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A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described
for solution of hyperbolic conservation laws in domains between two concentric spheres.
In particular, the Euler and ideal magnetohydrodynamics (MHD) equations are considered.
Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach
involves the use of a fully multi-dimensional finite-volume method. This leads to important
advantages when the treatment of boundaries and corners of the six sectors of the
cubed-sphere grid is considered. Most existing finite-volume approaches use dimension-
by-dimension differencing and require special interpolation or reconstruction procedures
at ghost cells adjacent to sector boundaries in order to achieve an order of solution
accuracy higher than unity. In contrast, in our multi-dimensional approach, solution
blocks adjacent to sector boundaries can directly use physical cells from the adjacent
sector as ghost cells while maintaining uniform second-order accuracy. This leads to
important advantages in terms of simplicity of implementation for both parallelism and
adaptivity at sector boundaries. Crucial elements of the proposed scheme are: unstructured
connectivity of the six grid root blocks that correspond to the six sectors of the cubed-
sphere grid, multi-dimensional k-exact reconstruction that automatically takes into account
information from neighbouring cells isotropically and is able to automatically handle
varying stencil size, and adaptive division of the solution blocks into smaller blocks of
varying spatial resolution that are all treated exactly equally for inter-block communication,
flux calculation, adaptivity and parallelization. The proposed approach is fully three-
dimensional, whereas previous studies on cubed-sphere grids have been either restricted
to two-dimensional geometries on the sphere or have grids and solution methods with
limited capabilities in the third dimension in terms of adaptivity and parallelism. Numerical
results for several problems, including systematic grid convergence studies, MHD bow-
shock flows, and global modelling of solar wind flow are discussed to demonstrate the
accuracy and efficiency of the proposed solution procedure, along with assessment of
parallel computing scalability for up to thousands of computing cores.
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Fig. 1. Three-dimensional cubed-sphere grid with six root blocks (corresponding to the six sectors of the grid) and depiction of inter-block connectivity. In
our approach, the root blocks can be refined in a block-adaptive way. In panel (b), the block faces are denoted with the initials of the cardinal directions:
North (N), East (E), South (S) and West (W).

1. Introduction

High-performance computational methods for numerically solving conservation laws in domains between two concentric
spheres are desirable in many fields of computational physics. Spherical shell domains are ubiquitously present in computa-
tions of global physical processes associated with geophysical and celestial bodies and the intervening space. Consequently,
the discretization of spherical shell geometries is required, at least as a first approximation, in fields as diverse as space
physics, astrophysics, climate and weather modelling, and geophysics. The choice of the grid is important in formulating
an efficient and accurate numerical method for solving partial differential equations on such domains. For example, for
space-physics problems, one of the main numerical challenges is provided by the presence of a wide variety of temporal
and spatial scales on which interesting plasma physics phenomena occur throughout the vast domains associated with the
large-scale space-weather environment. Numerical solutions of the equations arising in the modelling of these complex flows
are computationally intensive and feasible only on massively parallel computers [1–4]. Therefore, scalable high-performance
algorithms capable of efficiently resolving the solution features of these flows and of reducing the time required to obtain
numerical solutions of these problems are actively researched.

In recent years, cubed-sphere grids have gained increasing popularity for simulating fluid flow in domains between con-
centric spheres, first in the area of climate and weather modelling [5–17], but more recently also in areas like astrophysics
[18,19]. Cubed-sphere grids (see Fig. 1) are attractive because they offer a nearly uniform covering of the spherical surface,
while also providing logically Cartesian grids in each of the six sectors (or panels) of the grid, which can be exploited for
efficient implementation. Cubed-sphere grids, however, also pose important numerical challenges due to the grid irregular-
ity and non-trivial connectivity along the boundaries and at the corners of the six sectors of the grid. For these reasons,
progress in terms of uniform second-order accuracy and higher, adaptivity, and parallelization has been slow.

This paper proposes a new parallel and adaptive cubed-sphere simulation framework for solving conservation laws.
Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach involves the use of a fully multi-
dimensional finite-volume method, which leads to important advantages when the treatment of boundaries and corners
of the six identical sectors of the cubed-sphere grid is considered. This is in contrast to existing finite-volume schemes
on cubed-sphere grids, most of which use dimension-by-dimension differencing and require special interpolation or re-
construction procedures at sector boundaries. Instead, the multi-dimensional finite-volume procedure applied in this work
can directly use physical cells from the adjacent sector as ghost cells while maintaining full second-order accuracy and
providing important additional advantages in terms of simplicity of implementation, parallelization and adaptivity. The
multi-dimensional scheme is implemented into a fully-adaptive three-dimensional (3D) cubed-sphere grid framework, which
is uniformly second-order accurate and has excellent parallel scalability on thousands of computing cores. These properties
have been obtained by basing the framework on a consistent multi-block approach, with block-based adaptivity, unstruc-
tured root-block connectivity, and least-squares based reconstruction that allows for variable stencil sizes in the upwind
finite-volume formulation. We call our multi-block approach consistent to highlight that no ad hoc procedures are employed
between blocks at sector boundaries to handle the non-trivial grid connection there. Instead, in terms of the software
engineering of the simulation framework, the built-in features of the blocks are made sufficiently rich to deal with sector
boundaries automatically. This is achieved by adopting general mechanisms to handle the finite-volume spatial discretization
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Fig. 2. Examples of two-dimensional multi-block grids.

procedure on general hexahedral elements, variable stencil size, unstructured root block connectivity and orientation of co-
ordinate axes in the blocks. This approach results in uniform second-order accuracy, solution adaptivity and parallelization
that are treated consistently at the boundaries between the six sectors of the cubed-sphere grid. The proposed scheme
provides second-order accuracy on 3D cubed-sphere grids in a uniform manner in all three spatial directions, and naturally
permits efficient leading-edge parallel and adaptive implementations on cubed-sphere grids. While the present study has
been restricted to obtaining consistent second-order finite-volume discretizations on cubed-sphere grids, future follow-on
work will consider high-order discretization up to fourth order. Preliminary results on ongoing work extending the proposed
cubed-sphere grid framework to fourth-order accuracy are presented in the recent study by Ivan et al. [20].

The computational framework described significantly advances the state-of-the-art of numerical algorithms on cubed-
sphere grids because it is fully 3D (with adaptivity and parallelism), whereas existing work is either 2D or has limited
capabilities in the third dimension in terms of adaptivity and parallelism. Our scalable, parallel adaptive cubed-sphere grid
simulation framework is applied to non-conducting compressible gaseous flow problems and to magnetohydrodynamics
(MHD) flows from space physics. While preliminary results on the work presented here were published in an earlier con-
ference paper [21], the present study provides a complete and comprehensive description of the approach.

Two-dimensional (2D) cubed-sphere grids are generated by projecting onto a sphere a Cartesian grid that is defined on
the six sides of a cube. In the same fashion, a three-dimensional (3D) cubed-sphere grid can be obtained by overlaying a
sequence of concentric 2D spherical shell grids in the radial direction and forming six three-dimensional blocks, each of
which is enclosed by the union of four radial and two spherical faces (see Fig. 1). In contrast to the 2D counterpart, which
requires the definition of a curved coordinate system for each of the six cubed-sphere sectors, the 3D cubed-sphere grid
allows the use of a unique coordinate system (e.g., Cartesian) to discretize the governing conservation laws everywhere
in the physical domain, which makes the use of a covariant transformation unnecessary [5,6,14,17,22]. Note also that,
due to the large discrepancies between horizontal and vertical scales, 3D weather and climate models are formulated as
layered models, and thus will still require the transformation of information between different coordinate systems of the
cubed-sphere grid. However, the space physics flows we target are suitable for a fully-coupled 3D approach, which means
that the complication of having to deal with multiple coordinate systems can be avoided: we use a single xyz Cartesian
coordinate system throughout the entire simulation domain. The large-scale parallel domain partitioning of 3D cubed-sphere
meshes is typically obtained by generating cuts in the radial direction, thereby increasing the number of partitioning blocks
that can be farmed out to different processors to 6 × Nc , where Nc is the number of radial blocks in each sector. The
cubed-sphere grids used in this paper are generated using the so-called cubic-gnomonic projection [5,6,10]. In particular,
the angularly equidistant mapping described in [6] is used to generate the initial six blocks of the grids.

