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a b s t r a c t 

A new interpolative-based approximation to the second-order maximum-entropy, M 2 , moment closure 

for predicting radiative heat transfer in gray participating media is proposed and described. In addition 

to preserving many of the desirable mathematical properties of the original M 2 closure, the proposed 

interpolative approximation provides significant reductions in computational costs compared to the costs 

of the original M 2 closure by avoiding repeated numerical solution of the corresponding optimization 

problem for entropy maximization. Theoretical details of the proposed interpolative-based closure, along 

with a description of an efficient Godunov-type finite-volume scheme that has been developed for the 

numerical solution of the resulting system of hyperbolic moment equations, are presented. The finite- 

volume method makes use of limited linear solution reconstruction, multi-block body-fitted quadrilat- 

eral meshes with anisotropic adaptive mesh refinement (AMR), and an efficient Newton-Krylov-Schwarz 

(NKS) iterative method for solution of the resulting non-linear algebraic equations arising from the spa- 

tial discretization procedure. The predictive capabilities of the proposed interpolative M 2 closure are as- 

sessed by considering a number of model problems involving radiative heat transfer within one- and 

two-dimensional enclosures, the results for which are compared to solutions of the first-order maximum 

entropy, M 1 , moment closure, as well as those of the more commonly adopted spherical harmonic mo- 

ment closure techniques (first-order P 1 and third-order P 3 ) and the popular discrete ordinates method 

(DOM). The latter is used as a benchmark for comparisons, whenever exact solutions are not available. 

The numerical results illustrate the promise of the proposed M 2 closure, with the closure outperforming 

the M 1 , P 1 and P 3 closures for virtually all cases considered. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Radiative heat transfer is important in a wide variety of scien-

ific and engineering applications, including the thermal sciences

nd combustion. The transport of radiative energy is governed

y the radiative transfer equation (RTE) [1] , a complex integro-

ifferential equation of high dimensionality for which there exists

o general analytical solution. One must therefore rely on approx-

mate solution techniques and numerical methods in order to ob-

ain predictions of the radiative quantities of interest. 

One of the most widely used approximate techniques for solv-

ng the RTE is the discrete ordinates method (DOM) [2] which is

ased on a direct discretization of the angular dependence of the

adiative intensity distribution and is generally used in conjunc-

ion with space marching techniques. While extremely efficient

or problems involving relatively simple geometry and simplified
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hysics (e.g., non-scattering media), the latter can become inef-

cient for problems with complex three-dimensional geometries

nd realistic physics [3] , as is the case in many practical applica-

ions. The potential computational limitations of the DOM has mo-

ivated the investigation of alternative approximate radiation solu-

ion techniques, such as the method of moments as originally pro-

osed by Grad [4] in the case of gaskinetic theory. As the name

uggests, the method of moments solves directly for just a finite

et of angular integrals of the intensity distribution, instead of solv-

ng directly for the angular distribution, and this can afford a re-

uction in computational costs compared to those associated with

olving directly the high-dimensional RTE. The resulting system of

quations for the finite set of moments can not be readily solved

owever, as there are more unknowns than equations. An addi-

ional relation between the highest order moments (unknown) and

he known finite set of lower-order moments is required for clo-

ure. The resulting closure relation is generally obtained by making

n assumption about the approximate form for the underlying ra-

iative intensity distribution in term of the lower-order moments. 

https://doi.org/10.1016/j.jqsrt.2020.107238
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2020.107238&domain=pdf
mailto:joachimandre.sarr@mail.utoronto.ca
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The most common approach for providing closure to the system

of angular moment equations arising from the RTE is the spheri-

cal harmonic P N approximation [5] , where N refers to the order of

the approximation. In the P N moment closures, the radiative inten-

sity distribution is approximated by a series expansion in terms of

spherical harmonic functions as well as the know finite set of mo-

ments. An analytical expression for the highest-order moments in

term of the lower-order moments, or closure relation, can then be

obtained, for any order N , by appropriately integrating the approxi-

mate form of the distribution with respect to its angular variables.

The lowest-order spherical harmonics approximation, namely the

first-order P 1 closure has been extensively used to provide approx-

imate solutions to the radiation heat transfer equation [6–9] , due

to its simplicity and relatively low computational costs. However,

because the closing relation for the P 1 approximation is similar to

that of an isotropic distribution with the same energy density, the

latter closure cannot properly describe highly anisotropic distribu-

tions of radiation. Beyond the P 1 closure, even-order P N approxi-

mations are known to be less accurate than their odd-lower-order

counterparts [10] and thus odd-order spherical harmonic closures

are generally considered. While the P 3 approximation can capture

more anisotropy in the distribution than its first-order counterpart,

this comes at the expense of substantially increased computational

costs. Moreover, the convergence of the P N closures is rather slow

with increasing N [11] . Another important drawback of the P N clo-

sures is that the approximate forms of the distribution of radiative

intensity are not strictly positive and the closures are not valid for

the full range of physically realizable moments at any order. 

More recently, closure techniques based on the principle of

maximization of entropy, or maximum entropy, M N , closures [12] ,

where N again refers to the order of the approximation, have re-

ceived considerable interest in the field of radiation modelling. The

M N closures take the most likely form of the angular distribution

among all the possible ones reproducing a given finite set of mo-

ments [13] . In addition to this highly desirable feature for an ac-

curate closure, the M N hierarchy of models possesses many desir-

able mathematical and numerical properties, including moment re-

alizability and hyperbolicity. Furthermore, even the lower-order ap-

proximations including the first-order M 1 maximum entropy mo-

ment closure, can accurately capture a wide range of optical condi-

tions (both equilibrium and non-equilibrium regimes). The M 1 mo-

ment closure for gray gas, for which there exists a closed form an-

alytical expression for the closing relation, has been studied by a

number of researchers [14,15] . Its predictive capabilities were ob-

served to be superior to those of the P 1 closure for a relatively

wide range of optical conditions. However, one important limi-

tation of the M 1 closure is its inability to properly capture sit-

uations where there is more than one primary direction for the

propagation of the radiative energy. In these cases, the M 1 clo-

sure produces a nonphysical discontinuity in the radiative energy

density [14] . For this reason, there has been considerable inter-

est in the higher-order members of the maximum entropy mo-

ment closure hierarchy, beginning with the second-order M 2 maxi-

mum entropy closure. Unfortunately, the application of the higher-

order M N closures is made difficult due to the lack of closed-

form analytical expressions for the closing fluxes, even for prob-

lems involving gray gases. Repeated numerical solution of the op-

timization problem for entropy maximization is therefore required,

which can make the application of the higher-order M N closures

computationally prohibitive. In spite of these difficulties, in a previ-

ous study Hauck [16,17] explored the predictive capabilities of the

higher-order maximum entropy moment closures (i.e., M 2 , M 3 , M 4 

and M 5 ) for various test problems involving gray-gas radiative heat

transfer in one-dimensional slab geometries. In this study, the so-

lutions of the aforementioned M N closures were obtained by solv-

ing the optimization problem for entropy maximization via a nu-
erical approach. Furthermore, Hauck compared the predictions of

he aforementioned M N closures to those of the M 1 closure, as well

s those obtained using the P 1 and P 3 spherical harmonic approx-

mations and clearly demonstrated that the higher-order M N clo-

ures provided significantly improved predictions of radiative heat

ransfer, relative to the M 1 closure. Similar results have been ob-

ained by Monreal and Frank [18] , who proposed an analytical ap-

roximation for the M 2 closing relation in the one-dimensional

ase. 

Motivated by a desire for moment closures for radiative trans-

ort applications which have the desirable properties of the high-

rder M N closures without the prohibitive computational costs as-

ociated with repeated solution of the optimization problem for

ntropy maximization, Pichard et al. [19] recently proposed an

nterpolative-based approximation of the closure relation for the

 2 closure in multiple space dimensions. Similar interpolative-

ased variants of maximum entropy closures have been consid-

red previously by McDonald and Groth [20] and McDonald and

orrilhon [21] in the case of gaskinetic theory. In the approach

f Pichard et al. [19] , an approximation of the closing flux in

ne space dimension, obtained by means of a convex combina-

ion between the boundaries, with the convex interpolant obtained

hrough fitting of the numerical values obtained from the solution

f the optimization problem, was first proposed. An extension to

ultiple space dimensions was then developed by means of inter-

olation with respect to both the first- and second-order moments

or all of moment space as defined by the conditions for the re-

lizability of the predicted moments. The necessary and sufficient

onditions for the latter for moments up to second-order in mul-

iple space dimensions were first formulated by Kershaw [22] . In

pite of this step forward, some problematic issues can be identi-

ed related to the resulting closure of Pichard et al. In particular, a

loser investigation by the present authors has revealed that some

f the expressions used in the previous procedure proposed for the

valuation of the interpolant on the boundaries of moment space

o not match the corresponding exact analytical expressions on

hese boundaries. This apparent mismatch in the values produces

iscontinuous solution behaviour near the boundaries of the real-

zability domain and, as a consequence, the resulting interpolative-

ased closure is definitely not globally hyperbolic. The latter poses

roblems for practical simulations. 

In this study, an alternative interpolative-based analytical ap-

roximation to the M 2 maximum entropy closure for gray radiative

eat transfer in multiple space dimensions is therefore proposed.

he objective is to mimic as closely as possible the solution qual-

ty and desirable properties of the M 2 closure while avoiding the

omputationally expensive iterative numerical solution associated

ith the entropy maximization problem in practical simulations.

s they are a key ingredient in the construction of the interpola-

ive closure, the necessary and sufficient conditions for realizabil-

ty of the predicted moments as defined by Kershaw [22] are first

eviewed and a variant of the proof of sufficiency is given. The lat-

er is done by proving the existence of a distribution that repro-

uces the moments satisfying the necessary conditions and is non-

egative everywhere within the realizability domain. The new ap-

roximation for the M 2 closure is then obtained by carefully study-

ng the maximum-entropy solution within the realizability domain

nd then making a careful choice of the interpolant such that it

xactly reproduces the known analytical expressions for the clo-

ure on the boundaries of the realizability domain and also approx-

mates pre-computed numerical solutions of the entropy optimiza-

ion problem within the interior of this domain. The exact expres-

ions of the closure relations on the boundaries are obtained by

elating them to derived forms for the distribution at the bound-

ries. It is also shown by numerical experiment that the newly de-

eloped interpolative-based closure appears to remain hyperbolic
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verywhere within the space of physically realizable moments. Fi-

ally, an efficient Godunov-type finite-volume scheme is proposed

nd developed for the numerical solution of the resulting system

f hyperbolic moment equations arising from the M 2 interpolative-

ased closure. The predictions of the M 2 closure are then assessed

hrough comparisons to additional numerical results obtained for

he M 1 , P 1 and P 3 moment closures, as well as results obtained

sing the DOM, for a number of representative problems. The so-

utions of the DOM are used here as a reference for comparison,

henever exact analytical solutions of the RTE are not available for

 given test problem. The radiative heat transfer problems of inter-

st include gray radiative heat transfer between parallel plates as

ell as within two-dimensional rectangular domains. 

. Radiation transport in gray participating media 

The transport of radiant energy in physical space, � x , and time,

 , in the direction, � s , at a given wave number, η, in a radiatively

articipating media with absorption coefficient, κη = κη( � x , t) , and

cattering coefficient, σsη = σsη( � x , t) , is described by the radiative

ransfer equation [1] , which has the form 

1 

c 

∂ I η

∂t 
+ 

�
 s . � ∇ I η = κηI bη − (κη+σsη) I η + 

σsη

4 π

∫ 
4 π

I η( � s ′ )�η( � s ′ , � s )d�′ , 

(1) 

here c is the speed of light in a vacuum, I η = I η( � x , � s , t) is the

pectral radiative intensity distribution, I bη = I bη(T ) (where T =
 ( � x , t) is the temperature field) is the spectral Planck function or

lack-body intensity, � denotes solid angle, and �η( � s ′ , � s ) is the

cattering phase function. The latter describes the probability that

 ray travelling in direction, � s ′ , will be scattered into direction,

  , and is also a function of location in space and time. The sub-

cript, η, indicates a spectrally varying quantity. For gray media,

or which the radiative properties are independent of wave num-

er, i.e., κη = κ and σsη = σs , integrating the RTE, Eq. (1) , over the

ull spectrum and assuming isotropic scattering, i.e., �( � s ′ , � s ) = 1 ,

ields the following form for the RTE [1] 

1 

c 

∂ I 

∂t 
+ 

�
 s . � ∇ I = κ I b − (κ + σs ) I + 

σs 

4 π

∫ 
4 π

I( � s ′ )d�′ , (2)

here I = 

∫ ∞ 

0 I ηdη is the total, spectrally integrated radiative inten-

ity distribution. 

The RTE for a gray medium, as represented by Eq. (2) , is a com-

lex equation with high dimensionality (6 independent variables)

or which there exists no general exact analytical solution. As such,

ne must therefore rely on numerical techniques based on approx-

mate treatments on the independent variables. The temporal and

patial dependencies can be treated using standard finite-volume

echniques for hyperbolic equations. For the treatment of the an-

ular dependence of the radiative intensity distribution, different

pproximate models can be considered, including the discrete or-

inates method, as well as moment closures based on spherical

armonic approximations and the principle of entropy maximiza-

ion. 

.1. Discrete ordinates method (DOM) 

In the DOM, angular quadrature is used to transform the equa-

ion of radiative transfer into a set of partial-differential equations

PDEs) with only spatial and temporal dependence. The angular

iscretization technique makes use of the assumption that the ra-

iation is transported only along a finite set of discrete directions,

nstead of the effectively infinite number of directions allowed in

q. (2) by a continuous representation of the solid angle. In other
ords, the solid angle is divided into a finite number, M , of dis-

rete directions (or ordinates) � s m 

. In this way, the RTE is trans-

ormed into a system of M coupled equations given by 

1 

c 

∂ I m 

∂t 
+ 

→ 

s m 

. 
→ ∇ 

I m 

= κ I b − ( κ + σs ) I m 

+ 

σs 

4 π

M ∑ 

n =1 

w n I n , (3)

here the subscript m denotes the discrete ordinate direction, I m 

is

he intensity in the m 

th direction and w m 

is the quadrature weight

ssociated with the direction 

�
 s m 

. Several quadrature rules have

een developed for the DOM, including the S N schemes of Lathrop

nd Carlson [23] and the T N schemes of Thurgood et al . [24] . The

 4 quadrature scheme is used in this study for all of the reported

OM simulation results. 

