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While it is apparent that residual distribution (RD) methods generally offer higher accuracy than finite volume (FV)

methods on similar meshes, few studies have directly compared the performance of the two approaches in a systematic and

quantitative manner. In this study, solutions are obtained for scalar equations and the Euler equations governing

two-dimensional inviscid compressible gaseous flows. Comparisons between RD and FV are made for smooth and

discontinuous flows solved on structured quadrilateral meshes. Since the RD method is applied on simplexes, the effect

of tessellating the quadrilaterals into triangles by aligning the diagonal with the characteristic vectors is explored.

The accuracy of the spatial discretisation is assessed by examining theL1-error normof a given quantity and its dependence

on the grid size. For the Euler equations, twomethods of distributing the system are used: systemdecomposition andmatrix

distribution. The results indicate that RD schemes can indeed surpass FV schemes in terms of solution accuracy. However,

it is also shown that standard non-linear RD schemes can suffer from a degradation in accuracy to the extent that they can

become even less accurate than FV methods. Furthermore, numerical difficulties were encountered in some solutions

obtained with the RD schemes, particularly for the case of steady subsonic flow around a circular cylinder.

Keywords: residual distribution; finite volume; fluctuation splitting; Euler equations

1. Introduction

Research into residual distribution (RD) methods is

stimulated by a desire to improve the accuracy of

multidimensional solutions to hyperbolic partial differ-

ential equations. This field of research was initiated

because of a dissatisfaction with current finite volume

(FV) methods. While elegant and physical in one

dimension, FV methods do not extend readily to multiple

dimensions because the Riemann problem itself does

not extend readily to multiple dimensions. The usual

workaround is to apply the one dimensional scheme in

multiple directions, a process in which the splitting of the

flux becomes biased in directions normal to the faces

of the computational cells. Consequently, the schemes

are no longer quite as physical and this causes a

corresponding decrease in the accuracy via excess

numerical dissipation. As shown by Roe and Sidilkover

(1992), dimensional splitting is about the worst thing one

can do for first-order solutions. RD methods attempt

to correct this deficiency by explicitly modelling the

underlying multidimensional physics.

Since the early 1990s, when RD techniques were

formalised (Struijs 1994, Mesaros 1995, Paillère 1995,

Sidilkover and Roe 1995), the literature has shown that

RD methods are more accurate than FV methods when

applied to the solution of problems on the same size mesh

(Paillère 1995, Wood and Kleb 1999, Rad 2001, Wood

2001, Wood and Kleb 2001). Unfortunately, most of the

previous studies were more qualitative in nature, usually

providing a visual comparison of a given flow feature.

There is little to be found on the quantitative comparative

accuracy of RD and FV methods, especially with respect

to the more practical non-linear distribution methods

which are both second-order and monotone. The results

of Abgrall (2001) provide some insight, but the

quantitative comparisons therein are only in tabular

format.

The focus of this research is to compare the accuracy

of RD schemes to that of more conventional FV methods.

This is achieved by analysing solutions to hyperbolic

system of conservation laws having the form

›U

›t
þ ~7·~F ¼ 0; ð1Þ

where U is the solution vector and ~F is the flux dyad.

The scalar advection equation, non-linear Burgers

equation and Euler equations of inviscid compressible

gas dynamics in two-space dimensions are all of this

form and will be considered here. The latter are especially

interesting, not only because of the relevance to practical

work, but because it is in the solution of systems that RD
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methods can become more complex. For each case, the

spatial order of accuracy will be assessed by determining

the dependence of the L1-error norm of a known quantity

as a function of the mesh size.

RD methods were primarily designed for use on

unstructured meshes and they tend to perform relatively

well even on highly distorted meshes (Paillère 1995,

Deconinck et al. 2000). This study uses structured

quadrilateral meshes, but it is shown in the results that

RD methods can also benefit from the structure by

optimally tessellating the mesh. Although this research

focuses exclusively on the benefits to accuracy, there are

several other advantages to the RD method as compared

to the FVmethod. These include (Deconinck et al. 2000):

. a multidimensional positivity property; and

. a compact stencil (second-order accuracy can be

achieved on a stencil of only one element).

The latter point allows for easier parallelisation of the

schemes.

2. Godunov-type FV schemes

Godunov-type FV schemes perform an integration of the

solution flux at the boundaries of a cell to compute the

cell residual when advancing the solution in time using a

time-marching method (Godunov 1959). The solution

is often stored and updated at the cell centres. Before

computing the flux, the solution in the cell is

reconstructed, possibly using neighbour cells. A piece-

wise constant reconstruction leads to a first-order scheme

while a piece-wise linear reconstruction leads to a

second-order scheme. To maintain monotonicity, second-

order schemes limit the reconstruction, reducing it

towards a piece-wise constant when there are large

changes in the local solution gradient. The solution fluxes

at the cell interfaces are evaluated in terms of the

possibly discontinuous reconstructed solution values by

solving a Riemann problem. In this study, a Godunov-

type FV method developed for body-fitted multiblock

mesh is used as the basis for all of the comparisons to the

RD schemes. The method incorporates a least-squares

piece-wise linear reconstruction, the slope limiter of

Venkatakrishnan (1993), and the exact Riemann solver

flux function of Gottlieb and Groth (1988). Refer to the

paper by Sachdev et al. (2005) for a complete description

of the FV method.

3. RD for scalar advection

RD methods calculate the residual (or fluctuation) on a

element, E, of an unstructured mesh and then, by some

appropriate method, distribute the fluctuation to the nodes

of that element to advance the solution in time.

RD methods are cell-vertex methods that are usually

solved on simplexes (triangles in two-space dimensions).

For the scalar advection equation, one has

›u

›t
þ
Xd
j¼1

lj
›u

›xj

� �
¼ 0; ð2Þ

where d is the number of dimensions and lj is the

advection speed in the jth coordinate direction.

The fluctuation on a simplex element, E, is defined as

fE ¼ 2

ð
E

›u

›t
dVE ¼

ð
E

Xd
j¼1

lj
›u

›xj

� �
dVE

¼
Xd
j¼1

ð �ljx̂jÞ

" #
·

ð
E

~7u dVE; ð3Þ

where VE is the element area, x̂j defines a unit vector in

the jth coordinate direction, and �lj is linearised over the

element. For non-linear equations, �lj is determined via a

conservative linearisation such that

Xd
j¼1

ð �ljx̂jÞ

" #
·

ð
E

~7u dVE ¼ 2

þ
›E

~FðuÞ·n̂ dS; ð4Þ

where n̂ is the inwards-pointing unit normal vector of

surface element dS. For second-order schemes, the

solution, u, is assumed to vary linearly in the element.

The integral in Equation (3) can then be evaluated

exactly to obtain

fE ¼
Xd
j¼1

ð �ljx̂jÞ

" #
·
1

d

Xdþ1

i¼1;i[E

ui~ni ¼
Xdþ1

i¼1;i[E

kiui: ð5Þ

The index i loops over each node of an element and

the vector ~ni defines the inwards normal of the edge

opposite node i and scaled by the length of the edge.

The inflow parameters, ki, are defined by

ki ¼
1

d

Xd
j¼1

ð �ljx̂jÞ

" #
·~ni; ð6Þ

and describe whether edge i sees the inflow (positive) or

outflow (negative) of the solution quantity. Because �lj is

linearised,
Pdþ1

i¼1;i[Eki ¼ 0.

The distribution of the fluctuation to the nodes, fE
i , is

governed by distribution coefficients, bi, with fE
i ¼

bif
E and where, for consistency,

Pdþ1
i;i[Ebi ¼ 1.

