no fluctuation is sent from the ghost elements to V2 or V3. The states in the
ghost vertices are set to produce the desired results, e.g., farfield conditions for a farfield
BC, reflected velocity for a symmetry or inviscid wall BC, or the desired conditions for

a Dirichlet BC. For the purpose of calculating the time-step in the ghost element, the
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area is taken to be half the area of the physical dual mesh associated with vertex V1.
Except for special handling of the zero-length edge, which only involves explicitly setting
the inflow parameter to zero for that edge, the ghost elements are treated the same as

any of the interior elements.

Paillere [43] recommends to use all three nodes in the ghost element to set the lin-
earized state. This is reasonable if the state in the ghost vertex is carefully maintained.
However, it is convenient to minimize this maintenance by letting the scheme itself deter-
mine which characteristic information is needed. Consider, for example, a farfield BC. It
is desirable to set the farfield state in the ghost vertex and not change it. If the boundary
experiences supersonic outflow, the ghost vertex should not have any influence on the
linearized state. Otherwise it could, depending on its value, change the linearized flow to
subsonic. For this scenario, it is preferable to only use the interior vertices to compute
the linearized state (vertices V1 and V2 for element GE1 in Fig. 4.2). If the boundary
experiences anything other than supersonic outflow, then information from the ghost
vertex is required. In this situation, usage of only the interior vertices for calculation of
the linearized state is still valid since the interior vertices should eventually adopt the
appropriate value due to the incoming waves. For inviscid wall BC, on the other hand,
the ghost vertex is instrumental in altering the flow. This is especially true for supersonic
flows normal to the wall, such as may be encountered during the impulsive starting of a
solution. For wall or symmetry BC, all three vertices are used to compute the linearized

state whereas for all other BC, only the interior vertices are used.

In contrast to ghost cells commonly used in FV schemes, it is straightforward to
apply the ghost elements in corners. Vertex GV1 can be split into two separate vertices
and given different states if either the normals are different (at a corner) or the left and

right boundary conditions differ.

For all the problems considered in this thesis, this manner of imposing boundary con-

ditions has proven robust. However, we have experienced difficulty with other cases, such
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as the supersonic forward-facing step described by Woodward and Colella [66] and origi-
nally proposed by Emery [23]. For that problem, the solution can be impulsively started
with supersonic flow normal to the wall, but eventually negative density and pressure
will result behind the corner of the step. Robust handling of supersonic expanding flows
at walls is still elusive to our implementation and certainly requires more investigation.
Other options that may improve results at walls include setting the normal velocity to
zero in the ghost vertex (instead of reflecting it) and finely tailoring the linearized state
in the ghost elements. Another curiosity we have noticed, especially at walls, is that in-
stabilities may develop if the linearized state is computed from only one vertex (e.g., set
the linearized state to that of vertex V1 for elements GE1 and GE2). It seems necessary
to include information tangential to the boundary when computing the linearized state.
Hence, vertex V2 must be used to help compute the linearized state for element GE1 and

vertex V3 for element GE2.

4.3 Time Marching Algorithm

A simple explicit-Euler time-marching algorithm is used to advance the solution in time.
The time step in each element is computed as

QE

1
hE = Z
3]{:7%@5!?7

(4.1)

a restriction that ensures positivity for a scalar N scheme. For scalar equations, k..
is the maximum inflow parameter in the element. For matrix-distribution techniques,
Emaz is the maximum eigenvalue over all the K, ;cp matrices. For the scalar equations,
a Courant-Friedrichs-Lewy (CFL) number of 1.8 is used. For supersonic Euler solutions,
a CFL number of 1.5 is used. In all other flows, a CFL number of unity is used. CFL
numbers above unity were determined by trials and are acceptable in some cases because
the positivity condition is more restrictive than necessary (see Eq. (2.13) and the text

preceding it).
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4.4 Non-dimensional Variables

For solutions of the Euler equations, the state variables are all made non-dimensional by

u v (&
p=L . a=2L o= and &=L, (4.2)
Poo (00 Ao 50

where a denotes the speed of sound. Equation (1.1) is changed to

10U = <

and written with the non-dimensional variables given above instead of the dimensional
variables. The physical time step from solving (4.3) in an element is given by

BE

Qoo

h® (4.4)

where h¥ results from (4.1) applied to non-dimensional variables. For the most part,
using non-dimensional variables has no effect on the solution. However, errors from finite
floating-point precision were encountered during use of the GPU, and having all variables

at the same magnitude allows for better identification of the round-off errors.

4.5 Construction of High-Order RD Schemes

Schemes with an order of accuracy greater than two are constructed by following a
framework similar to that of finite-element theory. Abgrall and Roe [9] used such an
approach to increase the number of degrees of freedom in an element by inserting nodes
in the interior. This leads to the construction of P? and P? elements for third and
fourth order solutions, respectively. In this work, we adopt a slightly different per-
spective where reconstruction elements are defined as an ordered collection of primary
elements with the desired degrees of freedom. Figure 4.3 shows a reconstruction element
with 9 primary elements and 10 degrees of freedom (vertices) for a fourth-order solu-

tion. Although the primary elements should have an arrangement similar to that shown
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in Fig. 4.3, the reconstruction elements can have a com-
pletely unstructured connectivity. The solution is obtained
on the primary elements and the reconstruction elements
only serve to compute the high-order reconstruction. The
fluctuation over the entire reconstruction element is never of
interest. Ultimately, the same approach is taken by Abgrall

Figure 4.3 P3 recon- and Roe [9]; the different perspectives only affect the mo-
struction element consist-
ing of an ordered collec-
tion of primary elements

(shaded).

ment in the CFD process when P? elements are introduced.
In [9], extra degrees of freedom are introduced into a pre-
existing triangular mesh; in our case [29], it is at the time
of grid generation. All degrees of freedom are introduced as discrete unknowns before
starting the solution and retained afterwards. This allows for additional tailoring of the
mesh; the details are discussed later in this section. The results we present all have
fourth-order spatial accuracy but the technique can be extended to any desired order.
Note that alternative approaches to constructing high-order RD schemes do exist in the

literature [13, 16, 31, 32].

