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Abstract
A high-order central essentially non-oscillatory (CENO) finite volume scheme combined
with a block-based adaptive mesh refinement (AMR) algorithm is proposed for the solution
of the ideal magnetohydrodynamics equations. The high-order CENO finite-volume scheme
is implemented with fourth-order spatial accuracy within a flexible multi-block, body-fitted,
hexahedral grid framework. An important feature of the high-order adaptive approach is that
it allows for anisotropic refinement, which can lead to large computational savings when
anisotropic flow features such as isolated propagating fronts and/or waves, shocks, shear sur-
faces, and current sheets are present in the flow. This approach is designed to handle complex
multi-block grid configurations, including cubed-sphere grids, where some grid blocks may
have degenerate edges or corners characterized by missing neighboring blocks. A procedure
for building valid high-order reconstruction stencils, even at these degenerate block edges and
corners, is proposed, taking into account anisotropic resolution changes in a systematic and
general way. Furthermore, a non-uniform or heterogeneous block structure is used where the
ghost cells of a block containing the solution content of neighboring blocks are stored directly
at the resolution of the neighbors. A generalized Lagrange multiplier divergence correction
technique is applied to achieve numerically divergence-free magnetic fields while preserving
high-order accuracy on the anisotropic AMR grids. Parallel implementation and local grid
adaptivity are achieved by using a hierarchical block-based domain partitioning strategy in
which the connectivity and refinement history of grid blocks are tracked using a flexible
binary tree data structure. Physics-based refinement criteria as well as the CENO smooth-
ness indicator are both used for directing the mesh refinement. Numerical results, including
solution-driven anisotropic refinement of cubed-sphere grids, are presented to demonstrate
the accuracy and efficiency of the approach.
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1 Introduction

High-order numerical methods have been actively pursued in an effort to reduce the cost of
large-scale scientific computing applications. High-order methods are often more efficient
than low-order methods in terms of computational cost and CPU time for the same target
accuracy [37,65]. The high-order central essentially non-oscillatory (CENO) finite-volume
scheme described in Ivan et al. [37,38] uses a hybrid reconstruction approach that combines
an unlimited high-order K -exact reconstruction [3] based on a fixed central stencil and a
monotonicity preserving low-order limited linear reconstruction for cells with under-resolved
or discontinuous solution content. Switching in the hybrid procedure is determined by a
smoothness indicator. This hybrid approach presents two main advantages. First, it avoids
the complexity associated with other ENO and WENO schemes that require reconstruction
on multiple stencils to find the “smoothest” stencil among several candidates [33,40,43,57].
Second, mesh adaptation may be directed based on the ability of the scheme to differentiate
between resolved and under-resolved or non-smooth solution content. The high-order CENO
scheme has been successfully applied to a broad range of flows on multi-block structured
meshes including inviscid flows [37], viscous flows [38], large-eddy simulation (LES) for
turbulent premixed flames [59] and magnetohydrodynamics (MHD) problems [26,37], as
well as on cubed-sphere meshes [37]. Furthermore, the relative advantages of the CENO
scheme as compared to ENO and WENO methods make it readily applicable to general
unstructured meshes as considered by Charest and Groth for laminar viscous flows [10] and
turbulent reactive flows [11].

Adaptive mesh refinement (AMR) approaches [4,6] are very attractive since they allow
automatic refinement of the mesh which can be very effective in the treatment of problems
having disparate spatial scales. There are currently a number of existing AMR libraries
available for use including patch-based [1,16], cell-based [8], and block-based [41,44,60]
AMRmethods. Block-based AMR approaches, such as the schemes developed by Groth and
co-workers [21,28–30,32,55], are a very attractive option since the overall data structure for
grid connectivity is relatively light, due to the feature that grid connectivity is determined
at the block level, and the approach is well suited to parallel implementation via domain
decomposition producing highly scalable and efficient methods. These block-based methods
have proven to be very effective in the solution of both laminar [12] and turbulent [28–30]
flames as well as turbulent multi-phase rocket core flows [55], MHD simulations [31,32,36],
andmicron-scale flows [47].Nevertheless, virtually all of these implementations are restricted
to refinement of the mesh in an isotropic fashion. Isotropic AMR methods can be prone to
excessively large grid sizes when attempting to capture solutions with anisotropic features
such as propagating fronts and/or waves, shocks, shear surfaces, and current sheets.

A far more efficient strategy for dealing with shocks and/or thin solution layers is to adopt
an anisotropic procedure in which the mesh refinement is carried out in a directionally depen-
dent manner. Multi-block anisotropic AMR schemes have been proposed in previous studies
by Zhang and Groth [68] and Williamschen and Groth [66] in applications to inviscid flow
prediction in two-dimensional (2D) and three-dimensional (3D) domains, respectively. More
recently, a revised anisotropic block-based refinement approach has been developed by Freret
and Groth [25] that adopts a non-uniform or heterogeneous block structure in the representa-
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tion of each grid block. In the non-uniform block approach, the extended layers of “ghost” or
“halo” cells which allow the update of the solution within each block in an independent man-
ner (helpful in serial optimization and parallel implementation of the algorithm) are direct
duplicates of those of the neighboring blocks, even if the block itself and its neighbors are
not at the same level of refinement. While introducing so-called “hanging nodes” in the grid,
this non-uniform representation of the neighboring blocks is naturally suited to application
with high-order numerical schemes [25], as it does not require the use of high-order restric-
tion and prolongation operators to evaluate the ghost-cell values representing neighboring
blocks as can be found in the mapped multi-block grids approach [17,46]. Furthermore, it
does not use any additional procedures to ensure conservation and stability properties of the
scheme [5,13,52,53,56]. Instead, the spatial discretization is merely modified to take into
account the grid resolution changes that can occur between interior and ghost cells [25].

The present study therefore considers the extension of the anisotropic AMR method of
Freret and Groth [25], originally developed for a second-order finite-volume scheme and
application to gas dynamics simulations, to use with the high-order CENO finite-volume
method of Ivan et al. [37,38,58] for MHD computations. The application of the high-order
CENO scheme with isotropic AMR was examined previously by Susanto et al. [58] for the
solution of the ideal MHD equations on 2D domains. It is re-considered here for 3D flows
with anisotropic AMR using the non-uniform or heterogeneous block structure proposed
by Freret and Groth [25], in which the ghost cells of a block are stored directly at the
resolution of the neighboring blocks, is exploited to enable a fourth-order CENO spatial
discretization procedure on complex multi-block AMR grid, including cubed-sphere grid
topologies, with unstructured root block topology. A binary tree data structure is used to
track the connectivity and refinement history of the grid blocks and is sufficiently flexible
to deal with some blocks that feature degenerate edges and corners, where the number of
neighboring blocks and available ghost cells are smaller than would be expected for blocks
in a regular, logically Cartesian, grid structure. A major technical difficulty in extending the
anisotropicAMRmethod for usewith high-order finite-volume spatial discretization schemes
is to define valid reconstruction stencils taking into account the anisotropic resolution changes
and degenerate block edges and corners. A systematic and general approach to build these
high-order stencils is proposed. Physics-based and smoothness-based criteria are both used
as refinement criteria to direct the anisotropic refinement of the mesh. The binary tree data
structure is also readilymodified to revert to isotropic refinement through the use of additional
constraints on admissible refinement and coarsening of the grid blocks. For the solution of
the ideal MHD equations considered herein, the solenoidal constraint on the magnetic field is
controlled using the generalized Lagrange multiplier (GLM) technique proposed by Dedner
et al. [22]. This avoids the computational costs associatedwith elliptic cleaning procedures [7,
39] and/or possibly more complicated treatments associated with constrained transport (CT)
algorithms [2,19,24,49,50]. The latter usually necessitate staggered fields [2,19,24], although
several non-staggered constrained transport techniques have been proposed recently [14,34,
35,49,50]. For example, Helzel et al. developed an original unstaggeredCTmethod for the 3D
MHD equations on Cartesian grids based on the wave-propagation method [35] and extended
this work tomapped grids [34] by using amethod of lines.More recently, Christlieb et al. [14]
extended the latter constrained transport method to even high order discretization on non-
staggered meshes. As will be shown, the proposed combination of the fourth-order CENO
finite-volume and anisotropic AMR schemes yields a new powerful parallel and efficient
simulation tool for the prediction of MHD flows on complex multi-block grids.

The paper is organized as follows. The ideal MHD equations and the GLM formulation
are described in Sect. 2. In Sect. 3 a brief outline of the high-order CENO scheme is provided.
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The proposed anisotropicAMRblock-basedmethod is discussed in Sect. 4with the necessary
extension for usewith the high-order spatial discretization schemeon gridswith degeneracies.
Finally, fully three-dimensional numerical results are presented in Sect. 5 to demonstrate the
accuracy and robustness of the adaptive fourth-order CENO method for Euler and MHD
flows on Cartesian and cubed-sphere grids. Results for steady-state MHD plasma smooth
flows are presented to assess the accuracy of the scheme on cubed-sphere grids. Furthermore,
the robustness of the fourth-order CENO method in the presence of 3D discontinuous flow
features and the capability of the implementation to dynamically refine the mesh for time-
dependent simulations are demonstrated.