The DOM has been used extensively to provide approximate so-

utions to the RTE due to its good balance between accuracy and

omputational efficiency. However, this direct discretization tech-

ique is associated with two major limitations [25] : false scatter-

ng and ray effects. The former is due to the spatial discretization

f the RTE whereas the latter is related to the discretization of the

ngular distribution of the radiative intensity. Several approaches

ave been proposed in order to cope with such issues [24,26–30] .

dditionally, as mentioned in the introduction, the space marching

echniques commonly used to solve the resulting discretized equa-

ions of the DOM can be extremely efficient for relatively simple

eometries and physics; however, the space marching techniques

ay exhibit poor convergence for applications involving complex

hree-dimensional geometries and complex physics [3] (e.g., media

ith high scattering, turbulent reactive flows, etc.). 

. Moment closure methods for solution of the RTE 

An alternative approach to the treatment of the angular de-

endence of the radiative intensity distribution as carried out in

he DOM involves instead solving directly for the angular integrals

r macroscopic moments of the distribution. These angular mo-

ents, I ( n ) , are taken with respect to angular weights � s n = 

�
 s � n . . .

�
 s , n = 0 , . . . , ∞ , whose entries form a monomial basis, and have

he form 

 

(n ) ( � x , t) = 〈 � s n I( � x , � s , t) 〉 = 

∫ 
4 π

�
 s n I( � x , � s , t) d�

= 

∫ 2 π

0 

∫ π

0 

�
 s n I( � x , � s , t) sin θd θd ψ. (4) 

aking angular integrals of the RTE, Eq. (2) , results in a system of

oment equations of infinite size characterizing uniquely an arbi-

rary distribution. Solving such an infinite system of equations is

owever obviously unfeasible from a practical numerical point of

iew. Instead, a reduced finite set of moments and their transport

quations are considered in practice. However, a solution to the

o-called closure problem is then required in this case as the re-

ulting system of transport equations for the finite set of moments

enerally involves the next higher-order moment. In particular, ad-

itional expressions relating the next higher-order moment to the

nown lower-order moments are required for closure. These so-

alled closing relations are usually obtained by approximating the

nderlying positive angular distribution in terms of the known fi-

ite set of moments. There however exists a wide range of possible

orms for such an approximate distribution. In fact, there is effec-

ively an infinite set of possible distributions sharing the same set

f known lower-order moments. Moreover, the choice of the ap-

roximate form generally dictates many of the important mathe-

atical properties of the resulting closed system of moment equa-

ions: namely the realizablility of the predicted moments and hy-

erbolicity of the moment equations. A set of moments is said to

e physically realizable if there exists a strictly positive-valued dis-
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tribution of the radiative intensity that will yield the given mo-

ments [31] . The set of all realizable moments up to a given order n

then defines the so-called n -dimensional phase space of physically

realizable moments and is denoted here as R 

n . This region is gen-

erally described by a set of inequalities on the values of the mo-

ments: the so-called realizability conditions. In this study, approx-

imate forms for the angular distribution resulting from the spheri-

cal harmonic approximation as well as the principle of maximiza-

tion of entropy will be considered and their application to radiative

transport in gray media will be the primary focus. 

An important consideration for the moment closure techniques

outlined above is the selection or choice of the number of mo-

ments to be included in the closure of interest and which are

subsequently used to reconstruct the approximate angular inten-

sity distribution. In general, only the zeroth- and first-order mo-

ments, namely the radiative energy density I (0) and the radiative

heat flux I (1) , respectively, are of primary interest in engineering

applications. However, in general the more angular moments that

are used in the closure to reconstruct the approximate distribution,

the wider the range of optical conditions that may be captured ac-

curately by the closure. 

3.1. P N spherical harmonic moment closures 

In the spherical harmonic moment closure approximation, the

radiative intensity distribution, I( � x , � s , t) , is expressed in terms of a

series of spherical harmonic functions as [1,5] 

I( � x , � s , t) = 

N ∑ 

n =0 

n ∑ 

m = −n 

I m 

n ( � x , t) Y m 

n ( � s ) , (5)

where N is the order of the highest moment in the closed system,

I m 

n ( � x , t) are location-dependent coefficients of the series expansion

which can be directly related to the know finite set of moments,

and Y m 

n ( � s ) is the spherical harmonic function of degree n and order

m having the form 

 

m 

n 

(→ 

s 

)
= 

{
cos ( mψ ) P m 

n ( cos θ ) , for m ≥ 0 , 

sin ( | m | ψ ) P 
| m | 
n ( cos θ ) , for m < 0 , 

(6)

where P m 

n ( cos θ ) is the associated Legendre polynomial. 

3.2. First-order P 1 spherical harmonic moment closure 

The first-order P 1 spherical harmonic moment closure provides

closure to the system of transport equations involving just the

zeroth- and first-order moments, I (0) and I (1) 
i 

, respectively (i.e., a

set of four moments in three space dimensions for the radiation in-

tensity and fluxes in each coordinate direction), by approximating

the distribution Eq. (5) with N = 1 in terms of those lower-order

moments. The second-order moment, I (2) 
i j 

, is a dyadic quantity (i.e.,

a second-order tensor) and is involved in the transport equation

for I (1) 
i 

. This quantity can be directly expressed in terms of those

lower-order moments via integration thereby providing closure to

the system of equations. For a gray medium, the resulting closing

expression for I (2) 
i j 

takes the form 

I (2) 
i j 

= 

δi j 

3 

I (0) , (7)

where δij is the Kronecker delta. This is the so-called P 1 approxi-

mation which is generally considered to be accurate only for opti-

cally thick media as it is associated with a nearly-isotropic distri-

bution of the radiative intensity. 

3.3. Third-order P 3 spherical harmonic moment closure 

For comparisons to the proposed M 2 interpolative closure, the

P moment closure is also considered here. The P approximation
3 3 
nvolves moments of order up to three (i.e., I (0) , I (1) 
i 

, I (2) 
i j 

, and I (3) 
i jk 

),

here the transport equations for the third-order moments involve

he fourth-order moments, I (4) 
i jkl 

, which are generally unknown but

an be expressed in terms of the lower order moments by making

se of the form for the distribution given in Eq. (5) with known

ngular moments up to third-order. The fourth-order angular mo-

ents, I (4) 
i jkl 

, of this distribution can be evaluated directly yielding

he following closing relations: 

I (4) 
iiii 

= −(3 / 35) I (0) + (6 / 7) I (2) 
ii 

, 

I (4) 
ii j j 

= (4 / 35) I (0) − (1 / 7) I (2) 
kk 

, 

I (4) 
iii j 

= (3 / 7) I (2) 
i j 

, 

I (4) 
ii jk 

= (1 / 7) I (2) 
jk 

. 
(8)

t has been shown previously that the third-order P 3 spherical

armonic approximation yields significantly improved predictions

ompared the P 1 closure [10] . However, this comes at the expense

f significantly increased computational costs. Moreover, higher-

rder approximations ( N ≥ 3), result in further increases in compu-

ational effort, whereas the accuracy improvements with increasing

 are somewhat more modest [32,33] . For these reasons, it is felt

hat the P 3 approximation provides a reasonable balance between

ccuracy and computational costs. 

.4. M N maximum-entropy moment closures 

For a given wave number, η, or frequency, the radiative inten-

ity distribution, I η , in the maximum-entropy moment closures is

pproximated by a distribution that maximizes the radiatve en-

ropy, H R ( I η), defined by 

 R (I η) = 〈 h R 〉 = 

∫ 
4 π

h R (I η)d�, (9)

nd has a known finite set of moments E (n ) 
η , n = 0 , . . . , N, where N

s the order of the highest moment in the closed system of mo-

ent equations. In Eq. (9) , h R is the radiative entropy density,

hich corresponds to the entropy for Bose-Einstein statistics in

his case and is given by 

 R (I η) = 

2 kη2 

c 
[(n + 1) ln (n + 1) − n ln (n )] , n = 

I η

2 hcη3 
, (10)

here n is the occupation number, h and k are the Planck and

oltzmann constants, respectively. The problem of finding a dis-

ribution, I η , that maximizes the radiative entropy given by Eqs.

9) and (10) and subject to the constraints that a finite set of its

ngular moments, E (n ) 
η , n = 0 , . . . , N, are specified and known can

e reformulated as an optimization problem of the form 

 η = 
∇} �
§ I ηH R 

(I η) 

.t. 〈 � s (n ) I η〉 = E (n ) 
η , n = 0 , . . . , N. 

(11)

he Lagrangian of this optimization problem is 

 (I η, α) = H R (I η) − αT ( 〈 m 

¯
( � s ) I η〉 − E η) , (12)

here E η is a vector containing all the independent entries of E (n ) 
η ,

 = 0 , . . . , N, m ( � s ) is a vector containing all the independent en-

ries of � s (n ) , n = 0 , . . . , N, and α is the vector of Lagrange multi-

liers associated with the moment constraints. The entropy max-

mizing distribution, which satisfies ∂ L (I η, α) /∂ I η = 0 , then takes

he form [12] 

 η(α, m ) = 2 hcη3 

[
exp 

(
c 2 hη

k 
αT m ( � s ) 

)
− 1 

]−1 

. (13)

n the case of radiation transport in gray media, the distribution

unction Eq. (13) can be integrated over the full spectrum of fre-

uencies ( η ∈ [0, ∞ ]), yielding 

(α, m ) = 

σste f 
[
αT m ( � s ) 

]−4 , (14)

π
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here σste f = 2 π5 k 4 / 15 c 2 h 3 is the Stephan Boltzmann constant. 

In Eq. (14) , the radiative intensity distribution is not given ex-

licitly but is rather expressed in terms of the Lagrange multipliers,

, which have to be determined from the set of nonlinear coupled

lgebraic equations 〈 m ( � s ) I〉 = E. With the exception of the gray

 1 model [12] , there exists no analytical expressions for the La-

range multipliers in terms of the angular moments and, as such,

he Lagrange multipliers must therefore be determined numerically

y solving the Lagrangian dual optimization problem for entropy

aximization given by 

rg max α{L 

∗(α) } , (15)

here L 

∗(α) is the Legendre transform of L (I, α) , and has the

orm 

 

∗(α) = −σste f 

3 π

〈[
αT m ( � s ) 

]−3 
〉
− αT E. (16) 

nce the Lagrange multipliers have been determined, the closing

ux for the closure can be evaluated using numerical quadrature.

owever, it should be noted that the repeated solution of the opti-

ization problem defined by Eq. (15) whenever an update of the

adiation solutions is required can become very expensive compu-

ationally, particularly as the number of moments increases as is

he case for the higher-order maximum entropy closures in multi-

le space dimensions. For this reason, interpolative-based approx-

mations are proposed in what follows for the closing fluxes of

he gray M 2 closure, which are based on pre-computed solutions

f the optimization problem associated with entropy maximization

or sets of angular moments up to second-order spanning the as-

ociated realizable space. 

.5. First-order M 1 maximum-entropy moment closure 

The first member of the maximum-entropy hierarchy for gray

edia is the first-order M 1 closure. Unlike other high-order mem-

ers of this hierarchy, analytical expressions for the Lagrange mul-

ipliers in terms of the known set of moments exist in the case

f a gray medium for the M 1 closure. Similar, to the P 1 spherical

armonic approximation, the M 1 model achieves closure by using

he entropy maximizing distribution of Eq. (14) and expressing the

econd-order moment dyad in terms of the lower-order moments,

.e., I (2) = I (2) (I (0) , I (1) ) . Another feature of the first-order closure is

hat the anisotropy in the underlying radiative distribution lies in

he direction of the first-order moment vector or flux, I (1) . This in

urn implies that the radiative intensity distribution is symmetric

ith respect to the direction of N 

(1) = I (1) /I (0) . Using this prop-

rty, Levermore [34] previously derived an expression for the clos-

ng flux of the M 1 closure which takes the form 

 

(2) = N 

(2) I (0) , N 

(2) = 

1 − χ

2 

�
 �
 I + 

3 χ − 1 

2 

�
 n � �

 n , (17)

here χ is the well-known Eddington factor and, for the gray M 1 

losure, is given by 

= 

3 + 4 ‖ N 

(1) ‖ 

2 

5 + 2 ξ
, ξ = 

√ 

4 − 3 ‖ N 

(1) ‖ 

2 , (18) 

nd where N 

(n ) = I (n ) /I (0) are the n th -order normalized moments,
 

 

 is the identity dyad, and 

�
 n = N 

(1) / ‖ N 

(1) ‖ is the unit vector in the

irection of the first-order moment. 

In spite of its ability to capture a wider range of optical con-

itions than the P 1 model, the M 1 closure is known to produce

onphysical discontinuities in the radiative energy density and also

enerally provide inaccurate predictions of radiative quantities for

ituations in which beams of photons travelling in opposite direc-

ions cross [14] . In fact, when the zeroth- and first-order angular

oments are the only available information for reconstructing a

iven distribution, the only possible form for the latter in the case
f crossing beams with zero net flux is that of an isotropic distri-

ution, even though the underlying angular distributions are highly

on-isotropic. This issue can however be remedied by considering

igh-order members of the maximum-entropy hierarchy. 

.6. Second-order M 2 maximum-entropy moment closure 

The next member of the maximum-entropy hierarchy for gray

edia is the second-order M 2 closure and is the primary focus

f the present study. In a procedure similar to that described for

he M 1 closure, transport equations for known moments up to

econd-order are closed by assuming an entropy maximizing dis-

ribution and subsequently expressing the third-order closing mo-

ents (second-order moment fluxes), I (3) , in terms of the known

oments, i.e., I (3) = I (3) (I (0) , I (1) , I (2) ) or, in the case of gray me-

ia, N 

(3) = N 

(3) (N 

(1) , N 

(2) ) ). Unfortunately, unlike the M 1 closure

or a gray medium, it is not possible to obtain a closed-form ana-

ytical expression for the closing moment flux of the M 2 closure (in

act, a closed-form analytical expression for the closing flux is only

ossible for the M 1 model in the case of gray media) and there-

ore, in the simulations of radiative transport, repeated numerical

olution of the optimization problem defined by Eq. (15) would

e necessary, making the application of the closure computation-

lly expensive. 

To circumvent the need for the costly solutions of the optimiza-

ion problem to determine the Lagrange multipliers defining the

aximum entropy distribution, an alternative interpolative-based

pproach for accurately approximating the closing flux for the gray

 2 closure is proposed herein which attempts to retain many of

he desirable properties of the original model (e.g., moment real-

zability and hyperbolicity of the moment equations) while result-

ng in substantially reduced computational costs compared to the

epeated solution of the optimization problem. The proposed in-

erpolant is formulated to closely match the form of the M 2 maxi-

um entropy solution within the entire space of physically realiz-

ble moments defined by the angular moments up to second-order

i.e., the space defined by the set of necessary and sufficient condi-

ions such that there exists a non-negative distribution reproducing

oments of the M 2 closure). More specifically, an affine combina-

ion of the known analytical forms of N 

(3) on the boundaries of

ealizable space in terms of N 

(1) and N 

(2) is adopted as an approxi-

ation to the closing relation. The interpolant is then extended to

he interior of realizable space via a fitting procedure such that it

pproximates pre-computed values of N 

(3) obtained by solving the

ptimization problem for entropy maximization for moment sets

panning the full range of realizable space. The development and

escription of the proposed interpolative-based second-order M 2 

losure are given below in the section to follow. 