Our approach incorporates adaptive mesh refinement (AMR) in the multi-block framework. Multi-block grids (see Fig. 2)
are grids composed of a number of adjacent logically Cartesian blocks that may differ in resolution. Although local enhance-
ment of flow features has already been widely considered in the context of h-adaptation on 2D latitude-longitude spherical
grids by, e.g., Jablonowski et al. [23], and more recently on 2D cubed-sphere grids by St-Cyr et al. [11], to our knowledge,
a fully 3D adaptive mesh refinement procedure on cubed-sphere grids has not been described in the literature before, and
the present study represents the first application of a block-based AMR algorithm to 3D cubed-sphere grids. Adaptive mesh
refinement is an effective approach for coping with the computational cost of large-scale numerical simulations, such as
those encountered in space-physics flows [2,24–28]. Computational grids that automatically adapt to the solution of the
governing equations are effective in treating problems with disparate length scales, providing the required spatial resolu-
tion while minimizing memory and storage requirements. The multi-block AMR scheme we use is based on the previous
work of Gao and Groth [29,30] for reacting flows, and has been extended and optimized for cubed-sphere grids in this
work. As such, the multi-block AMR finite-volume framework is not restricted to cubed-sphere topologies and more general
grid geometries can be treated with the proposed method. Multi-block meshes for cubed-sphere grids require unstructured
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root-block connectivity. This can be seen in Fig. 1(a): at the projection of the cube corners (i.e., where the root block edges
intersect) three root blocks meet, and as a result, the root-block connectivity is as depicted in Fig. 1(b). The connectivity of
the root blocks is termed unstructured because it cannot be mapped to a logically Cartesian mesh. The multi-block AMR
scheme proposed earlier by Gao and Groth for reacting flows [29,30] allows for unstructured root-block connectivity and is
therefore well-suited for handling the cubed-sphere grid topology.

An important aspect in the development of numerical algorithms on cubed-sphere grids is related to the treatment
of interfaces between adjacent grid sectors, across which grid lines have slope discontinuities [5,6,9,14,19,22]. If special
care is not taken, the accuracy of the numerical discretizations that are based on one-dimensional approaches may be
significantly degraded at these interfaces. In traditional implementations of cubed-sphere grid codes the special treatment
required at these interfaces for maintaining adequate accuracy poses difficulties for consistent implementation of AMR and
parallelization across the computational grid. Several approaches have been proposed in the literature for coupling the
solution blocks at sector boundaries, including direct information transfer from interior cells of neighbouring blocks to
layers of overlapping “ghost” (or halo) cells [9], one-dimensional interpolation known as cascade interpolation which makes
use of some particular features of the cubed-sphere grid [6], as well as a one-sided reconstruction followed by high-order
Gaussian quadrature to determine the average solution data within each ghost element [14]. We propose a new approach
to deal with this accuracy issue at sector boundaries. We use a fully multi-dimensional finite-volume spatial discretization
method based on least-squares that directly employs physical cells from the adjacent sector as ghost cells and automatically
handles varying stencil size, while maintaining full second-order accuracy.

The remainder of the paper is organized as follows. The next section discusses governing equations of interest. In Sec-
tion 3, a detailed overview of the proposed block-adaptive cubed-sphere grid simulation framework for conservation laws
is provided. In Section 4, the accuracy of the numerical procedure is demonstrated by comparing with analytical solutions
and with highly-accurate one-dimensional (1D) transonic flow solutions. A new axi-symmetric MHD test problem is pre-
sented that has an exact solution in a domain between two concentric spheres, and can thus be used to test the order of
convergence of MHD solvers in this type of domains. Additionally, numerical results are provided to illustrate the capabil-
ities of the adaptive mesh refinement (AMR) algorithm for magnetized and non-magnetized space-plasma problems, such
as spherically-symmetric transonic winds and supersonic bow-shock flows past a sphere. Finally, a more realistic space-
physics problem is considered by developing a global MHD model similar to the one proposed by Groth et al. [2] for the
time-averaged or quasi-steady solar wind at minimum solar activity.

2. Governing equations

We consider the solution of hyperbolic systems of conservation laws of the form given by

∂tU + �∇ · �F = S + Q , (1)

where U is the conserved variable solution vector, �F is the system flux dyad, and S and Q are volumetric source terms. The
numerical solution of two prototypical hyperbolic systems will be considered: the Euler and the ideal MHD equations for
inviscid compressible non-conducting and conducting ideal gases, respectively. The conserved variable solution vector, U, for
these cases has the form

U = [ρ,ρ �V , �B,ρe]T , (2)

where ρ is the gas density, �V = (V x, V y, V z) is the velocity, �B = (Bx, B y, Bz) is the magnetic field and ρe is the total energy.
The flux dyad, �F, is given by

�F =

⎡
⎢⎢⎢⎣

ρ �V
ρ �V �V + (p + �B·�B

2 )
��I − �B �B

�V �B − �B �V
(ρe + p + �B·�B

2 ) �V − ( �V · �B)�B

⎤
⎥⎥⎥⎦ . (3)

In Eqs. (2) and (3) the specific total plasma energy is e = p/(ρ(γ −1))+ V 2/2+ B2/(2ρ), where p is the molecular pressure,

V is the magnitude of the fluid velocity, and B is the magnitude of the magnetic field. The term pB = �B·�B
2 in Eq. (3) is known

as the magnetic pressure.
The so-called Powell source term, S, is given by

S = −

⎡
⎢⎢⎣

0
�B
�V

�V · �B

⎤
⎥⎥⎦∇ · �B = S∇ · �B, (4)

the role of which is not only to make the MHD equations Galilean invariant and symmetrizable, as proved by Godunov [31],
but also to provide a numerically stable way of controlling the errors in the divergence free condition, ∇ · �B = 0, a technique
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Fig. 3. Illustration of three-dimensional block-based adapted cubed-sphere grids showing the blocks and block boundaries.

first advocated by Powell and co-workers [24]. Note that our framework can also be used with other mechanisms to control
∇ · �B , for example, the generalized Lagrange multiplier mechanism of [32]. However, these alternative approaches are not
considered here.

Note that Eqs. (1)–(4) represent the non-dimensional scaled form of the MHD equations following from the non-
dimensionalization described by, e.g., Powell et al. [24] and by Groth et al. [2] for the solar wind. The ideal gas equation
of state p = ρRT is assumed, where T is the gas temperature and R = 1/γ is the gas constant. For a polytropic gas
(thermally and calorically perfect), the ratio of plasma specific heats, γ , is a constant, and the specific heats are given
by Cv = 1/(γ − 1) and C p = γ /(γ − 1). Unless specified otherwise, di-atomic gases are used throughout this paper, which
corresponds to γ = 7/5 = 1.4. The aforementioned equations can be simplified by setting the magnetic field, �B , equal to
zero, in which case the conservation laws of the non-magnetized plasma reduce to the Euler equations of gas dynamics in
non-dimensional form.

The column vector, Q , appearing in Eq. (1) is used here to represent different volumetric sources arising from the physical
modelling of the space-physics problem studied. Thus, the volumetric source term Q = Q G + Q H + Q O accounts for sources
associated with external gravitational fields, Q G , effects of coronal heating processes and heat and radiation transfer, Q H ,
as well as other effects, Q O . Note that the source term Q H is used only for modelling the time-averaged solar wind (see
Section 4.2.3 for details) whereas the term Q O is used to construct an analytical solution to the MHD equations by the
method of manufactured solutions [33], as described in Section 4.2.1.

3. Parallel adaptive second-order-accurate simulation framework on cubed-sphere grids

3.1. Block-structured adaptive mesh refinement approach

A variety of adaptive mesh refinement techniques have emerged in the literature, which can broadly be classified into
cell-based, patch-based, block-based and hybrid block-based techniques. A recent review and discussion of these strategies
is provided by Gao and Groth in [30]. Among these AMR strategies, block-based AMR approaches lend themselves readily
to efficient parallelization on distributed-memory clusters. This feature made the block-based AMR technique attractive for
application to different configurations (e.g., on Cartesian, curvilinear and/or body-fitted meshes in conjunction with schemes
of various orders of accuracy). AMR has been applied to a variety of engineering and scientific problems by Quirk [34],
Berger and Colella [35–37], Gombosi and co-workers [2,3,24,38,39], Groth and co-workers [30,40–43], Keppens et al. [44]
and Jablonowski et al. [23], among many others.

The block-based AMR strategy considered in this work follows the approach of Gao and Groth [29,30] and mesh adap-
tation is accomplished by dividing and coarsening appropriate solution blocks. To illustrate the general setting for our
approach, an example of a 3D block-structured cubed-sphere mesh containing blocks of different resolution levels is de-
picted in Fig. 3 along with the corresponding hierarchical octree data structure. A refinement step divides a “parent” block
into eight “children”, and the reverse happens for coarsening. In general, each block has an equal number of cells for al-
gorithm simplicity and computational efficiency (load balancing). Furthermore, for accuracy reasons and reduced algorithm
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complexity, the maximum resolution change between adjacent blocks is limited to two. In the adaptation process a grid
hierarchy gets generated from a set of initial (i.e., root) blocks in the form of a sequence of nested grids that can be
conveniently tracked with a hierarchical block-tree data structure, as the one depicted in Fig. 3(b).