Lagrange basis functions are used to define a cubic interpolating polynomial for the
entire P? element. Within this Lagrange element, both the coordinates and the solution
are interpolated by the Lagrange basis functions. The solution is interpolated in the vari-
ables chosen for the linear state, (2.22) for advection and (3.6) for the Euler equations.
These polynomials are used to integrate the fluctuation and the linearized state in each
of the primary elements that are members of the reconstruction element. The Lagrange
basis functions provide C° continuity along the edges of the reconstruction-elements,
thereby ensuring consistent evaluations of the fluctuation through an edge. The coordi-
nates may be interpolated by Lagrange basis functions at the same order as the solution,
leading to iso-parametric Lagrange-elements [67]. This allows for curved edges in the

reconstruction elements so that they may be fitted to boundaries of the domain. Alter-
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natively, the coordinates may be linearly interpolated in each primary element leading

to sub-parametric Lagrange elements.

The Lagrange basis functions can be defined in canonical, Fig. 4.4, or natural, Fig. 4.5,
normalized coordinate systems. The canonical coordinates, ¢ and 7, are orthogonal while
the natural coordinates, L, Lo, and L, are related by the expression Ly + Lo + L3z = 1.
The symmetry of the natural coordinate system allows for application of triangular Gauss
quadrature rules [67]. All the integrations required in a primary element are performed
using numerical Gauss quadrature. For integration in a specific primary element, a
mapping is performed such that the natural coordinate system, typically normalized for

the reconstruction element, is instead normalized over the primary element. We define

the natural coordinates, normalized over a primary element, as Sy, Sg, and Sj.

Within each primary element, two quantities must be integrated: the linearized state

and the fluctuation. Components of the linearized state, here denoted by U, are given by

1
— [ UdQg,

U
Qe Je

(4.5)

where () is the area of the primary element. A sub-parametric Lagrange element is as-

sumed for computation of the linearized state and after transformation into a normalized
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primary element, 7', (4.5) becomes
- / U (Ly, Lo, Ls) A% . (4.6)
T

Equation (4.6) is integrated using a Gauss quadrature rule where @ defines the location
of Gauss point j in natural coordinates in a primary element and Ej = E(gj) The
linearized state is assumed to be no more than a linear function of the solution, and
therefore, four Gauss points are sufficient to ensure exact integration of each component.

The fluctuation is integrated over each face, F', (edge) by evaluating the line integral

¢ = [ Flow) iy)ds. (4.7)
F
In terms of the normalized parameter, s, the fluctuation is given by
1, dy. dx
F . .
= — F(Li,Ly,L3)- | ——=24+—7)d 4.8
¢ /_1 ( 1, L2, 3) < dS 1+ dS ) S, ( )

for a counter-clockwise integration around the element and with gj =S (s;) and Ej =

L(S;) at Gauss point j. The coordinate derivative dz/ds can be obtained from

d_x Oz dly N Ox dLs n Oxr dLs
ds 0Ly ds 0L, ds 0Ls ds

(4.9)

and similarly for dy/ds. At each Gauss point, the solution in linearized form is in-
terpolated and then used to compute F. For scalar advection, the flux, f (F in (4.7)
and (4.8)), is assumed to be no more than a quadratic function of the solution, u and,
because all problems considered herein have straight edges, the coordinate derivatives are
constants (i.e., giving sub-parametric Lagrange elements). Therefore, four Gauss points

are sufficient to ensure exact integration of the fluctuation along each edge,

0
(u3)2 <(i1xl) = degree 6 < 2(4) — 1.
N——" S

fi

For the Euler equations, the flux, F‘, may be up to a quartic function of the primitive

(linearized) variables and the possibility of curved edges is considered. Eight Gauss points
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are sufficient to ensure exact integration of the fluctuation,

@(%)2 = degree 14 < 2(8) —1.
F;

The high-order method only alters the integration of ¢¥ and the linearized state
within each primary element. The distribution of the fluctuation and the evolution of
the solution are the same in the primary elements as for standard second-order schemes.
The CRD technique is used to ensure conservation. This is especially important for
high-order schemes because (3.4) will certainly not hold true.

A unique characteristic of the high-order reconstruction is that, compared with a
typical high-order FV scheme [33], the interpolation is not necessarily centered around
a primary element. However, the asymmetry of the stencil allows for the solution in the
10 primary elements to be interpolated by one reconstruction, a process which should be
very efficient. Additionally, the impact of the high-order scheme on parallelization and
boundary conditions is minimal.

Currently, our approach to achieving high-order is very comprehensive in terms of
accuracy but does not weigh the accuracy gains against the computational expense.
For many of the algorithmic details, we have not thoroughly explored improving the
efficiency for a given level of solution error. Gains might be realized, for example, by using
a lower-or