It should be noted that several authors have recently devel-

ped analytical approximations to the M 2 maximum-entropy mo-

ent closure in multi-dimensional space. Firstly, as noted in the

ntroduction, Pichard et al . [19] proposed an extension of the

reviously-developed approximation to the M 2 closure by Mon-

eal and Frank [18] for one space dimension to multiple dimen-

ions. The multi-dimensional interpolative-based M 2 closure pro-

osed by Pichard et al. [19] was formulated for radiative trans-

ort obeying Boltzmann statistics. More specifically, their interpo-

ation attempts to mimic the maximum entropy solutions only in

he case where the first-order moment, N 

(1) , coincides with one

f the eigenvectors of the covariance matrix, (N 

(2) − N 

(1) (N 

(1) ) T ) .

heir approximation of the maximum entropy solutions was com-

rised of several steps. Firstly, an interpolative-based approxima-

ion of the closure relation for the M 2 closure, in the case where

he covariance matrix has at least two identical eigenvalues, was

eveloped. This approximation was obtained by means of con-

ex combinations between the upper and lower boundaries of the
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realizablity constraints on the highest-order moments, the analyt-

ical expressions of which are available in this particular case. The

approximation was then extended to more general sets of eigen-

values for the covariance matrix, by means of polynomial inter-

polation, which reproduces known analytical expressions for the

closure relations in the case of degenerate eigenvalues, and also

reproduces the approximation corresponding to the case with at

least two identical eigenvalues. The choice of polynomial interpo-

lation, instead of convex combinations, at this stage of the approx-

imation was justified by the fact that, unlike the case with at least

two identical eigenvalues, there exist to date no necessary and suf-

ficient realizability conditions for the third-order moment, N 

(3) , in

more general cases. Extension to the full realizability domain for

moments up to order two was then achieved by means of con-

vex combinations within the unit ball described by the realizabil-

ity constraints on the first-order moment. By its construction, the

resulting interpolative-based M 2 closure, was proven to be realiz-

able for sets of moments up to second-order for which the covari-

ance matrix has at least two identical eigenvalues and one of its

eigenvector is co-linear to N 

(1) . Moreover, the maximum-entropy

solutions are only well approximated in a portion of the full re-

alizable space for moments up to second-order. Finally, it can be

shown that the description of the closure relations used by Pichard

et al. [19] on some of the boundaries of the realizable domain for

moments up to second-order is problematic, making the applica-

tion to the full range of practical simulations very difficult. 

More recently, an extended quadrature method of moments

(EQMOM)-based second-order moment closure was developed by

Li et al. [35] , as an approximation to the M 2 maximum-entropy

closure. In their approach, the base function used in the EQMOM

scheme are β probability density functions. One of the main ad-

vantages of this so-called B 2 model of Li et al. [35] , compared

to the M 2 closure, is the existence of closed-form analytical ex-

pressions for the closure relation. Moreover, the B 2 model pro-

vides a smooth interpolation between the isotropic and the free-

streaming limits. However, the EQMOM-based closure does not re-

ally attempt to mimic closely the properties of the M 2 maximum

entropy closure and the B 2 model in multiple space dimensions

is neither globally realizable nor globally hyperbolic. In fact, Li

et al. [35] have shown that the quadrature-based approximation

to the M 2 closure is only realizable and hyperbolic in a portion of

the realizable space defined by moments up to second-order. 

4. Interpolative-based second-order M 2 maximum-entropy 

moment closure 

In this section, the new interpolative-based approximation of

the second-order maximum entropy, M 2 , closure is formulated for

radiative transfer in multi-dimensional, gray, participating media.

Our proposed interpolant is formulated such that the known ana-

lytical expressions of the closing fluxes on the boundaries of real-

izable space are exactly reproduced. Using a polynomial interpola-

tion procedure, the affine interpolant is then extended to match

identically a range of pre-computed solutions of the optimiza-

tion problem for entropy maximization for sets of moments span-

ning the full realizable space for moments up to second-order, as

well as derivatives of the highest-order moment on the bound-

aries. This fitting of the pre-computed solutions is achieved by the

use of orthogonal or near orthogonal polynomial basis functions

so as to optimize the condition number of the resulting Vander-

monde matrix and consequently facilitate the inversion of the lat-

ter. The nodes for the interpolation procedure are chosen to co-

incide with roots of Chebyshev polynomials, which are known to

provide quasi-optimal approximation to any given function. In the

near vicinity of the boundaries of the realizable moment space, the

numerical solution of the highly nonlinear optimization problem
or entropy maximization becomes increasingly difficult, due to ill-

onditioning of the Hessian matrix. In order to facilitate the so-

ution of the optimization problem in these regions, precondition-

ng of the Hessian matrix is applied as described in Section 4.3 to

ollow, which substantially improves the condition number of the

essian such that its inverse can be computed with good accuracy.

.1. Necessary and sufficient conditions for realizability of moments 

p to second-order 

As a first step, the necessary and sufficient conditions for

ealizability of moments up to second-order are presented and

iven. A proof of sufficiency is also provided. These conditions and

he proof were previously established for both one- and multi-

imensional radiative heat transfer problems by Kershaw [22] .

hey were also key elements in the construction of the previ-

us second-order closures of Pichard et al. [19] and Li et al. [35] ;

owever, as they are crucial to the development of the proposed

nterpolative-based approximation of the M 2 closure, they are re-

ummarized here. Note that proof of sufficiency given here is a

light variant of Kershaw’s proof and follows that of Monreal and

rank [18,36] for the one-dimensional case, with an extension to

he multi-dimensional case. 

Realizability of the predicted angular moments of a given clo-

ure deals with the issue of whether or not a physically realis-

ic (i.e., strictly positive valued or non-negative) angular distribu-

ion of the radiation intensity can be associated with the given

et of moments. If such an angular distribution can be identified,

hen the moment set is deemed to be realizable. The conditions

or moment realizability give rise to a set of constraints or realiz-

bility conditions on the predicted moments which can be used to

efine the extent of possible closure solutions in moment space.

he approach essentially consists of multiplying a presumed non-

egative distribution by a non-negative polynomial test function

efined in terms of the angular variables, from which necessary

onditions for realizability of the moments can be derived. For a

iven set of N angular weights, S (N) = [1 , � s (1) , � s (n ) , . . . ] T , and corre-

ponding moments, I (N) = 〈 S (N) I〉 , one can construct a polynomial,

 

(N) ( � v ) = a T S (N) , where a T are the coefficients of the polynomial.

t then follows that for any globally positive-valued angular distri-

ution, I , and polynomial, P 

(N) , one must have 

||P 

(N) ( � v ) || 2 I 〉 = a T 
〈
S (N) 

[
S (N) 

]
T I 
〉
a ≥ 0 , (19)

hich, for an arbitrary polynomial, requires that the real symmet-

ic matrix, M 

( N ) , given by 

 

(N) = 

〈
S (N) 

[
S (N) 

]T 
I 
〉
, (20)

ust be positive definite. For situations in which this matrix is

egative definite, it follows that the moment set is not consistent

ith any possible positive-valued distribution, I , and, hence, the

oments are not physically realizable. For the M 2 closure and mo-

ents up to second-order for an every-where non-negative angular

istribution of the radiative intensity, the corresponding necessary

onditions on moment realizability, which define the realizability

omain for moments up to second order denoted by R 

2 , can be

efined as follows [18,22,36] : 

 

2 = { (I (0) , I (1) , I (2) ) ∈ R 

3 × R 

3 ×3 , s.t. I (0) ≥ 0 , ‖ N 

(1) ‖ ≤ 1 , 

N 

(2) − N 

(1) (N 

(1) ) T ≥ 0 , �
 n 

T N 

(2) �
 n ≤ 1 ∀ ‖ 

�
 n ‖ ≤ 1 , 

tr(N 

(2) ) = 1 and N 

(2) 
i j 

= N 

(2) 
ji 

} . (21)

he proof of the existence of a non-negative distribution reproduc-

ng moments in R 

2 also provides a proof that conditions R 

2 are

oth necessary and sufficient. The former can be demonstrated via

he application of a suitable transformation of R 

2 such that the
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Fig. 1. Realizability Domain, R 

2 
T , for the M 2 Closure in the frame where N (2) − N (1) (N (1) ) T is diagonal positive definite for (a) a fixed set of parameters { γ 1 , γ 2 , γ 3 }; and (b) 

a fixed set of moments { N ’ (1) 
1 

, N ’ (1) 
2 

, N ’ (1) 
3 

} . 
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orm of the distribution can be represented by a convex combi-

ation of the distributions on the boundaries of the transformed

ealizability domain. 

The system of equations for moments up to second-order has

0 dependent variables since the zeroth-order moment, I (0) , is a

calar, the first-order moment, I (1) , is a 3-component vector, and

he second-order moment, I (2) , is a symmetric second-order dyad

r tensor with 6 unique entries. This relatively large set of vari-

bles can be reduced to a smaller but essentially equivalent one

y an appropriate rotational transformation, Rot, of the coordinate

rame such that Rot (N 

(2) − N 

(1) (N 

(1) ) T ) is diagonal. In such a ro-

ated frame, the transformed second-order moment, denoted by

 

’ (2) = Rot (N 

(2) ) , can be expressed as 

 

′ (2) = N 

′ (1) (N 

′ (1) ) T + (1 − ‖ N 

′ (1) ‖ 

2 ) diag (γ1 , γ2 , γ3 ) . (22)

here γ i , i = 1 . . . 3 , are parameters which satisfy the constrains

i ≥ 0 and
∑ 3 

i =1 γi = 1 (please refer to Appendix A ). The trans- 

ormed realizability domain, denoted by R 

2 
T = Rot (R 

2 ) , then has

he following form 

 

2 
T = { (I ′ (0) , I ′ (1) , I ′ (2) ) ∈ R ×R 

3 × R 

3 ×3 , } s.t. I ′ (0) ≥ 0 , ‖ N 

′ (1) ‖ ≤ 1 , 

0 ≤ γi ≤ 1 , i = 1 . . . 3 , and 

3 ∑ 

i =1 

γi = 1 } . (23) 

The transformed realizability domain, R 

2 
T , is illustrated in

ig. 1 (a), for fixed values of γ i , i = 1 . . . 3 , and in Fig. 1 (b), for

 given flux vector N 

′ (1) = [ N 

′ (1) 
1 

, N 

′ (1) 
2 

, N 

′ (1) 
3 

] . For any realizable

rst-order moment, N 

′ (1) , the second-order moment, N 

′ (2) , is real-

zable if and only if γ i , i = 1 . . . 3 , satisfy the conditions given in

q. (23) , which describe an equilateral triangle in the coordinates

rame γ 1 γ 2 γ 3 as illustrated in Fig. 1 (b). As such, any convex com-

ination of realizable moments at the vertices of such a triangle

ill also be realizable. Inspired by this knowledge, the distribu-

ion at any point, P , lying inside the triangle defined by points, P i ,

 = 1 . . . 3 , can be expressed as the barycentric interpolant of the

alues of the distribution evaluated at P i , I P i , and written as 

 P = 

3 ∑ 

i =1 

γi I P i , (24) 

here I P i represent the values of the distribution at P i , i = 1 . . . 3 ,

hich, as shown in Appendix B , are uniquely determined by a

ombination of Dirac deltas and take the form 

 P i = I ′ (0) 
[
ρ+ 

i 
δ(�i −x + 

i 
) + ρ−

i 
δ(�i −x −

i 
) 
]
δ(� j − N 

′ (1) 
j 

) δ(�k − N 

′ (1) 
k 

) , (25)
here ( i, j, k ) ∈ (1,2,3) with i � = j � = k and 

 

±
i 

= ±
√ 

1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
i 

) 2 , (26) 

nd 

±
i 

= 

N 

′ (1) 
i 

− x ∓
i 

2 x ±
i 

. (27) 

t is clear that the value of the distribution, I P , for point, P , given

y Eq. (24) is non-negative since it corresponds to a convex com-

ination of non-negative distributions, I P i , i = 1 . . . 3 . In order to

omplete the proof of sufficiency, it must be shown that the dis-

ribution given by Eq. (24) also reproduces moments lying inside

he realizability domain, R 

2 
T (see Appendix C ). The distributions I P i ,

 = 1 . . . 3 , reproduce moments at the vertices of the triangle ( P 1 ,

 2 , and P 3 ), and, as such, any convex combination of these three

istributions will therefore reproduce moments lying within the

riangle and consequently within R 

2 
T . This completes the proof. 

It is worth pointing out that the distribution of Eq. (24) is sim-

lar to that of Kershaw [22] and reduces to his result in the one-

imensional case, i.e., for N 

′ (1) 
2 

= 0 and N 

′ (1) 
3 

= 0 . More specifically,

n the case where N 

′ (2) 
11 

= 1 , i.e., γ1 = 1 , Eq. (24) reduces to 

 P = I ′ (0) 

[
1 + N 

′ (1) 
1 

2 

δ(�1 −1) + 

1 −N 

′ (1) 
1 

2 

δ(�1 + 1) 

]
δ(�2 ) δ(�3 ) , 

(28) 

nd for N 

′ (2) 
11 

= (N 

′ (1) 
1 

) 2 , i.e., γ1 = 0 , one obtains 

 P = I 
′ (0) 
[
ρ+ 

i 
δ(�i −x i ) + ρ−

i 
δ(�i + x i ) 

]
δ(� j − N 

′ (1) 
j 

) δ(�k − N 

′ (1) 
k 

) . 

(29) 

.2. Interpolative-based closing relations for M 2 moment closure 

With the necessary and sufficient conditions for moment real-

zability for moments up to second-order established, we can now

roceed with the development of a realizable interpolative-based

pproximation of the M 2 closure for radiative heat transfer in gray

articipating media. The analytical expressions for the distribution

t the vertices of the triangle defined by points ( P 1 , P 2 , P 3 ) given

n Eq. (25) can be used to derive analytical expressions for the

losing flux, N 

′ (3) , at those points as shown in Appendix B . Sim-

lar to the approach used to prove sufficiency of the realizability



8 J.A.R. Sarr and C.P.T. Groth / Journal of Quantitative Spectroscopy & Radiative Transfer 255 (2020) 107238 

Table 1 

Exact Analytic Expression of M 2 Closure Relation at the Vertices of the Triangle P 1 , P 2 , P 3 . 