The nodal residual is defined as the sum of all

fluctuations distributed to node i from all elements, E,

that share node i as a vertex. The semi-discrete update

S.M.J. Guzik and C.P.T. Groth62
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formula is then

Vi

dui

dt
þ
X
E

bE
i f

E ¼ 0; ð7Þ

where Vi is the area of the dual mesh, shown in Figure 1,

associated with node i of the unstructured mesh. Various

time-marching schemes can be applied to the solution of

the ordinary differential equations for the nodal values of

the solution.

In two dimensions, one can envision two possible

orientations of the elemental triangles: those with one

downstream vertex (one positive inflow parameter –

type I triangle in Figure 2) and those with two

downstream vertices (two positive inflow parameters –

type II triangle in Figure 2). In the former case, all the

fluctuation is sent to the downstream vertex. In the latter

case, the fluctuation is split between the two downstream

nodes.

Characteristics of the various RD schemes are

defined by the distribution coefficients, bi. Some

common schemes and their key properties are listed

in Table 1. Schemes that are positive (P) are monotonic

while those that are linearity-preserving (LP) achieve

higher orders of accuracy (second-order for a linear

interpolation of the fluctuation). It is sufficient that the

distribution coefficients are bounded for a scheme to be

LP (Deconinck et al. 2000). In this study, LDA, LN and

blended B (non-linear combinations of N and LDA)

distributions schemes are considered.

The N scheme is formulated by ensuring that

positivity is preserved (Deconinck et al. 1991, Paillère

1995):

fN
i ¼ kþi ðui 2 uinÞ; ð8Þ

where

uin ¼

Pdþ1
j¼1;j[E k

2
j ujPdþ1

j¼1;j[E k
2
j

: ð9Þ

The distribution coefficients for the N scheme are not

bounded and may tend to ^1 as f E ! 0. For the LDA

scheme, the distribution is governed by the location at

which the linearised characteristic vector intersects the

outflow edge. In Figure 3, bi ¼ Li/L and bj ¼ Lj/L. This

is more conveniently expressed as

bLDA
i ¼ 2

kþiPdþ1
j¼1;j[E k

2
j

: ð10Þ

Figure 1. Primary elements (solid lines) and dual mesh
(dashed lines) created from element centroids and edge
midpoints.

Table 1. Distinguishing properties of RD schemes.

Scheme Linearity P LP

N Linear
p

–
LDA Linear –

p

LN Non-linear
p p

B Non-linear
pa p

a Positivity has not been formally demonstrated but is usually assumed
based on numerical results.

Figure 2. Possible triangle orientations in a two-dimensional
flow. ~l is the linearised characteristic vector.

Figure 3. The LDA distribution is governed by the location �l
intersects the outflow edge.

International Journal of Computational Fluid Dynamics 63
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The LN scheme is based upon the N scheme but

limits the distribution coefficients when one of them (in

the case of a type II triangle) becomes negative. If fN
1 and

fN
2 denote the fluctuation that would be distributed to the

two downstream nodes by the N scheme and

r ¼ 2fN
1 =f

N
2 , then the limited distribution given by the

LN scheme is

fLN
1 ¼ fN

1 12
cðrÞ

r

� �
; fLN

2 ¼ fN
2 ½12 cðrÞ�; ð11Þ

where c(r) is a symmetric limiter. Use of a minmod

limiter,

cðrÞ ¼ max½0;minðr; 1Þ�; ð12Þ

produces a scheme identical to the positive-streamwise-

invariant (PSI) scheme of Struijs (1994) that is often

quoted in the literature. This equivalence was originally

reported by Sidilkover and Roe (1995).

The blended scheme is a blending of the N and LDA

schemes, fB ¼ ufN þ ð12 uÞfLDA. There are several

possible definitions of the blending coefficient u; see

(Abgrall 2001) for a definition that reproduces the PSI

scheme. In this work, the heuristic definition proposed by

Deconinck et al. (2000),

u ¼
jfEjPdþ1

l¼1;l[E jf
N
l j þ e

; e ¼ 10210; ð13Þ

is used where u is defined to switch to the LDA scheme

when divergence of the nodal fluctuation, as computed by

the N-scheme, is detected. Positivity of this particular

blended scheme has not been formally shown; however,

numerical experiments generally produce solutions that

are satisfactorily monotone.

Although representative of base schemes, the list in

Table 1 is not exhaustive nor illustrative of the most

recent or advanced techniques. In particular, a reader

interested in non-linear schemes may want to review

‘mapped’ distribution schemes (Abgrall and Roe 2003,

Abgrall and Mezine 2004, Abgrall 2006). These

schemes are of interest because they are extensible to

any number of dimensions; nevertheless, in two

dimensions, the objective is still to reproduce the PSI

scheme.

4. RD for the Euler equations

The two-dimensional Euler equations are given by

Equation (1) with

U ¼

r

ru

rv

reT

2
666664

3
777775; Fx ¼

ru

ru2 þ p

ruv

ruhT

2
666664

3
777775;

Fy ¼

rv

ruv

rv2 þ p

rvhT

2
666664

3
777775;

ð14Þ

where eT is the specific total energy and hT is the specific

total enthalpy. In this work, gaseous flows of air are

considered and the preceding partial differential

equations are supplemented with the ideal gas law,

p ¼ rRT, as an equation of state. The specific gas

constant, R, is taken to be 287 J/kgK and a perfect gas is

assumed with a specific heat ratio of g ¼ 1.4. In quasi-

linear form, Equation (1) with (14) becomes

›U

›t
þ
Xd
j¼1

AU;j
›U

›xj

� �
¼ 0; ð15Þ

where AU;j ¼ ›Fj=›U are the conservative-variable flux

Jacobians.

For systems of equations, the scalar inflow

parameters, ki, of the RD schemes become matrices, Ki,

since the linearised scalar wave speed, �lj, of Equation (4)

is now a matrix that depends on the linearised flux

Jacobians

�AU;j ¼
›Fj

›U

��
�S
: ð16Þ

The notation of Equation (16) denotes that the

Jacobian is linearised at the average state �S ¼

ð1=ðd þ 1ÞÞ
Pdþ1

i;i[ESi of a set of, as yet undefined,

solution variables S(U). Equation (6) then has the form

Ki ¼
1

d

Xd
j¼1

ð �Ajx̂jÞ

" #
·~ni: ð17Þ

Having matrices as inflow parameters creates two

primary issues. The first is to find a method of

linearisation, i.e. a definition of Si, that is still

conservative. The second is the technique for computing

the distribution coefficients, bi, which are now matrices.

S.M.J. Guzik and C.P.T. Groth64
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4.1 Linearisation

A conservative linearisation has been found for the Euler

equations. The Roe–Struijs–Deconinck linearisation

(Struijs 1994) is an extension of Roe’s parameter vector

to multiple dimensions S ¼ Z ¼ ½
ffiffiffi
r

p
;
ffiffiffi
r

p
u;

ffiffiffi
r

p
v;

ffiffiffi
r

p
h�T.

This linearisation ensures that a conservative fluctuation

may be computed as

fE
U ¼

Xdþ1

i¼1;i[E

KU;i
~Ui; ð18Þ

where ~Ui ¼ ð›U=›SÞj �SSi. Use of a conservative

linearisation leads to a linearisation-based RD (LRD)

scheme. Unfortunately, conservative linearisations are

not available for all systems of equations. Also, in some

cases the use of Z as the linearised state may be

undesirable. In particular, non-existent pressure gradients

may be detected for shear flows (Mesaros 1995).