2 Ideal Magnetohydrodynamics Equations

The hyperbolic system of idealMHD equations is solved herein using a high-order Godunov-
type finite-volume scheme with the GLM formulation proposed by Dedner et al. [22]. This
approach [22] couples the divergence constraint, ∇ · B = 0, with the induction equation
through the introduction of a new potential variable, ψ . Thus, the modified system of con-
servation laws for which the solution is sought may be expressed in non-dimensional weak
conservation form as

∂U
∂t

+ ∇ · F = S + Q, (1)

whereU is the conserved variable solution vector, F is the system flux dyad, and S andQ are
volumetric source terms. The conserved variable solution vector, U, has the form

U = [ ρ, ρV, B, ρe, ψ ]T , (2)

where ρ is the plasma density,V = (Vx , Vy, Vz) is the velocity field,B = (Bx , By, Bz) is the
magnetic field, ρe is the total energy and ψ is the so-called generalized Lagrange multiplier
variable associated with the treatment of the solenoidal condition,∇ ·B = 0, for the magnetic
field. Note that the standard orthogonal x, y, z Cartesian coordinate system is used in the
conservation law discretization. The flux dyad, F, is given by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρV

ρVV +
(
p + B · B

2

)
I − BB

VB − BV + ψI(
ρe + p + B · B

2

)
V − (V · B)B

c2hB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The specific total plasma energy is e = p/(ρ(γ − 1)) + V 2/2 + B2/(2ρ), where p is

the molecular pressure, V =
√
V 2
x + V 2

y + V 2
z is the magnitude of the fluid velocity, and

B =
√
B2
x + B2

y + B2
z is the magnitude of the magnetic field. The term pB = (B · B)/2 is

known as the magnetic pressure. The numerical source term, S, is due to the GLM-MHD
formulation and given by

S =
[
0, 0, 0, 0,− c2h

c2p
ψ

]T

, (4)

123



180 Journal of Scientific Computing (2019) 79:176–208

n face

cell (i,j,k)

ΔΑface

(a)
(b)

Fig. 1 aHexahedral computational cell and b example of a cubed-sphere mesh composed of six blocks fromA
toFwith each block containing of three-dimensional hexahedral cells. aHexahedral cell showing face normals.
b Cross-section of the cubed-sphere grid composed of six blocks, from A to F. Grid block boundaries are
shown with bold lines. For clarity, mesh is shown only on the inner and outer spheres

in which the coefficients cp and ch control the relative rates of dissipation and transport of
ψ , as well as the corresponding advection speed of the ∇ ·B cleaning mechanism. The ideal
gas equation of state p = ρRT is assumed, where T is the gas temperature and R = 1/γ is
the gas constant. For a polytropic gas (thermally and calorically perfect), the ratio of plasma
specific heats, γ , is a constant, and the specific heats are given by Cv = 1/(γ − 1) and
Cp = γ /(γ − 1). The column vector, Q, appearing in Eq.(1) generally represents different
volumetric sources arising from the physical modeling of space-physics problems, such as
sources associated with gravitational fields.

3 High-Order CENO Finite-Volume Scheme

3.1 Semi-discrete Finite-Volume Formulation

The semi-discrete form of the finite-volume formulation applied to Eq. (1) for a hexahedral
computational cell (i jk) of a three-dimensional grid as shown in Fig. 1a can be expressed as

dUi jk

dt
= − 1

Vi jk

N f∑
f =1

Ng∑
m=1

(ω̃F · n)i jk, f ,m + Si jk + Qi jk = Ri jk(U), (5)

where Ng is the number of Gauss quadrature points and n is the local normal of the face
f at each of the Ng Gauss quadrature points. The integer N f is the number of faces of the
cell. The six faces (west, east, south, north, bottom and top) of the cell are indicated by
{W , E, S, N , B, T }. The hexahedral cells are contained within grid blocks of a multi-block
body-fittedmesh as depicted in Fig. 1b. To accommodate complexmeshes, such as the cubed-
sphere grid of Fig. 1b, the connectivity between blocks in the multi-block mesh is defined
using an unstructured data structure [29].
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Standard tensor-product Gaussian quadrature is used in the evaluation of the integrals of
numerical flux on each cell face as described by Ivan et al. [37] and the number of quadrature
points, Ng , is selected to be the minimum required to preserve the desired order of solution
accuracy. For instance, four Gauss quadrature points per face are required for the fourth-
order accurate spatial discretization considered here. Upwind values of the numerical fluxes,
F · n, at each Gauss quadrature point on each face of a cell (i jk) are determined from the
solution of a Riemann problem. Given the left and right interface solution values,Ul andUr ,
the upwind numerical flux is evaluated by solving a Riemann problem in a direction normal
to the face. The values of Ul and Ur are determined via a high-order CENO polynomial
reconstruction, as detailed in the next section. In the present computational studies, the
HLLE and local Lax-Friedrichs numerical flux functions are used in obtaining solutions for
the Euler equations governing non-magnetized flows and theMHD equations for magnetized
flows, respectively [23,42]. The contributions of the volumetric sources Si jk and Qi jk are
evaluated to fourth-order accuracy by again using a standard tensor-product Gauss quadrature
with twenty-seven points for the volumetric integration.

3.2 High-Order CENO Reconstruction

As indicated previously, the hybrid CENO scheme of Ivan and Groth [37,38] is used to
perform the piecewise cell-centered high-order reconstruction of the solution within each
hexahedral cell of the computational grid. The hybrid CENO procedure uses a multidi-
mensional unlimited K -exact reconstruction scheme as originally developed by Barth [3]
in regions of smooth solution content and reverts to a low-order limited piecewise linear
reconstruction in regions deemed as non-smooth or under-resolved by a solution smoothness
indicator, thus ensuring monotone solutions near discontinuities and shocks. The K -order
Taylor polynomial for the high-order K -exact reconstruction of a scalar solution quantity,
ui jk , within a cell (i jk) with cell-centroid (xi jk, yi jk, zi jk) can be expressed as

uK
i jk(x, y, z) =

K∑
p1=0

K∑
p2=0

K∑
p3=0

p1+p2+p3≤K

(x − xi jk)
p1(y − yi jk)

p2(z − zi jk)
p3Dp1 p2 p3 , (6)

where the coefficients, Dp1 p2 p3 , are the unknown derivatives of the Taylor polynomial expan-
sion. A total of 20 unknown derivatives must be evaluated for piecewise cubic (K = 3)
reconstruction, which is required to achieve a spatially fourth-order accurate scheme. The
coefficients are obtained via the solution of a constrained least-squares problem as described
by Ivan et al. [37]. To obtain an exactly determined (as a very minimum) or more preferably
an overdetermined set of linear equations for the unknown derivatives, the number of neigh-
boring cells considered in the reconstruction stencil must be at least equal to the number of
unknown coefficients. In this study, a stencil that includes current cell of interest, the first ring
of nearest 26 neighboring cells, plus 6 extra next-to-nearest cells in each coordinate direction
is used providing a total of 33 cells and conditions for the least-squares reconstruction when
a uniform logically Cartesian mesh is used. That is the stencil, St , is given by

St = {
(dx , dy, dz)|dx , dy, dz ∈ {−1, 0, 1}}

∪ {(0, 0,±2), (0,±2, 0), (±2, 0, 0)} ,
(7)

where the triplet (dx , dy, dz) represents a search direction for building the stencil. Depiction
of the reconstruction stencil in the rather general case of a Cartesian uniform grid is provided
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Fig. 2 Typical 33-cell
reconstruction stencil in a
Cartesian uniform mesh for a cell
(i jk) located at the block
boundary such that its stencil
includes ghost cells from
neighboring blocks. The interior
domain is represented in yellow
and blue color is used for the
ghost cells. The stencil is
composed of the central cell, 26
first-ring cells, plus 6 extra
second-ring cells

in Fig. 2. In the stencil representation, cells colored yellow represent the interior domain of
a block and the blue colored cells represent ghost cells for that block.

The smoothness indicator, S, used to determine whether the reconstruction of a solution
variable in cell (i jk) is non-smooth, is computed as follows [36]:

S = α

max(1 − α, ε)

NSOS − ND

ND − 1
, with

α = 1 −

∑
γ

∑
δ

∑
ζ

(uKγ δζ (Xγ δζ ) − uKi jk(Xγ δζ ))
2

∑
γ

∑
δ

∑
ζ

(uKγ δζ (Xγ δζ ) − ūi jk)
2

,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(8)

where NSOS is an integer value representing the size of stencil (i.e., number of cells in
stencil, 33 here), ND is an integer value representing the degrees of freedom in the K -
exact polynomial reconstruction (i.e., the number of unknowns, 20 here), and the ranges
of the indices (γ δξ) are taken to include either the whole or a subset of the supporting
reconstruction stencil for the cell (i jk). Based on the magnitude relative to a chosen cut-off
value SC , a larger value of S indicates smooth variations while a small value of S indicates
non-smooth or under-resolved solution content. For this latter case, a linear reconstruction
is performed (K = 1 in Eq. ( 6)) and Venkatakrishnan limiter [64] is used. For all of the
simulations presented in Sect. 5, the smoothness indicator cut-off value is SC = 1500.

