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Abstract –The development of numerical models and tools which have operational space weather potential
is an increasingly important area of research. This study presents recent Canadian efforts toward the devel-
opment of a numerical framework for Sun-to-Earth simulations of solar wind disturbances. This modular
three-dimensional (3D) simulation framework is based on a semi-empirical data-driven approach to de-
scribe the solar corona and an MHD-based description of the heliosphere. In the present configuration,
the semi-empirical component uses the potential field source surface (PFSS) and Schatten current sheet
(SCS) models to derive the coronal magnetic field based on observed magnetogram data. Using empirical
relations, solar wind properties are associated with this coronal magnetic field. Together with a coronal
mass ejection (CME) model, this provides inner boundary conditions for a global MHD model which is
used to describe interplanetary propagation of the solar wind and CMEs. The proposed MHD numerical
approach makes use of advanced numerical techniques. The 3D MHD code employs a finite-volume dis-
cretization procedure with limited piecewise linear reconstruction to solve the governing partial-differential
equations. The equations are solved on a body-fitted hexahedral multi-block cubed-sphere mesh and an
efficient iterative Newton method is used for time-invariant simulations and an explicit time-marching
scheme is applied for unsteady cases. Additionally, an efficient anisotropic block-based refinement tech-
nique provides significant reductions in the size of the computational mesh by locally refining the grid
in selected directions as dictated by the flow physics. The capabilities of the framework for accurately cap-
turing solar wind structures and forecasting solar wind properties at Earth are demonstrated. Furthermore, a
comparison with previously reported results and future space weather forecasting challenges are discussed.
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1 Introduction

Space weather (SW) and its effects on technology have
become an important area of research over the past few decades.
The importance of the SW field is recognized not only by the
research community, but also by government and industry
stakeholders. This interest is driven by the fact that SW can
have adverse effects on space and ground-based technologies
such as spacecrafts, satellites, navigation systems, communica-
tions, pipelines and electric power grids. Since human activities
increasingly depend on such technology, SW poses a hazard to
modern society. In order to predict and mitigate the hazards of
SW, research and operational SW forecast activities have been

undertaken. For example, a number of forecast centres,
frequently established or supported by government organiza-
tions, monitor and forecast SW and its impacts.

Propagation of solar wind disturbances through interplane-
tary space and their subsequent arrival at Earth are certainly
one of the focuses of the SW forecast community. High-speed
solar wind streams and coronal mass ejections (CMEs)
(Howard, 2011; Webb & Howard, 2012; Richardson, 2018)
can cause geomagnetic storms and have a significant impact
on critical infrastructure. As the typical Sun-to-Earth propaga-
tion time for CMEs is 1–4 days, there is generally sufficient
time to provide an advanced or early SW warning based on
observations of the solar corona. Coronal holes, which are
acknowledged to be the source of high-speed solar wind, and
CMEs can be captured in the images of the solar corona and
provide information about possible adverse SW conditions.*Corresponding author: ljubomir.nikolic@canada.ca
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The development of large-scale space plasma simulations
has also been a focus of the scientific research community, par-
ticularly since the 1980s (see, e.g., Matsumoto & Sato, 1985).
Various efforts have been made to describe the solar wind
and propagation of transient phenomena, such as CMEs, using
physics-based global magnetohydrodynamics (MHD) models.
For example, Pizzo (1982) studied the structure of the solar
wind between 35 R0 and 1 AU using an idealized model of
the inner heliosphere. Here, R0 is the radius of the Sun.
Usmanov (1993) developed a fully three-dimensional (3D)
steady-state model of the solar corona and heliosphere using
magnetic field observations for Carrington Rotation (CR)
1682 and made comparisons with spacecraft observations at
1 AU. Lionello et al. (1998) also solved the MHD equations
to study the propagation of the solar wind in cylindrical geom-
etry. Linker et al. (1999) modelled the solar corona during
Whole Sun Month from 1 R0 to 30 R0 using photospheric field
observations as boundary conditions and compared results with
SOHO, Ulysses and WIND data. A parallel block-adaptive
numerical framework was developed for the global MHD sim-
ulation of space weather in a series of studies by Powell et al.
(1999), Groth et al. (2000), Roussev et al. (2003), Manchester
et al. (2004, 2008), Tóth et al. (2007, 2012) and van der Holst
et al. (2014). This global MHD model was first applied to the
simulation of the interaction between the solar wind and a plan-
etary magnetosphere by Powell et al. (1999). Moreover, Groth
et al. (2000) subsequently studied the propagation of a coronal
mass ejection (CME) in a steady background solar wind, using
an octupole model for the Sun’s magnetic field, a pressure pulse
for modelling the CME and source terms for the solar wind
acceleration and heating effects. The latter represented one of
the first global MHD simulation of a complete fully three-
dimensional space weather event, spanning the initiation of a
solar wind disturbance at the Sun’s surface to its interaction with
the Earth’s magnetosphere. In other follow-on studies, Roussev
et al. (2003) modelled the corona-heliosphere system by imple-
menting a continuous variation in the polytropic index in a radi-
ally outward direction from the Sun and Manchester et al.
(2004) used an idealized model of the steady state solar wind
conditions near solar minimum and the global MHD model to
study the propagation of a flux-rope-driven CME, making com-
parisons of the simulated results with coronagraph observations
of CMEs. Additionally, Tóth et al. (2007) and Manchester et al.
(2008) used synoptic magnetograms to model a CME event of
October 28, 2003 and made comparisons with observations.
The global MHD model of Powell et al. (1999), Groth et al.
(2000), Roussev et al. (2003), Manchester et al. (2004, 2008)
and Tóth et al. (2007) was also eventually extended to solve
other forms of the MHD equations, including the Hall MHD,
multi-fluid MHD, and radiative MHD models (Tóth et al.,
2012) and van der Holst et al. (2014) implemented a two-
temperature MHD model wherein low-frequency Alfvén wave
turbulence was modelled to account for coronal heating and
solar wind acceleration. The latter was used to simulate extreme
ultraviolet (EUV) images of CR 2107 and comparisons were
made to both SOHO and SDO observations.

In other global MHD modelling efforts, Riley et al. (2001)
decoupled the MHD simulation in the corona and heliosphere
using suitable polytropic indices for each model and subse-
quently used the coronal simulation as a driver for the

heliospheric calculation. The combined model was used to gen-
erate the heliospheric structure during CRs 1913, 1892 and
1947. Similarly, Odstrčil et al. (2002) studied CME propagation
using a resistive MHD model with a ratio of specific heats,
c = 1.05 for the coronal calculation up to 20 R0 and an ideal
MHD model with a ratio of specific heats, c = 5/3 for the helio-
spheric calculation. Lionello et al. (2009) performed MHD sim-
ulations of the corona using various coronal heating models and
reproduced observed multispectral properties of the corona.
More recently, Feng et al. (2010) employed a six-component
overset grid to study the background solar wind from Sun to
Earth during CR 1911 using line-of-sight photospheric field
observations and validated their MHD model using SOHO
and WIND observations. Feng et al. (2012) later added isotropic
block-based adaptive mesh refinement (AMR) capabilities to
this MHD-based model. Lastly, Merkin et al. (2016) developed
and applied an ideal MHD model to the heliosphere and a more
realistic MHD model to the corona where the latter contained
additional terms to account for radiative losses, coronal heating,
thermal conduction and magnetic resistivity.

Finally, Keppens et al. (2012) and Porth et al. (2014) have
developed the MPI-AMRVAC software, an open source toolkit
for parallel, block-adaptive global MHD simulations of solar
and non-relativistic astrophysical plasmas (a relativistic counter-
part of this software, BHAC, was also developed by Porth et al.
(2017) for solving the equations of ideal general-relativistic
magnetohydrodynamics and studying astrophysical phenomena
such as black holes). The MPI-AMRVAC software has been
applied to the study of the formation of prominences in the solar
corona using magnetic flux rope models of various levels of
complexity (Xia et al., 2012, 2013, 2014; Xia & Keppens,
2016; Zhou et al., 2018). More recently, the MPI-AMRVAC
software has also been used for the study of magnetic reconnec-
tion of solar flares and to simulate the trans-Alfvénic solar wind
from the Sun to the Earth using a solar wind model replicating
solar minimum conditions with artificial heating/cooling source
terms (Xia et al., 2018), and to study the effect of background
solar wind on breakout CMEs using solution-dependent AMR
with an ultrahigh-resolution to capture current sheets and
small-scale magnetic structures (Hosteaux et al., 2018).

Although significant advances have been made in under-
standing and predicting SW, from the solar phenomena which
are the source of SW to the SW effects on Earth and its mag-
netic field, more research is still needed to fill the gaps in under-
standing. Additionally, while SW remains a subject of on-going
research efforts, operational SW monitoring and forecasting
requires the development of new numerical models and compu-
tational tools which can be used in SW operations. The devel-
opment of the latter is not an easy task. Building a bridge
between research and operations and effective research-to-
operations transfer are identified as some of the key challenges
(Araujo-Pradere, 2009; Merceret et al., 2013; Folini, 2018). Fur-
thermore, the development of operationally oriented physics-
based numerical models, in particular Sun-to-Earth simulations,
requires significant computational effort. For this reason, a large
number of existing models used in SW forecast operations are
empirical and/or semi-empirical in nature.

It is well established that the interplay between the Sun’s
magnetic field and coronal plasma is the source of solar
disturbances and defines the structure of the solar corona. For
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this reason, SW forecasting using a physics-based numerical
approach requires information about the Sun’s magnetic field.
Due to the favorable signal-to-noise ratio, regular measurements
of the Sun’s magnetic field are restricted to a region close to the
Sun’s surface. Nevertheless, solar magnetograms observed from
the photospheric/chromospheric region can be used in combina-
tion with numerical models to derive estimates of the magnetic
field of the solar corona (Mackay & Yeates, 2012). Various
models can be used to determine the coronal field. They range
from simple models based on potential field theory (Altschuler
& Newkirk, 1969; Schatten et al., 1969; Schatten, 1971;
Altschuler et al., 1977; Zhao & Hoeksema, 1994), to more com-
plex MHD models. The so-called potential field source surface
(PFSS) model, proposed by Altschuler & Newkirk (1969), and
Schatten et al. (1969), represents the most widely used model
for the coronal magnetic field. Although relatively simple, the
PFSS model offers some advantages in comparison to a
MHD treatment of the solar corona. For example, PFSS numer-
ical models are computationally significantly less costly than
MHD descriptions. In coronal MHD simulations, the length
and time scales are very much smaller as compared to those
for interplanetary MHD simulations, beyond about 20 R0 from
the Sun, leading to rather high computational costs. Further-
more, as PFSS models neglect plasma dynamics, boundary con-
ditions for plasma properties such as the plasma density,
velocity and pressure are not required as in MHD models. Con-
versely, it is difficult to model phenomena such as coronal heat-
ing and solar wind acceleration in the corona using simple PFSS
models. Despite the limitations of PFSS models (e.g., they do
not include plasma dynamics), Riley et al. (2006) and Owens
et al. (2008) have found that the models give similar predictions
of the global topology of the coronal magnetic field as those of
more complete MHD models.