An alternative to using a conservative linearisation is

to use a contour-integration-based RD (CRD) scheme

(Csı́k et al. 2002). In this technique, the fluctuation is

computed via a contour integral given by

fE ¼ 2

þ
›E

~FðSÞ·n̂ dS; ð19Þ

where, in a numerical implementation, a Gauss

quadrature integration rule is used to evaluate the

integral. In the subsequent distribution step, any set of

variables S may be used for the linearisation. Since it is

no longer true that fE
U ¼

Pdþ1
i¼1;i[EKU;i

~Ui, the N scheme

must be modified to ensure conservation. For scalar

equations, Equation (9) is replaced by

uin ¼ 2

Pdþ1
i¼1;i[E k

þ
i ui 2 fEPdþ1

i¼1;i[E k
2
i

: ð20Þ

Note that if a conservative linearisation is still used,

this modification does not change anything becausePdþ1
i¼1;i[Ek

2
i ui ¼ fE 2

Pdþ1
i¼1;i[Ek

þ
i ui. Also, no modifi-

cations are required for the LDA scheme sincePdþ1
i¼1;i[Eb

LDA
i ¼ 1, irrespective of the linearisation, and

therefore the distributed fluctuation is conserved.

Although the CRD technique is rather simple, the effects

are profound because RD solutions are no longer

restricted to a particular linearisation. The Euler results

in this study are all obtained using a CRD scheme with

a linearisation based on the primitive variables

S ¼ V ¼ ½r; u; v; p�T.

4.2 System distribution

There are currently two approaches to distributing the

fluctuation for a system: system decomposition and

matrix schemes (Deconinck et al. 2000). The most

physically satisfactory approach is to decompose the

system into scalar equations. This is achieved via

hyperbolic–elliptic splitting where, for the steady Euler

equations, the addition of a preconditioner allows for

diagonalisation of the equations in characteristic form

(Mesaros 1995, Paillère 1995, Rad 2001). Matrix

schemes are a generalisation of scalar techniques to

matrix-vector equations. Although not as intuitive nor

physically meaningful as equation decomposition

techniques, the resulting schemes can still provide very

accurate results.

4.2.1 System decomposition

Hyperbolic–elliptic splitting provides a method for

decomposing the Euler equations. Supersonic flows

decouple into four scalar equations while subsonic flows

decouple into two scalar equations plus an acoustic

subset. In this work, only the details describing the

implementation are described. Details regarding the

development of the related preconditioner are available

elsewhere (Mesaros 1995, Paillère 1995, Rad 2001).

For simplicity, the Euler equations are expressed in

terms of a particular set of symmetrising variables, Q
^

, as

follows

›Q
^

›t
þ A

Q
^

›Q
^

›x
þ B

Q
^

›Q
^

›y
¼ 0; ð21Þ

before applying the preconditioner. The symmetrising

variables have the form

›Q
^

¼ ½›p=ðraÞ; ›q; q›u; ›S�T; ð22Þ

where q is the flow speed

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v 2

p
; ›q ¼

u›uþ v›v

q
; ð23Þ

u is the local flow direction

u ¼ tan21 v

u
; ›u ¼

u›v2 v›u

q2
; ð24Þ

and ›S is proportional to the change in entropy

›S ¼ ›p2 a2›r: ð25Þ

The preconditioner, P, is added such that

›Q
^

›t
þ P A

Q
^

›Q
^

›x
þ B

Q
^

›Q
^

›y

 !
¼ 0: ð26Þ

International Journal of Computational Fluid Dynamics 65
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Note that the preconditioning does not affect steady-

state solutions. This system may be re-written as

A21

Q
^ P21 ›Q

^

›t
þ

›Q
^

›x
þ A21

Q
^ B

Q
^

›Q
^

›y
¼ 0: ð27Þ

The matrix A21

Q
^ B

Q
^ can be diagonalised as L ¼

LA21

Q
^ B

Q
^R and thereby defining the characteristic

variables ›W ¼ L›Q. After diagonalisation and a

change of variables from Q toW, Equation (27) assumes

the form

LA21

Q
^ P21R

›W

›t
þ

›W

›x
þL

›W

›y
¼ 0: ð28Þ

The preconditioner is defined to diagonalise the

matrixD ¼ LA21

Q
^ P21R, completely for supersonic flows

and as much as possible for subsonic flows. A

preconditioner, valid for both subsonic and supersonic

flows, can be written as

P ¼

axM 2

b
2

axM
b

0 0

2
axM
b

ax
b
þ a 0 0

0 0 bx 0

0 0 0 a

2
666664

3
777775; ð29Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðe 2; jM 2 2 1jÞ

p
and x ¼ 1/max(M,1).

To avoid problems at the sonic point, e assumes a small

value, typically 0.05 (Paillère 1995). The quantity a was

introduced by Mesaros (1995) to reduce sensitivity to the

flow angle in stagnation regions. It is defined as

a ¼

1
2
; for M # 1

3
;

1
2
þ 27

2
M 2 1

3

� �2
227 M 2 1

3

� �3
; for 1

3
, M , 2

3
;

1; for M $ 2
3

8>>><
>>>:
Equation (28) then takes the form

›W

›t
þ AW

›W

›x
þ BW

›W

›y
¼ 0; ð30Þ

where AW ¼ D21 and BW ¼ D21L. The characteristic

variables are given by

›W ¼

›S

1
rq
›pþ ›q

b
rq
›pþ q›u

b
rq
›p2 q›u

2
6666664

3
7777775
: ð31Þ

A prescription of AW and BW that is valid for both

supersonic and subsonic flows and encompasses a

smooth transition between the two regimes is given by

where h ¼ ðM 2 2 1Þ=b2. Note that h is defined as 21

for subsonic flows and þ1 for supersonic flow but it

smoothly transitions between the two values over the

range 12 e 2 , M 2 , 1 þ e 2. In supersonic flows,

matrices (32) and (33) are diagonal and have the form

Aw ¼

u 0 0 0

0 u 0 0

0 0 ub2v
M

0

0 0 0 ubþv
M

2
666664

3
777775; ð34Þ

AW ¼

au 0 0 0

0 au 0 0

0 0 1
2
x½ubðahþ 1Þ2 vðaþ 1Þ� 1

2
x½ubðah2 1Þ þ vða2 1Þ�

0 0 1
2
x½ubðah2 1Þ2 vða2 1Þ� 1

2
x½ubðahþ 1Þ þ vðaþ 1Þ�

2
666664

3
777775; ð32Þ

BW ¼

av 0 0 0

0 av 0 0

0 0 1
2
x½vbðahþ 1Þ þ uðaþ 1Þ� 1

2
x½vbðah2 1Þ2 uða2 1Þ�

0 0 1
2
x½vbðah2 1Þ þ uða2 1Þ� 1

2
x½vbðahþ 1Þ2 uðaþ 1Þ�

2
666664

3
777775; ð33Þ
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Bw ¼

v 0 0 0

0 v 0 0

0 0 vbþu
M

0

0 0 0 vb2u
M

2
666664

3
777775:

The following steps summarise the numerical

implementation of the RD scheme resulting from the

hyperbolic–elliptic equation decomposition procedure:

(1) The fluctuation in conservative variables, fE
U , is

computed using Equation (19).

(2) The average linearised state is determined and used

to compute the transformation matrices ›Q
^

=›U,
›U=›Q

^

, ›W=›Q
^

, ›Q
^

=›W and ›U=›V as well as the

preconditioner P.