The octree data structure illustrated in Fig. 3(b) contains multiple “roots” and multiple “trees” that keep track of the
connectivity and the mesh resolution change between solution blocks. The blocks of the initial mesh represent the roots of
the forest. Traversal of the multi-tree structure by recursively visiting the parents and children of solution blocks can be used
to determine block connectivity. However, in order to reduce overhead associated with accessing solution information from
adjacent blocks, the neighbours of each block are pre-computed and stored, providing direct interconnects between blocks
in the hierarchical data structure that are neighbours in the grid. In general, a given solution block in the interior of one of
the grid sectors has a minimum of 26 neighbouring blocks (all neighbouring blocks in a 3 × 3 × 3 block stencil), the actual
number depending on the level of mesh resolution change encountered on each of the 26 boundary elements (6 faces, 12
edges and 8 vertices), and having a maximum value of 56 neighbouring blocks. For blocks adjacent to domain boundaries or
to cubed sphere corners the number of neighbouring blocks is smaller. In order to facilitate information exchange between
adjacent blocks, additional layers of “ghost” cells that overlap with interior cells of adjacent blocks are added to each
solution block. The numerical scheme used in this work (see Section 3.3), handles consistently the computational cells near
block interfaces by making use of the overlapping ghost cells and accommodating variable stencil sizes. For our second-order
accurate method we employ two ghost cell layers, which represents a small memory overhead relative to the benefits to
be gained when the parallel aspects of the algorithm are considered, as described below. One of the advantages of the
hierarchical octree data structure is that it readily permits local mesh refinement. Local modifications to the multi-block
mesh can be performed without re-gridding the entire mesh and re-calculating all solution block connectivities.

3.2. Multi-block cubed-sphere grid with unstructured root-block connectivity

The main technical difficulty in applying the block-structured adaptive multi-block concept to cubed-sphere grids is to
deal consistently with the unstructured connectivity between adjacent blocks that occurs at sector boundaries and sector
corners. The first issue arises at sector corners (see Fig. 4): grid cells adjacent to one of the eight sector corners have only
seven neighbouring cells (in 2D), while all other cells have 8 neighbours (these neighbours are used in stencils for solution
reconstruction and flux calculation, see next section). This issue is dealt with in our approach by automatically detecting
blocks with such corner cells, and by assigning “collapsed” corner ghost cells to those blocks sharing the relevant corner
(as in [30]). In practice, this is implemented by tagging those collapsed corner ghost cells as inactive and setting default
values in the memory assigned to them so as to maintain consistency of the memory layout for solution blocks. Note that
in one sector corner each of the three blocks has a number of collapsed cells equal to four times the number of cells in
the radial direction (i.e., interior cells plus four ghost cells). This shows that the memory overhead of “storing” collapsed
cells is only dependent on the radial resolution along sector corners and remains constant as more cells are added in the
latitudinal and longitudinal directions. Furthermore, the memory assigned to collapsed cells becomes even less significant
relative to the total memory requirements as more blocks are added in the angular directions by the AMR process, as blocks
interior to cubed-sphere grid sectors do not require this type of ghost cell treatment. These collapsed ghost cells are not
used in the stencils for reconstruction computation, so grid cells adjacent to sector corners employ reduced stencil sizes.
The flexible finite-volume reconstruction mechanism of the proposed solution method (see the next subsection) handles this
consistently across block cells without reducing the local order of accuracy. In our implementation, blocks with collapsed
ghost cells are detected from the block connectivity data structure: if no neighbouring block is found in the direction of a
block corner the corresponding corner ghost cells are taken to be collapsed.

The second issue is the connectivity between adjacent blocks (recall Fig. 1(b)): on cubed-sphere grids, it is no longer
true that, for example, eastern block boundaries are always adjacent to western block boundaries, and it is necessary to
carefully keep track of the block interface adjacency, and of the orientation of index axes in adjacent blocks (i.e., the i, j,
and k indices in the logically Cartesian data structure of a block may correspond to a different orientation of the i, j, and k
indices in a neighbouring block). We use the unstructured root-block approach of [30] to handle this issue in a systematic
way. The logic employed follows the methodology proposed in the Computational Fluid Dynamics General Notation System
(CGNS) [45]. A typical refined block stores the relative orientation of the neighbouring blocks in the directions of all 26
boundary elements (6 faces, 12 edges and 8 vertices), and for each neighbour the orientation of the i, j, and k axes relative
to the orientation of the i, j and k axes in the current block is stored in compact form as a three-component transformation
array. For example, consider the index system of block 1 in Fig. 1(b) in relationship to its south neighbour, block 6. The i
and j indices of block 6 run in directions opposite to the i and j indices in block 1. This is indicated by negative signs in the
block 1-to-block 6 transformation array, which is given by [−1,−2,+3]. The components 1, 2 and 3 in the array signify the
i, j and k indices in block 6. The value 1 in the first component of the array means that the i index from block 6 is associated
with the first index of block 1 (its i index), and the negative sign indicates that they run in opposite directions. The value
−2 in the second position means that the j indices of the two blocks are also associated and running in opposite directions,
and the value +3 in the third direction indicates that the k indices have the same orientation. Similarly, considering block 2,
the block 2-to-block 5 transformation array is given by [−2,+1,+3], because the second index in block 5 ( j) corresponds
to the first index in block 2 (i) (running in the opposite direction), the first index in block 5 (i) corresponds to the second
index in block 2 ( j) (running in the same direction), and the third index in block 5 (k) corresponds to the third index in
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Fig. 4. Examples of interior, boundary and corner reconstruction stencils for different cells of a cubed-sphere mesh with six 12 × 12 × 8 blocks and a total
of 6912 cells. The cell of which the solution is reconstructed is marked with • symbol and the neighbouring cells that are part of the reconstruction stencil
are marked with ×, ♦ and ⊗ symbols for the interior, corner and boundary reconstruction stencil, respectively.

block 2 (k) (running in the same direction). These transformation arrays provide a convenient short-hand notation for the
transformation matrices [29,30,45] describing the relation between indices of two adjacent blocks, which can be used to
exchange solution information between blocks having common interfaces in a general and consistent way. For more details,
see [30].

The connectivity information is propagated from the root blocks to refined blocks via the octree data structure, in such
a way that each refined block stores a transformation array describing index axis alignment with all of its (typically 26)
neighbour blocks. These block-to-block transformation arrays are used in the solution procedure to properly compute nu-
merical fluxes through the block boundaries (via the ghost cell and reconstruction mechanisms, see below). Note that the
transformation array mechanism is implemented uniformly for all blocks to maintain algorithmic consistency, but it only
results in non-trivial action at block-block interfaces along sector boundaries.

3.3. Multi-dimensional second-order finite-volume scheme with uniform treatment of sector boundaries and corners

Numerical solutions of Eq. (1) on the cubed-sphere grids are sought by applying a Godunov-type finite-volume spatial
discretization procedure [46] in conjunction with second-order polynomial reconstruction and Riemann-solver based flux
functions. Thus, the set of coupled ordinary differential equations (ODEs) resulting from the application of this finite-volume
discretization to Eq. (1) for cell (i, j,k) of a multi-block mesh composed of hexahedral computational cells is given by

dUi, j,k

dt
= − 1

V i, j,k

N f∑
m=1

(�F · �n�A)i, j,k,m + S̄i, j,k + Q̄ i, j,k = Ri, j,k(U), (5)

where V i, j,k is the cell volume, N f is the number of cell faces, and �n and �A are the unit outward normal vector and
the area of cell face m, respectively. The numerical fluxes, �F · �n, at the midpoint of each face of cell (i, j,k) are determined
from the solution of a Riemann problem. Given the left and right interface solution states, Ul and Ur , an upwind numerical
flux is evaluated by solving a Riemann problem in the direction defined by the normal to the face. In our computational
studies, the Lax–Friedrichs [47], HLLE [48], and modified HLLE [49] approximate Riemann solvers are used in evaluating
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the numerical flux. The left and right initial states for the Riemann problem, Ul and Ur , are determined based on the
associated primitive variables, Wl,r = [ρ, �V , �B, p]l,r , at the interface. These primitive variable states Wl and Wr at the cell
interfaces are obtained by performing the multi-dimensional limited piecewise linear solution reconstruction proposed by
Barth [50] in conjunction with the Venkatakrishnan [51] slope limiter, so as to avoid the occurrence of spurious oscillations
and non-physical solutions (i.e., negative density and/or pressure). Thus, the limited linear representation of the primitive
solution for cell (i, j,k) is written as a polynomial expansion around the cell centroid, �xi, j,k , as