To simplify Sun-to-Earth solar wind numerical modelling
and to avoid the computationally intensive calculations associ-
ated with determining the coronal magnetic field, a combined
two-model approach is often adopted in a number of SW pre-
diction frameworks in which a semi-empirical data-driven
model is used to describe the solar corona, and a global
MHD model is used to describe the interplanetary space plasma
of the heliosphere. The coupling of the two models is typically
enforced at a radius of 20–30 R0 from the solar surface. The
inner boundary conditions for the global MHD model in this
case are straightforward to implement as the solar wind attains
its asymptotic super-Alfvénic speed by the time it reaches this
boundary. Such data-driven solar wind models are usually based
on the PFSS and Schatten current sheet (SCS) (Schatten, 1971)
models of the solar corona. While such models do not include
plasma dynamics and therefore cannot capture acceleration
behaviour and regions where the solar wind has slow, Alfvén,
and fast magnetosonic speeds, which depend on the magnetic
field topology (see, e.g., Keppens & Goedbloed, 2000), the
PFSS-SCS based solar wind models make use of empirical rela-
tions to associate solar wind plasma properties with the coronal
magnetic field (Wang & Sheeley, 1990; Wang et al., 1997; Arge
& Pizzo, 2000; Hakamada et al., 2002, 2005). The latter
includes the widely used Wang–Sheeley–Arge (WSA) empiri-
cal description of the solar wind (Arge & Pizzo, 2000; Arge
et al., 2003). For example, Detman et al. (2006) used a
PFSS-SCS model for the coronal magnetic field to drive an

heliospheric MHD model. A spherical coordinate grid was used
in the MHD model, covering 360� in longitude and 90� in lat-
itude. The ENLIL code (Odstrcil, 2003; Odstrcil et al., 2008) is
another example of a data-driven solar wind model. The global
MHD modelling in ENLIL for the simulation of solar wind
structures uses a fixed, uniform or non-uniform mesh, which
covers a latitudinal range of +60� to �60� and the full longitu-
dinal range of 360�. The WSA model is used in ENLIL to deter-
mine the solar wind speeds, and the solar magnetic field is
prescribed using the PFSS model in the region from the Sun’s
surface to 2.5 R0 and by the SCS model in the region beyond
2.5 R0 out to 21.5 R0. Baker et al. (2013) employed the
WSA-ENLIL code to reproduce solar wind observations from
the MESSENGER spacecraft in orbit around Mercury. ENLIL
also has the capability to model coronal mass ejections
(Taktakishvili et al., 2009, 2011). As another example of a
data-driven solar wind prediction framework, Shiota et al.
(2014) and Shiota & Kataoka (2016) used a PFSS model for
the coronal magnetic field calculations and a WSA model for
the solar wind speed to drive global MHD simulations in the
heliosphere from 25–30 R0 onwards using spherical Yin–Yang
grids (Kageyama & Sato, 2004).

It should be noted that, while many advances in the
understanding of SW phenomena have been made using the
preceding large-scale data-driven simulation codes, their imple-
mentation for operational solar wind and CME forecasting has
been rather slow and is still at a nascent stage. The ENLIL code
which operates at the Space Weather Prediction Center
(SWPC), National Oceanic and Atmospheric Administration,
USA, was the first large-scale MHD simulation code to be tran-
sitioned from research to operations in 2011–2012 (Parsons
et al., 2011; Steenburgh et al., 2014). This represented an impor-
tant advancement in SW forecasting. Since then, the ENLIL
code has also been implemented at the Korean Space Weather
Center and Met Office Space Weather Operations Centre
(UK). The ENLIL solar wind and CME simulations, provided
by SWPC, have been widely used by the SW forecast commu-
nity over the past several years.

While ENLIL simulations today represent an important part
of current forecasting efforts, it is also important to undertake
independent development, performance assessments, and model
improvements of solar wind – CME propagation forecast mod-
els and codes. For example, the European Heliospheric Fore-
casting Information Asset (EUHFORIA) was recently
developed by Pomoell & Poedts (2018). EUHFORIA also uses
a semi-empirical data-driven approach based on the PFSS, SCS,
and WSA models to describe the solar corona, and to provide
boundary conditions at 0.1 AU to a global MHD description
of the inner heliosphere. The computational domain in
EUHFORIA, with a uniform spherical mesh in all directions,
spans 360� in longitude and ±60� in latitude.

Sun-to-Earth solar wind modelling efforts have also been
recently undertaken in Canada. Canada is amongst the countries
most affected by SW effects, due to its high-latitude location
(see, e.g., Lam, 2011; Boteler, 2019), and there are on-going
efforts to both better understand and forecast SW. These efforts
include activities at the Canadian SpaceWeather Forecast Centre
(CSWFC), as well as research activities at various Canadian uni-
versities. This paper reports on the authors efforts to develop
a new integrated data-driven solar wind – CME numerical
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framework for SW forecasting which couples the coronal and
heliospheric subdomains. The primary aim of the study is to pro-
vide a flexible new testbed for SW research and advances, as
well as to provide a potentially powerful new forecasting tool
for solar wind disturbances. In the present configuration of the
proposed framework, the computation of the coronal magnetic
field is provided by a combination of the PFSS and SCS models
(Nikolić, 2017), with associated empirically-based expressions
for solar wind flow properties. For the global MHD description
of the heliosphere, a second-order-accurate upwind finite-
volume scheme (Ivan et al., 2011, 2013, 2015; Susanto et al.,
2013) is used to solve the governing ideal MHD equations on
a cubed-sphere mesh (Ivan et al., 2011, 2013, 2015) and this
finite-volume scheme is combined with the highly-scalable
and efficient parallel block-based anisotropic AMR technique
developed previously by Williamschen & Groth (2013), Freret
& Groth (2015) and Freret et al. (2019). As such, the proposed
data-driven solar wind – CME numerical framework presented
here includes combined capabilities which are not available in
other similar models of the solar wind. Firstly, Global Oscilla-
tion Network Group (GONG) synoptic maps of the photospheric
field are used to drive the PFSS model. This includes standard
and zero-point corrected QuickReduce synoptic maps, as well
as Air Force Data Assimilative Photospheric Flux Transport
(ADAPT) GONG maps. Additionally, the combination of an
advanced high-fidelity finite-volume scheme with parallel aniso-
tropic block-based AMR in the global MHD modelling allows
local solution-dependent adaptation of the mesh and affords sig-
nificantly increased mesh resolution. Furthermore, as mentioned
above, a cubed-sphere grid (Ivan et al., 2011, 2013, 2015) is
used. The latter avoids the singularities of spherical grids at
the poles and readily provides full coverage of the entire range
of solid angles associated with 3D space, including high-latitude
polar regions. Lastly, the solar wind simulations can be per-
formed in either the inertial or the Sun’s co-rotating frame of ref-
erence, offering considerable flexibility for SW modelling.

The organization of the remainder of this paper is as fol-
lows. The proposed domains and data-driven mathematical
modelling approaches adopted in the framework to describe
the solar wind and its disturbances are described in Section 2.
This includes the governing equations of the PFSS, SCS and
global MHD models. The numerical solution methods, includ-
ing a description of the GONG synoptic maps of the photo-
spheric field which are used to drive the simulations, the
second-order finite-volume spatial-discretization and time-
marching schemes which are used to solve the 3D form of
the ideal MHD equations, and the parallel block-based AMR
approach which provides an efficient and flexible computational
mesh and solution procedure for the global MHD model of the
inner heliosphere, are all presented in Section 3. Several exam-
ple numerical results are then discussed in Section 4 to illustrate
the capabilities of the proposed numerical framework. This
section includes simulation results obtained for a steady-state
background solar wind and an unsteady simulation based on
time-evolving synoptic maps performed to illustrate potential
solar wind forecasting capabilities. Finally, a discussion of solar
wind – CME simulations and challenges is provided in Sec-
tion 5. This includes also a comparison of current predictions
to previously reported simulation results. The paper concludes
with a summary of the results and findings in Section 6.

2 Simulation subdomains and mathematical
models of data-driven framework

As discussed in the introduction, the proposed numerical
framework for forecasting the solar wind and its disturbances
follows a scheme which is now commonly used in Sun-to-Earth
solar wind simulations. In particular, the space is divided into
coronal and inner heliosphere subdomains, with the boundary
between the two typically set at a radius of 20–30 R0 from
the Sun, where the solar wind speed is both supersonic and
super-Alfvénic (see, e.g., Usmanov, 1993; MacNeice et al.,
2018). Figure 1 provides an illustration of these simulation sub-
domains and indicates the various mathematical models used to
describe the solar wind in each region. A description of the
models for each domain now follows.

2.1 Solar corona

While the solar corona subdomain has been modelled using
MHD approaches (see, e.g., Riley et al., 2006), an established
semi-empirical approach is adopted herein to describe the coro-
nal magnetic field based on photospheric observations of the
magnetic field and the PFSS and SCS models, along with addi-
tional empirical expressions to associate the solar wind proper-
ties with the magnetic field (see, e.g., Odstrcil et al., 2008;
Shiota et al., 2014; Pomoell & Poedts, 2018).

2.1.1 Potential field source surface (PFSS) model

The PFSS model (Altschuler & Newkirk, 1969; Schatten
et al., 1969) is used to estimate the global magnetic field, B,

Fig. 1. Schematic diagram showing the subdomains and mathemat-
ical models used in each region in the proposed Sun-to-Earth data-
driven solar wind model. The PFSS model is used to describe the
coronal magnetic field from the Sun’s surface up to a spherical
surface where magnetic field lines are forced to open. From this
surface, which is usually placed at �2.5 R0, the SCS model describes
the coronal field up to 20–30 R0, where the inner MHD boundary
conditions are applied. A global MHD model is then used to describe
the solar wind plasma and its propagation through interplanetary
space in the inner heliosphere.
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of the solar corona from photospheric field observations. The
PFSS model is based on the assumption that there are no cur-
rents (j = 0) in the region between the Sun’s surface (r = R0)
and the so-called “source surface” (r = Rss), which means that
the magnetic field can be expressed as the gradient of a scalar
potential, W, as in

r� B ¼ 0 ) B ¼ �rW : ð1Þ

Along with the solenoidal property of the magnetic field,
r�B = 0, equation (1) leads to the Laplace equation for W

r2W ¼ 0 : ð2Þ

Using a separation of variables with W(r, h, /) = R(r)�(h)U(/)
in spherical coordinates, where h 2 [0, p] and / 2 [0, 2p], and
assuming that at the source surface, r = Rss, the magnetic field is
purely radial, i.e., W(Rss, h, /) = const., the solution of equation
(2) in the region R0 � r � Rss can be expressed as

W ¼
X1
n¼1

Xn
m¼0

Pm
n ðhÞðgnm cosm/þ hnm sinm/Þ

� R0
R0

r

� �nþ1

� Rss
R0

Rss

� �nþ2 r
Rss

� �n
" #

; ð3Þ

where Pm
n ðhÞ represent the associated Legendre polynomials

with Schmidt normalization (see, e.g., Nikolić, 2017). Using
equations (1) and (3), the components of the magnetic field
can be written as

Br ¼ � oW
or

¼
X1
n¼1

ðnþ 1Þ R0

r

� �nþ2

þ n
R0

Rss

� �nþ2 r
Rss
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" #

�
Xn
m¼0

Pm
n ðhÞðgnm cosm/þ hnm sinm/Þ; ð4Þ

Bh ¼ � 1
r
oW
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R0

r
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Rss
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Rss
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" #

�
Xn
m¼0

dPm
n hð Þ
dh

ðgnm cosm/þ hnm sinm/Þ; ð5Þ

B/ ¼ � 1
r sin h

oW
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¼
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n¼1
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r
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� R0

Rss
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�
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sin h
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The coefficients gnm and hnm, can be obtained using equation (4)
for the case r = R0, and employing the orthogonality of Legen-
dre polynomials

1
4p

Z p

0

Z 2p

0
Pm
n hð Þ cosm/

sinm/

� �
Pm0
n0 hð Þ cosm0/

sinm0/

� �
sin hdhd/

¼ 1
2nþ 1

dn0n d
m0
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The following expressions for gnm and hnm can be obtained:

gnm
hnm

� �
¼ 2nþ 1

4p nþ 1þ n R0
Rss

� �2nþ1
� � Z p

0
dh sin hPm

n ðhÞ

�
Z 2p

0
d/BrðR0; h;/Þ cosm/

sinm/

� �
: ð8Þ

Note that in equations (3)–(6), the term n = 0 is omitted,
since the condition that r�B = 0 requires that this term vanish.
As the radial component of the photospheric magnetic field,
Br(R0, h, /), of equation (8) can be derived from the observed
solar magnetograms, the coefficients gnm and hnm can be evalu-
ated from the magnetogram data, and the coronal field in the
region R0 � r � Rss can then be obtained using equations
(4)–(6).