Vertex N ′ (3) 
111 

N ′ (3) 
122 

N ′ (3) 
123 

P 1 N ′ (1) 
1 

[
(N ′ (1) 

1 
) 2 + (1 − ‖ N ′ (1) ‖ 2 ) ] N ′ (1) 

1 
(N 

′ (1) 
2 

) 2 N ′ (1) 
1 

N ′ (1) 
2 

N ′ (1) 
3 

P 2 (N ′ (1) 
1 

) 3 N ′ (1) 
1 

[
(N ′ (1) 

2 
) 2 + (1 − ‖ N ′ (1) ‖ 2 ) ] N 

′ (1) 
1 

N 
′ (1) 
2 

N 
′ (1) 
3 

P 3 (N ′ (1) 
1 

) 3 N ′ (1) 
1 

(N ′ (1) 
2 

) 2 N ′ (1) 
1 

N ′ (1) 
2 

N ′ (1) 
3 
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conditions for moments up to order two, the closing flux relations

for the M 2 closure within R 

2 
T are approximated by affine combina-

tions of the exact analytical expressions at points P i , i = 1 . . . 3 (see

Table 1 ). The interpolant is chosen such that the closures approxi-

mate their corresponding numerical values obtained by solving the

optimization problem for entropy maximization, Eq (15) , for sets of

moments spanning R 

2 
T 

. More specifically, the approximation of the

closing flux in the rotated frame, N 

′ (3) , is assumed to take the form

N 

′ (3) 
i jk 

= 

3 ∑ 

i =1 

f (γi ) N 

′ (3) 
i jk 

(P i ) . (30)

where f ( γ i ) are weighting functions satisfying 
∑ 3 

i =1 f (γi ) = 1 . Once

approximations of the closing moment fluxes in R 

2 
T 

are obtained,

the closing relations for R 

2 can then be derived through the in-

verse transformation of R 

2 
T 

→ R 

2 as defined by 

T : R 

2 
T → R 

2 (I ′ (0) , I ′ (1) , I ′ (2) ) → (I (0) , I (1) , I (2) ) 

s.t. I ′ (0) = I (0) , I ′ (1) 
i 

= R i j I 
(1) 
j 

, I ′ (2) 
i j 

= R im 

I (2) 
mn R n j 

(31)

where R ij is the rotation matrix such that R T (N 

(2) − N 

(1) (N 

(1) ) T ) R

is diagonal positive definite. 

The third-order normalized moment tensor, N 

′ (3) , is symmetric

and therefore has just 10 unique entries. Knowledge of just 3 of

these entries, namely N 

′ (3) 
111 

, N 

′ (3) 
122 

and N 

′ (3) 
123 

, is sufficient to obtain

values for the remaining 7 entries which can be related to these 3

entries as follows: 

N ’ ( 
3 ) 

222 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
111 

(
N ’ ( 

1 ) 
2 

, −N ’ ( 
1 ) 

1 
, N ’ ( 

1 ) 
3 

, γ2 , γ1 

)
, 

N ’ ( 
3 ) 

333 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
111 

(
N ’ ( 

1 ) 
3 

, N ’ ( 
1 ) 

2 
, −N ’ ( 

1 ) 
1 

, 1 − γ1 − γ2 , γ2 

)
,

N ’ ( 
3 ) 

112 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
122 

(
N ’ ( 

1 ) 
2 

, −N ’ ( 
1 ) 

1 
, N ’ ( 

1 ) 
3 

, γ2 , γ1 

)
, 

N ’ ( 
3 ) 

113 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
122 

(
N ’ ( 

1 ) 
3 

, N ’ ( 
1 ) 

1 
, N ’ ( 

1 ) 
2 

, 1 − γ1 − γ2 , γ1 

)
, 

N ’ ( 
3 ) 

133 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
122 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

3 
, −N ’ ( 

1 ) 
2 

, γ1 , 1 − γ1 − γ2 

)
,

N ’ ( 
3 ) 

223 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
122 

(
N ’ ( 

1 ) 
3 

, N ’ ( 
1 ) 

2 
, −N ’ ( 

1 ) 
1 

, 1 − γ1 − γ2 , γ2 

)
,

N ’ ( 
3 ) 

233 

(
N ’ ( 

1 ) 
1 

, N ’ ( 
1 ) 

2 
, N ’ ( 

1 ) 
3 

, γ1 , γ2 

)
= N ’ ( 

3 ) 
122 

(
N ’ ( 

1 ) 
2 

, N ’ ( 
1 ) 

3 
, N ’ ( 

1 ) 
1 

, γ2 , 1 − γ1 − γ2 

)
. 

(32)

The optimization problem for entropy maximization given by

Eq. (15) cannot be solved on directly everywhere on the bound-

aries of the realizability domain R 

2 
T 
, denoted as ∂R 

2 
T 
, as the cor-

responding entropy maximizing distribution can become singular

due to the fact that propagation of radiation is then only allowed

along specific directions or becomes planar, instead of spanning

the full solid angle. In these situations, the intensity distribution

is either uniquely determined by a Dirac delta distribution or a

combination of Dirac delta distributions, or an entropy maximizing

distribution describing propagation of radiation on the (unit) circle

as discussed in Appendix B . Pre-computed values of N 

(3) can then

be obtained by solving the appropriate optimization problem for

entropy maximization in the interior of R 

2 
T 

and in regions of ∂R 

2 
T 

where exact analytical expressions for N 

(3) are not available. 

Based on the interpolation used to prove sufficiency of the con-

ditions for moment realizability up to second-order and the known
xact analytical form of N ’ (3) 
111 

, N ’ (3) 
122 

, N ’ (3) 
123 

on the boundaries of R 

2 
T 

see Table 1 ), the following approximations are proposed: 

 ’ ( 
3 ) 

111 ( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = N ’ ( 
1 ) 

1 

[(
N ’ ( 

1 ) 
1 

)2 

+ f 
N ’ 

( 3 ) 
111 

( 1 − ‖ N ’ ( 1 ) ‖ 2 )
]

(33)

 ’ ( 
3 ) 

122 ( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = N ’ ( 
1 ) 

1 

[(
N ’ ( 

1 ) 
2 

)2 

+ f 
N ’ 

( 3 ) 
122 

( 1 − ‖ N ’ ( 1 ) ‖ 2 )
]

(34)

 ’ ( 
3 ) 

123 ( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = f 
N ’ ( 

3 ) 
123 

N ’ ( 
1 ) 

1 
N ’ ( 

1 ) 
2 

N ’ ( 
1 ) 

3 
, (35)

here θ and φ, respectively represent the polar and azimuthal an-

les characterizing the direction of the first-order normalized mo-

ent, N’ (1) , in a spherical coordinate system and are defined as fol-

ows 

= arccos 

(
N ’ ( 

1 ) 
3 

‖ N ’ ( 1 ) ‖ 

)
, φ = arccos 

⎛ 

⎝ 

N ’ ( 
1 ) 

1 √ (
N ’ ( 

1 ) 
1 

)2 + 

(
N ’ ( 

1 ) 
2 

)2 

⎞ 

⎠ , 

(36)

nd f 
N ’ 

(3) 
111 

= f 
N ’ 

(3) 
111 

(‖ N ’ (1) ‖ , θ, φ, γ1 , γ2 ) , f 
N ’ 

(3) 
122 

= f 
N ’ 

(3) 
122 

(‖ N ’ (1) ‖ , θ, φ,

1 , γ2 ) , and f 
N ’ 

(3) 
123 

= f 
N ’ 

(3) 
123 

(‖ N ’ (1) ‖ , θ, φ, γ1 , γ2 ) are polynomial ex-

ressions defined such that the approximations of the closing flux

ccurately reproduce pre-computed solutions of the optimization

roblem for entropy maximization. For illustration purposes, iso-

ontours of f 
N ’ 

(3) 
111 

, f 
N ’ 

(3) 
122 

, and f 
N ’ 

(3) 
123 

, over the triangle P 1 P 2 P 3 are

llustrated in Figs. 2 (a), (b), and (c), respectively. For accurately ap-

roximating the pre-computed solutions as well as derivatives on

he boundaries of the realizable space, we choose to write f 
N ’ 

(3) 
111 

,

f 
N ’ 

(3) 
122 

, and f 
N ’ 

(3) 
123 

as affine combinations of the form 

f 
N ’ ( 

3 ) 
111 

( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = γ1 

[ 
1 + ( 1 − γ1 ) g N ’ ( 3 ) 

111 

] 
, (37)

f 
N ’ ( 

3 ) 
122 

( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = γ2 

[ 
1 + γ1 g N ’ ( 3 ) 

122 

] 
, (38)

f 
N ’ ( 

3 ) 
123 

( ‖ N ’ ( 1 ) ‖ , θ, φ, γ1 , γ2 ) = 1 + γ1 γ2 γ3 g N ’ ( 3 ) 
123 

, (39)

here g 
N ’ 

(3) 
111 

= g 
N ’ 

(3) 
111 

(‖ N ’ (1) ‖ , θ, φ, γ1 , γ2 ) , g 
N ’ 

(3) 
122 

= g 
N ’ 

(3) 
122 

(‖ N ’ (1) ‖ ,
, φ, γ1 , γ2 ) , and g 

N ’ 
(3) 
123 

= g 
N ’ 

(3) 
123 

(‖ N ’ (1) ‖ , θ, φ, γ1 , γ2 ) are polyno-

ial expressions which are written as series expansion in terms

f orthogonal basis functions as follows 

 

N ’ ( 
3 ) 

111 

= 

n i ∑ 

i =0 

n j ∑ 

j=0 

j ∑ 

k = − j 

n l ∑ 

l=0 

n m ∑ 

m =0 

C 
N ’ ( 

3 ) 
111 

ijklm 

T 2 i ( ‖ N ’ ( 1 ) ‖ ) Y k j ( θ, φ) T l 
(

ˆ γ1 

)
T m 

(
ˆ γ2 

)
, 

(40)
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Fig. 2. Isocontours of (a) f 
N ’ 3 111 

; (b) f 
N ’ 3 122 

and (c) f 
N ’ 3 123 

over the triangle P 1 P 2 P 3 for N ’ (1) 
1 

= 0 . 4 , N ’ (1) 
2 

= 0 . 2 , N ’ (1) 
3 

= 0 . 15 . 
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g
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p

γ  

a  
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d  
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k  
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s  
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o  

f  

f  

a  

m  

n  

s  

d  

c  

p  
 

N ’ ( 
3 ) 

122 

= 

n i ∑ 

i =0 

n j ∑ 

j=0 

j ∑ 

k = − j 

n l ∑ 

l=0 

n m ∑ 

m =0 

C 
N ’ ( 

3 ) 
122 

ijklm 

T 2 i ( ‖ N ’ ( 1 ) ‖ ) Y k j ( θ, φ) T l 
(

ˆ γ1 

)
T m 

(
ˆ γ2 

)
,

(41) 

 

N ( 
3 ) 

123 

= 

n i ∑ 

i =0 

n j ∑ 

j=0 

j ∑ 

k = − j 

n l ∑ 

l=0 

n m ∑ 

m =0 

C 
N ’ ( 

3 ) 
123 

ijklm 

T 2 i ( ‖ N ’ ( 1 ) ‖ ) Y k j ( θ, φ) T l 
(

ˆ γ1 

)
T m 

(
ˆ γ2 

)
, 

(42) 

here ˆ γ1 and ˆ γ2 are obtained through a rectangle-triangle map-

ing of the form 

1 = 

1 + ˆ γ1 

2 

2 − (1 − ζ )(1 + ˆ γ2 ) 

2 

, γ2 = 

1 + ˆ γ2 

2 

2 − ζ (1 + ˆ γ1 ) 

2 

,

(43) 

nd where ζ is a parameter for the mapping. In Eqs. (40) , (41) ,

nd (42) , T n is a Chebyshev polynomial of the first kind of or-

er n , Y k 
j 

is a spherical harmonic function of degree j and order
 , and C 
N ’ 

(3) 
111 

ijklm 

, C 
N ’ 

(3) 
122 

ijklm 

, as well as C 
N ’ 

(3) 
123 

ijklm 

, i = 0 , . . . , n i , j = 0 , . . . , n j ,

 = − j, . . . , j, l = 0 , . . . , n l , m = 0 , . . . , n m 

are coefficients to be de-

ermined such that the proposed approximation of the M 2 closure

ccurately reproduces pre-computed solutions of the optimization

roblem for entropy maximization for sets of moments up to

econd-order spanning the full realizable space. The coefficients of

he interpolant are computed by solving the Vandermonde system

rising from the enforcement of Eqs. (40) , (41) , and (42) at vari-

us nodal points throughout the realizable space. Following a care-

ul analysis of the numerical solutions of the optimization problem

or entropy maximization, the interpolation points for ‖ N’ (1) ‖ , ˆ γ1 ,

nd ˆ γ2 were chosen to coincide with roots of Chebyshev polyno-

ials of order 2 n i , n l , and n m 

, respectively, for given values of n i ,

 l , and n m 

. On the other hand, the interpolation nodes for θ were

elected to correspond to roots of the Legendre polynomials of or-

er n j and a set of 2 n j points uniformly distributed on the unit

ircle are chosen for φ. In order to assess the accuracy of the pro-

osed interpolative-based approximation of the M 2 closure, its val-
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s  

m  

n  

a  

m  

t  

t  

b  

m  

t  

a  

c  

t  

t  

m  

c  

m  

a  

p  

d  

p  

j

ues, obtained by evaluating the approximations at a relatively large

number of points uniformly distributed throughout the realizable

domain, were compared to solutions of the entropy maximization

problem at the points of interest. More specifically, a set of 50 val-

ues of each of the variables ‖ N’ (1) ‖ , θ , φ, equally distributed in

[0, 1], [0, π ] and [0, 2 π ], respectively, as well as 20 values of ˆ γ1 

and of ˆ γ2 equally distributed within the triangle ( P 1 , P 2 , P 3 ) as de-

picted in Fig. 1 , were considered in the validation of the proposed

interpolant. The choices for the optimal number of coefficients, n i ,

n j , and n l , were dictated by the convergence of the preceding ap-

proximations to the computed maximum-entropy solution in both

the L 2 - and L ∞ -norm sense. 

4.3. Numerical solution of the optimization problem for entropy 

maximization 

The entropy of radiation based on Bose-Einstein statistics given

by Eq. (10) is a strictly convex functional, and, as such, any locally

optimal set of Lagrange multipliers, α, would also be a globally op-

timal set. The sequential quadratic programming (SQP) algorithm,

as implemented in the software package NLopt [37–39] an open

source library for nonlinear optimization, was therefore used for

the solution of the optimization problem as defined by Eq. (11) .