(3) The fluctuation is preconditioned and transformed

into characteristic variables via

fE
W ¼

›W

›Q
^ P

›Q
^

›U
fE
U :

(4) The solution state at each vertex in the element is

converted from the linear state (primitive variables

in this work) to characteristic variables via

~Wi ¼
›W

›Q
^

›Q
^

›U

›U

›V
Vi:

(5) The fluctuation is distributed using scalar distri-

bution everywhere except for the elliptic subset

which arises from the acoustic equations in a

subsonic flow. In this work, the elliptic subset is

distributed using a Lax–Wendroff scheme (Mesaros

1995),

bLW
i ¼

Î

3
þ

t

2VE

KW ;i; ð35Þ

where Î is the identity matrix and t/VE is set to the

maximum eigenvalue of matrix KW,i. The acoustic

inflow parameter KW,i is formulated using Equation

(17) but only using the 2 £ 2 acoustic subsets of AW
and BW. Note that more sophisticated elliptic

distribution techniques exist, but are not considered

as part of this work. The most advanced is probably

the least-squares minimisation technique advocated

by Rad (2001).

(6) The fluctuation at each vertex is converted to

conservative variables for the update of the solution.

At this point, there is the option to retain or remove

the preconditioner (Mesaros 1995, Paillère 1995).

The most consistent method is to remove

the preconditioner from the distributed element

fluctuation and reapply it, if desired for convergence

acceleration, at the vertex. This conversion is

performed as follows:

fU;i ¼
›U

›Q
^ P21 ›Q

^

›W
fW;i:

This method is fully conservative but less

computationally robust. The preconditioner may

alternatively be retained in the fluctuation by the

following conversion

fU;i ¼
›U

›Q
^

›Q
^

›W
fW ;i:

This implies an assumption that the precondi-

tioners in each of the elements sharing vertex i are

sufficiently close in value. In other words, the flow is

smooth. This approach is not conservative but

numerical experiments indicate that it is more robust

(about the same as a matrix RD scheme). The two

approaches yield similar results, even in the vicinity

of strongdiscontinuities, but the conservativemethod

was found to be more accurate. In this work, the

conservative approach is used for all the decomposed

solutions.

(7) The desired time-marching algorithm is applied to

the discrete solution at each vertex governed by the

semi-discrete form of the governing equations given

by Equation (7). For explicit time-marching, the

preconditioner, computed at the vertex state, is

typically reapplied to the vertex residual if it was

removed in the previous step. Otherwise, extremely

small time-steps are required.

A troublesome problem inherent to hyperbolic–

elliptic splitting is that the preconditioned system suffers

from a degeneracy in the system eigenvectors and a

sensitivity to the flow angle in the stagnation limit. While

Mesaros (1995) has reduced the sensitivity to the flow

angle as described above (Equation (29)), there is

currently no systematic fix for resolving the degeneracy.

Because of this issue, system decomposition is not

applied herein for flow problems with stagnation points.

4.2.2 Matrix distribution

Matrix distribution schemes are generalisations of scalar

techniques (van der Weide et al. 1999). The particular

class of schemes considered here are all invariant under a

similarity transformation, meaning that the same con-

servative fluctuation is sent to the vertices, irrespective of

the variables in which the distribution is actually

performed (Deconinck et al. 2000). It is therefore
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beneficial to switch to the symmetrising variables

›Q ¼ ½›p=ðraÞ; ›u; ›v; ›S�T; ð36Þ

where ›S ¼ ›p2 a2›r, when formulating the distri-

bution scheme. The matrices AQ and BQ assume the form

AQ ¼

u a 0 0

a u 0 0

0 0 u 0

0 0 0 u

2
6666664

3
7777775
;

BQ ¼

v 0 a 0

0 v 0 0

a 0 v 0

0 0 0 v

2
6666664

3
7777775
:

ð37Þ

In symmetrising form, the last equation completely

decouples from the system. This is the entropy advection

equation. As a result, only the upper 3 £ 3 subset

remains to be solved by matrix distribution. In what

follows, the inflow parameters KQ are formulated using

Equation (17) but only for the upper 3 £ 3 subset of AQ

and BQ.

Matrix versions of the N, LDA and blended

distribution schemes are now described. For all the

schemes, the inflow parametersKQmust first be split into

positive and negative components. Matrix KQ is

diagonalised via L ¼ LKQR. Using L^ ¼ ðL^ jLjÞ=
2, the split inflow parameters are defined as

K^
Q ¼ RL^L. The matrix N scheme then defines the

fluctuation distributed to each node i of an element as

fN
Q;i ¼ Kþ

Q;ið
~Qi 2QinÞ: ð38Þ

The modified state Qin for the CRD scheme is

Qin ¼ 2N
Xdþ1

j¼1; j[E

Kþ
Q; j

~Qj 2 fE
Q

 !
; ð39Þ

where

N ¼
Xdþ1

j¼1; j[E

K2
Q; j

 !21

: ð40Þ

For the matrix LDA scheme, fLDA
Q;i ¼ bLDA

i fE
Q where

bLDA
i ¼ 2Kþ

Q;iN: ð41Þ

At stagnation points, the matrix N may become

singular. Analytically, it has been shown that Kþ
Q;iN

always has meaning (Abgrall 2001). Numerically, a small

modification to K^
Q;i is made when

Xdþ1

j¼1; j[E

~q
�
·~nj , 1 £ 1023m=s; ð42Þ

(~q
�
is the linearised velocity in the element). At stagnation

points,
Pdþ1

j¼1;j[EK
2
Q;j assumes the form

s11 0 0

0 s22 s23

0 s23 s33

2
664

3
775:

This matrix is singular when s22s33 2 s223 ¼ 0,

something that is also true at stagnation points. When a

stagnation region is encountered (Equation (42) is true)

a simple modification to avoid the singularity is

introduced:

Kþ
Q;i;22 ¼ Kþ

Q;i;22 þ e Kþ
Q;i;33 ¼ Kþ

Q;i;33 þ e

K2
Q;i;22 ¼ K2

Q;i;22 2 e K2
Q;i;33 ¼ K2

Q;i;33 2 e ;

where e assumes a small value, typically 1 £ 1026. Note

that this procedure has no effect on the overall value of

KQ,i.

For systems, use of the LN scheme is not

straightforward so non-linear distributions are commonly

obtained by applying blends of the N and LDA schemes.

The fluctuation distributed by the blended B scheme is

fB
Q;i ¼ QfN

Q;i þ ðÎ2QÞfLDA
Q;i ; ð43Þ

where Î is the identity matrix. The entries of the diagonal

non-linear blending matrix Q are given by

Qk;k ¼
jfE

Q;kjPdþ1
l¼1;l[Ejf

N
Q;l;kj þ e

; e ¼ 10210; ð44Þ

where index k refers the kth equation of the system and l

loops over the vertices of the element (Deconinck et al.

2000, Csı́k et al. 2002).

The following steps summarise the numerical

implementation of the RD scheme resulting from the

matrix distribution procedure applied to the Euler

equations:

(1) The fluctuation in conservative variables, fE
U , is

computed using Equation (19).

(2) The average linearised state is determined and used

to compute the transformation matrices ›Q=›U,
›U=›Q and ›U=›V.

(3) The fluctuation is transformed into symmetrising

variables via

fE
Q ¼

›Q

›U
fE
U :

S.M.J. Guzik and C.P.T. Groth68
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(4) The solution state at each vertex in the element is

converted from the linear state (primitive variables

in this work) to symmetrising variables via

~Qi ¼
›Q

›U

›U

›V
Vi:

(5) The entropy equation is distributed using a scalar

method and the remaining 3 £ 3 subset by a matrix

technique.