3.3 Choice of Variables for Cell-Centered Reconstruction

Like other Godunov-type finite volume methods, the proposed CENO scheme has the flex-
ibility of applying the cell-centered solution reconstruction to either the set of conserved
variables,U = [ ρ, ρV, B, ρe, ψ ]T , or primitive variable set,W = [ ρ, V, B, p, ψ ]T .
Other choices, such as the entropy variables are also possible. While the use of conserved
variables in the reconstruction would seem to be the natural choice, the conservation proper-
ties of the scheme are assured regardless of the choice of reconstruction variables, due to the
nature of the finite-volume scheme and use of Riemann-solver-based flux functions. Further-
more, it is known that cell-centered piecewise reconstructions in terms of this set provides
the lower-quality shock-capturing fidelity when compared to the reconstruction performed
either in terms of the primitive or in characteristic variables [67]. As a result, the use of the
primitive variable set has been preferred to date in the application of the CENO reconstruc-
tion and limiting procedure (and indeed in many Godunov-type methods) so as to maintain
tighter control on the positivity of key flow variables such as density and pressure. Unfortu-
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nately, as recently demonstrated by Charest [9], the point-wise mapping to convert average
conserved solution variables into average primitive solution values introduces a temporal
error that is at best of second-order, leading to a loss of accuracy for unsteady flow problems.
While Charest [9] and Ivan and Groth [38] have shown that this error is not introduced for
steady problems and the expected formal accuracy is always recovered in this case, the loss
of accuracy for unsteady flows is undesirable and to be avoided. Note that McCorquodale
and Colella [45] have proposed a nonlinear transformation which provides a fourth-order
accurate conversion between the aforementioned solution variables.

Fortunately, the hybrid nature of the CENO reconstruction scheme offers a rather simple
solution to the loss of accuracy for unsteady problems: the unlimited high-order reconstruc-
tion can be performed in terms of the conserved variables and, where the scheme reverts to a
limited linear reconstruction for the treatment of non-smooth solution content, the primitive
variables set can be adopted. In this way, tight control is maintained on the monotonicity and
positivity of key flow variables while avoiding the introduction of the temporal errors and
incurring virtually no additional computational overhead. The conservation properties of the
scheme are also unaffected. This new set of combined reconstruction variables is used in the
CENO scheme implementation in this work and, in Sect. 5.1, it is evaluated and compared
to the original CENO scheme in which the primitive variables were reconstructed in both
the high-order and low-order representations of the solution. It is shown via a convergence
study for an unsteady flow problem that the expected high-order accuracy is recovered in the
asymptotic limit only for the set of combined variables, while still affording good control of
solution monotonicity.

3.4 Hexahedral Elements and Trilinear Transformation

In order to obtain fourth-order accuracy on generic hexahedral volumes, the non-planar faces
must be carefully treated with regard to all geometric operations affecting the numerical
accuracy such as flux integration and calculation of geometric properties (e.g., area, volume,
centroid, moments, etc.). The solution adopted by Ivan et al. [37] in which the faces of general
hexahedral cells are defined in terms of a trilinear mapping is used in the present work. This
allows geometric computations to be performed with high-order accuracy by transforming
the element to a reference cubic cell.

4 Parallel Anisotropic Block-Based AMR

A flexible block-based hierarchical binary tree data structure is used in conjunction with the
high-order spatial discretization procedure described in Sect. 2 to enable automatic solution-
directed mesh adaptation on body-fitted multi-block mesh. The general AMR framework
of Freret and Groth [25], originally implemented for a second-order accurate discretization
based on extensions to the previous work by Williamschen and Groth [66], is adapted herein
for use with high-order CENO finite-volume scheme using a non-uniform treatment for
the grid block neighbors. In this way, anisotropic mesh refinement and efficient and highly
scalable parallel implementation are achieved via domain partitioning.
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4.1 Hierarchical Binary Tree Data Structure

In the proposed anisotropic AMR scheme, mesh adaptation is accomplished by refining
and coarsening grid blocks. Figure 3a shows the resulting multi-block domain after several
refinements of an initialmesh consisting of a single block. Each level of refinement introduces
new blocks called “children” from a given “parent” block. Each refined parent block will
introduce either two, four, or eight children, depending of themesh refinement criteria (please
refer to the section to follow). Each child block contains the same number of cells as the parent
and this effectively doubles the mesh resolution in the desired directions. The children can of
course be further refined and the refinement process can be reversed in regions that are deemed
over-resolved and two, four or eight children, depending on the local solution, are coarsened
or merged into a single parent block. A flexible hierarchical tree data structure is used for
tracking the grid block connectivity and mesh refinement history. Within this structure, each
node of the binary tree stores references to two child nodes, corresponding to a grid block
refinement in one of three coordinate directions. The binary tree associated with the multi-
block domain in Fig. 3a is shown in Fig. 3b. The initial single block corresponds to the single
root node. The “leafs” are the blocks of the multi-block structure. The solid (respectively
dashed and dotted) arrows represent refinement in the x-, y- and z-directions, respectively,
for this Cartesian mesh. Level and sector triplets are used for connectivity purposes. Local
refinement and coarsening of the mesh can be directed according to adjoint error estimation
strategies [18,51,62,63] or so-called physics-based refinement criteria [25,66]. While the
former are expected to be more accurate, the latter have been used extensively because of
their relative simplicity.

4.2 Evaluation of Mesh Refinement Criteria

Refinement criteria are required for the anisotropic AMR scheme, with separate indicators
needed for refinement in each direction. These measures are scaled by the area of the cell and
normalized by the magnitude of the solution variables involved and then used to direct the
mesh refinement. Partial derivatives of the primitive solution variables with respect to each
coordinate direction are an intuitive choice and are adopted for the type of physics-based
refinement criteria considered here. Expressions for the directional refinement indicators rγ ,
rη, and rζ are as follows:

rγ = 1

u
(∇u · Δγ̃ ) , rη = 1

u
(∇u · Δη̃) , rζ = 1

u

(∇u · Δζ̃
)
, (9)

where Δγ̃ , Δη̃ and Δζ̃ are the vector differences between the midpoints of the faces in the
γ, η, and ζ directions, respectively. In equation (9), u represents any quantity of interest.
In the present study, the flow density is largely used as the relevant variable for directing
refinement, i.e., u = ρ.

As the CENO scheme has its ownmeasure of solution smoothness through the smoothness
indicator, S, and this smoothness measure was proposed previously by Ivan and Groth [38]
for directing mesh refinement within an isotropic AMR approach. Alternate smoothness-
based anisotropic refinement criteria are proposed here which can be defined in terms of the
following directional indicators:

rγ = exp(−Sγ ), rη = exp(−Sη), rζ = exp(−Sζ ), (10)

with, for direction γ ,
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Fig. 3 Example of a multi-block domain after several anisotropic refinements initially composed of an initial
single block and its corresponding binary tree. a Example of a multi-block domain obtained after several
refinements of an initial single block. b Depiction of the binary tree associated with the above multi-block
structure. The peach colored ovals represent nodes of the binary tree. The root node corresponds to the initial
block. The leafs are the blocks of the multi-block structure. The solid (respectively dashed and dotted) arrows
represent refinement in x (respectively y and z)-direction. Level and sector triplets are used for connectivity
purposes. The initial level is (0,0,0) and its components increase with the number of refinements associated
with each direction. The sectors indicate the position relative to neighbors in each direction, and are given by
W, E, S, N, B, T, N/A for west, east, south, north, bottom, top and undefined respectively. A sector component
can be undefined if it has not been yet refined in the corresponding direction

Sγ = αγ

max(1 − αγ , ε)
, and

αγ = 1 −

∑
δ

∑
ζ

(uKγ δζ (Xγ δζ ) − uKi jk(Xγ δζ ))
2

∑
δ

∑
ζ

(uKγ δζ (Xγ δζ ) − ūi jk)
2

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(11)
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While the solution smoothness, S, is evaluated within the complete 33-cell stencil, the value
Sγ is restricted through αγ to the neighboring cells aligned with the cell (i jk) in the γ direc-
tion, thus providing a smoothness indicator for that particular direction only. Corresponding
expressions for Sη and Sζ readily follow from Eq.(8).