2.1.2 Schatten current sheet (SCS) model

The PFSS model uses the current-free approximation of the
solar corona in the region R0 � r � Rss, and forces the magnetic
field lines to be radial at r = Rss. In order to include effects of
plasma currents and describe a non-radial coronal field structure,
Schatten (1971) proposed the introduction of a new spherical
source, at r = Rcp. From this surface, transverse currents are
allowed between regions of opposite polarity of the magnetic
field where the Lorentz force, j � B, is small. In the coupling
of the PFSS and SCS models, this surface can be at the same
location as the PFSS source surface, i.e. Rcp = Rss, or Rcp can
be set below Rss. A benefit of using Rcp < Rss is the removal
of kinks in the magnetic field lines at the interface of the models
(McGregor et al., 2008).

To derive the SCS coronal field for r > Rcp, the magnetic
field obtained by the PFSS model is first re-oriented at
r = Rcp to point outwards. This means that if Br(Rcp) � 0, no
changes are needed to the field, but if Br(Rcp) < 0, the signs
of magnetic field components Br(Rcp), Bh(Rcp) and B/(Rcp) are
reversed. The coronal magnetic field beyond Rcp is obtained
by matching this re-oriented field at r = Rcp with the potential
field solution for r � Rcp (see, e.g., Schatten, 1971; Nikolić,
2017), and thus

Br ¼
X1
n¼0

ðnþ 1Þ Rcp

r

� �nþ2Xn
m¼0

Pm
n ðhÞðg0nm cosm/þ h0nm

� sinm/Þ; ð9Þ

Bh ¼ �
X1
n¼0

Rcp

r

� �nþ2Xn
m¼0

dPm
n hð Þ
dh

ðg0nm cosm/þ h0nm

� sinm/Þ; ð10Þ

B/ ¼
X1
n¼0

Rcp

r

� �nþ2Xn
m¼0

Pm
n ðhÞ

m
sin h

ðg0nm sinm/� h0nm

� cosm/Þ : ð11Þ
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The role of the PFSS field re-orientation at Rcp is to provide
conditions, so that the derived coronal field beyond Rcp using
equations (9)–(11), consists strictly of open magnetic field lines.
After this field is derived, the final step is to assign proper polar-
ity to the field lines in the region r � Rcp using the polarity
obtained prior to the field re-orientation at Rcp. This sign restora-
tion of the magnetic field lines ensures that r�B = 0 is not vio-
lated. The resulting structure of the field implies that current
sheets are introduced between the magnetic fields of opposite
polarity.

2.1.3 Solar wind parameters at the inner MHD boundary

The boundary between the inner subdomain (solar corona)
and the outer subdomain (inner heliosphere) associated with
the global MHD modelling is defined here by a spherically-
shaped surface of radius r = Rinner where Rinner � Rss � Rcp.
This surface represents the inner boundary of the global
MHD model and, on this spherical shell, boundary conditions
are required for the magnetic field of the solar wind as well
as the solar wind plasma properties such as velocity, density,
and pressure. This boundary is typically defined to be in the
range between 20R0 and 30R0 (see, e.g., Usmanov, 1993;
MacNeice et al., 2018). In this range, the solar wind speed
has already reached its asymptotic value and is super-Alfvénic.
For example, Odstrcil et al. (2004a) investigated the coupling of
coronal and heliospheric simulation models with the boundary
located at both 25 R0 and 50 R0 and their findings justifies
the use of an interface boundary located at 25 R0.

The coronal magnetic field derived from the PFSS and SCS
models is used to directly specify the solar wind magnetic field
at the interface between the inner and outer subdomains at
r = Rinner. Additionally, the boundary values for the solar wind
velocity, density, and pressure are associated with this pre-
scribed magnetic field at r = Rinner using empirical correlations
based on solar wind observations. As mentioned before, in solar
wind numerical modelling, the WSA model (Wang & Sheeley,
1990; Wang et al., 1995; Arge & Pizzo, 2000; Arge et al., 2003;
Sheeley, 2017) is frequently used to correlate the solar wind
speed, VSW, with the magnetic field and is used here. In the
WSA model, VSW is taken to depend on the flux tube expansion
factor, fs, given by

fs ¼ jBðR0Þj
jBðRssÞj

R2
0

R2
ss

; ð12Þ

as well as the angular separation, hb, between an open mag-
netic field line foot-point and the coronal hole boundary at
the photosphere. A general form for the empirical relationship
between VSW and fs and hb used in WSA-type models is given
by

V SW ¼ a1 þ a2
ð1þ fsÞa3 a4 � a5 exp � hb

a6

� �a7� �� 	a8
km=s;

ð13Þ
where a1–a8 are empirical numerical coefficients (MacNeice,
2009). The latter are tunable parameters that depend on the
magnetogram source used to derive the coronal magnetic field
and calculation parameters.

In order to provide values for the plasma density and tem-
perature at Rinner, additional empirical relations as derived by

Hayashi et al. (2003) are also used. These additional empirical
correlations are based on Helios observations of the solar wind
and were used in previous MHD simulations in which the inner
boundary of the global MHD subdomain was specified at
Rinner = 50 R0 (Hayashi et al., 2003; Kataoka et al., 2009). Mod-
ified versions of these relations for a boundary Rinner = 25 R0
were subsequently derived by Shiota et al. (2014). These mod-
ified relations for the particle number density and temperature,
which depend on the solar wind speed, VSW, are given by

nðV SW Þ ¼ 4 62:98þ 866:4
V SW

100
� 1:549

� ��3:402
( )

cm �3;

ð14Þ

T ðV SW Þ ¼ 4c�1 �0:455þ 0:1943
V SW

100

� �
106 K; ð15Þ

respectively. The plasma mass density, q, can subsequently
be obtained from the particle number density by multiplying
with the proton mass mp, and the plasma thermal pressure p
can be obtained from the number density and temperature
using the ideal gas equation of state p = nkBT, where
kB = 1.38 � 10�23 J K�1 is the well-known Boltzmann
constant.

2.1.4 CME initialization at the inner MHD boundary

The preceding boundary conditions for the solar wind at the
inner MHD boundary are appropriate for representing the “qui-
escent” background solar wind as a function of the derived
coronal magnetic field; however, they cannot accurately repre-
sent large-scale transient solar wind features such as CMEs.
For the latter, additional boundary treatments are required.
CMEs are however extremely complex phenomena and their
numerical modelling is not an easy task. Fortunately, images
of the solar corona, such as coronagraphs from the LASCO
instrument on board the SOHO satellite, can provide an insight
into key properties of the CMEs and then simplified empiri-
cally-based theoretical models can be used in solar wind –

CME simulations to initiate these solar wind disturbances based
on the actual measured and estimated parameters from the
coronagraph data.

The so-called cone model of Xie et al. (2004) and Zhao
et al. (2002) is an example of a data-driven theoretical model
for CME initiation. This model has been implemented and used
in both the ENLIL (Odstrcil et al., 2004b, 2008) and
EUHFORIA (Pomoell & Poedts, 2018) simulation codes. In
the cone model, the CME is launched in the interplanetary sim-
ulation subdomain at Rinner as a time-dependent plasma cloud.
The onset time, location, angular width (i.e. diameter), and speed
of the plasma cloud are derived from CME observations, while
estimations of the plasma density and temperature are based on
additional assumptions. A weakness of the cone model is that the
plasma cloud introduced at the inflow boundary does not carry a
magnetic field. To include the magnetic field as part of the CME
modelling, Shiota & Kataoka (2016) proposed an alternative
model. The latter uses a spheromak-type flux rope description
for the magnetic field which is deformed into a “pancake” shape.
A model of this type was also recently implemented in
the EUHFORIA simulation code by Verbeke et al. (2019).

N.M. Narechania et al.: J. Space Weather Space Clim. 2021, 11, 8

Page 6 of 25



Similar to the cone model, the spheromak pancake CME model
requires input parameters such as the CME onset time, source
location (latitude and longitude), and propagation speed. Addi-
tional parameters are used to define the CME shape, including
the angular and radial widths of the CME. The magnetic proper-
ties of the CME are described using the toroidal magnetic flux,
chirality, and two parameters for the spheromak orientation: the
tilt and inclination (Shiota & Kataoka, 2016). As is the case with
the cone model, some of these CME parameters can be derived
directly from coronagraphs; however, the CME magnetic param-
eters, density, and temperature are generally difficult to infer
from observations. Shiota & Kataoka (2016) propose estimating
the CME magnetic flux using the class of the solar flare which is
associated with the CME. Additionally, estimates of the CME
density can be obtained from the SOHO LASCO CME catalog1,
based on several other approximations.

In the proposed integrated data-driven solar wind – CME
simulation framework described herein, the spheromak pancake
model of Shiota & Kataoka (2016) is used for CME initiation at
the inner boundary of the global MHD subdomain. In the pre-
sent modelling, it is assumed that the CME has a uniform den-
sity and pressure. The CME pressure is evaluated using the
density from the LASCO catalog and assuming adiabatic expan-
sion of the CME plasma from an initial temperature of 0.8 MK.

2.2 Inner heliosphere subdomain

To propagate the solar wind plasma and CMEs from the
inner boundary at r = Rinner and through the computational sub-
domain extending outward from r = Rinner representing inter-
planetary space in the inner heliosphere, a global 3D MHD
model is used based on the equations of ideal MHD. This global
MHD model provides a physics-based description of plasma
processes in the solar wind and is now briefly reviewed.