Wi, j,k(�x) = Wi, j,k + Φi, j,k �∇W · (�x − �xi, j,k), (6)

where Φi, j,k is the vector of limiter values that are determined individually for each solution variable, and Wi, j,k is the
cell average solution vector. The gradients of the primitive variables, �∇W, must be determined for each cell using the local
solution data and follow from the least-squares solution of the unlimited (i.e., Φi, j,k = �1) linear reconstruction based on
a three-dimensional supporting stencil which generally includes 27 cells in total (i.e., the 3 × 3 × 3 block composed of
the reconstructed cell plus the 26 nearest neighbouring cells). For each solution variable reconstruction, W i, j,k(�x), three
unknowns (i.e., the x-, y- and z-direction components of �∇W ) are calculated by imposing 26 equations of the form

W γ ,δ,ζ = 1

Vγ ,δ,ζ

∫ ∫ ∫
Vγ ,δ,ζ

W i, j,k(�x)dV , (7)

which expresses the condition that the average of the reconstructed polynomial for cell (i, j,k) over each neighbouring cell
(γ , δ, ζ ) in the reconstruction stencil is required to recover the existing volume-averaged solution, W γ ,δ,ζ , in that cell. The
resulting overdetermined system of linear equations is solved in the least-squares sense [50]. The limiter values are then
determined based on the reconstructed solution at the midpoint of each face (i.e., at the flux integration points) by apply-
ing the selected slope limiter. The reconstruction procedure could in principle be carried out with smaller reconstruction
stencils (for example, a seven-point reconstruction stencil would lead to six equations), but it would then loose much of its
multi-dimensional character, and we have indeed found that the 27-point reconstruction stencil provides better robustness
against non-uniformity in the grid and solution gradients that are not aligned with the grid. The least-squares procedure
allows for flexible stencil sizes, without reducing the local order of accuracy. In particular, for grid cells adjacent to the
radial lines that pass through cubed-sphere sector corners, the reconstruction stencil size is reduced from 27 to 24, which
is handled naturally and consistently by the least-squares reconstruction procedure.

Fig. 4 shows the computational cells belonging to a spherical face that are included in the reconstruction stencil of
representative cells that lie either in the interior, at a boundary, or at a corner of the cubed-sphere sectors. The complete
3D reconstruction stencils are obtained by including the radial neighbours (i.e., above and below) of the cells depicted
in Fig. 4(a) and 4(b). The overlapping layers of ghost cells depicted in these figures are used to mirror the information
from the neighbouring block and compute updates in cells adjacent to the block boundary. Note that the stencils shown in
the figures are reconstruction stencils, i.e., the stencils used for computing the linear reconstruction in a single cell. These
reconstructions stencils contain one layer of neighbours. The actual computational stencils of our method (the cells on
which a cell depends for its update) contain cells from two layers of neighbours. In our approach two layers of ghost cells
are used. Solution reconstruction is performed in interior cells but also in the first layer of ghost cells, using the solution
values in the second layer of ghost cells. This means that only one communication step is required per time integration
stage. Without the second layer of ghost cells, a second communication step would be required in each stage of the time
integration, in between the solution reconstruction computation and the flux calculation, since reconstructed values are
required at both sides of the block boundaries to compute the fluxes. The multi-dimensional reconstruction procedure is
observed to perform accurately and robustly on cubed-sphere grids (see the convergence results below), avoiding any special
interpolation treatment of cells near grid sector boundaries. Note that this is in contrast to other previous finite-volume
algorithms on the cubed sphere, which require either one-dimensional interpolation [6,19] or one-sided reconstruction [5,
14] near sector boundaries to obtain order of accuracy greater than unity.

The numerical procedure outlined above results in a second-order accurate upwind finite-volume scheme. The average
value of the Powell source term, S̄i, j,k , of cell (i, j,k) is computed with second-order accuracy by estimating the quantity S
based on the appropriate cell-averaged solution variables (i.e., the value of the reconstructed polynomial at the cell centroid)
and multiplying it with the following discretization for ∇ · �B:

(∇ · �B)i, j,k = 1

V i, j,k

N f∑
m=1

(�B f · �n�A)i, j,k,m, (8)

where �B f is an interface magnetic field computed as the arithmetic mean of the left and right reconstructed values, that
is, �B f = (�Bl + �Br)/2. The contribution of all other volumetric sources to the solution residual, Ri, j,k , is also evaluated with
second-order accuracy by computing the average source term Q̄ i, j,k at the centroid of cell (i, j,k). The test problems con-
sidered in this paper are all steady-state problems. To compute the steady-state solutions, the coupled system of non-linear
ODEs given by Eq. (5) is solved using the explicit five-stage scheme from [52] that was derived to provide optimum damp-
ing for second-order upwinding. This scheme achieves fast convergence for steady-state simulations. Since we compute



L. Ivan et al. / Journal of Computational Physics 255 (2013) 205–227 213
steady-state solutions, we can use local time-stepping, in which every cell employs the maximal time-step that obeys the
Courant–Friedrichs–Lewy (CFL) stability condition. The steady-state nature of the solution was determined based on the
reduction of the L2-norm of the solution residual over all grid cells.

While the explicit time-marching scheme applied here is not optimal, it was sufficient for the steady-state problems of
interest herein. Future follow-on research will consider improving the computational efficiency of the cubed-sphere frame-
work by combining the proposed spatial discretization procedure with more effective time-marching approaches such as
the parallel implicit Newton–Krylov–Schwarz algorithm of Northrup and Groth [53,54].

3.4. Block-based adaptive refinement and coarsening strategy

The flexible block-based hierarchical data structure discussed in Section 3.1 is used in conjunction with the spatial
discretization procedure outlined above to facilitate automatic solution-directed mesh adaptation on 3D cubed-sphere grids.
Mesh adaptation is accomplished by refining and coarsening appropriate solution blocks. In the case of refinement, each of
the eight octants of a parent block becomes a new block having the same number of cells as the parent, thereby doubling
the cell resolution in the region of interest. The additional mesh nodes in the new fine blocks are inserted in the middle
between the nodes inherited from the parent. This process can be reversed in regions that are deemed over-resolved and
eight children are coarsened into a single parent block, the mesh nodes of which are obtained by eliminating every other
interior node from the children blocks. Mesh refinement criteria are used to decide on adaptive resolution changes in a
procedure that can be summarized as follows (see [30,53] for a more extensive discussion).

Local refinement and coarsening of the mesh is directed according to so-called physics-based refinement criteria. In
particular, for the test cases considered in this paper, density gradient and divergence and curl of velocity are used in the
decision to refine or coarsen a solution block. For definiteness, it is discussed here the case in which the density gradient is
used as the basis for refinement.

When refinement and coarsening are desired in the course of a simulation, the following procedure is carried out.
First, the maximum per-block value of the density gradient in each cell is computed, and then a normalized scale for the
variation of the refinement measure per block is built based on the global minimal and maximal values for all solution
blocks. Based on user-specified threshold values for refinement and coarsening on a scale between zero to one, blocks with
maximum density gradient values above the refinement and below the coarsening thresholds are flagged for refinement
and coarsening, respectively. All the other blocks are flagged to keep their current mesh resolution. The final decision
about which blocks get refined/coarsened or are left unchanged employs a check for possible violations of the condition
that adjacent blocks may not differ by more than a factor of two in resolution after refinement/coarsening. The conflicts
are resolved according to the algorithm in [29,30], in which precedence is given to block refinement. After these conflicts
are resolved, the appropriately flagged blocks are refined and coarsened as scheduled. The newly created blocks during
refinement are distributed evenly among computing cores (for load balancing) in accordance to a resource list mirrored
on all computing cores which stores information about the distribution of solution blocks and the available computational
resources.

For the steady-state computations to be presented in the numerical results section of this paper, this refinement/coars-
ening mechanism is invoked at regular intervals during the convergence history. Our implementation also allows for time-
dependent, dynamical refinement and coarsening on the cubed-sphere grid, simply by applying the procedure at regular
intervals during time-dependent computations. Note that blocks at sector interfaces and sector corners of the cubed-sphere
grid are handled by the refinement/coarsening mechanism in a fully consistent way. For example, when refined blocks
are created, their neighbours are determined and blocks adjacent to sector corners receive less than the full amount of
neighbouring blocks (due to “missing” corner blocks), and will automatically be assigned collapsed corner ghost cells. The
transformation arrays for these blocks take into account the unstructured connectivity automatically.

Two illustrative examples of the application of the AMR algorithm described above to cubed-sphere grids are shown in
Fig. 5. Note also that a body-fitted mesh is readily obtained for the cubed-sphere approach by simply ensuring that newly
inserted mesh nodes at the inner and outer spherical boundaries belong exactly to the appropriate spherical shell.