It should be noted that, for both sets of refinement indicators defined by Eqs. (9)–(10)
above, the indicators are first evaluated for every cell in each grid block. The maximum value
of the indicator for each direction over all cells within the block is then taken to be the value
for the directional indicator for refinement of the entire block in each of the logical coordinate
directions.While the refinement of the entire block is recognized to be non-optimal in terms of
refinement efficiency (typically, larger numbers of new computational cells are created during
the refinement process as compared to cell-based AMR approaches), such block-based AMR
methods provide effective treatments for disparate scales while readily lending themselves
to efficient and scalable parallel implementations via domain decomposition on distributed
memory parallel computers [15,21,28,29,32,55]. In the present approach, the block-based
AMR strategy and binary tree data structure, combined with domain decomposition, results
in a highly efficient and scalable parallel implementation.

4.3 Flagging of Grid Blocks for Refinement

Having arrived at appropriate criteria for directing the mesh refinement, the anisotropic
block-based AMR scheme then proceeds according to the following six steps:

1. Assignment of Refinement Based onRefinementCriteria: blocks are flagged to refine,
coarsen or maintain their refinement level for each computational direction based on the
directional-dependent refinement criteria calculated for each block.

2. Conflict Checking: refinement flags are modified to ensure that there is no violation of
predefined rules for block refinement or coarsening.

3. New Block Computation: blocks are refined and/or coarsened in the flagged directions.
The binary tree is updated to reflect the new grid topology.

4. Connectivity Rearrangement: connectivity rearrangement is performed to ensure that
parents of all blocks flagged to coarsen are split in the appropriate directions.

5. Neighbor Information Update: neighbor information or solution block connectivity is
re-computed and stored for each block.

6. Message Passing: solution and geometry information is shared between adjacent blocks
via a message passing procedure.

As outlined by Williamschen and Groth [66], restrictions or predefined rules on the assign-
ment of the refinements flags are used to eliminate and prevent undesirable mesh topologies
including: (i) the maximum level difference in any direction being greater than one, i.e.,
any neighbor can be only one level coarser or one level finer; (ii) a block being flagged to
coarsen that does not have a neighbor/sibling flagged to coarsen or after refinement the neigh-
bor/sibling is not at the same refinement levels; and (iii) an invalid binary tree connectivity.
However, several mesh block topologies are allowed here in order to arrive at a more optimal
anisotropic mesh. Firstly, block faces associated with a given direction are not restricted to
be at the same level in both tangential directions; an example of this configuration is given in
Fig. 4a. Additionally, a face is not required to fully span its neighbors; this configuration is
represented in Fig. 4b. Being free of these constraints requires extra care during the coarsen-
ing procedure as some connectivity rearrangements of the binary tree may be required [66],
and calculation of the numerical fluxes may occur through faces that are not defined a priori,
as shown in Fig. 4b. However, in terms of computational time, allowing these configurations
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Fig. 4 Examples of refined blocks that do not violate the 3D rules

incurs very little overhead to the overall computational cost of the problem while greatly
increasing the effectiveness of the anisotropic AMR algorithm.

It is worth mentioning that an isotropic AMR procedure can be readily obtained using
the binary tree data structure. While more classical octree data structures [29] are usu-
ally employed with isotropic AMR, with minimal effort, the anisotropic AMR scheme as
described above can degenerate to an isotropic approach by making only two modifications.
Firstly, the refinement criteria must be appropriately modified to no longer be directionally
based. For example, in the numerical results presented in Sect. 5.4, an isotropic refinement
indicator based on the curl of the velocity field is used. The second modification to arrive
at an isotropic AMR scheme occurs in the conflict checking procedure. Steps must be taken
to enforce that any block flagged for coarsening must have its seven siblings also flagged
for coarsening. If at least one of the siblings is flagged for refinement or maintaining its
current level of refinement, all children are prevented from undergoing the grid coarsening.
The conflict checking procedure is finally re-applied to remove any refinement conflicts that
may have been introduced by the modified flags.

4.4 High-Order Solution Transfer

In the refinement process of a grid block, the geometry of the newly created cells belonging to
the offspring is obtained by sub-dividing the domain of each coarse interior cell into two, four
or eight fine cells. In order to maintain the high-order solution accuracy for combination of
the CENO algorithmwith the aforementioned block-based AMR approach, accurate solution
transfer operators are required. One advantage of using the non-uniform block representation
(please refer to the subsection to follow) is that restriction and prolongation operators are
only required in the interior domain to transfer the solution content from coarse to fine cells,
but not in the ghost cells of the overlapping cell domains. In particular, to distribute the
average solution quantity among offspring at high-order accuracy the high-order polynomial
reconstructions of all solution variables in the coarse cell are integrated over the subdomains
of each new fine cell having a volume, V f ine,

ū f ine = 1

V f ine

∫∫∫
V f ine

ukcoarse(X)dV , (12)

where the volume integral is computed exactly for the given reconstruction polynomial with
an appropriate-order, volumetric, tensor-product, Gaussian quadrature integration technique.
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4.5 Non-uniform Blocks

In order to apply the proposed high-order finite-volume scheme to all of the grid blocks in
a more independent manner, solution information is shared between adjacent blocks having
common interfaces. This information is stored in additional layers of overlapping ghost cells
associatedwith each block. The non-uniform representation of the blocks adopted herewithin
the multi-block structure uses directly the neighboring cells as the ghost cells, even for those
at different levels of refinement as found at grid resolution changes [25]. Within the data
structure for the non-uniform block representation, the regions adjacent to block faces, edges
and corners are referred to as boundary elements. The topological arrangement of these
boundary elements is described in terms of the triplet (bei , be j , bek), beξ ∈ {−1, 0, 1} for
ξ = {i, j, k}. There are 26 boundary elements corresponding to the regions opposing the 6
faces, 12 edges and 8 corners of a given block, in addition to the interior of the block itself.
Using this denomination, the triplet (−1,−1,−1) represents the west-south-bottom corner,
(0, 0, 1) identifies the top face and (0, 0, 0) is the interior domain. In particular, a maximum
of four, two, or one ghost-cell block(s) can span a face, an edge, or a corner, respectively.

Examples of non-uniform blocks obtained from representative multi-block structures are
shown in Fig. 5. In Fig. 5a, block B has been extracted from the multi-block structure
shown previously in Fig. 3b. It is composed of an interior domain (in red) containing the
computational cells and extended in all directions by ghost cell blocks. For clarity, the ghost
cell blocks are shown only in the x and z directions. In Fig. 5b, block E has been extracted
from the cubed-sphere grid previously depicted in Fig. 1b. It is composed of the interior
domain (shown in light yellow) and four faces; ghost blocks along the radial direction have
been removed for clarity purposes. As discussed by Ivan et al. [37], the cubed-sphere grids
have degenerate edges and corners characterized by missing ghost cells. These degeneracies
are naturally taken into account merely by the absence of corner and edge ghost cell blocks.

The non-uniform block treatment adopted here presents many advantages as outlined
by Freret and Groth [25]. Firstly, high-order restriction and prolongation operators are not
required to evaluate the ghost cell solution values at resolution changes. Moreover, there
is no need for an additional correction to enforce the flux conservation properties of the
finite-volume scheme. This property is automatically satisfied by the non-uniform treatment.
Finally, as considered in the present work, the non-uniform approach allows for an efficient
way to treat the ghost cells. In general, the number of ghost cell layers depends on the size
of the reconstruction stencil and the size of the stencil used in evaluating the smoothness
indicator. Assuming a two-layer stencil is used to compute the high-order reconstruction and
a one-layer stencil for evaluating the smoothness indicator, the total number of ghost cell
layers required at each block boundary is four. Whereas in the original implementation of
Ivan et al. [36,37] four layers of ghost cells were used to get a fourth-order accurate solution
reconstruction for the cells in the interior domain and the first two layers of ghost cells, the
current implementation achieves the same accuracy with only two layers of ghost cells as
follows. Instead of reconstructing the solution in the ghost cells, the new formulation relies on
communicating any additional needed information (i.e., solution data, geometry, derivatives)
from the corresponding interior cells of the neighboring block to the ghost cells. In this way,
the number of ghost cells is greatly minimized at the expense of increasing somewhat the
size and number of send/receive messages containing information between the neighboring
blocks. For example, in the simulation discussed in Sect. 5.4, the use of this reduced storage
treatment for the ghost cells represents a memory savings of about 60% compared to the
original rather non-optimal approach.
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Fig. 5 Depiction of non-uniform structured mesh blocks in case of a a Cartesian mesh and b a cubed-sphere
grid. a Depiction of non-uniform block B extracted from the multi-block domain presented in Fig. 3a. It is
composed of the interior domain (in red) extended (only in the x and z direction for clarity) by a layer of
2 ghost cells provided by the neighboring blocks. Blocks C and D from Fig. 3a share the top face as well
as the east-top edge of block B. b Depiction of non-uniform block E extracted from the multi-block domain
presented in Fig. 1a. It is composed of the interior domain (in light yellow) extended (only in the azimuthal and
zenith directions for clarity) by a layer of 2 ghost cells provided by the neighboring blocks. This non-uniform
block presents edge and corner degeneracies where faces meet

The non-uniform block strategy is also very convenient when cubed-sphere meshes are
considered. As the reconstruction stencils must to be consistent with each other for cells
located in the interior domain and for the same cell occurring as a ghost cell in a neighboring
block, Ivan et al. [37] proposed a rotation mechanism for generating consistent stencils near
degenerate block edges. With the new non-uniform block treatment of the ghost cells, this
somewhat complicated though effective technique is no longer required.