2.2.1 Ideal 3D MHD model

The ideal MHD equations describe the behaviour of a com-
pressible, perfectly electrically conducting, fully ionized, quasi-
neutral, inviscid, ideal gas and, as noted in the introduction, are
commonly used in the modelling of space plasmas. The equa-
tions of ideal MHD in non-dimensional weak conservative
form, for a rotating frame, are given by

oq
ot

þr � quð Þ ¼ 0; ð16Þ

o
ot

quð Þ þ r � quu� BBþ pT Ið Þ
¼ �q X� X� rð Þ½ � � 2q X� uð Þ � r � Bð ÞB; ð17Þ

oe
ot

þr � ðeþ pT Þu� ðu � BÞBð Þ
¼ �qu � X� X� rð Þ½ � � r � Bð Þu � B; ð18Þ

oB
ot

þr � Bu� uBð Þ ¼ � r � Bð Þu; ð19Þ
where q, u, e and B are the plasma density, velocity, speci-
fic total energy and magnetic field, respectively, t is time
and r is the position vector. For simulations performed in a
non-inertial rotating frame, X is the angular velocity of the
reference frame (i.e., the angular rate of rotation of the
Sun). The total pressure, pT, is given by

pT ¼ p þ B2

2
; ð20Þ

where p is the thermal pressure of the plasma and the total
energy e is given by

e ¼ qu2

2
þ p
c� 1

þ B2

2
; ð21Þ

with c = Cp/Cv being the ratio of specific heats. Equations
(16)–(19) can be expressed in matrix-vector form as

oU
ot

þr � F ¼ Qþ S; ð22Þ
where the vector of conserved variables, U, and the flux dyad,
F, are given by

U ¼

q

qu

e

B

2
6664

3
7775; F ¼

qu

quu � BB þ pT I
ðeþ pT Þ u� ðu � BÞB

Bu� uB

2
6664

3
7775; ð23Þ

and the source term for rotational effects, Q, and the vector
containing terms arising from expressing Faraday’s law in
divergence form, S, can be expressed as

Q ¼

0

�q X� X� rð Þ½ � � 2q X� uð Þ
�qu � X� X� rð Þ½ �

0

2
6664

3
7775; S ¼ �

0

B
u � B
u

2
6664

3
7775r � B;

ð24Þ
for which X � (X � r) is the centrifugal force and 2X � u is
the Coriolis force. The source term S is associated with the
enforcement of the divergence constraint on the magnetic field
using the approach as proposed by Powell (1994). Theoreti-
cally, as in the solar corona subdomain, the magnetic field
of the global MHD solutions would be expected to satisfy
the solenoidality condition r�B = 0 such that S = 0. However,
in the proposed finite-volume scheme used for the solution of
equation (22) as described in Section 3, this additional con-
straint is not strictly enforced. By retaining the terms con-
tained in S, the resulting system of conservation laws can
be shown to be formally both symmetrizable and Galilean-
invariant and also therefore hyperbolic with an eigenstructure
that is not degenerate. The application of the proposed finite-
volume scheme to equation (22) then ensures that the discrete
version of the divergence constraint for B is satisfied to the
order of the truncation error of the scheme and these diver-
gence errors are generally convected out of the computational
domain (Powell, 1994; Powell et al., 1999).

The preceding non-dimensional solution variables of
the ideal MHD equations can be related to their dimensional1 https://cdaw.gsfc.nasa.gov/CME_list/

N.M. Narechania et al.: J. Space Weather Space Clim. 2021, 11, 8

Page 7 of 25

https://cdaw.gsfc.nasa.gov/CME_list/


counterparts by q ¼ ~q=q0, u = ~u/a0, p ¼ ~p=p0, B = ~B/B0, X ¼
~Xðl0=a0Þ, t ¼ ~t=s0 and r = ~r/l0. Here, q0 = mp/cm

3 where
mp = 1.672 � 10�27 kg is the mass of a proton. The length scale
l0 is taken to be the radius of the Sun, l0 = R0 = 6.96 � 108 m.
The velocity scale is given by a0 = l0/s0 = 193.333 � 103 m/s
where the time scale is taken to be s0 = 1, h = 3600 s. The value
used to normalize the magnetic field is given by
B0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 q0 a02

p
= 8.8642 � 10�9 T where l0 = 4p �

10�7 H/m is the magnetic permeability of free space. The value
used to normalize the pressure is given by p0 = q0a02 =
6.252 � 10�11 Pa. The angular velocity of the Sun is taken
to be ~X = (2p/27.27) rad/day k̂ = 2.67 � 10�6 rad/s k̂.

3 Numerical solution methods

3.1 Synoptic maps of the photospheric field

Global Oscillation Network Group (GONG) magnetogram
synoptic maps2 are used herein to drive the PFSS model and
solar wind simulations. GONG provides 24 h coverage of the
Sun and is a reliable source of near real-time synoptic maps
of the photospheric field (Hill, 2018). For this reason, GONG
maps are frequently used in operationally oriented SW applica-
tions. This includes WSA-ENLIL at SWPC (Parsons et al.,
2011; Steenburgh et al., 2014), as well as EUHFORIA (Pomoell
& Poedts, 2018). The GONG magnetic products include stan-
dard QuickReduce magnetogram synoptic maps (“mrbqs” in
the GONG file name) and newer zero-point corrected
QuickReduce maps (“mrzqs” in the GONG file name).

The GONG maps are available in the Flexible Image Trans-
port System (FITS) data format and cover time starting from
September 2006. The inferred magnetic field is in units of Gauss
(1G = 10�4 T), and the maps are given on a uniform (sinhi, /j)
mesh with i 2 [1, 180] and j 2 [1, 360]. The synoptic maps pro-
vide the radial component of the photospheric magnetic field
Br(R0, h, /), which is used by the PFSS model to obtain the
coefficients gnm and hnm by means of equation (8).

Both standard and zero-point corrected maps can be used in
the proposed data-driven solar wind framework. Furthermore,
the framework can also be driven with ADAPT maps (Arge
et al., 2010). The latter are based on flux transport modelling
which promises better estimates of the global photospheric field
distribution. The standard GONG maps have been widely used
in other previous research (see, e.g., Shiota et al., 2014;
Steenburgh et al., 2014; Pomoell & Poedts, 2018). They have
also been used in operational WSA-ENLIL simulations. How-
ever, these standard maps, which have been available since
2006, show degradation of their accuracy over time. For exam-
ple, it was shown recently by Nikolić (2019) that the PFSS solu-
tions obtained using the standard GONG maps exhibit issues,
particularly in the polar regions since 2013. The issue with
the standard GONG maps can be attributed to background
(i.e., zero point) magnetic field variations. The zero-point cor-
rected GONG maps promise to reduce these false variations.
The zero-point error is reduced using a software system that
compares observations from different sites and in time, better
control of the liquid-crystal variable retarders, and a modified
data acquisition system (Hill, 2018).

The issues with the standard GONG maps have been recog-
nized by others in the community and the WSA-ENLIL simu-
lation model was recently upgraded to allow for the use of both
standard and zero-point corrected maps. In this study, the dif-
ferences between simulation results obtained using the standard
and zero-point corrected maps are highlighted and discussed.

3.2 Numerical solution of PFSS model

As is mentioned, the GONG maps are provided on a uni-
form sin(h) � / mesh. It has been shown by Tóth et al.
(2011) that PFSS model accuracy in polar regions can be
improved by re-meshing the maps on to a uniform (hi, /j) grid,
where i 2 [1, Nh] and j 2 [1, N/]. The new mesh includes the
poles and contains an odd number of hi points. Re-meshed
GONG maps with Nh = 181 and N/ = 360 are used in this
work. Linear interpolation is used to assign magnetic field val-
ues from the original GONG map to the re-meshed Br(R0, hi,
/j) synoptic map.

Following re-meshing, the coefficients gnm and hnm are then
determined by using a discretized form of equation (8) which
can be expressed as

gnm
hnm

� �
¼ 2nþ 1

4p nþ 1þ n R0
Rs

� �2nþ1
� �

� 2p
N/

XNh

i¼1

XN/

j¼1

�iwiPm
n ðhiÞBrðR0; hi;/jÞ

cosm/j

sinm/j

( )
;

ð25Þ
where �1 = �Nh

= 1/2, and �i = 1 for i 6¼ 1, Nh, and wi are
Clenshaw–Curtis weights given by

wi ¼ � 2
H

XH
k¼0

�0k
4k2 � 1

cos
pkði� 1Þ

H

� �
; ð26Þ

with H = (Nh � 1)/2, �00 ¼ �0H = 1/2, and �0k = 1 for k 6¼ 1, H
(see, e.g., Tóth et al., 2011; Nikolić, 2017).

Using equation (25) along with equations (4)–(6), the
magnetic field components can then be evaluated. Instead of
using an infinite sum (i.e., n ? 1) in equations (4)–(6), a
finite-number of harmonic coefficients are considered with the
maximum number of terms limited to N. In the present study,
a value of N = 120 is used which has been shown to ensure that
the numerical errors/artifacts in the resulting PFSS magnetic
field solutions are small (see, e.g., Nikolić, 2017). To generate
Pm
n ðhÞ and dPm

n ðhÞ=dh in equations (4)–(6), the following rela-
tions are used:

Rm
mðhÞ ¼

ð2� d0mÞð2mþ 1Þð2mÞ!� �1=2
2mm!

sinm h; ð27Þ

Rm
mþ1ðhÞ ¼ ð2mþ 3Þ12 cos hRm

mðhÞ; ð28Þ
along with the recursion relation

Rm
n ðhÞ ¼

2nþ 1
n2 � m2

� �1=2

ð2n� 1Þ12 cos hRm
n�1ðhÞ

h

� ðn� 1Þ2 � m2

2n� 3

 !1=2

Rm
n�2ðhÞ

3
5 for n � mþ 2;

ð29Þ

2 https://gong.nso.edu
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and Pm
n ðhÞ ¼ Rm

n ðhÞ=ð2nþ 1Þ1=2 (Altschuler et al., 1977;
Nikolić, 2017).

3.3 Numerical solution of SCS model

A least-squares procedure is used to fit the components of
the magnetic field given by equations (9)–(11) at Rcp in the
SCS model to the values arising from the PFSS model with
the field re-orientation Schatten (1971) and thereby determine
values for the coefficients g0nm and h0nm. Denoting the re-oriented
field at Rcp as B

cp
k (hi, /j), where k = 1, 2, 3 corresponds to the r,

h, /, coordinates, respectively, the magnetic field of the SCS
model is defined discretely on a uniform mesh with grid points
hi and /j (i 2 [1, I], j 2 [1, J]) and using a finite-number of har-
monics with maximum degree n = Ns. In the current study, val-
ues of I = 181, J = 360 and Ns = 10 are used. The coefficients,
g0nm and h0nm, of equations (9)–(11), are then determined in the
least-squares approach by minimizing the sum of squared resid-
uals, F, defined by

F ¼
X3
k¼1

XI
i¼1

XJ
j¼1

Bcp
k ðhi;/jÞ �

XNs

n¼0

Xn
m¼0

g0nmaknmðhi;/jÞ
�"

þh0nmbknmðhi;/jÞÞ�2; ð30Þ
such that oF=og0nm = 0 and oF=oh0nm = 0. In equation (30),
aknm and bknm are given by

a1nmðhi;/jÞ ¼ nþ 1ð ÞPm
n hið Þ cosm/j;

a2nmðhi;/jÞ ¼ �dPm
n hð Þ
dh





h¼hi

cosm/j;

a3nmðhi;/jÞ ¼ m
sin hi

Pm
n hið Þ sinm/j;

ð31Þ

b1nmðhi;/jÞ ¼ nþ 1ð ÞPm
n hið Þ sinm/j;

b2nmðhi;/jÞ ¼ �dPm
n hð Þ
dh





h¼hi

sinm/j;

b3nmðhi;/jÞ ¼ m
sin hi

Pm
n hið Þ cosm/j :

For each (m, n), the minimization of equation (30) results in a
linear system of equations for g0nm and h0nm which can then be
solved following some linear algebra. The solutions for g0nm
and h0nm can subsequently be used to define the SCS magnetic
field for r � Rcp. As a final step, the polarity of magnetic field
lines is restored in the r� Rcp region to match the polarity of the
R0 � r � Rcp coronal magnetic field solution of the PFSS
model.