Standard multi-grid-type restriction and prolongation operators [55] are used to evaluate the solution on all blocks
created by the coarsening and division processes, respectively. A coarse cell has mean solution data calculated from the
corresponding eight fine cells it overlaps with in a way that satisfies conservation [37,55]. In particular, each mean solution
variable of the coarse (parent) grid cell is determined by summing the corresponding eight mean solution variables of the
fine grid cells weighted by the fraction of the fine grid cell volume to the coarse grid cell volume. The volume-averaged
solution of a fine cell is derived from the solution of a parent coarse cell by simply evaluating the limited linear reconstruc-
tion of the parent at the centroid of the fine cell. Owing to the linearity of the reconstruction, mass is conserved in this
process, as can be shown using the mean value theorem. The same restriction and prolongation operators are also used for
ghost cells at block interfaces where the resolution changes, in all time steps (see Fig. 6). This procedure directly influences
the domain of dependence of solution reconstructions for cells that include ghost cells in their supporting stencils. Thus,
even though reconstruction stencils are always locally constructed in the fashion described in Section 3.3, the actual domain
of dependence depends on the mesh resolution transition at block interfaces. As can be seen from Fig. 6(b), the stencil con-
struction algorithm outlined in Section 3.3 can be applied in the same way to each of the cubed-sphere blocks regardless
of their spatial resolution.



214 L. Ivan et al. / Journal of Computational Physics 255 (2013) 205–227
Fig. 5. Illustration of three-dimensional block-based adapted cubed-sphere grids showing the block boundaries and the associated meshes.

Within the AMR approach, additional inter-block communication is also required at interfaces with resolution changes
to strictly enforce the flux conservation properties of the finite-volume scheme [36,37]. In particular, the interface fluxes
computed on more refined blocks are used to correct the interface fluxes computed on coarser neighbouring blocks and
ensure that the solution fluxes are conserved across block interfaces.

3.5. Parallelization with uniform treatment of sector boundaries and corners

With the mechanisms of unstructured root-block connectivity and multi-dimensional reconstruction with flexible stencil
sizes in place, parallelization can be performed in a way that is fully consistent at sector boundaries and corners. As in
the other previous work of Groth et al., e.g., [30,40–43], an efficient domain partitioning is achieved in our implementation
by distributing the active solution blocks equally among available processor cores, with more than one block permitted
per processor core. This approach efficiently exploits the self-similar nature of the solution blocks and readily produces an
effective load balancing. Inter-processor communication is mainly associated with block interfaces and involves the exchange
of ghost-cell solution values and conservative flux corrections at every stage of the multi-stage time integration procedure.
To improve the efficiency of the parallel communication, message passing of the ghost-cell values and flux corrections is
performed by consolidating inter-processor messages. To further reduce the overall communication cost among blocks it may
be advantageous to place nearest-neighbour blocks on the same or nearest processor, which is usually realized by utilizing
space-filling curves [56]. In the proposed solution method, Morton ordering [57] has been implemented but it is not used
here based on considerations that, for the steady-state flow simulations and explicit time-marching schemes considered, the
communication cost is relatively low and the benefits of using a space-filling curve would amount to a maximum of 5–10%
reduction in execution time. Note however that for simulation of unsteady flows in which block refinement and coarsening
occur more frequently, Morton ordering has the potential to generate more significant computational savings. The number of
CPU cores is fixed in advance, but it is worth noting that our flexible parallelization model allows for situations in which the
number of CPU cores is larger than the number of solution blocks. This is typically encountered during initial stages of AMR
simulations where a small number of coarse blocks are adapted until enough new blocks are created to fully populate the
available number of computing cores as evenly distributed as possible, providing overall a well-load-balanced simulation.

Blocks adjacent to grid sector corners feature “collapsed” corner ghost cells, and since there is no neighbour block
associated with the collapsed ghost cells in the data structure, messages are not sent for collapsed ghost cells. Blocks
adjacent to grid sector boundaries may have local i, j,k index systems that are oriented differently from their neighbouring
blocks across the grid sector boundary, but this is taken into account naturally and consistently when filling in ghost cells
from messages sent by the neighbouring blocks, using the transformation array mechanism described above. In this way,
all solution blocks are treated equally in a way that facilitates consistent parallelization across grid sector boundaries and
corners. The combination of this scalable domain partitioning and the effective AMR-based block-multiplication procedure
have allowed us to perform efficient parallel calculations on 3D cubed-sphere grids with in excess of 3000 computing
processor cores. A quantitative demonstration of the parallel performance is provided for a representative space-physics
problem in Section 4.2.3.
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Fig. 6. Examples of interior, boundary and corner reconstruction stencils on a refined cubed-sphere mesh with five coarse sectors and one refined sector
(all 13 blocks in the grid are 12 × 12 × 8, and there are 14 976 total cells). The cell of which the solution is reconstructed is marked with • symbol and
the neighbouring cells that are part of the stencil are marked with ×, ♦ and ⊗ symbols for the interior, corner and boundary reconstruction stencil,
respectively.

4. Numerical results

A set of numerical results demonstrating the accuracy and capabilities of the proposed cubed-sphere framework is now
described for a range of flow problems with magnetized and non-magnetized plasma. Results for both fixed and AMR
meshes are included. All computations were performed on a high-performance parallel cluster consisting of 3780 nodes
with a total of 30 240 Intel Xeon E5540 (2.53 GHz) cores, and with 16 GB RAM per node or 2 GB per core. The cluster is
connected with a high-speed, low-latency, non-blocking 4x-DDR InfiniBand switched fabric communications link.

4.1. Results for non-conducting fluid

4.1.1. Fully supersonic flow
To assess the accuracy of the finite-volume scheme on cubed-sphere grids, uniform convergence studies with a spheri-

cally symmetric expansion of a supersonic non-magnetized gas flow (without gravitational field) are performed. Since the
cubed-sphere grid is not spherically symmetric, this problem provides a relevant test case for our implementation (in con-
trast, this problem is not interesting for a latitude-longitude (or spherical-polar) grid). The computational domain of this
test case is defined by inner and outer spheres of radius Ri = 1 and Ro = 4, respectively. With Vr the radial velocity and
�V‖ the velocity parallel to the inflow boundary, the boundary conditions at Ri are ρi = 10, Vr,i = 4.5, �V‖,i = 0, and pi = 26.
The analytical solution of this flow problem can be obtained in spherical coordinates by integrating the Euler equations or
by manipulating algebraically the flow invariants (i.e. mass flow rate, entropy and total enthalpy). Thus, the radial velocity,
Vr , at any spherical radius, r, is obtained numerically by solving the non-linear expression
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Fig. 7. L1, L2, and L∞ error norms in the predicted solution density for a supersonic expansion.

C3 − 1

r2 Vr[(C2 − V 2
r )

1
γ −1 ]

= 0, (9)

for Vr , where C2 and C3 are flow constants that can be determined based on the inflow parameters ρi , pi and Vr,i :

C3 = 1

(
2γ

γ −1
pi
ρi

1
γ −1 )R2

i Vr,i

,

C2 = 2γ

γ − 1

pi

ρi
+ V 2

r,i . (10)

Density and pressure as a function of radius can then be obtained from Eq. (10).
The L1, L2, and L∞ norms of the error in the predicted solution density obtained on a series of grids ranging in size from

8 × 8 × 16 (or an angular resolution of 11.25◦) to 128 × 128 × 256 (0.70◦) for each of the six cubed-sphere blocks, which
corresponds to 6144 and 25 165 824 total cells, respectively, are given in Fig. 7 for this supersonic flow. Note that the error
norms are evaluated in this work based on the point-wise differences between the exact solution computed at the centroid
of each computational cell and the corresponding average solution (i.e., the value of the reconstruction at the cell centroid).
Each Lp -error norm is then computed by applying the appropriate p-norm to the vector of cell average errors, determined
as the product of the point-wise errors and the corresponding cell volumes, and by normalizing with the volume of the
whole domain for L1 and L2 norms, and that of the appropriate computational cell for L∞ norm.

The results in Fig. 7 show that the second-order theoretical accuracy for this smooth flow is achieved in all error norms
as the mesh is refined, indicating that the finite-volume algorithm handles accurately the non-orthogonal grid near the
projection of the cube corners and at sector boundaries.