4.6 Determination of Cell-Centered Reconstruction Stencils with AMR

One challengewith the present formulation is that the different refinement configurations that
can occur as part of the anisotropic AMR procedure, including grid blocks with degenerate
edges and corners, must be accounted for when determining the reconstruction stencils of
the cells. A new neighbor search algorithm for constructing the stencils has been developed
here, which exploits the data structure of the non-uniform block treatment. In the search
algorithm, stencils are built for all cells lying within the interior of a block. This includes
interior cells that are remote from block boundary elements as well as interior cells that are
close to boundary elements. The ghost cells of a block are only used for storage space of
solution information and stencil determination is not required for these cells. The neighbor
search algorithm is applied in each of the 32 search directions associated with an interior
cell as defined by Eq (7). For each of these search direction, the number of cells to be added
to the stencil in that direction is determined: one cell neighbor in the case of a uniform or a
coarser mesh, two or four cells for a neighbor block having a finer mesh resolution in one or
two of directions tangential to the search direction, respectively, and no cell in the case of an
edge or a corner degeneracy. The full procedure for computation of the stencil employs four
steps and can be described as follows:
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1. Boundary element destination: First, the boundary element indicator triplet, (bei , be j ,
bek), is evaluated corresponding to either the interior of the block itself or one of the 6
faces, 12 edges or 8 corners of the block. This first step is simple and based on the search
directions, (di , d j , dk) and the cell index itself, (i, j, k) ∈ [0, Ni ] × [0, N j ] × [0, Nk],
with Nξ being the number of cells in the ξ direction. The value for beξ is defined for
ξ ∈ {i, j, k} such that
if ξ + dξ < 0 then

beξ = −1
Δξ = ξ + dξ

end if
if ξ + dξ > Nξ then

beξ = 1
Δξ = ξ + dξ − Nξ

else
beξ = 0

end if
If a value of (0, 0, 0) is found for the boundary element indicator, the boundary element
destination is the interior domain of the block itself. In this case, the neighbor search
algorithm results in a single cell lying in the interior block which can be identified as
C = {(i+di , j +d j , k+dk)} and the neighbor search for the given direction is complete.
Steps 2 through 4 can be skipped. Figure 6 provides an example of the stencil computation
for a cell lying near a boundary element. Cells colored yellow represent neighbouring
cells that were found to lie within the interior domain of a block. In the case that the
value of the boundary element triplet is not (0, 0, 0) but the corresponding boundary
element is degenerate, no neighbor is found, C = {∅}, and again the search is for the
given direction is complete. Steps 2 to 4 are again skipped. In the example of Fig. 6, the
boundary element is highlighted in light gray and corresponds to the east face.

2. Block destination: If the boundary element identified by the indicator, (bei , be j , bek),
contains just one ghost block, step 2 is not required. If several blocks span the boundary
element, the block destination is identified using its relative position to the interior block,
as encoded in the sector vector that is stored in the binary tree data structure. Using the
index, (i, j, k), for the cell lying in the interior of the block, a simple test ξ +dξ < Nξ /2
is used to discriminate between either the east or west (i), south or north ( j) and bottom
or top (k) of the boundary element. In Fig. 6, the block destination shown in green has a
south and bottom sector.

3. Cell index destination: For the current search direction, a unique target cell is now
selected for inclusion in the stencil. The index of this cell lying within the ghost block is
provided using the following pseudo-code:
switch beξ do

case -1:
ξ∗ = Nξ (Bd) + Δξ + 1

case 1 :
ξ∗ = Δξ − 1

case 0:
if lsource(ξ) = ldest(ξ) then

ξ∗ = ξ + dξ

end if
if lsource(ξ) < ldest(ξ) then % neighbor has a finer mesh
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Fig. 6 Depiction of a non-uniform block to highlight the four steps of the neighbor search algorithm for a cell
close to the block boundary, having ghost cells in its reconstruction stencil. For each search direction, one has
to: 1—identify the boundary element destination (a face here) highlighted in light gray, 2—identify the block
destination within the boundary element (one of the four blocks spanning the face, here the one shown in
green), 3—identify a unique neighbor for each search direction cell (in red), 4—in case the neighboring mesh
is finer, extend the stencil by filling the gaps in the tangential finer cells (in blue). The yellow cells represent
interior cells for which the neighbor search algorithm is greatly simplified with the use of step 1 only

ξ∗ = modulo
(
(ξ + dξ ) × 2, Nξ (Bd)

)
end if
if lsource(ξ) > ldest(ξ) then % neighbor has a coarser mesh

ξ∗ = ξ/2 + dξ

end if
where lsource(ξ) and ldest(ξ) are the refinement levels of the source (interior domain) and
destination blocks in the ξ direction, respectively. The value Nξ (Bd) corresponds to the
number of cells of the blockdestination Bd in the ξ direction.An index ensemble is defined
such that Cξ = {ξ∗} and the unique cell index destination is given by C = (Ci , C j , Ck).
In Fig. 6, cells identified by step 3 are shown in red.

4. Cell index extension: In the cases that the neighboring mesh is finer in the tangential
ξ -direction, the index ensemble Cξ is enriched to ensure that there is no gap between the
cells as follows:
if lsource(ξ) < ldest(ξ) & beξ = 0 then

Cξ = {ξ∗, ξ∗ + 1}
end if

Finally, the neighbor cell indices are C = (Ci , C j , Ck) for a given cell (i, j, k) and a
search direction (di , d j , dk). As depicted in Fig. 6, the blue colored cells are added to
complete the stencil.

The application of the preceding neighbor search algorithm applied on a Cartesian mesh
to a cell located close enough to the block boundaries such that its stencil includes cells in
the ghost cell area is shown in Fig. 7. As the current anisotropic AMR implementation is
extremely flexible, there are up to 16 different types of resolution changes at block boundaries
that can be summarized in four groups as shown in Fig. 7. In the stencil representation, cells
colored yellow represent the interior domain of a block and the blue colored cells represent
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Fig. 7 Examples of cell stencil construction in a Cartesian mesh for a cell (i jk) located at the block boundary
such that its stencil includes ghost cells from neighboring blocks. The interior domain is represented in yellow
and blue is for the ghost cells. The different blue color shades are for different ghost blocks spanning an interior
block face. a Neighbor has the same mesh refinement. Stencil is identical to that of an interior cell. b Four
neighbor blocks with finer mesh are facing the block. Neighbor search directions produce more than one cell.
c Neighbor has a coarser mesh. Number of cells identical to uniform configuration. d Two neighbor blocks
having a finer mesh in a direction and a coarser mesh in the other direction. A total of 43 cells are included
in the stencil. a 27 first-ring cells plus 6 extra second-ring cells: 33 cells. b Two views of a stencil built with
four neighbors having a finer mesh, 54 first-ring cells plus 9 extra second-ring cells: 63 cells. c Two views of a
stencil built with a neighbor having a coarser mesh, 27 first-ring cells plus 6 extra second-ring cells: 33 cells.
d Two views of a stencil built with two neighbors having both a finer and a coarser mesh, 36 first-ring cells
plus 7 extra second-ring cells: 43 cells

ghost cells for that block. All four different stencils are based on the baseline 33-cell uniform
Cartesian stencil defined by Eq (7) which has been found optimal for the fourth-order CENO
scheme [37]. Stencil construction using the neighbor search algorithm would also be valid
for other more extensive stencils discussed by Ivan et al. [37]. Figure 7a is a stencil obtained
for a cell i jk located at the block boundary facing a neighbor with the same mesh refinement.
The shape of the stencil is exactly the same as an interior cell stencil and the stencil contains
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33 cells. Figure 7b represents a stencil built with four neighbor ghost blocks having a finer
mesh. Because the mesh is finer in both tangential directions, the number of cells included
in the stencil equals 63. With a finer mesh in one direction only (2 neighbor ghost blocks
spanning the face), the number of cells included in the stencil would be 43. Figure 7c depicts
a stencil of a cell having a neighbor with a coarser mesh. The shape of the stencil is different
from the uniform case but the number of cells included in the stencil remains 33 since the
neighboring mesh is coarser in the two tangential directions. With a mesh coarser in just
one direction, the number of cells would be 43. Figure 7d is specific to anisotropic AMR
since the neighbors represented in blue have a finer mesh in a direction and a coarser mesh
in the other direction, a situation which cannot occur with isotropic refinement. Again the
shape of the stencil is very close to the uniform reference stencil of Fig. 7a but includes a
total of 43 cells. Thus for all mesh refinement configurations of a Cartesian grid, at least
33 neighbors are found in the cell stencil ensuring that Eq (6) is overdetermined. Figure 8
shows three stencils obtained with the above neighbor search algorithm applied to a cell of
a cubed-sphere grid having an edge degeneracy. Figure 8a (respectively Figs. 8b and 8c)
depicts a stencil with finer (respectively coarser and both finer and coarser) neighboring
ghost blocks. For this mesh topology, the minimum size of the various stencils is 29, again
ensuring an overdetermined system for solution of the least squares problem associated with
the evaluation of the high-order K -exact reconstruction polynomial.