(6) The fluctuation at each vertex is converted to

conservative variables for the update

fU;i ¼
›U

›Q
fQ;i:

(7) The desired time-marching algorithm is applied at

each vertex using the semi-discrete update formula

of Equation (7).

5. Implementation details

Some other details concerning the present implemen-

tation of the RD schemes are now discussed. This

includes the method of grid tessellation, boundary

conditions (BCs) and the time-marching algorithm.

5.1 Grid tessellation

Standard RD methods are solved on a grid of simplexes

(triangles in two dimensions). The approach adopted

here for applying the schemes to structured quadrilateral

grids is to insert a diagonal into each quadrilateral

thereby triangulating the mesh. It is therefore possible to

take advantage of the freedom to optimally align the

diagonal with the characteristic vector. In Section 6.1,

the effects of choosing an optimal direction for the

diagonal are examined for scalar equations.

For scalar equations, the optimal diagonal is aligned

with the advection vector. For solutions of the Euler

equations by matrix distribution or subsonic decompo-

sition, the diagonal is aligned with the streamline vector.

The same procedure can be applied when decomposing

the Euler equations in supersonic flows, but in some

cases this will cause the diagonal to be inserted in a

direction that is opposite to the direction of the dominant

wave. An example of this is illustrated in Figure 4. In this

case, the incident supersonic flow is oriented in a

direction from the top left to the bottom right. An oblique

shock produced by a solid wall aligned with the x-axis at

y ¼ 0 turns the flow to the horizontal or x-direction.

The streamline in the incident flow (and through a finite

shock) is therefore oriented in a direction that is opposite

to the direction of the shock wave. The shock is the only

significant wave in the flow and ideally the diagonals

should be aligned with this wave. Figure 4(a),(b) show

the grid and exact solution, respectively. A matrix

distribution using a blended scheme with a streamline

tessellation is shown in Figure 4(c). A decomposed

solution (the flow is entirely supersonic so the Euler

equations decouple into four scalar equations) using an

LN scheme with a streamline tessellation is shown in

Figure 4(d). Both of these are more dissipative than if the

tessellation had been fixed in the orientation of the shock

prior to the solution. In Figure 4(e), each scalar wave

resulting from the decoupled Euler equations is solved on

a tessellation aligned with its own characteristic velocity.

The shock is much more compact but numerous spurious

waves are produced behind the shock. The reasons

for these waves are currently not fully understood.

In Figure 4(f), both streamline waves are solved on a

tessellation aligned with the streamline, and both

acoustic waves are solved on a tessellation aligned with

the dominant acoustic wave. This technique seems to

eliminate the spurious waves and is used for all of the

results given in the remainder of the paper.

Note that when a separate tessellation is used for the

streamline and acoustic waves, the linear state is

averaged over the entire quadrilateral and conservation

is maintained on the quadrilateral. Since all transform-

ation matrices are computed at the same state, and since

the CRD linearisation technique allows conservation to

be independent of the linear state, the scheme is still

conservative. The dominant acoustic wave is determined

by comparing the difference in the acoustic characteristic

variables between opposite vertices in the quadrilateral.

The dominant wave is assumed to run counter to the

largest difference. Note also that the tessellation is frozen

at a prescribed level of convergence so as not to interfere

with the convergence of the solution.

5.2 Boundary conditions

BCs are implemented using a weak formulation

originally proposed by Paillère (1995). In Figure 5, the

BCs for vertex V1 are prescribed indirectly via two ghost

elements, GE1 and GE2. The ghost elements are

degenerate with the dashed lines having zero length.

The ghost vertices, GV1 and GV2, therefore lie directly

on top of vertex V1. The states in the ghost vertices are

set to produce the desired results, e.g. far-field conditions

for a far-field BC and reflected velocity for a symmetry

or inviscid wall BC. For the purpose of calculating the

time-step, the area of each ghost cell is taken to be half

the area of the dual mesh associated with vertex V1.

Paillère (1995) recommends using all three nodes in

the ghost cell to set the linearised state. However, in this

work the linear state is based only on V1, reasoning that

V2 and V3 should not have any influence because of

the collapsed edges. Additionally, the state in the ghost

International Journal of Computational Fluid Dynamics 69
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vertices could be irrelevant, e.g. consider a far-field

boundary in a region of supersonic outflow. Never-

theless, in some subsonic cases, using all three nodes to

calculate the linearised state does seem to produce better

results.

5.3 Time-marching algorithm

A simple explicit-Euler time-marching algorithm is used

to advance the solution in time. The time step in each

element is computed as

Figure 4. Distribution of pressure for solution of an oblique shock. The effect of various tessellations are examined. The incident
flow is at Mach 2 and orientated at 213.89788 to the wall (for a shock inclined at 308 to the wall)

S.M.J. Guzik and C.P.T. Groth70
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hE ¼
1

3

VE

kmax

; ð45Þ

a restriction that ensures positivity for a scalar N scheme.

For scalar equations, kmax is the maximum inflow

parameter in the element. For matrix-distribution

techniques, kmax is the maximum eigenvalue over all

the Ki,i[E matrices. For the scalar equations, a Courant–

Friedrichs–Lewy (CFL) number of 2 is used. For

supersonic Euler solutions, a CFL number of 1.5 is used.

In all other flows, a CFL number of unity is used.

6. Numerical results

The numerical accuracies of the RD and FV schemes

were compared for solutions of the scalar advection

equation, the scalar non-linear Burgers equation and the

Euler equations. In each case, the qualitative accuracy is

shown by comparing computed distributions of the

solutions and the quantitative accuracy is shown by

comparing solution errors. Graphs of the solution errors

illustrate the variation of the L1-error norms for a given

quantity with respect to the square root of the number of

grid points ND (i.e. the dimensional spacing of the

computational grid). The L1-error norm of the solution

error is computed as

L1-error ¼

Ð
ju2 uexactjdV

V
; ð46Þ

where uexact is the exact solution to the problem as

determined by analysis. The variation of the error

as a function of ND is expected to have the form

L1-error ¼ aN
b
D: ð47Þ

For smooth solution (i.e. continuous differentiable

solutions), it is expected that both the RD and FV

schemes will exhibit second-order spatial accuracy, i.e.

b < 2 2. For solutions with discontinuities, it is

expected that both methods will reduce to first-order

spatial accuracy to preserve monotonicity, i.e. b < 2 1.

Where informative, the slope of the line-segment

connecting the two finest grids is denoted by b in the

error graphs to show the spatial order of accuracy.

Of primary interest in Equation (47) is the coefficient a

which describes the absolute magnitude of the error.

Although of the same formal order of accuracy, it is

anticipated that the multidimensional RD schemes will

have an error with an absolute magnitude that is lower

than that of the FV scheme.

6.1 Performance comparisons for scalar equations

Aside from directly comparing the RD and FV schemes,

the effect of grid tessellation is also examined for scalar

equations. In each case, a relevant RD distribution

scheme was used to compute solutions on grids with an

optimal tessellation (diagonal aligned with characteristic

vector), a reverse tessellation (diagonal opposite the

characteristic vector) and a random unstructured

triangular grid.