In this implementation, an objective function and its gradients,

as well as additional constraints, are supplied by the user. The

Hessian matrix of second derivatives, which is required for solv-

ing the Newton system of equations, is then estimated by means

of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which

provides substantial computational savings compared to the di-

rect evaluation of the Hessian matrix. The algorithm provides very

good convergence for sets of moments far away from the bound-

aries of the realizability domain. However, as one of the bound-

aries is approached, the dual optimization problem becomes in-

creasingly difficult to solve and might even fail to converge due to

ill-conditioning of the Hessian matrix. In order to improve the con-

dition number of the Hessian matrix, a preconditioning of the lat-

ter, similar to that described by Alldredge et al. [40] is advocated.

The preconditioning is equivalent to an adaptive change of polyno-

mial basis, relative to the original basis m ( � s ) , such that the Hes-

sian is the identity matrix in the new basis. In addition, the regu-

larization scheme introduced by Alldredge et al. [41] is employed

to make the optimization algorithm more robust, especially for

very ill-conditioned problem. Instead of using a Cholesky factoriza-

tion of the Hessian for the preconditioning as chosen by Alldredge

et al. [40] , the numerically stable modified Gram-Schmidt algo-

rithm, described by Abramov [42] , is adopted. Furthermore, instead

of preconditioning the Hessian matrix at each Newton step during

the optimization, the procedure developed by Abramov [43] , allow-

ing for several Newton steps between successive reorthogonaliza-

tions, is adopted. The procedure consists of tracking the condition

number of the inverse of the Hessian during the BFGS iterations,

and then precondition the Hessian matrix whenever the condition

number exceeds a threshold value of 20. 

5. Boundary conditions 

The numerical solution of systems of partial differential equa-

tions generally requires the prescription of boundary conditions in

order to evaluate the numerical fluxes at the boundaries of the

computational domain. In the context of the system of equations

for the angular moments of the radiative intensity distribution re-

sulting from moment closures, boundary conditions are generally

prescribed in terms of the full moments. However, only the outgo-

ing partial moments are generally known at a given boundary. In

this work, boundary conditions are prescribed using a partial mo-

ment approach in which the boundary data is viewed as a sum of
he two contributions: one from the radiation that is incoming to

he boundary and one from the outgoing radiation. The latter is

btained by taking angular integrals of the outgoing distribution of

adiative intensity, which, in the case of diffusively reflecting and

mitting wall surfaces, as is the case in most practical combustion

ystems [44] , can be expressed as follows 

 w 

= εw 

I b (T w 

) + 

(1 − εw 

) 

π

∫ 
�=2 π

s (i ) Id�, (44)

here T w 

and εw 

represent the wall temperature and emissiv-

ty, respectively. The derivation of the partial outgoing moments is

traightforward for black walls ( εw 

= 1 ). However, if the walls also

eflect a portion of the incoming radiation, the derivation of the

utgoing partial moments can be quite challenging, especially for

ntropy-maximizing distributions for which analytical integrals of

he underlying intensity distribution cannot be obtained. For the

 N approximations, the partial outgoing moments can directly be

xpressed in terms of the moments of the distribution. 

In order to prescribe values for the full moments, the partial in-

oming moments, which depend on the incoming intensity, must

lso be specified at the boundaries. Closed form analytical expres-

ions for the partial incoming moments in terms of the incom-

ng full moments exist for the P N moment closure, but not for

he M N maximum-entropy closures. For the latter, the optimiza-

ion problem for entropy maximization can again be solved repeat-

dly whenever boundary conditions are required. Such a procedure

s adopted for the M 2 closure here; however, in order to elim-

nate the relatively high computational costs that are associated

ith the numerical presciption of the boundary data, interpolative-

ased analytical approximations of the incoming partial moments

ave been developed for the M 1 closure in the context of radia-

ive transfer in gray participating media, and will be described in

 future follow-on paper. The construction of similar types of ap-

roximations of the incoming partial moments for the M 2 closure

ill be the subject of other future studies. Note that the partial

oment approach adopted herein is fully consistent and by con-

truction the boundary conditions will yield the appropriate full

oments for the case of identical incoming and outgoing radiation

ntensity distributions. 

.1. Partial moments for gray M 2 closure 

Similar to the closing fluxes for the M 2 maximum-entropy clo-

ure, closed-form analytical expressions do not exist for the partial

oments of the M 2 model and they must in general be evaluated

umerically. While it would seem possible to formulate accurate

nd efficient interpolative-based approximations to the partial mo-

ents similar to those developed herein for the M 2 closing fluxes,

his was deemed beyond the scope of the present study. Instead,

he incoming partial moments for the gray M 2 closure are obtained

y numerically solving the dual optimization problem for entropy

aximization, Eq. (15) , for any given realizable set of moments up

o second-order. The SQP algorithm outlined in Section 4.3 above is

gain used in the solution of the optimization problem. The asso-

iated entropy maximizing distribution with known Lagrange mul-

ipliers, which takes the form given in Eq. (14) , can then be in-

egrated over the appropriate half space to obtain the partial mo-

ents of interest. This numerical approach, despite being relatively

omputationally expensive, represents a first step in the develop-

ent of partial moment boundary conditions for the M 2 closure

nd permits the assessment of the predictive capabilities of the

roposed interpolative-based M 2 closure as considered here. The

evelopment of accurate and more efficient interpolative-based ap-

roximations of the partial moment boundary data will be the sub-

ect of future follow-on research. 
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.2. Partial moments for gray M 1 closure 

Despite the existence of a closed form analytical expression for

he gray first-order maximum-entropy, M 1 , closure, there also ex-

sts no exact analytical expression for the corresponding partial

oments in multiple space dimensions. As for the M 2 closure,

he incoming partial moments for the gray M 1 closure could also

e obtained by numerically solving the dual optimization prob-

em for entropy maximization; however, in this study, the par-

ial moments needed for prescribing the boundary data were ob-

ained using interpolative-based analytical approximations of the

umerically-evaluated partial moments. The proposed interpolants

or the partial moments of the gray M 1 closure are defined such

hat analytical expressions in both the isotropic and free-streaming

imits are exactly reproduced, and pre-computed solutions of the

ptimization problem for entropy maximization, for sets of mo-

ents spanning the full realizable space for moments up to first-

rder, are accurately approximated. Due to length restrictions, the

nterpolative-based expressions for the partial moments are not

escribed herein, but will be the subject of a future follow-on pa-

er. 

. Numerical solution method 

Like the P 1 , P 3 , and M 1 moment closures, the proposed

nterpolative-based second-order M 2 maximum-entropy moment 

losure is strictly hyperbolic in the sense of Lax [45] . In the orig-

nal definition, quasi-linear inhomogeneous PDEs are said to be

trictly hyperbolic if the eigenvalues associated with the eigen-

ystem of the coefficient matrices and flux Jacobians are all real

nd distinct. A slightly less restrictive demand for strict hyperbol-

city is that the eigenvalues are all real (i.e., repeated eigenvalues

re permitted) and that the corresponding right eigenvectors form

 complete and linearly independent set such that the coefficient

atrices and flux Jacobians are diagonizable. Levermore [46] has

hown that the maximum-entropy closures applied to the Boltz-

ann equations of gas kinetic theory with the Boltzmann entropy

esult in moment equations that are symmetric hyperbolic sys-

ems and strictly hyperbolic. Quasi-linear hyperbolic PDEs of the

ype governing the system of angular moments for the M 2 clo-

ure are very well suited for solution by the now standard fam-

ly of upwind finite-volume spatial discretization techniques orig-

nally developed by Godunov [47] . In this study, solutions of the

roposed interpolative-based M 2 closure for gray media, as well as

he P 1 , P 3 , and M 1 moment closures, are all obtained using a par-

llel, implicit, upwind Godunov-type finite-volume scheme similar

o those previously described by Groth and co-workers [3,31,48–

1] for systems of partial differential equations. In what follows,

he proposed numerical solution methodology is described for the

 2 moment closure. Similar solution methods are applied here for

olution of the other three closure methods. Additionally, the hy-

erbolicity of the proposed interpolative-based M 2 closure is ex-

lored by numerical means and discussed in Subsection 6.2 below.

.1. Weak conservation form of M 2 moment equations 

The finite-volume scheme for the proposed interpolative-based

econd-order M 2 closure considers the solution of the weak con-

ervation form of the moment equations on two-dimensional,

ody-fitted, multi-block, quadrilateral meshes. The weak conser-

ation form of the M 2 moment equations for a two-dimensional

artesian coordinate system can be obtained by taking appropriate

ngular moments of the underlying RTE for a gray medium and

ritten as 

∂ U 

∂t 
+ 

∂ F 

∂x 
+ 

∂ G 

∂y 
= S , (45) 
here U is the vector of conserved moments given by 

 = 

[
I (0) , I (1) 

x , I (1) 
y , I (2) 

xx , I 
(2) 
xy , I 

(2) 
yy 

]T 
, (46) 

 and G are the flux vectors in the x - and y -coordinate directions,

espectively, having the form 

 = c 
[
I (1) 
x , I (2) 

xx , I 
(2) 
xy , I 

(3) 
xxx , I 

(3) 
xxy , I 

(3) 
xyy 

]T 
, 

 = c 
[
I (1) 
y , I (2) 

xy , I 
(2) 
yy , I 

(3) 
yxx , I 

(3) 
yxy , I 

(3) 
yyy 

]T 
, 

(47) 

nd where S represents the source term, which, under the assump-

ion of isotropic scattering, is given by 

 = c 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

κ(aT 4 − I (0) ) 

−(κ + σs ) I 
(1) 
x 

−(κ + σs ) I 
(1) 
y 

1 
3 
(κaT 4 + σs I 

(0) ) − (κ + σ ) I (2) 
xx 

−(κ + σ ) I (2) 
xy 

1 
3 
(κaT 4 + σs I 

(0) ) − (κ + σ ) I (2) 
yy 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (48) 

n Eqs. (45) –(48) , the third-order moment fluxes are expressed in

erms of the lower-order moments using Eqs. (33) , (34), (35) , and

32) defined above, thereby resulting in the gray M 2 closure. 

Although not shown here, due to the hierarchical structure of

he equations for the angular moments given in Eq. (45) , it is rel-

tively straightforward to apply a perturbative analysis and show

hat the M 2 closure formally recovers the usual optically-thick

sotropic or so-called diffusion limit [1] commonly encountered in

ome applications of radiative transfer. 

.2. Hyperbolicity of interpolative-based M 2 moment closure 

The hyperbolicity of the proposed interpolative-based M 2 mo-

ent closure for two space dimensions is investigated by consider-

ng the eigenvalues of the flux Jacobian A = ∂ F /∂ U and B = ∂ G /∂ U
or the x - and y -coordinate directions, respectively. Hyperbolicity

s ensured if the eigenvalues of the Jacobians A and B are all real.

or the M 2 closure, the flux Jacobian in the x -direction, A , can be

ritten as 

 = 

∂ F 

∂ U 

= c 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 1 0 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

∂ I ( 
3 ) 

xxx 

∂ I ( 0 ) 
∂ I ( 

3 ) 
xxx 

∂ I ( 
1 ) 

x 

∂ I ( 
3 ) 

xxx 

∂ I ( 
1 ) 

y 

∂ I ( 
3 ) 

xxx 

∂ I ( 
2 ) 

xx 

∂ I ( 
3 ) 

xxx 

∂ I ( 
2 ) 

xy 

∂ I ( 
3 ) 

xxx 

∂ I ( 
2 ) 

yy 

∂ I ( 
3 ) 

xxy 

∂ I ( 0 ) 
∂ I ( 

3 ) 
xxy 

∂ I ( 
1 ) 

x 

∂ I ( 
3 ) 

xxy 

∂ I ( 
1 ) 

y 

∂ I ( 
3 ) 

xxy 

∂ I ( 
2 ) 

xx 

∂ I ( 
3 ) 

xxy 

∂ I ( 
2 ) 

xy 

∂ I ( 
3 ) 

xxy 

∂ I ( 
2 ) 

yy 

∂ I ( 
3 ) 

xyy 

∂ I ( 0 ) 
∂ I ( 

3 ) 
xyy 

∂ I ( 
1 ) 

x 

∂ I ( 
3 ) 

xyy 

∂ I ( 
1 ) 

y 

∂ I ( 
3 ) 

xyy 

∂ I ( 
2 ) 

xx 

∂ I ( 
3 ) 

xyy 

∂ I ( 
2 ) 

xy 

∂ I ( 
3 ) 

xyy 

∂ I ( 
2 ) 

yy 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (49) 

here the derivatives of the closing fluxes with respect to the

ower-order moments making up the components of the solution

ector, U , in R 

2 , can be written in the form 

∂ I (3) 
i jk 

∂U q 
= I ′ (3) 

lmn 

∂ 

∂U q 

(
R li R m j R nk 

)
+ R li R m j R nk 

∂ I ′ (3) 
lmn 

∂U q 
, (50)

here 

∂ I ′ (3) 
i jk 

∂U q 
= 

∂ I ′ (3) 
lmn 

∂U 

′ 
q 

[
R i j ( U ) δ jq + U j 

∂R i j ( U ) 

∂U q 

]
, (51) 

nd where 

∂ 

∂U q 

(
R li R m j R nk 

)
= R m j R nk 

∂R li 

∂U q 
+ R li R nk 

∂R m j 

∂U q 
+ R li R m j 

∂R nk 

∂U q 
. (52)

nalytical expressions of the derivatives for the closing fluxes I ′ (3) 
i jk 

,

n R 

2 
T 
, with respect to the lower-order moments, U 

′ 
q , in R 

2 
T 
, can be

eadily derived by using Eqs. (33) , (34) , (35) and (32) . Further-

ore, the derivatives appearing in Eq. (52) can also be obtained
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Fig. 3. Quadrilateral computational cell of two-dimensional multi-block body-fitted 

mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p

�F  

w

a  

l  

T  

a  

e  

d  

b  

l  

a  

f  

f  

t

6

 

s  

b  

s  

i  

p  

w  

a  

p  

d  

s  

w  

w  

s  

s  

b  

p  

m  

d

6

 

f  

a  

A  

N  

s  
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T  
from the analytical form of the rotation matrix, R , with respect to

the lower-order moments, U q , in R 

2 . 