4.7 Numerical Flux Evaluation with AMR

As discussed by Freret and Groth [25], the numerical flux evaluation also becomes more
challengingwhenanon-uniformmesh is used,moreparticularly at blockboundaries. Thepos-
sibility of 16 different types of resolution changes at the block boundaries must be accounted
for, which can be summarized in three groups as shown in Fig. 9. In Fig. 9, case (a) involves
a cell which has an equal or a finer mesh in one or several directions compared to its neigh-
boring ghost cell. Case (b) shows an example of a cell having a neighbor with a coarser
mesh discretization and case (c) illustrates two cells with opposite resolution changes in two
different directions, as also shown in Fig. 4b. Numerical evaluations of the fluxes for case (a)
and (b) are rather straightforward since they represent a situation where a coarse face spans
its finer neighbor. For case (a) all needed quantities for the flux computation are based on
the interior cell, as shown in Fig. 9a. For case (b) the evaluation of the fluxes is performed
through the faces of the ghost cells, taking the opposite of the normal vector, as depicted
in Fig. 9b. The high-order flux evaluation is done by summing the flux through the finer
neighboring cells to get the total flux of a coarser cell. Case (c) of Fig. 9c requires some
extra considerations since new Gauss quadrature points and associated weights have to be
evaluated on the face that intersects both cells with opposite resolution changes. The total
high-order numerical flux is obtained by summing the flux computed on each sub-face.

5 Numerical Results

A number of numerical results are now presented to demonstrate the accuracy and efficiency
of the overall fourth-order CENO finite-volume scheme with adaptive mesh refinement.
Results for uniform, isotropic, and anisotropic AMR meshes are included, as well as for
cubed-sphere grids, so to provide a broad evaluation of the AMR strategy. In Sect. 5.1,
numerical results for two different choices of reconstruction variables within the CENO
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Fig. 8 Examples of cell stencil construction in a cubed-sphere mesh for a cell (i, j, k) located at the block
boundary adjacent to a degenerate edge, such that its stencil includes ghost cells from neighboring face blocks.
The interior domain is represented in yellow and blue is used for the ghost cells. The different blue color shades
are for different ghost blocks spanning interior block faces. a Neighbors with finer mesh are facing the block.
Neighbor search directions produce more than one cell. b Neighbors have a coarser mesh. Since the edge
block cells are missing, the number of cells is less than 33. c Neighbors having a finer mesh in a direction and
a coarser mesh in the other direction. A total of 43 cells are included in the stencil. a Two views of a stencil
built with neighbors having a finer mesh, 59 first-ring cells plus 12 extra second-ring cells: 71 cells. b Two
views of a stencil built with neighbors having a coarser mesh, 23 first-ring cells plus 6 extra second-ring cells:
29 cells. c Two views of a stencil built with neighbors having both a finer and a coarser mesh, 35 first-ring
cells plus 8 extra second-ring cells: 43 cells

scheme are first considered for a transient problem involving the transport of an iso-density
vortex. Numerical results for both non-magnetized and magnetized MHD results are next
considered to evaluate grid convergence for smooth steady flows (Sect. 5.2) and robustness
of the high-order method at shocks (Sect. 5.3). In Sect. 5.4, the proposed high-order AMR
procedure is applied to the solution of an unsteady, 3D, iso-density, magnetized, vortex
problem in which the vortex is transported across a Cartesian mesh corresponding to a
periodic domain in order to show the ability of the combinedAMR scheme to capture features
or quantities of interest for smooth flows. Sects. 5.5 and 5.6 provide additional numerical
results for a magnetically dominated bow shock flow with intermediate shocks as well as for
a solar wind-magnetosphere interaction problem with a northward interplanetary magnetic
field (IMF), respectively. For the cases considered, high-order reconstruction stencils based
on the 33 cells as depicted in Fig. 7were used to obtain the high-order results. In the numerical
solution of all of the steady flow problems, a multi-stage optimal smoothing scheme [61] with
local time stepping was used. For the time-accurate calculations, the standard, four-stage,
fourth-order, Runge-Kutta time-marching scheme was employed.

It should be noted that the time integration procedure for time-accurate computations is
applied globally here to all computational cells within the AMR grid using a single global
time step.While the implementation of time-marching schemes using a hierarchical approach
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Fig. 9 Three scenarios to evaluate the numerical flux through a face of an interior cell depending on its mesh
resolution and its neighbor cell mesh resolution. The blue (respectively green) colored points represent the
Gauss quadrature points of the interior (respectively ghost) cell face. The black colored points are the Gauss
quadrature points where the numerical fluxes are evaluated. a (left) Exploded view of an interior cell having
a finer mesh than its neighbor ghost cell. The intersection of their face is the interior cell face. (right) The
numerical fluxes are evaluated at the Gauss quadrature points of the interior cell face, represented by the black
points. b (left) Exploded view of an interior coarse cell spanned with 4 ghost cells. (right) The intersection of
the interior cell and the ghost cells faces are the ghost cells faces. The numerical fluxes are evaluated at each
Gauss quadrature of the ghost cells face using the opposite of the original normal vectors. c (left) Exploded
view of an interior cell extruded from a mesh that is coarser in one direction and finer in the other direction
compared to its neighbor mesh. (right) The intersection of their faces are new cell faces, both of them having
4 Gauss quadrature points (colored in black). The numerical fluxes are computed at each of these quadrature
points

in which the time step is dictated by the local grid resolution (e.g., as described by Berger and
Oliger [4,6]) is possible, it has been the experience of the authors that the resulting potential
computational efficiencies are not significant for AMR meshes in which approximately half
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Fig. 10 Iso-density MHD vortex flow showing the iso-surface of the magnetic field (B = 0.18) contours of
the initial flow solution on a Cartesian grid

of the computational cells reside at the finest level of resolution as commonly occurs in the
MHD problems of interest here. For this reason, a global time-stepping approach is deemed
sufficient and was used here. It should also be noted that the focus of the present study is
on combining the high-order CENO finite-volume spatial discretization scheme with the
proposed anisotropic AMR approach. More effective temporal discretization strategies will
be considered in other follow-on research.

5.1 Effect of Choice of ReconstructionVariables

As a first evaluation of the fourth-order CENO scheme, the numerical convergence of the
local and global error norms of different flow quantities for an unsteady flow problem is
examined. The MHD flow problem of interest consists of a magnetized vortex structure in
force equilibrium advected by a uniform flow field fromMignone et al. [48]. This is a smooth
time-dependent 3D test problem with an exact solution. The underlying stationary solution
for the 3D iso-density MHD vortex flow is given by

ρ = 1,

V = (−y, x, 0)κ exp(q(1 − R2)),

B = (−y, x, 0)μ exp(q(1 − R2)),

p = 1 + 1

4q
(μ2(1 − 2q(R2 − z2)) − κ2ρ) exp(2q(1 − R2)),

where μ = κ = 1/(2π), and q = 1. This stationary solution is then translated with a
background velocity that equals (1, 1, 2). This flow problem is simulated on a periodic
Cartesian box with x , y and z varying between [-5,5].

Figure 10 depicts this flow solution on the Cartesian grid. Initially the vortex center was
positioned at (0, 0, 0) and the simulations were carried out until time t = 10 at which time
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Fig. 11 Effects of the choice of reconstruction variables on prediction accuracy showing comparisons of
the predicted L1, L2 and L∞ error norms for both high- and low-order reconstruction in terms of primitive
variables (solid lines with symbols) and mixed reconstruction with high-order reconstruction using conserved
variables and low-order reconstruction using primitive variables (dashed lines). a Error norms in the velocity
(solid lines with symbols) and momentum (dashed lines) versus grid size. b Error norms in the magnetic field
as a primitive variables (solid lines with symbols) and conserved variables (dashed lines) versus grid size. c
Error norms in the pressure (solid lines with symbols) and energy (dashed lines) versus grid size

the vortex has transported one period through the grid and is back to its original position.
A grid convergence study was performed to assess the accuracy of the CENO scheme for
this unsteady flow problem. Uniform mesh refinement with no AMR was considered for
this first case. For the study, each grid block contained 8 × 8 × 8 = 512 cells and the
initial grid consisted of 64 blocks with a total of 32,768 cells. Uniform refinement was then
applied to each subsequently finer mesh up to a finest mesh consisting of 262,144 blocks and
134,217,728 cells.