6.1.1 Linear advection equation

The RD and FV methods are first compared for the linear

advection equation given by

›u

›t
þ a

›u

›x
þ b

›u

›y
¼ 0; ð48Þ

where a ¼ a(x,y) and b ¼ b(x,y) are the components of

the advection velocity field. To compare the methods for

smooth scalar flows, solutions to a time-invariant

problem of circular advection were computed on simple

Cartesian grids with uniform spacing. For the circular

advection problem, an exponential solution profile,

u ¼ e20:5½ðx20:5Þ=0:08�2 , is assigned at the (0 # x # 1,

y ¼ 0) boundary and then advected in a counter-

clockwise direction. An interesting aspect of this test

case is that the advection velocity is generally not aligned

with the Cartesian grid. This challenges the dimensional-

splitting of the FV scheme. Because the solution is

smooth, the LDA scheme was used to obtain the

majorityof the RD results. The LN scheme is also solved

to compare its performance relative to the LDA scheme.

The FV solution was obtained without using a limiter.

Figure 5. Weak BC consisting of ghost elements, GE1 and
GE2, and ghost vertices, GV1 and GV2.
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Figure 6. Solutions of circular advection obtained using a 80 £ 80 uniform Cartesian mesh.
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However, had one been used, it would have had virtually

no effect on the solution. Numerical results were

obtained for grid densities ranging from ND ¼ 40 to

ND ¼ 640.

Figure 6 shows a Cartesian mesh of size 80 £ 80

and the various solutions obtained on that mesh. The grid

is shown in Figure 6(a) and a representation of the

exact solution on the mesh is shown in Figure 6(b).

Notable dissipation is observable in solutions generated

by the RD LN (minmod) scheme, FV scheme and RD

LDA scheme with a reverse tessellation. Figure 7

depicts the variation of the spatial accuracy with the

mesh size.

From the results given in these two figures, it is

apparent that the effects of the tessellation are very

significant. When using an RD LDA scheme, the

optimal tessellation is over half an order of magnitude

more accurate that the reverse tessellation.

The accuracy achieved on the unstructured grid with

the random tessellation lies in between. It is also quite

apparent from the predicted errors that, while both the

LDA scheme and the FV scheme achieve second-order

accuracy for this problem, the absolute error of the

LDA scheme with the optimal tessellation is more

than an order of magnitude less than that of the FV

scheme.

The results for the RD LN scheme with a minmod

limiter are somewhat less impressive. Although the LN

(minmod) scheme offers a marginal improvement over

the FV method on coarser meshes, this quickly

disappears because of its lower order-of-accuracy

(b < 2 1.88). As noted in Section 3 the RD LN scheme

with a minmod limiter is equivalent to the PSI scheme.

The spatial order-of-accuracy can be recovered along

with an improvement in the absolute error by instead

using a MUSCL limiter (van Leer 1979),

CðrÞ ¼ max 0;min 2r;
r þ 1

2
; 2

� �� �
: ð49Þ

The enhanced performance of the MUSCL limiter is

thought to be related to the behaviour of the limiter near

r < 1 (Waterson and Deconinck 2007). In the RD

framework, the potential benefit of the LN scheme with a

MUSCL limiter over the PSI scheme when applied to

smooth flows does not appear to have been recognised

until now. The effectiveness of the MUSCL limiter is

only demonstrated herein for this problem. Elsewhere in

this article, results for and discussion of the LN scheme

will imply use of the minmod limiter. Finally, note that

many other non-linear formulations, such as the blended

scheme, also exhibit a similar degraded order of

accuracy.

6.1.2 Non-linear Burgers equation

The solution to the non-linear Burgers equation, given by

›u

›t
þ u

›u

›x
þ 1

›u

›y
¼ 0; ð50Þ

is considered next and used to evaluate the shock-

capturing properties of both the RD and FV schemes for

scalar equations. A steady problem was studied on a

square solution domain in which the boundary values of

the solution u was specified to vary linearly from 1.5 to

20.5 along the x-axis at y ¼ 0. This results in the

formation of a compression wave that strengthens and

produces a shock at (x ¼ 0.75, y ¼ 0.5). The shock then

progresses upward and leaves the solution domain to the

top right corner. A Cartesian mesh with uniform spacing

is again used to obtain the numerical solutions.

The compression waves and the shock run at angles

to the Cartesian quadrilateral grid, again challenging

the dimensional-splitting of the FV scheme. The RD

results were obtained using an LN distribution scheme

to preserve monotonicity. The FV results used the

slope-limiter of Venkatakrishnan (1993) for the same

purpose. Numerical results were obtained for grid

densities ranging from ND ¼ 40 to ND ¼ 640.

Figure 8 shows the coarsest Cartesian mesh used in

the calculations and the various solutions obtained on that

mesh. Figure 8(b) depicts a representation of the exact

solution on the discrete mesh of Figure 8(a) and

numerical solutions obtained using the RD LN scheme

with various tessellations are given in Figure 8(c)–(e).

The solution obtained using the FV scheme is shown

in Figure 8(f). It is evident from these results that, at least

Figure 7. L1-error as a function of mesh density for circular
advection.
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qualitatively, the RD LN scheme using an optimal

tessellation provides the most compact shock.

Figure 9 depicts the variation of the spatial accuracy

with the mesh size. All schemes have near first-order

accuracy in the L1-error norm. The spatial accuracy of

the best RD scheme is greater than the FV scheme by

more than half an order of magnitude. Interestingly, this

is entirely dependent upon proper tessellation of the grid;

the RD scheme solved on the reverse tessellation is about

equivalent to the FV scheme. As should be expected, the

Figure 8. Solutions to Burgers equation obtained using a 40 £ 40 uniform Cartesian mesh: (a) grid; (b) exact solution; (c) RD LN
scheme with optimal tessellation; (d) RD LN scheme with reverse tessellation; (e) RD LN scheme on unstructured grid; and (f) FV.
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RD solution on the unstructured mesh is somewhere

between the optimal and reverse tessellations.

6.2 Performance comparisons for the Euler equations

Steady solutions to the Euler equations are now

considered. The performance of the RD and FV schemes

are evaluated for a discontinuous supersonic flow, a

smooth subsonic flow, a flow with stagnation regions and

a smooth transonic flow. Exact solutions are available for

all four flows and are used to calculate the spatial

accuracy of the methods. The quadrilateral grid used to

obtain the RD solutions is always optimally tessellated.

For the decomposed RD schemes applied to supersonic

flow regimes, a split streamline and dominant acoustic

tessellation is used. For the other RD schemes and flow

regimes, the tessellation direction is aligned with the flow

streamline.

6.2.1 Supersonic flow past a diamond-shaped aerofoil

The first problem considered herein related to the Euler

equations involves supersonic flow past

a diamond-shaped aerofoil with a freestream Mach

number of 3, freestream pressure and temperature

corresponding to standard atmospheric conditions, and

an angle of attack of 08. The solution domain features a

horizontal axis of symmetry and the outflow boundary is

close enough to prevent any interaction between the

otherwise simple and centred waves. Hence, an exact

solution can be determined for the entire domain.

Numerical solutions were obtained using a RD decom-

posed LN scheme (the flow fully decouples everywhere),

a RD matrix blended scheme, and, for comparison

purposes, the FV scheme. The computationaldomain was

divided into four blocks with the body-fitted multiblock

grids ranging in size from 160 £ 40 to 640 £ 160.

Figures 10 and 11 depict both qualitative and

quantitative results for the error in the computed density

of the RD and FV schemes. Figure 10 shows the coarsest

grid used in the accuracy study and the various solutions

obtained on that grid for this supersonic flow problem.