3.4 Coupling of PFSS, SCS, and global MHD models

The locations of the coupling surfaces of the PFSS, SCS,
and global MHD models are in general free parameters in the
proposed integrated solar wind – CME framework. In the pre-
sent study, the PFSS and SCS models are coupled on a surface
of radius r = Rcp = Rss = 2.5 R0 and the inner boundary of the
global MHD model is placed at r = Rinner = 25 R0. Equations
(13)–(15) are then used to provide the solar wind plasma prop-
erties at Rinner. The WSA relation of equation (13) with
a1 = 250, a2 = 875, a3 = 0.2, a4 = 1, a5 = 0.8, a6 = 2.6,
a7 = 1.25 and a8 = 2.5 is used. For the properties needed for

the open magnetic field lines, fs and hb, a second-order
Runge-Kutta method to trace the field lines is used.

For the global MHD model, a suitable coordinate transfor-
mation and linear interpolation is used to map the solution
obtained from the combined PFSS-SCS modelling on to a (h,
/, t) grid representing the inner boundary of the MHD model.
This can be done for both non-inertial co-rotating and non-
rotating inertial frames which account for the solar rotation.
For calculations performed in the Sun’s co-rotating frame, the
variables at the inner boundary of the MHD model are taken
to be fixed for a given synoptic map. The latitudinal component
of the solar wind velocity is assumed to be zero, i.e. Vh = 0,
while the radial component of the solar wind velocity Vr is
obtained directly from equation (13). Additionally, in this co-
rotating frame, the longitudinal component is also taken to be
zero, i.e. V/ = 0. The radial component of the magnetic field
at the inner boundary of the MHD model is obtained from
the SCS model. The latitudinal and longitudinal components
are assumed to be zero, i.e., Bh = 0 and B/ = 0. A modified pro-
cedure with interpolation is adopted for the non-rotating case to
account for the time-dependent nature of the solar wind plasma
properties at the inner boundary (Hayashi, 2012).

3.5 Solution-adaptive upwind finite-volume scheme
for ideal MHD equations

3.5.1 Spatial discretization and semi-discrete form

In the proposed Godunov-type upwind finite-volume
scheme (Godunov, 1959; Toro, 2013) for solving the ideal
MHD equations of equation (22), the spatial discretization is
accomplished herein by applying a second-order cell-centered
finite-volume scheme (Ivan et al., 2011, 2013, 2015; Susanto
et al., 2013). Application of this discretization procedure to
the integral form of the governing MHD equations for a control
volume as defined by a hexahedral computational cell, (i, j, k),
of a structured 3D grid (see Fig. 2) results in the following semi-
discrete form:

dUi;j;k

dt
¼ �Ri;j;kðUÞ

¼ � 1
V i;j;k

XNfi;j;k

f¼1

Ff : nf�Af

� �
i;j;k

þ Si;j;k

V i;j;k

�
XNfi;j;k

f¼1

Bf : nf�Af

� �
i;j;k

þQi;j;k; ð32Þ

where Ui,j,k is the average value of the conserved solution vec-
tor for cell (i, j, k), and Ri,j,k is called the discrete residual rep-
resenting the sum of the face fluxes for cell (i, j, k), as well as
the contributions of the volume sources. Here, Nfi;j;k represents
the number of faces for the cell and Nfi;j;k = 6 for hexahedral
computational cells. The variables Vi,j,k, Si,j,k, Qi,j,k denote
the cell volume, Powell source term and rotational effect
source term, Ff, Bf, nf and DAf are the flux vector, magnetic
field vector, outward pointing unit normal vector and the area
of the cell face, f, respectively. For the evaluation of the
inviscid fluxes, limited piecewise-linear least-squares
reconstruction is used for calculating the primitive flow vari-
ables at each cell face. A Riemann-solver-based function
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(Godunov, 1959; Toro, 2013), namely the so-called HLLE
approximate Riemann solver proposed by Einfeldt (1988)
based on the HLL flux function of Harten et al. (1983), is then
used for evaluation of the inviscid fluxes at the cell faces.

3.5.2 Newton method for steady solar wind flows

Steady-state or time-invariant solutions of the semi-discrete
form of the governing equations given by equation (32) satisfy a
large coupled system of non-linear algebraic equations for all
computational cells in the mesh given by

dU
dt

¼ �RðUÞ ¼ 0; ð33Þ
and an iterative technique based on Newton’s method can be
effective in their solution. In particular, the parallel inexact
Newton’s method developed by Northrup & Groth (2013) is
used. Application of Newton’s method to the solution of equa-
tion (33) yields a system of linear equations of the form

oR
oU

� 	
�UðnÞ ¼ J�UðnÞ ¼ �RðUðnÞÞ; ð34Þ

where U(n) is the solution change associated with the nth iter-
ation and successively improved estimates of the solution to
the non-linear equations satisfy

Uðnþ1Þ ¼ UðnÞ þ�UðnÞ; ð35Þ
and where J = oR/oU is the Jacobian of the solution residual.
Given an initial estimate of the solution, U(n=0), the linear sys-
tem given by equation (34) is solved repeatedly and the solu-
tion updated at each step, n, of Newton’s method until the
solution residual is deemed to be sufficiently small, i.e.,
||R(U)|| < � where � is a user-defined tolerance. A value of
� = 10�8 is used for this work. A slightly modified version
of the scheme outlined above, based on the switched evolu-
tion/relaxation (SER) approach as proposed by Mulder &
van Leer (1985), can be used here to aid in the global conver-
gence of the Newton method.

The system of linear equations represented by equation (34)
is both non-symmetric and sparse and also typically very large.
As such, Krylov subspace iterative methods can be very effec-
tive in determining their solution. A “matrix-free” or “Jacobian-
free” version of the generalized minimum residual (GMRES)
method originally developed by Saad & Schultz (1986) is used
here to obtain solutions to equation (34). For the GMRES
method to be effective, preconditioning is required and an

additive Schwarz global preconditioner is used in conjunction
with block incomplete lower-upper (BILU) local precondition-
ing (Northrup & Groth, 2013).

3.5.3 Explicit time-marching scheme for unsteady solar
wind flows

For time-dependent or unsteady solar wind flows, solutions
of the coupled system of non-linear ordinary differential equa-
tions (ODEs) represented by the semi-discrete form of the
governing equations given by

dU
dt

¼ �RðUÞ; ð36Þ
are sought. A standard explicit, two-stage, second-order accu-
rate, Runge–Kutta time-marching scheme (Butcher, 1996;
Lomax et al., 2013) is used here to evolve the solutions of
the ideal MHD equations forward in time.

3.5.4 Anisotropic block-based AMR

The hexahedral computational cells of the global MHD grid
are contained within multi-block body-fitted structured grids
that permit a general unstructured connectivity of the grid
blocks thereby readily allowing the use of cubed-sphere grids
(Ivan et al., 2011, 2013, 2015). The proposed multi-block grid
structure also readily facilitates automatic, solution-dependent,
local adaptation of the mesh (Williamschen & Groth, 2013;
Freret & Groth, 2015; Freret et al., 2019), and leads to efficient
and scalable parallel implementations of the solution algorithm
on distributed memory high-performance computing systems.
In the proposed approach, the computational domain is divided
into subdomains or “grid blocks”, where each block contains a
predefined number of cells. During anisotropic refinement, the
blocks can be divided into two, four, or eight blocks, thereby
doubling the mesh resolution in preferred directions as dictated
by solution-dependent refinement criteria. Coarsening of the
mesh is accomplished by reversing this process. The particular
form of the anisotropic block-based AMR scheme adopted here
(Williamschen & Groth, 2013; Freret & Groth, 2015; Freret
et al., 2019) has been shown to be highly efficient in reducing
the overall mesh size for a given flow problem.

The data structure used to store the grid-block connectivity
is a hierarchical flexible binary tree. This data structure not only
provides the connectivity between individual blocks but also the
level and sequence of block refinements associated with the
computational mesh. Figure 3 depicts the grid block structure
and the resulting binary tree after several refinements of an ini-
tial mesh consisting of a single grid block. Note that the binary
data structure is relatively light and compact in terms of mem-
ory, as it only has to account for the connectivity between
blocks and not the individual cells. This light storage require-
ment for connectivity readily allows for dynamic and local
refinement of the mesh and, combined with the self-similar nat-
ure of grid blocks, leads to efficient and highly scalable imple-
mentations of the combined finite-volume scheme and AMR
procedure on high-performance parallel computing systems
using domain decomposition (Gao & Groth, 2010; Gao et al.,
2011; Freret & Groth, 2015).

Each grid block of the computational mesh is surrounded by
two layers of ghost cells which carry solution information from

Fig. 2. Hexahedral cell at grid location i, j, k showing face normals.
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the neighboring blocks. This information is exchanged via mes-
sage passing procedures between neighbouring blocks and
allows for the simulation and update of the solution to proceed
on each block in an independent fashion. In this implementa-
tion, which allows for the use of heterogeneous neighbouring
blocks, the ghost cells for a given block are stored at the same
refinement level as the neighbouring blocks and no restriction
and prolongation procedures are required since the least-squares
reconstruction that is used automatically handles irregular sten-
cils with varying grid resolution (Freret & Groth, 2015; Freret
et al., 2019). This heterogeneous approach is illustrated in
Figure 4. The domain in Figure 4 consists of 8 blocks adjacent
to each other as shown in Figure 4a. The ghost cells for the
block of interest at the centre, ID, are shown in Figure 4b.
The ghost cells and their solution values are directly provided
by the neighboring blocks. This eliminates the need for prolon-
gation of cell-averaged values from coarser to finer cells and
restriction from finer to coarser cells, when exchanging informa-
tion between blocks. When there are non-conforming cells or
so-called “hanging nodes” where neighbouring blocks meet,
the fluxes through the non-conforming faces are calculated in
a systematic way, in a manner that is the same for neighbouring
blocks, so as to maintain the conservation properties of the
finite-volume scheme (Freret & Groth, 2015; Freret et al.,
2019). In this way, the need for flux correction strategies to
ensure the conservation properties of the scheme at block inter-
faces with resolution changes is also completely eliminated.