Fig. 8 provides some more insight into the angular distribution of the error. For a radius of R = 2.5 and two different grid
resolutions (corresponding to the first two resolutions of Fig. 7), the pointwise difference is plotted in each cell between
the exact entropy and the numerically determined entropy at the cell centre, divided by the exact entropy (relative error).
The flow solution is spherically symmetric but the grid is not, and a non-uniform error distribution is expected. The relative
error in entropy is large for the first very coarse grid (up to 85%), but it is confirmed that the error is reduced everywhere
(including at sector boundaries and corners) as the grid is refined by a factor of two in each direction, with a ratio that
is close to the expected ratio of four, consistent with the findings of near-uniform second-order convergence of Fig. 7. On
the refined grid of Fig. 8(b), the variation in the error is small (ranging between 11.53% and 15.80%). The error at the
sector boundaries is somewhat larger than the error in the interior cells of the grid sectors (≈15.5% versus 13.5%), but the
differences are small.
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Fig. 8. Distribution of the relative error in the entropy for the fully supersonic Euler flow at a radius of R = 2.5 (middle of the domain) and for two different
grid resolutions. The plots show in each cell the pointwise difference between the exact entropy at the cell centre and the numerically determined entropy
at the cell centre, divided by the exact entropy. (a) 8 × 8 × 16 root blocks; and (b) 16 × 16 × 32 root blocks.

4.1.2. Spherically symmetric transonic wind
To illustrate the accuracy of the algorithm for solar wind-like solutions, the expansion of an inviscid compressible non-

conducting gas under the influence of a gravitational field is now considered. Similar validation cases have been studied
in [58] and the Newton Critical Point (NCP) method outlined there for one-dimensional problems has been used here to
provide a highly accurate adaptively refined reference solution with 918 points.

A spherically symmetric external gravitational field �g = −g∗/r2êr is considered. Here, r is the normalized distance to the
solar or planet centre, êr is the radial unit vector, and the non-dimensional constant g∗ = GM∗/(loa2

o) is computed based
on the gravitational constant, G , the solar or planetary mass, M∗ , the reference length scale, lo , and the ion-acoustic wave
speed, ao , of a suitable reference solution state. Thus, the volumetric source term Q G , which accounts for the effect of
gravitational acceleration, is expressed as a function of the radial position vector, �r = rêr , in the following vector form

QG = −ρg∗
r3

[0,�r, �0,�r · �V ]T. (11)

As in [58], normalization factors have been used to provide non-dimensional variables. The spherically symmetric sub-
sonic inflow at the inner sphere Ri = 1 is defined by the dimensionless density ρ = 5 and pressure p = 23. We choose
GM∗ = 14 which allows for a stationary transonic outflow solution in which the radial flow velocity is initially subsonic,
then passes through a critical point where the local Mach number is one, and subsequently takes on supersonic values
beyond the critical radius [58]. Although a crude approximation of a real solar wind, the accurate capturing of the transonic
behaviour outlined above is a good test case for our code.

The predicted Mach number distribution for this spherically symmetric transonic flow obtained on a uniform cubed-
sphere mesh M3 with 1 228 800 cells (2.25◦ angular resolution) is shown in Fig. 9(a). In this case, 128 cells are used to
resolve the radial direction (i.e., 128 uniform radial points in the 3D simulation have to be compared to 918 highly adap-
tive points in the 1D reference solution). At the inner boundary, Vr is extrapolated from the computational domain, and
�V‖ = 0. At the outer boundary, all state variables are extrapolated to the ghost cells. Solving Riemann problems at the
boundaries ensures the correct propagation of the flow characteristics, thereby allowing the solution residual to converge
to machine accuracy. The result shows that the steady-state transonic solution has been correctly captured and the Mach
number contour lines are close to circular indicating the good homogeneity of the flow solution at this grid resolution.

In Fig. 9(b), the flow properties of the predicted solution sampled along the x-axis are compared against those obtained
with the NCP method on a non-uniform grid so as to capture the sharp density and pressure gradients near the inflow
boundary. Additionally, the prediction of the radial velocity in the x-direction obtained with meshes M1 and M2 with
19 200 (9◦) and 153 600 (4.5◦) cells, respectively, has been also plotted. Note that these two meshes have 32 and 64 cells,
respectively, in the radial direction. It is quite noticeable that the solution significantly improves as the mesh is refined, and
it approaches in the convergence limit the 1D transonic solution predicted by the NCP method.

To assess the capability of the computational framework to improve the prediction of flow properties in regions of large
solution gradients and the accuracy of the critical point location, the same transonic wind problem has been reconsidered
with automatic solution-directed mesh adaptation. The initial mesh in this case consisted of 48 blocks, each with 6 × 6 × 16
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Fig. 9. (a) Predicted Mach number distribution for spherically symmetric transonic wind obtained on the uniform mesh M3 with 1 228 800 cells; and (b)
variation of flow properties in the x-axis direction predicted on M3 are compared against those obtained with the NCP method in one-dimension. The
velocity prediction on meshes M1 and M2 (see text) is also shown.

(15◦) cells. The AMR procedure described in Section 3.4 has been applied at sequential intervals using refinement and
coarsening threshold values of 0.7 and 0.3, respectively, in conjunction with density gradient and divergence of velocity
refinement criteria. On each intermediate AMR mesh the solution residual is reduced several orders of magnitude, whereas
the solution on the final mesh has been fully converged so as to obtain, for example, a constant mass flow rate through
spherical surfaces in a discrete sense. The contour plot of the Mach number obtained on the final refined mesh after five
levels of refinement applied to the 3D cubed-sphere grid is shown in Fig. 10(a). The block boundaries shown in the same
figure indicate that a fairly symmetric refinement is automatically generated so as to improve the prediction of solution
gradients near the inflow boundary, and demonstrate that the proposed AMR approach can be successfully applied to
three-dimensional cubed-sphere grids. The comparison of flow properties predicted by the 1D NCP method and the 3D
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Fig. 10. (a) Predicted Mach number distribution for spherically symmetric transonic wind obtained on the adapted cubed-sphere mesh after 5 refinement
levels and with 3 317 760 cells; and (b) the flow properties in the x-axis direction are compared against those predicted with the NCP method.

AMR algorithm described in this work along the x-axis are shown in Fig. 10(b). It is quite obvious that the two solutions
show excellent agreement in the transonic region and only slight deviations are encountered close to the supersonic outflow
due to reduced resolution in the adaptive grid. Note that the 3D adaptive solution has approximately 136 points in the
radial direction, while the 1D reference solution has 918 adaptive points. Notice, however, that for a similar number of
radial points the AMR grid captures the velocity variation significantly better than the finest uniform mesh, M3, for almost
the whole domain. The highest resolution obtained in the AMR simulation is at the inner boundary and consists of 0.94◦
angular resolution and 0.035∗ Ri radial resolution. The somewhat under-resolved supersonic outflow in the AMR case is only
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a consequence of the parameters used for the gradient-based refinement criteria and of available computational resources,
and does not represent a limitation of the AMR framework.

4.2. Results for magnetized plasma

4.2.1. Systematic grid convergence studies based on MHD manufactured solution
To assess the accuracy of the finite-volume scheme on cubed-sphere grids, we have performed convergence studies

for a steady-state axi-symmetric exact solution of magnetized gas flowing outward at supersonic speeds. (Note that the
cubed-sphere grid is not axi-symmetric, so this problem is adequate for testing the three-dimensionality of our framework.)

As far as we know, there are no non-trivial MHD test problems with an exact solution in a domain between two con-
centric spheres (except for problems with rather trivial radial 1D solutions similar to the problem of Section 4.1.1), which
can be used for quantitative grid convergence studies. To fill this void, we propose a new fully supersonic axi-symmetric
MHD test problem that has an exact solution in a domain between two concentric spheres, and can thus be used to test
the order of convergence of MHD solvers in this type of domains.

In this test problem, the exact solution is specified as

U(x, y, z) =
[
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2 ,

x√
r
,
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r
,
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r
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5
2 ,
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,
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,
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r3
+ κ, r− 5

2

]T

, (12)

and the volumetric source term Q in Eq. (1) includes the term Q O , which represents the residual obtained for the exact
solution Eq. (12). (Note that an exact solution of a modified equation system obtained in this way is sometimes called
a ‘manufactured solution’ [33].) Here κ = 0.017 is a perturbation parameter chosen such that the solution has significant
latitudinal variation yet the flow remains supersonic in the whole domain. As can be observed easily from Eq. (12), the
velocity and the magnetic field have been chosen aligned everywhere such that �V × �B = 0 and therefore, no source terms
arise in the induction equation. Moreover, the magnetic field has been constructed by considering a background inverse
squared radial function, �B0 = r−2êr , plus a perturbation field, �B1 = ∇ f , derived from the spherical harmonic function of
degree one and order zero f (x, y, z) = κz, and it thus automatically satisfies the divergence-free condition. This magnetic
field is also irrotational.