To investigate the accuracy issues associated with the choice of reconstruction variables
as raised in Sect. 3.3, the series of simulations for the iso-density vortex problem on the
sequence of uniformly refined meshes was first performed in which reconstruction of the
primitive variables was considered for both the high-order unlimited reconstruction and the
low-order limited reconstruction of the hybrid CENO method. The numerical results for this
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first set of cases are presented with solid lines with symbols in Fig. 11a–c. The L1, L2 and
L∞ error norms for the solution obtained on the sequence of uniformly refined grids are
shown for a subset of the primitive variables vector Sprim = {u, Bx , p}. For the initial
coarse mesh (323 cells), 56% of the cells are deemed as non-smooth and a limited linear
reconstruction is performed for all variables in these cells. For the second mesh (643 cells),
only 17% of the cells are detected with a non-smooth content and reverted to a second-order
limited reconstruction. Hence a global second order accuracy is observed for all variables for
the two coarsest meshes in Fig. 11a–c. For the next refined meshes, all variables in each cell
are flagged as smooth and a fourth-order unlimited polynomial reconstruction is performed
for all variables in all cells. However, the theoretical fourth-order accuracy is not achieved.
Instead, the effective order of convergence is close to 2 for the three variables and for all error
norms. This result agrees with the findings of Charest [9], which indicate a loss a accuracy
when high-order reconstruction of primitive variables is used in the solution of unsteady
problems, even though formal accuracy is retained for steady problems [9,38].

A second series of simulations was then performed on the uniformly refined meshes in
which the high-order reconstruction was carried out for the conserved variables and the low-
order reconstruction was performed in terms of primitive variables, only for regions of the
flow which are deemed as non-smooth. The corresponding numerical results for this second
set of cases are presented with dashed lines in Fig. 11a–c. Figure 11 shows the L1, L2 and L∞
error norms for a subset of the conserved variables Scons = {ρu, Bx , ρe} obtained on these
series of grids. As the solution content is deemed non-smooth for the two coarsest meshes,
a low-order reconstruction is performed in these cells and global second-order accuracy is
obtained.However, for further uniformly refinedmesheswhere all solution content is detected
as smooth, the fourth-order theoretical accuracy is recovered for all solution variables and for
all error norms. Hence, for unsteady flow problems, the CENO scheme does not suffer from
the temporal error introduced by the transformation from primitive to conserved variables [9].
Instead, a high-order accuracy is provided in case of smooth unsteady flow problem by
considering conserved variables reconstruction and the scheme reverts automatically to a
low-order accuracy with a tight control on the positivity of flow quantities by reconstructing
primitive variables. The possibility of switching reconstruction variables within the hybrid
CENO scheme is certainly an attractive feature of the method when monotonicity of the
solution is a concern.

5.2 Manufactured Solution for Superfast MHDOutflow

The 3D steady-state axi-symmetric solution of a MHD plasma is now considered on a spher-
ical shell domain flowing outward at superfast speeds as proposed by Ivan et al. [36]. The
exact solution is given by

ρ = R−5/2,

V =
(

x√
R

,
y√
R

,
z√
R

)
+ κR−5/2,

B =
( x

R3 ,
y

R3 ,
z

R3

)
+ κ,

p = R−5/2,

and corresponds to the solution having an additional source termQ in the governing equations
as detailed by Ivan et al. [36]. In this flow, the magnetic field is irrotational and aligned
everywhere with the velocity. The computational domain used for this convergence study is
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Fig. 12 Manufactured solution
showing predicted L1, L2, L∞
error norms for the first
component of the magnetic field
Bx versus grid size for uniform
refinement (dashed dotted lines),
isotropic AMR (solid lines), and
anisotropic AMR (dashed lines)
of the mesh. The L1, L2, L∞
error norms are represented
respectively by square, triangle
and circle symbols

defined by inner and outer spheres of radius Ri = 2 and Ro = 4. To achieve fourth-order
accuracy for this smooth problem, it is necessary to provide a high-order approximation to the
average source term, Qi jk , in the numerical residual by integrating the analytical expression
of the source termwith high-order accuracy. Moreover, high-order boundary conditions must
be imposed: both the inflow and outflow boundary conditions are specified using high-order
accurate integration of the exact solution in ghost cells to determine the ghost cell averages.

Figure 12 depicts the computed error norms in the first component of the magnetic field
Bx as a function of grid size. The theoretical fourth-order convergence is obtained with the
CENO scheme on the cubed sphere for all error norms with successive uniformly refined
grids (dashed dotted lines with symbols). Physics-based refinement criteria in terms of the
plasma density were used in the computations with AMR.With isotropic AMR, after the first
refinement, the convergence rate is around 7 for all error norms (solid lines). The plateau
observed for the first isotropic refinement illustrates the limitations of the physics- or gradient-
based refinement criteria. There is indeed no guarantee of a reduction in the solution error as
the mesh is refined. For anisotropic AMR, the error decreases monotonically and a conver-
gence rate reaches a value of 13 for all error norms (dashed lines), reflecting the important
mesh savings that can be realized compared to both the uniform and isotropic refinement
approaches. This is due to the refinement occurring only in the radial direction, thus allowing
a large reduction in the number of cells to solve the problem for a given target accuracy. For
example, to achieve an error of L1 = 5 × 10−8, the anisotropic AMR approach requires
only 6.25% of the total number of cells of the uniformly refined approach and exhibits an
overall refinement efficiency of 98% as defined by the number of actual cells in the com-
putational mesh to those in the equivalent uniformly refined mesh having the same finest
mesh level [55]. Note that these accuracy results for the MHD outflow with AMR provides a
partial validation of the proposed approach to obtain high-order accuracy using non-uniform
stencils at different mesh refinement levels with a minimal ghost cells strategy that ensures
consistent stencils near boundaries and corners.

5.3 Non-magnetized Bow Shock Flow

The application of the proposed AMR algorithm to a 3D non-magnetized bow-shock flow
around a solid sphere body with reflecting boundary conditions is considered next. The
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Fig. 13 Non-magnetized bow
shock showing initial
cubed-sphere mesh with five
sectors highlighted in different
colors and composed of 320
blocks. The grid blocks are
shown and the cells within the
grid blocks are shown for the
dark-purple sector. Inflow
boundary conditions are imposed
on the outer sphere, outflow
supersonic boundary conditions
are applied on the back panels
and reflection is used at the inner
sphere

Fig. 14 Non-magnetized bow shock showing slice z = 0 of the anisotropic mesh and predicted density field
obtained on the fourth level of mesh (left) and solution smoothness indicator (in blue) indicating cells deemed
as non-smooth (right)

computational domain is defined by inner and outer spheres of radius Ri = 1 and Ro = 4.
The mesh contains only five sectors instead of the typical six associated with a cubed-sphere
grid to reduce the number of computational cells and focus on the upstream side of the
sphere, as shown in Fig. 13. The supersonic inflow solution parameters used for this problem
are ρ = 1, vx = 1.4943, vy = vz = 0 and p = 0.2 such that the flow Mach number
is M = 2.825. Inflow boundary condition is applied on the outer sphere Ro, a reflection
boundary condition is imposed on the inner sphere Ri , and an outflow boundary condition is
used for the back panels of the outer sphere.

The initial grid for this steady bow-shock problem consisted of a total of 320 blocks of
8×8×16 cells, for a total of 32,768 hexahedral cells, with 8 blocks in the radial direction. The
meshwas then subjected to 4 levels of adaptivemesh refinements. The anisotropic refinement
criteria used for this simulationwere based on the smoothness indicator as detailed in Eq.(10).

The predicted solution density and the smoothness indicator in the Cartesian plane
{(x, y), z = 0} obtained on the final mesh are both shown in Fig. 14. Similar 3D views
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Fig. 15 Non-magnetized bow shock: 3D view of the anisotropic mesh and density field obtained on the fourth
level of mesh (left) and solution smoothness indicator (in blue) indicating cells deemed as non smooth (right)

are given in Fig. 15. The final anisotropic mesh consists of 24,884 blocks and 80,116,416
computational cells. In this case the overall refinement efficiency is 84% compared to a uni-
form mesh. As shown in the two figures, refinement of the mesh occurs all along the shock
profile and near the stagnation point. The number of cells deemed as non-smooth is around
10% for the initial mesh and up to 25% for the final mesh. In Figs. 14-(right) and 15-(right),
the smoothness indicator is shown in blue on the final mesh. As can be seen, cells located
near the shock are detected as non-smooth. The smoothness indicator thus provides a very
good way to identify the shock. It is indeed worth mentioning that using the smoothness
indicator as a refinement criteria allows the refinement all along the shock even in the outer
regions of the bow shock that can be missed using physics-based refinement criteria in terms
of the gradient of density [27].

5.4 3D Iso-Density MHDVortex in a Periodic Cartesian Box

The ability of the proposed AMR procedure to track the advection of a 3D iso-density vortex
in a periodic box is now evaluated. The problem setup is identical to that described in Sect. 5.1.
The number of root blocks in the initial mesh was modified so as to contain 3×3×3 blocks.
At the start of the simulation, this initial mesh with 27 root blocks containing 8× 8× 8 cells
was refined eight times based on the initial conditions and a maximum refinement level of six
was achieved. As the vortex problem is mostly isotropic, physics-based refinement criteria
in terms of the curl of the velocity field was used to direct an isotropic refinement procedure
in which the binary tree was forced here to behave as an octree, as described in Sect. 4.