The eigenvalues of the x -direction flux Jacobian, A , of

Eq. (49) were evaluated numerically for sets of moments spanning

the whole realizability domain, R 

2 . More specifically, 50 values of

‖ N 

(1) ‖ equally distributed in [0, 1], 50 of θ equally distributed in

[0, π ], 50 of φ equally distributed in [0, 2 π ], and 100 sets of values

of ( γ 1 , γ 2 , γ 3 ) equally distributed within the associated equilat-

eral triangle, were used for the investigation of hyperbolicity. The

numerical study revealed that the eigenvalues of the flux Jacobian,

A , are all real valued for all of the points considered within the

space of realizable moments. Due to the geometric symmetries of

the closure, similar findings are expected for the y -direction flux

Jacobian, B . While the numerical tests are certainly not a proof

that the eigenvalues are everywhere real nor was the issue of strict

hyperbolicity tested as part of this study as it was felt that the

distinct nature of the eigenvalues and/or non-degenerate nature of

the eigenstructure can be difficult to confirm by numerical means,

the local hyperbolicity of the proposed interpolative-based closure

for all points examined within the space of physically realizable

moments is very encouraging and provides strong evidence of the

extent to which the proposed interpolative-based closure mimics

the actual M 2 maximum-entropy model. 

6.3. Finite-volume spatial discretization procedure and semi-discrete 

form 

In the proposed second-order limited upwind finite-volume

method, the integral form of the conservation equations defined

by Eq. (45) are applied to quadrilateral cells of a two-dimensional

multi-block body-fitted grid. This results in the so-called semi-

discrete form, a coupled system of nonlinear ordinary differential

equations for cell-averaged solution quantities which can be writ-

ten for computational cell ( i, j ) (see Fig. 3 ) as 

d U i, j 

d t 
= − 1 

A i, j 

N f ∑ 

m =1 

�
 F i, j,m 

· �
 n i, j,m 

�l i, j,m 

+ S i, j ( U i, j ) = −R i, j ( U ) , (53)

where U i j = (1 / A i j ) 
∫ 

A i j 
U dA is the cell-averaged conserved solution

vector, � F = [ F , G ] is the moment flux vector, R i,j ( U ) is the residual

vector, A ij is the cell surface area, �l i,j,m 

and 

�
 n i, j,m 

are the length

and unit outward normal vector of the m 

th face of quadrilateral

cell ( i, j ) having N f =4 cell faces, respectively. 

6.4. Numerical flux evaluation 

The numerical moment flux, � F · �
 n , at cell faces ( i, j, m ) appear-

ing in the semi-discrete form of the moment equations given in

Eq. (53) above are evaluated here using a Riemann solver-based

flux function in conjunction with piecewise limited linear recon-

struction. In this approach, the numerical moment flux can be ex-
ressed as 

 

 · �
 n = F ( U L , U R , � n ) , (54)

here F is the so-called numerical flux function and U L and U R 

re the values of solution at the mid-point of the cell face to the

eft (inside the cell) and right (outside the cell) of the interface.

he widely-used HLLE approximate Riemann solver, based on the

pproximate Riemann solver of Harten, Lax, and van Leer [52] with

stimates of the wave speeds due to Einfeldt [53] is used here to

efine the flux function, F . Piecewise limited linear reconstruction

ased on the least-squares approach of Barth [54] with the slope

imiter of Venkatakrishnan [55] to ensure solution monotonicity

re used to reconstruct the values of U L and U R at the cell inter-

aces. Estimates of the fastest and slowest waves speeds needed

or the HLLE flux function were approximated by c and −c, respec-

ively, where c is the speed of light. 

.5. Block-based anisotropic adaptive mesh refinement (AMR) 

While not applied in the present study, the finite-volume

cheme described above can be used in conjunction with a

lock-based hierarchical data structure to facilitate automatic

olution-directed mesh adaptation on multi-block mesh accord-

ng to physics-based criteria. The block-based anisotropic AMR im-

lemented here is similar to that described by Groth and co-

orkers [56–59] for computations of two-dimensional problems

nd [57,59–61] for three-dimensional flows. The anisotropic ap-

roach allows the adaptation of the mesh based on solution-

ependent physics-based criteria as the computation is performed

uch that areas associated with small spatial scales (e.g., regions

ith shock, steep gradients, and/or discontinuities) are resolved

ith appropriately higher mesh densities, while areas with larger

patial scales are resolved on coaser meshes with having large cell

izes. The block-based anisotropic AMR scheme has been shown to

e very effective in reducing the overall mesh size for a given flow

roblem as well as providing efficient and highly scalable imple-

entation on high-performance parallel computing systems using

omain decomposition [50,59,61,62] . 

.6. Newton krylov schwarz (NKS) method 

In most practical applications involving radiative heat trans-

er, the time scales for the transport of the radiation are gener-

lly much smaller than those of the other phenomena involved.

s such, steady state solutions of the RTE are of primary interest.

ewton’s method is applied herein to obtain in an efficient manner

teady-state solutions of the algebraic non-linear equations follow-

ng from Eq. (53) satisfying 

 ( U ) = −d U 

d t 
= 0 . (55)

he particular implementation of the Newton method used here

as been developed previously by Groth and Northrup [63] as well

s Charest et al. [3,64] for computations on large multi-processor

arallel clusters. It consists of a Jacobian-free inexact Newton

ethod coupled with an iterative Krylov subspace linear solver.

he widely-used generalized minimal residual (GMRES) technique

eveloped by Saad and co-workers [65–68] is used to solve the

inear system at each Newton step. The technique is particularly

ttractive because the left-hand-side matrix of the linear system

s not explicitly formed and instead only the results of matrix-

ector products are required at each iteration, significantly reduc-

ng the required storage. A combination of additive Schwarz and

lock incomplete lower-upper (BILU) local preconditioning of the

inear system is used to ensure effectiveness of the GMRES method.

he additive Schwarz preconditioning is easily implemented within
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Fig. 4. Radiative transfer between two infinitely long parallel plates with a separation distance of 1m in a cold ( T = 0K ) non-scattering medium showing numerical predic- 

tions of (a) the radiative energy, E ; (b) radiative flux, F ; and (c) the source of radiative energy transfer, S r , obtained using the M 2 interpolative-based closure using a 320-node 

mesh compared to the exact analytical solution as well as the predictions of the M 1 maximum-entropy closure, P 1 and P 3 spherical harmonic closures, and DOM; as well as 

(d) the convergence of the M 2 interpolative-based closure predictions of the radiative energy for varying mesh sizes. 
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he block-based anisotropic AMR scheme presented in the previous

ubsection. Finally, to improve the global convergence of the New-

on algorithm, an implicit Euler time-marching startup procedure

ith switched evolution/relaxation (SER) as proposed by Mulder

nd Van Leer [69] is also applied. 

. Numerical results for gray media 

In this section, the predictive capabilities and accuracy of the

roposed interpolative-based second-order M 2 maximum-entropy 

oment closure are compared to and evaluated against the M 1 

aximum entropy closure, the P 1 and P 3 spherical harmonic ap-

roximations, as well as the DOM for a number canonical test

ases in both one and two space dimensions. For all the cases stud-

ed, a gray medium with isotropic scattering ( �( � s ′ , � s ) = 1 ) is as-
umed. Numerical results for all cases have been obtained for each

f the moment closures using the upwind finite-volume method

escribed above. Boundary conditions are prescribed using par-

ial moments as described in Section 5 . For the DOM, the space

arching method used to obtain numerical results is described by

harest et al. [3] . Unless specified otherwise, the DOM is used with

uadrature rules based on the T 4 scheme of Thurgood et al. [24] . In

ome cases, exact analytical solutions are also used as a reference

n the comparisons. 

The first set of test cases consists of radiative transfer be-

ween two parallel plates of infinite length. These essentially one-

imensional problems are similar to those examined previously

y Hauck [16,17] . Different scenarios are considered whereby the

roperties of the medium (radiative properties and temperature)

etween those two plates, as well as the distance between the



14 J.A.R. Sarr and C.P.T. Groth / Journal of Quantitative Spectroscopy & Radiative Transfer 255 (2020) 107238 

Fig. 5. Radiative transfer between two infinitely long parallel plates with a separation distance of 10m in a cold ( T = 0 K) non-scattering medium showing numerical pre- 

dictions of (a) the radiative energy, E ; (b) radiative flux, F ; and (c) the source of radiative energy transfer, S r , obtained using the M 2 interpolative-based closure using a 

320-node mesh compared to the predictions of the M 1 maximum-entropy closure, P 1 and P 3 spherical harmonic closures and DOM; as well as (d) the convergence of the 

M 2 interpolative-based closure predictions of the radiative energy for varying mesh sizes. 
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plates, are varied in order to assess the impact on the predictive

capabilities of the proposed M 2 closure. The first two-dimensional

test case consists of evaluating the accuracy of the M 2 closure in

predicting radiative heat transfer throughout a cold (non-emitting)

and absorbing medium contained within a square enclosure for

which all of the walls have the same temperature. Lastly, a line

source problem, which consists of a cold, non-scattering and

strongly absorbing medium, confined within a square computa-

tional domain, is also considered. 

7.1. Parallel plates 

As a first assessment of the proposed interpolative-based M 2 

closure, radiative transfer between two hot parallel plates of infi-

nite length compared to their separation distance is studied. Two
ariants of this problem are considered. In the first variant of this

est case, the medium between the plates is assumed to be cold

non-emitting) non-scattering, and the predictions of the different

adiation models are compared for different plate separation dis-

ances. The second variant of this test case considers the effects

f scattering on the predictive capabilities of the M 2 interpolative-

ased closure. 

.1.1. Exact solution for non-scattering case 

For a non-scattering medium confined between two black, par-

llel plates, there exists an exact analytical solution to the radia-

ive transfer equation as given by Modest [1] . The distribution of

he radiative intensity emitted from the lower and upper plates are
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Fig. 6. Radiative transfer between two infinitely long parallel plates with a separation distance of 1m in a cold ( T = 0K ) scattering medium showing numerical predictions of 

(a) the radiative energy, E ; (b) radiative flux, F ; and (c) the source of radiative energy transfer, S r , obtained using the M 2 interpolative-based closure using a 320-node mesh 

compared to the predictions of the M 1 maximum-entropy closure, P 1 and P 3 spherical harmonic closures and DOM; as well as (d) the convergence of the M 2 interpolative- 

based closure predictions of the radiative energy for varying mesh sizes. 
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iven by 

 

+ (τ ′ , μ) = I w 1 e 
−τ/μ + 

1 

μ

∫ τ

0 

I b (τ ′ ) e −(τ−τ ′ ) /μd τ ′ 
= I b + ( I w 1 − I b ) e 

−τ/μ 0 < μ < 1 (56) 

 

−(τ ′ , μ) = I w 2 e 
(τL −τ ) /μ − 1 

μ

∫ τ

0 

I b (τ ′ ) e (τ ′−τ ) /μd τ ′ 
= I b + ( I w 2 − I b ) e 

(τL −τ ) /μ − 1 < μ < 0 (57) 

espectively, where τL = 

∫ L 
0 β(s ) ds is the optical thickness (or op-

ical depth), L is the distance between the two plates, I w 1 and I w 2 

re the intensities leaving the lower and upper plates respectively,

 (τ ′ ) = I is the black-body radiative intensity distribution of the
b b 
edium, and the substitution μ = cos θ is made to simplify the

nalysis. 

Very accurate zeroth and first moments of the preceding exact

olutions of the radiative intensities can be achieved by using a

0-point Gauss-Legendre quadrature rule such that 

 

± = ±2 π

∫ ±1 

0 

I ±(τ, μ)d μ = 2 π
20 ∑ 

n =1 

w n I 
±(τ, μn ) (58)

 

± = ±2 π

∫ ±1 

0 

μI ±(τ, μ)d μ = 2 π
20 ∑ 

n =1 

w n μn I 
±(τ, μn ) (59)

here the points μn and weights w n are determined by the Gauss-

egendre quadrature in the appropriate domains (i.e., μn ∈ [0, 1]

or lower plate and μn ∈ [ −1 , 0] for upper plate). The overall ra-
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Fig. 7. Radiative transfer within square enclosure containing cold (non-emitting) and absorbing medium with wall temperatures of T = 500K showing numerical predictions 

of the distribution of the radiative energy density using (a) the DOM & (b) the interpolative-based M 2 moment closure; the distribution of the magnitude of the radiative 

energy flux as obtained using (c) the DOM & (d) our interpolative-based M 2 moment closure, on a (320 × 320)-node mesh. 
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diative energy at any optical distance, τ , between the two plates

is the sum of the radiative energy arising from both the lower and

upper plates. This sum also holds true for the overall radiative heat

flux. 

7.1.2. Cold medium with no scattering 

As a first test case, radiative transfer throughout a cold ( T =
0K ), non-scattering medium with an absorption coefficient κ =
2 m 

−1 between two parallel plates was studied. Each of the plates

was taken to have a temperature of T = 500 K . The predictions

for the radiative energy density, radiative heat flux, and radiative

source term obtained using the proposed M 2 interpolative-based

closure as well as the M 1 , P 1 and P 3 moment closures and DOM

are compared for two plate separation distances: 1 and 10m as

shown in Figs. 4 and 5 , respectively. The predictions in all cases

were obtained using 320-node, uniformly-spaced, computational

mesh to discretize the space between the two plates. Conver-
ence of the interpolative-based M 2 closure solutions with increas-

ng mesh resolution ranging from 20- to 480-node computational

eshes are depicted in Figs. 4 (d) and 5 (d), confirming that the so-

utions are satisfactorily converged on the 320-node grid. The an-

lytical solution derived in Eqs. (58) and (59) , is used as a refer-

nce for the comparisons. Note that for both separation distances,

he DOM is observed to agree very closely with the exact solution.

For the small plate separation, it is readily apparent from

ig. 4 that the P N approximations (P 1 and P 3 ) yield somewhat

ore accurate predictions than the M 1 maximum entropy closure.

t can also be observed that the M 1 model produces a nonphysical

iscontinuity in the radiative energy. Previous analysis [14] have

hown that this jump is due to the inability of this first-order clo-

ure to handle radiative flux occurring in regions where bidirec-

ional radiative transfer is important. In fact, the closure condi-

ions for M 1 are derived under the assumption that the intensity

s symmetric about the direction of the flux. Such an assumption
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Fig. 8. Radiative transfer within square enclosure containing cold (non-emitting) and absorbing medium with wall temperatures of T = 500K showing numerical predictions 

of (a) the radiative energy, E ; (b) magnitude of the radiative flux, || F ||, (right top panel); and (c) the source of radiative energy transfer, S r , along the centre line ( y = 0 ) of 

the square enclosure obtained using the M 2 interpolative-based closure using a (160 × 160)-node mesh compared to the predictions of the M 1 maximum-entropy closure, 

P 1 and P 3 spherical harmonic closures and DOM. 
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s however violated in this parallel-plate test case. Nevertheless,

or the larger plate separations as shown in Fig. 5 , the discontinu-

ty in the M 1 solution is less important and the predictions of the

 1 closure are closer to the exact solution than the P 1 approxi-

ation. More importantly, for both plate separation distances, the

roposed second-order interpolative-based M 2 closure overcomes

he inability of the M 1 model to adequately represent radiative

ransport in more than one direction and is significantly more ac-

urate. The proposed closure produces a solution that is qualita-

ively in very good agreement with the exact solution, of similar

ccuracy to that of the P 1 closure for the small plate separation,

nd virtually identical to the P 3 model results for the larger plate

eparation distance. 