Thus, the final form of Q O for a di-atomic gas is a function only of the space coordinates and can be written as
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. (13)

The computational domain used for this convergence study is defined by inner and outer spheres of radius Ri = 2 and
Ro = 3.5, respectively. The inflow boundary condition is specified based on the exact solution and the outflow uses linear
extrapolation.

The L1, L2, and L∞ norms of the error in the predicted solution density at cell centroids obtained on a series of grids
ranging in size from 8 × 8 × 10 (11.25◦) to 256 × 256 × 320 (0.352◦) for each of the six cubed-sphere blocks, which
corresponds to 3840 and 125 829 120 total cells, respectively, are given in Fig. 11 for this supersonic flow. As the mesh is
refined, the slopes of the L1, L2, and L∞ norms approach in the asymptotic limit −2.06, −2.10 and −2.05, respectively.
The results clearly show that the second-order theoretical accuracy of the scheme can also be achieved in all error norms
for smooth but non-radial flows with a magnetic field, thereby providing support for the validity of the applied spatial
discretization procedure on cubed-sphere grids.

4.2.2. Magnetically dominated MHD bow shock
We now consider the application of the proposed AMR algorithm to 3D MHD bow-shock flows around a perfectly con-

ducting sphere. In particular, we consider the magnetically dominated upstream conditions from [59] in conjunction with
solution-adaptive cubed-sphere grids. The inflow parameters used for this problem have been chosen as in [59] and are
ρ = 1, p = 0.2, Bx = 1, B y = 0, vx = 1.4943 and v y = 0.1307, which correspond to an upstream plasma characterized by
β = 2p/B2 = 0.4, an Alfvénic Mach number M Ax = 1.49 along the upstream magnetic field lines and an angle θv B = 5◦ be-
tween the upstream velocity and magnetic vector fields. As shown in [59], this particular upstream configuration gives rise
to 3D intermediate shocks and multiple interacting shock fronts, that are sought here to be well resolved by the adaptive
mesh refinement procedure.

The computational domain for solving this problem is like the one depicted in Fig. 12 and is defined by inner and outer
spheres of radius Ri = 1 and Ro = 8. Note that this mesh contains only five blocks instead of the typical six associated with a
complete cubed-sphere mesh. This extra flexibility in our implementation allows for better resolution of the interesting flow
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Fig. 11. L1, L2, and L∞ error norms in the predicted solution density for the manufactured MHD solution described in the text.

Fig. 12. Cubed-sphere grid formed by only five root blocks, for simulation on one side of the sphere. A cut in the outer spherical geometry allows a better
view of the inner spherical cap.

features occurring on the upstream side of the sphere with a smaller domain and fewer computational cells as compared
to the case in which the domain at the back of the sphere would have been included. In this grid, the back panel domain
boundaries are tilted at 15◦ relative to the Cartesian (y, z) plane. Reflection boundary conditions (BCs) are imposed along
the inner sphere. For the velocity and magnetic fields, the normal components are copied from the physical cells to the
ghost cells with inverted sign, whereas the tangential components are copied without sign change, resulting in velocity and
magnetic fields that are parallel to the inner sphere at the domain boundary. A free-stream boundary condition is applied
to the outer sphere. Linear extrapolation BCs are implemented for the back panels of the outer boundary based on the fact
that the flow normal to the panels is superfast everywhere between the inner and outer spheres and all eight characteristic
waves leave the domain. Note that this flow feature and the use of Riemann-based flux functions avoid any requirements
for a special treatment of the region where the bow shock intersects the domain boundaries. The initial multi-block grid for
this problem consists of a total of 20 8 × 8 × 10 blocks, with four blocks in the radial direction for each of the five sectors.
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Fig. 13. Predicted (a) acoustic Mach number and (b) density distribution in the Cartesian (x, y) plane with zero z-intercept for a magnetically dominated
supersonic flow past a sphere obtained on the adapted cubed-sphere mesh after 7 refinement levels and with 22 693 blocks and 14 523 520 computational
cells. Additionally, the block boundaries are depicted with solid black lines.

The predicted Mach number and density distribution in the Cartesian (x, y) plane with zero z-intercept obtained after
7 adaptive refinement levels on the final refined mesh consisting of 22 693 blocks and 14 523 520 computational cells is
shown in Fig. 13. This AMR steady-state solution is obtained in an automatic process starting from simulation on a coarse
grid until a steady state is reached approximately, after which the grid is adaptively refined and the computation is resumed
until a steady state is approximately reached again. This is repeated for each level of refinement. More detailed investigation
of the numerical results (not shown) confirms that they are consistent with the results of [59]; all shocks arising in front of
the sphere are captured by the refinement criteria and are well resolved by the 3D adaptation procedure, especially also in
the region corresponding to the bifurcation of the shocks. (The bifurcation of the shocks is the most resolved region with a
minimum angular resolution of 0.17◦ and minimum spatial distance of 0.00094 or approximately 1/1000Ri .)

4.2.3. Time-invariant solar wind solution
Finally, the application of the cubed-sphere simulation framework to a more realistic space-physics problem is consid-

ered. This test problem represents an initial step towards developing more sophisticated models for the solar wind and
carrying out more advanced and complete space physics studies with the algorithm described here.

A numerical solution of the “steady” solar wind representative of solar minimum conditions (i.e., for the quiet Sun) is
obtained based on the global 3D MHD model of Groth et al. [2]. The steady-state solar wind from 1 Rs (i.e., solar radius)
to 1 AU is modelled by assuming that, at 1 Rs , the inner solar corona is a large reservoir of hot plasma with an embedded
magnetic multipole field described by a multipole expansion that includes terms up to the octupole moment (see [2,60]
for details). The plasma temperature (the sum of the ion and electron temperatures) of the reservoir is assumed to be
Ts = 2.85 × 106 K, and the plasma density is taken to be 1.5 × 1014 m−3. The solar magnetic field is azimuthally symmetric
about the magnetic axis which is aligned with the Cartesian z-coordinate direction. The multipole expansion has been
chosen so as to obtain a maximum field strength of 8.4 G at the magnetic poles and a strength of 2.2 G at the solar
magnetic equator. For these solar wind calculations, the MHD equations are solved for the perturbation of the magnetic
field from the embedded (“intrinsic”) magnetic multipole field, similarly to the approach used in Groth et al. [2] which
follows the pioneering work of Tanaka [61]. The single-fluid plasma is assumed to have a particle mass equal to the proton
mass, mp , and a polytropic index γ = 5/3 is used everywhere in the domain. Note that more realistic solar-wind models
have been previously considered which account for the rotation of the Sun and the tilting of the solar magnetic axis with
respect to the ecliptic plane (see e.g., [2,60]), and our approach can be extended to include these effects as well.

To reproduce a realistic solar wind using the ideal MHD description, which neglects the thermal conduction that is
important in the vicinity of the Sun [62], and to allow the use of an ideal plasma gas with a polytropic index γ = 5/3
throughout the computational domain such that adiabatic cooling at larger heliospheric distances is correctly modelled,
Groth et al. [2] have included an extra source term in the energy equation that mimics the effects of heat conduction
and energy dissipation above the transition region such as to reproduce solar wind characteristics determined by in situ
observations. The global solar wind model with additional heating source term proposed by Groth et al. [2] has proved its
use in several numerical simulations of coronal mass ejection (CME) evolution [2,60,63,64] and the same heating term is
used here as well. Thus, the heating source term Q H is given by

Q H = −ρ

[
0, �0, �0,ρq

(
To − γ

p

ρ

)]T

, (14)

where q(x, y, z) is an exponentially-decaying specific heat capacity function of the radial distance from the Sun and To =
To(x, y, z) is a prespecified “target” temperature which has a particular spatial distribution [60].
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Fig. 14. Representation of the steady-state solar wind solution in the (y, z) meridional plane. The colour shading represents the magnitude of the velocity
vector, V = ‖�V ‖2, in km/s and the solid lines are magnetic field lines coloured based on the magnitude of log10(B). The arrows of the magnetic lines
indicate the magnetic polarity chosen for this problem (lines leave from the North pole of the Sun and enter into the South pole). The boundaries of the
mesh blocks at the solar surface are also shown in the figure.