Figure 16 shows 6 slices of the predicted magnitude of the magnetic field obtained for
the unsteady MHD vortex problem on the isotropically refined meshes at (a) t = 0, (b)
t = 1.25, (c) t = 2.84 from top-left to top-right and (d) t = 6, (e) t = 7.59, and (f) t = 10
from bottom-left to bottom-right. Following the initial mesh refinement, the unsteady AMR
refinement and coarsening procedure was applied every 10 time-steps until a maximum time
of t = 10 was reached. From the figure it is apparent that, throughout the simulation, the
AMR tracks the vortex very well, clustering the blocks in the vortex area and with a minimal
variation in the number of blocks. An overall reduction of 99% in the number of cells is
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Fig. 16 Iso-density vortex in a periodic box showing isotropic AMR mesh and predicted magnitude of the
magnetic field obtained at a t = 0, b t = 1.25, c t = 2.84, d t = 6, e t = 7.59 and f t = 10 in a XY plane of a
periodic 3D box. a slice z = 0, 4024 blocks, t = 0, b slice z = 2.5, 5641 blocks, t = 1.25, c slice z = −4.2,
5207 blocks, t = 2.84, d slice z = 2, 5508 blocks, t = 6, e slice z = −4.8, 5606 blocks, t = 7.59, f slice
z = 0, 5592 blocks, t = 10

achieved compared to that which would be required for a uniformly refined mesh with a
resolution equal to that on the finest level.

Figure 17 shows the error norms of the first component of the magnetic field Bx when the
isotropic AMR was applied, along with comparisons to those results obtained for uniform
refinement. Maximum levels for the refinement of 3, 4 and 5 were imposed, respectively.
For each case, the simulation was carried out up to t = 10, with the isotropic AMR being
applied every 20 time steps, and the error norms were then evaluated. The error norms for
the uniform refined meshes are shown with solid lines and symbols as a reference and the
results for the isotropic AMR are depicted with dashed lines. The mesh savings offered by
the isotropic AMR approach compared to a standard uniform approach when comparing the
predicted L∞ norms of the error for the same accuracy is rather substantial: the mesh is
reduced by a factor of 5-12 depending on the desired accuracy. It should be noted that, for
this test case, the vortex represents a significant portion of the domain. As such it is therefore
expected that the convergence or slopes of the error norms for both uniform and isotropic
adaptive refinement should be similar.

5.5 Magnetically Dominated Bow Shock Flow

As a next case, numerical predictions of a stationaryMHD bow shock flow around a perfectly
conducting sphere are considered. For this case, a uniform superfast plasma flow is incident in
on the sphere and a stationary MHD bow shock is formed. The upstream magnetic field lines
are aligned with the x-direction and form an angle θvB = 3.8◦ with the upstream velocity
field lines. The Alfvénic Mach number is such that MAx = 1.5 and the upstream plasma
β = 2p/B2. In such conditions, the flow is said to be magnetically dominated as thermal
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Fig. 17 Iso-density vortex in a
periodic box showing predicted
error norms of Bx for both
uniform refinement (solid lines
with symbols) and isotropic
AMR (dashed lines) of the mesh

and dynamical pressure effects are dominated by magnetic effects [20]. It has been shown
that an upstream flow with such a strong magnetic field leads to a bow shock front followed
by a secondary shock front [20].

The computational domain used for this problem was again based on the cubed-sphere
grid with only five sectors, as described previously in Sect. 5.3. The initial mesh consisted
of 640 blocks of 8× 8× 16 cells with a total of 65,536 hexahedral cells. Converged steady-
state solutions were obtained on sequence of successively refined meshes. Four successively
refined anisotropic AMR procedure were applied in which physics-based refinement criteria
based on the gradient of the velocity field amplitude were used. On the final mesh, 19,083
blocks were used for a total of 19,540,992 cells and the refinement efficiency was 99.27%.

Figure 18a depicts the predicted density distribution in the (x, y) plane obtained on the
finest anisotropic AMR mesh using the fourth-order CENO finite-volume scheme, which
is in very good agreement with those of the reference work by De Sterck and Poedts [20].
Figures 18b, c show the predicted magnetic field amplitude and the blocks of the computa-
tional grid in the (x, y) plane for the final anisotropically refined mesh, respectively. Lastly,
the regions where the smoothness indicator is active is shown in blue in Fig. 18d. The latter
corresponds to the computational cells in which a limited second-order reconstruction has
been applied. On the final mesh, just 15% of cells are detected as non-smooth, most lying
within the shocks, again illustrating the effectiveness of the smoothness indicator in detecting
non-smooth solution content.

5.6 Earth’s Magnetosphere with Northward Interplanetary Magnetic Field

As a last example, numerical results are now presented for the interaction of a solar wind
with a magnetized sphere representative of Earth’s magnetosphere. For the case considered,
an incoming high-speed solar wind flow with a northward background magnetic field inter-
acts with an assumed idealized magnetic dipole representing the magnetosphere. In order to
compare the predicted results to those presented previously by Powell et al. [54], similar free
stream and boundary conditions were applied; that is, the solar wind velocity was taken to
be ux = 400km/s, the strength of the magnetic dipole was taken to be 3× 10−5 Tesla ×R3

E ,
where RE the radius of Earth, the free-stream conditions imposed on the outer sphere bound-
ary located at Ro = 384RE , and constant plasma conditions of ρ = 1,U = 0, Br = 0, p = 8
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Fig. 18 Magnetically dominated bow shock flow over a sphere showing a the predicted density distribution in
the (x, y) plane; b the predicted distribution of the magnetic field amplitude in the (x, y) plane; c the blocks of
the anisotropically refined AMRmesh in the (x, y) plane; and d smoothness indicator in the (x, y) plane, for a
final mesh consisting of 19,083 blocks and 19, 540, 992 cells. aDensity contours. bMagnetic field amplitude.
c Final mesh of 19,083 blocks. d Smoothness indicator

at an inner spherical boundary representing the ionosphere located at Ri = 3RE . The com-
putational domain considered here is a standard cubed-sphere grid with 6 sectors. The initial
mesh consists of 288 blocks of 12× 12× 12 cells for a total of 497,664 computational cells.
Steady solutions for the magnetosphere problem were obtained on a sequence of succes-
sively anisotropically refined meshes. Five levels of anisotropic AMR were applied using a
refinement criteria based on the pressure gradient. The resulting final mesh after 5 levels of
refinement was composed of 2306 blocks and 3,984,768 hexahedral cells. The refinement
efficiency on the finest mesh was 99.80%.

Figure 19a shows the predicted pressure distribution andmagnetic field lines of the steady-
state solution for the magnetosphere/solar wind interaction with northward IMF on the finest
mesh following the 5 levels of anisotropic refinement. It can be observed that the magnetic
field lines of the solar wind are parallel to the terrestrial magnetic dipole field lines and this
situation results in a so-called “closed magnetosphere” with very little reconnection between
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Fig. 19 Magnetosphere interaction of solar with with Northward IMF showing a predicted pressure contours
andmagneticfield lines in the (x, z)plane andb anisotropic block-basedAMRmesh after 5 levels of refinement.
a Pressure contours with magnetic field lines. b Final mesh with 2306 blocks and 3,984,768 hexahedral cells

terrestrial and IMF field lines. The length of tail of the magnetosphere as represented by the
last closed magnetic field lines on the night side (downstream of the Earth) is evaluated to
be x = −35RE . This result, as well as the overall predicted structure of the magnetosphere,
are in very close agreement with the predictions presented in the previous study by Powell
et al. [54]. Figure 19b provides a plot of the grid blocks contained in the final anisotropically
refined AMRmesh. It is evident that the blocks are clustered along the bow shock on the day
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side. The adapted mesh is clearly well aligned with the bow shock near the stagnation point
(refinement is highly anisotropic) but gradually loses alignment moving toward the outer
regions of the bow shock where a more isotropic refinement of the mesh is recovered.

6 Conclusions

A fourth-order CENO finite-volume method combined with an efficient anisotropic block-
based AMR scheme has been proposed and described for the solution of the compressible
form of the ideal MHD equations on three-dimensional multi-block body-fitted hexahe-
dral meshes. The proposed fourth-order AMR scheme is readily applicable to cubed-sphere
meshes and has considerable potential for the globalMHD solution of space plasmas. Numer-
ical results have been presented and compared to analytical solutions for several benchmark
problems. For these cases, the formal accuracy of the high-order CENO method has been
established. Furthermore, the ability of the anisotropic AMR technique to provide efficient
local refinement of the multi-block grid has been demonstrated for smooth unsteady flow
problems as well as for steady flows with strong shocks.
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