.1.3. Cold medium with scattering 

The next one-dimensional test problem that was considered

valuated the impact of scattering on the proposed M closure so-
2 
utions. In this case, the previous one-dimensional problem was

econsidered with a cold medium with an absorption coefficient

= 2 . 0 m 

−1 for which there is also isotropic scattering with σs =
 . 0 m 

−1 . Again, a 320-node computational mesh was used to dis-

retize the one-dimensional domain for all computations. 

The predictions for the radiative energy density, radiative heat

ux, and radiative source term obtained using the proposed M 2 

nterpolative-based closure as well as the M 1 , P 1 and P 3 moment

losures and DOM with T 4 quadrature for the scattering case are

ompared in Fig. 6 and confirmation of the convergence of the M 2 

losure on the one-dimensional meshes considered is depicted in

ig. 6 (d). As an exact solution does not exist for this case, the nu-

erical solution obtained by the DOM can be taken to approximate

he exact solution. The results shown in the Fig. 6 indicate that,

hile the M 1 model now no longer contains a nonphysical jump

n the solution for this scattering case, the predictions of the pro-
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Fig. 9. Convergence of the proposed NKS iterative solution method and finite-volume scheme for the problem of radiative transfer within square enclosure containing cold 

(non-emitting) and absorbing medium with wall temperatures of T = 500 K showing the L 2 -norm of the normalized solution residual as a function of the number of Newton 

steps for the M 2 interpolative-based closure using a (160 × 160)-node mesh compared to the corresponding L 2 -norm of the solution residuals for the M 1 maximum-entropy 

closure as well as P 1 and P 3 spherical harmonic closures. 

Fig. 10. Radiative transfer for a hot line source contained within a cold non-scattering background medium showing numerical predictions of the distributions of the 

radiative energy density as obtained using (a) the DOM and (b) the interpolative-based M 2 moment closure, on a (320 × 320)-node mesh. 

 

 

 

7

 

posed intepolative-based M 2 closure are significantly better than

those of both the M 1 and P 1 closures and lie very close to those

of both the P 3 closure and “exact” solution as represented by the
DOM results. w  

c  

t

.2. Square enclosure 

The first two-dimensional test case considers a square enclosure

ith a cold (non-emitting) and absorbing medium. The absorption

oefficient was taken to be κ = 20 m 

−1 . All of the walls are taken

o have identical temperatures of T = 500 K . 
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Fig. 11. Radiative transfer for a hot line source contained within a cold non-scattering background medium showing numerical predictions of (a) the radiative energy, E ; 

(b) magnitude of the radiative flux, || F ||; and (c) the source of radiative energy transfer, S r , along the centre line ( y = 0 ) of the square enclosure obtained using the M 2 

interpolative-based closure using a (160 × 160)-node mesh compared to the predictions of the M 1 maximum-entropy closure, P 1 and P 3 spherical harmonic closures and 

DOM; as well as (d) the convergence of the M 2 interpolative-based closure predictions of the radiative energy for varying mesh sizes. 
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The predicted distributions of radiative energy density and

agnitude of the radiative energy flux within the two-dimensional

nclosure as obtained using the DOM and interpolative-based

 2 moment closure, respectively, are given in Fig. 7 for a

320 × 320)-node mesh. Additionally, the predictions of the pro-

osed interpolative-based M 2 closure on the (160 × 160)-node

esh are compared to those of the M 1 , P 1 and P 3 moment clo-

ures, as well as DOM in Fig. 8 , where results for the radiative en-

rgy density, magnitude of the radiative flux, and radiative heat

ource along the centre line of the rectangular enclosure ( y = 0 )

re all given. It is readily apparent from the results shown in the

wo sets of figures that the predictions of the newly proposed M 2 

nterpolative-based closure are superior to those of both the M 1 

nd P 1 closures and virtually equivalent to those of the P 3 model

nd DOM. Furthermore, there is some indication of the ray effects
n the DOM T 4 results of Figs. 7 (a) and this these effects are absent

n the corresponding M 2 closure results. 

The convergence of the proposed NKS iterative solution method

nd finite-volume scheme is also demonstrated for this two-

imensional problem. Fig. 9 shows the L 2 -norm of the normalized

olution residual as a function of the number of Newton steps for

he M 2 interpolative-based closure obtained using the (160 × 160)-

ode mesh compared to the corresponding L 2 -norm of the solution

esiduals for the M 1 maximum-entropy closure as well as the P 1 
nd P 3 spherical harmonic closures. It is quite evident that the NKS

lgorithm provides rapid and robust convergence to the desired so-

ution of this problem for all of the moment closures, reducing the

olution residual by more than 10 orders of magnitude in less than

0 Newton steps in all cases. 
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7.3. Line source problem 

The last assessment of the predictive capabilities of the newly-

developed approximation of the gray M 2 closure considers a two-

dimensional line source problem, which consists of a cold, non-

scattering medium with an absorption coefficient κ = 100 m 

−1 

m 

−1 , confined within a square computational domain. At the cen-

tre of the domain, there exists a hot line source at a temperature of

T = 1 , 0 0 0 K with inner radius 0.2 m and outer radius 0.25 m. Pre-

dictions of the distribution of the radiative energy density within

the enclosure, obtained using the DOM with T 4 quadrature and

the M 2 interpolative-based closure are compared in Fig. 10 for a

(320 × 320)-node mesh. Additionally, Fig. 11 compares the predic-

tions of the radiative energy, the magnitude of the radiative flux,

and the radiative energy source term along the y = 0 centre line

obtained using the proposed second-oder M 2 interpolative-based

closure to those of the M 1 , P 1 , and P 3 closures, as well as the DOM

with T 4 quadrature for a (160 × 160)-node computational mesh.

Grid convergence for this two-dimensional case is confirmed by

the results of a grid convergence study shown in Fig. 11 (d) for grids

ranging in size from (20 × 20) to (320 × 320) nodes. It is evident

from the results shown in the two figures that both the M 2 and

P 3 closures provide increased accuracy compared to their respec-

tive lower-order counterparts, i.e., the M 1 and P 1 models, respec-

tively. Moreover, as for the square enclosure problem, the predic-

tions of proposed M 2 interpolative-based closure are nearly iden-

tical to those of both the P 3 spherical harmonic closure and the

DOM, while involving considerably fewer unknowns or degrees of

freedom than either of the other two methods. 

8. Conclusions 

Inspired by the many desirable properties of maximum entropy

closures, a new, computationally-efficient, interpolative-based, M 2 

moment closure has been proposed and developed for describing

radiative transport phenomena in gray media. Moment realizabil-

ity and hyperbolicity of the moment equations for the proposed

M 2 closure were both assessed. Unlike the interpolative-based M 2 

closure proposed previously by Pichard et al . [19] , by construction

the present closure is valid for all physically realizable moments

sets up to second order and also appears to be globally hyperbolic.

The latter was shown numerically but not proven. Additionally, the

ability of the proposed M 2 closure to predict radiative heat transfer

in gray participating media for various one- and two-dimensional

canonical problems has been assessed by comparing predicted so-

lutions to those of other approximate techniques, including the M 1 ,

P 1 , and P 3 moment closures, as well as the DOM. The solutions of

the newly-proposed interpolative-based M 2 closure were observed

to be largely superior to those of either lower-order moment clo-

sures (i.e., the M 1 and P 1 models) and, at the very least, of equiva-

lent accuracy to the P 3 closure, while involving considerably fewer

angular moments (i.e., dependent variables). The proposed M 2 clo-

sure would seem rather promising and further investigation of the

interpolative closure would therefore seem warranted. Future re-

search will involve the extension of the interpolative-based M 2 clo-

sure to three-dimensional problems as well as the development of

a non-gray (spectrally dependent) M 2 closure, which will then be

validated for problems involving real-gas radiative transfer as en-

countered in reactive flows. 

Declaration of Competing Interest 

The authors have no competing interests to declare related to

manuscript submission. 
RediT authorship contribution statement 

Joachim A.R. Sarr: Conceptualization, Methodology, Software,

alidation, Formal analysis, Investigation, Writing - original draft,

riting - review & editing. Clinton P.T. Groth: Resources, Supervi-

ion, Writing - original draft, Writing - review & editing. 

cknowledgements 

This research was funded by grants and contracts from the

reen Aviation Research and Development Network (GARDN),

outhern Ontario Smart Computing for Innovation Platform

SOSCIP), as well as Pratt & Whitney Canada. The first author also

eceived support in the form of a scholarship from the Natural Sci-

nces and Engineering Research Council (NSERC) of Canada. Addi-

ionally, the computational resources for performing the numeri-

al simulations reported herein were provided by the SOSCIP pro-

ram as well as the SciNet High Performance Computing Consor-

ium at the University of Toronto and Compute/Calcul Canada (the

atter are funded by the Canada Foundation for Innovation (CFI)

nd Province of Ontario, Canada). Finally, the authors would like to

hank the two reviewers for their constructive criticisms and useful

uggestions for improving the clarity and quality of the revisions. 

ppendix A. Necessary and sufficient conditions for 

ealizability 

Let us denote by R 
diag 
M 2 

the rotation matrix which transforms

he coordinates system such that the second-order tensor N 

(2) −
 

(1) (N 

(1) ) T is diagonal. The necessary realizability conditions for

he moments in the new coordinate frame, with realizability do-

ain R 

2 
T 
, can then be derived from those for the moments in the

riginal frame, characterized by the realizability domain R 

2 , by

eans of the transformation matrix, R 
diag 
M 2 

, as follows 

 

2 
T ={ (I ′ (0) , I ′ (1) , I ′ (2) ) ∈ R 

3 ×R 

3×3 , s.t. I ′ (0) ≥ 0 , ‖ N 

′ (1) ‖ ≤ 1 , 

N 

′ (2) −N 

′ (1) (N 

′ (1) ) T ≥0 , (R diag 
M 2 

�
 n ) T N 

′ (2) (R diag 
M 2 

) � n ≤1 ∀ ‖ � n ‖ ≤ 1 , 

tr(N 

′ (2) ) = 1 and N 

′ (2) 
i j 

= N 

′ (2) 
ji 

} . 
he transformation from one set of moments to the other is illus-

rated in Eq. (31) . Since ( N 

′ (2) 
i j 

− N 

′ (1) 
i 

N 

′ (1) 
j 

) is diagonal, one can

rite 

 

′ (2) 
i j 

− N 

′ (1) 
i 

N 

′ (1) 
j 

= λi δi j 

here λi correspond to the eigenvalues of ( N 

′ (2) 
i j 

− N 

′ (1) 
i 

N 

′ (1) 
j 

),

ith the associated eigenvector, � ηi , coinciding with the unit vec-

or along the coordinate axes with all entries equal to 0 except for

he i th entry which is equal to 1. Using the trace identity for the

econd-order moment, we can write 

r(N 

′ (2) 
i j 

− N 

′ (1) 
i 

N 

′ (1) 
j 

) = 

3 ∑ 

i =1 

λi 

r(N 

′ (2) 
i j 

) − tr(N 

′ (1) 
i 

N 

′ (1) 
j 

) = 

3 ∑ 

i =1 

λi 

3 
 

i =1 

λi = 1 − ‖ N 

(1) ‖ 

2 

he latter identity can be further normalized by introducing nor-

alized parameters γ i such that 

i = (1 − ‖ N 

(1) ‖ 

2 ) γi 

nd hence 

3 
 

i =1 

γi = 1 . (A.1)

https://doi.org/10.13039/100006190
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urthermore, since � ηi is an eigenvector of ( N 

′ (2) 
i j 

− N 

′ (1) 
i 

N 

′ (1) 
j 

) with

igenvalue λi = (1 − ‖ N 

′ (1) ‖ 2 ) γi , it follows that 

(N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = λi � ηi 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = 

�
 ηT 
i λi � ηi 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = λi � η
T 
i 
�
 ηi 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = λi ‖ 

�
 ηi ‖ 

ince � ηi is a unit vector, we have ‖ → 

η i ‖ = 1 , and, 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = λi 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = (1 − ‖ N 

′ (1) ‖ 

2 ) γi 

rom the realizability conditions described above, we have 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi ≥ 0 and ‖ N 

′ (1) ‖ ≤ 1 

t therefore follows that 

i ≥ 0 , i = 1 , . . . , 3 . (A.2)

ppendix B. Form of the closure relation on the boundaries of 

he realizability domain 

On the boundaries of the realizability domain for moments

p to second-order, R 

2 
T 
, in multiple space dimensions, which we

enote ∂R 

2 
T , the inequality constraints on the normalized first-

nd second-order moments become sharp, and some or all of the

igher-order moments are uniquely determined in terms of the

ower-order moments. More specifically ∂R 

2 
T 

can be written in the

orm 

R 

2 
T = { (I ′ (0) , I ′ (1) , I ′ (2) ) ∈ R 

3 × R 

3 ×3 , s.t. I ′ (0) ≥ 0 , 

tr(N 

′ (2) ) = 1 , N 

′ (2) 
i j 

= N 

′ (2) 
ji 

and ‖ N 

′ (1) ‖ = 1 

or (R diag 
M 2 

�
 n ) T (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T )(R diag 
M 2 

�
 n ) = 0 ∀ 

�
 n ∈ R 

3 \ 0 
or (R diag 

M 2 
�
 n ) T N 

′ (2) (R diag 
M 2 

�
 n ) = 1 ∀ ‖ � n ‖ ≤ 1 } . 

(B.1) 

e will now discuss the characteristics of each of the bound-

ries and also present the form of the distribution in terms of the

nown finite set of moments up to second-order. 