4 Simulation capabilities of the numerical
framework

In this section, the capabilities of the proposed data-driven
solar wind – CME prediction framework are demonstrated by
considering two representative simulations. In the first example,
a steady-state simulation representing a relatively quiescent
solar wind is examined based on a single standard GONG syn-
optic map. The inexact Newton’s method discussed in
Section 3.5.2 was used to obtain the steady-state solution and
this example is used to illustrate both the effectiveness of the
fully converged steady Newton solutions and the efficiency of
the anisotropic AMR method in capturing the current sheet.
In the second example, multiple synoptic maps were used to
produce an example of an unsteady solar wind simulation and
provide a forecast of the solar wind conditions at Earth. For this

unsteady simulation, the second-order, explicit, time-marching
scheme described in Section 3.5.3 was used and the predictions
of the solar wind speed, density, and magnetic-field predictions
are compared with available observations. Both simulations
were performed in the co-rotating frame of the Sun and a
cubed-sphere computational mesh was used (Ivan et al., 2011,
2013, 2015) which initially consisted of 144 blocks, with each
block containing 8 � 8 � 8 = 512 cells. A portion of the initial
mesh is shown in Figure 5. To accurately capture the current
sheet, the gradient of the magnetic field weighted with the
square of the radial distance from the center of the Sun, r(|B|r2),
was used as the criterion for the anisotropic mesh adapta-
tion. The weight r2 was introduced to account for the fact
that in a supersonic spherical outflow with constant velocity,
the magnetic field strength rapidly decreases in proportion
to 1/r2 in the radially outward direction. Blocks having

Fig. 3. Schematic diagram of binary tree and corresponding 3D grid-
block structure of computational mesh after several levels of
refinement.

Fig. 4. Schematic diagram of heterogeneous grid-block structure
showing (a) the grid block of interest, marked ID, and the associated
neighbouring blocks; and (b) the ghost cells of block ID taken
directly from the neighbouring blocks.

Fig. 5. Portion of the initial cubed-sphere mesh used in the
simulation of both the steady and unsteady solar wind. The inner
boundary of the global MHD subdomain is shaded in green. The
thicker black lines are the grid block edges and the thinner red lines
are the edges of the computational cells. Each block contains
8 � 8 � 8 = 512 cells and the total number of grid blocks is 144 for a
total number of 144 � 512 = 73,728 computational cells.
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gradients higher than a predefined refinement threshold were
flagged for refinement while those with gradients below a
predefined coarsening threshold were flagged for coarsening.
A maximum refinement level of seven was imposed for both
simulations, with zero being the initial mesh refinement le-
vel, for a total of eight levels.

4.1 Steady solar wind simulation

For the steady solar wind case, a single standard GONG
synoptic map was used as the input for the coronal model cal-
culations and PFSS and SCS models. In particular, the GONG
map for 12 February 2007 (11:54 UT) was used. The resulting
surface plots of the predicted radial component of the magnetic
field, solar wind speed, plasma density, and thermodynamic
pressure at the inner MHD boundary, r = 25 R0, are shown in
Figure 6. Here, the central meridian and sub-Earth locations
are denoted with dash–dot line and dash–dash line, respectively.
The current sheet across which the magnetic field changes sign
can be distinctively seen in Figure 6a. The higher density
plasma originates from the region of the current sheet as can
be seen in Figure 6c. The fast high-pressure solar wind origi-
nates mainly from the higher latitudes closer to the poles as
can be seen in Figures 6b and 6d.

Using the inflow boundary conditions arising at r = 25 R0
shown above and after obtaining the time-invariant ideal
MHD solution on the initial mesh, seven successive refinements
of the global MHD mesh were performed and a fully converged
solution was obtained on each mesh using the proposed inexact
Newton’s method. The final mesh after 7 refinements contained

a total of 45,799 blocks, that is 45,799 � 512 = 23,449,088
cells, �23.5 million cells. A total of 2048 intel processor cores
were used over 3 h to perform the entire simulation. A conver-
gence plot of the global MHD computations on the 8 successive
meshes showing the density residual as a function of the number
of Newton steps is given in Figure 7. It can be seen that a fully
converged steady state solution was obtained on the final mesh
comprising 23.5 million cells in a total of about 1200 iterations,
with an average of about 150 iterations per mesh level.

Figure 8 shows the predicted contours of |B|r2 at the outer
boundary r = 225 R0 (�1.05 AU) of the computational domain

Fig. 6. Surface plots of the estimated solar wind properties at r = 25 R0 for the steady solar wind simulation obtained using the standard GONG
map for 12 February 2007 (11:54 UT). The central meridian and sub-Earth locations are denoted with dash-dot and dash-dash line, respectively.

Fig. 7. Convergence history of density residual for steady solar wind
simulation showing convergence of Newton method on the sequence
of anisotropic AMR meshes.
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on meshes obtained after each successive adaptive mesh refine-
ment. With each refinement, there is an increase in the number
of blocks in the vicinity of the current sheet. The proposed ani-
sotropic AMR proves to be both very effective and efficient in
capturing the discontinuous nature and complex topology of the
current sheet by refining extensively only across the current
sheet while keeping the grid resolution low along the current
sheet surface. Figure 9 shows contours of |B|r2 and the compar-
ison between the structure of the current sheet on xz- and yz-
slices of the computational domain on the initial and final
meshes. This comparison qualitatively shows how the current
sheet is captured not only at the outer boundary but throughout
the entire computational domain. Finally, Figure 10 shows a
comparison between contours of |B|r2 and magnetic field lines
on a portion of the ecliptic plane (xy-plane) on the initial and
final meshes. On the initial mesh, the oppositely directed lines
across the current sheet artificially reconnect due to numerical
diffusion. On the final mesh, these oppositely directed field lines
do not exhibit reconnection and are predicted to lie very close
together on either side of the narrow current sheet, accurately
capturing the magnetic field discontinuity across the sheet.
Without the anisotropic AMR approach, it would be extremely
computationally expensive to obtain such high-quality ideal
MHD solutions of the solar wind unless a much higher number
of grid points were used.

The predicted distributions of the magnitude of the solar
wind velocity obtained on the final mesh for each of the three

Cartesian planes are shown in Figure 11. The slow and fast
streams of the simulated solar wind can be clearly identified
here. The fast solar wind emerges mainly from the polar regions
of the Sun while the slow solar wind emerges mainly from the
region near the solar equator for periods of low solar activity.
The green-coloured sphere, denoted with an E, represents the
approximate location of the Earth. Finally, Figure 12 provides
the predicted contours of |B|r2 in the ecliptic xy-plane of the
Sun–Earth system obtained on the final mesh along the isosur-
face of the current sheet lying on the northern side of the plane.
The Parker spiral (Alfvén, 1957; Parker, 1958) can be clearly
seen in the ecliptic plane of both Figures 11 and 12.

4.2 Unsteady solar wind simulation

In the example of an unsteady solar wind simulation with
time-dependent inner boundary conditions for the global
MHD model considered here, a sequence of 64 consecutive
standard GONG magnetogram synoptic maps was used to esti-
mate the coronal magnetic field and solar wind parameters at the
inner boundary of the MHD subdomain. These synoptic maps
were obtained over a span of 16 days starting from 18 January
to 2 February, 2007. Four magnetograms per day were used
with an interval of typically 6 hours between any two consecu-
tive maps. The first synoptic map was dated 18 January (5:54
UT), while the last magnetogram was dated 2 February
(23:54 UT). To illustrate time-dependent behavior of the solar

Fig. 8. Predicted contours of |B|r2 at the outer boundary r = 225 R0 (�1.05 AU) of the computational domain after 0, 2, 4, and 7 refinements.
The black lines are the block boundaries.
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wind properties at the inner boundary of the global MHD sub-
domain, surface plots of the estimated radial component of the
magnetic field obtained at r = 25R0 using the PFSS and SCS
models, along with the corresponding solar wind speed obtained
using the WSA relation are given in Figure 13. The results
shown in the figure correspond to the GONG maps for 22
and 26 January 2007 (5:54 UT). The central meridian and
sub-Earth positions are indicated in Figure 13 with dash–dot
and dash–dash lines, respectively. It is evident from the surface
plots of Figure 13 that, due to the Sun’s rotation, there is a

lateral shift in the location of the current sheet between 22
and 26 January. Furthermore, while the location of the high-
speed solar wind sources evolves with time, looking at the equa-
torial sources, it is also evident that there are changes in the
source area itself.

To initiate the unsteady simulation for the sequence of 64
synoptic maps, a steady-state solution corresponding to the first
synoptic map was first obtained on the initial mesh and 7 adap-
tive mesh refinements were subsequently applied to obtain the
starting initial solar wind solution. The proposed Newton

Fig. 9. Predicted contours of |B|r2 in the xz-plane (top) and yz-plane (bottom) for the initial (73,728 cells) (left) and final (23,449,088 cells)
(right) meshes showing capturing of the current sheet. The black lines are the block boundaries.

Fig. 10. Portion of the xy-plane (ecliptic plane) showing the predicted contours of |B|r2 and magnetic field lines on initial (73,728 cells) (left)
and final (23,449,088 cells) (right) meshes.
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method was used to obtain this initial solution. After this, the
simulation was advanced in time until the date of the last mag-
netogram using the explicit second-order time-marching
scheme. The inner boundary conditions for the global MHD
subdomain were continuously updated using linear interpolation
between successive synoptic maps. Adaptive mesh refinement
and coarsening was periodically applied to the solution after
every 60 time-steps and a Courant–Friedrichs–Lewy number
of 0.3 was used throughout the simulation.

Figures 14a and 14b show the predicted contours of |B|r2

and the isosurfaces of the current sheet obtained on intermediate
adapted meshes for 26 January (5 pm UT) and 31 January (11
pm UT), 2007, respectively. Figure 15 provides the predicted
distributions of the magnitude of the solar wind velocity in
the ecliptic plane at various instances in time during the unstea-
dy simulation. The dates and approximate times of these snap-
shots are: (a) 23 January (12 pm UT); (b) 25 January
(1 pm UT); (c) 27 January (10 am UT); and (d) 29 January
(10 am UT). The sizes of the cubed-sphere AMR mesh at these
times are: 5,569,024 cells as shown in Figure 15a; 13,434,880
cells as depicted in Figure 15b; 9,246,720 cells as given in
Figure 15c; and 8,822,272 cells as shown in Figure 15d. The
brown-coloured sphere in the figure represents the position of
the Earth at each instance in time. Note that, in the co-rotating
reference frame, the Earth moves in a clockwise direction at the
rate of (2p/27.27) rad/day.

The time evolution of the solar wind velocity, plasma den-
sity, and magnetic-field strength at the Earth can be obtained
from the unsteady simulation. In Figure 16, these predicted
quantities are compared to available ACE satellite observations.
The predicted sharp increase in the solar wind speed depicted in
Figure 16a agrees qualitatively well with the ACE satellite
observations. This increase in solar wind speed is also reflected
in the snapshots provided in Figure 15 where the Earth is
observed to move into the faster solar wind at later times during
the simulation, i.e., sometime just after the snapshot of
Figure 15c. It is also evident that the rapid increases and peaks

in the predicted temporal variations of the plasma number den-
sity and magnetic-field strength of Figure 16 are also in rather
good agreement with the other corresponding ACE satellite
observations.