It is quite apparent from this figure that the numerical

shocks obtained with the FV code are somewhat thicker

than those of the RD schemes due to its more dissipative

nature. The qualitative results for the two RD schemes

(decomposed and matrix) appear quite similar. The L1-

norm of the solution error of the various schemes as a

function of the mesh size is provided in Figure 11.

As expected, all of the schemes exhibit close to first-

order accuracy (b ¼ 21). However, small differences in

the absolute error are evident. The decomposed RD

solution is the most accurate, followed by the matrix RD

solution and then the FV solution.

6.2.2 Subsonic flow past a smooth bump

The performance of the RD and FV algorithms is now

considered for subsonic flow past a smooth bump. The

profile of the bump was defined by

y ¼
1

20
cos

px

1:5

	 

þ 1

	 

; 21:5 # x # 1:5: ð51Þ

The far-field pressure and temperature were assigned

standard atmospheric values and the freestream Mach

number was taken to be 0.1. Mach number contours,

obtained by the RD decomposed LDA-LW (meaning an

LDA distribution for the decoupled scalar equations and

Lax–Wendroff distribution for the remaining subsonic

acoustic subset) scheme are shown in Figure 12. As this

inviscid flow is homentropic, any deviations from the

freestream entropy are a result of numerical solution

error. Changes in entropy, given by

ds ¼
R

g2 1
ln

p

rg

� �
2 s1; ð52Þ

were therefore used to define solution error where s1 is

the value of entropy in the freestream. The computational

grid was divided into six blocks and ranges in size

from 120 £ 80 to 480 £ 320. The RD solutions were

obtained using a decomposed LDA-LW scheme,

a decomposed LN-LW scheme, a matrix LDA scheme,

and a matrix blended scheme.

Contours of the entropy change are shown in

Figure 13 for solutions obtained on the coarsest mesh.

Qualitatively, the decomposed RD schemes show the

least entropy production, followed by the matrix RD

Figure 9. L1-error as a function of mesh density for Burgers
equation.
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schemes and finally, the FV scheme. The spatial

convergence is illustrated in Figure 14. The FV scheme

and the RD schemes that use an LDA distribution all

indicate spatial orders of accuracy near b ¼ 22.64.

The matrix RD schemes perform similarly to the FV

scheme. Similar to the performance of the LN (minmod)

scheme for scalar equations, the matrix blended scheme

shows a degraded order of accuracy compared to the

matrix LDA scheme. An interesting result in Figure 14

is that the decomposed RD schemes are much more

accurate than the other approaches. The decomposed

LDA-LW scheme and the decomposed LN-LW scheme

provide nearly identical results, probably because this

flow is dominated by the acoustic subsystem. In other

words, the results are mostly indicative of how well the

subsonic acoustic subset is treated. Experiments revealed

that it is the hyperbolic–elliptic splitting, rather than the

distribution scheme, that is providing most of the benefit;

resolving the acoustic subset with an LDAmatrix scheme

provides similar results to using the LW scheme.

Figure 10. Density distributions for M ¼ 3 supersonic flow past a diamond-shaped aerofoil obtained using a 160 £ 40 body-fitted
multiblock mesh.
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6.2.3 Subsonic flow past a circular cylinder

The more difficult problem of subsonic flow past a

circular cylinder was also considered to include the

added complexity of stagnation regions. Freestream

conditions and error measurements are exactly the same

as for the previous case of subsonic flow past a smooth

bump. Body-fitted radial grids were used to model the

upper half of the cylinder and reflection BCs were

applied along the axis of symmetry. As the flow features

stagnation regions, system decomposition was not

applied in this case due to the degeneracy in the

preconditioned system. Numerical solutions were

obtained using both matrix LDA and matrix blended

RD schemes along with the FV method on multiblock

grids ranging from 40 £ 40 to 160 £ 160 in each

quadrant. This is a case where solutions of the RD

scheme seem to benefit from using all three nodes in

the ghost elements to compute the linearised state

(Section 5.2). This modification was made for all RD

solutions obtained for this case.

Contours of the entropy change are shown in

Figure 15 for a mesh size of 40 £ 40 in each quadrant.

From this figure, it should be quite evident that the RD

LDA scheme produces much less entropy than the FV

scheme. Qualitatively at least, the RD schemes provide a

significantly improved result as compared to the FV

method. Naturally, even greater improvements would be

expected if the decomposed RD scheme could have been

used. Quantitative comparisons of the methods are given

by the variation of the solution accuracy with respect to

mesh density as shown in Figure 16. The results depicted

in the figure are somewhat peculiar and not quite as

expected. Although the curve of FV error is virtually a

straight line, it indicates a spatial order of accuracy of

2.79. This is higher than the expected value of 2. On the

other hand, the RD blended scheme initially shows an

order of accuracy of 1.88, a value that agrees very well

with the scalar RD LN (minmod) results in Figure 7.

However, on finer grids, the accuracy degrades to an

order of 1.29. The behaviour of the solution error for the

LDA scheme, although generally much lower than that of

the FV method (at least for the coarser meshes) and

having an order of accuracy that approaches 2.5, is erratic

and also not as expected. Although it could be argued

that the asymptotic regime for the solution error in terms

of the mesh resolution has not yet been achieved on the

range of grids considered, this explanation is not

supported by the FV results, for which asymptotic-like

behaviour is observed. Instead, a cause for the behaviour

of the RD LDA scheme may be some form of numerical

instability. This instability is especially noticeable on the

finer meshes.

Figure 17 shows the predicted Mach number and

entropy distributions on a grid with 80 £ 80 cells in each

quadrant. This solution was obtained using the LDA

scheme. The L2 norm for all solution residuals was

reduced by 15 orders of magnitude indicating that a

steady solution was indeed achieved. Although the Mach

number contours are smooth and symmetrical, the

entropy solution displays a number of perturbations.

Similar, but less significant, perturbations were also

observed in the blended results. The oscillations seem to

be highly sensitive to the grid. A pre-defined tessellation

can exacerbate the situation. Letting the tessellation

optimally adapt to the solution tends to minimise the

oscillations. An unstructured mesh disrupts the regularity

of the perturbations, but their effect is still otherwise

present. To our knowledge, this behaviour has not been

reported elsewhere in the literature. There has been some

Figure 11. L1-density-error as a function of grid spacing for
M ¼ 3 supersonic flow past a diamond-shaped aerofoil.

Figure 12. Mach number contours computed by the RD
decomposed LDA-LW scheme at M ¼ 0.1 (mesh size
240 £ 160). (All colour figures available online in colour.)
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recent efforts to correct curiously similar perturbations in

smooth regions (Abgrall 2006, Dobeš and Deconinck

in press); however, these efforts only acknowledge

instabilities for non-linear distribution schemes.

6.2.4 Ringleb’s flow

Ringleb’s flow is a hodograph solution to the Euler

equations (Sachdev et al. 2005) that involves an

isentropic and irrotational flow contained between two

streamlines. The availability of the analytic solution for

this case make it very useful for demonstrating the

accuracy of the spatial discretisation. Figure 18(c),(d)

show the Mach number and density distributions

corresponding to the exact solution. The left and right

boundaries are delimited by streamlines and and there is

subsonic inflow at the top and mixed subsonic/supersonic

outflow at the bottom of the domain. Numerical solutions

were obtained for Ringleb’s flow using both the RD and

FV schemes on body fitted grids ranging in size from

40 £ 40 to 320 £ 320. An example grid, coarser than

the coarsest grid solved and shown for illustrative

purposes only, is displayed in Figure 18(a). The RD

solutions were obtained using a matrix LDA scheme, a

matrix blended scheme, a decomposed LDA scheme and

a decomposed LN scheme. In subsonic regions, the

elliptic acoustic subset of the decomposed Euler

equations was solved using the Lax–Wendroff approach

described previously.