In the case where ‖ N 

′ (1) ‖ = 1 , which corresponds to the so-

alled free-streaming limit, we have 

 N 

′ (1) ‖ 

2 = (N 

′ (1) ) T N 

′ (1) = 1 

(N 

′ (1) ) T 
‖ I ′ (1) ‖ 

I ′ (0) 
= 1 

(N 

′ (1) ) T I ′ (1) = I ′ (0) 

(N 

′ (1) ) T 
∫ 

4 π

�
 s Id� = 

∫ 
4 π

(N 

′ (1) ) T � s Id� = 

∫ 
4 π

Id�

 

4 π
(1 − (N 

′ (1) ) T � s ) Id� = 0 . 

ince the radiative intensity distribution is non-negative, i.e, I ≥ 0,

nd by definition 1 − (N 

′ (1) ) T � s ≥ 0 , it therefore follows that the

atter equality holds if and only if the intensity distribution I is

qual to 0 everywhere except on the line � s = N 

′ (1) , in which case

he distribution takes the form 

 = I (0) δ( � s − N 

′ (1) ) . (B.2)

he form of the distribution in Eq. (B.2) can be integrated directly

o obtain analytical expression for N’ (3) 

 

′ (3) 
i jk 

= N 

′ (1) 
i 

N 

′ (1) 
j 

N 

′ (1) 
k 

. (B.3)

Let us now consider the case where (R 
diag 
M 2 

�
 n ) T (N 

′ (2) −
 

′ (1) (N 

′ (1) ) T )(R 
diag 
M 

�
 n ) = 0 ∀ 

�
 n ∈ R 

3 \ 0 , and, in particular, the

2 
ase where R 
diag 
M 2 

�
 n = 

�
 ηi , we then have 

�
 

T 
i (N 

′ (2) − N 

′ (1) (N 

′ (1) ) T ) � ηi = (1 − ‖ N 

′ (1) ‖ 

2 ) γi = 0 . 

or such relationship to hold for all ‖ N’ (1) ‖ ≤ 1, we must have 

i = 0 , 

hich corresponds to one of the edges of the triangle (P 1 P 2 P 3 )

llustrated in Fig. 1 ; more specifically the edge (P j P k ), i � = j � = k .

long such an edge, we can write 

 

′ (2) 
ii 

− N 

′ (1) 
i 

N 

′ (1) 
i 

= 0 (B.4) 

 

′ (2) 
ii 

− N 

′ (1) 
i 

I ′ (1) 
i 

= I ′ (2) 
ii 

− 2 N 

′ (1) 
i 

I ′ (1) 
i 

+ 

(I ′ (1) 
i 

) 2 

I ′ (0) 
= 0 (B.5) 

 

4 π
s 2 i Id� − 2 N 

′ (1) 
i 

∫ 
4 π

s i Id� + 

(
I ′ (1) 
i 

I ′ (0) 

)2 ∫ 
4 π

Id� = 0 (B.6) 

 

4 π
(s 2 i − 2 N 

′ (1) 
i 

s i + (N 

′ (1) 
i 

) 2 ) Id� = 0 (B.7) 

 

4 π
(�i − N 

′ (1) 
i 

) 2 Id� = 0 . (B.8) 

ince I ≥ 0 and by definition (�i − N 

′ (1) 
i 

) 2 ≥ 0 , we can then con-

lude that the latter equality holds if and only if the intensity dis-

ribution I is equal to 0 everywhere except on the plane charac-

erized by s i = N ’ (1) 
i 

. In the context of moment reconstruction us-

ng the principle of maximization of entropy, the distribution then

akes the form 

 = 

δ(s i − N 

′ (1) 
i 

) 

exp (αT m ( � s )) − 1 

(B.9) 

here the monomial basis for the angular moments, m ( � s ) , reads

s follows 

• for i = 1 

m ( � s ) = 

[
1 , �2 , �3 , �

2 
2 , �2 �3 

]
;

• for i = 2 

m ( � s ) = 

[
1 , �1 , �3 , �

2 
1 , �1 �3 

]
;

• for i = 3 

m ( � s ) = 

[
1 , �1 , �2 , �

2 
1 , �1 �2 

]
. 

In the case where one of γ i , i = 1 , . . . , 3 , is equal to one as

s the case at the vertices of the triangle (P 1 P 2 P 3 ), then γ j = 0 ,

 ∈ {1, 2, 3} and j � = i , and from the findings in Eq. (B.4) , combined

ith the fact that � s is a unit vector, it follows that the distribution

s equal to zero everywhere except on the line 

  = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(±
√ 

1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
1 

) 2 , N 

′ (1) 
2 

, N 

′ (1) 
3 

) if γ1 = 1 , 

(N 

′ (1) 
1 

, ±
√ 

1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
2 

) 2 , N 

′ (1) 
3 

) if γ2 = 1 , 

(N 

′ (1) 
1 

, N 

′ (1) 
2 

, ±
√ 

1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
3 

) 2 ) if γ3 = 1 , 

(B.10) 

nd the distribution is then uniquely determined by a Dirac delta

r a combination of Dirac deltas of the form 

 P i = I ′ (0) 
[
ρ+ 

i 
δ(�i − x + 

i 
) + ρ−

i 
δ(�i − x −

i 
) 
]
δ(� j − N 

′ (1) 
j 

) δ(�k − N 

′ (1) 
k 

) , 

(B.11) 
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where ( i, j, k ) ∈ (1,2,3) with i � = j � = k and ρ+ 
i 

, ρ−
i 

, x + 
i 

and x −
i 

are

some parameters which must be determined from the realizablity

constraints for moments up to first-order (since the second-order

moments depend on the lower-order moments in this case), and

read as follows 

x ±
i 

= ±
√ 

1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
i 

) 2 , and ρ±
i 

= 

N 

′ (1) 
i 

− x ∓
i 

2 x ±
i 

. 

(B.12)

Appendix C. Sufficiency of realizability conditions for moments 

up to second-order 

Let us consider a point P lying within the triangle (P 1 P 2 P 3 ) (see

Fig. 1 ) with corresponding set of moments ( I ′ (0) , I ′ (1) . I ′ (2) ), an re-

construct the distribution at the vertices of the triangle, given in

Eq. (B.11) , such that they exactly reproduce the zeroth and first-

order moments, I ′ (0) and I ′ (1) , respectively. We may then write the

distribution at the point P as a convex combination of the distri-

butions at the vertices of the triangle using the barycentric coordi-

nates, γ i , of the latter, as 

I P = 

3 ∑ 

i =1 

γi I P i , (C.1)

From the above defined form of the distribution, it is clear, us-

ing Eq. (A.1) , that I P reproduces I ′ (0) and I ′ (1) , since I P i , i = 1 , . . . , 3

reproduce such moments. For the second-order moment, I ′ (2) , we

have 

∫ 
4 π

�
 s 2 I P d� = 

3 ∑ 

i =1 

γi 

∫ 
4 π

�
 s 2 I P i d�. 

Computing the second-order moments at the vertices yields ∫ 
4 π

�m 

�n I P i d� = I ′ (0) 

∫ 
4 π

�m 

�n 

[
ρ+ 

i 
δ(�i − x + 

i 
) 

+ ρ−
i 
δ(�i −x −

i 
) 
]
δ(� j −N 

′ (1) 
j 

) δ(�k −N 

′ (1) 
k 

) d�

∫ 
4 π

�m 

�n I P i d� = I ′ (0) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ρ+ 
i 

(
x + 

i 

)2 + ρ−
i 

(
x −

i 

)2 
if m = n = i, (

N 

′ (1) 
m 

)2 
if m = n � = i, 

N 

′ (1) 
m 

N 

′ (1) 
n if m � = n, 

For simplicity, we set I ′ (0) = 1 in the remainder of the derivation.

We will now distinguish two cases: 

• Case 1: m � = n 

∫ 
4 π

�m 

�n I P d� = 

3 ∑ 

i =1 

γi N 

′ (1) 
m 

N 

′ (1) 
n , 

∫ 
4 π

�m 

�n I P d� = N 

′ (1) 
m 

N 

′ (1) 
n 

3 ∑ 

i =1 

γi . 

Using Eq. (A.1) , we then obtain ∫ 
4 π

�m 

�n I P d� = N 

′ (1) 
m 

N 

′ (1) 
n . (C.2)

• Case 2: m = n = i ∫ 
4 π

( �m 

) 
2 I P d� = γi 

[ 
ρ+ 

m 

(
x + m 

)2 + ρ−
m 

(
x −m 

)2 
] 

+ γ j 

(
N 

′ (1) 
m 

)2 + γk 

(
N 

′ (1) 
m 

)2 
, ∫ 

4 π
( �m 

) 
2 I P d� = γi 

[ 
(ρ+ 

m 

+ ρ−
m 

) 
(
x + m 

)2 
] 

+ γ j 

(
N 

′ (1) 
m 

)2 + γk 

(
N 

′ (1) 
m 

)2 
. 
From Eq. (B.12) , it is clear that ρ+ 
m 

+ ρ−
m 

= 1 , and therefore Us-

ing Eq. (A.1) , we then obtain ∫ 
4 π

( �m 

) 
2 I P d� = γi 

(
x + m 

)2 + γ j 

(
N 

′ (1) 
m 

)2 + γk 

(
N 

′ (1) 
m 

)2 
, 

∫ 
4 π

( �m 

) 
2 I P d� = γi 

(
1 − ‖ N 

′ (1) ‖ 

2 + (N 

′ (1) 
m 

) 2 
)

+ γ j 

(
N 

′ (1) 
m 

)2 

+ γk 

(
N 

′ (1) 
m 

)2 
, ∫ 

4 π
( �m 

) 
2 I P d� = (γi + γ j + γk ) 

(
N 

′ (1) 
m 

)2 + γi 

(
1 − ‖ N 

′ (1) ‖ 

2 
)
. 

Again using Eq. (A.1) , we then obtain ∫ 
4 π

( �m 

) 
2 I P d� = 

(
N 

′ (1) 
m 

)2 + γi 

(
1 − ‖ N 

′ (1) ‖ 

2 
)

(C.3)

From the results given in Eq. (C.2) and (C.3) , it is clear that I P 
with P ∈ R 

2 
T ), given in Eq. (C.1) also reproduces I ′ (2) . 

ppendix D. Procedure for computing derivatives of the 

ngular moments with respect to other angular moments 

In our proposed interpolations, direct computation of the inter-

olating functions from the pre-computed solutions of the opti-

ization problem for entropy maximization yields undetermined

xpressions in the isotropic limit as well as on the boundaries of

he realizable domain. Applying l’Hopital’s rule is such cases results

n an expression in terms of the derivatives of the highest-order

oments with respect to the lower-order moments, which can be

xpressed as follows 

∂ I (3) 

∂ I ( j) = 

9 ∑ 

i =0 

∂ I (3) 

∂αi 

∂αi 

∂ I ( j) , j = 0 , . . . , 2 , (D.1)

here we have used the chain rule for derivatives. 

The derivatives of the Lagrange multipliers with respect to the

ower-order moments can be obtained by exploiting the following

elationships 

∂ I (0) 

∂ I (0) 
= 

9 ∑ 

i =0 

∂ I (0) 

∂αi 

∂αi 

∂ I (0) 
= 1 , 

∂ I (0) 

∂ I (1) 
j 

= 

9 ∑ 

i =0 

∂ I (0) 

∂αi 

∂αi 

∂ I (1) 
j 

= 0 , 

∂ I (0) 

∂ I (2) 
jk 

= 

9 ∑ 

i =0 

∂ I (0) 

∂αi 

∂αi 

∂ I (2) 
jk 

= 0 , (D.2)

∂ I (1) 
j 

∂ I (0) 
= 

9 ∑ 

i =0 

∂ I (1) 
j 

∂αi 

∂αi 

∂ I (0) 
= 0 , 

∂ I (1) 
j 

∂ I (1) 
k 

= 

9 ∑ 

i =0 

∂ I (1) 

∂αi 

∂αi 

∂ I (1) 
= δ jk , 

∂ I (1) 
j 

∂ I (2) 
kl 

= 

9 ∑ 

i =0 

∂ I (1) 
j 

∂αi 

∂αi 

∂ I (2) 
kl 

= 0 , (D.3)

∂ I (2) 
jk 

∂ I (0) 
= 

9 ∑ 

i =0 

∂ I (2) 
jk 

∂αi 

∂αi 

∂ I (0) 
= 0 , 

∂ I (2) 
jk 

∂ I (1) 
l 

= 

9 ∑ 

i =0 

∂ I (2) 
jk 

∂αi 

∂αi 

∂ I (1) 
l 

= 0 , 

∂ I (2) 
jk 

∂ I (2) 
= 

9 ∑ 

i =0 

∂ I (2) 
jk 

∂αi 

∂αi 

∂ I (2) 
= δ jl δkm 

. (D.4)
lm lm 
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The above relationships can be rewritten in matrix form as fol-

ows 

A = I (D.5) 

here 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂ I (0) 

∂α1 

∂ I (0) 

∂α2 
. . . ∂ I (0) 

∂α9 

∂ I (1) 
1 

∂α1 

∂ I (1) 
1 

∂α2 
. . . 

∂ I (1) 
1 

∂α9 

. . . 
. . . . . . 

. . . 
∂ I (1) 

3 

∂α1 

∂ I (1) 
3 

∂α2 
. . . 

∂ I (1) 
3 

∂α9 

∂ I (2) 
11 

∂α1 

∂ I (2) 
11 

∂α2 
. . . 

∂ I (2) 
11 

∂α9 

. . . 
. . . . . . 

. . . 
∂ I (2) 

23 

∂α1 

∂ I (2) 
23 

∂α2 
. . . 

∂ I (2) 
23 

∂α9 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(D.6) 

nd 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂α1 

∂ I (0) 

∂α1 

∂ I (1) 
1 

. . . 
∂α1 

∂ I (1) 
3 

∂α1 

∂ I (2) 
11 

. . . 
∂α1 

∂ I (2) 
23 

∂α2 

∂ I (0) 

∂α2 

∂ I (1) 
1 

. . . 
∂α2 

∂ I (1) 
3 

∂α2 

∂ I (2) 
11 

. . . 
∂α2 

∂ I (2) 
23 

. . . 
. . . . . . 

. . . 
. . . 

. . . 
. . . 

∂α4 

∂ I (0) 

∂α4 

∂ I (1) 
1 

. . . 
∂α4 

∂ I (1) 
3 

∂α4 

∂ I (2) 
11 

. . . 
∂α4 

∂ I (2) 
23 

∂α5 

∂ I (0) 

∂α5 

∂ I (1) 
1 

. . . 
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∂ I (1) 
3 

∂α5 

∂ I (2) 
11 

. . . 
∂α5 

∂ I (2) 
23 

. . . 
. . . . . . 

. . . 
. . . 

. . . 
. . . 

∂α9 

∂ I (0) 

∂α9 

∂ I (1) 
1 

. . . 
∂α9 

∂ I (1) 
3 

∂α9 

∂ I (2) 
11 

. . . 
∂α9 

∂ I (2) 
23 

⎤ 
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(D.7) 

nd I is a 9 × 9 identity matrix. The matrix A can then be written

s 

 = H 

−1 . (D.8) 
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