5 Solar wind – CME simulations and
forecasting

The previous section illustrates some of the capabilities of
the proposed data-driven solar wind – CME framework for
SW forecasting. In the examples given, synoptic maps from a
relatively quiet period of solar activity were used to directly
drive the simulations and, as illustrated by the comparisons of
Figure 16, good agreement between the simulation results and
observations can be obtained. The agreement between predicted
solar wind properties and observations, such as those shown in
Figure 16, can be further improved, for example, by re-tuning
the empirical solar wind relations of equations (13)–(15). How-
ever, while re-adjusting empirical relations can help a particular
simulation case, the operationally oriented solar wind – CME
framework should perform well during periods of low solar
activity, when high-speed streams dominate, as well as during
an active period when CMEs play a significant role. Frequently,
forecasting models are tuned and tested using datasets from a
relatively small time window of solar activity, in comparison
to the longer 11-year solar activity cycle. For example, the
GONG standard magnetogram synoptic maps are available
from late 2006 and the WSA-ENLIL code, which uses these
maps, was transitioned to SWPC operations in 2011 (Parsons
et al., 2011).

The forecasting accuracy of numerical models can change
as the solar cycle progresses. The changes in the accuracy can
not only be due to the fact that the solar activity changes, but
also due to changes in the input data quality. Recently, for
example, solutions of the PFSS and SCS models based on stan-
dard GONG maps have been investigated by Nikolić (2019) for
the period from 2006–2018. It was shown that the area of the
coronal holes, which are known to be sources of the high-
speed wind, derived using the standard GONG maps exhibits
significant deviations after 2013, particularity in high-latitude
regions. As already mentioned in Section 3.1, the standard
GONG maps have been widely used in research and operational
solar wind models and their performance assessments (see, e.g.,
Hinterreiter et al., 2019). Since these synoptic maps exhibit sig-
nificant zero-point error, using the zero-point corrected GONG
maps to derive the coronal magnetic field in the solar wind mod-
els should be considered.

To illustrate the differences between standard and newer
zero-point corrected GONG maps, the coronal holes arising
from the PFSS and SCS models and the corresponding solar
wind speed maps obtained using the WSA relation (13) are
shown in Figure 17 as obtained using (a) the standard GONG
map and (b) the zero-point corrected GONG map. Both maps
are for 25 June 2015 (01:04 UT). The map time is associated
with the central meridian which is denoted in the figures by
the dash-dash line while the dash-dot line denotes projections
of the Earth onto the map at different times. The estimated coro-
nal holes represent foot points of open magnetic field lines at the
photosphere. Here, 1/Fs is associated with coronal holes and the

Fig. 11. Predicted distributions of the magnitude of the solar wind
velocity obtained on the final mesh (23,449,088 cells) after 7
successive anisotropic adaptive mesh refinements. The black lines are
the block boundaries. The green-coloured sphere, E, corresponds to
the approximate location of Earth.
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predicted contours of this quantity are shown in the figure. The
quantity, Fs, represents the flux tube expansion factor of a mag-
netic field line multiplied with its magnetic field polarity, i.e.
Fs = sign(Br(R0)) fs. In Figure 17, 1/Fs is saturated at ±0.1,
and the red and blue color represent the magnetic field
lines which are pointed away from and toward the Sun,
respectively.

The results shown in Figure 17a were computed using the
same standard GONG synoptic map as in Pomoell & Poedts

(2018). A comparison of the current results with Figure 4 of this
previous study, reveals a very good agreement between the esti-
mated coronal holes of the standard map. It is evident in this
case that the southern coronal hole does not cover all of the
south polar region. However, as can be seen in Figure 17b,
use of the zero-point corrected map in the PFSS model produces
a southern coronal hole that occupies the entire polar region.
Furthermore, there are also some differences in the low latitude
coronal holes predicted by the two maps and some portions of

Fig. 13. Surface plots of the estimated radial component of the magnetic field obtained at the inner boundary r = 25 R0 obtained using the PFSS
and SCS models with synoptic maps for 22 and 26 January 2007 (5:54 UT), and the corresponding solar wind speed obtained using the WSA
model. The central meridian and sub-Earth locations are denoted with dash-dot and dash-dash line, respectively.

Fig. 12. (a) Predicted contours of |B|r2 in the ecliptic xy-plane obtained on the final mesh (23,449,088 cells) along with (b) the isosurface of the
current sheet lying on the northern side of the plane. The black lines correspond to the grid block boundaries.
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the northern coronal holes, present in the results for the standard
map, are missing from the results of the zero-point corrected
map. As can be seen from the corresponding solar wind speed
maps of Figure 17, the differences in the coronal holes
representing the open magnetic field lines obtained using stan-
dard and zero-point corrected GONG maps can also result in

significantly different inputs to the inner boundary of global
MHD interplanetary simulations. Note that, in Figure 17, the
contour plots of the solar wind speed is saturated below 300
km/s and above 800 km/s.

As further illustration of the capabilities of the proposed
data-driven solar wind – CME numerical framework and to

Fig. 15. Solar wind speed on the ecliptic plane at various time instances. The dates and approximate times are (a) 23 January (12 pm UT)
(5,569,024 cells), (b) 25 January (1 pm UT) (13,434,880 cells), (c) 27 January (10 am UT) (9,246,720 cells), and (d) 29 January (10 am UT)
(8,822,272 cells). The brown spot indicates the approximate location of the Earth.

Fig. 14. Predicted contours of |B|r2 in the xy-, yz- and xz-planes, and current sheet isosurfaces on adapted meshes showing the grid block
boundaries (not individual cells) on 26 January (5 pm UT) (17,671,680 cells) and 31 January (11 pm UT) (31,553,536 cells) 2007, respectively,
for the unsteady solar wind simulation. The black lines are the block boundaries.
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further demonstrate the differences between simulations per-
formed with the standard and zero-point corrected maps, an
unsteady simulation with multiple CMEs is now considered.
In particular, simulations were performed in the inertial frame
for the same series of CMEs as examined in the previous study
by Pomoell & Poedts (2018). This series includes five CMEs
which erupted between 18th and 25th June, 2015. The CME
analysis, from the Space Weather Database Of Notifications,
Knowledge, Information (DONKI)3, gives these CMEs on June
18 (20:00 UT) at (h, /) = (11�, �50�) with a speed of 1000 km/
s (CME-1), June 19 (14:59 UT) at (h, /) = (�33�, 9�) with a
speed of 603 km/s (CME-2), June 21 (05:01 UT) at (h, /) =
(7�, 8�) with a speed of 1250 km/s (CME-3), June 22 (21:10
UT) at (h, /) = (14�, 3�) with a speed of 1155 km/s
(CME-4), and June 25 (10:51 UT) at (h, /) = (23�, 46�) with
a speed of 1450 km/s (CME-5). The angular half-width of the
five CMEs were 45�, 54�, 47�, 45�, and 41�, respectively. In
the present simulations, the estimated masses of the CMEs from
the SOHO LASCO CME catalog4 were used. As such, the
CME masses were set to 18.0 � 1012 kg, 6.1 � 1012 kg,
9.6 � 1012 kg, 4.4 � 1012 kg, and 31.0 � 1012 kg, respectively,

and the radial width of the CMEs was taken to be 2 R0. As in
Pomoell & Poedts (2018), the simulated CMEs did not include
the magnetic field. Furthermore, to make simulations more com-
parable with the previous simulation results of Pomoell &
Poedts (2018), AMR was not used in the present CME simula-
tions. The use of AMR would have allowed better capture of
CME structures.

Figure 18 shows the predicted distributions of the solar wind
speed for 27 June 2015 (11:05 UT) obtained using (a) the stan-
dard GONG map and (b) the zero-point corrected map as dis-
cussed above and shown in Figure 17. The results of
Figure 18a corresponds to Figure 8 from Pomoell & Poedts
(2018) (note, the distance in their simulations is 2 AU). In
Figure 18a, contours of the solar wind speed are given in the
ecliptic xy-plane, as well as the plane perpendicular to the eclip-
tic, with the Earth at x = 1 AU, y = 0, x = 0. The CME, which is
delivering a glancing blow to the Earth, erupted on 25 June
2015 (10:51 UT), and was the last event in the CME series.

Figure 18 reveals one of the main differences between the
proposed new SW simulation framework and the EUHFORIA
and WSA-ENLIL solar wind – CME simulation codes. While
the latter cover latitudes of h = ±60�, the proposed framework
is capable of describing all latitudes, including the poles. A
comparison of the current simulation results with those of

Fig. 16. Comparison of (a) solar wind speed, (b) plasma density, and (c) magnetic field strength at Earth predicted by the proposed SW
framework to ACE satellite observations for the unsteady solar wind simulation.

3 https://kauai.ccmc.gsfc.nasa.gov/DONKI/search/
4 https://cdaw.gsfc.nasa.gov/CME_list/
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Fig. 17. Predicted coronal hole (left) and solar wind speed (right) maps of the PFSS and SCS models obtained using (a) the standard GONG
map and (b) the zero-point corrected GONG map for 25 June 2015 01:04 UT.

Fig. 18. Solar wind speed obtained with (a) standard GONG map and (b) zero point corrected GONG map for 27 June 2015 (11:05 UT).
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Pomoell & Poedts (2018) (their Fig. 8) shows that, for this par-
ticular CME simulation, there is no significant difference in the
predicted arrival times and the CME impact on Earth. In both
cases, the CME delivers only a small glancing blow to Earth.
However, in the current simulations of this case, it can be seen
that the CME propagation is influenced by the high-speed
stream on the west side (i.e., the solar wind stream that emanates
from the Sun around x = 0 and y > 0). This stream is predicted
to have a lower speed in the results of Pomoell & Poedts (2018).
Furthermore, the high-latitude northern solar wind stream,
depicted in the region x > 0 and z > 0 of Figure 18a, is not vis-
ible in the previous simulations of Pomoell & Poedts (2018),
possibly due to the ±60� restrictions in latitude of their compu-
tational domain. Finally, as can be seen from the results of
Figure 18, the use of the zero-point corrected GONG synoptic
maps in the PFSS-SCS modelling of the coronal field produces
noticeable changes in the coronal hole properties and solar wind
speed distributions. While the differences in the polar regions
are obvious, it should be noted that there are also differences
in the predicted solar wind speed in the equatorial plane.