For this numerical simulation the computational domain is the spherical shell defined by inner and outer spheres of
radius Ri = 1 and Ro = 215, which represent distances normalized by the solar radius, Rs . The cubed-sphere computational
grid is stretched with a higher density of grid cells towards the inner sphere and consists of 768 self-similar 16 × 16 × 20
blocks and 3 932 160 cells, providing an angular resolution of 1.4◦ and a minimum cell size at the solar surface of 1/4Rs .
Boundary conditions are implemented at the inner sphere, where the flow is subslow, according to the propagation of the
characteristics, to conservation principles for radial mass and magnetic fluxes, and to physical conditions for the directions of
velocity and magnetic field vectors in perfectly conducting fluids (see, e.g., [4] for details). Moreover, at the inner boundary
linear extrapolation of density gradient is applied and a fixed solar corona temperature is enforced whereas the plasma
is permitted to freely leave the reservoir, but no “backflow” is allowed. At the outer boundary, the flow is superfast and
consequently all variables are simply extrapolated. The initial condition for the simulation is provided by Parker’s isothermal
solar wind [65] and the initial magnetic field is obtained from the aforementioned multipole expansion [2].

The steady-state solar wind was obtained by using local time-stepping to speed up convergence of the numerical solu-
tion, which was reached after ∼22 000 iterations and a solution residual reduction on the level of ∼10−7. The wall-clock
time required for the simulation was approximately 6.5 hours using 384 computing cores of the type mentioned at the
beginning of Section 4. The CPU time is mostly spent in performing operations local to solution blocks while the inter-
processor communication, mostly related to the update of block interfaces, has a relatively minor cost in comparison with
the arithmetic intensity of the solar-wind model and the solution procedure. This fact is demonstrated later in this section
based on quantitative measurements of parallel performance.

Fig. 14 shows a meridional cut through the numerical solution of the steady-state solar wind obtained using the algo-
rithm described above. The shading represents the magnitude of the velocity field, and the solid lines correspond to the
predicted field lines which have been coloured based on the logarithm of the magnitude of the magnetic field, log10(B).
A three-dimensional representation of several magnetic field lines in the solar corona is shown in Fig. 15, in which the same
colouring scheme as the one just mentioned was used. Additionally, this last figure depicts elements of the computational
grid. Inspection of Fig. 14 reveals a bimodal outflow pattern with slow wind leaving the Sun near the equator, and high-
speed solar wind of around 700 km/s in the regions of open magnetic field lines emanating from the coronal holes. This
is an important feature of the solar wind which has been revealed by in situ observations [2,66]. Other noticeable features
present in the solution are the formation of a “helmet streamer” configuration and a heliospheric current sheet, the latter
representing the relatively-thin equatorial region across which the magnetic field changes the polarity rapidly. It can also
be observed that in the regions of closed field lines near the solar surface the predicted plasma velocity is very small and
subsonic, in the range of 10–100 km/s.

The current problem also represents a practical test case for assessing the parallel performance of the proposed formu-
lation on cubed-sphere grids by measuring/evaluating the parallel speedup and parallel efficiency relative to 48 processor
cores defined as

S p = t48

t
; E p = S p

p , (15)

p 48
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Fig. 15. Three-dimensional representation of open and closed magnetic field lines in the corona region. Two blocks of the cubed-sphere grid and the
associated meshes are completely shown together with the edges of the blocks in the equatorial plane and the edges and face nodes of several blocks at
the inner sphere.

Fig. 16. The parallel speedup and efficiency achieved for the time-invariant solar wind problem by the 2nd-order finite-volume algorithm on cubed-sphere
grids as a function of the number of computing cores.

respectively, where t48 and tp are the execution times required to solve the problem by 48 and by p processor cores,
respectively. Here, the parallel speedup, also known as strong scaling, is measured by considering a fixed problem size of
6144 8 × 8 × 8 blocks and a fixed number of 2000 multi-stage explicit time steps, and performing the simulation on an
increasing number of processor cores, p, up to p = 3072. Note that a perfect speedup corresponds to the ideal situation
in which the execution time of the simulation on p computing cores is p/48 times smaller than the reference time, t48.
In Fig. 16, the parallel speedup and efficiency achieved by the method as a function of the number of computing cores
is plotted and compared with the corresponding ideal variations of the parallel-performance parameters. The results show
that the multi-dimensional second-order finite-volume scheme applied to cubed-sphere grids and MHD flows is capable to
provide very good parallel scalability up to 3072 computing cores even though the computational blocks contain a relatively
small number of cells, namely 512, and the amount of computational work per computing core decreases from 128 to a
minimum of 2 blocks/core, or 1.56% of the initial value. Hence, the parallel efficiencies achieved by the numerical scheme
are 0.923, 1.024, 1.011, 1.001, 0.956 and 0.960 on 96, 192, 384, 768, 1536 and 3072 computing cores, respectively. For the
sake of reference, t3,072 = 2 min on the aforementioned high-performance parallel cluster (see Section 4). Note that the
slightly higher values than one of several parallel efficiencies can be interpreted as being due to a cache effect, in which
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the increases in available cache for the program can overcome the computational cost of the additional inter-block parallel
communication incurred. It is also important to note that the results depicted in Fig. 16 are for strong scaling tests, which
are more challenging than weak scaling tests, in which the number of grid cells per processor is kept constant, and for
which even better parallel efficiency can thus be expected.

5. Discussion and concluding remarks

A parallel block-based solution-adaptive simulation framework has been described for three-dimensional cubed-sphere
grids and flows governed by hyperbolic conservation laws. In particular, the method has been developed for the Euler and
MHD equations, targeting application to space-physics problems.

The main novelty compared to existing cubed-sphere grid algorithms is that we use a fully multi-dimensional finite-
volume approach. A major advantage of our multi-dimensional approach is that no special interpolation or reconstruction is
needed at ghost cells adjacent to the boundaries and corners of the six sectors of the cubed-sphere grid, whereas existing
finite-volume schemes, most of which use dimension-by-dimension differencing, need special interpolation or reconstruction
at ghost cells adjacent to sector boundaries. In contrast, in our fully multi-dimensional approach solution blocks adjacent
to sector boundaries can directly use physical cells from the adjacent sector as ghost cells while maintaining full accuracy,
and no special interpolation or reconstruction is required. The fully multi-dimensional approach naturally maintains uni-
form second-order accuracy at the sector boundaries and corners of the cubed-sphere grid, and has important additional
advantages in terms of simplicity of implementation, parallelization and adaptivity. The proposed scheme constitutes a sig-
nificant advance in 3D cubed-sphere grid simulation capabilities: it is the first 3D cubed-sphere grid framework with fully
dynamical solution-adaptive grid refinement and coarsening, it is scalable up to several thousands of processor cores, and
uniform second-order accuracy has been demonstrated for relevant PDEs discretized uniformly in all three dimensions (i.e.,
without using a layered approach as is common in atmospheric applications), in a truly multi-dimensional way. Compared
to existing cubed-sphere grid algorithms, a novelty of the proposed algorithm involves the use of a fully multi-dimensional
finite-volume approach, which leads to important advantages when the treatment of boundaries and corners of the six
identical sectors of the cubed-sphere grid is considered. We have achieved this by employing a consistent multi-block
approach with unstructured root connectivity (following [30]), and by utilizing a solution reconstruction method that is
multi-dimensional with flexible stencil size [50], which allowed us to obtain a framework with uniform second-order accu-
racy, solution-adaptive refinement, and efficient parallelization that are fully consistent at the sector boundaries and corners
of the cubed-sphere grid.

The accuracy of the algorithm has been assessed based on exact solutions, and the theoretically expected second-order
accuracy has been achieved. A new fully supersonic axi-symmetric MHD test problem has been presented that has an exact
solution in a domain between two concentric spheres, and can thus be used to test the order of convergence of MHD
solvers in this type of domains. Furthermore, the predictive capabilities of the framework have been illustrated for other
test problems from the literature, including a radial transonic wind flow, a standard solar-wind model and bow shock flows.
We have also demonstrated the ability of the scheme to adequately handle and resolve strong discontinuities/shocks with a
number of computational elements that is reduced by adaptivity compared to uniformly refined grids. While this features
have been demonstrated for the Euler and ideal MHD systems, it is believed that they will also carry over to other systems
of conservation laws.

The parallel performance of the proposed 3D adaptive numerical procedure has been shown to be very high for problems
with large numbers of solution blocks, computed on several thousands of processor cores. Future research will involve ap-
plication of the algorithm to complex space-physics problems, the coupling with an effective parallel implicit algorithm (see,
for example, the methods of Northrup and Groth [53,54]), applying the AMR framework to unsteady flows (see, for example,
our paper on high-order 2D MHD [67]), and the extension of the numerical scheme to high-order accuracy (i.e., accuracy
higher than second-order) as considered in [42,43,67,68]. Using the high-order finite-volume approach of [42,43,67,68], the
main technical challenge in extending our approach on the cubed-sphere to fourth-order accuracy is to properly deal with
hexahedral cells that have non-planar faces. This can be handled by employing trilinear representations of these non-planar
faces. Preliminary results on on-going work extending the proposed cubed-sphere grid framework to fourth-order accuracy
are presented in the recent study by Ivan et al. [20].
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