Figure 13. Distributions of entropy change for M ¼ 0.1 subsonic flow past a smooth bump (mesh size 120 £ 80).
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The blending coefficient or limiter of the non-linear

RD schemes was frozen when the solution was fully

developed. In the previous problems, freezing the limiter

would avoid a convergence stall but not appreciably

influence the overall accuracy of the results. It was

therefore not used. For this problem, freezing the limiter

and extending the convergence did actually lead to more

accurate estimations of the solution accuracy of the non-

linear RD schemes.

The L1-error norms of the computed difference in the

solution densities are shown in Figure 19 for the

Ringleb’s flow problem. The results indicate that the FV

and both of the RD LDA schemes have spatial orders of

accuracy near 2, as should be expected. However, in this

case, it is the FV scheme that yields the best results,

providing solutions that appear to be almost twice as

accurate as the decomposed LDA scheme.

The performance of the non-linear RD schemes is

inferior to that of the linear LDA schemes. For the matrix

blended method, a degradation in the order of accuracy is

seen on finer grids, similar to that observed for flow past

a cylinder. Between the two finest meshes, the order

of accuracy is only 21.24. On the finest mesh,

320 £ 320, the decomposed LN method produced

oscillations that severely corrupt the accuracy. However,

the decomposed LN results that were obtained seem to

follow a trend similar to that of the matrix blended

results. As with the supersonic case, the decomposed RD

schemes show a slight improvement in absolute accuracy

over the RD matrix schemes.

The discrepancy regarding the relative accuracies of

RD and FV methods is known to not be related to mesh

Figure 14. L1-error as a function of grid density for M ¼ 0.1
subsonic flow past a smooth bump.

Figure 15. Distributions of entropy change forM ¼ 0.1 subsonic flow past a circular cylinder (mesh size 40 £ 40 in each quadrant).
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alignment. This was proven by generating solutions on

randomly distorted grids, similar to that shown in

Figure 18(b). For this grid, a limiter was not used to

obtain the FV solution (use of the limiter on the smooth

grid had virtually no effect on the results). The results

for the unlimited FV method are compared to those

for the matrix-LDA RD scheme on the distorted mesh

in Figure 19. It should be evident from this figure that

while second-order accuracy is still achieved on the

distorted grids, there is a notable decrease in the solution

accuracy of both methods. However, the overall effect on

each of the methods is quite similar such that the FV

scheme is still more accurate than the RD scheme.

The discrepancy is thought to be related to how well

the schemes correct solutions in regions that violate the

entropy condition. Entropy violations result from the

discretisation and typically occur when a node receives no

update because all waves move away from the node. This

commonly occurs at sonic points and, in some cases, can

create a expansion shocks. Figure 20(a),(b) show the

absolute magnitude of the density error for the FV and RD

schemes, respectively. It is apparent that the RD scheme

suffers from higher error levels near sonic points. The

entropy fix proposed by Sermeus and Deconinck (2005)

was implemented for the matrix scheme. Regions where

an entropy fix may be required, as detected by this

scheme, are shown in Figure 20(c). The effect of applying

the entropy fix is displayed in Figure 20(d). Although

almost indistinguishable from Figure 20(b), there is a

small improvement to the accuracy1. Most of the

improvement is at the large error in the centre of the

domain. The large error at the outflow boundary is caused

by an entropy violation within the degenerate ghost

elements and is not dealt with at all by the entropy fix.

The FV scheme is more accurate than the RD scheme

evenwhen an entropy fix is applied. It seems likely that the

results reported in Figure 19 are more indicative of how

well the two schemes satisfy the appropriate entropy

condition than anything else. The FV method is much

more successful, probably because of its larger stencil.

In one dimension, a second-order reconstruction will tend

to removemost entropy violations. TheRDscheme, on the

other hand, must completely rely on accurate multi-

dimensional analytical approximations of the solution in

regions of entropy violation. Besides the entropy

correction considered here, fixes have also been proposed

byWood andKleb (2001) andNishikawa and Roe (2005).

7. Conclusions

The intent of this study was to quantitatively assess the

benefits to solution accuracy offered by RD schemes as

compared to more standard FV methods for problems

involving both discontinuous and smooth solutions.

Figure 16. L1-error as a function of grid density for M ¼ 0.1
subsonic flow past a circular cylinder.

Figure 17. Perturbations in the subsonic cylinder flow generated by the RD LDA scheme (mesh size 80 £ 80 in each quadrant).
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Although originally developed for unstructured grids,

use of an RD scheme on a structured quadrilateral mesh

permits optimal solution-dependent tessellation of the

domain. The scalar results demonstrate significant

improvements in accuracy from the optimal tessellation

procedure.

The numerical results presented here for scalar

partial differential equations indicate that the RD

method is far superior to the FV method, both in

smooth regions and in the presence of discontinuities

and/or shocks. Significant improvements in accuracy

can be achieved for the same mesh resolution.

Unfortunately, while the LN scheme with a minmod

limiter (equivalent to the PSI scheme) is excellent at

capturing discontinuities, it suffers a degradation in the

spatial accuracy as compared to the LDA scheme when

applied to problems having smooth flows. Second-order

accuracy is not achieved for smooth solutions using the

LN (minmod) and blended distribution schemes. The

deficiency appears to be related to the performance of

the limiter in smooth regions. Solutions of smooth

scalar problems computed by an LN scheme with a

MUSCL limiter display an accuracy similar to that

achieved with the LDA scheme. Further work is

required to examine the effect of the MUSCL limiter on

discontinuous problems and to extend the benefits to

systems of equations. Other possible fixes include

defining blending coefficients that are based on the

Figure 18. Contours of the exact solution for Ringleb’s flow.

Figure 19. L1-density-error as a function of grid density for
Ringleb’s flow.
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explicit detection of discontinuities (Dobeš and

Deconinck in press).

Various extensions of the RD scheme to systems of

partial differential equations have also been described

and the numerical results for supersonic flow solutions to

the Euler equations appear to support the results and

conclusions obtained for the scalar equations. The RD

scheme was also quite successful at resolving subsonic

flow over a smooth bump with the decomposed scheme

demonstrating exceptional performance. However, diffi-

culties were encountered for the cases of subsonic flow

past a cylinder and transonic Ringleb’s flow. Although

RD solutions for the subsonic cylinder flows are

generally found to be superior to those provided by the

FV method, the graphs of the solution error do not fully

support this finding. Furthermore, close examination of

the numerical results reveals perturbations and/or

instabilities in the solutions, something unexpected for

an LDA scheme applied to smooth flows. For Ringleb’s

flow, the computed results somewhat surprisingly reveal

that the FV scheme is more accurate. A probable

explanation is that the RD scheme has more difficulty

providing an entropy satisfying solution near sonic points

of expanding flows. This is likely a byproduct of the

smaller stencil and possibly the linearisation process.

Overall, the RD method appears quite promising as

an alternative to FV methods. The performance of the

method for the scalar equations alone motivates further

research. However, it would seem that the accuracy of the

standard non-linear distribution schemes and the

reliability of the distribution techniques for non-linear

systems of equations must be improved before the RD

method is as practical and robust as FV methods for a

wide range of applications.
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Figure 20. Distributions of the density error generated by the RD and FV schemes and performance of an entropy fix.
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Note

1. Improvements are more noticeable when expansion shocks are

actually visible.
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