A final set of CME simulation results are given in Figure 19.
In the figure, the observed and forecasted (a) solar wind speed,
and (b) particle number density at Earth are compared for the
period 19–28 June, 2005. The time period shown captures the
signatures of all five CMEs. The results for the solar wind speed
and density can also be compared with those of Figures 9 and
10 from Pomoell & Poedts (2018), respectively. Four sets of
simulated results are shown in Figure 19. The first two sets of
predicted results were obtained with identical parameters for
the background solar wind as those used for the results shown
in Figure 18 except that, in one case, the standard GONG
map (S-Map) was used and, in the other case, the zero-point
corrected GONG map (ZPC-Map) was used. These results are
denoted with solid lines in Figure 19. The third and fourth set
of results were again obtained identical parameters and the same
two synoptic maps, but with a modified expression for the
plasma density (S-Map MD and ZPC-Map MD). The latter
are denoted with dashed lines in Figure 19. Concentrating on
the first set of two simulation results (solid lines), it can be seen
from Figure 19a that there is very good agreement between
observed and forecasted solar wind speed for the first three
CMEs. As in Pomoell & Poedts (2018), the results for the first
CME, CME-1, show a gradual increase in the plasma speed at
Earth, while the observed solar wind speed is indicative of a
shock. The results for the fifth CME, CME-5, shown also in
Figure 18, are also in agreement with the results of Pomoell
& Poedts (2018). However, both set of simulated results, those
obtained using the proposed numerical framework described
herein and those from Pomoell & Poedts (2018), show late arri-
val of this CME at Earth and lower wind speed than that
observed. While the forecasted CME arrivals obtained with
the standard GONG map (S-Map results), particularly for
CME-2 and CME-3, show better agreement with the observed
CME arrivals than those of the previous EUHFORIA simula-
tions, in general, the current S-Map and ZPC-Map results
obtained here are quite similar to each other and those of
EUHFORIA for all CMEs except for CME-4. In the present
simulations, CME-4 arrives late at Earth with a much slower
speed than was observed. In contrast, the speed associated with
this CME is significantly overestimated in the predictions of

Pomoell & Poedts (2018). This disagreement is not entirely sur-
prising. For example, one of the main challenges in CME fore-
casting is appropriate choice of CME parameters. Some of these
parameters, which are estimated from coronagraphs, such as the
CME mass, are based on a number of assumptions and these
can have large uncertainties (see, e.g., Vourlidas et al., 2000).
As already mentioned, the simulations shown herein have used
estimated CME masses from the SOHO LASCO CME catalog,
while Pomoell & Poedts (2018) assumed the same value of the
density for all five CMEs. CME-4 has the lowest mass in
the CME series considered here and increasing the mass of this
CME in the simulations (not shown here), can improve the
agreement between observed and modelled solar wind speeds.
Furthermore, while adjusting the CME parameters can improve
simulation results, one of the main factors which limits forecast
accuracy is associated with the use of a semi-empirical approach
in the coronal domain to specify properties of the background
solar wind in terms of the PFSS-SCS derived coronal magnetic
field. As a baseline configuration, the proposed framework uses
WSA-type solar wind speed relation as given in equation (13).
The empirical coefficients of this relation are the same as those
used to validate a recently proposed semi-empirical solar wind
speed forecast model which utilize kinematic propagation of
solar wind streams Reiss et al. (2016). It should also be

Fig. 19. Comparisons of observed and simulated (a) solar wind
speed and (b) particle number density at Earth for 19–28 June 2015.
The time period shown includes the signatures of all five simulated
CMEs. Four sets of simulated results are shown. The first two sets of
predicted results were obtained with identical parameters for the
background solar wind as those used for the results shown in
Figure 18 except that, in one case, the standard GONG map (S-Map)
was used and, in the other case, the zero-point corrected GONG map
(ZPC-Map) was used. The third and fourth set of results were again
obtained identical parameters and the same two synoptic maps, but
with a modified expression for the plasma density (S-Map MD and
ZPC-Map MD).

N.M. Narechania et al.: J. Space Weather Space Clim. 2021, 11, 8

Page 20 of 25



mentioned that these empirical coefficients have been tuned
based on standard GONG magnetograms. The tuning of the
empirical coefficients and performance of the solar wind speed
forecasts with zero-point corrected maps deserves further inves-
tigation, particularly since it is felt that these synoptic maps
should be adopted in solar wind modelling. Additionally, the
plasma density and temperature are evaluated herein using
equations (14) and (15), respectively, which are based on a
model derived from Helios solar wind observations (Hayashi
et al., 2003; Kataoka et al., 2009; Shiota et al., 2014). Finally,
while it is noted that that Pomoell & Poedts (2018) have used
the same form of the WSA relation considered herein, different
empirical coefficients were used. Furthermore, they assumed
constant kinetic energy density (i.e., the plasma number density
is inversely proportional to the square of the solar wind speed)
and plasma thermal pressure at the inner boundary of the global
MHD model.

As the background solar wind plasma properties can directly
affect CME propagation, improvements to the solar corona
model and solar wind description will be the subject of future
research efforts. For example, from Figure 19b, it is evident that
the predicted plasma density of the background solar wind is
overestimated compared to the observed density (see, e.g.,
19–20 June) for simulations S-Map and ZPC-Map, which sug-
gests that the value of the number density given by equation
(14) should be reduced. To illustrate changes in the simulation
results introduced by altering this empirical relation for the
plasma density, additional simulations were performed using
both the standard and zero-point corrected GONG synoptic
maps along with a modified plasma density, cases S-Map MD
and ZPC-Map MD, respectively, where 30 km/s was added to
the solar wind speed in the expression of equation (14), (i.e.,
VSW ? VSW + 30) so as to reduce the speficied value of the
background solar wind number density. This second set of sim-
ulation results are also shown in Figure 19. As can be seen, the
predicted arrival times of the five CMEs with this modified
background density, which is now closer to the observed den-
sity, are now all shorter corresponding to faster CME propaga-
tion speeds. In particular, CME-4 and CME-5 are now predicted
to arrive more than 6 h earlier.

The results presented in this section illustrate the forecasting
potential of the proposed solar wind – CME numerical frame-
work. Nevertheless, there are aspects, particularly related to
the semi-empirical model of the solar corona and the solar wind,
which deserve further investigation and development. Future
studies are planned to investigate and improve the physics of
the baseline models and numerical techniques described herein,
as well as to assess the capabilities of the framework as a fore-
casting tool at the Canadian Space Weather Forecast Centre.

6 Summary and conclusions

As discussed in the introduction, SW and its effects on tech-
nology are now widely recognized as a hazard to modern soci-
ety and there are many on-going research activities in this field.
The adverse effects of space weather are recognized by both
industry stakeholders as well as government organizations.
For this reason, a number of operational forecast centers have
been established to provide information about SW conditions.

Furthermore, the development and further improvement of
numerical models with enhanced forecasting capabilities for
use in SW operations represent an important component of
the on-going research effort.

Due to computational constraints, common approaches used
in the current generation of solar wind – CME forecast models
are data driven and make use of simplified and semi-empirical
modelling to describe the solar corona combined with a global
MHD model for the interplanetary propagation of the solar wind
and CMEs (Odstrcil et al., 2008; Shiota & Kataoka, 2016;
Pomoell & Poedts, 2018). In the current study, such an approach
is considered and a new integrated data-driven solar wind –

CME numerical framework for potential use in SW forecasting
has been developed and described. In the proposed framework,
the PFSS (Altschuler & Newkirk, 1969; Schatten et al., 1969)
and SCS (Schatten, 1971) models are used to derive baseline
predictions of the coronal magnetic field from GONG magne-
togram observations and additional empirical relations, includ-
ing the WSA solar wind speed relation (MacNeice, 2009), and
are subsequently applied to associate solar wind properties with
open magnetic field lines. To improve the accuracy of the PFSS
model, particularly in the polar regions, re-meshing of the mag-
netogram synoptic maps is utilized (Tóth et al., 2011). This
baseline coronal component of the proposed framework is aug-
mented with an approximate CMEmodel based on a spheromak
pancake flux rope model (Shiota & Kataoka, 2016) so as to pro-
vide the inner boundary conditions to the global MHD model of
the interplanetary subdomain. The proposed coronal model pre-
sented here can be driven by a single magnetogram synoptic
map or using a series of maps and accepts standard, zero-point
corrected, as well as ADAPT GONG synoptic maps.

The global MHD model used in the proposed solar wind –

CME framework is based on the solution of the ideal MHD
equations. The latter can be solved in either the inertial or the
Sun’s co-rotating frame of reference using a combination of
advanced high-fidelity numerical methods which are not avail-
able in other solar wind simulation codes and models and offer
significantly enhanced capabilities. A second-order-accurate
upwind finite-volume scheme (Ivan et al., 2011, 2013, 2015)
is used to solve the ideal MHD equations on cubed-sphere
meshes (Ivan et al., 2011, 2013, 2015) and this spatial dis-
cretization scheme is combined with a highly-scalable and effi-
cient parallel block-based anisotropic AMR technique
(Williamschen & Groth, 2013; Freret & Groth, 2015; Freret
et al., 2019). The use of cubed-sphere grids avoids the singular-
ities of spherical grids at the poles and thereby readily allows
full coverage of 3D space, including high-latitude polar regions.
The anisotropic block-based AMR scheme permits dynamic and
local refinement of the mesh while allowing efficient implemen-
tations of the MHD solution algorithm on high-performance
computers. For this reason, the proposed framework offers sig-
nificantly increased grid resolution while maintaining the com-
putational cost at reasonable levels.

Example simulation results for both steady and unsteady
solar winds corresponding to a relatively quiet period of solar
activity, as well as additional comparisons to the previous results
of Pomoell & Poedts (2018) for a CME event, have also been
described herein in order to illustrate the potential SW forecast-
ing capabilities of the proposed data-driven solar wind – CME
computational framework. The simulation results demonstrate
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that the anisotropic AMR does an efficient job in accurately cap-
turing the solar wind current sheet by refining extensively only
across the sheet while keeping the grid resolution low along
the current sheet surface. The refinement normal to the current
sheet minimizes the numerical diffusion which can cause
unphysical reconnection of the oppositely directed magnetic
field lines associated with the current sheet. The comparisons
with Pomoell & Poedts (2018) have also shown the similarities
of the current solar wind – CME simulation results with those of
the previous study for the considered event. Although there are
some differences in the predicted background solar wind, the
CME propagation characteristics appear to be very similar. Dif-
ferences in the solar wind predictions can be attributed to differ-
ently tuned empirical relations for the solar wind properties and
to the fact that the simulations of Pomoell & Poedts (2018) do
not cover higher latitudes. Finally, differences in the coronal hole
and solar wind solutions predicted by the PFSS and SCS models
using standard and zero-point corrected GONG maps has been
investigated. The results suggest that instead of using standard
GONG maps, zero-point corrected maps would appear to be
more appropriate for coronal field and solar wind modelling.

The proposed new integrated data-driven solar wind – CME
framework will provide a basis for future follow-on research.
Reliable data and empirical relations that perform well over time
are important, particularly for operational forecast models where
the updates are usually less frequent. Although it is expected
that many solar wind and CME cases, particularly before
2013 (Nikolić, 2019), can be well described using standard
GONG maps, to obtain more consistent results over time, the
use of zero-point corrected as well as ADAPT synoptic maps
in SW simulations should be explored further. As the predicted
background solar wind depends intimately on the synoptic
maps, studies similar to those of Hinterreiter et al. (2019), Mac-
Neice (2009) and Wold et al. (2018), should be undertaken to
assess performances of solar wind models with the GONG
zero-point corrected and ADAPT maps. In particular, improve-
ments in the semi-empirical solar corona component of the pro-
posed framework, which provides the boundary conditions to
the global MHD model, will be explored, including an assess-
ment of the influence of the various forms of synoptic maps
on solar wind predictions as well as the more optimal tuning
of the empirical relations used to relate the coronal magnetic
field and solar wind parameters. Additionally, the application
of data assimilation techniques (Lang et al., 2017) will be
explored for use with the proposed framework.

The solar wind – CME numerical framework will also pro-
vide a platform for testing new research developments in SW
forecasting. It will also be more thoroughly tested as a forecast-
ing tool at the Canadian Space Weather Forecast Centre. Since
MHD-based CME forecasting models of probable arrival and
impact use parameters which are derived from CME observa-
tions, such as the speed, direction and size, as well as other
parameters which are more difficult to estimate, such as the
CME mass and magnetic field, several runs with different
parameters are typically performed as part of the forecasting
(see, e.g., Steenburgh et al., 2014). Using different forecasting
codes, including the solar wind – CME simulation framework
presented here, which run independently with different set of
parameters, will help efforts to improve SW forecasting and will
benefit the global SW forecasting community.
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